-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrikz.py
675 lines (556 loc) · 21.7 KB
/
metrikz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Compare two or more images using MSE, PSNR, SNR, SSIM, UQI, PBVIF, MSSIM,
NQM and WSNR metrics.
For usage and a list of options, try this:
$ ./pymetrikz -h
This program and its regression test suite live here:
http://www.sawp.com.br/projects/pymetrikz"""
import numpy as __n
from scipy.ndimage.filters import gaussian_filter as __gaussian_filter
from scipy.ndimage.filters import convolve as __convolve
from scipy.ndimage.filters import correlate as __correlate
from scipy.fftpack import fftshift as __fftshift
__author__ = "Pedro Garcia Freitas <sawp@sawp.com.br>"
__copyright__ = "Copyright (c) 2011-2014 Pedro Garcia"
__license__ = "GPLv2"
def mse(reference, query):
"""Computes the Mean Square Error (MSE) of two images.
value = mse(reference, query)
Parameters
----------
reference: original image data.
query : modified image data to be compared.
Return
----------
value : MSE value
"""
(ref, que) = (reference.astype('double'), query.astype('double'))
diff = ref - que
square = (diff ** 2)
mean = square.mean()
return mean
def rmse(reference, query):
msev = mse(reference, query)
return __n.sqrt(msev)
def psnr(reference, query, normal=255):
"""Computes the Peak Signal-to-Noise-Ratio (PSNR).
value = psnr(reference, query, normalization=255)
Parameters
----------
reference: original image data.
query : modified image data to be compared.
normal : normalization value (255 for 8-bit image
Return
----------
value : PSNR value
"""
normalization = float(normal)
msev = mse(reference, query)
if msev != 0:
value = 10.0 * __n.log10(normalization * normalization / msev)
else:
value = float("inf")
return value
def snr(reference, query):
"""Computes the Signal-to-Noise-Ratio (SNR).
value = snr(reference, query)
Parameters
----------
reference: original image data.
query : modified image data to be compared.
Return
----------
value : SNR value
"""
signal_value = (reference.astype('double') ** 2).mean()
msev = mse(reference, query)
if msev != 0:
value = 10.0 * __n.log10(signal_value / msev)
else:
value = float("inf")
return value
def ssim(reference, query):
"""Computes the Structural SIMilarity Index (SSIM).
value = ssim(reference, query)
Parameters
----------
reference: original image data.
query : modified image data to be compared.
Return
----------
value : SSIM value
"""
def __get_kernels():
k1, k2, l = (0.01, 0.03, 255.0)
kern1, kern2 = map(lambda x: (x * l) ** 2, (k1, k2))
return kern1, kern2
def __get_mus(i1, i2):
mu1, mu2 = map(lambda x: __gaussian_filter(x, 1.5), (i1, i2))
m1m1, m2m2, m1m2 = (mu1 * mu1, mu2 * mu2, mu1 * mu2)
return m1m1, m2m2, m1m2
def __get_sigmas(i1, i2, delta1, delta2, delta12):
f1 = __gaussian_filter(i1 * i1, 1.5) - delta1
f2 = __gaussian_filter(i2 * i2, 1.5) - delta2
f12 = __gaussian_filter(i1 * i2, 1.5) - delta12
return f1, f2, f12
def __get_positive_ssimap(C1, C2, m1m2, mu11, mu22, s12, s1s1, s2s2):
num = (2 * m1m2 + C1) * (2 * s12 + C2)
den = (mu11 + mu22 + C1) * (s1s1 + s2s2 + C2)
return num / den
def __get_negative_ssimap(C1, C2, m1m2, m11, m22, s12, s1s1, s2s2):
(num1, num2) = (2.0 * m1m2 + C1, 2.0 * s12 + C2)
(den1, den2) = (m11 + m22 + C1, s1s1 + s2s2 + C2)
ssim_map = __n.ones(img1.shape)
indx = (den1 * den2 > 0)
ssim_map[indx] = (num1[indx] * num2[indx]) / (den1[indx] * den2[indx])
indx = __n.bitwise_and(den1 != 0, den2 == 0)
ssim_map[indx] = num1[indx] / den1[indx]
return ssim_map
(img1, img2) = (reference.astype('double'), query.astype('double'))
(m1m1, m2m2, m1m2) = __get_mus(img1, img2)
(s1, s2, s12) = __get_sigmas(img1, img2, m1m1, m2m2, m1m2)
(C1, C2) = __get_kernels()
if C1 > 0 and C2 > 0:
ssim_map = __get_positive_ssimap(C1, C2, m1m2, m1m1, m2m2, s12, s1, s2)
else:
ssim_map = __get_negative_ssimap(C1, C2, m1m2, m1m1, m2m2, s12, s1, s2)
ssim_value = ssim_map.mean()
return ssim_value
def uqi(reference, query):
"""Computes the Universal Quality Index (UQI).
value = uqi(reference, query
Parameters
----------
reference: original image data.
query : modified image data to be compared.
Return
----------
value : UQI value
"""
def __conv(x):
window = __n.ones((BLOCK_SIZE, BLOCK_SIZE))
if len(x.shape) < 3:
return __convolve(x, window)
else:
channels = x.shape[2]
f = [__convolve(x[:, :, c], window) for c in xrange(channels)]
return __n.array(f)
def __get_filtered(im1, im2, BLOCK_SIZE):
(im1im1, im2im2, im1im2) = (im1 * im1, im2 * im2, im1 * im2)
(b1, b2, b3, b4, b5) = map(__conv, (im1, im2, im1im1, im2im2, im1im2))
(b6, b7) = (b1 * b2, b1 * b1 + b2 * b2)
return (b1, b2, b3, b4, b5, b6, b7)
def __get_quality_map(b1, b2, b3, b4, b5, b6, b7, BLOCK_SIZE):
N = BLOCK_SIZE * BLOCK_SIZE
numerator = 4.0 * (N * b5 - b6) * b6
denominator1 = N * (b3 + b4) - b7
denominator = denominator1 * b7
index = __n.bitwise_and(denominator1 == 0, b7 != 0)
quality_map = __n.ones(denominator.shape)
quality_map[index] = 2.0 * b6[index] / b7[index]
index = (denominator != 0)
quality_map[index] = numerator[index] / denominator[index]
return quality_map[index]
BLOCK_SIZE = 8
(img1, img2) = (reference.astype('double'), query.astype('double'))
(b1, b2, b3, b4, b5, b6, b7) = __get_filtered(img1, img2, BLOCK_SIZE)
quality_map = __get_quality_map(b1, b2, b3, b4, b5, b6, b7, BLOCK_SIZE)
value = quality_map.mean()
return value
def pbvif(reference, query):
"""Computes the Pixel-Based Visual Information Fidelity (PB-VIF).
value = pbvif(reference, query)
Parameters
----------
reference: original image data.
query : modified image data to be compared.
Return
----------
value : PB-VIF value
"""
def __get_sigma(win, ref, dist, mu1_sq, mu2_sq, mu1_mu2):
sigma1_sq = __filter2(win, ref * ref) - mu1_sq
sigma2_sq = __filter2(win, dist * dist) - mu2_sq
sigma12 = __filter2(win, ref * dist) - mu1_mu2
(sigma1_sq[sigma1_sq < 0], sigma2_sq[sigma2_sq < 0]) = (0.0, 0.0)
return (sigma2_sq, sigma12, sigma1_sq)
def __get_normalized(s1s1, s2s2, s1s2):
g = s1s2 / (s1s1 + 1e-10)
sv_sq = s2s2 - g * s1s2
g[s1s1 < 1e-10] = 0
sv_sq[s1s1 < 1e-10] = s2s2[s1s1 < 1e-10]
s1s1[s1s1 < 1e-10] = 0
g[s2s2 < 1e-10] = 0
sv_sq[s2s2 < 1e-10] = 0
sv_sq[g < 0] = s2s2[g < 0]
g[g < 0] = 0
sv_sq[sv_sq <= 1e-10] = 1e-10
return (g, sv_sq)
def __get_num(s1s1, sv_sq, sigma_nsq, g):
normg = (g ** 2) * s1s1 / (sv_sq + sigma_nsq)
snr = __n.log10(1.0 + normg).sum()
return snr
def __get_den(s1s1, sigma_nsq):
snr = __n.log10(1.0 + s1s1 / sigma_nsq)
return snr.sum()
def __get_num_den_level(ref, dist, scale):
sig = 2.0
N = (2.0 ** (4 - scale + 1.0)) + 1.0
win = __get_gaussian_kernel(N, N / 5.0)
if scale > 1:
ref = __filter2(win, ref)
dist = __filter2(win, dist)
ref = ref[::2, ::2]
dist = dist[::2, ::2]
(mu1, mu2) = (__filter2(win, ref), __filter2(win, dist))
(m1m1, m2m2, m1m2) = (mu1 * mu1, mu2 * mu2, mu1 * mu2)
(s2s2, s1s2, s1s1) = __get_sigma(win, ref, dist, m1m1, m2m2, m1m2)
(g, svsv) = __get_normalized(s1s1, s2s2, s1s2)
(num, den) = (__get_num(s1s1, svsv, sig, g), __get_den(s1s1, sig))
return (num, den)
(ref, dist) = (reference.astype('double'), query.astype('double'))
zipped = map(lambda x: __get_num_den_level(ref, dist, x), xrange(1, 5))
(nums, dens) = zip(*zipped)
value = sum(nums) / sum(dens)
return value
def mssim(reference, query):
"""Computes the Multi-Scale SSIM Index (MSSIM).
value = mssim(reference, query)
Parameters
----------
reference: original image data.
query : modified image data to be compared.
Return
----------
value : MSSIM value
"""
def __get_filt_kern():
n = [131, -199, -101, 962, 932, 962, -101, -199, 131]
d = [3463, 8344, 913, 2549, 1093, 2549, 913, 8344, 3463]
num = __n.matrix(n).T
den = __n.matrix(d).T
lod = num.astype('double') / den.astype('double')
lpf = __n.dot(lod, lod.T)
return lpf / lpf.sum()
def __get_ssim(img1, img2, K):
comp_ssim = __ssim_modified(img1, img2, K)[1]
return (comp_ssim[1], comp_ssim[2])
def __get_MVR(img1, img2, K, nlevs):
(ssim_v, ssim_r) = (__n.zeros((nlevs, 1)), __n.zeros((nlevs, 1)))
(ssim_v[0], ssim_r[0]) = __get_ssim(img1, img2, K)
filt_kern = __get_filt_kern()
for s in xrange(nlevs - 1):
(img1, img2) = map(lambda x: __filter2(filt_kern, x), (img1, img2))
(img1, img2) = (img1[::2, ::2], img2[::2, ::2])
comp_ssim = __ssim_modified(img1, img2, K)[1]
ssim_m = comp_ssim[0]
ssim_v[s + 1] = comp_ssim[1]
ssim_r[s + 1] = comp_ssim[2]
return (ssim_m, ssim_v, ssim_r)
def __calc_mssim_mvr(img1, img2):
(K, weights) = ((0.01, 0.03), (0.0448, 0.2856, 0.3001, 0.2363, 0.1333))
(alpha, beta, lvl) = (0.1333, __n.matrix(weights).T, len(weights))
(ssim_m, ssim_v, ssim_r) = __get_MVR(img1, img2, K, lvl)
m = ssim_m ** alpha
v = (ssim_v ** beta).prod()
r = (ssim_r ** beta).prod()
return (m, v, r)
(ref, quer) = (reference.astype('double'), query.astype('double'))
ssim_mvr = __n.matrix(__calc_mssim_mvr(ref, quer))
value = ssim_mvr.prod()
return value
def __filter2(B, X, shape='nearest'):
B2 = __n.rot90(__n.rot90(B))
if len(X.shape) < 3:
return __correlate(X, B2, mode=shape)
else:
channels = X.shape[2]
f = [__correlate(X[:, :, c], B2, mode=shape) for c in xrange(channels)]
return __n.array(f)
def __get_gaussian_kernel(N=15, sigma=1.5):
(H, W) = ((N - 1) / 2, (N - 1) / 2)
std = sigma
(y, x) = __n.mgrid[-H:H + 1, -W:W + 1]
arg = -(x * x + y * y) / (2.0 * std * std)
h = __n.exp(arg)
index = h < __n.finfo(float).eps * h.max(0)
h[index] = 0
sumh = h.sum()
if sumh != 0:
h = h / sumh
return h
def __ssim_modified(reference, query, K):
def __get_kern(K):
L = 255
kern = map(lambda x: (x * L) ** 2, K)
return (kern[0], kern[1])
def __get_filtering_window():
window = __get_gaussian_kernel(11, 1.5)
return window / window.sum()
def __get_mus(img1, img2, window):
(mu1, mu2) = map(lambda x: __filter2(window, x), (img1, img2))
(m1m1, m2m2, m1m2) = (mu1 * mu1, mu2 * mu2, mu1 * mu2)
return (mu1, mu2, m1m1, m2m2, m1m2)
def __get_sigmas(img1, img2, window, m1m1, m2m2, m1m2):
s1s1 = __filter2(window, img1 * img1) - m1m1
s2s2 = __filter2(window, img2 * img2) - m2m2
s12 = __filter2(window, img1 * img2) - m1m2
(s1, s2) = map(__n.sqrt, (__n.abs(s1s1), __n.abs(s2s2)))
return (s1s1, s2s2, s1, s2, s12)
def __MVR_pos_kern(m, kern, s, s_square):
(m11, m22, m12) = m
(k1, k2) = kern
(s1, s2) = s
(s1s1, s2s2, s12) = s_square
M = (2.0 * m12 + k1) / (m11 + m22 + k1)
V = (2.0 * s1 * s2 + k2) / (s1s1 + s2s2 + k2)
R = (s12 + k2 / 2.0) / (s1 * s2 + k2 / 2.0)
return (M, V, R)
def __MVR_neg_kern(m, s, s_square):
def __calcM(mu1, m11, m22, m12):
ssim_ln = 2.0 * m12
ssim_ld = m11 + m22
index_l = ssim_ld > 0
M = __n.ones(mu1.shape)
M[index_l] = ssim_ln[index_l] / ssim_ld[index_l]
return M
def __calcV(mu1, s1, s2, s11, s22):
ssim_cn = 2.0 * s1 * s2
ssim_cd = s11 + s22
V = __n.ones(mu1.shape)
index_c = ssim_cd > 0
V[index_c] = ssim_cn[index_c] / ssim_cd[index_c]
return V
def __calcR(mu1, s1, s2, s12):
(ssim_sn, ssim_sd) = (s12, s1 * s2)
R = __n.ones(mu1.shape)
(index1, index2) = (s1 > 0, s2 > 0)
index_s1 = index1 * index2 > 0
R[index_s1] = ssim_sn[index_s1] / ssim_sd[index_s1]
index_s2 = index1 * __n.logical_not(index2) > 0
R[index_s2] = 0.0
return R
(mu1, mu2, m11, m22, m12) = m
(s1, s2) = s
(s11, s22, s12) = s_square
M = __calcM(mu1, m11, m22, m12)
V = __calcV(mu1, s1, s2, s11, s22)
R = __calcR(mu1, s1, s2, s12)
return (M, V, R)
def __get_composition_vector(img1, img2):
filt = __get_filtering_window()
(mu1, mu2, m11, m22, m12) = __get_mus(img1, img2, filt)
(s11, s22, s1, s2, s12) = __get_sigmas(img1, img2, filt, m11, m22, m12)
(kern1, kern2) = __get_kern(K)
if kern1 > 0 and kern2 > 0:
(m, kern, s) = ((m11, m22, m12), (kern1, kern2), (s1, s2))
s_square = (s11, s22, s12)
(M, V, R) = __MVR_pos_kern(m, kern, s, s_square)
else:
(m, s) = ((mu1, mu2, m11, m22, m12), (s1, s2))
s_square = (s11, s22, s12)
(M, V, R) = __MVR_neg_kern(m, s, s_square)
return (M, V, R)
def __get_ssim_map(M, V, R):
ssim_map = M * V * R
return ssim_map
def __get_ssim_from_composition_vector(M, V, R):
ssim_map = __get_ssim_map(M, V, R)
ssim = ssim_map.mean()
return ssim
(img1, img2) = reference.astype('double'), query.astype('double')
(M, V, R) = __get_composition_vector(img1, img2)
composite_mean_vector = (M.mean(), V.mean(), R.mean())
ssim = __get_ssim_from_composition_vector(M, V, R)
return (ssim, composite_mean_vector)
def __convert_to_luminance(x):
return __n.dot(x[..., :3], [0.299, 0.587, 0.144]).astype('double')
def nqm(reference, query):
"""Computes the NQM metric.
value = nqm(reference, query)
Parameters
----------
reference: original image data.
query : modified image data to be compared.
Return
----------
value : NQM value
"""
def __ctf(f_r):
""" Bandpass Contrast Threshold Function for RGB"""
(gamma, alpha) = (0.0192 + 0.114 * f_r, (0.114 * f_r) ** 1.1)
beta = __n.exp(-alpha)
num = 520.0 * gamma * beta
return 1.0 / num
def _get_masked(c, ci, a, ai, i):
(H, W) = c.shape
(c, ci, ct) = (c.flatten(1), ci.flatten(1), __ctf(i))
ci[abs(ci) > 1.0] = 1.0
T = ct * (0.86 * ((c / ct) - 1.0) + 0.3)
(ai, a, a1) = (ai.flatten(1), a.flatten(1), (abs(ci - c) - T) < 0.0)
ai[a1] = a[a1]
return ai.reshape(H, W)
def __get_thresh(x, T, z, trans=True):
(H, W) = x.shape
if trans:
(x, z) = (x.flatten(1).T, z.flatten())
else:
(x, z) = (x.flatten(1), z.flatten(1))
z[abs(x) < T] = 0.0
return z.reshape(H, W)
def __decompose_cos_log_filter(w1, w2, phase=__n.pi):
return 0.5 * (1 + __n.cos(__n.pi * __n.log2(w1 + w2) - phase))
def __get_w(r):
w = [(r + 2) * ((r + 2 <= 4) * (r + 2 >= 1))]
w += [r * ((r <= 4) * (r >= 1))]
w += [r * ((r >= 2) * (r <= 8))]
w += [r * ((r >= 4) * (r <= 16))]
w += [r * ((r >= 8) * (r <= 32))]
w += [r * ((r >= 16) * (r <= 64))]
return w
def __get_u(r):
u = [4 * (__n.logical_not((r + 2 <= 4) * (r + 2 >= 1)))]
u += [4 * (__n.logical_not((r <= 4) * (r >= 1)))]
u += [0.5 * (__n.logical_not((r >= 2) * (r <= 8)))]
u += [4 * (__n.logical_not((r >= 4) * (r <= 16)))]
u += [0.5 * (__n.logical_not((r >= 8) * (r <= 32)))]
u += [4 * (__n.logical_not((r >= 16) * (r <= 64)))]
return u
def __get_G(r):
(w, u) = (__get_w(r), __get_u(r))
phase = [__n.pi, __n.pi, 0.0, __n.pi, 0.0, __n.pi]
dclf = __decompose_cos_log_filter
return [dclf(w[i], u[i], phase[i]) for i in xrange(len(phase))]
def __compute_fft_plane_shifted(ref, query):
(x, y) = ref.shape
(xplane, yplane) = __n.mgrid[-y / 2:y / 2, -x / 2:x / 2]
plane = (xplane + 1.0j * yplane)
r = abs(plane)
G = __get_G(r)
Gshifted = map(__fftshift, G)
return [Gs.T for Gs in Gshifted]
def __get_c(a, l_0):
c = [a[0] / l_0]
c += [a[1] / (l_0 + a[0])]
c += [a[2] / (l_0 + a[0] + a[1])]
c += [a[3] / (l_0 + a[0] + a[1] + a[2])]
c += [a[4] / (l_0 + a[0] + a[1] + a[2] + a[3])]
return c
def __get_ci(ai, li_0):
ci = [ai[0] / (li_0)]
ci += [ai[1] / (li_0 + ai[0])]
ci += [ai[2] / (li_0 + ai[0] + ai[1])]
ci += [ai[3] / (li_0 + ai[0] + ai[1] + ai[2])]
ci += [ai[4] / (li_0 + ai[0] + ai[1] + ai[2] + ai[3])]
return ci
def __compute_contrast_images(a, ai, l, li):
ci = __get_ci(ai, li)
c = __get_c(a, l)
return (c, ci)
def __get_detection_thresholds():
viewing_angle = (1.0 / 3.5) * (180.0 / __n.pi)
rotations = [2.0, 4.0, 8.0, 16.0, 32.0]
return map(lambda x: __ctf(x / viewing_angle), rotations)
def __get_account_for_supra_threshold_effects(c, ci, a, ai):
r = xrange(len(a))
return [_get_masked(c[i], ci[i], a[i], ai[i], i + 1) for i in r]
def __apply_detection_thresholds(c, ci, d, a, ai):
A = [__get_thresh(c[i], d[i], a[i], False) for i in xrange(len(a))]
AI = [__get_thresh(ci[i], d[i], ai[i], True) for i in xrange(len(a))]
return (A, AI)
def __reconstruct_images(A, AI):
return map(lambda x: __n.add.reduce(x), (A, AI))
def __compute_quality(imref, imquery):
return snr(imref, imquery)
def __get_ref_basis(ref_fft, query_fft, GS):
(L_0, LI_0) = map(lambda x: GS[0] * x, (ref_fft, query_fft))
(l_0, li_0) = map(lambda x: __n.real(__n.fft.ifft2(x)), (L_0, LI_0))
return (l_0, li_0)
def __compute_inverse_convolution(convolved_fft, GS):
convolved = [GS[i] * convolved_fft for i in xrange(1, len(GS))]
return map(lambda x: __n.real(__n.fft.ifft2(x)), convolved)
def __correlate_in_fourier_domain(ref, query):
(ref_fft, query_fft) = map(lambda x: __n.fft.fft2(x), (ref, query))
GS = __compute_fft_plane_shifted(ref, query)
(l_0, li_0) = __get_ref_basis(ref_fft, query_fft, GS)
a = __compute_inverse_convolution(ref_fft, GS)
ai = __compute_inverse_convolution(query_fft, GS)
return (a, ai, l_0, li_0)
def __get_correlated_images(ref, query):
(a, ai, l_0, li_0) = __correlate_in_fourier_domain(ref, query)
(c, ci) = __compute_contrast_images(a, ai, l_0, li_0)
d = __get_detection_thresholds()
ai = __get_account_for_supra_threshold_effects(c, ci, a, ai)
return __apply_detection_thresholds(c, ci, d, a, ai)
if not len(reference.shape) < 3:
reference = __convert_to_luminance(reference)
query = __convert_to_luminance(query)
(A, AI) = __get_correlated_images(reference, query)
(y1, y2) = __reconstruct_images(A, AI)
y = __compute_quality(y1, y2)
return y
def wsnr(reference, query):
"""Computes the Weighted Signal to Noise Ratio (WSNR) metric.
value = wsnr(reference, query)
Parameters
----------
reference: original image data.
query : modified image data to be compared.
Return
----------
value : wsnr value
"""
def __genetate_meshgrid(x, y):
f = lambda u: u / 2 + 0.5 - 1
(H, W) = map(f, (x, y))
return (H, W)
def __create_complex_planes(x, y):
(H, W) = __genetate_meshgrid(x, y)
(xplane, yplane) = __n.mgrid[-H:H + 1, -W:W + 1]
return (xplane, yplane)
def __get_evaluated_contrast_sensivity(plane):
w = 0.7
angle = __n.angle(plane)
return ((1.0 - w) / 2.0) * __n.cos(4.0 * angle) + (1.0 + w) / 2.0
def __get_radial_frequency(x, y):
(xplane, yplane) = __create_complex_planes(x, y)
nfreq = 60
plane = (xplane + 1.0j * yplane) / x * 2.0 * nfreq
s = __get_evaluated_contrast_sensivity(plane)
radfreq = abs(plane) / s
return radfreq
def __generate_CSF(radfreq):
a = -((0.114 * radfreq) ** 1.1)
csf = 2.6 * (0.0192 + 0.114 * radfreq) * __n.exp(a)
f = radfreq < 7.8909
csf[f] = 0.9809
return csf
def __weighted_fft_domain(ref, quer, csf):
err = ref.astype('double') - quer.astype('double')
err_wt = __fftshift(__n.fft.fft2(err)) * csf
im = __n.fft.fft2(ref)
return (err, err_wt, im)
def __get_weighted_error_power(err_wt):
return (err_wt * __n.conj(err_wt)).sum()
def __get_signal_power(im):
return (im * __n.conj(im)).sum()
def __get_ratio(mss, mse):
if mse != 0:
ratio = 10.0 * __n.log10(mss / mse)
else:
ratio = float("inf")
return __n.real(ratio)
if not len(reference.shape) < 3:
reference = __convert_to_luminance(reference)
query = __convert_to_luminance(query)
size = reference.shape
(x, y) = (size[0], size[1])
radfreq = __get_radial_frequency(x, y)
csf = __generate_CSF(radfreq)
(err, err_wt, im) = __weighted_fft_domain(reference, query, csf)
mse = __get_weighted_error_power(err_wt)
mss = __get_signal_power(im)
ratio = __get_ratio(mss, mse)
return ratio