Skip to content

zhaojlin/RibsegBasedonUDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

RibsegBasedonUDA

A framework for rib segmentation in CXR images based on unsupervised domain adaptation

framework

Data

  • DRRs generation: We employ a parallel projection model [1] to generate DRR images from CT images.
  • Data format in Cycle-GAN: json
    • trainA
    • trainB
    • testA
    • testB
  • Data format in SegNet: json
    • train
      • imgs
      • masks
    • test
      • imgs
      • masks

Usage

  1. SegNet
    • cd segnet and open the file train_config.yaml and set your json path and other parameters
     python train.py train_config.yaml
    
  2. Cycle-GAN
    • cd cyclegan
    • Training:
      python train.py --name yourExperName --gpu_ids 0,1 --n_epochs 100 --n_epochs_decay 100 --dataroot yourJsonDataRoot --batch_size 8
    • Test:
      cp ./log/expername/latest_net_G_A.pth ./log/expername/latest_net_G.pth
      python test.py --name yourExperName --no_dropout --dataroot yourJsonDataRoot
      

Citation

If you use this code for your research, please cite our papers.

@article{zhao2023rib,
  title={Rib Segmentation in Chest X-ray Images based on Unsupervised Domain Adaptation},
  author={Zhao, jialin and Nie, Ziwei and Shen, Jie and He, Jian and Yang, Xiaoping},
  journal={Biomedical Physics \& Engineering Express},
  year={2023}
}

References

[1] Campo, M.I., Pascau, J. and Estépar, R.S.J., 2018, April. Emphysema quantification on simulated X-rays through deep learning techniques. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 273-276). IEEE.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages