A framework for rib segmentation in CXR images based on unsupervised domain adaptation
- DRRs generation: We employ a parallel projection model [1] to generate DRR images from CT images.
- Data format in Cycle-GAN: json
- trainA
- trainB
- testA
- testB
- Data format in SegNet: json
- train
- imgs
- masks
- test
- imgs
- masks
- train
- SegNet
cd segnet
and open the filetrain_config.yaml
and set your json path and other parameters
python train.py train_config.yaml
- Cycle-GAN
cd cyclegan
- Training:
python train.py --name yourExperName --gpu_ids 0,1 --n_epochs 100 --n_epochs_decay 100 --dataroot yourJsonDataRoot --batch_size 8
- Test:
cp ./log/expername/latest_net_G_A.pth ./log/expername/latest_net_G.pth python test.py --name yourExperName --no_dropout --dataroot yourJsonDataRoot
If you use this code for your research, please cite our papers.
@article{zhao2023rib,
title={Rib Segmentation in Chest X-ray Images based on Unsupervised Domain Adaptation},
author={Zhao, jialin and Nie, Ziwei and Shen, Jie and He, Jian and Yang, Xiaoping},
journal={Biomedical Physics \& Engineering Express},
year={2023}
}
[1] Campo, M.I., Pascau, J. and Estépar, R.S.J., 2018, April. Emphysema quantification on simulated X-rays through deep learning techniques. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 273-276). IEEE.