An unsupervised domain adaptation method for tuberculosis classification in CXR images.
- The model reads the dataset in the format of a JSON file
- train - source - NM (normal) - TB (tuberculosis) - NTN (other lung diseases) - target - NM - TB - NTN - test - target - NM - TB - NTN
-
Collect the data you need and store it in the
/data
, and then create a JSON file -
Train a model:
python main.py --config config/msdan.yaml --json_path data/yourDataJsonFile.json
If you use this code for your research, please cite our papers.