这件事情的最终目的还是想从二手房的一些宏观的统计数据上分析整体的走势,因此设计一些合理的科学的统计指标并且随着时间的推移观察指标的变化很有意义。下面是当前想到的一些指标,后面还会不断补充。
这个指标无法准确判断调价的走势,因为每次都有新房源插入,算是一个比较宏观粗略的统计,一定程度上反映单价均价的走势,排除了一些不感兴趣的豪宅(没钱)
统计口径:
select date_format(now(),'%y-%m-%d') as time,count(id) as house_num, avg(total_price), avg(total_square), avg(total_price+price_diff)/avg(total_square) as cur_avg_price from lj_house where total_price<800 and total_square<200;
统计结果:
+----------+-----------+------------------+-------------------+---------------+
| time | house_num | avg(total_price) | avg(total_square) | cur_avg_price |
+----------+-----------+------------------+-------------------+---------------+
| 17-11-26 | 6522 | 336.8329 | 88.9405 | 3.78517765 |
+----------+-----------+------------------+-------------------+---------------+
| 17-11-27 | 6617 | 336.2847 | 88.8688 | 3.78178881 |
+----------+-----------+------------------+-------------------+---------------+
| 17-11-28 | 6700 | 336.5161 | 88.8549 | 3.78492864 |
+----------+-----------+------------------+-------------------+---------------+
| 17-11-29 | 6907 | 335.7475 | 88.7398 | 3.78074352 |
+----------+-----------+------------------+-------------------+---------------+
| 17-11-30 | 7070 | 335.4209 | 88.6362 | 3.78078314 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-01 | 7189 | 335.0300 | 88.5010 | 3.78177054 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-02 | 7260 | 334.9988 | 88.4811 | 3.78216706 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-03 | 7312 | 335.0729 | 88.4483 | 3.78367923 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-04 | 7362 | 335.0687 | 88.4465 | 3.78342392 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-06 | 7603 | 334.5679 | 88.2901 | 3.78325860 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-08 | 7867 | 333.9583 | 88.0678 | 3.78485456 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-10 | 7975 | 334.0636 | 88.0939 | 3.78379871 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-16 | 8455 | 334.0391 | 87.8891 | 3.79049444 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-23 | 9073 | 332.8165 | 87.5568 | 3.78762417 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-27 | 9374 | 332.9133 | 87.4899 | 3.79043322 |
+----------+-----------+------------------+-------------------+---------------+
| 17-12-30 | 9693 | 332.3667 | 87.3863 | 3.78807605 |
+----------+-----------+------------------+-------------------+---------------+
| 18-01-06 | 10175 | 332.1026 | 87.3262 | 3.78577876 |
+----------+-----------+------------------+-------------------+---------------+
这个指标一定程度上能反映卖家的心理预期,可以适当排除一些调价幅度过大(大于50)且挂牌时间超过半年的业主,感觉这部分业主不诚心卖,有扰乱市场之嫌
统计口径:
select date_format(now(),'%y-%m-%d') as time, count(id) as house_num,avg(price_diff),avg(total_square), avg(TIMESTAMPDIFF(DAY,sale_date,now())) as avg_sale_days from lj_house where abs(price_diff)>0 and abs(price_diff)<50 and TIMESTAMPDIFF(DAY,sale_date,now())<180;
统计结果:
+----------+-----------+-----------------+-------------------+---------------+
| time | house_num | avg(price_diff) | avg(total_square) | avg_sale_days |
+----------+-----------+-----------------+-------------------+---------------+
| 17-11-26 | 317 | -5.1767 | 88.1767 | 55.4700 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-11-27 | 391 | -5.1483 | 87.7749 | 55.8926 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-11-28 | 426 | -5.4601 | 88.8474 | 56.1901 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-11-29 | 488 | -5.6516 | 89.2480 | 56.0492 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-11-30 | 565 | -5.9274 | 89.7469 | 55.2832 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-01 | 605 | -6.1835 | 89.5025 | 56.6347 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-02 | 657 | -5.9224 | 88.9848 | 56.0183 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-03 | 731 | -5.9658 | 88.4802 | 55.9056 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-04 | 776 | -5.7784 | 89.0000 | 56.9253 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-06 | 881 | -5.9376 | 88.6935 | 58.0942 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-08 | 1020 | -5.9314 | 88.1735 | 58.8382 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-10 | 1137 | -6.3668 | 87.9894 | 60.4072 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-16 | 1358 | -6.6421 | 87.7040 | 64.3078 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-23 | 1718 | -6.9604 | 86.9779 | 68.3423 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-27 | 1901 | -7.0058 | 86.8096 | 69.7512 |
+----------+-----------+-----------------+-------------------+---------------+
| 17-12-30 | 2046 | -7.0010 | 87.0728 | 71.4951 |
+----------+-----------+-----------------+-------------------+---------------+
| 18-01-06 | 2288 | -7.1525 | 86.6849 | 75.7937 |
+----------+-----------+-----------------+-------------------+---------------+
这个指标包含每天新增房源个数、每天调价房源个数(分为上调和下调)、每天调价均值,可以粗略反映每日的趋势
+----------+-----------+----------------+-------------------+---------------+
| time |insert_num | diff_up_num | diff_down_num | avg_diff_price|
+----------+-----------+----------------+-------------------+---------------+
| 17-11-28 | 87 | 13 | 34 | 7.5 |
+----------+-----------+----------------+-------------------+---------------+
| 17-11-29 | 220 | 14 | 60 | -7.4 |
+----------+-----------+----------------+-------------------+---------------+
| 17-11-30 | 170 | 21 | 73 | -6.0 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-01 | 126 | 9 | 44 | -6.2 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-02 | 75 | 21 | 37 | -1.4 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-03 | 55 | 30 | 72 | -4.0 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-04 | 59 | 15 | 43 | -6.0 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-06 | 254 | 40 | 103 | -5.6 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-08 | 272 | 45 | 135 | -4.6 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-10 | 112 | 21 | 131 | -7.3 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-16 | 498 | 55 | 251 | -7.9 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-23 | 651 | 120 | 436 | -6.9 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-27 | 317 | 54 | 232 | -6.6 |
+----------+-----------+----------------+-------------------+---------------+
| 17-12-30 | 334 | 56 | 188 | -5.9 |
+----------+-----------+----------------+-------------------+---------------+
| 18-01-06 | 502 | 90 | 336 | -7.2 |
+----------+-----------+----------------+-------------------+---------------+
反映不同区域的变化情况,同样排除了一些数据
select date_format(now(),'%y-%m-%d') as time, area, count(id), avg(price_diff) from lj_house where abs(price_diff)>0 and abs(price_diff)<50 and TIMESTAMPDIFF(DAY,sale_date,now())<180 group by area order by avg(price_diff);
+----------+--------+-----------+-----------------+
| time | area | count(id) | avg(price_diff) |
+----------+--------+-----------+-----------------+
| 17-11-30 | 拱墅 | 74 | -7.4730 |
| 17-11-30 | 西湖 | 137 | -6.9270 |
| 17-11-30 | 下城 | 74 | -6.0405 |
| 17-11-30 | 江干 | 134 | -5.5075 |
| 17-11-30 | 上城 | 37 | -4.9189 |
| 17-11-30 | 下沙 | 71 | -4.7606 |
| 17-11-30 | 滨江 | 38 | -3.7368 |
+----------+--------+-----------+-----------------+
+----------+--------+-----------+-----------------+
| time | area | count(id) | avg(price_diff) |
+----------+--------+-----------+-----------------+
| 17-12-10 | 西湖 | 251 | -7.5378 |
| 17-12-10 | 江干 | 223 | -6.5650 |
| 17-12-10 | 下城 | 176 | -6.2273 |
| 17-12-10 | 下沙 | 148 | -6.0811 |
| 17-12-10 | 拱墅 | 174 | -6.0632 |
| 17-12-10 | 滨江 | 92 | -5.1413 |
| 17-12-10 | 上城 | 73 | -4.9178 |
+----------+--------+-----------+-----------------+