This repository is a compendium of notebooks and scripts to be used in my daily work for Data Science projects. I will try to use this landscape as reference:
- Data understanding [0]
- Experiments mlflow [5]
- Analysis [0]
- ADA [5]
- Decision tree for analysis [3]
- Dataset files [0]
- Errors [3]
- Plot [4]
- Datasets [8]
- Pipelines [3]
- Utils [6]
- Models [7]
- Dashboarding [1]
- Preprocessing [2]
- Data [2]
- Statistics [0]
- Mathematics miscelaneous [0]
- Agile [1]
- Programming [0]
- Ds project management [0]
- Plots [0]
- Statistics [0]
- Probability [2]
- Sampling [4]
- pycache [1]
- Hypotesis testing [4]
- Multimodal distribution analysis [2]
- Impurity measurements [2]
- pycache [1]
- Anomaly detection [1]
- Pycaret [0]
- Anomaly detection [1]
- Supervised learning [1]
- Timeseries [2]
- Analysis [0]
- Density estimation [1]
- EDA [0]
- Eda-tools [3]
- Eda-autoeda libraries [7]
- Analysis missing values [1]
- Analysis dpi [1]
- Factor analysis [2]
- Analysis regression [2]
- Analysis errors [1]
- Analysis fourier [2]
- Analysis clustering [2]
- Analysis decision tree [1]
- Analysis non-linear correlation [3]
- Analysis anomalies [4]
- Analysis data quality [1]
- Plots [0]
- Scatter plots [1]
- Hist kde [1]
- Pie chart [1]
- My final plots [6]
- Bar plots [1]
- Data quality [4]
- pycache [1]
- Synthetic data [2]
- Mlops [3]
- Pyarrow dataset [1]
- Data [0]
- Sample dataset [0]
- Parquet dataset partitioned [0] - Part=a [0] - Part=b [0] - Part=c [0]
- Parquet dataset 2 [0]
- Parquet dataset 3 [0] - Folder 2 [0] - Folder 1 [0]
- Parquet dataset 4 [0]
- Partitioned dataset [0] - C=1 [0] - C=2 [0]
- Parquet dataset 1 [0]
- Data [0]
- Automated code style [1]
- .ruff cache [0]
- 0.6.9 [0]
- .mypy cache [0]
- .ruff cache [0]
- Automated documentation [0]
- Workflow [0]
- Snakemake [0]
- Paralel [1] - .snakemake [0] - Locks [0] - Conda [0] - Incomplete [0] - Shadow [0] - Conda-archive [0] - Singularity [0] - Log [0] - Metadata [0] - Auxiliary [0]
- Introduction [1] - .snakemake [0] - Locks [0] - Conda [0] - Incomplete [0] - Shadow [0] - Conda-archive [0] - Singularity [0] - Log [0] - Metadata [0] - Auxiliary [0] - Data [0]
- Experiments [1]
- Experiments [0]
- Pipelines [2]
- Snakemake [0]
- Configs [2]
- Conf [0]
- Environment [0]
- Experiment [0]
- Conf [0]
- Documentation generators [0]
- Library pdoc [1]
- Html [0]
- Library pdoc [1]
- Make task with invoke [3]
- Bigdata [1]
- Testing with pytest [0]
- Pyarrow dataset [1]
- Datasets [5]
- Similarity [1]
- Sampling [3]
- Learning semi supervised [1]
- Learning supervised [0]
- Lib lightgbm [1]
- Interpretability [1]
- Automl [1]
- Extended eda [0]
- Automl 1 [0]
- Ensemble [0]
- 6 default randomforest [0]
- EDA [0]
- 2 decisiontree [0]
- 3 linear [0]
- 1 baseline [0]
- 5 default neuralnetwork [0]
- 4 default xgboost [0]
- Model interpretability [4]
- Dashboards [0]
- Panel [0]
- 4-dashboard to html [1]
- 2-power curve app v2 [1]
- 3-nested selectors [1]
- 0-first app [1]
- 1-power curve app v1 [1]
- Panel [0]
- NLP [9]
- Feature engineering [0]
- Algorithms selection [2]
- Learning un supervised [2]
- Data cleaning [2]
- Information theory [1]
Updated on 2024-10-12 21:06:37