-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
61 lines (42 loc) · 1.59 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# C-vine regression
<!-- badges: start -->
[![CRAN status](https://www.r-pkg.org/badges/version/cvinereg)](https://CRAN.R-project.org/package=cvinereg) [![R-CMD-check](https://github.com/jobstdavid/cvinereg/workflows/R-CMD-check/badge.svg)](https://github.com/jobstdavid/cvinereg/actions) [![version](https://img.shields.io/badge/version-0.1.0-green.svg?style=flat)](https://github.com/jobstdavid/cvinereg)
<!-- badges: end -->
An R package for C-vine copula based mean and quantile regression.
## Installation
You can install the development version from GitHub with:
``` r
# install.packages("remotes")
remotes::install_github("jobstdavid/cvinereg")
```
## Example
```{r example1, eval = T}
library(cvinereg)
# simulate data
set.seed(2024)
x <- matrix(rnorm(200), 100, 2)
y <- x %*% c(1, -2)
data <- data.frame(y = y, x = x)
# fit vine regression model
(fit <- cvinereg(y ~ ., data))
# summary of fit
summary(fit)
# show marginal effects for all selected variables
plot_effects(fit)
```
## Contact
Feel free to contact [jobstd\@uni-hildesheim.de](mailto:jobstd@uni-hildesheim.de) if you have any questions or suggestions.
## References
* Tepegjozova and Czado (2019), D- and C-vine quantile regression for large data sets, https://mediatum.ub.tum.de/doc/1536070/1536070.pdf.
* Tepegjozova et al. (2022). Nonparametric C- and D-vine-based quantile regression, Dependence Modeling, 10(1), 1-21, https://doi.org/10.1515/demo-2022-0100.