-
Notifications
You must be signed in to change notification settings - Fork 4.5k
/
databases.py
367 lines (277 loc) · 12.6 KB
/
databases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
users = [[0, "Hero", 0],
[1, "Dunn", 2],
[2, "Sue", 3],
[3, "Chi", 3]]
from typing import Tuple, Sequence, List, Any, Callable, Dict, Iterator
from collections import defaultdict
# A few type aliases we'll use later
Row = Dict[str, Any] # A database row
WhereClause = Callable[[Row], bool] # Predicate for a single row
HavingClause = Callable[[List[Row]], bool] # Predicate over multiple rows
class Table:
def __init__(self, columns: List[str], types: List[type]) -> None:
assert len(columns) == len(types), "# of columns must == # of types"
self.columns = columns # Names of columns
self.types = types # Data types of columns
self.rows: List[Row] = [] # (no data yet)
def col2type(self, col: str) -> type:
idx = self.columns.index(col) # Find the index of the column,
return self.types[idx] # and return its type.
def insert(self, values: list) -> None:
# Check for right # of values
if len(values) != len(self.types):
raise ValueError(f"You need to provide {len(self.types)} values")
# Check for right types of values
for value, typ3 in zip(values, self.types):
if not isinstance(value, typ3) and value is not None:
raise TypeError(f"Expected type {typ3} but got {value}")
# Add the corresponding dict as a "row"
self.rows.append(dict(zip(self.columns, values)))
def __getitem__(self, idx: int) -> Row:
return self.rows[idx]
def __iter__(self) -> Iterator[Row]:
return iter(self.rows)
def __len__(self) -> int:
return len(self.rows)
def __repr__(self):
"""Pretty representation of the table: columns then rows"""
rows = "\n".join(str(row) for row in self.rows)
return f"{self.columns}\n{rows}"
def update(self,
updates: Dict[str, Any],
predicate: WhereClause = lambda row: True):
# First make sure the updates have valid names and types
for column, new_value in updates.items():
if column not in self.columns:
raise ValueError(f"invalid column: {column}")
typ3 = self.col2type(column)
if not isinstance(new_value, typ3) and new_value is not None:
raise TypeError(f"expected type {typ3}, but got {new_value}")
# Now update
for row in self.rows:
if predicate(row):
for column, new_value in updates.items():
row[column] = new_value
def delete(self, predicate: WhereClause = lambda row: True) -> None:
"""Delete all rows matching predicate"""
self.rows = [row for row in self.rows if not predicate(row)]
def select(self,
keep_columns: List[str] = None,
additional_columns: Dict[str, Callable] = None) -> 'Table':
if keep_columns is None: # If no columns specified,
keep_columns = self.columns # return all columns
if additional_columns is None:
additional_columns = {}
# New column names and types
new_columns = keep_columns + list(additional_columns.keys())
keep_types = [self.col2type(col) for col in keep_columns]
# This is how to get the return type from a type annotation.
# It will crash if `calculation` doesn't have a return type.
add_types = [calculation.__annotations__['return']
for calculation in additional_columns.values()]
# Create a new table for results
new_table = Table(new_columns, keep_types + add_types)
for row in self.rows:
new_row = [row[column] for column in keep_columns]
for column_name, calculation in additional_columns.items():
new_row.append(calculation(row))
new_table.insert(new_row)
return new_table
def where(self, predicate: WhereClause = lambda row: True) -> 'Table':
"""Return only the rows that satisfy the supplied predicate"""
where_table = Table(self.columns, self.types)
for row in self.rows:
if predicate(row):
values = [row[column] for column in self.columns]
where_table.insert(values)
return where_table
def limit(self, num_rows: int) -> 'Table':
"""Return only the first `num_rows` rows"""
limit_table = Table(self.columns, self.types)
for i, row in enumerate(self.rows):
if i >= num_rows:
break
values = [row[column] for column in self.columns]
limit_table.insert(values)
return limit_table
def group_by(self,
group_by_columns: List[str],
aggregates: Dict[str, Callable],
having: HavingClause = lambda group: True) -> 'Table':
grouped_rows = defaultdict(list)
# Populate groups
for row in self.rows:
key = tuple(row[column] for column in group_by_columns)
grouped_rows[key].append(row)
# Result table consists of group_by columns and aggregates
new_columns = group_by_columns + list(aggregates.keys())
group_by_types = [self.col2type(col) for col in group_by_columns]
aggregate_types = [agg.__annotations__['return']
for agg in aggregates.values()]
result_table = Table(new_columns, group_by_types + aggregate_types)
for key, rows in grouped_rows.items():
if having(rows):
new_row = list(key)
for aggregate_name, aggregate_fn in aggregates.items():
new_row.append(aggregate_fn(rows))
result_table.insert(new_row)
return result_table
def order_by(self, order: Callable[[Row], Any]) -> 'Table':
new_table = self.select() # make a copy
new_table.rows.sort(key=order)
return new_table
def join(self, other_table: 'Table', left_join: bool = False) -> 'Table':
join_on_columns = [c for c in self.columns # columns in
if c in other_table.columns] # both tables
additional_columns = [c for c in other_table.columns # columns only
if c not in join_on_columns] # in right table
# all columns from left table + additional_columns from right table
new_columns = self.columns + additional_columns
new_types = self.types + [other_table.col2type(col)
for col in additional_columns]
join_table = Table(new_columns, new_types)
for row in self.rows:
def is_join(other_row):
return all(other_row[c] == row[c] for c in join_on_columns)
other_rows = other_table.where(is_join).rows
# Each other row that matches this one produces a result row.
for other_row in other_rows:
join_table.insert([row[c] for c in self.columns] +
[other_row[c] for c in additional_columns])
# If no rows match and it's a left join, output with Nones.
if left_join and not other_rows:
join_table.insert([row[c] for c in self.columns] +
[None for c in additional_columns])
return join_table
def main():
# Constructor requires column names and types
users = Table(['user_id', 'name', 'num_friends'], [int, str, int])
users.insert([0, "Hero", 0])
users.insert([1, "Dunn", 2])
users.insert([2, "Sue", 3])
users.insert([3, "Chi", 3])
users.insert([4, "Thor", 3])
users.insert([5, "Clive", 2])
users.insert([6, "Hicks", 3])
users.insert([7, "Devin", 2])
users.insert([8, "Kate", 2])
users.insert([9, "Klein", 3])
users.insert([10, "Jen", 1])
assert len(users) == 11
assert users[1]['name'] == 'Dunn'
assert users[1]['num_friends'] == 2 # Original value
users.update({'num_friends' : 3}, # Set num_friends = 3
lambda row: row['user_id'] == 1) # in rows where user_id == 1
assert users[1]['num_friends'] == 3 # Updated value
# SELECT * FROM users;
all_users = users.select()
assert len(all_users) == 11
# SELECT * FROM users LIMIT 2;
two_users = users.limit(2)
assert len(two_users) == 2
# SELECT user_id FROM users;
just_ids = users.select(keep_columns=["user_id"])
assert just_ids.columns == ['user_id']
# SELECT user_id FROM users WHERE name = 'Dunn';
dunn_ids = (
users
.where(lambda row: row["name"] == "Dunn")
.select(keep_columns=["user_id"])
)
assert len(dunn_ids) == 1
assert dunn_ids[0] == {"user_id": 1}
# SELECT LENGTH(name) AS name_length FROM users;
def name_length(row) -> int: return len(row["name"])
name_lengths = users.select(keep_columns=[],
additional_columns = {"name_length": name_length})
assert name_lengths[0]['name_length'] == len("Hero")
def min_user_id(rows) -> int:
return min(row["user_id"] for row in rows)
def length(rows) -> int:
return len(rows)
stats_by_length = (
users
.select(additional_columns={"name_length" : name_length})
.group_by(group_by_columns=["name_length"],
aggregates={"min_user_id" : min_user_id,
"num_users" : length})
)
assert len(stats_by_length) == 3
assert stats_by_length.columns == ["name_length", "min_user_id", "num_users"]
def first_letter_of_name(row: Row) -> str:
return row["name"][0] if row["name"] else ""
def average_num_friends(rows: List[Row]) -> float:
return sum(row["num_friends"] for row in rows) / len(rows)
def enough_friends(rows: List[Row]) -> bool:
return average_num_friends(rows) > 1
avg_friends_by_letter = (
users
.select(additional_columns={'first_letter' : first_letter_of_name})
.group_by(group_by_columns=['first_letter'],
aggregates={"avg_num_friends" : average_num_friends},
having=enough_friends)
)
assert len(avg_friends_by_letter) == 6
assert {row['first_letter'] for row in avg_friends_by_letter} == \
{"H", "D", "S", "C", "T", "K"}
def sum_user_ids(rows: List[Row]) -> int:
return sum(row["user_id"] for row in rows)
user_id_sum = (
users
.where(lambda row: row["user_id"] > 1)
.group_by(group_by_columns=[],
aggregates={ "user_id_sum" : sum_user_ids })
)
assert len(user_id_sum) == 1
assert user_id_sum[0]["user_id_sum"] == 54
friendliest_letters = (
avg_friends_by_letter
.order_by(lambda row: -row["avg_num_friends"])
.limit(4)
)
assert len(friendliest_letters) == 4
assert friendliest_letters[0]['first_letter'] in ['S', 'T']
user_interests = Table(['user_id', 'interest'], [int, str])
user_interests.insert([0, "SQL"])
user_interests.insert([0, "NoSQL"])
user_interests.insert([2, "SQL"])
user_interests.insert([2, "MySQL"])
sql_users = (
users
.join(user_interests)
.where(lambda row: row["interest"] == "SQL")
.select(keep_columns=["name"])
)
assert len(sql_users) == 2
sql_user_names = {row["name"] for row in sql_users}
assert sql_user_names == {"Hero", "Sue"}
def count_interests(rows: List[Row]) -> int:
"""counts how many rows have non-None interests"""
return len([row for row in rows if row["interest"] is not None])
user_interest_counts = (
users
.join(user_interests, left_join=True)
.group_by(group_by_columns=["user_id"],
aggregates={"num_interests" : count_interests })
)
likes_sql_user_ids = (
user_interests
.where(lambda row: row["interest"] == "SQL")
.select(keep_columns=['user_id'])
)
likes_sql_user_ids.group_by(group_by_columns=[],
aggregates={ "min_user_id" : min_user_id })
assert len(likes_sql_user_ids) == 2
(
user_interests
.where(lambda row: row["interest"] == "SQL")
.join(users)
.select(["name"])
)
(
user_interests
.join(users)
.where(lambda row: row["interest"] == "SQL")
.select(["name"])
)
if __name__ == "__main__": main()