From 357970a7a50d92616349f5dd21277020e5788e22 Mon Sep 17 00:00:00 2001 From: Jrenaud-Desk Date: Fri, 8 Nov 2024 10:52:27 -0500 Subject: [PATCH 1/7] removed old solvers; refactored --- CHANGES.md | 19 + CyRK/__init__.pxd | 2 +- CyRK/__init__.py | 6 +- CyRK/_test.py | 2 +- CyRK/cy/common.pxd | 55 - CyRK/cy/common.pyx | 185 -- CyRK/cy/cyrk.pyx | 1090 ---------- CyRK/cy/cysolver.pxd | 266 --- CyRK/cy/cysolver.pyx | 1871 ----------------- CyRK/cy/{cysolverNew.pxd => cysolver_api.pxd} | 68 +- CyRK/cy/cysolver_api.pyx | 184 ++ ...cysolverNew_test.pxd => cysolver_test.pxd} | 2 +- ...cysolverNew_test.pyx => cysolver_test.pyx} | 1 - CyRK/cy/cysolvertest.pyx | 179 -- CyRK/cy/helpers.pxd | 4 +- CyRK/cy/pysolver.pxd | 74 + CyRK/cy/{cysolverNew.pyx => pysolver.pyx} | 186 +- CyRK/cy/pysolver_cyhook.h | 2 +- CyRK/cy/pysolver_cyhook_api.h | 10 +- CyRK/cy/rk_step.c | 315 --- CyRK/helper.py | 4 +- CyRK/rk/__init__.py | 0 CyRK/rk/rk.pxd | 14 - CyRK/rk/rk.pyx | 67 - CyRK/rk/rk_constants.pxd | 45 - CyRK/rk/rk_constants.pyx | 376 ---- Performance/performance.py | 62 +- Tests/A_Package_Tests/test_package.py | 2 +- Tests/B_Other_Tests/test_helpers.py | 120 +- Tests/C_Cython_Tests/test_c_cython.py | 682 ------ .../C_Cython_Tests/test_d_cy_extra_output.py | 183 -- Tests/C_Cython_Tests/test_e_cy_readonly.py | 88 - .../C_Cython_Tests/test_f_cysolver_resolve.py | 77 - .../test_g_cysolver_change_param.py | 92 - .../test_h_cysolver_forcefail.py | 56 - .../test_a_numba.py | 0 .../test_b_nb_extra_output.py | 0 .../test_a_pysolve_ivp.py | 2 +- .../test_a_cysolve_ivp.py | 4 +- cython_extensions.json | 62 +- pyproject.toml | 2 +- 41 files changed, 420 insertions(+), 6039 deletions(-) delete mode 100644 CyRK/cy/common.pxd delete mode 100644 CyRK/cy/common.pyx delete mode 100644 CyRK/cy/cyrk.pyx delete mode 100644 CyRK/cy/cysolver.pxd delete mode 100644 CyRK/cy/cysolver.pyx rename CyRK/cy/{cysolverNew.pxd => cysolver_api.pxd} (86%) create mode 100644 CyRK/cy/cysolver_api.pyx rename CyRK/cy/{cysolverNew_test.pxd => cysolver_test.pxd} (89%) rename CyRK/cy/{cysolverNew_test.pyx => cysolver_test.pyx} (99%) delete mode 100644 CyRK/cy/cysolvertest.pyx create mode 100644 CyRK/cy/pysolver.pxd rename CyRK/cy/{cysolverNew.pyx => pysolver.pyx} (62%) delete mode 100644 CyRK/cy/rk_step.c delete mode 100644 CyRK/rk/__init__.py delete mode 100644 CyRK/rk/rk.pxd delete mode 100644 CyRK/rk/rk.pyx delete mode 100644 CyRK/rk/rk_constants.pxd delete mode 100644 CyRK/rk/rk_constants.pyx delete mode 100644 Tests/C_Cython_Tests/test_c_cython.py delete mode 100644 Tests/C_Cython_Tests/test_d_cy_extra_output.py delete mode 100644 Tests/C_Cython_Tests/test_e_cy_readonly.py delete mode 100644 Tests/C_Cython_Tests/test_f_cysolver_resolve.py delete mode 100644 Tests/C_Cython_Tests/test_g_cysolver_change_param.py delete mode 100644 Tests/C_Cython_Tests/test_h_cysolver_forcefail.py rename Tests/{D_Numba_Tests => C_Numba_Tests}/test_a_numba.py (100%) rename Tests/{D_Numba_Tests => C_Numba_Tests}/test_b_nb_extra_output.py (100%) rename Tests/{E_PySolver_Tests => D_PySolver_Tests}/test_a_pysolve_ivp.py (99%) rename Tests/{F_CySolver_Tests => E_CySolver_Tests}/test_a_cysolve_ivp.py (98%) diff --git a/CHANGES.md b/CHANGES.md index 546daa2..755e73a 100644 --- a/CHANGES.md +++ b/CHANGES.md @@ -2,6 +2,25 @@ ## 2024 +#### v0.11.0 (2024-NNN) + +Removed: +* Removed previous `cyrk_ode` and older version of the `CySolver` class-based solver. + * The functionality of `cyrk_ode` is now handled by the new (as of v0.10.0) `pysolve_ivp` function. + * The functionality of `CySolver` is partly handled by the new (as of v0.10.0) `cysolve_ivp` function. + +Refactors: +* Refactored the new cysolver and pysolver files to remove "New". This will break imports based on previous versions. +* Broke up cysolver and pysolver into different files to isolate each other's code. + +Other: +* Changed the default ordering for diffeq function inputs to follow the scheme dydt(dy, t, y); previously it was dydt(t, y, dy). This affects the `cy2nb` and `nb2cy` helper functions. +* Updated performance module to use new methods over old. + +Tests: +* Updated tests to use pysolver where cyrk_ode was used. + + #### v0.10.2 (2024-11-05) New: diff --git a/CyRK/__init__.pxd b/CyRK/__init__.pxd index 93b590a..83f0912 100644 --- a/CyRK/__init__.pxd +++ b/CyRK/__init__.pxd @@ -1,2 +1,2 @@ -from CyRK.cy.cysolverNew cimport cysolve_ivp, cysolve_ivp_gil, DiffeqFuncType, PreEvalFunc, CySolverResult, WrapCySolverResult, CySolverBase, CySolveOutput, RK23_METHOD_INT, RK45_METHOD_INT, DOP853_METHOD_INT +from CyRK.cy.cysolver cimport cysolve_ivp, cysolve_ivp_gil, DiffeqFuncType, PreEvalFunc, CySolverResult, WrapCySolverResult, CySolverBase, CySolveOutput, RK23_METHOD_INT, RK45_METHOD_INT, DOP853_METHOD_INT from CyRK.cy.helpers cimport interpolate_from_solution_list \ No newline at end of file diff --git a/CyRK/__init__.py b/CyRK/__init__.py index 25310a7..998a3b7 100644 --- a/CyRK/__init__.py +++ b/CyRK/__init__.py @@ -6,9 +6,6 @@ # Import numba solver from .nb.nbrk import nbsolve_ivp -# Import cython solver -from CyRK.cy.cyrk import cyrk_ode - # Import helper functions from .helper import nb2cy, cy2nb @@ -16,4 +13,5 @@ from ._test import test_nbrk, test_cysolver, test_pysolver # Import python solver -from CyRK.cy.cysolverNew import pysolve_ivp \ No newline at end of file +from CyRK.cy.cysolver_api import WrapCySolverResult +from CyRK.cy.pysolver import pysolve_ivp \ No newline at end of file diff --git a/CyRK/_test.py b/CyRK/_test.py index 3542eae..c8a046c 100644 --- a/CyRK/_test.py +++ b/CyRK/_test.py @@ -54,7 +54,7 @@ def test_pysolver(): def test_cysolver(): - from CyRK.cy.cysolverNew_test import cytester + from CyRK.cy.cysolver_test import cytester result = cytester(0, time_span, diff --git a/CyRK/cy/common.pxd b/CyRK/cy/common.pxd deleted file mode 100644 index 79af6b6..0000000 --- a/CyRK/cy/common.pxd +++ /dev/null @@ -1,55 +0,0 @@ - -ctypedef fused double_numeric: - double - double complex - -cdef double SAFETY -cdef double MIN_FACTOR -cdef double MAX_FACTOR -cdef double MAX_STEP -cdef double INF -cdef double EPS -cdef double EPS_10 -cdef double EPS_100 -cdef size_t MAX_INT_SIZE -cdef size_t MAX_SIZET_SIZE -cdef double CPU_CACHE_SIZE -cdef double EXPECTED_SIZE_DBL -cdef double EXPECTED_SIZE_DBLCMPLX -cdef double MAX_ARRAY_PREALLOCATE_SIZE_DBL -cdef double MAX_ARRAY_PREALLOCATE_SIZE_DBLCMPLX -cdef double MIN_ARRAY_PREALLOCATE_SIZE -cdef double ARRAY_PREALLOC_TABS_SCALE -cdef double ARRAY_PREALLOC_RTOL_SCALE -cdef size_t RAM_BUFFER_SIZE - -cdef void interpolate( - double* time_domain_full, - double* time_domain_reduced, - double_numeric* target_array_full, - double_numeric* target_array_reduced, - size_t t_len_full, - size_t t_len_reduced, - size_t target_len, - bint is_complex - ) noexcept nogil - -cdef size_t find_expected_size( - size_t y_size, - size_t num_extra, - double t_delta_abs, - double rtol_min, - bint capture_extra, - bint is_complex - ) noexcept nogil - - -cdef void find_max_num_steps( - size_t y_size, - size_t num_extra, - size_t max_num_steps, - size_t max_ram_MB, - bint capture_extra, - bint is_complex, - bint* user_provided_max_num_steps, - size_t* max_num_steps_touse) noexcept nogil \ No newline at end of file diff --git a/CyRK/cy/common.pyx b/CyRK/cy/common.pyx deleted file mode 100644 index 03db090..0000000 --- a/CyRK/cy/common.pyx +++ /dev/null @@ -1,185 +0,0 @@ -# distutils: language = c -# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False -import cython - -from libc.math cimport fmax, fmin, floor -from libc.math cimport INFINITY as INF -from libc.float cimport DBL_EPSILON as EPS -from libc.stdint cimport SIZE_MAX, INT32_MAX -from libc.stdlib cimport free - -from CyRK.utils.utils cimport allocate_mem, reallocate_mem, free_mem -from CyRK.array.interp cimport interp_array_ptr, interp_complex_array_ptr - -# # Integration Constants -# Multiply steps computed from asymptotic behaviour of errors by this. -cdef double SAFETY = 0.9 -cdef double MIN_FACTOR = 0.2 # Minimum allowed decrease in a step size. -cdef double MAX_FACTOR = 10. # Maximum allowed increase in a step size. -cdef double MAX_STEP = INF -cdef double EPS_10 = EPS * 10. -cdef double EPS_100 = EPS * 100. -cdef size_t MAX_SIZET_SIZE = (SIZE_MAX) -cdef size_t MAX_INT_SIZE = (INT32_MAX) - -# # Memory management constants -# Assume that a cpu has a L1 of 300KB. Say that this progam will have access to 75% of that total. -cdef double CPU_CACHE_SIZE = 0.75 * 300_000. -# Number of entities we can fit into that size is based on the size of double (or double complex) -cdef double MAX_ARRAY_PREALLOCATE_SIZE_DBL = 600_000. -cdef double MAX_ARRAY_PREALLOCATE_SIZE_DBLCMPLX = 300_000. -cdef double MIN_ARRAY_PREALLOCATE_SIZE = 10. -cdef double ARRAY_PREALLOC_TABS_SCALE = 1000. # A delta_t_abs higher than this value will start to grow array size. -cdef double ARRAY_PREALLOC_RTOL_SCALE = 1.0e-5 # A rtol lower than this value will start to grow array size. -# RAM_BUFFER_SIZE should be set to the max size we expect cyrk_ode or CySolver to be before integration starts. -# i.e., before the solution arrays start to grow. -# As of CyRK v0.8.3 CySolver is around 1200 bytes. Buffer this up to 2000. -# Note this does not need to be precise. It just should be close. -cdef size_t RAM_BUFFER_SIZE = 2000 - - -cdef void interpolate( - double* time_domain_full, - double* time_domain_reduced, - double_numeric* target_array_full, - double_numeric* target_array_reduced, - size_t t_len_full, - size_t t_len_reduced, - size_t target_len, - bint is_complex - ) noexcept nogil: - """ Interpolate the results of a successful integration over the user provided time domain, `time_domain_full`. """ - - # Setup loop variables - cdef size_t i, j - - # Build a pointer array that will contain only 1 y for all ts in time_domain_full - cdef double_numeric* array_slice_ptr = allocate_mem( - t_len_full * sizeof(double_numeric), - 'array_slice_ptr (common.interpolate)') - - # Build a pointer that will store the interpolated values for 1 y at a time; size of self.len_t_eval - cdef double_numeric* interpolated_array_slice_ptr = allocate_mem( - t_len_reduced * sizeof(double_numeric), - 'interpolated_array_slice_ptr (common.interpolate)') - - try: - for j in range(target_len): - # The interpolation function only works on 1D arrays, so we must loop through each of the y variables. - # # Set timeslice equal to the time values at this y_j - for i in range(t_len_full): - # OPT: Inefficient memory looping - array_slice_ptr[i] = target_array_full[i * target_len + j] - - # Perform numerical interpolation - if double_numeric is cython.doublecomplex: - interp_complex_array_ptr( - time_domain_reduced, - time_domain_full, - array_slice_ptr, - interpolated_array_slice_ptr, - t_len_full, - t_len_reduced) - else: - interp_array_ptr( - time_domain_reduced, - time_domain_full, - array_slice_ptr, - interpolated_array_slice_ptr, - t_len_full, - t_len_reduced) - - # Store result. - for i in range(t_len_reduced): - # OPT: Inefficient memory looping - target_array_reduced[i * target_len + j] = interpolated_array_slice_ptr[i] - finally: - # Release memory of any temporary variables - if not (array_slice_ptr is NULL): - free(array_slice_ptr) - array_slice_ptr = NULL - if not (interpolated_array_slice_ptr is NULL): - free(interpolated_array_slice_ptr) - interpolated_array_slice_ptr = NULL - -cdef size_t find_expected_size( - size_t y_size, - size_t num_extra, - double t_delta_abs, - double rtol_min, - bint capture_extra, - bint is_complex) noexcept nogil: - - cdef double temp_expected_size - # Pick starting value that works with most problems - temp_expected_size = 500.0 - # If t_delta_abs is very large or rtol is very small, then we may need more. - temp_expected_size = \ - fmax( - temp_expected_size, - fmax( - t_delta_abs / ARRAY_PREALLOC_TABS_SCALE, - ARRAY_PREALLOC_RTOL_SCALE / rtol_min - ) - ) - # Fix values that are very small/large - temp_expected_size = fmax(temp_expected_size, MIN_ARRAY_PREALLOCATE_SIZE) - - if is_complex: - max_expected = MAX_ARRAY_PREALLOCATE_SIZE_DBL - else: - max_expected = MAX_ARRAY_PREALLOCATE_SIZE_DBLCMPLX - if capture_extra: - max_expected /= (y_size + num_extra) - else: - max_expected /= y_size - - temp_expected_size = fmin(temp_expected_size, max_expected) - # Store result as int - cdef size_t expected_size_to_use = floor(temp_expected_size) - return expected_size_to_use - - -cdef void find_max_num_steps( - size_t y_size, - size_t num_extra, - size_t max_num_steps, - size_t max_ram_MB, - bint capture_extra, - bint is_complex, - bint* user_provided_max_num_steps, - size_t* max_num_steps_touse) noexcept nogil: - - # Determine max number of steps - cdef double max_num_steps_ram_dbl - max_num_steps_ram_dbl = max_ram_MB * (1000 * 1000) - # As of CyRK v0.8.3, the CySolver class takes up about 1200 Bytes of memory. Let's assume cyrk_ode takes up a - # similar amount. - # Buffer the expeceted size up a bit (set by RAM_BUFFER_SIZE) and subtract this from the total we are allowed. - max_num_steps_ram_dbl -= RAM_BUFFER_SIZE - # Divide by size of data that will be stored in main loop - if is_complex: - max_num_steps_ram_dbl /= sizeof(double complex) - else: - max_num_steps_ram_dbl /= sizeof(double) - # Divide by number of dependnet and extra variables that will be stored. The extra "1" is for the time domain. - if capture_extra: - max_num_steps_ram_dbl /= (1 + y_size + num_extra) - else: - max_num_steps_ram_dbl /= (1 + y_size) - cdef size_t max_num_steps_ram = floor(max_num_steps_ram_dbl) - - # Parse user-provided max number of steps - user_provided_max_num_steps[0] = False - if max_num_steps == 0: - # No user input; use ram-based value - max_num_steps_touse[0] = max_num_steps_ram - else: - if max_num_steps > max_num_steps_ram: - max_num_steps_touse[0] = max_num_steps_ram - else: - user_provided_max_num_steps[0] = True - max_num_steps_touse[0] = max_num_steps - # Make sure that max number of steps does not exceed size_t limit - if max_num_steps_touse[0] > (MAX_SIZET_SIZE / 10): - max_num_steps_touse[0] = (MAX_SIZET_SIZE / 10) \ No newline at end of file diff --git a/CyRK/cy/cyrk.pyx b/CyRK/cy/cyrk.pyx deleted file mode 100644 index 737e977..0000000 --- a/CyRK/cy/cyrk.pyx +++ /dev/null @@ -1,1090 +0,0 @@ -# distutils: language = c -# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False - -import cython - -import numpy as np -cimport numpy as np - -from libc.math cimport sqrt, fabs, nextafter, NAN, floor - -from CyRK.utils.utils cimport allocate_mem, reallocate_mem, free_mem -from CyRK.rk.rk cimport find_rk_properties -from CyRK.cy.common cimport double_numeric, interpolate, SAFETY, MIN_FACTOR, MAX_FACTOR, MAX_STEP, INF, \ - EPS_100, find_expected_size, find_max_num_steps - -import warnings - -cdef double cabs( - double complex value - ) noexcept nogil: - """ Absolute value function for complex-valued inputs. - - Parameters - ---------- - value : float (double complex) - Complex-valued number. - - Returns - ------- - value_abs : float (double) - Absolute value of `value`. - """ - - cdef double v_real - cdef double v_imag - v_real = value.real - v_imag = value.imag - - return sqrt(v_real * v_real + v_imag * v_imag) - - -cdef double dabs( - double_numeric value - ) noexcept nogil: - """ Absolute value function for either float or complex-valued inputs. - - Checks the type of value and either utilizes `cabs` (for double complex) or `fabs` (for floats). - - Parameters - ---------- - value : float (double_numeric) - Float or complex-valued number. - - Returns - ------- - value_abs : float (double) - Absolute value of `value`. - """ - - # Check the type of value - if double_numeric is cython.doublecomplex: - return cabs(value) - else: - return fabs(value) - - -def cyrk_ode( - diffeq, - (double, double) t_span, - const double_numeric[:] y0, - tuple args = None, - double rtol = 1.e-3, - double atol = 1.e-6, - double[::1] rtols = None, - double[::1] atols = None, - double max_step = MAX_STEP, - double first_step = 0., - unsigned char rk_method = 1, - double[:] t_eval = None, - bint capture_extra = False, - size_t num_extra = 0, - bint interpolate_extra = False, - size_t expected_size = 0, - size_t max_num_steps = 0, - size_t max_ram_MB = 2000, - bint raise_warnings = True - ): - """ - cyrk_ode: A Runge-Kutta Solver Implemented in Cython. - - Parameters - ---------- - diffeq : callable - A python or njit-ed numba differential equation. - Format should follow: - ``` - def diffeq(t, y, dy, arg_1, arg_2, ...): - dy[0] = y[0] * t - .... - ``` - t_span : (double, double) - Values of independent variable at beginning and end of integration. - y0 : double[::1] - Initial values for the dependent y variables at `t_span[0]`. - args : tuple or None, default=None - Additional arguments used by the differential equation. - None (default) will tell the solver to not use additional arguments. - rk_method : int, default=1 - Runge-Kutta method that will be used. Currently implemented models: - 0: ‘RK23’: Explicit Runge-Kutta method of order 3(2). - 1: ‘RK45’ (default): Explicit Runge-Kutta method of order 5(4). - 2: ‘DOP853’: Explicit Runge-Kutta method of order 8. - rtol : double, default=1.0e-3 - Relative tolerance using in local error calculation. - atol : double, default=1.0e-6 - Absolute tolerance using in local error calculation. - rtols : double[::1], default=None - np.ndarray of relative tolerances, one for each dependent y variable. - None (default) will use the same tolerance (set by `rtol`) for each y variable. - atols : double[::1], default=None - np.ndarray of absolute tolerances, one for each dependent y variable. - None (default) will use the same tolerance (set by `atol`) for each y variable. - max_step : double, default=+Inf - Maximum allowed step size. - first_step : double, default=0 - First step's size (after `t_span[0]`). - If set to 0 (the default) then the solver will attempt to guess a suitable initial step size. - max_num_steps : size_t, default=0 - Maximum number of step sizes allowed before solver will auto fail. - If set to 0 (the default) then the maximum number of steps will be equal to max integer size - allowed on system architecture. - t_eval : double[::1], default=None - If not set to None, then a final interpolation will be performed on the solution to fit it to this array. - capture_extra : bool = False - If True, then additional output from the differential equation will be collected (but not used to determine - integration error). - Example: - ``` - def diffeq(t, y, dy): - a = ... some function of y and t. - dy[0] = a**2 * sin(t) - y[1] - dy[1] = a**3 * cos(t) + y[0] - - # Storing extra output in dy even though it is not part of the diffeq. - dy[2] = a - ``` - num_extra : int = 0 - The number of extra outputs the integrator should expect. With the previous example there is 1 extra output. - interpolate_extra : bint, default=False - Flag if interpolation should be run on extra parameters. - If set to False when `run_interpolation=True`, then interpolation will be run on solution's y, t. These will - then be used to recalculate extra parameters rather than an interpolation on the extra parameters captured - during integration. - expected_size : size_t, default=0 - Anticipated size of integration range, i.e., how many steps will be required. - Used to build temporary storage arrays for the solution results. - If set to 0 (the default), then the solver will attempt to guess on a suitable expected size based on the - relative tolerances and size of the integration domain. - - Returns - ------- - time_domain : np.ndarray - The final time domain. This is equal to t_eval if it was provided. - y_results : np.ndarray - The solution of the differential equation provided for each time_result. - success : bool - Final integration success flag. - message : str - Any integration messages, useful if success=False. - """ - - if raise_warnings: - warnings.warn( - "`cyrk_ode` method is now deprecated it will be removed in the next major update of CyRK. " - "Please see the documentation on the new `pysolve_ivp` function which acts as its replacement.", - DeprecationWarning - ) - - # Setup loop variables - cdef size_t s, i, j - - # Setup integration variables - cdef char status - cdef str message - - # Determine information about the differential equation based on its initial conditions - cdef size_t y_size - cdef double y_size_dbl, y_size_sqrt - cdef bint y_is_complex - y_size = y0.size - y_is_complex = False - y_size_dbl = y_size - y_size_sqrt = sqrt(y_size_dbl) - - # Check the type of the values in y0 - if double_numeric is cython.double: - DTYPE = np.float64 - elif double_numeric is cython.doublecomplex: - DTYPE = np.complex128 - y_is_complex = True - else: - # Cyrk only supports float64 and complex128. - status = -8 - message = "Attribute error." - raise Exception('Unexpected type found for initial conditions (y0).') - - # Build time domain - cdef double t_start, t_end, t_delta, t_delta_check, t_delta_abs, direction_inf, t_old, t_now, time_ - cdef bint direction_flag - t_start = t_span[0] - t_end = t_span[1] - t_delta = t_end - t_start - t_delta_abs = fabs(t_delta) - t_delta_check = t_delta_abs - - if t_delta >= 0.: - # Integration is moving forward in time. - direction_flag = True - direction_inf = INF - else: - # Integration is moving backwards in time. - direction_flag = False - direction_inf = -INF - - # Pull out information on args - cdef bint use_args - if args is None: - use_args = False - else: - use_args = True - - # Setup temporary variables to store intermediate values - cdef double temp_double - cdef double_numeric temp_double_numeric - - # Determine integration tolerances - cdef double* tol_ptrs = NULL - cdef double* rtols_ptr = NULL - cdef double* atols_ptr = NULL - tol_ptrs = allocate_mem(2 * y_size * sizeof(double), 'tol_ptrs (start-up)') - rtols_ptr = &tol_ptrs[0] - atols_ptr = &tol_ptrs[y_size] - - cdef double rtol_min - rtol_min = INF - if rtols is not None: - # User provided an arrayed version of rtol. - if len(rtols) != y_size: - raise AttributeError('rtol array must be the same size as y0.') - for i in range(y_size): - temp_double = rtols[i] - # Check that the tolerances are not too small. - if temp_double < EPS_100: - temp_double = EPS_100 - rtol_min = min(rtol_min, temp_double) - rtols_ptr[i] = temp_double - else: - # No array provided. Use the same rtol for all ys. - # Check that the tolerances are not too small. - if rtol < EPS_100: - rtol = EPS_100 - rtol_min = rtol - for i in range(y_size): - rtols_ptr[i] = rtol - - if atols is not None: - # User provided an arrayed version of atol. - if len(atols) != y_size: - raise AttributeError('atol array must be the same size as y0.') - for i in range(y_size): - atols_ptr[i] = atols[i] - else: - # No array provided. Use the same atol for all ys. - for i in range(y_size): - atols_ptr[i] = atol - - # Determine max number of steps - cdef size_t max_num_steps_touse - cdef bint user_provided_max_num_steps - find_max_num_steps( - y_size, - num_extra, - max_num_steps, - max_ram_MB, - capture_extra, - y_is_complex, - &user_provided_max_num_steps, - &max_num_steps_touse) - - # Expected size of output arrays. - cdef size_t expected_size_to_use, num_concats, current_size - if expected_size == 0: - # cyrk_ode will attempt to guess on a best size for the arrays. - expected_size_to_use = find_expected_size( - y_size, - num_extra, - t_delta_abs, - rtol_min, - capture_extra, - y_is_complex) - else: - expected_size_to_use = expected_size - # Set the current size to the expected size. - # `expected_size` should never change but current might grow if expected size is not large enough. - current_size = expected_size_to_use - num_concats = 1 - - # Initialize live variable arrays - cdef double_numeric* y_storage_ptrs = NULL - cdef double_numeric* y_old_ptr = NULL - cdef double_numeric* dy_ptr = NULL - cdef double_numeric* dy_old_ptr = NULL - - y_storage_ptrs = allocate_mem(3 * y_size * sizeof(double_numeric), 'y_storage_ptrs (start-up)') - - y_old_ptr = &y_storage_ptrs[0] - dy_ptr = &y_storage_ptrs[1 * y_size] - dy_old_ptr = &y_storage_ptrs[2 * y_size] - - # Build memoryviews based on y_view and dy_ptr that can be passed to the diffeq. - # This is process is different than CySolver which strictly uses c pointers. - # These memoryviews allow for user-provided diffeqs that are not cython/compiled. - y_array = np.empty(y_size, dtype=DTYPE, order='C') - cdef double_numeric[::1] y_view = y_array - - # Store y0 into the y arrays - for i in range(y_size): - temp_double_numeric = y0[i] - y_view[i] = temp_double_numeric - y_old_ptr[i] = temp_double_numeric - - # Determine extra outputs - # To avoid memory access violations we need to set the extra output arrays no matter if they are used. - # If not used, just set them to size zero. - if capture_extra: - if num_extra <= 0: - status = -8 - raise AttributeError('Capture extra set to True, but number of extra set to 0 (or negative).') - else: - # Even though we are not capturing extra, we still want num_extra to be equal to 1 so that nan arrays - # are properly initialized - num_extra = 1 - - cdef double_numeric* extra_output_init_ptr = NULL - cdef double_numeric* extra_output_ptr = NULL - extra_output_init_ptr = allocate_mem( - num_extra * sizeof(double_numeric), - 'extra_output_init_ptr (start-up)') - extra_output_ptr = allocate_mem( - num_extra * sizeof(double_numeric), - 'extra_output_ptr (start-up)') - - for i in range(num_extra): - extra_output_init_ptr[i] = NAN - extra_output_ptr[i] = NAN - - # If extra output is true then the output of the diffeq will be larger than the size of y0. - # Determine that extra size by calling the diffeq and checking its size. - cdef size_t extra_start, total_size - extra_start = y_size - if capture_extra: - total_size = y_size + num_extra - else: - total_size = y_size - - # Build pointer to store results of diffeq - diffeq_out_array = np.empty(total_size, dtype=DTYPE, order='C') - cdef double_numeric[::1] diffeq_out_view = diffeq_out_array - - # Determine interpolation information - cdef bint run_interpolation - cdef size_t len_t_eval - if t_eval is None: - run_interpolation = False - interpolate_extra = False - # Even though we are not using t_eval, set its size equal to one so that nan arrays can be built - len_t_eval = 1 - else: - run_interpolation = True - interpolate_extra = interpolate_extra - len_t_eval = len(t_eval) - - cdef double* t_eval_ptr = NULL - t_eval_ptr = allocate_mem(len_t_eval * sizeof(double), 't_eval_ptr (start-up)') - for i in range(len_t_eval): - if run_interpolation: - t_eval_ptr[i] = t_eval[i] - else: - t_eval_ptr[i] = NAN - - # Make initial call to diffeq to get initial dydt and any extra outputs (if requested) at t0. - if use_args: - diffeq(t_start, y_array, diffeq_out_array, *args) - else: - diffeq(t_start, y_array, diffeq_out_array) - - # Setup initial conditions - t_old = t_start - t_now = t_start - for i in range(y_size): - temp_double_numeric = diffeq_out_view[i] - dy_ptr[i] = temp_double_numeric - dy_old_ptr[i] = temp_double_numeric - - # Capture the extra output for the initial condition. - if capture_extra: - for i in range(num_extra): - # Pull from extra output - extra_output_init_ptr[i] = diffeq_out_view[extra_start + i] - - # Determine RK scheme and initialize RK memory views - cdef double* A_ptr = NULL - cdef double* B_ptr = NULL - cdef double* C_ptr = NULL - cdef double* E_ptr = NULL - cdef double* E3_ptr = NULL - cdef double* E5_ptr = NULL - cdef size_t rk_order, error_order, rk_n_stages, len_Arows, len_Acols, len_C, rk_n_stages_plus1 - cdef double error_expo, error_pow - - find_rk_properties( - rk_method, - &rk_order, - &error_order, - &rk_n_stages, - &len_Arows, - &len_Acols, - &A_ptr, - &B_ptr, - &C_ptr, - &E_ptr, - &E3_ptr, - &E5_ptr - ) - - if rk_order == 0: - raise AttributeError('Unknown or not-yet-implemented RK method requested.') - - len_C = rk_n_stages - rk_n_stages_plus1 = rk_n_stages + 1 - error_expo = 1. / (error_order + 1.) - - # Initialize other RK-related Arrays - cdef double_numeric* K_ptr = NULL - K_ptr = allocate_mem(rk_n_stages_plus1 * y_size * sizeof(double_numeric), 'K_ptr (start-up)') - # It is important K be initialized with 0s - for i in range(rk_n_stages_plus1): - for j in range(y_size): - K_ptr[i * y_size + j] = 0. - - cdef double error_norm5, error_norm3, error_norm, error_norm_abs, error_norm3_abs, error_norm5_abs, error_denom - - # Other RK Optimizations - cdef double A_at_sj, A_at_10, B_at_j - cdef double_numeric K_ - A_at_10 = A_ptr[1 * len_Acols + 0] - - # Setup storage arrays - # These arrays are built to fit a number of points equal to current_size - # If the integration needs more than that then a new array will be concatenated (with performance costs) to these. - cdef double* time_domain_array_ptr = NULL - cdef double_numeric* y_results_array_ptr = NULL - cdef double_numeric* extra_array_ptr = NULL - - time_domain_array_ptr = allocate_mem( - current_size * sizeof(double), - 'time_domain_array_ptr (start-up)') - y_results_array_ptr = allocate_mem( - y_size * current_size * sizeof(double_numeric), - 'y_results_array_ptr (start-up)') - if capture_extra: - extra_array_ptr = allocate_mem( - num_extra * current_size * sizeof(double_numeric), - 'extra_array_ptr (start-up)') - - # Load initial conditions into storage arrays - time_domain_array_ptr[0] = t_start - for i in range(y_size): - y_results_array_ptr[i] = y0[i] - if capture_extra: - for i in range(num_extra): - extra_array_ptr[i] = extra_output_init_ptr[i] - - # Solution pointers - cdef double* solution_t_ptr = NULL - cdef double_numeric* solution_y_ptr = NULL - cdef double_numeric* solution_extra_ptr = NULL - - # Determine size of first step. - cdef double d0, d1, d2, d0_abs, d1_abs, d2_abs, h0, h1, scale - cdef double step, step_size, min_step, step_factor - - # Integration flags and variables - cdef bint success, step_accepted, step_rejected, step_error - cdef size_t len_t - - # Integration completion variables - cdef size_t len_t_touse - cdef double* interpolated_solution_t_ptr = NULL - cdef double_numeric* interpolated_solution_y_ptr = NULL - cdef double_numeric* interpolated_solution_extra_ptr = NULL - cdef np.ndarray[np.float64_t, ndim=1, mode='c'] solution_t - cdef np.ndarray[double_numeric, ndim=2, mode='c'] solution_y - cdef double[::1] solution_t_view - cdef double_numeric[:, ::1] solution_y_view - - try: - if first_step == 0.: - # Select an initial step size based on the differential equation. - # .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential - # Equations I: Nonstiff Problems", Sec. II.4. - if y_size == 0: - step_size = INF - else: - # Find the norm for d0 and d1 - d0 = 0. - d1 = 0. - for i in range(y_size): - - temp_double = dabs(y_old_ptr[i]) - scale = atols_ptr[i] + dabs(temp_double) * rtols_ptr[i] - d0_abs = dabs(temp_double) / scale - d1_abs = dabs(dy_old_ptr[i]) / scale - d0 += (d0_abs * d0_abs) - d1 += (d1_abs * d1_abs) - - d0 = sqrt(d0) / y_size_sqrt - d1 = sqrt(d1) / y_size_sqrt - - if d0 < 1.e-5 or d1 < 1.e-5: - h0 = 1.e-6 - else: - h0 = 0.01 * d0 / d1 - - if direction_flag: - h0_direction = h0 - else: - h0_direction = -h0 - t_now = t_old + h0_direction - for i in range(y_size): - y_view[i] = y_old_ptr[i] + h0_direction * dy_old_ptr[i] - - if use_args: - diffeq(t_now, y_array, diffeq_out_array, *args) - else: - diffeq(t_now, y_array, diffeq_out_array) - - # Find the norm for d2 - d2 = 0. - for i in range(y_size): - temp_double_numeric = diffeq_out_view[i] - dy_ptr[i] = temp_double_numeric - scale = atols_ptr[i] + dabs(y_old_ptr[i]) * rtols_ptr[i] - d2_abs = dabs( (temp_double_numeric - dy_old_ptr[i]) ) / scale - d2 += (d2_abs * d2_abs) - - d2 = sqrt(d2) / (h0 * y_size_sqrt) - - if d1 <= 1.e-15 and d2 <= 1.e-15: - h1 = max(1.e-6, h0 * 1.e-3) - else: - h1 = (0.01 / max(d1, d2))**error_expo - - step_size = max(10. * fabs(nextafter(t_old, direction_inf) - t_old), min(100. * h0, h1)) - else: - if first_step <= 0.: - status = -8 - message = "Attribute error." - raise AttributeError('Error in user-provided step size: Step size must be a positive number.') - elif first_step > t_delta_abs: - status = -8 - message = "Attribute error." - raise AttributeError('Error in user-provided step size: Step size can not exceed bounds.') - step_size = first_step - - # # Main integration loop - # Set integration flags - success = False - step_accepted = False - step_rejected = False - step_error = False - status = 0 - message = "Integration is/was ongoing (perhaps it was interrupted?)." - - # Track number of steps. - # Initial conditions were provided so the number of steps is already 1 - len_t = 1 - - if y_size == 0: - status = -6 - message = "Integration never started: y-size is zero." - - while status == 0: - if t_now == t_end: - t_old = t_end - status = 1 - break - - if len_t > max_num_steps_touse: - if user_provided_max_num_steps: - status = -2 - message = "Maximum number of steps (set by user) exceeded during integration." - else: - status = -3 - message = "Maximum number of steps (set by ram usage limit) exceeded during integration." - break - - # Run RK integration step - # Determine step size based on previous loop - # Find minimum step size based on the value of t (less floating point numbers between numbers when t is large) - min_step = 10. * fabs(nextafter(t_old, direction_inf) - t_old) - # Look for over/undershoots in previous step size - if step_size > max_step: - step_size = max_step - elif step_size < min_step: - step_size = min_step - - # Determine new step size - step_accepted = False - step_rejected = False - step_error = False - - # # Step Loop - while not step_accepted: - - if step_size < min_step: - step_error = True - status = -1 - break - - # Move time forward for this particular step size - if direction_flag: - step = step_size - t_now = t_old + step - t_delta_check = t_now - t_end - else: - step = -step_size - t_now = t_old + step - t_delta_check = t_end - t_now - - # Check that we are not at the end of integration with that move - if t_delta_check > 0.: - t_now = t_end - - # Correct the step if we were at the end of integration - step = t_now - t_old - if direction_flag: - step_size = step - else: - step_size = -step - - # Calculate derivative using RK method - # Dot Product (K, a) * step - for s in range(1, len_C): - time_ = t_old + C_ptr[s] * step - - # Dot Product (K, a) * step - if s == 1: - for i in range(y_size): - # Set the first column of K - temp_double_numeric = dy_old_ptr[i] - K_ptr[i] = temp_double_numeric - - # Calculate y_new for s==1 - y_view[i] = y_old_ptr[i] + (temp_double_numeric * A_at_10 * step) - else: - for j in range(s): - A_at_sj = A_ptr[s * len_Acols + j] * step - for i in range(y_size): - if j == 0: - # Initialize - y_view[i] = y_old_ptr[i] - - y_view[i] = y_view[i] + K_ptr[j * y_size + i] * A_at_sj - - if use_args: - diffeq(time_, y_array, diffeq_out_array, *args) - else: - diffeq(time_, y_array, diffeq_out_array) - - for i in range(y_size): - K_ptr[s * y_size + i] = diffeq_out_view[i] - - # Dot Product (K, B) * step - for j in range(rk_n_stages): - B_at_j = B_ptr[j] * step - # We do not use rk_n_stages_plus1 here because we are chopping off the last row of K to match - # the shape of B. - for i in range(y_size): - if j == 0: - # Initialize - y_view[i] = y_old_ptr[i] - - y_view[i] = y_view[i] + K_ptr[j * y_size + i] * B_at_j - - # Find final dydt for this timestep - if use_args: - diffeq(t_now, y_array, diffeq_out_array, *args) - else: - diffeq(t_now, y_array, diffeq_out_array) - - # Store extra - if capture_extra: - for i in range(num_extra): - extra_output_ptr[i] = diffeq_out_view[extra_start + i] - - if rk_method == 2: - # Calculate Error for DOP853 - # Find norms for each error - error_norm5 = 0. - error_norm3 = 0. - # Dot Product (K, E5) / scale and Dot Product (K, E3) * step / scale - for i in range(y_size): - # Find scale of y for error calculations - scale = atols_ptr[i] + max(dabs(y_old_ptr[i]), dabs(y_view[i])) * rtols_ptr[i] - - # Set diffeq results - temp_double_numeric = diffeq_out_view[i] - dy_ptr[i] = temp_double_numeric - - # Set last array of K equal to dydt - K_ptr[rk_n_stages * y_size + i] = temp_double_numeric - # Initialize - error_dot_1 = 0. - error_dot_2 = 0. - for j in range(rk_n_stages_plus1): - - K_ = K_ptr[j * y_size + i] - error_dot_1 += K_ * E3_ptr[j] - error_dot_2 += K_ * E5_ptr[j] - - error_norm3_abs = dabs(error_dot_1) / scale - error_norm5_abs = dabs(error_dot_2) / scale - - error_norm3 += (error_norm3_abs * error_norm3_abs) - error_norm5 += (error_norm5_abs * error_norm5_abs) - - # Check if errors are zero - if (error_norm5 == 0.) and (error_norm3 == 0.): - error_norm = 0. - else: - error_denom = error_norm5 + 0.01 * error_norm3 - error_norm = step_size * error_norm5 / sqrt(error_denom * y_size_dbl) - - else: - # Calculate Error for RK23 and RK45 - # Dot Product (K, E) * step / scale - error_norm = 0. - for i in range(y_size): - # Find scale of y for error calculations - scale = atols_ptr[i] + max(dabs(y_old_ptr[i]), dabs(y_view[i])) * rtols_ptr[i] - - # Set diffeq results - temp_double_numeric = diffeq_out_view[i] - dy_ptr[i] = temp_double_numeric - - # Set last array of K equal to dydt - K_ptr[rk_n_stages * y_size + i] = temp_double_numeric - # Initialize - error_dot_1 = 0. - for j in range(rk_n_stages_plus1): - - error_dot_1 += K_ptr[j * y_size + i] * E_ptr[j] - - error_norm_abs = dabs(error_dot_1) * (step / scale) - error_norm += (error_norm_abs * error_norm_abs) - error_norm = sqrt(error_norm) / y_size_sqrt - - if error_norm < 1.: - # The error is low! Let's update this step for the next time loop - if error_norm == 0.: - step_factor = MAX_FACTOR - else: - error_pow = error_norm**-error_expo - step_factor = min(MAX_FACTOR, SAFETY * error_pow) - - if step_rejected: - # There were problems with this step size on the previous step loop. Make sure factor does - # not exasperate them. - step_factor = min(step_factor, 1.) - - step_size = step_size * step_factor - step_accepted = True - else: - error_pow = error_norm**-error_expo - step_size = step_size * max(MIN_FACTOR, SAFETY * error_pow) - step_rejected = True - - if step_error: - # Issue with step convergence - status = -1 - message = "Error in step size calculation:\n\tRequired step size is less than spacing between numbers." - break - elif not step_accepted: - # Issue with step convergence - status = -7 - message = "Error in step size calculation:\n\tError in step size acceptance." - break - - # End of step loop. Update the _now variables - t_old = t_now - for i in range(y_size): - y_old_ptr[i] = y_view[i] - dy_old_ptr[i] = dy_ptr[i] - - # Store data - if len_t >= current_size: - # There is more data then we have room in our arrays. - # Build new arrays with more space. - # OPT: Note this is an expensive operation. - num_concats += 1 - - # Grow the array by 50% its current value - current_size = floor(current_size * (1.5)) - - time_domain_array_ptr = reallocate_mem( - time_domain_array_ptr, - current_size * sizeof(double), - 'time_domain_array_ptr (growth stage)') - - y_results_array_ptr = reallocate_mem( - y_results_array_ptr, - y_size * current_size * sizeof(double_numeric), - 'y_results_array_ptr (growth stage)') - - if capture_extra: - extra_array_ptr = reallocate_mem( - extra_array_ptr, - num_extra * current_size * sizeof(double_numeric), - 'extra_array_ptr (growth stage)') - - # Add this step's results to our storage arrays. - time_domain_array_ptr[len_t] = t_now - for i in range(y_size): - y_results_array_ptr[len_t * y_size + i] = y_view[i] - - if capture_extra: - for i in range(num_extra): - extra_array_ptr[len_t * num_extra + i] = extra_output_ptr[i] - - # Increase number of independent variable points. - len_t += 1 - - # Integration has stopped. Check if it was successful. - if status == 1: - success = True - else: - success = False - - if success: - # Solution was successful. - - # Load values into output arrays. - # The arrays built during integration likely have a bunch of unused junk at the end due to overbuilding their size. - # This process will remove that junk and leave only the valid data. - # These arrays will always be the same length or less (self.len_t <= new_size) than the ones they are - # built off of, so it is safe to use Realloc. - solution_t_ptr = reallocate_mem( - time_domain_array_ptr, - len_t * sizeof(double), - 'solution_t_ptr (success stage)') - time_domain_array_ptr = NULL - - solution_y_ptr = reallocate_mem( - y_results_array_ptr, - y_size * len_t * sizeof(double_numeric), - 'solution_y_ptr (success stage)') - y_results_array_ptr = NULL - - if capture_extra: - solution_extra_ptr = reallocate_mem( - extra_array_ptr, - num_extra * len_t * sizeof(double_numeric), - 'solution_extra_ptr (success stage)') - extra_array_ptr = NULL - else: - # Clear the storage arrays used during the step loop - if not (time_domain_array_ptr is NULL): - free_mem(time_domain_array_ptr) - time_domain_array_ptr = NULL - if not (y_results_array_ptr is NULL): - free_mem(y_results_array_ptr) - y_results_array_ptr = NULL - if capture_extra: - if not (extra_array_ptr is NULL): - free_mem(extra_array_ptr) - extra_array_ptr = NULL - - # Integration was not successful. Leave the solution pointers as length 1 nan arrays. - solution_t_ptr = allocate_mem( - sizeof(double), - 'solution_t_ptr (fail stage)') - solution_y_ptr = allocate_mem( - y_size * sizeof(double_numeric), - 'solution_y_ptr (fail stage)') - solution_extra_ptr = allocate_mem( - num_extra * sizeof(double_numeric), - 'solution_extra_ptr (fail stage)') - - solution_t_ptr[0] = NAN - for i in range(y_size): - solution_y_ptr[i] = NAN - for i in range(num_extra): - solution_extra_ptr[i] = NAN - - # Integration is complete. Check if interpolation was requested. - if success: - if run_interpolation: - # Use different len_t - len_t_touse = len_t_eval - else: - len_t_touse = len_t - else: - # If integration was not successful use t_len = 1 to allow for nan arrays - len_t_touse = 1 - - if success and run_interpolation: - # User only wants data at specific points. - status = 2 # Interpolation is being performed. - - # TODO: The current version of cyrk_ode has not implemented sicpy's dense output. Instead we use an interpolation. - # Build final interpolated time array - interpolated_solution_t_ptr = allocate_mem( - len_t_eval * sizeof(double), - 'interpolated_solution_t_ptr (interpolate stage)') - - # Build final interpolated solution arrays - interpolated_solution_y_ptr = allocate_mem( - y_size * len_t_eval * sizeof(double_numeric), - 'interpolated_solution_y_ptr (interpolate stage)') - - # Perform interpolation on y values - interpolate(solution_t_ptr, t_eval_ptr, solution_y_ptr, interpolated_solution_y_ptr, - len_t, len_t_eval, y_size, y_is_complex) - - # Make a copy of t_eval (issues can arise if we store the t_eval pointer in solution array). - for i in range(len_t_eval): - interpolated_solution_t_ptr[i] = t_eval_ptr[i] - - if capture_extra: - # Right now if there is any extra output then it is stored at each time step used in the RK loop. - # We have to make a choice: - # - Do we interpolate the extra values that were stored? - # - Or do we use the interpolated t, y values to find new extra parameters at those specific points. - # The latter method is more computationally expensive (recalls the diffeq for each y) but is more accurate. - # This decision is set by the user with the `interpolate_extra` flag. - - # Build final interpolated solution array (Used if self.interpolate_extra is True or False) - interpolated_solution_extra_ptr = allocate_mem( - num_extra * len_t_eval * sizeof(double_numeric), - 'interpolated_solution_extra_ptr (interpolate)') - - if interpolate_extra: - # Perform interpolation on extra outputs - interpolate(solution_t_ptr, t_eval_ptr, solution_extra_ptr, interpolated_solution_extra_ptr, - len_t, len_t_eval, num_extra, y_is_complex) - else: - # Use the new interpolated y and t values to recalculate the extra outputs with self.diffeq - for i in range(len_t_eval): - # Set state variables - t_now = t_eval_ptr[i] - for j in range(y_size): - y_view[j] = interpolated_solution_y_ptr[i * y_size + j] - - # Call diffeq to recalculate extra outputs - if use_args: - diffeq(t_now, y_view, diffeq_out_view, *args) - else: - diffeq(t_now, y_view, diffeq_out_view) - - # Capture extras - for j in range(num_extra): - interpolated_solution_extra_ptr[i * num_extra + j] = diffeq_out_view[extra_start + j] - - # Replace old pointers with new interpolated pointers and release the memory for the old stuff - if not (solution_extra_ptr is NULL): - free_mem(solution_extra_ptr) - solution_extra_ptr = interpolated_solution_extra_ptr - interpolated_solution_extra_ptr = NULL - - # Replace old pointers with new interpolated pointers and release the memory for the old stuff - if not (solution_t_ptr is NULL): - free_mem(solution_t_ptr) - solution_t_ptr = interpolated_solution_t_ptr - interpolated_solution_t_ptr = NULL - if not (solution_y_ptr is NULL): - free_mem(solution_y_ptr) - solution_y_ptr = interpolated_solution_y_ptr - interpolated_solution_y_ptr = NULL - - # Interpolation is done. - status = 1 - - # Convert solution pointers to a more user-friendly numpy ndarray - solution_t = np.empty(len_t_touse, dtype=np.float64, order='C') - solution_y = np.empty((total_size, len_t_touse), dtype=DTYPE, order='C') - solution_t_view = solution_t - solution_y_view = solution_y - - for i in range(len_t_touse): - solution_t_view[i] = solution_t_ptr[i] - for j in range(y_size): - solution_y_view[j, i] = solution_y_ptr[i * y_size + j] - if capture_extra: - for i in range(len_t_touse): - for j in range(num_extra): - solution_y_view[extra_start + j, i] = solution_extra_ptr[i * num_extra + j] - # free_mem solution arrays - if not (solution_t_ptr is NULL): - free_mem(solution_t_ptr) - solution_t_ptr = NULL - if not (solution_y_ptr is NULL): - free_mem(solution_y_ptr) - solution_y_ptr = NULL - if capture_extra: - if not (solution_extra_ptr is NULL): - free_mem(solution_extra_ptr) - solution_extra_ptr = NULL - - # Update integration message - if status == 1: - message = "Integration completed without issue." - elif status == 0: - message = "Integration is/was ongoing (perhaps it was interrupted?)." - elif status == -1: - message = "Error in step size calculation:\n\tRequired step size is less than spacing between numbers." - elif status == -2: - message = "Maximum number of steps (set by user) exceeded during integration." - elif status == -3: - message = "Maximum number of steps (set by system architecture) exceeded during integration." - elif status == -6: - message = "Integration never started: y-size is zero." - elif status == -7: - message = "Error in step size calculation:\n\tError in step size acceptance." - - finally: - # free_mem pointers made from user inputs - if not (tol_ptrs is NULL): - free_mem(tol_ptrs) - tol_ptrs = NULL - if not (t_eval_ptr is NULL): - free_mem(t_eval_ptr) - t_eval_ptr = NULL - - # free_mem pointers used to track y, dydt, and any extra outputs - if not (y_storage_ptrs is NULL): - free_mem(y_storage_ptrs) - y_storage_ptrs = NULL - if not (extra_output_init_ptr is NULL): - free_mem(extra_output_init_ptr) - extra_output_init_ptr = NULL - if not (extra_output_ptr is NULL): - free_mem(extra_output_ptr) - extra_output_ptr = NULL - - # free_mem RK Temp Storage Array - if not (K_ptr is NULL): - free_mem(K_ptr) - K_ptr = NULL - - # free_mem other pointers that should have been freed in main loop, but in case of an exception they were missed. - if not (solution_t_ptr is NULL): - free_mem(solution_t_ptr) - solution_t_ptr = NULL - if not (solution_y_ptr is NULL): - free_mem(solution_y_ptr) - solution_y_ptr = NULL - if not (solution_extra_ptr is NULL): - free_mem(solution_extra_ptr) - solution_extra_ptr = NULL - if not (interpolated_solution_t_ptr is NULL): - free_mem(interpolated_solution_t_ptr) - interpolated_solution_t_ptr= NULL - if not (interpolated_solution_y_ptr is NULL): - free_mem(interpolated_solution_y_ptr) - interpolated_solution_y_ptr = NULL - if not (interpolated_solution_extra_ptr is NULL): - free_mem(interpolated_solution_extra_ptr) - interpolated_solution_extra_ptr = NULL - if not (time_domain_array_ptr is NULL): - free_mem(time_domain_array_ptr) - time_domain_array_ptr = NULL - if not (y_results_array_ptr is NULL): - free_mem(y_results_array_ptr) - y_results_array_ptr = NULL - if not (extra_array_ptr is NULL): - free_mem(extra_array_ptr) - extra_array_ptr = NULL - - return solution_t, solution_y, success, message diff --git a/CyRK/cy/cysolver.pxd b/CyRK/cy/cysolver.pxd deleted file mode 100644 index a6d9228..0000000 --- a/CyRK/cy/cysolver.pxd +++ /dev/null @@ -1,266 +0,0 @@ - -from CyRK.utils.utils cimport LinkedList - -cdef class CySolver: - - # Class attributes - # -- Solution variables - cdef LinkedList[100] solution_linkedlists_y - cdef LinkedList* stack_linkedlists_y_ptr - cdef LinkedList* current_linkedlist_y_ptr - cdef LinkedList[100] solution_linkedlists_t - cdef LinkedList* stack_linkedlists_t_ptr - cdef LinkedList* current_linkedlist_t_ptr - cdef LinkedList[100] solution_linkedlists_extra - cdef LinkedList* stack_linkedlists_extra_ptr - cdef LinkedList* current_linkedlist_extra_ptr - - cdef double* solution_y_ptr - cdef double* solution_t_ptr - cdef double* solution_extra_ptr - - # -- Dependent (y0) variable information - cdef size_t y_size - cdef double y_size_dbl, y_size_sqrt - cdef double[10] y0_array - cdef double* y0_ptr - - # -- Time information - cdef double t_start, t_end, t_delta, t_delta_abs, direction_inf - cdef bint direction_flag - - # -- Optional args info - cdef size_t num_args - cdef double* args_ptr - cdef bint use_args - - # -- Extra output info - cdef bint capture_extra - cdef size_t num_extra - - # -- Integration information - cdef char[256] _message - cdef char* _message_ptr - cdef readonly char status - cdef public bint success - cdef double[50] rtols_array - cdef double* rtols_ptr - cdef double[50] atols_array - cdef double* atols_ptr - cdef double first_step, max_step - cdef bint user_provided_max_num_steps - cdef size_t max_num_steps - cdef size_t last_expansion_size, expected_size, current_size, num_expansions - cdef bint recalc_first_step - cdef bint force_fail - - # -- Interpolation info - cdef bint run_interpolation - cdef bint interpolate_extra - cdef size_t len_t_eval - cdef double* t_eval_ptr - - # -- RK method information - cdef unsigned char rk_method - cdef size_t rk_order, error_order, rk_n_stages, rk_n_stages_plus1 - cdef double error_expo - cdef size_t len_C, len_Arows, len_Acols - cdef double* A_ptr - cdef double* B_ptr - cdef double* C_ptr - cdef double* E_ptr - cdef double* E3_ptr - cdef double* E5_ptr - # K is not constant. It is a temp storage variable used in RK calculations - # Its size is based on the largest supported y (100) * largest RK n-stage (+1) of 13 - cdef double[650] K_array - cdef double* K_ptr - - # -- Live variables - cdef double t_now, t_old, step_size - cdef size_t len_t, len_t_touse - cdef double[50] y_array - cdef double* y_ptr - cdef double[50] y_old_array - cdef double* y_old_ptr - cdef double[50] dy_array - cdef double* dy_ptr - cdef double[50] dy_old_array - cdef double* dy_old_ptr - cdef double[50] extra_output_init_array - cdef double* extra_output_init_ptr - cdef double[50] extra_output_array - cdef double* extra_output_ptr - - # -- Pointers used during solve - cdef double* _contiguous_t_ptr - cdef double* _contiguous_y_ptr - cdef double* _contiguous_extra_ptr - - # -- Pointers used during interpolation - cdef double* _interpolate_solution_t_ptr - cdef double* _interpolate_solution_y_ptr - cdef double* _interpolate_solution_extra_ptr - - # Class functions - cdef void _reset_state( - self - ) noexcept nogil - - cdef void expand_storage( - self, - bint initial_expansion - ) noexcept nogil - - cdef double calc_first_step( - self - ) noexcept nogil - - cdef void _solve( - self, - bint reset - ) noexcept nogil - - cdef void interpolate( - self - ) noexcept nogil - - cpdef void change_t_span( - self, - (double, double) t_span, - bint auto_reset_state = * - ) - - cpdef void change_y0( - self, - const double[::1] y0, - bint auto_reset_state = * - ) - - cdef void change_y0_pointer( - self, - double * y0_ptr, - bint auto_reset_state = * - ) noexcept nogil - - cpdef void change_args( - self, - tuple args, - bint auto_reset_state = * - ) - - cpdef void change_tols( - self, - double rtol = *, - double atol = *, - const double[::1] rtols = *, - const double[::1] atols = *, - bint auto_reset_state = * - ) - - cpdef void change_max_step( - self, - double max_step, - bint auto_reset_state = * - ) - - cpdef void change_first_step( - self, - double first_step, - bint auto_reset_state = * - ) - - cpdef void change_t_eval( - self, - const double[::1] t_eval, - bint auto_reset_state = * - ) - - cdef void change_t_eval_pointer( - self, - double* new_t_eval_ptr, - size_t new_len_t_eval, - bint auto_reset_state = * - ) - - cpdef void change_parameters( - self, - (double, double) t_span = *, - const double[::1] y0 = *, - tuple args = *, - double rtol = *, - double atol = *, - const double[::1] rtols = *, - const double[::1] atols = *, - double max_step = *, - double first_step = *, - const double[::1] t_eval = *, - bint auto_reset_state = *, - bint auto_solve = * - ) - - cdef void update_constants( - self - ) noexcept nogil - - cdef void diffeq( - self - ) noexcept nogil - - cdef void free_linked_lists( - self - ) noexcept nogil - - -ctypedef void (*DiffeqType)(CySolver) - -cdef extern from "rk_step.c": - int rk_step_cf( - # Pointer to differential equation - DiffeqType diffeq_ptr, - # Pointer to the CySolver instance - CySolver cysolver_inst, - - # t-related variables - double t_end, - bint direction_flag, - double direction_inf, - - # y-related variables - size_t y_size, - double y_size_dbl, - double y_size_sqrt, - - # Pointers to class attributes that can change during rk_step call. - double* t_now_ptr, - double* y_ptr, - double* dy_ptr, - double* t_old_ptr, - double* y_old_ptr, - double* dy_old_ptr, - double* step_size_ptr, - char* status_ptr, - - # Integration tolerance variables and pointers - double* atols_ptr, - double* rtols_ptr, - double max_step, - - # RK specific variables and pointers - unsigned char rk_method, - size_t rk_n_stages, - size_t rk_n_stages_plus1, - size_t len_Acols, - size_t len_C, - double* A_ptr, - double* B_ptr, - double* C_ptr, - double* K_ptr, - double* E_ptr, - double* E3_ptr, - double* E5_ptr, - double error_expo, - double min_step_factor, - double max_step_factor, - double error_safety - ) noexcept nogil \ No newline at end of file diff --git a/CyRK/cy/cysolver.pyx b/CyRK/cy/cysolver.pyx deleted file mode 100644 index bff3b6f..0000000 --- a/CyRK/cy/cysolver.pyx +++ /dev/null @@ -1,1871 +0,0 @@ -# distutils: language = c -# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False - -from libc.math cimport sqrt, fabs, nextafter, fmax, fmin, isnan, NAN, floor - -from libc.stdlib cimport exit, EXIT_FAILURE -from libc.stdio cimport printf -from libc.string cimport strcpy - -import numpy as np -cimport numpy as np - -from CyRK.utils.utils cimport allocate_mem, reallocate_mem, free_mem -from CyRK.rk.rk cimport find_rk_properties -from CyRK.cy.common cimport interpolate, SAFETY, MIN_FACTOR, MAX_FACTOR, MAX_STEP, INF, EPS_100, \ - find_expected_size, find_max_num_steps - -import warnings - -cdef (double, double) EMPTY_T_SPAN = (NAN, NAN) - - -cdef class CySolver: - """ - CySolver: A Object-Oriented Runge-Kutta Solver Implemented in Cython. - - This class provides basic functionality to solve systems of ordinary differential equations using a Runge-Kutta - scheme. Users can cimport this extension and build their own solvers by overriding its diffeq and update_constants - methods. Users can also expand on its __init__ or other methods for more complex problems. - - Class attributes are defined, with types, in cysolver.pxd. - - Note: "Time" is used throughout this class's variable names and documentation. It is a placeholder for the - independent variable that the ODE's derivatives are taken with respect to. Instead of time it could be, for example, - distance. We choose to use time as a generic placeholder term. - - Attributes - ---------- - solution_t_view : double[::1] - Memoryview of the final independent domain found during integration. - See Also: The public property method, `CySolver.t` - solution_y_view : double[::1] - Flattened Memoryview of final solution for dependent variables. - See Also: The public property method, `CySolver.y` - solution_extra_view : double[::1] - Flattened Memoryview of the final solution for any extra parameters captured during integration. - See Also: The public property method, `CySolver.extra` - solution_y_ptr : double* - Pointer of final solution for dependent variables. - solution_extra_ptr : double* - Pointer of the final solution for any extra parameters captured during integration. - solution_t_ptr : double* - Pointer of the final independent domain found during integration. - y_size : size_t - Number of dependent variables in system of ODEs. - y_size_dbl : double - Floating point version of y_size. - y_size_sqrt : double - Square-root of y_size. - y0_ptr : double* - Pointer of dependent variable initial conditions (y0 at t_start). - t_start : double - Value of independent variable at beginning of integration (t0). - t_end : double - End value of independent variable. - t_delta : double - Independent variable domain for integration: t_end - t_start. - t_delta may be negative or positive depending on if integration is forwards or backwards. - t_delta_abs : double - Absolute value of t_delta. - direction_inf : double - Direction of integration. If forward then this = +Inf; -Inf otherwise. - direction_flag : bint - If True, then integration is in the forward direction. - num_args : size_t - Number of additional arguments that the `diffeq` method requires. - args_ptr : double* - Pointer of additional arguments used in the `diffeq` method. - capture_extra bint - Flag used if extra parameters should be captured during integration. - num_extra size_t - Number of extra parameters that should be captured during integration. - status : char; public - Numerical flag to indicate status of integrator. - See "Status and Error Codes.md" in the documentation for more information. - _message : char[256] - Verbal _message to accompany `self.status` explaining the state (and potential errors) of the integrator. - _message_ptr : char* - Pointer to `_message`. - success : bint; public - Flag indicating if the integration was successful or not. - rtols_ptr : double* - Pointer of relative tolerances for each dependent y variable. - atols_ptr : double* - Pointer of absolute tolerances for each dependent y variable. - first_step : double - Absolute size of the first step to be taken after t_start. - max_step : double - Maximum absolute step sized allowed. - max_num_steps : size_t - Maximum number of steps allowed before integration auto fails. - expected_size : size_t - Anticipated size of integration range, i.e., how many steps will be required. - Used to build temporary storage arrays for the solution results. - num_expansions : size_t - Number of concatenations that were required during integration. - If `expected_size` is too small then it will be expanded as needed. This variable tracks how many expansions - were required. - See Also: `CySolver.growths` - recalc_first_step : bint - If True, then the `first_step` size is recalculated when `reset_state` is called. - Flag used when parameters are changed without reinitializing CySolver. - run_interpolation : bint - Flag if a final interpolation should be run once integration is completed successfully. - interpolate_extra : bint - Flag if interpolation should be run on extra parameters. - If set to False when `run_interpolation=True`, then interpolation will be run on solution's y, t. These will - then be used to recalculate extra parameters rather than an interpolation on the extra parameters captured - during integration. - len_t_eval : size_t - Length of user requested independent domain, `t_eval`. - t_eval_ptr : double* - Pointer of user requested independent domain, `t_eval`. - rk : RKConstants - Instance of a Runge-Kutta Constants class that initializes various RK parameters. - 0: ‘RK23’: Explicit Runge-Kutta method of order 3(2). - 1: ‘RK45’ (default): Explicit Runge-Kutta method of order 5(4). - 2: ‘DOP853’: Explicit Runge-Kutta method of order 8. - rk_order : size_t - Runge-Kutta step power. - error_order : size_t - Runge-Kutta error power. - rk_n_stages : size_t - Number of Runge-Kutta stages performed for each RK step. - rk_n_stages_plus1 : size_t - One more than `rk_n_stages`. - rk_n_stages_extended : size_t - An extended version of `rk_n_stages` used for DOP853 method. - error_expo : double - Exponential used during error calculation. Utilizes `error_order`. - len_C : size_t - Size of RK C array. - len_Arows : size_t - Number of rows in (unflattened) RK A 2D array. - len_Acols : size_t - Number of columns in (unflattened) RK A 2D array. - A_ptr : double* - Pointer of (flattened) RK A parameter (data initialized in self.rk instance) - B_ptr : double* - Pointer of RK B parameter (data initialized in self.rk instance) - C_ptr : double* - Pointer of RK C parameter (data initialized in self.rk instance) - E_ptr : double* - Pointer of RK E parameter (data initialized in self.rk instance) - E3_ptr : double* - Pointer of RK E3 parameter (data initialized in self.rk instance) - E5_ptr : double* - Pointer of RK E5 parameter (data initialized in self.rk instance) - K_ptr : double* - Pointer of the RK K parameter. - t_now : double - Current value of the independent variable used during integration. - t_old : double - Value of the independent variable at the previous step. - step_size : double - Current step's absolute size. - len_t : size_t - Number of steps taken. - y_ptr : double* - Current Pointer of the dependent y variables. - y_old_ptr : double* - Pointer of the dependent y variables at the previous step. - y_ptr : double* - Current Pointer of dy/dt. - y_old_ptr : double* - Pointer of dy/dt at the previous step. - extra_output_init_ptr : double* - Pointer of extra outputs at the initial step (t=t0; y=y0). - Extra outputs are parameters captured during diffeq calculation. - extra_output_view : double[::1] - Current Memoryview of extra outputs (at t_now). - Extra outputs are parameters captured during diffeq calculation. - - Methods - reset_state() - Resets the class' state variables so that integration can be rerun. - calc_first_step() - Calculates the first step's size. - rk_step() - Performs a Runge-Kutta step calculation including local error determination. - solve(reset=True) - Public wrapper to the private solve method which calculates the integral of the user-provided system of ODEs. - If reset=True, `reset_state()` will be called before integration starts. - _solve() - Calculates the integral of the user-provided system of ODEs. - If reset=True, `reset_state()` will be called before integration starts. - interpolate() - Performs a final interpolation to fit solution results into a user requested independent variable domain. - change_t_span(t_span, auto_reset_state=False) - Public method to change the independent variable limits (start and stop points of integration). - change_y0(y0, auto_reset_state=False) - Public method to change the initial conditions. - change_args(args, auto_reset_state=False) - Public method to change additional arguments used during integration. - change_tols(rtol=NAN, atol=NAN, rtols=None, atols=None, auto_reset_state=False) - Public method to change relative and absolute tolerances and/or their arrays. - change_max_step(max_step, auto_reset_state=False) - Public method to change maximum allowed step size. - change_first_step(first_step, auto_reset_state=False) - Public method to change first step's size. - change_t_eval(t_eval, auto_reset_state=False) - Public method to change user requested independent domain, `t_eval`. - change_parameters(*, auto_reset_state=True, auto_solve=False) - Public method to change one or more parameters which have their own `change_*` method. - update_constants() - Method that is called during `reset_state` to change any constant parameters used by `diffeq`. - This method is expected to be overriden by user constructed subclasses. - diffeq() - The system of differential equations that will be solved by the integrator. - This method is expected to be overriden by user constructed subclasses. - """ - - - def __init__(self, - (double, double) t_span, - const double[::1] y0, - tuple args = None, - double rtol = 1.e-3, - double atol = 1.e-6, - const double[::1] rtols = None, - const double[::1] atols = None, - unsigned char rk_method = 1, - double max_step = MAX_STEP, - double first_step = 0., - size_t max_num_steps = 0, - const double[::1] t_eval = None, - bint capture_extra = False, - size_t num_extra = 0, - bint interpolate_extra = False, - size_t expected_size = 0, - size_t max_ram_MB = 2000, - bint call_first_reset = True, - bint auto_solve = True, - bint force_fail = False, - bint raise_warnings = True): - """ - Initialize new CySolver instance. - - Parameters - ---------- - t_span : (double, double) - Values of independent variable at beginning and end of integration. - y0 : double[::1] - Initial values for the dependent y variables at `t_span[0]`. - args : tuple or None, default=None - Additional arguments used by the differential equation. - None (default) will tell the solver to not use additional arguments. - rk_method : int, default=1 - Runge-Kutta method that will be used. Currently implemented models: - 0: ‘RK23’: Explicit Runge-Kutta method of order 3(2). - 1: ‘RK45’ (default): Explicit Runge-Kutta method of order 5(4). - 2: ‘DOP853’: Explicit Runge-Kutta method of order 8. - rtol : double, default=1.0e-3 - Relative tolerance using in local error calculation. - atol : double, default=1.0e-6 - Absolute tolerance using in local error calculation. - rtols : const double[::1], default=None - np.ndarray of relative tolerances, one for each dependent y variable. - None (default) will use the same tolerance (set by `rtol`) for each y variable. - atols : const double[::1], default=None - np.ndarray of absolute tolerances, one for each dependent y variable. - None (default) will use the same tolerance (set by `atol`) for each y variable. - max_step : double, default=+Inf - Maximum allowed step size. - first_step : double, default=0 - First step's size (after `t_span[0]`). - If set to 0 (the default) then the solver will attempt to guess a suitable initial step size. - max_num_steps : size_t, default=0 - Maximum number of step sizes allowed before solver will auto fail. - If set to 0 (the default) then the maximum number of steps will be equal to max integer size - allowed on system architecture. - t_eval : double[::1], default=None - If not set to None, then a final interpolation will be performed on the solution to fit it to this array. - capture_extra : bool = False - If True, then additional output from the differential equation will be collected (but not used to determine - integration error). - Example: - ``` - def diffeq(t, y, dy): - a = ... some function of y and t. - dy[0] = a**2 * sin(t) - y[1] - dy[1] = a**3 * cos(t) + y[0] - - # Storing extra output in dy even though it is not part of the diffeq. - dy[2] = a - ``` - num_extra : int = 0 - The number of extra outputs the integrator should expect. With the previous example there is 1 extra output. - interpolate_extra : bint, default=False - Flag if interpolation should be run on extra parameters. - If set to False when `run_interpolation=True`, then interpolation will be run on solution's y, t. These will - then be used to recalculate extra parameters rather than an interpolation on the extra parameters captured - during integration. - expected_size : size_t, default=0 - Anticipated size of integration range, i.e., how many steps will be required. - Used to build temporary storage arrays for the solution results. - If set to 0 (the default), then the solver will attempt to guess on a suitable expected size based on the - relative tolerances and size of the integration domain. - call_first_reset : bool, default=True - If set to True, then the solver will call its `reset_state` method at the end of initialization. This flag - is overridden by the `auto_solve` flag. - auto_solve : bint, default=True - If set to True, then the solver's `solve` method will be called at the end of initialization. - Otherwise, the user will have to call `solver_instance = CySolver(...); solver_instance.solve()` - to perform integration. - """ - - if raise_warnings: - warnings.warn( - "CySolver method is now deprecated it will be removed in the next major update of CyRK. " - "Please see the documentation on the new `cysolve_ivp` function which acts as its replacement.", - DeprecationWarning - ) - - # Initialize all class pointers to null - self.rtols_ptr = NULL - self.atols_ptr = NULL - self.solution_y_ptr = NULL - self.solution_t_ptr = NULL - self.solution_extra_ptr = NULL - self.y0_ptr = NULL - self.args_ptr = NULL - self.t_eval_ptr = NULL - self.A_ptr = NULL - self.B_ptr = NULL - self.C_ptr = NULL - self.E_ptr = NULL - self.E3_ptr = NULL - self.E5_ptr = NULL - self.K_ptr = NULL - self.y_ptr = NULL - self.y_old_ptr = NULL - self.dy_ptr = NULL - self.dy_old_ptr = NULL - self.extra_output_init_ptr = NULL - self.extra_output_ptr = NULL - self._contiguous_t_ptr = NULL - self._contiguous_y_ptr = NULL - self._contiguous_extra_ptr = NULL - self._interpolate_solution_t_ptr = NULL - self._interpolate_solution_y_ptr = NULL - self._interpolate_solution_extra_ptr = NULL - self.stack_linkedlists_y_ptr = NULL - self.stack_linkedlists_t_ptr = NULL - self.stack_linkedlists_extra_ptr = NULL - - # Loop variables - cdef size_t i - - # Set integration information - self.status = -4 # Status code to indicate that integration has not started. - self._message_ptr = &self._message[0] - strcpy(self._message_ptr, 'CySolverInstance:: Integration has not started.\n') - self.success = False - self.recalc_first_step = False - self.force_fail = force_fail - - # Setup pointers - self.y_ptr = &self.y_array[0] - self.y_old_ptr = &self.y_old_array[0] - self.dy_ptr = &self.dy_array[0] - self.dy_old_ptr = &self.dy_old_array[0] - self.extra_output_init_ptr = &self.extra_output_init_array[0] - self.extra_output_ptr = &self.extra_output_array[0] - self.y0_ptr = &self.y0_array[0] - self.rtols_ptr = &self.rtols_array[0] - self.atols_ptr = &self.atols_array[0] - self.stack_linkedlists_y_ptr = &self.solution_linkedlists_y[0] - self.stack_linkedlists_t_ptr = &self.solution_linkedlists_t[0] - self.stack_linkedlists_extra_ptr = &self.solution_linkedlists_extra[0] - - # Store y0 values and determine y-size information - self.y_size = y0.size - if self.y_size > 100: - strcpy(self._message_ptr, 'CySolverInstance:: Attribute Error: CySolver only supports up to 100 dependent variables (y-values).\n') - raise AttributeError(self.message) - self.y_size_dbl = self.y_size - self.y_size_sqrt = sqrt(self.y_size_dbl) - - # Make a copy of the y0 values. - for i in range(self.y_size): - self.y0_ptr[i] = y0[i] - - # Determine time domain information - self.t_start = t_span[0] - self.t_end = t_span[1] - self.t_delta = self.t_end - self.t_start - if self.t_delta >= 0.: - # Integration is moving forward in time. - self.direction_flag = True - self.direction_inf = INF - self.t_delta_abs = self.t_delta - else: - # Integration is moving backwards in time. - self.direction_flag = False - self.direction_inf = -INF - self.t_delta_abs = -self.t_delta - - # Determine integration tolerances - cdef double rtol_tmp, rtol_min - rtol_min = INF - - if rtols is not None: - # User provided an arrayed version of rtol. - if len(rtols) != self.y_size: - strcpy(self._message_ptr, 'CySolverInstance:: Attribute Error: rtol array must be the same size as y0.\n') - raise AttributeError(self.message) - for i in range(self.y_size): - rtol_tmp = rtols[i] - # Check that the tolerances are not too small. - if rtol_tmp < EPS_100: - rtol_tmp = EPS_100 - rtol_min = fmin(rtol_min, rtol_tmp) - self.rtols_ptr[i] = rtol_tmp - else: - # No array provided. Use the same rtol for all ys. - # Check that the tolerances are not too small. - if rtol < EPS_100: - rtol = EPS_100 - rtol_min = rtol - for i in range(self.y_size): - self.rtols_ptr[i] = rtol - - if atols is not None: - # User provided an arrayed version of atol. - if len(atols) != self.y_size: - strcpy(self._message_ptr, 'CySolverInstance:: Attribute Error: atol array must be the same size as y0.\n') - raise AttributeError(self.message) - for i in range(self.y_size): - self.atols_ptr[i] = atols[i] - else: - # No array provided. Use the same atol for all ys. - for i in range(self.y_size): - self.atols_ptr[i] = atol - - # Determine extra outputs - self.capture_extra = capture_extra - # To avoid memory access violations we need to set the extra output arrays no matter if they are used. - # If not used, just set them to size zero. - if self.capture_extra: - if num_extra <= 0: - self.status = -8 - strcpy(self._message_ptr, 'CySolverInstance:: Attribute Error: Capture extra set to True, but number of extra set to 0 (or negative).\n') - raise AttributeError(self.message) - elif num_extra > 100: - strcpy(self._message_ptr, 'CySolverInstance:: Attribute Error: CySolver only supports up to 100 extra outputs.\n') - raise AttributeError(self.message) - - self.num_extra = num_extra - else: - # Even though we are not capturing extra, we still want num_extra to be equal to 1 so that nan arrays - # are properly initialized - self.num_extra = 1 - - # Expected size of output arrays. - if expected_size == 0: - # CySolver will attempt to guess on a best size for the arrays. - self.expected_size = find_expected_size( - self.y_size, - num_extra, - self.t_delta_abs, - rtol_min, - capture_extra, - False) - else: - self.expected_size = expected_size - # Set the current size to the expected size. - # `expected_size` should never change but current might grow if expected size is not large enough. - self.current_size = self.expected_size - - # Determine max number of steps - find_max_num_steps( - self.y_size, - self.num_extra, - max_num_steps, - max_ram_MB, - capture_extra, - False, - &self.user_provided_max_num_steps, - &self.max_num_steps) - - # This variable tracks how many times the storage arrays have been appended. - # It starts at 1 since there is at least one storage array present. - self.num_expansions = 1 - - # Determine optional arguments - if args is None: - self.use_args = False - # Even though there are no args set arg size to 1 to initialize nan arrays - self.num_args = 1 - else: - self.use_args = True - self.num_args = len(args) - self.args_ptr = allocate_mem(self.num_args * sizeof(double), 'args_ptr (init)') - for i in range(self.num_args): - if self.use_args: - self.args_ptr[i] = args[i] - else: - self.args_ptr[i] = NAN - - # Initialize live variable arrays - for i in range(self.num_extra): - self.extra_output_init_ptr[i] = NAN - self.extra_output_ptr[i] = NAN - - # Determine interpolation information - if t_eval is None: - self.run_interpolation = False - self.interpolate_extra = False - # Even though we are not using t_eval, set its size equal to one so that nan arrays can be built - self.len_t_eval = 1 - else: - self.run_interpolation = True - self.interpolate_extra = interpolate_extra - self.len_t_eval = len(t_eval) - - self.t_eval_ptr = allocate_mem(self.len_t_eval * sizeof(double), 't_eval_ptr (init)') - for i in range(self.len_t_eval): - if self.run_interpolation: - self.t_eval_ptr[i] = t_eval[i] - else: - self.t_eval_ptr[i] = NAN - - # Initialize RK arrays - self.rk_method = rk_method - find_rk_properties( - self.rk_method, - &self.rk_order, - &self.error_order, - &self.rk_n_stages, - &self.len_Arows, - &self.len_Acols, - &self.A_ptr, - &self.B_ptr, - &self.C_ptr, - &self.E_ptr, - &self.E3_ptr, - &self.E5_ptr - ) - - if self.rk_order == 0: - raise AttributeError('Unknown or not-yet-implemented RK method requested.') - - self.len_C = self.rk_n_stages - self.rk_n_stages_plus1 = self.rk_n_stages + 1 - self.error_expo = 1. / (self.error_order + 1.) - - # Initialize other RK-related Arrays - # The size of K is rk_n_stages_plus1 * y_size. We assume that the max number of supported y's is 100 - # Currently the biggest that rk_n_stages_plus1 can be is for DOP853 at 13. - # So let K be stack allocated with a size of 1,300 - self.K_ptr = &self.K_array[0] - - # Store user provided step information - self.first_step = first_step - self.max_step = max_step - - # Parameters are initialized but may not be set to correct values. - # Call reset state to ensure everything is ready. - if call_first_reset or auto_solve: - self._reset_state() - - # Run solver if requested - if auto_solve: - # We know for a fact that this is the first time solve will be called and we just reset the Sovler's state - # So we can safely tell the solve method not to reset. - self._solve(reset=False) - - cdef void _reset_state(self) noexcept nogil: - """ Resets the class' state variables so that integration can be rerun. """ - cdef size_t i, j - cdef double temp_double - - # Set current and old time variables equal to t0 - self.t_old = self.t_start - self.t_now = self.t_start - # Track number of steps. - # Initial conditions were provided so the number of steps is already 1 - self.len_t = 1 - - # It is important K be initialized with 0s - for i in range(self.rk_n_stages_plus1): - for j in range(self.y_size): - self.K_ptr[i * self.y_size + j] = 0. - - # While we have this loop; set y back to initial conditions - if i == 0: - temp_double = self.y0_ptr[j] - self.y_ptr[j] = temp_double - self.y_old_ptr[j] = temp_double - - # Update any constant parameters that the user has set - self.update_constants() - - # Make initial call to diffeq() - self.diffeq() - - # Store first dydt - for i in range(self.y_size): - self.dy_old_ptr[i] = self.dy_ptr[i] - - # Store extra outputs for the first time step - if self.capture_extra: - for i in range(self.num_extra): - self.extra_output_init_ptr[i] = self.extra_output_ptr[i] - - # Determine first step's size - if self.first_step == 0. or self.recalc_first_step: - self.step_size = self.calc_first_step() - else: - if self.first_step <= 0.: - self.status = -8 - strcpy(self._message_ptr, "CySolverInstance._reset_state:: Error in user-provided step size: Step size must be a positive number.") - printf(self._message_ptr) - exit(EXIT_FAILURE) - elif self.first_step > self.t_delta_abs: - self.status = -8 - strcpy(self._message_ptr, "CySolverInstance._reset_state:: Error in user-provided step size: Step size can not exceed bounds.") - printf(self._message_ptr) - exit(EXIT_FAILURE) - self.step_size = self.first_step - - # Reset output storage - self.free_linked_lists() - self.current_size = self.expected_size - - # Perform initial expansion (num_expansions starts off at 0 here because it is incremented in the method call) - self.num_expansions = 0 - self.expand_storage(True) - - # Other integration flags and _messages - self.success = False - self.status = -5 # status == -5 means that reset has been called but solve has not yet been called. - strcpy(self._message_ptr, "CySolverInstance._reset_state:: CySolver instance has been reset.") - - def reset_state(self): - self._reset_state() - - cdef void expand_storage(self, bint initial_expansion) noexcept nogil: - - # Set pointers to new arrays - self.num_expansions += 1 - - cdef size_t expansion_amount - if initial_expansion: - expansion_amount = self.expected_size - self.current_size = expansion_amount - else: - # Grow the array by 150% its last expansion amount - expansion_amount = floor(self.last_expansion_size * (1.5)) - self.current_size += expansion_amount - self.last_expansion_size = expansion_amount - - # Update storages - cdef LinkedList* current_linkedlist_ptr - cdef LinkedList* new_linkedlist_ptr - cdef size_t j, max_j, data_size - if self.capture_extra: - max_j = 3 - else: - max_j = 2 - - if initial_expansion: - self.current_linkedlist_t_ptr = &self.stack_linkedlists_t_ptr[0] - self.current_linkedlist_y_ptr = &self.stack_linkedlists_y_ptr[0] - self.current_linkedlist_extra_ptr = &self.stack_linkedlists_extra_ptr[0] - - for j in range(max_j): - if j == 0: - # Time data - current_linkedlist_ptr = self.current_linkedlist_t_ptr - data_size = expansion_amount - elif j == 1: - # y data - current_linkedlist_ptr = self.current_linkedlist_y_ptr - data_size = expansion_amount * self.y_size - elif j == 2: - # Extra data - current_linkedlist_ptr = self.current_linkedlist_extra_ptr - data_size = expansion_amount * self.num_extra - if initial_expansion: - new_linkedlist_ptr = current_linkedlist_ptr - else: - if self.num_expansions < 100: - # We are still using stack allocated linked lists - new_linkedlist_ptr = current_linkedlist_ptr + 1 - else: - # We are now using heap allocated linked lists. Need to allocate a new linked list. - new_linkedlist_ptr = allocate_mem( - sizeof(LinkedList), - "New Linked List (expand_storage)") - current_linkedlist_ptr[0].next = new_linkedlist_ptr - - # Create data array which is always heap allocated - new_linkedlist_ptr[0].size = expansion_amount - new_linkedlist_ptr[0].array_ptr = allocate_mem( - sizeof(double) * data_size, - "Linked List Data Array (expand_storage)") - - # Clear any values stored in the next pointer - new_linkedlist_ptr[0].next = NULL - - # Now need to update state pointers - if j == 0: - # Time data - self.current_linkedlist_t_ptr = new_linkedlist_ptr - self.solution_t_ptr = new_linkedlist_ptr[0].array_ptr - elif j == 1: - # y data - self.current_linkedlist_y_ptr = new_linkedlist_ptr - self.solution_y_ptr = new_linkedlist_ptr[0].array_ptr - elif j == 2: - # Extra data - self.current_linkedlist_extra_ptr = new_linkedlist_ptr - self.solution_extra_ptr = new_linkedlist_ptr[0].array_ptr - - cdef double calc_first_step(self) noexcept nogil: - """ - Select an initial step size based on the differential equation. - .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential - Equations I: Nonstiff Problems", Sec. II.4. - """ - - cdef double step_size, d0, d1, d2, d0_abs, d1_abs, d2_abs, h0, h1, scale - cdef double y_old_tmp - - if self.y_size == 0: - step_size = INF - else: - # Find the norm for d0 and d1 - d0 = 0. - d1 = 0. - for i in range(self.y_size): - y_old_tmp = self.y_old_ptr[i] - - scale = self.atols_ptr[i] + fabs(y_old_tmp) * self.rtols_ptr[i] - - d0_abs = fabs(y_old_tmp / scale) - d1_abs = fabs(self.dy_old_ptr[i] / scale) - d0 += (d0_abs * d0_abs) - d1 += (d1_abs * d1_abs) - - d0 = sqrt(d0) / self.y_size_sqrt - d1 = sqrt(d1) / self.y_size_sqrt - - if d0 < 1.e-5 or d1 < 1.e-5: - h0 = 1.e-6 - else: - h0 = 0.01 * d0 / d1 - - if self.direction_flag: - h0_direction = h0 - else: - h0_direction = -h0 - - self.t_now = self.t_old + h0_direction - for i in range(self.y_size): - self.y_ptr[i] = self.y_old_ptr[i] + h0_direction * self.dy_old_ptr[i] - - # Update dy_new_view - self.diffeq() - - # Find the norm for d2 - d2 = 0. - for i in range(self.y_size): - - scale = self.atols_ptr[i] + fabs(self.y_old_ptr[i]) * self.rtols_ptr[i] - d2_abs = fabs( (self.dy_ptr[i] - self.dy_old_ptr[i]) / scale) - d2 += (d2_abs * d2_abs) - - d2 = sqrt(d2) / (h0 * self.y_size_sqrt) - - if d1 <= 1.e-15 and d2 <= 1.e-15: - h1 = fmax(1.e-6, h0 * 1.e-3) - else: - h1 = (0.01 / fmax(d1, d2))**self.error_expo - - step_size = fmax(10. * fabs(nextafter(self.t_old, self.direction_inf) - self.t_old), - fmin(100. * h0, h1)) - - return step_size - - def solve( - self, - bint reset = True - ): - """ - Public wrapper to the private solve method which calculates the integral of the user-provided system of ODEs. - - Parameters - ---------- - reset : bint, default=True - If True, `reset_state()` will be called before integration starts. - """ - self._solve(reset) - - cdef void _solve( - self, - bint reset - ) noexcept nogil: - """ - Calculates the integral of the user-provided system of ODEs. - - Parameters - ---------- - reset : bint, default=True - If True, `reset_state()` will be called before integration starts. - """ - - # Reset the solver's state (avoid issues if solve() is called multiple times). - if reset: - self._reset_state() - - # Setup loop variables - cdef size_t i, j, k, shifted_index - cdef int rk_step_output - - # Index shift records what the t_eval was during the before the previous expansion - cdef size_t index_shift = 0 - cdef size_t running_count = 0 - cdef size_t last_index - - # Setup final storage variables - cdef size_t linked_list_size - cdef double* contiguous_t_ptr - cdef double* contiguous_y_ptr - cdef double* contiguous_extra_ptr - cdef LinkedList* current_t_linked_list_ptr - cdef LinkedList* current_y_linked_list_ptr - cdef LinkedList* current_extra_linked_list_ptr - - # Load initial conditions into storage arrays - self.solution_t_ptr[0] = self.t_start - for i in range(self.y_size): - self.solution_y_ptr[i] = self.y0_ptr[i] - if self.capture_extra: - for i in range(self.num_extra): - self.solution_extra_ptr[i] = self.extra_output_init_ptr[i] - - # # Main integration loop - self.status = 0 - - if self.y_size == 0: - self.status = -6 - - while self.status == 0: - - # Check that integration is not complete. - if self.t_now == self.t_end: - self.t_old = self.t_end - self.status = 1 - break - - # Check that maximum number of steps has not been exceeded. - if self.len_t > self.max_num_steps: - if self.user_provided_max_num_steps: - self.status = -2 - else: - self.status = -3 - break - - # # Perform RK Step - rk_step_output = rk_step_cf( - self.diffeq, - self, - self.t_end, - self.direction_flag, - self.direction_inf, - self.y_size, - self.y_size_dbl, - self.y_size_sqrt, - &self.t_now, - self.y_ptr, - self.dy_ptr, - &self.t_old, - self.y_old_ptr, - self.dy_old_ptr, - &self.step_size, - &self.status, - self.atols_ptr, - self.rtols_ptr, - self.max_step, - self.rk_method, - self.rk_n_stages, - self.rk_n_stages_plus1, - self.len_Acols, - self.len_C, - self.A_ptr, - self.B_ptr, - self.C_ptr, - self.K_ptr, - self.E_ptr, - self.E3_ptr, - self.E5_ptr, - self.error_expo, - MIN_FACTOR, - MAX_FACTOR, - SAFETY - ) - - # Check if an error occurred during step calculations before storing data. - if self.status != 0: - break - - # Store data - if self.len_t >= self.current_size: - # There is more data then we have room in our arrays. - # Expand the storage (and increase the memory usage) to allow for new data to be stored. - self.expand_storage(False) - index_shift = self.len_t - - # Add this step's results to our storage arrays. - shifted_index = self.len_t - index_shift - - self.solution_t_ptr[shifted_index] = self.t_now - for i in range(self.y_size): - self.solution_y_ptr[shifted_index * self.y_size + i] = self.y_ptr[i] - - if self.capture_extra: - for i in range(self.num_extra): - self.solution_extra_ptr[shifted_index * self.num_extra + i] = self.extra_output_ptr[i] - - # Increase number of independent variable points. - self.len_t += 1 - - # Integration has stopped. Check if it was successful. - if self.status != 1 or self.force_fail: - self.success = False - else: - self.success = True - - if self.success: - # Solution was successful. - - # Combine all storage linked lists into a contiguous array - if self.num_expansions == 1: - # If num_expansions == 1, then no expansions were needed and the solution pointers simply need to be resized. - self.solution_t_ptr = reallocate_mem( - self.solution_t_ptr, - sizeof(double) * self.len_t, - "solution_t_ptr (realloc; CySolver._solve)" - ) - self.solution_y_ptr = reallocate_mem( - self.solution_y_ptr, - sizeof(double) * self.len_t * self.y_size, - "solution_y_ptr (realloc; CySolver._solve)" - ) - if self.capture_extra: - self.solution_extra_ptr = reallocate_mem( - self.solution_extra_ptr, - sizeof(double) * self.len_t * self.num_extra, - "solution_extra_ptr (realloc; CySolver._solve)" - ) - - # Set old reference to the newly allocated arrays to null - self.stack_linkedlists_t_ptr[0].array_ptr = NULL - self.stack_linkedlists_y_ptr[0].array_ptr = NULL - self.stack_linkedlists_extra_ptr[0].array_ptr = NULL - else: - # Allocate contiguous memory - self._contiguous_t_ptr = allocate_mem( - sizeof(double) * self.len_t, - "_contiguous_t_ptr (CySolver._solve)") - self._contiguous_y_ptr = allocate_mem( - sizeof(double) * self.len_t * self.y_size, - "_contiguous_y_ptr (CySolver._solve)") - if self.capture_extra: - self._contiguous_extra_ptr = allocate_mem( - sizeof(double) * self.len_t * self.num_extra, - "_contiguous_extra_ptr (CySolver._solve)") - - # Loop through linked lists - current_t_linked_list_ptr = &self.stack_linkedlists_t_ptr[0] - current_y_linked_list_ptr = &self.stack_linkedlists_y_ptr[0] - if self.capture_extra: - current_extra_linked_list_ptr = &self.stack_linkedlists_extra_ptr[0] - - for i in range(self.num_expansions): - self.solution_t_ptr = current_t_linked_list_ptr[0].array_ptr - self.solution_y_ptr = current_y_linked_list_ptr[0].array_ptr - if self.capture_extra: - self.solution_extra_ptr = current_extra_linked_list_ptr[0].array_ptr - - # All the types of the linked lists should be the same length - linked_list_size = current_t_linked_list_ptr[0].size - if i == (self.num_expansions - 1): - # In the last expansion we need to be careful because not all of the storage is utilized. - last_index = self.len_t - running_count - else: - last_index = linked_list_size - - # Loop through the arrays and store the results - for j in range(last_index): - shifted_index = running_count + j - self._contiguous_t_ptr[shifted_index] = self.solution_t_ptr[j] - - for k in range(self.y_size): - self._contiguous_y_ptr[shifted_index * self.y_size + k] = self.solution_y_ptr[j * self.y_size + k] - - if self.capture_extra: - for k in range(self.num_extra): - self._contiguous_extra_ptr[shifted_index * self.num_extra + k] = self.solution_extra_ptr[j * self.num_extra + k] - - # Prepare for next loop - running_count += last_index - current_t_linked_list_ptr = current_t_linked_list_ptr[0].next - current_y_linked_list_ptr = current_y_linked_list_ptr[0].next - if self.capture_extra: - current_extra_linked_list_ptr = current_extra_linked_list_ptr[0].next - - # Finally, reassign the solution pointers to the new contiguous array pointers - self.solution_t_ptr = self._contiguous_t_ptr - self.solution_y_ptr = self._contiguous_y_ptr - self.solution_extra_ptr = self._contiguous_extra_ptr - - # Set old pointers to null - self.current_linkedlist_t_ptr = NULL - self.current_linkedlist_y_ptr = NULL - self.current_linkedlist_extra_ptr = NULL - self._contiguous_t_ptr = NULL - self._contiguous_y_ptr = NULL - self._contiguous_extra_ptr = NULL - current_t_linked_list_ptr = NULL - current_y_linked_list_ptr = NULL - current_extra_linked_list_ptr = NULL - - # Free linked list memory - self.free_linked_lists() - - else: - # Integration was not successful. - - # Free linked list memory - self.free_linked_lists() - - # Make solution pointers length 1 nan arrays. - # Use the first linked list to create these arrays - self.expected_size = 1 - self.expand_storage(True) - self.solution_t_ptr = self.stack_linkedlists_t_ptr[0].array_ptr - self.solution_y_ptr = self.stack_linkedlists_y_ptr[0].array_ptr - self.solution_extra_ptr = self.stack_linkedlists_extra_ptr[0].array_ptr - - # Set old reference to the newly allocated arrays to null - self.stack_linkedlists_t_ptr[0].array_ptr = NULL - self.stack_linkedlists_y_ptr[0].array_ptr = NULL - self.stack_linkedlists_extra_ptr[0].array_ptr = NULL - - self.solution_t_ptr[0] = NAN - for i in range(self.y_size): - self.solution_y_ptr[i] = NAN - if self.capture_extra: - for i in range(self.num_extra): - self.solution_extra_ptr[i] = NAN - - # Integration is complete. Check if interpolation was requested. - if self.success: - if self.run_interpolation: - self.interpolate() - # Use different len_t - self.len_t_touse = self.len_t_eval - else: - self.len_t_touse = self.len_t - else: - # If integration was not successful use t_len = 1 to allow for nan arrays - self.len_t_touse = 1 - - # Update integration _message - if self.status == 1: - strcpy(self._message_ptr, "Integration completed without issue.\n") - elif self.status == 0: - strcpy(self._message_ptr, "Integration is/was ongoing (perhaps it was interrupted?).\n") - elif self.status == -1: - strcpy(self._message_ptr, "Error in step size calculation:\n\tRequired step size is less than spacing between numbers.\n") - elif self.status == -2: - strcpy(self._message_ptr, "Maximum number of steps (set by user) exceeded during integration.\n") - elif self.status == -3: - strcpy(self._message_ptr, "Maximum number of steps (set by system architecture) exceeded during integration.\n") - elif self.status == -6: - strcpy(self._message_ptr, "Integration never started: y-size is zero.\n") - elif self.status == -7: - strcpy(self._message_ptr, "Error in step size calculation:\n\tError in step size acceptance.\n") - - cdef void interpolate(self) noexcept nogil: - """ Interpolate the results of a successful integration over the user provided time domain, `t_eval`. """ - # User only wants data at specific points. - cdef char old_status - old_status = self.status - self.status = 2 # Interpolation is being performed. - - # Setup loop variables - cdef size_t i, j - - # Check to make sure that t-eval is set - if not self.t_eval_ptr: - raise ValueError('Interpolation function called but t_eval_ptr is null.') - - # TODO: The current version of CySolver has not implemented sicpy's dense output. Instead we use an interpolation. - # Build final interpolated time and solution arrays - if self._interpolate_solution_t_ptr is NULL: - self._interpolate_solution_t_ptr = allocate_mem( - self.len_t_eval * sizeof(double), - '_interpolate_solution_t_ptr (interpolate)') - else: - self._interpolate_solution_t_ptr = reallocate_mem( - self._interpolate_solution_t_ptr, - self.len_t_eval * sizeof(double), - '_interpolate_solution_t_ptr (interpolate)') - - if self._interpolate_solution_y_ptr is NULL: - self._interpolate_solution_y_ptr = allocate_mem( - self.y_size * self.len_t_eval * sizeof(double), - 'self._interpolate_solution_y_ptr (interpolate)') - else: - self._interpolate_solution_y_ptr = reallocate_mem( - self._interpolate_solution_y_ptr, - self.y_size * self.len_t_eval * sizeof(double), - 'self._interpolate_solution_y_ptr (interpolate)') - - # Perform interpolation on y values - interpolate(self.solution_t_ptr, self.t_eval_ptr, self.solution_y_ptr, self._interpolate_solution_y_ptr, - self.len_t, self.len_t_eval, self.y_size, False) - - # Make a copy of t_eval (issues can arise if we store the t_eval pointer in solution array). - for i in range(self.len_t_eval): - self._interpolate_solution_t_ptr[i] = self.t_eval_ptr[i] - - if self.capture_extra: - # Right now if there is any extra output then it is stored at each time step used in the RK loop. - # We have to make a choice: - # - Do we interpolate the extra values that were stored? - # - Or do we use the interpolated t, y values to find new extra parameters at those specific points. - # The latter method is more computationally expensive (recalls the diffeq for each y) but is more accurate. - # This decision is set by the user with the `interpolate_extra` flag. - - # Build final interpolated solution array (Used if self.interpolate_extra is True or False) - if self._interpolate_solution_extra_ptr is NULL: - self._interpolate_solution_extra_ptr = allocate_mem( - self.num_extra * self.len_t_eval * sizeof(double), - 'self._interpolate_solution_extra_ptr (interpolate)') - else: - self._interpolate_solution_extra_ptr = reallocate_mem( - self._interpolate_solution_extra_ptr, - self.num_extra * self.len_t_eval * sizeof(double), - 'self._interpolate_solution_extra_ptr (interpolate)') - - if self.interpolate_extra: - # Perform interpolation on extra outputs - interpolate( - self.solution_t_ptr, self.t_eval_ptr, self.solution_extra_ptr, self._interpolate_solution_extra_ptr, - self.len_t, self.len_t_eval, self.num_extra, False) - else: - # Use the new interpolated y and t values to recalculate the extra outputs with self.diffeq - for i in range(self.len_t_eval): - # Set state variables - self.t_now = self.t_eval_ptr[i] - for j in range(self.y_size): - self.y_ptr[j] = self._interpolate_solution_y_ptr[i * self.y_size + j] - - # Call diffeq to recalculate extra outputs - self.diffeq() - - # Capture extras - for j in range(self.num_extra): - self._interpolate_solution_extra_ptr[i * self.num_extra + j] = self.extra_output_ptr[j] - - # Replace old pointers with new interpolated pointers and release the memory for the old stuff - if not (self.solution_extra_ptr is NULL): - free_mem(self.solution_extra_ptr) - self.solution_extra_ptr = self._interpolate_solution_extra_ptr - self._interpolate_solution_extra_ptr = NULL - - # Replace old pointers with new interpolated pointers and release the memory for the old stuff - if not (self.solution_t_ptr is NULL): - free_mem(self.solution_t_ptr) - self.solution_t_ptr = self._interpolate_solution_t_ptr - self._interpolate_solution_t_ptr = NULL - if not (self.solution_y_ptr is NULL): - free_mem(self.solution_y_ptr) - self.solution_y_ptr = self._interpolate_solution_y_ptr - self._interpolate_solution_y_ptr = NULL - - # Interpolation is done. - self.status = old_status - - # free_mem any memory that may still be alive if exceptions were raised. - if not (self._interpolate_solution_t_ptr is NULL): - free_mem(self._interpolate_solution_t_ptr) - self._interpolate_solution_t_ptr = NULL - if not (self._interpolate_solution_y_ptr is NULL): - free_mem(self._interpolate_solution_y_ptr) - self._interpolate_solution_y_ptr = NULL - if not (self._interpolate_solution_extra_ptr is NULL): - free_mem(self._interpolate_solution_extra_ptr) - self._interpolate_solution_extra_ptr = NULL - - cpdef void change_t_span( - self, - (double, double) t_span, - bint auto_reset_state = False - ): - """ - Public method to change the independent variable limits (start and stop points of integration). - - Parameters - ---------- - t_span : (double, double) - New t_span to use during integration. - auto_reset_state : bint, default=False - If True, then the `reset_state` method will be called once parameter is changed. - """ - - # Update time domain information - self.t_start = t_span[0] - self.t_end = t_span[1] - self.t_delta = self.t_end - self.t_start - if self.t_delta >= 0.: - self.direction_flag = True - self.direction_inf = INF - self.t_delta_abs = self.t_delta - else: - self.direction_flag = False - self.direction_inf = -INF - self.t_delta_abs = -self.t_delta - - # A change to t-span will affect the first step's size - self.recalc_first_step = True - - if auto_reset_state: - self._reset_state() - - cpdef void change_y0( - self, - const double[::1] y0, - bint auto_reset_state = False - ): - """ - Public method to change the initial conditions. - - Note: the size of y0 can not be different from the original y0 used to instantiate the class instance. - - Parameters - ---------- - y0 : const double[::1] - New dependent variable initial conditions. - Must be the same size as the original y0. - auto_reset_state : bint, default=False - If True, then the `reset_state` method will be called once parameter is changed. - """ - - # Check y-size information - cdef size_t i, y_size_new - y_size_new = len(y0) - - if self.y_size != y_size_new: - # So many things need to update if ysize changes that the user should just create a new class instance. - self.status = -8 - strcpy(self._message_ptr, "CySolverInstance.change_y0:: Attribute Error. New y0 must be the same size as the original y0 used to create CySolver class. Create new CySolver instance instead.\n") - raise AttributeError(self.message) - - # Store y0 values for later - for i in range(self.y_size): - self.y0_ptr[i] = y0[i] - - # A change to y0 will affect the first step's size - self.recalc_first_step = True - - if auto_reset_state: - self._reset_state() - - cdef void change_y0_pointer( - self, - double* y0_ptr, - bint auto_reset_state = False - ) noexcept nogil: - """ - Public method to change the initial conditions. - - Note: the size of y0 can not be different from the original y0 used to instantiate the class instance. - - Parameters - ---------- - y0_ptr : double* - New pointer to dependent variable initial conditions. - Must be the same size as the original y0. - auto_reset_state : bint, default=False - If True, then the `reset_state` method will be called once parameter is changed. - """ - - # This function is not as safe as `change_y0` as it assumes that the user provided the same length y0. - - # Check y-size information - cdef size_t i - - # Store y0 values for later - for i in range(self.y_size): - self.y0_ptr[i] = y0_ptr[i] - - # A change to y0 will affect the first step's size - self.recalc_first_step = True - - if auto_reset_state: - self._reset_state() - - cpdef void change_args( - self, - tuple args, - bint auto_reset_state = False - ): - """ - Public method to change additional arguments used during integration. - - Parameters - ---------- - args : tuple - New tuple of additional arguments. - auto_reset_state : bint, default=False - If True, then the `reset_state` method will be called once parameter is changed. - """ - - # Determine optional arguments - if args is None: - self.use_args = False - # Even though there are no args set arg size to 1 to initialize nan arrays - self.num_args = 1 - else: - self.use_args = True - self.num_args = len(args) - - if self.args_ptr is NULL: - self.args_ptr = allocate_mem( - self.num_args * sizeof(double), - 'args_ptr (change_args)') - else: - self.args_ptr = reallocate_mem( - self.args_ptr, - self.num_args * sizeof(double), - 'args_ptr (change_args)') - - for i in range(self.num_args): - if self.use_args: - self.args_ptr[i] = args[i] - else: - self.args_ptr[i] = NAN - - # A change to args will affect the first step's size - self.recalc_first_step = True - - if auto_reset_state: - self._reset_state() - - cpdef void change_tols( - self, - double rtol = NAN, - double atol = NAN, - const double[::1] rtols = None, - const double[::1] atols = None, - bint auto_reset_state = False - ): - """ - Public method to change relative and absolute tolerances and/or their arrays. - - Parameters - ---------- - rtol : double, default=NAN - New relative tolerance for all dependent y variables. - if NAN (the default), then no change will be made. - atol : double, default=NAN - New absolute tolerance for all dependent y variables. - if NAN (the default), then no change will be made. - rtols : const double[::1] - Numpy ndarray of relative tolerances, one for each dependent y variable. - if None (the default), then no change will be made. - atols : const double[::1] - Numpy ndarray of absolute tolerances, one for each dependent y variable. - if None (the default), then no change will be made. - auto_reset_state : bint, default=False - If True, then the `reset_state` method will be called once parameter is changed. - """ - - # This is one of the few change functions where nothing might change. - # Track if updates need to be made - cdef bint something_changed = False - - # Update tolerances - cdef double rtol_tmp - - if rtols is not None or not isnan(rtol): - # Change to rtol - something_changed = True - - if rtols is not None: - # Using arrayed rtol - if len(rtols) != self.y_size: - strcpy(self._message_ptr, "CySolverInstance.change_tols:: Attribute Error. rtols must be the same size as y0.\n") - raise AttributeError(self.message) - for i in range(self.y_size): - rtol_tmp = rtols[i] - if rtol_tmp < EPS_100: - rtol_tmp = EPS_100 - self.rtols_ptr[i] = rtol_tmp - elif not isnan(rtol): - # Using constant rtol - # Check tolerances - if rtol < EPS_100: - rtol = EPS_100 - for i in range(self.y_size): - self.rtols_ptr[i] = rtol - - if atols is not None or not isnan(atol): - # Change to atol - something_changed = True - - if atols is not None: - # Using arrayed atol - if len(atols) != self.y_size: - strcpy(self._message_ptr, "CySolverInstance.change_tols:: Attribute Error. atols must be the same size as y0.\n") - raise AttributeError(self.message) - for i in range(self.y_size): - self.atols_ptr[i] = atols[i] - elif not isnan(atol): - for i in range(self.y_size): - self.atols_ptr[i] = atol - - if something_changed: - # A change to tolerances will affect the first step's size - self.recalc_first_step = True - - if auto_reset_state: - self._reset_state() - - cpdef void change_max_step( - self, - double max_step, - bint auto_reset_state = False - ): - """ - Public method to change maximum allowed step size. - - Parameters - ---------- - max_step : double - New maximum step size used during integration. - auto_reset_state : bint, default=False - If True, then the `reset_state` method will be called once parameter is changed. - """ - - self.max_step = fabs(max_step) - - if auto_reset_state: - self._reset_state() - - cpdef void change_first_step( - self, - double first_step, - bint auto_reset_state = False - ): - """ - Public method to change first step's size. - - Parameters - ---------- - first_step : double - New first step's size. - auto_reset_state : bint, default=False - If True, then the `reset_state` method will be called once parameter is changed. - """ - - self.first_step = first_step - if self.first_step == 0.: - self.step_size = self.calc_first_step() - else: - if self.first_step <= 0.: - self.status = -8 - strcpy(self._message_ptr, "CySolverInstance.change_tols:: Attribute Error. Error in user-provided step size: Step size must be a positive number.\n") - raise AttributeError(self.message) - elif self.first_step > self.t_delta_abs: - self.status = -8 - strcpy(self._message_ptr, "CySolverInstance.change_tols:: Attribute Error. Error in user-provided step size: Step size can not exceed bounds.\n") - raise AttributeError(self.message) - self.step_size = self.first_step - - # If first step has already been reset then no need to call it again later. - self.recalc_first_step = False - - if auto_reset_state: - self._reset_state() - - cpdef void change_t_eval( - self, - const double[::1] t_eval, - bint auto_reset_state = False - ): - """ - Public method to change user requested independent domain, `t_eval`. - - Parameters - ---------- - t_eval : double[:] - New independent domain at which solution will be interpolated. - auto_reset_state : bint, default=False - If True, then the `reset_state` method will be called once parameter is changed. - """ - - cdef size_t i - - # Determine interpolation information - self.run_interpolation = True - self.len_t_eval = len(t_eval) - - if self.t_eval_ptr is NULL: - self.t_eval_ptr = allocate_mem( - self.len_t_eval * sizeof(double), - 't_eval_ptr (change_t_eval)') - else: - self.t_eval_ptr = reallocate_mem( - self.t_eval_ptr, - self.len_t_eval * sizeof(double), - 't_eval_ptr (change_t_eval)') - - if self.run_interpolation: - for i in range(self.len_t_eval): - self.t_eval_ptr[i] = t_eval[i] - - if auto_reset_state: - self._reset_state() - - cdef void change_t_eval_pointer( - self, - double* new_t_eval_ptr, - size_t new_len_t_eval, - bint auto_reset_state = False - ): - """ - Public method to change user requested independent domain, `t_eval`. - - Parameters - ---------- - t_eval_ptr : double[:] - New pointer to independent domain at which solution will be interpolated. - auto_reset_state : bint, default=False - If True, then the `reset_state` method will be called once parameter is changed. - """ - - # Determine interpolation information - self.run_interpolation = True - self.len_t_eval = new_len_t_eval - - if self.t_eval_ptr is NULL: - self.t_eval_ptr = allocate_mem( - self.len_t_eval * sizeof(double), - 't_eval_ptr (change_t_eval_pointer)') - else: - self.t_eval_ptr = reallocate_mem( - self.t_eval_ptr, - self.len_t_eval * sizeof(double), - 't_eval_ptr (change_t_eval_pointer)') - - if self.run_interpolation: - for i in range(self.len_t_eval): - self.t_eval_ptr[i] = new_t_eval_ptr[i] - - if auto_reset_state: - self._reset_state() - - cpdef void change_parameters( - self, - (double, double) t_span = EMPTY_T_SPAN, - const double[::1] y0 = None, - tuple args = None, - double rtol = NAN, - double atol = NAN, - const double[::1] rtols = None, - const double[::1] atols = None, - double max_step = NAN, - double first_step = NAN, - const double[::1] t_eval = None, - bint auto_reset_state = True, - bint auto_solve = False - ): - """ - Public method to change one or more parameters which have their own `change_*` method. - - See other `change_*` methods for more detailed documentation. - - Parameters - ---------- - t_span - y0 - args - rtol - atol - rtols - atols - max_step - first_step - t_eval - auto_reset_state : bint, default=True - If True, then the `reset_state` method will be called once parameter is changed. - auto_solve : bint, default=False - If True, then the `solve` method will be called after all parameters have been changed and the state reset. - """ - - # This is one of the few change functions where nothing might change. - # Track if updates need to be made - cdef bint something_changed - something_changed = False - - if not isnan(t_span[0]): - something_changed = True - self.change_t_span(t_span, auto_reset_state=False) - - if y0 is not None: - something_changed = True - self.change_y0(y0, auto_reset_state=False) - - if args is not None: - something_changed = True - self.change_args(args, auto_reset_state=False) - - if (not isnan(rtol)) or (not isnan(atol)) or (rtols is not None) or (atols is not None): - something_changed = True - self.change_tols(rtol=rtol, atol=atol, rtols=rtols, atols=atols, auto_reset_state=False) - - if not isnan(max_step): - something_changed = True - self.change_max_step(max_step, auto_reset_state=False) - - if not isnan(first_step): - something_changed = True - self.change_first_step(first_step, auto_reset_state=False) - - if t_eval is not None: - something_changed = True - self.change_t_eval(t_eval, auto_reset_state=False) - - # Now that everything has been set, reset the solver's state. - if something_changed: - # If first step has already been reset then no need to call it again later. - if not isnan(first_step): - self.recalc_first_step = False - - if auto_reset_state: - self._reset_state() - - # User can choose to go ahead and rerun the solver with the new setup - if auto_solve: - # Tell solver to reset state if for some reason the user set reset to False but auto_solve to True, - # ^ This should probably be a warning. Don't see why you'd ever want to do that. - self._solve(reset=(not auto_reset_state)) - - - # Methods to be overridden by sub classes - cdef void update_constants(self) noexcept nogil: - # This is a template method that should be overriden by a user's subclass (if needed). - - # Example of usage: - # If the diffeq function has an equation of the form dy = (2. * a - sin(b)) * y * sin(t) - # then only the "y" and "sin(t)" change with each time step. The other coefficient could be precalculated to - # save on computation steps. This method assists with that process. - # First: - # Define a class attribute for the coefficient: - # ```python - # cdef class MySolver(CySolver): - # cdef double coeff_1 - # ... - # ``` - # Second: - # Override this method to populate the value of `coeff_1`: - # ```python - # ... - # cdef void update_constants(self) noexcept nogil: - # a = self.args_ptr[0] - # b = self.args_ptr[1] - # self.coeff_1 = (2. * a - sin(b)) - # ... - # ``` - # Third: - # Update the diffeq method to utilize this new coefficient variable. - # ```python - # ... - # cdef void diffeq(self) noexcept nogil: - # self.dy_ptr[0] = self.ceoff_1 * self.y_ptr[0] * sin(self.t_now) - # ... - # ``` - # - # The `Coeff_1` variable will only be recalculated if the additional arguments are changed. - - # Base class method does nothing. - pass - - cdef void diffeq(self) noexcept nogil: - # This is a template function that should be overriden by the user's subclass. - - # The diffeq can use live variables which are automatically updated before each call. - # self.t_now: The current "time" (of course, depending on your problem, it may not actually be _time_ per se). - # self.y_ptr[:]: The current y value(s) stored as an array. - # For example... - # ```python - # cdef double t_sin - # # You will want to import the c version of sin "from libc.math cimport sin" at the top of your file. - # t_sin = sin(self.t_now) - # y0 = self.y_ptr[0] - # y1 = self.y_ptr[1] - # ``` - - # Can also use other optional global attributes like... - # self.args_ptr (size of self.args_ptr is self.num_args). For example... - # ```python - # cdef double a, b - # a = self.args_ptr[0] - # b = self.args_ptr[1] - # ``` - # Currently, these args must be doubles (floats). - - # This function *must* set new values to the dy_new_view variable (size of array is self.y_size). For example... - # ```python - # self.dy_ptr[0] = b * t_sin - y1 - # self.dy_ptr[1] = a * sin(y0) - # ``` - - # CySolver can also set additional outputs that the user may want to capture without having to make new calls - # to the differential equation or its sub-methods. For example... - # ```python - # self.extra_output_ptr[0] = t_sin - # self.extra_output_ptr[1] = b * t_sin - # ``` - # Currently, these additional outputs must be stored as doubles (floats). - # Note that if extra output is used then the variables `capture_extra` and `num_extra` must be set in CySolver's - # `__init__` method. - - # The default template simply sets all dy to 0. - cdef size_t i - for i in range(self.y_size): - self.dy_ptr[i] = 0. - - - # Public accessed properties - @property - def message(self): - return str(self._message_ptr, 'UTF-8') - - @property - def solution_t_view(self): - return self.solution_t_ptr - - @property - def solution_y_view(self): - # Convert solution pointers to a more user-friendly memoryview format. - # Define post-run variables - cdef size_t y_size_touse - y_size_touse = self.y_size * self.len_t_touse - return self.solution_y_ptr - - @property - def solution_extra_view(self): - # Convert solution pointers to a more user-friendly memoryview format. - # Define post-run variables - cdef size_t extra_size_touse - extra_size_touse = self.num_extra * self.len_t_touse - return self.solution_extra_ptr - - @property - def t(self): - # Need to convert the memory view back into a numpy array - return np.ascontiguousarray(self.solution_t_view, dtype=np.float64) - - @property - def y(self): - # Need to convert the memory view back into a numpy array and reshape it - return np.ascontiguousarray(self.solution_y_view, dtype=np.float64).reshape((self.len_t_touse, self.y_size)).T - - @property - def extra(self): - # Need to convert the memory view back into a numpy array - return np.ascontiguousarray(self.solution_extra_view, dtype=np.float64).reshape((self.len_t_touse, self.num_extra)).T - - @property - def growths(self): - # How many times the output arrays had to grow during integration - return self.num_expansions - 1 - - cdef void free_linked_lists(self) noexcept nogil: - # Go through each storage linkedlist and free any heap allocated memory - cdef size_t i, ii, j, max_j - cdef LinkedList* linked_list_ptr - cdef (LinkedList *)[3] next_linked_list_ptr - - if self.capture_extra: - max_j = 3 - else: - max_j = 2 - # Make a list of all three stroage types first pointer location - next_linked_list_ptr[0] = &self.stack_linkedlists_t_ptr[0] - next_linked_list_ptr[1] = &self.stack_linkedlists_y_ptr[0] - next_linked_list_ptr[2] = &self.stack_linkedlists_extra_ptr[0] - - for i in range(self.num_expansions): - for j in range(max_j): - linked_list_ptr = next_linked_list_ptr[j] - if linked_list_ptr is NULL: - continue - - if not (linked_list_ptr[0].array_ptr is NULL): - free_mem(linked_list_ptr[0].array_ptr) - linked_list_ptr[0].array_ptr = NULL - linked_list_ptr[0].size = 0 - - # Update pointer list for next loop. - next_linked_list_ptr[j] = linked_list_ptr[0].next - linked_list_ptr.next = NULL - if i >= 100: - # We are into heap allocated linked lists. We need to free both the underlying array as well as the - # linked list structure - free_mem(linked_list_ptr) - - # Special methods - def __dealloc__(self): - # Free pointers made from user inputs - if not (self.args_ptr is NULL): - free_mem(self.args_ptr) - self.args_ptr = NULL - if not (self.t_eval_ptr is NULL): - free_mem(self.t_eval_ptr) - self.t_eval_ptr = NULL - - # Free final solution pointers - self.free_linked_lists() - - # Free pointers used during solve - if not (self._contiguous_t_ptr is NULL): - free_mem(self._contiguous_t_ptr) - self._contiguous_t_ptr = NULL - if not (self._contiguous_y_ptr is NULL): - free_mem(self._contiguous_y_ptr) - self._contiguous_y_ptr = NULL - if not (self._contiguous_extra_ptr is NULL): - free_mem(self._contiguous_extra_ptr) - self._contiguous_extra_ptr = NULL - - # Free pointers used during interpolation - if not (self._interpolate_solution_t_ptr is NULL): - free_mem(self._interpolate_solution_t_ptr) - self._interpolate_solution_t_ptr = NULL - if not (self._interpolate_solution_y_ptr is NULL): - free_mem(self._interpolate_solution_y_ptr) - self._interpolate_solution_y_ptr = NULL - if not (self._interpolate_solution_extra_ptr is NULL): - free_mem(self._interpolate_solution_extra_ptr) - self._interpolate_solution_extra_ptr = NULL - - # Free other storage pointers that may have been set - if not (self.solution_t_ptr is NULL): - free_mem(self.solution_t_ptr) - self.solution_t_ptr = NULL - if not (self.solution_y_ptr is NULL): - free_mem(self.solution_y_ptr) - self.solution_y_ptr = NULL - if not (self.solution_extra_ptr is NULL): - free_mem(self.solution_extra_ptr) - self.solution_extra_ptr = NULL diff --git a/CyRK/cy/cysolverNew.pxd b/CyRK/cy/cysolver_api.pxd similarity index 86% rename from CyRK/cy/cysolverNew.pxd rename to CyRK/cy/cysolver_api.pxd index b42faf1..b871555 100644 --- a/CyRK/cy/cysolverNew.pxd +++ b/CyRK/cy/cysolver_api.pxd @@ -1,15 +1,13 @@ -from libc.string cimport memcpy -from libcpp cimport nullptr from libcpp cimport bool as cpp_bool -from libcpp.cmath cimport fmin, fabs cimport cpython.ref as cpy_ref from CyRK.utils.vector cimport vector -from CyRK.utils.memory cimport shared_ptr, make_shared +from CyRK.utils.memory cimport shared_ptr from CyRK.cy.pysolver_cyhook cimport DiffeqMethod cimport numpy as np + # ===================================================================================================================== # Import common functions and constants # ===================================================================================================================== @@ -51,7 +49,6 @@ cdef extern from "dense.cpp" nogil: void call(double t_interp, double* y_interped) - # ===================================================================================================================== # Import CySolverResult (container for integration results) # ===================================================================================================================== @@ -144,34 +141,6 @@ cdef extern from "cysolver.cpp" nogil: void py_diffeq() -cdef class WrapPyDiffeq: - - cdef object diffeq_func - cdef tuple args - cdef cpp_bool use_args - cdef cpp_bool pass_dy_as_arg - - cdef unsigned int num_y - cdef unsigned int num_dy - - cdef np.ndarray y_now_arr - cdef double[::1] y_now_view - cdef np.ndarray dy_now_arr - cdef double[::1] dy_now_view - - # State attributes - cdef double* y_now_ptr - cdef double* t_now_ptr - cdef double* dy_now_ptr - - cdef void set_state(self, - double* dy_ptr, - double* t_ptr, - double* y_ptr - ) noexcept - - cdef void diffeq(self) noexcept - # ===================================================================================================================== # Import CySolver Runge-Kutta Integrators # ===================================================================================================================== @@ -316,39 +285,6 @@ cdef extern from "cysolve.cpp" nogil: const double first_step_size ) - # Python-hook implementation - struct PySolverStatePointers: - double* dy_now_ptr - double* t_now_ptr - double* y_now_ptr - - cdef cppclass PySolver: - PySolver() - PySolver( - unsigned int integration_method, - cpy_ref.PyObject* cython_extension_class_instance, - DiffeqMethod cython_extension_class_diffeq_method, - shared_ptr[CySolverResult] solution_ptr, - const double t_start, - const double t_end, - const double* y0_ptr, - const unsigned int num_y, - const unsigned int num_extra, - const void* args_ptr, - const size_t max_num_steps, - const size_t max_ram_MB, - const cpp_bool dense_output, - const double* t_eval, - const size_t len_t_eval, - const double rtol, - const double atol, - const double* rtols_ptr, - const double* atols_ptr, - const double max_step_size, - const double first_step_size) - PySolverStatePointers get_state_pointers() - void solve() - # ===================================================================================================================== # Cython-based wrapper for baseline_cysolve_ivp that carries default values. diff --git a/CyRK/cy/cysolver_api.pyx b/CyRK/cy/cysolver_api.pyx new file mode 100644 index 0000000..bc08e89 --- /dev/null +++ b/CyRK/cy/cysolver_api.pyx @@ -0,0 +1,184 @@ +# distutils: language = c++ +# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False + +import numpy as np + +# ===================================================================================================================== +# Import CySolverResult (container for integration results) +# ===================================================================================================================== +cdef class WrapCySolverResult: + + cdef void set_cyresult_pointer(self, shared_ptr[CySolverResult] cyresult_shptr): + + # Store c++ based result and pull out key information + self.cyresult_shptr = cyresult_shptr + self.cyresult_ptr = cyresult_shptr.get() + self.size = self.cyresult_ptr[0].size + self.num_dy = self.cyresult_ptr[0].num_dy + + # Convert solution to pointers and views + if self.cyresult_ptr.size > 0: + self.time_ptr = &self.cyresult_ptr.time_domain[0] + self.y_ptr = &self.cyresult_ptr.solution[0] + self.time_view = self.time_ptr + self.y_view = self.y_ptr + + def call(self, double t): + """ Call the dense output interpolater and return y """ + + if not self.cyresult_ptr.capture_dense_output: + raise AttributeError("Can not call WrapCySolverResult when dense_output set to False.") + + y_interp_array = np.empty(self.cyresult_ptr.num_y, dtype=np.float64, order='C') + cdef double[::1] y_interp_view = y_interp_array + cdef double* y_interp_ptr = &y_interp_view[0] + + self.cyresult_ptr.call(t, y_interp_ptr) + return y_interp_array + + def call_vectorize(self, double[::1] t_view): + """ Call the dense output interpolater and return y """ + + if not self.cyresult_ptr.capture_dense_output: + raise AttributeError("Can not call WrapCySolverResult when dense_output set to False.") + + cdef size_t len_t = len(t_view) + + y_interp_array = np.empty(self.cyresult_ptr.num_y * len_t, dtype=np.float64, order='C') + cdef double[::1] y_interp_view = y_interp_array + cdef double* y_interp_ptr = &y_interp_view[0] + cdef double* t_array_ptr = &t_view[0] + + self.cyresult_ptr.call_vectorize(t_array_ptr, len_t, y_interp_ptr) + return y_interp_array.reshape(len_t, self.cyresult_ptr.num_y).T + + @property + def success(self): + return self.cyresult_ptr.success + + @property + def message(self): + return str(self.cyresult_ptr.message_ptr, 'UTF-8') + + @property + def t(self): + return np.asarray(self.time_view, dtype=np.float64, order='C') + + @property + def y(self): + return np.asarray(self.y_view, dtype=np.float64, order='C').reshape((self.size, self.num_dy)).T + + @property + def size(self): + return self.cyresult_ptr.size + + @property + def error_code(self): + return self.cyresult_ptr.error_code + + def __call__(self, t): + + if type(t) == np.ndarray: + return self.call_vectorize(t) + else: + return self.call(t).reshape(self.cyresult_ptr.num_y, 1) + + +# ===================================================================================================================== +# Create Wrapped cysolve_ivp (has various defaults) +# ===================================================================================================================== +cdef CySolveOutput cysolve_ivp( + DiffeqFuncType diffeq_ptr, + const double* t_span_ptr, + const double* y0_ptr, + const unsigned int num_y, + unsigned int method = 1, + double rtol = 1.0e-3, + double atol = 1.0e-6, + void* args_ptr = NULL, + unsigned int num_extra = 0, + size_t max_num_steps = 0, + size_t max_ram_MB = 2000, + bint dense_output = False, + double* t_eval = NULL, + size_t len_t_eval = 0, + PreEvalFunc pre_eval_func = NULL, + double* rtols_ptr = NULL, + double* atols_ptr = NULL, + double max_step = MAX_STEP, + double first_step = 0.0, + size_t expected_size = 0 + ) noexcept nogil: + + cdef CySolveOutput result = baseline_cysolve_ivp( + diffeq_ptr, + t_span_ptr, + y0_ptr, + num_y, + method, + expected_size, + num_extra, + args_ptr, + max_num_steps, + max_ram_MB, + dense_output, + t_eval, + len_t_eval, + pre_eval_func, + rtol, + atol, + rtols_ptr, + atols_ptr, + max_step, + first_step + ) + + return result + +cdef CySolveOutput cysolve_ivp_gil( + DiffeqFuncType diffeq_ptr, + const double* t_span_ptr, + const double* y0_ptr, + const unsigned int num_y, + unsigned int method = 1, + double rtol = 1.0e-3, + double atol = 1.0e-6, + void* args_ptr = NULL, + unsigned int num_extra = 0, + size_t max_num_steps = 0, + size_t max_ram_MB = 2000, + bint dense_output = False, + double* t_eval = NULL, + size_t len_t_eval = 0, + PreEvalFunc pre_eval_func = NULL, + double* rtols_ptr = NULL, + double* atols_ptr = NULL, + double max_step = MAX_STEP, + double first_step = 0.0, + size_t expected_size = 0 + ) noexcept: + + cdef CySolveOutput result = baseline_cysolve_ivp( + diffeq_ptr, + t_span_ptr, + y0_ptr, + num_y, + method, + expected_size, + num_extra, + args_ptr, + max_num_steps, + max_ram_MB, + dense_output, + t_eval, + len_t_eval, + pre_eval_func, + rtol, + atol, + rtols_ptr, + atols_ptr, + max_step, + first_step + ) + + return result diff --git a/CyRK/cy/cysolverNew_test.pxd b/CyRK/cy/cysolver_test.pxd similarity index 89% rename from CyRK/cy/cysolverNew_test.pxd rename to CyRK/cy/cysolver_test.pxd index a6512bb..75720f0 100644 --- a/CyRK/cy/cysolverNew_test.pxd +++ b/CyRK/cy/cysolver_test.pxd @@ -2,7 +2,7 @@ from libcpp cimport bool as cpp_bool from libc.math cimport sin, cos, fabs, fmin, fmax -from CyRK.cy.cysolverNew cimport cysolve_ivp, WrapCySolverResult, DiffeqFuncType,MAX_STEP, CySolveOutput, PreEvalFunc +from CyRK.cy.cysolver_api cimport cysolve_ivp, WrapCySolverResult, DiffeqFuncType,MAX_STEP, CySolveOutput, PreEvalFunc cdef void baseline_diffeq(double* dy_ptr, double t, double* y_ptr, const void* args_ptr, PreEvalFunc pre_eval_func) noexcept nogil cdef void accuracy_test_diffeq(double* dy_ptr, double t, double* y_ptr, const void* args_ptr, PreEvalFunc pre_eval_func) noexcept nogil diff --git a/CyRK/cy/cysolverNew_test.pyx b/CyRK/cy/cysolver_test.pyx similarity index 99% rename from CyRK/cy/cysolverNew_test.pyx rename to CyRK/cy/cysolver_test.pyx index 440c67a..6bee85a 100644 --- a/CyRK/cy/cysolverNew_test.pyx +++ b/CyRK/cy/cysolver_test.pyx @@ -3,7 +3,6 @@ import numpy as np - cdef void baseline_diffeq(double* dy_ptr, double t, double* y_ptr, const void* args_ptr, PreEvalFunc pre_eval_func) noexcept nogil: # Unpack y cdef double y0, y1 diff --git a/CyRK/cy/cysolvertest.pyx b/CyRK/cy/cysolvertest.pyx deleted file mode 100644 index ca2bbd6..0000000 --- a/CyRK/cy/cysolvertest.pyx +++ /dev/null @@ -1,179 +0,0 @@ -# distutils: language = c -# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False - -from libc.math cimport sin, cos - -from CyRK.cy.cysolver cimport CySolver - - -cdef class CySolverTester(CySolver): - - cdef void diffeq(self) noexcept nogil: - - # Unpack y - cdef double y0, y1 - y0 = self.y_ptr[0] - y1 = self.y_ptr[1] - - self.dy_ptr[0] = (1. - 0.01 * y1) * y0 - self.dy_ptr[1] = (0.02 * y0 - 1.) * y1 - - -cdef class CySolverAccuracyTest(CySolver): - - cdef void diffeq(self) noexcept nogil: - - # Unpack y - cdef double y0, y1 - y0 = self.y_ptr[0] - y1 = self.y_ptr[1] - - self.dy_ptr[0] = sin(self.t_now) - y1 - self.dy_ptr[1] = cos(self.t_now) + y0 - - -cdef class CySolverExtraTest(CySolver): - - cdef void diffeq(self) noexcept nogil: - - # Unpack y - cdef double y0, y1, extra_0, extra_1 - y0 = self.y_ptr[0] - y1 = self.y_ptr[1] - - extra_0 = (1. - 0.01 * y1) - extra_1 = (0.02 * y0 - 1.) - - self.dy_ptr[0] = extra_0 * y0 - self.dy_ptr[1] = extra_1 * y1 - - self.extra_output_ptr[0] = extra_0 - self.extra_output_ptr[1] = extra_1 - - -cdef class CySolverLorenz(CySolver): - - cdef double a, b, c - - cdef void update_constants(self) noexcept nogil: - - self.a = self.args_ptr[0] - self.b = self.args_ptr[1] - self.c = self.args_ptr[2] - - cdef void diffeq(self) noexcept nogil: - - # Unpack y - cdef double y0, y1, y2 - y0 = self.y_ptr[0] - y1 = self.y_ptr[1] - y2 = self.y_ptr[2] - - self.dy_ptr[0] = self.a * (y1 - y0) - self.dy_ptr[1] = y0 * (self.b - y2) - y1 - self.dy_ptr[2] = y0 * y1 - self.c * y2 - - -cdef class CySolverLorenzExtra(CySolver): - - cdef double a, b, c - - cdef void update_constants(self) noexcept nogil: - - self.a = self.args_ptr[0] - self.b = self.args_ptr[1] - self.c = self.args_ptr[2] - - cdef void diffeq(self) noexcept nogil: - - # Unpack y - cdef double y0, y1, y2, e_1, e_2, e_3 - y0 = self.y_ptr[0] - y1 = self.y_ptr[1] - y2 = self.y_ptr[2] - - e_1 = self.a - e_2 = (self.b - y2) - e_3 = self.c * y2 - - self.dy_ptr[0] = e_1 * (y1 - y0) - self.dy_ptr[1] = y0 * e_2 - y1 - self.dy_ptr[2] = y0 * y1 - e_3 - - self.extra_output_ptr[0] = e_1 - self.extra_output_ptr[1] = e_2 - self.extra_output_ptr[2] = e_3 - - -cdef class CySolverLotkavolterra(CySolver): - - cdef double a, b, c, d - - cdef void update_constants(self) noexcept nogil: - - self.a = self.args_ptr[0] - self.b = self.args_ptr[1] - self.c = self.args_ptr[2] - self.d = self.args_ptr[3] - - cdef void diffeq(self) noexcept nogil: - - # Unpack y - cdef double y0, y1 - y0 = self.y_ptr[0] - y1 = self.y_ptr[1] - - self.dy_ptr[0] = self.a * y0 - self.b * y0 * y1 - self.dy_ptr[1] = -self.c * y1 + self.d * y0 * y1 - - -cdef class CySolverPendulum(CySolver): - - cdef double coeff_1, coeff_2 - - cdef void update_constants(self) noexcept nogil: - - cdef double l, m, g - - l = self.args_ptr[0] - m = self.args_ptr[1] - g = self.args_ptr[2] - - self.coeff_1 = (-3. * g / (2. * l)) - self.coeff_2 = (3. / (m * l**2)) - - cdef void diffeq(self) noexcept nogil: - - # Unpack y - cdef double y0, y1, torque - y0 = self.y_ptr[0] - y1 = self.y_ptr[1] - - # External torque - torque = 0.1 * sin(self.t_now) - - self.dy_ptr[0] = y1 - self.dy_ptr[1] = self.coeff_1 * sin(y0) + self.coeff_2 * torque - - -cdef class CySolverStiff(CySolver): - - cdef double a - - cdef void update_constants(self) noexcept nogil: - - self.a = self.args_ptr[0] - - cdef void diffeq(self) noexcept nogil: - - # Unpack y - cdef double y0, y1, sin_, cos_ - y0 = self.y_ptr[0] - y1 = self.y_ptr[1] - - # External torque - sin_ = sin(self.t_now) - cos_ = cos(self.t_now) - - self.dy_ptr[0] = -2.0 * y0 + y1 + 2 * sin_ - self.dy_ptr[1] = (self.a - 1.0) * y0 - self.a * y1 + self.a * (cos_ - sin_) diff --git a/CyRK/cy/helpers.pxd b/CyRK/cy/helpers.pxd index 0c47462..c594206 100644 --- a/CyRK/cy/helpers.pxd +++ b/CyRK/cy/helpers.pxd @@ -1,5 +1,5 @@ from CyRK.utils.vector cimport vector -from CyRK.cy.cysolverNew cimport CySolveOutput, CySolverResult +from CyRK.cy.cysolver cimport CySolveOutput, CySolverResult cdef void interpolate_from_solution_list( double* y_result_ptr, @@ -8,4 +8,4 @@ cdef void interpolate_from_solution_list( int num_solutions, double* x_domain_ptr, size_t x_domain_size, - vector[double] x_breakpoints_vec) noexcept nogil \ No newline at end of file + vector[double] x_breakpoints_vec) noexcept nogil diff --git a/CyRK/cy/pysolver.pxd b/CyRK/cy/pysolver.pxd new file mode 100644 index 0000000..0e9b443 --- /dev/null +++ b/CyRK/cy/pysolver.pxd @@ -0,0 +1,74 @@ +from libcpp cimport bool as cpp_bool +cimport cpython.ref as cpy_ref + +from CyRK.utils.memory cimport shared_ptr +from CyRK.cy.pysolver_cyhook cimport DiffeqMethod +from CyRK.cy.cysolver_api cimport CySolverResult + +cimport numpy as np + +# ===================================================================================================================== +# Import the C++ cysolve_ivp helper function +# ===================================================================================================================== +cdef extern from "cysolve.cpp" nogil: + # Python-hook implementation + struct PySolverStatePointers: + double* dy_now_ptr + double* t_now_ptr + double* y_now_ptr + + cdef cppclass PySolver: + PySolver() + PySolver( + unsigned int integration_method, + cpy_ref.PyObject* cython_extension_class_instance, + DiffeqMethod cython_extension_class_diffeq_method, + shared_ptr[CySolverResult] solution_ptr, + const double t_start, + const double t_end, + const double* y0_ptr, + const unsigned int num_y, + const unsigned int num_extra, + const void* args_ptr, + const size_t max_num_steps, + const size_t max_ram_MB, + const cpp_bool dense_output, + const double* t_eval, + const size_t len_t_eval, + const double rtol, + const double atol, + const double* rtols_ptr, + const double* atols_ptr, + const double max_step_size, + const double first_step_size) + PySolverStatePointers get_state_pointers() + void solve() + + +cdef class WrapPyDiffeq: + + cdef object diffeq_func + cdef tuple args + cdef cpp_bool use_args + cdef cpp_bool pass_dy_as_arg + + cdef unsigned int num_y + cdef unsigned int num_dy + + cdef np.ndarray y_now_arr + cdef double[::1] y_now_view + cdef np.ndarray dy_now_arr + cdef double[::1] dy_now_view + + # State attributes + cdef double* y_now_ptr + cdef double* t_now_ptr + cdef double* dy_now_ptr + + cdef void set_state(self, + double* dy_ptr, + double* t_ptr, + double* y_ptr + ) noexcept + + cdef void diffeq(self) noexcept diff --git a/CyRK/cy/cysolverNew.pyx b/CyRK/cy/pysolver.pyx similarity index 62% rename from CyRK/cy/cysolverNew.pyx rename to CyRK/cy/pysolver.pyx index 1cd6692..939754b 100644 --- a/CyRK/cy/cysolverNew.pyx +++ b/CyRK/cy/pysolver.pyx @@ -1,188 +1,16 @@ # distutils: language = c++ # cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False -import numpy as np -np.import_array() - -# ===================================================================================================================== -# Import CySolverResult (container for integration results) -# ===================================================================================================================== -cdef class WrapCySolverResult: - - cdef void set_cyresult_pointer(self, shared_ptr[CySolverResult] cyresult_shptr): - - # Store c++ based result and pull out key information - self.cyresult_shptr = cyresult_shptr - self.cyresult_ptr = cyresult_shptr.get() - self.size = self.cyresult_ptr[0].size - self.num_dy = self.cyresult_ptr[0].num_dy - - # Convert solution to pointers and views - if self.cyresult_ptr.size > 0: - self.time_ptr = &self.cyresult_ptr.time_domain[0] - self.y_ptr = &self.cyresult_ptr.solution[0] - self.time_view = self.time_ptr - self.y_view = self.y_ptr - - def call(self, double t): - """ Call the dense output interpolater and return y """ - - if not self.cyresult_ptr.capture_dense_output: - raise AttributeError("Can not call WrapCySolverResult when dense_output set to False.") - - y_interp_array = np.empty(self.cyresult_ptr.num_y, dtype=np.float64, order='C') - cdef double[::1] y_interp_view = y_interp_array - cdef double* y_interp_ptr = &y_interp_view[0] - - self.cyresult_ptr.call(t, y_interp_ptr) - return y_interp_array - - def call_vectorize(self, double[::1] t_view): - """ Call the dense output interpolater and return y """ - - if not self.cyresult_ptr.capture_dense_output: - raise AttributeError("Can not call WrapCySolverResult when dense_output set to False.") - - cdef size_t len_t = len(t_view) - - y_interp_array = np.empty(self.cyresult_ptr.num_y * len_t, dtype=np.float64, order='C') - cdef double[::1] y_interp_view = y_interp_array - cdef double* y_interp_ptr = &y_interp_view[0] - cdef double* t_array_ptr = &t_view[0] - - self.cyresult_ptr.call_vectorize(t_array_ptr, len_t, y_interp_ptr) - return y_interp_array.reshape(len_t, self.cyresult_ptr.num_y).T - - @property - def success(self): - return self.cyresult_ptr.success - - @property - def message(self): - return str(self.cyresult_ptr.message_ptr, 'UTF-8') - - @property - def t(self): - return np.asarray(self.time_view, dtype=np.float64, order='C') - - @property - def y(self): - return np.asarray(self.y_view, dtype=np.float64, order='C').reshape((self.size, self.num_dy)).T - - @property - def size(self): - return self.cyresult_ptr.size - - @property - def error_code(self): - return self.cyresult_ptr.error_code - - def __call__(self, t): - - if type(t) == np.ndarray: - return self.call_vectorize(t) - else: - return self.call(t).reshape(self.cyresult_ptr.num_y, 1) - -# ===================================================================================================================== -# Create Wrapped cysolve_ivp (has various defaults) -# ===================================================================================================================== - -cdef CySolveOutput cysolve_ivp( - DiffeqFuncType diffeq_ptr, - const double* t_span_ptr, - const double* y0_ptr, - const unsigned int num_y, - unsigned int method = 1, - double rtol = 1.0e-3, - double atol = 1.0e-6, - void* args_ptr = NULL, - unsigned int num_extra = 0, - size_t max_num_steps = 0, - size_t max_ram_MB = 2000, - bint dense_output = False, - double* t_eval = NULL, - size_t len_t_eval = 0, - PreEvalFunc pre_eval_func = NULL, - double* rtols_ptr = NULL, - double* atols_ptr = NULL, - double max_step = MAX_STEP, - double first_step = 0.0, - size_t expected_size = 0 - ) noexcept nogil: - - cdef CySolveOutput result = baseline_cysolve_ivp( - diffeq_ptr, - t_span_ptr, - y0_ptr, - num_y, - method, - expected_size, - num_extra, - args_ptr, - max_num_steps, - max_ram_MB, - dense_output, - t_eval, - len_t_eval, - pre_eval_func, - rtol, - atol, - rtols_ptr, - atols_ptr, - max_step, - first_step - ) +from libc.string cimport memcpy +from libcpp.cmath cimport fmin, fabs - return result +from CyRK.utils.memory cimport make_shared +from CyRK.cy.cysolver_api cimport find_expected_size, WrapCySolverResult, INF, EPS_100, Y_LIMIT, DY_LIMIT -cdef CySolveOutput cysolve_ivp_gil( - DiffeqFuncType diffeq_ptr, - const double* t_span_ptr, - const double* y0_ptr, - const unsigned int num_y, - unsigned int method = 1, - double rtol = 1.0e-3, - double atol = 1.0e-6, - void* args_ptr = NULL, - unsigned int num_extra = 0, - size_t max_num_steps = 0, - size_t max_ram_MB = 2000, - bint dense_output = False, - double* t_eval = NULL, - size_t len_t_eval = 0, - PreEvalFunc pre_eval_func = NULL, - double* rtols_ptr = NULL, - double* atols_ptr = NULL, - double max_step = MAX_STEP, - double first_step = 0.0, - size_t expected_size = 0 - ) noexcept: - - cdef CySolveOutput result = baseline_cysolve_ivp( - diffeq_ptr, - t_span_ptr, - y0_ptr, - num_y, - method, - expected_size, - num_extra, - args_ptr, - max_num_steps, - max_ram_MB, - dense_output, - t_eval, - len_t_eval, - pre_eval_func, - rtol, - atol, - rtols_ptr, - atols_ptr, - max_step, - first_step - ) +cimport numpy as np - return result +import numpy as np +np.import_array() # ===================================================================================================================== # PySolver Class (holds the intergrator class and reference to the python diffeq function) diff --git a/CyRK/cy/pysolver_cyhook.h b/CyRK/cy/pysolver_cyhook.h index 08ba25a..5d05c92 100644 --- a/CyRK/cy/pysolver_cyhook.h +++ b/CyRK/cy/pysolver_cyhook.h @@ -1,4 +1,4 @@ -/* Generated by Cython 3.0.10 */ +/* Generated by Cython 3.0.11 */ #ifndef __PYX_HAVE__CyRK__cy__pysolver_cyhook #define __PYX_HAVE__CyRK__cy__pysolver_cyhook diff --git a/CyRK/cy/pysolver_cyhook_api.h b/CyRK/cy/pysolver_cyhook_api.h index 538aa2c..deb4fb0 100644 --- a/CyRK/cy/pysolver_cyhook_api.h +++ b/CyRK/cy/pysolver_cyhook_api.h @@ -1,4 +1,4 @@ -/* Generated by Cython 3.0.10 */ +/* Generated by Cython 3.0.11 */ #ifndef __PYX_HAVE_API__CyRK__cy__pysolver_cyhook #define __PYX_HAVE_API__CyRK__cy__pysolver_cyhook @@ -10,9 +10,9 @@ static void (*__pyx_api_f_4CyRK_2cy_15pysolver_cyhook_call_diffeq_from_cython)(PyObject *, DiffeqMethod) = 0; #define call_diffeq_from_cython __pyx_api_f_4CyRK_2cy_15pysolver_cyhook_call_diffeq_from_cython -#ifndef __PYX_HAVE_RT_ImportFunction_3_0_10 -#define __PYX_HAVE_RT_ImportFunction_3_0_10 -static int __Pyx_ImportFunction_3_0_10(PyObject *module, const char *funcname, void (**f)(void), const char *sig) { +#ifndef __PYX_HAVE_RT_ImportFunction_3_0_11 +#define __PYX_HAVE_RT_ImportFunction_3_0_11 +static int __Pyx_ImportFunction_3_0_11(PyObject *module, const char *funcname, void (**f)(void), const char *sig) { PyObject *d = 0; PyObject *cobj = 0; union { @@ -52,7 +52,7 @@ static int import_CyRK__cy__pysolver_cyhook(void) { PyObject *module = 0; module = PyImport_ImportModule("CyRK.cy.pysolver_cyhook"); if (!module) goto bad; - if (__Pyx_ImportFunction_3_0_10(module, "call_diffeq_from_cython", (void (**)(void))&__pyx_api_f_4CyRK_2cy_15pysolver_cyhook_call_diffeq_from_cython, "void (PyObject *, DiffeqMethod)") < 0) goto bad; + if (__Pyx_ImportFunction_3_0_11(module, "call_diffeq_from_cython", (void (**)(void))&__pyx_api_f_4CyRK_2cy_15pysolver_cyhook_call_diffeq_from_cython, "void (PyObject *, DiffeqMethod)") < 0) goto bad; Py_DECREF(module); module = 0; return 0; bad: diff --git a/CyRK/cy/rk_step.c b/CyRK/cy/rk_step.c deleted file mode 100644 index 563942b..0000000 --- a/CyRK/cy/rk_step.c +++ /dev/null @@ -1,315 +0,0 @@ -#include // `size_t` -#include // `bool` -#include // `fmin`, `fmax`, `fabs` -#include -// Create a fake struct to trick C into accepting the CySolver class (which contains the diffeq method) -struct CySolverStruct { - char empty; -}; - - -int rk_step_cf( - // Pointer to differential equation - void (*diffeq_ptr)(struct CySolverStruct*), - // Pointer to the CySolver instance - struct CySolverStruct* cysolver_inst, - - // t-related variables - double t_end, - bool direction_flag, - double direction_inf, - - // y-related variables - size_t y_size, - double y_size_dbl, - double y_size_sqrt, - - // Pointers to class attributes that can change during rk_step call. - double* restrict t_now_ptr, - double* restrict y_ptr, - double* restrict dy_ptr, - double* restrict t_old_ptr, - double* restrict y_old_ptr, - double* restrict dy_old_ptr, - double* restrict step_size_ptr, - char* restrict status_ptr, - - // Integration tolerance variables and pointers - double* restrict atols_ptr, - double* restrict rtols_ptr, - double max_step, - - // RK specific variables and pointers - unsigned char rk_method, - size_t rk_n_stages, - size_t rk_n_stages_plus1, - size_t len_Acols, - size_t len_C, - double* restrict A_ptr, - double* restrict B_ptr, - double* restrict C_ptr, - double* restrict K_ptr, - double* restrict E_ptr, - double* restrict E3_ptr, - double* restrict E5_ptr, - double error_expo, - double min_step_factor, - double max_step_factor, - double error_safety - ){ - /** - * Performs a Runge-Kutta step calculation including local error determination. - */ - - // Initialize step variables - double min_step, step, step_factor, time_tmp, t_delta_check; - double scale, temp_double; - double error_norm, error_dot_1, error_pow; - bool step_accepted, step_rejected, step_error; - - // Store values from pointers so that they do not have to be dereferenced multiple times - double t_now = *t_now_ptr; - double t_old = *t_old_ptr; - double step_size = *step_size_ptr; - - // Run RK integration step - // Determine step size based on previous loop - // Find minimum step size based on the value of t (less floating point numbers between numbers when t is large) - min_step = 10. * fabs(nextafter(t_old, direction_inf) - t_old); - // Look for over/undershoots in previous step size - if (step_size > max_step) { - step_size = max_step; - } else if (step_size < min_step) { - step_size = min_step; - } - - // Determine new step size - step_accepted = false; - step_rejected = false; - step_error = false; - - // Optimization variables - // Define a very specific A (Row 1; Col 0) now since it is called consistently and does not change. - double A_at_10 = A_ptr[1 * len_Acols + 0]; - - // !! Step Loop - while (!step_accepted) { - - // Check if step size is too small - // This will cause integration to fail: step size smaller than spacing between numbers - if (step_size < min_step) { - step_error = true; - *status_ptr = -1; - break; - } - - // Move time forward for this particular step size - if (direction_flag) { - step = step_size; - t_now = t_old + step; - t_delta_check = t_now - t_end; - } else { - step = -step_size; - t_now = t_old + step; - t_delta_check = t_end - t_now; - } - - // Check that we are not at the end of integration with that move - if (t_delta_check > 0.0) { - t_now = t_end; - - // If we are, correct the step so that it just hits the end of integration. - step = t_now - t_old; - if (direction_flag){ - step_size = step; - } else { - step_size = -step; - } - } - - // !! Calculate derivative using RK method - - // t_now must be updated for each loop of s in order to make the diffeq method calls. - // But we need to return to its original value later on. Store in temp variable. - time_tmp = t_now; - - for (size_t s = 1; s < len_C; s++) { - // Find the current time based on the old time and the step size. - t_now = t_old + C_ptr[s] * step; - // Update the value stored at the t_now pointer so it can be used in the diffeq method. - *t_now_ptr = t_now; - - // Dot Product (K, a) * step - if (s == 1) { - for (size_t i = 0; i < y_size; i++) { - // Set the first column of K - temp_double = dy_old_ptr[i]; - // K[0, :] == first part of the array - K_ptr[i] = temp_double; - - // Calculate y_new for s==1 - y_ptr[i] = y_old_ptr[i] + (temp_double * A_at_10 * step); - } - } else { - for (size_t j = 0; j < s; j++) { - temp_double = A_ptr[s * len_Acols + j] * step; - for (size_t i = 0; i < y_size; i++) { - if (j == 0){ - // Initialize - y_ptr[i] = y_old_ptr[i]; - } - y_ptr[i] += K_ptr[j * y_size + i] * temp_double; - } - } - } - // Call diffeq method to update K with the new dydt - // This will use the now updated values at y_ptr and t_now_ptr. It will update values at dy_ptr. - diffeq_ptr(cysolver_inst); - - // Update K based on the new dy values. - for (size_t i = 0; i < y_size; i++) { - K_ptr[s * y_size + i] = dy_ptr[i]; - } - } - - // Restore t_now to its previous value. - t_now = time_tmp; - // Update the pointer. - *t_now_ptr = t_now; - - // Dot Product (K, B) * step - for (size_t j = 0; j < rk_n_stages; j++) { - temp_double = B_ptr[j] * step; - // We do not use rk_n_stages_plus1 here because we are chopping off the last row of K to match - // the shape of B. - for (size_t i = 0; i < y_size; i++) { - if (j == 0) { - // Initialize - y_ptr[i] = y_old_ptr[i]; - } - y_ptr[i] += K_ptr[j * y_size + i] * temp_double; - } - } - - // Find final dydt for this timestep - // This will use the now final values at y_ptr and t_now_ptr. It will update values at dy_ptr. - diffeq_ptr(cysolver_inst); - - // Check how well this step performed by calculating its error. - if (rk_method == 2) { - double error_norm3, error_norm5, error_dot_2, error_denom; - // Calculate Error for DOP853 - // Dot Product (K, E5) / scale and Dot Product (K, E3) * step / scale - error_norm3 = 0.0; - error_norm5 = 0.0; - for (size_t i = 0; i < y_size; i++) { - // Find scale of y for error calculations - scale = (atols_ptr[i] + fmax(fabs(y_old_ptr[i]), fabs(y_ptr[i])) * rtols_ptr[i]); - - // Set last array of K equal to dydt - K_ptr[rk_n_stages * y_size + i] = dy_ptr[i]; - - // Initialize - error_dot_1 = 0.0; - error_dot_2 = 0.0; - - for (size_t j = 0; j < rk_n_stages_plus1; j++) { - temp_double = K_ptr[j * y_size + i]; - error_dot_1 += temp_double * E3_ptr[j]; - error_dot_2 += temp_double * E5_ptr[j]; - } - // We need the absolute value but since we are taking the square, it is guaranteed to be positive. - // TODO: This will need to change if CySolver ever accepts complex numbers - // error_norm3_abs = fabs(error_dot_1) - // error_norm5_abs = fabs(error_dot_2) - error_dot_1 /= scale; - error_dot_2 /= scale; - - error_norm3 += (error_dot_1 * error_dot_1); - error_norm5 += (error_dot_2 * error_dot_2); - } - // Check if errors are zero - if ((error_norm5 == 0.0) && (error_norm3) == 0.0) { - error_norm = 0.0; - } else { - error_denom = error_norm5 + 0.01 * error_norm3; - error_norm = step_size * error_norm5 / sqrt(error_denom * y_size_dbl); - } - } else { - // Calculate Error for RK23 and RK45 - // Dot Product (K, E) * step / scale - error_norm = 0.0; - for (size_t i = 0; i < y_size; i++) { - // Find scale of y for error calculations - scale = (atols_ptr[i] + fmax(fabs(y_old_ptr[i]), fabs(y_ptr[i])) * rtols_ptr[i]); - - // Set last array of K equal to dydt - K_ptr[rk_n_stages * y_size + i] = dy_ptr[i]; - - // Initialize - error_dot_1 = 0.0; - - for (size_t j = 0; j < rk_n_stages_plus1; j++) { - error_dot_1 += K_ptr[j * y_size + i] * E_ptr[j]; - } - - // We need the absolute value but since we are taking the square, it is guaranteed to be positive. - // TODO: This will need to change if CySolver ever accepts complex numbers - // error_norm_abs = fabs(error_dot_1) - error_dot_1 *= (step / scale); - - error_norm += (error_dot_1 * error_dot_1); - } - error_norm = sqrt(error_norm) / y_size_sqrt; - } - - // Check the size of the error - if (error_norm < 1.0) { - // We found our step size because the error is low! - // Update this step for the next time loop - if (error_norm == 0.0) { - step_factor = max_step_factor; - } else { - error_pow = pow(error_norm, -error_expo); - step_factor = fmin(max_step_factor, error_safety * error_pow); - } - - if (step_rejected) { - // There were problems with this step size on the previous step loop. Make sure factor does - // not exasperate them. - step_factor = fmin(step_factor, 1.); - } - - // Update step size - step_size *= step_factor; - step_accepted = true; - } else { - // Error is still large. Keep searching for a better step size. - error_pow = pow(error_norm, -error_expo); - step_size *= fmax(min_step_factor, error_safety * error_pow); - step_rejected = true; - } - } - - // Update status depending if there were any errors. - if (step_error) { - // Issue with step convergence - *status_ptr = -1; - } else if (!step_accepted) { - // Issue with step convergence - *status_ptr = -7; - } - - // End of RK step. - // Update "old" pointers - *t_old_ptr = t_now; - for (size_t i = 0; i < y_size; i++) { - y_old_ptr[i] = y_ptr[i]; - dy_old_ptr[i] = dy_ptr[i]; - } - - // Update any other pointers - *step_size_ptr = step_size; - - return 0; -} diff --git a/CyRK/helper.py b/CyRK/helper.py index 0595dd6..e0e8f9e 100644 --- a/CyRK/helper.py +++ b/CyRK/helper.py @@ -31,7 +31,7 @@ def njit_(func): return func @njit_ - def diffeq_cyrk(t, y, dy, *args): + def diffeq_cyrk(dy, t, y, *args): # Cython integrator requires the arguments to be passed as input args dy_ = diffeq(t, y, *args) @@ -73,7 +73,7 @@ def njit_(func): def diffeq_nbrk(t, y, *args): # Cython integrator requires the arguments to be passed as input args dy = np.empty_like(y) - diffeq(t, y, dy, *args) + diffeq(dy, t, y, *args) return dy diff --git a/CyRK/rk/__init__.py b/CyRK/rk/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/CyRK/rk/rk.pxd b/CyRK/rk/rk.pxd deleted file mode 100644 index 98c3516..0000000 --- a/CyRK/rk/rk.pxd +++ /dev/null @@ -1,14 +0,0 @@ -cdef void find_rk_properties( - unsigned char rk_method, - size_t* order, - size_t* error_order, - size_t* n_stages, - size_t* A_rows, - size_t* A_cols, - double** A_ptr, - double** B_ptr, - double** C_ptr, - double** E_ptr, - double** E3_ptr, - double** E5_ptr - ) noexcept nogil diff --git a/CyRK/rk/rk.pyx b/CyRK/rk/rk.pyx deleted file mode 100644 index 4ad80f1..0000000 --- a/CyRK/rk/rk.pyx +++ /dev/null @@ -1,67 +0,0 @@ -# distutils: language = c -# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False - -from CyRK.rk.rk_constants cimport \ - order_RK23, error_order_RK23, n_stages_RK23, A_rows_RK23, A_cols_RK23, \ - A_RK23, B_RK23, C_RK23, E_RK23, \ - order_RK45, error_order_RK45, n_stages_RK45, A_rows_RK45, A_cols_RK45, \ - A_RK45, B_RK45, C_RK45, E_RK45, \ - order_DOP853, error_order_DOP853, n_stages_DOP853, A_rows_DOP853, A_cols_DOP853, \ - A_DOP853, B_DOP853, C_DOP853, E3_DOP853, E5_DOP853 - -cdef void find_rk_properties( - unsigned char rk_method, - size_t* order, - size_t* error_order, - size_t* n_stages, - size_t* A_rows, - size_t* A_cols, - double** A_ptr, - double** B_ptr, - double** C_ptr, - double** E_ptr, - double** E3_ptr, - double** E5_ptr - ) noexcept nogil: - - if rk_method == 0: - # RK23 - order[0] = order_RK23 - error_order[0] = error_order_RK23 - n_stages[0] = n_stages_RK23 - A_rows[0] = A_rows_RK23 - A_cols[0] = A_cols_RK23 - A_ptr[0] = &A_RK23[0] - B_ptr[0] = &B_RK23[0] - C_ptr[0] = &C_RK23[0] - E_ptr[0] = &E_RK23[0] - elif rk_method == 1: - # RK45 - order[0] = order_RK45 - error_order[0] = error_order_RK45 - n_stages[0] = n_stages_RK45 - A_rows[0] = A_rows_RK45 - A_cols[0] = A_cols_RK45 - A_ptr[0] = &A_RK45[0] - B_ptr[0] = &B_RK45[0] - C_ptr[0] = &C_RK45[0] - E_ptr[0] = &E_RK45[0] - elif rk_method == 2: - # DOP853 - order[0] = order_DOP853 - error_order[0] = error_order_DOP853 - n_stages[0] = n_stages_DOP853 - A_rows[0] = A_rows_DOP853 - A_cols[0] = A_cols_DOP853 - A_ptr[0] = &A_DOP853[0] - B_ptr[0] = &B_DOP853[0] - C_ptr[0] = &C_DOP853[0] - E3_ptr[0] = &E3_DOP853[0] - E5_ptr[0] = &E5_DOP853[0] - else: - # Error: Unknown RK Method - order[0] = 0 - error_order[0] = 0 - n_stages[0] = 0 - A_rows[0] = 0 - A_cols[0] = 0 diff --git a/CyRK/rk/rk_constants.pxd b/CyRK/rk/rk_constants.pxd deleted file mode 100644 index 6104ede..0000000 --- a/CyRK/rk/rk_constants.pxd +++ /dev/null @@ -1,45 +0,0 @@ -cdef size_t order_RK23 -cdef size_t error_order_RK23 -cdef size_t n_stages_RK23 -cdef size_t A_rows_RK23 -cdef size_t A_cols_RK23 -cdef double[9] A_RK23 -cdef double* A_RK23_ptr -cdef double[3] B_RK23 -cdef double* B_RK23_ptr -cdef double[3] C_RK23 -cdef double* C_RK23_ptr -cdef double[4] E_RK23 -cdef double* E_RK23_ptr - - -cdef size_t order_RK45 -cdef size_t error_order_RK45 -cdef size_t n_stages_RK45 -cdef size_t A_rows_RK45 -cdef size_t A_cols_RK45 -cdef double[30] A_RK45 -cdef double* A_RK45_ptr -cdef double[6] B_RK45 -cdef double* B_RK45_ptr -cdef double[6] C_RK45 -cdef double* C_RK45_ptr -cdef double[7] E_RK45 -cdef double* E_RK45_ptr - - -cdef size_t order_DOP853 -cdef size_t error_order_DOP853 -cdef size_t n_stages_DOP853 -cdef size_t A_rows_DOP853 -cdef size_t A_cols_DOP853 -cdef double[144] A_DOP853 -cdef double* A_DOP853_ptr -cdef double[12] B_DOP853 -cdef double* B_DOP853_ptr -cdef double[12] C_DOP853 -cdef double* C_DOP853_ptr -cdef double[13] E3_DOP853 -cdef double* E3_DOP853_ptr -cdef double[13] E5_DOP853 -cdef double* E5_DOP853_ptr diff --git a/CyRK/rk/rk_constants.pyx b/CyRK/rk/rk_constants.pyx deleted file mode 100644 index 4c149d2..0000000 --- a/CyRK/rk/rk_constants.pyx +++ /dev/null @@ -1,376 +0,0 @@ -# distutils: language = c -# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False -""" Constants for Runge-Kutta Integration Methods. - -Based off Scipy's implementation and references. -""" -cdef size_t i - -######################################################################################################################## -# Runge-Kutta 2(3) -######################################################################################################################## -cdef size_t order_RK23 = 3 -cdef size_t error_order_RK23 = 2 -cdef size_t n_stages_RK23 = 3 -cdef size_t A_rows_RK23 = 3 -cdef size_t A_cols_RK23 = 3 - -cdef double[9] A_RK23 -cdef double* A_RK23_ptr = &A_RK23[0] - -cdef double[3] B_RK23 -cdef double* B_RK23_ptr = &B_RK23[0] - -cdef double[3] C_RK23 -cdef double* C_RK23_ptr = &C_RK23[0] - -cdef double[4] E_RK23 -cdef double* E_RK23_ptr = &E_RK23[0] -# A - Row 0 -A_RK23_ptr[0] = 0. -A_RK23_ptr[1] = 0. -A_RK23_ptr[2] = 0. -# A - Row 1 -A_RK23_ptr[3] = 1. / 2. -A_RK23_ptr[4] = 0. -A_RK23_ptr[5] = 0. -# A - Row 2 -A_RK23_ptr[6] = 0. -A_RK23_ptr[7] = 3. / 4. -A_RK23_ptr[8] = 0. - -# B pointer -B_RK23_ptr[0] = 2. / 9. -B_RK23_ptr[1] = 1. / 3. -B_RK23_ptr[2] = 4. / 9. - -# C Pointer -C_RK23_ptr[0] = 0. -C_RK23_ptr[1] = 1. / 2. -C_RK23_ptr[2] = 3. / 4. - -# E Pointer -E_RK23_ptr[0] = 5. / 72. -E_RK23_ptr[1] = -1. / 12. -E_RK23_ptr[2] = -1. / 9. -E_RK23_ptr[3] = 1. / 8. - - -######################################################################################################################## -# Runge-Kutta 4(5) -######################################################################################################################## -cdef size_t order_RK45 = 5 -cdef size_t error_order_RK45 = 4 -cdef size_t n_stages_RK45 = 6 -cdef size_t A_rows_RK45 = 6 -cdef size_t A_cols_RK45 = 5 - -cdef double[30] A_RK45 -cdef double* A_RK45_ptr = &A_RK45[0] - -cdef double[6] B_RK45 -cdef double* B_RK45_ptr = &B_RK45[0] - -cdef double[6] C_RK45 -cdef double* C_RK45_ptr = &C_RK45[0] - -cdef double[7] E_RK45 -cdef double* E_RK45_ptr = &E_RK45[0] -# A - Row 0 -A_RK45_ptr[0] = 0. -A_RK45_ptr[1] = 0. -A_RK45_ptr[2] = 0. -A_RK45_ptr[3] = 0. -A_RK45_ptr[4] = 0. -# A - Row 1 -A_RK45_ptr[5] = 1. / 5. -A_RK45_ptr[6] = 0. -A_RK45_ptr[7] = 0. -A_RK45_ptr[8] = 0. -A_RK45_ptr[9] = 0. -# A - Row 2 -A_RK45_ptr[10] = 3. / 40. -A_RK45_ptr[11] = 9. / 40. -A_RK45_ptr[12] = 0. -A_RK45_ptr[13] = 0. -A_RK45_ptr[14] = 0. -# A - Row 3 -A_RK45_ptr[15] = 44. / 45. -A_RK45_ptr[16] = -56. / 15. -A_RK45_ptr[17] = 32. / 9. -A_RK45_ptr[18] = 0. -A_RK45_ptr[19] = 0. -# A - Row 4 -A_RK45_ptr[20] = 19372. / 6561. -A_RK45_ptr[21] = -25360. / 2187. -A_RK45_ptr[22] = 64448. / 6561. -A_RK45_ptr[23] = -212. / 729. -A_RK45_ptr[24] = 0. -# A - Row 5 -A_RK45_ptr[25] = 9017. / 3168. -A_RK45_ptr[26] = -355. / 33. -A_RK45_ptr[27] = 46732. / 5247. -A_RK45_ptr[28] = 49. / 176. -A_RK45_ptr[29] = -5103. / 18656. - -# B pointer -B_RK45_ptr[0] = 35. / 384. -B_RK45_ptr[1] = 0. -B_RK45_ptr[2] = 500. / 1113. -B_RK45_ptr[3] = 125. / 192. -B_RK45_ptr[4] = -2187. / 6784. -B_RK45_ptr[5] = 11. / 84. - -# C Pointer -C_RK45_ptr[0] = 0. -C_RK45_ptr[1] = 1. / 5. -C_RK45_ptr[2] = 3. / 10. -C_RK45_ptr[3] = 4. / 5. -C_RK45_ptr[4] = 8. / 9. -C_RK45_ptr[5] = 1. - -# E Pointer -E_RK45_ptr[0] = -71. / 57600. -E_RK45_ptr[1] = 0. -E_RK45_ptr[2] = 71. / 16695. -E_RK45_ptr[3] = -71. / 1920. -E_RK45_ptr[4] = 17253. / 339200. -E_RK45_ptr[5] = -22. / 525. -E_RK45_ptr[6] = 1. / 40. - - -######################################################################################################################## -# Runge-Kutta DOP 8(5; 3) -######################################################################################################################## -cdef size_t order_DOP853 = 8 -cdef size_t error_order_DOP853 = 7 -cdef size_t n_stages_DOP853 = 12 -cdef size_t A_rows_DOP853 = 12 -cdef size_t A_cols_DOP853 = 12 - -# Note both A and C are the _reduced_ versions. The full A and C are not shown. -cdef double[144] A_DOP853 -cdef double* A_DOP853_ptr = &A_DOP853[0] - -cdef double[12] B_DOP853 -cdef double* B_DOP853_ptr = &B_DOP853[0] - -cdef double[12] C_DOP853 -cdef double* C_DOP853_ptr = &C_DOP853[0] - -cdef double[13] E3_DOP853 -cdef double* E3_DOP853_ptr = &E3_DOP853[0] -cdef double[13] E5_DOP853 -cdef double* E5_DOP853_ptr = &E5_DOP853[0] -# A - Row 0 -A_DOP853_ptr[0] = 0. -A_DOP853_ptr[1] = 0. -A_DOP853_ptr[2] = 0. -A_DOP853_ptr[3] = 0. -A_DOP853_ptr[4] = 0. -A_DOP853_ptr[5] = 0. -A_DOP853_ptr[6] = 0. -A_DOP853_ptr[7] = 0. -A_DOP853_ptr[8] = 0. -A_DOP853_ptr[9] = 0. -A_DOP853_ptr[10] = 0. -A_DOP853_ptr[11] = 0. -# A - Row 1 -A_DOP853_ptr[12] = 5.26001519587677318785587544488e-2 -A_DOP853_ptr[13] = 0. -A_DOP853_ptr[14] = 0. -A_DOP853_ptr[15] = 0. -A_DOP853_ptr[16] = 0. -A_DOP853_ptr[17] = 0. -A_DOP853_ptr[18] = 0. -A_DOP853_ptr[19] = 0. -A_DOP853_ptr[20] = 0. -A_DOP853_ptr[21] = 0. -A_DOP853_ptr[22] = 0. -A_DOP853_ptr[23] = 0. -# A - Row 2 -A_DOP853_ptr[24] = 1.97250569845378994544595329183e-2 -A_DOP853_ptr[25] = 5.91751709536136983633785987549e-2 -A_DOP853_ptr[26] = 0. -A_DOP853_ptr[27] = 0. -A_DOP853_ptr[28] = 0. -A_DOP853_ptr[29] = 0. -A_DOP853_ptr[30] = 0. -A_DOP853_ptr[31] = 0. -A_DOP853_ptr[32] = 0. -A_DOP853_ptr[33] = 0. -A_DOP853_ptr[34] = 0. -A_DOP853_ptr[35] = 0. -# A - Row 3 -A_DOP853_ptr[36] = 2.95875854768068491816892993775e-2 -A_DOP853_ptr[37] = 0. -A_DOP853_ptr[38] = 8.87627564304205475450678981324e-2 -A_DOP853_ptr[39] = 0. -A_DOP853_ptr[40] = 0. -A_DOP853_ptr[41] = 0. -A_DOP853_ptr[42] = 0. -A_DOP853_ptr[43] = 0. -A_DOP853_ptr[44] = 0. -A_DOP853_ptr[45] = 0. -A_DOP853_ptr[46] = 0. -A_DOP853_ptr[47] = 0. -# A - Row 4 -A_DOP853_ptr[48] = 2.41365134159266685502369798665e-1 -A_DOP853_ptr[49] = 0. -A_DOP853_ptr[50] = -8.84549479328286085344864962717e-1 -A_DOP853_ptr[51] = 9.24834003261792003115737966543e-1 -A_DOP853_ptr[52] = 0. -A_DOP853_ptr[53] = 0. -A_DOP853_ptr[54] = 0. -A_DOP853_ptr[55] = 0. -A_DOP853_ptr[56] = 0. -A_DOP853_ptr[57] = 0. -A_DOP853_ptr[58] = 0. -A_DOP853_ptr[59] = 0. -# A - Row 5 -A_DOP853_ptr[60] = 3.7037037037037037037037037037e-2 -A_DOP853_ptr[61] = 0. -A_DOP853_ptr[62] = 0. -A_DOP853_ptr[63] = 1.70828608729473871279604482173e-1 -A_DOP853_ptr[64] = 1.25467687566822425016691814123e-1 -A_DOP853_ptr[65] = 0. -A_DOP853_ptr[66] = 0. -A_DOP853_ptr[67] = 0. -A_DOP853_ptr[68] = 0. -A_DOP853_ptr[69] = 0. # # Nice -A_DOP853_ptr[70] = 0. -A_DOP853_ptr[71] = 0. -# A - Row 6 -A_DOP853_ptr[72] = 3.7109375e-2 -A_DOP853_ptr[73] = 0. -A_DOP853_ptr[74] = 0. -A_DOP853_ptr[75] = 1.70252211019544039314978060272e-1 -A_DOP853_ptr[76] = 6.02165389804559606850219397283e-2 -A_DOP853_ptr[77] = -1.7578125e-2 -A_DOP853_ptr[78] = 0. -A_DOP853_ptr[79] = 0. -A_DOP853_ptr[80] = 0. -A_DOP853_ptr[81] = 0. -A_DOP853_ptr[82] = 0. -A_DOP853_ptr[83] = 0. -# A - Row 7 -A_DOP853_ptr[84] = 3.70920001185047927108779319836e-2 -A_DOP853_ptr[85] = 0. -A_DOP853_ptr[86] = 0. -A_DOP853_ptr[87] = 1.70383925712239993810214054705e-1 -A_DOP853_ptr[88] = 1.07262030446373284651809199168e-1 -A_DOP853_ptr[89] = -1.53194377486244017527936158236e-2 -A_DOP853_ptr[90] = 8.27378916381402288758473766002e-3 -A_DOP853_ptr[91] = 0. -A_DOP853_ptr[92] = 0. -A_DOP853_ptr[93] = 0. -A_DOP853_ptr[94] = 0. -A_DOP853_ptr[95] = 0. -# A - Row 8 -A_DOP853_ptr[96] = 6.24110958716075717114429577812e-1 -A_DOP853_ptr[97] = 0. -A_DOP853_ptr[98] = 0. -A_DOP853_ptr[99] = -3.36089262944694129406857109825 -A_DOP853_ptr[100] = -8.68219346841726006818189891453e-1 -A_DOP853_ptr[101] = 2.75920996994467083049415600797e1 -A_DOP853_ptr[102] = 2.01540675504778934086186788979e1 -A_DOP853_ptr[103] = -4.34898841810699588477366255144e1 -A_DOP853_ptr[104] = 0. -A_DOP853_ptr[105] = 0. -A_DOP853_ptr[106] = 0. -A_DOP853_ptr[107] = 0. -# A - Row 9 -A_DOP853_ptr[108] = 4.77662536438264365890433908527e-1 -A_DOP853_ptr[109] = 0. -A_DOP853_ptr[110] = 0. -A_DOP853_ptr[111] = -2.48811461997166764192642586468 -A_DOP853_ptr[112] = -5.90290826836842996371446475743e-1 -A_DOP853_ptr[113] = 2.12300514481811942347288949897e1 -A_DOP853_ptr[114] = 1.52792336328824235832596922938e1 -A_DOP853_ptr[115] = -3.32882109689848629194453265587e1 -A_DOP853_ptr[116] = -2.03312017085086261358222928593e-2 -A_DOP853_ptr[117] = 0. -A_DOP853_ptr[118] = 0. -A_DOP853_ptr[119] = 0. -# A - Row 10 -A_DOP853_ptr[120] = -9.3714243008598732571704021658e-1 -A_DOP853_ptr[121] = 0. -A_DOP853_ptr[122] = 0. -A_DOP853_ptr[123] = 5.18637242884406370830023853209 -A_DOP853_ptr[124] = 1.09143734899672957818500254654 -A_DOP853_ptr[125] = -8.14978701074692612513997267357 -A_DOP853_ptr[126] = -1.85200656599969598641566180701e1 -A_DOP853_ptr[127] = 2.27394870993505042818970056734e1 -A_DOP853_ptr[128] = 2.49360555267965238987089396762 -A_DOP853_ptr[129] = -3.0467644718982195003823669022 -A_DOP853_ptr[130] = 0. -A_DOP853_ptr[131] = 0. -# A - Row 11 -A_DOP853_ptr[132] = 2.27331014751653820792359768449 -A_DOP853_ptr[133] = 0. -A_DOP853_ptr[134] = 0. -A_DOP853_ptr[135] = -1.05344954667372501984066689879e1 -A_DOP853_ptr[136] = -2.00087205822486249909675718444 -A_DOP853_ptr[137] = -1.79589318631187989172765950534e1 -A_DOP853_ptr[138] = 2.79488845294199600508499808837e1 -A_DOP853_ptr[139] = -2.85899827713502369474065508674 -A_DOP853_ptr[140] = -8.87285693353062954433549289258 -A_DOP853_ptr[141] = 1.23605671757943030647266201528e1 -A_DOP853_ptr[142] = 6.43392746015763530355970484046e-1 -A_DOP853_ptr[143] = 0. - -# B pointer -# Note: B is equal to the 13th row of the expanded version of A (which we do not define above) -B_DOP853_ptr[0] = 5.42937341165687622380535766363e-2 -B_DOP853_ptr[1] = 0. -B_DOP853_ptr[2] = 0. -B_DOP853_ptr[3] = 0. -B_DOP853_ptr[4] = 0. -B_DOP853_ptr[5] = 4.45031289275240888144113950566 -B_DOP853_ptr[6] = 1.89151789931450038304281599044 -B_DOP853_ptr[7] = -5.8012039600105847814672114227 -B_DOP853_ptr[8] = 3.1116436695781989440891606237e-1 -B_DOP853_ptr[9] = -1.52160949662516078556178806805e-1 -B_DOP853_ptr[10] = 2.01365400804030348374776537501e-1 -B_DOP853_ptr[11] = 4.47106157277725905176885569043e-2 - -# C Pointer -# Note this is the reduced C array. The expanded version is not shown. -C_DOP853_ptr[0] = 0. -C_DOP853_ptr[1] = 0.526001519587677318785587544488e-01 -C_DOP853_ptr[2] = 0.789002279381515978178381316732e-01 -C_DOP853_ptr[3] = 0.118350341907227396726757197510 -C_DOP853_ptr[4] = 0.281649658092772603273242802490 -C_DOP853_ptr[5] = 0.333333333333333333333333333333 -C_DOP853_ptr[6] = 0.25 -C_DOP853_ptr[7] = 0.307692307692307692307692307692 -C_DOP853_ptr[8] = 0.651282051282051282051282051282 -C_DOP853_ptr[9] = 0.6 -C_DOP853_ptr[10] = 0.857142857142857142857142857142 -C_DOP853_ptr[11] = 1.0 - -# E3 Pointer -for i in range(13): - if i == 12: - # All except last value equals B (B length is one less than E3). - E3_DOP853_ptr[i] = 0. - else: - E3_DOP853_ptr[i] = B_DOP853_ptr[i] -E3_DOP853_ptr[0] -= 0.244094488188976377952755905512 -E3_DOP853_ptr[8] -= 0.733846688281611857341361741547 -E3_DOP853_ptr[11] -= 0.220588235294117647058823529412e-1 - -# E5 Pointer -E5_DOP853_ptr[0] = 0.1312004499419488073250102996e-1 -E5_DOP853_ptr[1] = 0. -E5_DOP853_ptr[2] = 0. -E5_DOP853_ptr[3] = 0. -E5_DOP853_ptr[4] = 0. -E5_DOP853_ptr[5] = -0.1225156446376204440720569753e+1 -E5_DOP853_ptr[6] = -0.4957589496572501915214079952 -E5_DOP853_ptr[7] = 0.1664377182454986536961530415e+1 -E5_DOP853_ptr[8] = -0.3503288487499736816886487290 -E5_DOP853_ptr[9] = 0.3341791187130174790297318841 -E5_DOP853_ptr[10] = 0.8192320648511571246570742613e-1 -E5_DOP853_ptr[11] = -0.2235530786388629525884427845e-1 -E5_DOP853_ptr[12] = 0. diff --git a/Performance/performance.py b/Performance/performance.py index e9f3106..2224ce5 100644 --- a/Performance/performance.py +++ b/Performance/performance.py @@ -15,20 +15,25 @@ lorenz_cy, lorenz_nb, lorenz_args, lorenz_y0, lorenz_time_span_1, lorenz_time_span_2, lorenz_nb_extra, lorenz_cy_extra) -from CyRK.cy.cysolvertest import CySolverPendulum, CySolverLotkavolterra, CySolverLorenzExtra, CySolverLorenz +from CyRK.cy.cysolver_test import cytester REPEATS = 4 RTOL = 1.e-6 ATOL = 1.e-8 +CySolverLotkavolterra_Int = 5 +CySolverPendulum_Int = 6 +CySolverLorenz_Int = 3 +CySolverLorenzExtra_Int = 4 + performance_filename = 'cyrk_performance.csv' diffeqs = { 'Lotkavolterra' : (lotkavolterra_cy, lotkavolterra_nb, lotkavolterra_args, lotkavolterra_y0, - (lotkavolterra_time_span_1, lotkavolterra_time_span_2), CySolverLotkavolterra), - 'Pendulum' : (pendulum_cy, pendulum_nb, pendulum_args, pendulum_y0, (pendulum_time_span_1, pendulum_time_span_2), CySolverPendulum), - 'Lorenz' : (lorenz_cy, lorenz_nb, lorenz_args, lorenz_y0, (lorenz_time_span_1, lorenz_time_span_2), CySolverLorenz), + (lotkavolterra_time_span_1, lotkavolterra_time_span_2), CySolverLotkavolterra_Int), + 'Pendulum' : (pendulum_cy, pendulum_nb, pendulum_args, pendulum_y0, (pendulum_time_span_1, pendulum_time_span_2), CySolverPendulum_Int), + 'Lorenz' : (lorenz_cy, lorenz_nb, lorenz_args, lorenz_y0, (lorenz_time_span_1, lorenz_time_span_2), CySolverLorenz_Int), 'Lorenz-ExtraOut': (lorenz_cy_extra, lorenz_nb_extra, lorenz_args, lorenz_y0, - (lorenz_time_span_1, lorenz_time_span_2), CySolverLorenzExtra) + (lorenz_time_span_1, lorenz_time_span_2), CySolverLorenzExtra_Int) } time_spans = { @@ -51,6 +56,12 @@ 'DOP853': 2 } +integration_methods_asstr = { + 0: 'RK23', + 1: 'RK45', + 2: 'DOP853' + } + def make_performance_file(integration_method_name): @@ -93,19 +104,20 @@ def run_performance(integration_method_name): if integration_method_name not in integration_methods: raise ValueError int_method = integration_methods[integration_method_name] + int_method_str = integration_methods_asstr[int_method] performance_filename = f'cyrk_performance-{integration_method_name}.csv' - from CyRK import __version__, cyrk_ode, nbsolve_ivp + from CyRK import __version__, pysolve_ivp, nbsolve_ivp print(f'Running Performance for CyRK v{__version__} and {integration_method_name}.') now = datetime.now() dt_string = now.strftime("%d/%m/%Y %H:%M:%S") performance_csv_line = f'{__version__}, {dt_string}' - # Run performance checks for d_i, diffeq_name in enumerate(diffeqs): print(f'\tWorking on {diffeq_name}') - cy_diffeq, nb_diffeq, args_, y0, timespans, CySolverClass = diffeqs[diffeq_name] + cy_diffeq, nb_diffeq, args_, y0, timespans, cysolver_diffeq_int = diffeqs[diffeq_name] + args_as_array = np.asarray(args_) for t_i, time_span_name in enumerate(time_spans): @@ -113,30 +125,21 @@ def run_performance(integration_method_name): t_index = time_spans[time_span_name] time_span = timespans[t_index] - if 'extraout' in diffeq_name.lower(): - cy_timer = timeit.Timer( - lambda: cyrk_ode(cy_diffeq, time_span, y0, args=args_, rtol=RTOL, atol=ATOL, rk_method=int_method, - capture_extra=True, num_extra=3)) - nb_timer = timeit.Timer( - lambda: nbsolve_ivp(nb_diffeq, time_span, y0, args=args_, rtol=RTOL, atol=ATOL, rk_method=int_method, - capture_extra=True)) - cysolver_timer = timeit.Timer( - lambda: CySolverClass(time_span, y0, args=args_, rtol=RTOL, atol=ATOL, rk_method=int_method, - capture_extra=True, num_extra=3, auto_solve=True)) - else: - cy_timer = timeit.Timer(lambda: cyrk_ode(cy_diffeq, time_span, y0, args=args_, rtol=RTOL, atol=ATOL, - rk_method=int_method)) - nb_timer = timeit.Timer(lambda: nbsolve_ivp(nb_diffeq, time_span, y0, args=args_, rtol=RTOL, atol=ATOL, - rk_method=int_method)) - cysolver_timer = timeit.Timer(lambda: CySolverClass(time_span, y0, args=args_, rtol=RTOL, atol=ATOL, - rk_method=int_method, auto_solve=True)) - # Run the numba function once to make sure everything is compiled. print('\t\tPrecompiling numba') _ = nbsolve_ivp(nb_diffeq, time_span, y0, args_, rtol=RTOL, atol=ATOL, rk_method=int_method) + if 'extraout' in diffeq_name.lower(): + cy_timer = timeit.Timer(lambda: pysolve_ivp(cy_diffeq, time_span, y0, args=args_, rtol=RTOL, atol=ATOL, method=int_method_str, num_extra=3, pass_dy_as_arg=True)) + nb_timer = timeit.Timer(lambda: nbsolve_ivp(nb_diffeq, time_span, y0, args=args_, rtol=RTOL, atol=ATOL, rk_method=int_method, capture_extra=True)) + cysolver_timer = timeit.Timer(lambda: cytester(cysolver_diffeq_int, time_span, y0, args=args_as_array, rtol=RTOL, atol=ATOL, method=int_method)) + else: + cy_timer = timeit.Timer(lambda: pysolve_ivp(cy_diffeq, time_span, y0, args=args_, rtol=RTOL, atol=ATOL, method=int_method_str, pass_dy_as_arg=True)) + nb_timer = timeit.Timer(lambda: nbsolve_ivp(nb_diffeq, time_span, y0, args=args_, rtol=RTOL, atol=ATOL, rk_method=int_method)) + cysolver_timer = timeit.Timer(lambda: cytester(cysolver_diffeq_int, time_span, y0, args=args_as_array, rtol=RTOL, atol=ATOL, method=int_method)) + # Cython - print('\t\t\tWorking on cyrk_ode.', end='') + print('\t\t\tWorking on pysolver.', end='') cython_times = list() time_0 = time.time() for i in range(REPEATS): @@ -144,14 +147,13 @@ def run_performance(integration_method_name): cython_times.append(T / N * 1000.) print(f' Finished taking {time.time() - time_0:0.1f}s.') cython_times = np.asarray(cython_times) - # Store cython results cy_avg = np.average(cython_times) cy_std = np.std(cython_times) performance_csv_line += f', {cy_avg:0.4f}, {cy_std:0.4f}' # Cython Solver Class - print('\t\t\tWorking on CySolver.', end='') + print('\t\t\tWorking on cysolver.', end='') cysolver_times = list() time_0 = time.time() for i in range(REPEATS): @@ -159,7 +161,6 @@ def run_performance(integration_method_name): cysolver_times.append(T / N * 1000.) print(f' Finished taking {time.time() - time_0:0.1f}s.') cysolver_times = np.asarray(cysolver_times) - # Store Cython Solver results cysolver_avg = np.average(cysolver_times) cysolver_std = np.std(cysolver_times) @@ -174,7 +175,6 @@ def run_performance(integration_method_name): numba_times.append(T / N * 1000.) print(f' Finished taking {time.time() - time_0:0.1f}s.') numba_times = np.asarray(numba_times) - # Store numba results nb_avg = np.average(numba_times) nb_std = np.std(numba_times) diff --git a/Tests/A_Package_Tests/test_package.py b/Tests/A_Package_Tests/test_package.py index 56f5d47..b531e25 100644 --- a/Tests/A_Package_Tests/test_package.py +++ b/Tests/A_Package_Tests/test_package.py @@ -1,7 +1,7 @@ def test_package(): """Check if all the functions can be imported. """ - from CyRK import nbsolve_ivp, cyrk_ode, nb2cy, cy2nb, test_nbrk, test_cysolver, test_pysolver, version, __version__, pysolve_ivp + from CyRK import nbsolve_ivp, nb2cy, cy2nb, test_nbrk, test_cysolver, test_pysolver, version, __version__, pysolve_ivp assert type(version) == str assert version == __version__ diff --git a/Tests/B_Other_Tests/test_helpers.py b/Tests/B_Other_Tests/test_helpers.py index 44f45e5..c3e78b5 100644 --- a/Tests/B_Other_Tests/test_helpers.py +++ b/Tests/B_Other_Tests/test_helpers.py @@ -1,17 +1,17 @@ import numpy as np from numba import njit -from CyRK import nb2cy, cy2nb, nbsolve_ivp, cyrk_ode +from CyRK import nb2cy, cy2nb, nbsolve_ivp, pysolve_ivp @njit -def diffeq_cy(t, y, dy): +def diffeq_cy(dy, t, y): dy[0] = (1. - 0.01 * y[1]) * y[0] dy[1] = (0.02 * y[0] - 1.) * y[1] @njit -def diffeq_cy_args(t, y, dy, a, b): +def diffeq_cy_args(dy, t, y, a, b): dy[0] = (1. - a * y[1]) * y[0] dy[1] = (b * y[0] - 1.) * y[1] @@ -32,7 +32,7 @@ def diffeq_scipy_args(t, y, a, b): return dy -initial_conds = np.asarray((20., 20.), dtype=np.complex128) +initial_conds = np.asarray((20., 20.), dtype=np.float64) time_span = (0., 20.) rtol = 1.0e-7 atol = 1.0e-8 @@ -51,28 +51,33 @@ def test_nb2cy_noargs(): assert result_nb.success # Perform a cyrk integration using the diffeq that was written for cyrk - time_domain_cy, y_results_cy, success_cy, message_cy = \ - cyrk_ode(diffeq_cy, time_span, initial_conds, t_eval=t_eval, rtol=rtol, atol=atol) - assert success_cy + result_cy = \ + pysolve_ivp(diffeq_cy, time_span, initial_conds, + rtol=rtol, atol=atol, t_eval=t_eval, + pass_dy_as_arg=True) + + assert result_cy.success # Perform the function conversion diffeq_cy_converted = nb2cy(diffeq_scipy) # Use this function to recalculate using cyrk - time_domain_cy_conv, y_results_cy_conv, success_cy_conv, message_cy_conv = \ - cyrk_ode(diffeq_cy_converted, time_span, initial_conds, t_eval=t_eval, rtol=rtol, atol=atol) - assert success_cy_conv + result_cy_conv = \ + pysolve_ivp(diffeq_cy_converted, time_span, initial_conds, + rtol=rtol, atol=atol, t_eval=t_eval, + pass_dy_as_arg=True) + assert result_cy_conv.success # Check that the results match # # Converted vs. hardcoded - p_diff_1_cy = 2. * np.abs((y_results_cy_conv[0] - y_results_cy[0]) / (y_results_cy_conv[0] + y_results_cy[0])) - p_diff_2_cy = 2. * np.abs((y_results_cy_conv[1] - y_results_cy[1]) / (y_results_cy_conv[1] + y_results_cy[1])) + p_diff_1_cy = 2. * np.abs((result_cy_conv.y[0] - result_cy.y[0]) / (result_cy_conv.y[0] + result_cy.y[0])) + p_diff_2_cy = 2. * np.abs((result_cy_conv.y[1] - result_cy.y[1]) / (result_cy_conv.y[1] + result_cy.y[1])) assert np.all(p_diff_1_cy < check_rtol) assert np.all(p_diff_2_cy < check_rtol) # # Converted vs. nbrk - p_diff_1_nb = 2. * np.abs((y_results_cy_conv[0] - result_nb.y[0]) / (y_results_cy_conv[0] + result_nb.y[0])) - p_diff_2_nb = 2. * np.abs((y_results_cy_conv[1] - result_nb.y[1]) / (y_results_cy_conv[1] + result_nb.y[1])) + p_diff_1_nb = 2. * np.abs((result_cy_conv.y[0] - result_nb.y[0]) / (result_cy_conv.y[0] + result_nb.y[0])) + p_diff_2_nb = 2. * np.abs((result_cy_conv.y[1] - result_nb.y[1]) / (result_cy_conv.y[1] + result_nb.y[1])) assert np.all(p_diff_1_nb < check_rtol) assert np.all(p_diff_2_nb < check_rtol) @@ -89,28 +94,34 @@ def test_nb2cy_args(): assert result_nb.success # Perform a cyrk integration using the diffeq that was written for cyrk - time_domain_cy, y_results_cy, success_cy, message_cy = \ - cyrk_ode(diffeq_cy_args, time_span, initial_conds, t_eval=t_eval, args=(0.01, 0.02), rtol=rtol, atol=atol) - assert success_cy + result_cy = \ + pysolve_ivp(diffeq_cy_args, time_span, initial_conds, + args=(0.01, 0.02), + rtol=rtol, atol=atol, t_eval=t_eval, + pass_dy_as_arg=True) + assert result_cy.success # Perform the function conversion diffeq_cy_converted_args = nb2cy(diffeq_scipy_args) # Use this function to recalculate using cyrk - time_domain_cy_conv, y_results_cy_conv, success_cy_conv, message_cy_conv = \ - cyrk_ode(diffeq_cy_converted_args, time_span, initial_conds, t_eval=t_eval, args=(0.01, 0.02), rtol=rtol, atol=atol) - assert success_cy_conv + result_cy_conv = \ + pysolve_ivp(diffeq_cy_converted_args, time_span, initial_conds, + args=(0.01, 0.02), + rtol=rtol, atol=atol, t_eval=t_eval, + pass_dy_as_arg=True) + assert result_cy_conv.success # Check that the results match # # Converted vs. hardcoded - p_diff_1_cy = 2. * np.abs((y_results_cy_conv[0] - y_results_cy[0]) / (y_results_cy_conv[0] + y_results_cy[0])) - p_diff_2_cy = 2. * np.abs((y_results_cy_conv[1] - y_results_cy[1]) / (y_results_cy_conv[1] + y_results_cy[1])) + p_diff_1_cy = 2. * np.abs((result_cy_conv.y[0] - result_cy.y[0]) / (result_cy_conv.y[0] + result_cy.y[0])) + p_diff_2_cy = 2. * np.abs((result_cy_conv.y[1] - result_cy.y[1]) / (result_cy_conv.y[1] + result_cy.y[1])) assert np.all(p_diff_1_cy < check_rtol) assert np.all(p_diff_2_cy < check_rtol) # # Converted vs. nbrk - p_diff_1_nb = 2. * np.abs((y_results_cy_conv[0] - result_nb.y[0]) / (y_results_cy_conv[0] + result_nb.y[0])) - p_diff_2_nb = 2. * np.abs((y_results_cy_conv[1] - result_nb.y[1]) / (y_results_cy_conv[1] + result_nb.y[1])) + p_diff_1_nb = 2. * np.abs((result_cy_conv.y[0] - result_nb.y[0]) / (result_cy_conv.y[0] + result_nb.y[0])) + p_diff_2_nb = 2. * np.abs((result_cy_conv.y[1] - result_nb.y[1]) / (result_cy_conv.y[1] + result_nb.y[1])) assert np.all(p_diff_1_nb < check_rtol) assert np.all(p_diff_2_nb < check_rtol) @@ -127,9 +138,11 @@ def test_cy2nb_noargs(): assert result_nb.success # Perform a cyrk integration using the diffeq that was written for cyrk - time_domain_cy, y_results_cy, success_cy, message_cy = \ - cyrk_ode(diffeq_cy, time_span, initial_conds, t_eval=t_eval, rtol=rtol, atol=atol) - assert success_cy + result_cy = \ + pysolve_ivp(diffeq_cy, time_span, initial_conds, + rtol=rtol, atol=atol, t_eval=t_eval, + pass_dy_as_arg=True) + assert result_cy.success # Perform the function conversion diffeq_nb_converted = cy2nb(diffeq_cy) @@ -141,8 +154,8 @@ def test_cy2nb_noargs(): # Check that the results match # # Converted vs. hardcoded - p_diff_1_cy = 2. * np.abs((result_nb_conv.y[0] - y_results_cy[0]) / (result_nb_conv.y[0] + y_results_cy[0])) - p_diff_2_cy = 2. * np.abs((result_nb_conv.y[1] - y_results_cy[1]) / (result_nb_conv.y[1] + y_results_cy[1])) + p_diff_1_cy = 2. * np.abs((result_nb_conv.y[0] - result_cy.y[0]) / (result_nb_conv.y[0] + result_cy.y[0])) + p_diff_2_cy = 2. * np.abs((result_nb_conv.y[1] - result_cy.y[1]) / (result_nb_conv.y[1] + result_cy.y[1])) assert np.all(p_diff_1_cy < check_rtol) assert np.all(p_diff_2_cy < check_rtol) @@ -165,9 +178,12 @@ def test_cy2nb_args(): assert result_nb.success # Perform a cyrk integration using the diffeq that was written for cyrk - time_domain_cy, y_results_cy, success_cy, message_cy = \ - cyrk_ode(diffeq_cy_args, time_span, initial_conds, t_eval=t_eval, args=(0.01, 0.02), rtol=rtol, atol=atol) - assert success_cy + result_cy = \ + pysolve_ivp(diffeq_cy_args, time_span, initial_conds, + args=(0.01, 0.02), + rtol=rtol, atol=atol, t_eval=t_eval, + pass_dy_as_arg=True) + assert result_cy.success # Perform the function conversion diffeq_nb_converted_args = cy2nb(diffeq_cy_args) @@ -179,8 +195,8 @@ def test_cy2nb_args(): # Check that the results match # # Converted vs. hardcoded - p_diff_1_cy = 2. * np.abs((nb_result_conv.y[0] - y_results_cy[0]) / (nb_result_conv.y[0] + y_results_cy[0])) - p_diff_2_cy = 2. * np.abs((nb_result_conv.y[1] - y_results_cy[1]) / (nb_result_conv.y[1] + y_results_cy[1])) + p_diff_1_cy = 2. * np.abs((nb_result_conv.y[0] - result_cy.y[0]) / (nb_result_conv.y[0] + result_cy.y[0])) + p_diff_2_cy = 2. * np.abs((nb_result_conv.y[1] - result_cy.y[1]) / (nb_result_conv.y[1] + result_cy.y[1])) assert np.all(p_diff_1_cy < check_rtol) assert np.all(p_diff_2_cy < check_rtol) @@ -203,9 +219,11 @@ def test_cy2nb_cache_njit(): assert result_nb.success # Perform a cyrk integration using the diffeq that was written for cyrk - time_domain_cy, y_results_cy, success_cy, message_cy = \ - cyrk_ode(diffeq_cy, time_span, initial_conds, t_eval=t_eval, rtol=rtol, atol=atol) - assert success_cy + result_cy = \ + pysolve_ivp(diffeq_cy, time_span, initial_conds, + rtol=rtol, atol=atol, t_eval=t_eval, + pass_dy_as_arg=True) + assert result_cy.success # Perform the function conversion diffeq_nb_converted = cy2nb(diffeq_cy) @@ -217,8 +235,8 @@ def test_cy2nb_cache_njit(): # Check that the results match # # Converted vs. hardcoded - p_diff_1_cy = 2. * np.abs((nb_result_conv.y[0] - y_results_cy[0]) / (nb_result_conv.y[0] + y_results_cy[0])) - p_diff_2_cy = 2. * np.abs((nb_result_conv.y[1] - y_results_cy[1]) / (nb_result_conv.y[1] + y_results_cy[1])) + p_diff_1_cy = 2. * np.abs((nb_result_conv.y[0] - result_cy.y[0]) / (nb_result_conv.y[0] + result_cy.y[0])) + p_diff_2_cy = 2. * np.abs((nb_result_conv.y[1] - result_cy.y[1]) / (nb_result_conv.y[1] + result_cy.y[1])) assert np.all(p_diff_1_cy < check_rtol) assert np.all(p_diff_2_cy < check_rtol) @@ -241,27 +259,31 @@ def test_nb2cy_cache_njit(): assert result_nb.success # Perform a cyrk integration using the diffeq that was written for cyrk - time_domain_cy, y_results_cy, success_cy, message_cy = \ - cyrk_ode(diffeq_cy, time_span, initial_conds, t_eval=t_eval, rtol=rtol, atol=atol) - assert success_cy + result_cy = \ + pysolve_ivp(diffeq_cy, time_span, initial_conds, + rtol=rtol, atol=atol, t_eval=t_eval, + pass_dy_as_arg=True) + assert result_cy.success # Perform the function conversion diffeq_cy_converted = nb2cy(diffeq_scipy) # Use this function to recalculate using cyrk - time_domain_cy_conv, y_results_cy_conv, success_cy_conv, message_cy_conv = \ - cyrk_ode(diffeq_cy_converted, time_span, initial_conds, t_eval=t_eval, rtol=rtol, atol=atol) - assert success_cy_conv + result_cy_conv = \ + pysolve_ivp(diffeq_cy_converted, time_span, initial_conds, + rtol=rtol, atol=atol, t_eval=t_eval, + pass_dy_as_arg=True) + assert result_cy_conv.success # Check that the results match # # Converted vs. hardcoded - p_diff_1_cy = 2. * np.abs((y_results_cy_conv[0] - y_results_cy[0]) / (y_results_cy_conv[0] + y_results_cy[0])) - p_diff_2_cy = 2. * np.abs((y_results_cy_conv[1] - y_results_cy[1]) / (y_results_cy_conv[1] + y_results_cy[1])) + p_diff_1_cy = 2. * np.abs((result_cy_conv.y[0] - result_cy.y[0]) / (result_cy_conv.y[0] + result_cy.y[0])) + p_diff_2_cy = 2. * np.abs((result_cy_conv.y[1] - result_cy.y[1]) / (result_cy_conv.y[1] + result_cy.y[1])) assert np.all(p_diff_1_cy < check_rtol) assert np.all(p_diff_2_cy < check_rtol) # # Converted vs. nbrk - p_diff_1_nb = 2. * np.abs((y_results_cy_conv[0] - result_nb.y[0]) / (y_results_cy_conv[0] + result_nb.y[0])) - p_diff_2_nb = 2. * np.abs((y_results_cy_conv[1] - result_nb.y[1]) / (y_results_cy_conv[1] + result_nb.y[1])) + p_diff_1_nb = 2. * np.abs((result_cy_conv.y[0] - result_nb.y[0]) / (result_cy_conv.y[0] + result_nb.y[0])) + p_diff_2_nb = 2. * np.abs((result_cy_conv.y[1] - result_nb.y[1]) / (result_cy_conv.y[1] + result_nb.y[1])) assert np.all(p_diff_1_nb < check_rtol) assert np.all(p_diff_2_nb < check_rtol) diff --git a/Tests/C_Cython_Tests/test_c_cython.py b/Tests/C_Cython_Tests/test_c_cython.py deleted file mode 100644 index fb4a5f9..0000000 --- a/Tests/C_Cython_Tests/test_c_cython.py +++ /dev/null @@ -1,682 +0,0 @@ -import pytest -import numpy as np -from numba import njit - -from CyRK import cyrk_ode -from CyRK.cy.cysolvertest import CySolverTester, CySolverAccuracyTest - - -@njit -def diffeq(t, y, dy): - dy[0] = (1. - 0.01 * y[1]) * y[0] - dy[1] = (0.02 * y[0] - 1.) * y[1] - - -@njit -def diffeq_args(t, y, dy, a, b): - dy[0] = (1. - a * y[1]) * y[0] - dy[1] = (b * y[0] - 1.) * y[1] - -initial_conds = np.asarray((20., 20.), dtype=np.float64, order='C') -initial_conds_complex = np.asarray((20. + 0.01j, 20. - 0.01j), dtype=np.complex128, order='C') -time_span = (0., 10.) -time_span_large = (0., 1000.) -rtol = 1.0e-7 -atol = 1.0e-8 - -rtols = np.asarray((1.0e-7, 1.0e-8), dtype=np.float64, order='C') -atols = np.asarray((1.0e-8, 1.0e-9), dtype=np.float64, order='C') - -@pytest.mark.parametrize('complex_valued', (True, False)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -@pytest.mark.parametrize('use_rtol_array', (True, False)) -@pytest.mark.parametrize('use_atol_array', (True, False)) -def test_basic_integration_cyrk_ode(use_atol_array, use_rtol_array, rk_method, complex_valued): - """Check that the cython function solver is able to run with its default arguments""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - if use_atol_array: - atols_use = atols - else: - atols_use = None - if use_rtol_array: - rtols_use = rtols - else: - rtols_use = None - - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span, initial_conds_to_use, - rk_method=rk_method, rtol=rtol, atol=atol, rtols=rtols_use, atols=atols_use) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - if complex_valued: - assert y_results.dtype == np.complex128 - else: - assert y_results.dtype == np.float64 - assert time_domain.size > 1 - assert time_domain.size == y_results[0].size - assert len(y_results.shape) == 2 - assert y_results[0].size == y_results[1].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -@pytest.mark.parametrize('use_rtol_array', (True, False)) -@pytest.mark.parametrize('use_atol_array', (True, False)) -def test_basic_integration_CySolverTester(use_atol_array, use_rtol_array, rk_method, complex_valued): - """Check that the cython class solver is able to run with its default arguments""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - if use_atol_array: - atols_use = atols - else: - atols_use = None - if use_rtol_array: - rtols_use = rtols - else: - rtols_use = None - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, - rtol=rtol, atol=atol, rtols=rtols_use, atols=atols_use, - rk_method=rk_method, auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverTesterInst.t) == np.ndarray - assert CySolverTesterInst.t.dtype == np.float64 - if complex_valued: - assert CySolverTesterInst.y.dtype == np.complex128 - else: - assert CySolverTesterInst.y.dtype == np.float64 - assert CySolverTesterInst.t.size > 1 - assert CySolverTesterInst.t.size == CySolverTesterInst.y[0].size - assert len(CySolverTesterInst.y.shape) == 2 - assert CySolverTesterInst.y[0].size == CySolverTesterInst.y[1].size - - # Check that the other output makes sense - assert type(CySolverTesterInst.success) == bool - assert CySolverTesterInst.success - assert type(CySolverTesterInst.message) == str - - -@pytest.mark.parametrize('complex_valued', (True, False)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_different_tols(rk_method, complex_valued): - """Check that the cython function solver is able to run with different tolerances""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span, initial_conds_to_use, rk_method=rk_method, rtol=1.0e-10, atol=1.0e-12) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - if complex_valued: - assert y_results.dtype == np.complex128 - else: - assert y_results.dtype == np.float64 - assert time_domain.size > 1 - assert time_domain.size == y_results[0].size - assert len(y_results.shape) == 2 - assert y_results[0].size == y_results[1].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_different_tols_CySolverTester(rk_method, complex_valued): - """Check that the cython class solver is able to run with different tolerances""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, rk_method=rk_method, - rtol=1.0e-10, atol=1.0e-12, auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverTesterInst.t) == np.ndarray - assert CySolverTesterInst.t.dtype == np.float64 - if complex_valued: - assert CySolverTesterInst.y.dtype == np.complex128 - else: - assert CySolverTesterInst.y.dtype == np.float64 - assert CySolverTesterInst.t.size > 1 - assert CySolverTesterInst.t.size == CySolverTesterInst.y[0].size - assert len(CySolverTesterInst.y.shape) == 2 - assert CySolverTesterInst.y[0].size == CySolverTesterInst.y[1].size - - # Check that the other output makes sense - assert type(CySolverTesterInst.success) == bool - assert CySolverTesterInst.success - assert type(CySolverTesterInst.message) == str - -@pytest.mark.parametrize('complex_valued', (True, False)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_max_step(rk_method, complex_valued): - """Check that the cython function solver is able to run with different maximum step size""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span, initial_conds_to_use, rk_method=rk_method, max_step=time_span[1] / 2.) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - if complex_valued: - assert y_results.dtype == np.complex128 - else: - assert y_results.dtype == np.float64 - assert time_domain.size > 1 - assert time_domain.size == y_results[0].size - assert len(y_results.shape) == 2 - assert y_results[0].size == y_results[1].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_max_step_CySolverTester(rk_method, complex_valued): - """Check that the cython class solver is able to run with different maximum step size""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, rk_method=rk_method, max_step=time_span[1] / 2., auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverTesterInst.t) == np.ndarray - assert CySolverTesterInst.t.dtype == np.float64 - if complex_valued: - assert CySolverTesterInst.y.dtype == np.complex128 - else: - assert CySolverTesterInst.y.dtype == np.float64 - assert CySolverTesterInst.t.size > 1 - assert CySolverTesterInst.t.size == CySolverTesterInst.y[0].size - assert len(CySolverTesterInst.y.shape) == 2 - assert CySolverTesterInst.y[0].size == CySolverTesterInst.y[1].size - - # Check that the other output makes sense - assert type(CySolverTesterInst.success) == bool - assert CySolverTesterInst.success - assert type(CySolverTesterInst.message) == str - -@pytest.mark.parametrize('complex_valued', (True, False)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_first_step(rk_method, complex_valued): - """Check that the cython function solver is able to run with a user provided first step size""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span, initial_conds_to_use, rk_method=rk_method, first_step=0.01) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - if complex_valued: - assert y_results.dtype == np.complex128 - else: - assert y_results.dtype == np.float64 - assert time_domain.size > 1 - assert time_domain.size == y_results[0].size - assert len(y_results.shape) == 2 - assert y_results[0].size == y_results[1].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_first_step_CySolverTester(rk_method, complex_valued): - """Check that the cython class solver is able to run with a user provided first step size""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, rk_method=rk_method, first_step=0.01, auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverTesterInst.t) == np.ndarray - assert CySolverTesterInst.t.dtype == np.float64 - if complex_valued: - assert CySolverTesterInst.y.dtype == np.complex128 - else: - assert CySolverTesterInst.y.dtype == np.float64 - assert CySolverTesterInst.t.size > 1 - assert CySolverTesterInst.t.size == CySolverTesterInst.y[0].size - assert len(CySolverTesterInst.y.shape) == 2 - assert CySolverTesterInst.y[0].size == CySolverTesterInst.y[1].size - - # Check that the other output makes sense - assert type(CySolverTesterInst.success) == bool - assert CySolverTesterInst.success - assert type(CySolverTesterInst.message) == str - -@pytest.mark.parametrize('complex_valued', (True, False)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_large_end_value(rk_method, complex_valued): - """Check that the cython function solver is able to run using the DOP853 method. Using a larger ending time value """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span_large, initial_conds_to_use, rk_method=rk_method) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - if complex_valued: - assert y_results.dtype == np.complex128 - else: - assert y_results.dtype == np.float64 - assert time_domain.size > 1 - assert time_domain.size == y_results[0].size - assert len(y_results.shape) == 2 - assert y_results[0].size == y_results[1].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_large_end_value_CySolverTester(rk_method, complex_valued): - """Check that the cython class solver is able to run using the DOP853 method. Using a larger ending time value """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - CySolverTesterInst = CySolverTester(time_span_large, initial_conds_to_use, rk_method=rk_method, auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverTesterInst.t) == np.ndarray - assert CySolverTesterInst.t.dtype == np.float64 - if complex_valued: - assert CySolverTesterInst.y.dtype == np.complex128 - else: - assert CySolverTesterInst.y.dtype == np.float64 - assert CySolverTesterInst.t.size > 1 - assert CySolverTesterInst.t.size == CySolverTesterInst.y[0].size - assert len(CySolverTesterInst.y.shape) == 2 - assert CySolverTesterInst.y[0].size == CySolverTesterInst.y[1].size - - # Check that the other output makes sense - assert type(CySolverTesterInst.success) == bool - assert CySolverTesterInst.success - assert type(CySolverTesterInst.message) == str - -@pytest.mark.parametrize('complex_valued', (True, False)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_teval(rk_method, complex_valued): - """Check that the cython function solver is able to run using a user provided t_eval """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - t_eval = np.linspace(time_span[0], time_span[1], 10) - - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span, initial_conds_to_use, rk_method=rk_method, t_eval=t_eval) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - if complex_valued: - assert y_results.dtype == np.complex128 - else: - assert y_results.dtype == np.float64 - assert time_domain.size > 1 - assert time_domain.size == t_eval.size - assert time_domain.size == y_results[0].size - assert len(y_results.shape) == 2 - assert y_results[0].size == y_results[1].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_teval_CySolverTester(rk_method, complex_valued): - """Check that the cython class solver is able to run using a user provided t_eval """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - t_eval = np.linspace(time_span[0], time_span[1], 10) - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, rk_method=rk_method, t_eval=t_eval, auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverTesterInst.t) == np.ndarray - assert CySolverTesterInst.t.dtype == np.float64 - if complex_valued: - assert CySolverTesterInst.y.dtype == np.complex128 - else: - assert CySolverTesterInst.y.dtype == np.float64 - assert CySolverTesterInst.t.size > 1 - assert CySolverTesterInst.t.size == CySolverTesterInst.y[0].size - assert len(CySolverTesterInst.y.shape) == 2 - assert CySolverTesterInst.y[0].size == CySolverTesterInst.y[1].size - - # Check that the other output makes sense - assert type(CySolverTesterInst.success) == bool - assert CySolverTesterInst.success - assert type(CySolverTesterInst.message) == str - -@pytest.mark.parametrize('complex_valued', (True, False)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_args(rk_method, complex_valued): - """Check that the cython function solver is able to run with user provided additional diffeq arguments """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - time_domain, y_results, success, message = \ - cyrk_ode(diffeq_args, time_span, initial_conds_to_use, rk_method=rk_method, args=(0.01, 0.02)) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - if complex_valued: - assert y_results.dtype == np.complex128 - else: - assert y_results.dtype == np.float64 - assert time_domain.size > 1 - assert time_domain.size == y_results[0].size - assert len(y_results.shape) == 2 - assert y_results[0].size == y_results[1].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_args_CySolverTester(rk_method, complex_valued): - """Check that the cython class solver is able to run with user provided additional diffeq arguments """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, rk_method=rk_method, args=(0.01, 0.02), auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverTesterInst.t) == np.ndarray - assert CySolverTesterInst.t.dtype == np.float64 - if complex_valued: - assert CySolverTesterInst.y.dtype == np.complex128 - else: - assert CySolverTesterInst.y.dtype == np.float64 - assert CySolverTesterInst.t.size > 1 - assert CySolverTesterInst.t.size == CySolverTesterInst.y[0].size - assert len(CySolverTesterInst.y.shape) == 2 - assert CySolverTesterInst.y[0].size == CySolverTesterInst.y[1].size - - # Check that the other output makes sense - assert type(CySolverTesterInst.success) == bool - assert CySolverTesterInst.success - assert type(CySolverTesterInst.message) == str - -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_accuracy(rk_method): - """Check that the cython function solver is able to reproduce a known functions integral with reasonable accuracy """ - - # TODO: This is only checking one equation. Add other types of diffeqs to provide better coverage. - - # Differential Equation - @njit - def diffeq_accuracy(t, y, dy): - dy[0] = np.sin(t) - y[1] # dydt = sin(t) - x(t) - dy[1] = np.cos(t) + y[0] # dxdt = cos(t) + y(t) - - @njit - def correct_answer(t, c1_, c2_): - y = np.empty((2, t.size), dtype=np.float64) - y[0] = -c1_ * np.sin(t) + c2_ * np.cos(t) - (np.cos(t) / 2) # -c1 * sin(t) + c2 * cos(t) - cos(t) / 2 - # At t=0; y = c2 - 1/2 - y[1] = c2_ * np.sin(t) + c1_ * np.cos(t) + (np.sin(t) / 2) # c2 * sin(t) + c1 * cos(t) + sin(t) / 2 - # At t=0; x = c1 - return y - - # Initial Conditions - # y=0 --> c2 = + 1/2 - c2 = 0.5 - # x=1 --> c1 = + 1 - c1 = 1.0 - y0 = np.asarray((0., 1.), dtype=np.float64) - time_span_ = (0., 10.) - - # CyRK.cyrk_ode - time_domain, y_results, success, message = \ - cyrk_ode(diffeq_accuracy, time_span_, y0, rk_method=rk_method, rtol=1.0e-8, atol=1.0e-9) - real_answer = correct_answer(time_domain, c1, c2) - - if rk_method == 0: - assert np.allclose(y_results, real_answer, rtol=1.0e-3, atol=1.0e-6) - elif rk_method == 1: - assert np.allclose(y_results, real_answer, rtol=1.0e-4, atol=1.0e-7) - else: - assert np.allclose(y_results, real_answer, rtol=1.0e-5, atol=1.0e-8) - - # Check the accuracy of the results - # import matplotlib.pyplot as plt - # fig, ax = plt.subplots() - # ax.plot(time_domain, y_results[0], 'r', label='CyRK') - # ax.plot(time_domain, y_results[1], 'r:') - # ax.plot(time_domain, real_answer[0], 'b', label='Analytic') - # ax.plot(time_domain, real_answer[1], 'b:') - # plt.show() - -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_accuracy_CySolverTester(rk_method): - """Check that the cython class solver is able to reproduce a known functions integral with reasonable accuracy """ - - # TODO: This is only checking one equation. Add other types of diffeqs to provide better coverage. - - @njit - def correct_answer(t, c1_, c2_): - y = np.empty((2, t.size), dtype=np.float64) - y[0] = -c1_ * np.sin(t) + c2_ * np.cos(t) - (np.cos(t) / 2) # -c1 * sin(t) + c2 * cos(t) - cos(t) / 2 - # At t=0; y = c2 - 1/2 - y[1] = c2_ * np.sin(t) + c1_ * np.cos(t) + (np.sin(t) / 2) # c2 * sin(t) + c1 * cos(t) + sin(t) / 2 - # At t=0; x = c1 - return y - - # Initial Conditions - # y=0 --> c2 = + 1/2 - c2 = 0.5 - # x=1 --> c1 = + 1 - c1 = 1.0 - y0 = np.asarray((0., 1.), dtype=np.float64) - time_span_ = (0., 10.) - - # CyRK.CySolver - CySolverAccuracyTestInst = CySolverAccuracyTest(time_span_, y0, rk_method=rk_method, rtol=1.0e-8, atol=1.0e-9, auto_solve=True) - real_answer = correct_answer(CySolverAccuracyTestInst.t, c1, c2) - - if rk_method == 0: - assert np.allclose(CySolverAccuracyTestInst.y, real_answer, rtol=1.0e-3, atol=1.0e-4) - elif rk_method == 1: - assert np.allclose(CySolverAccuracyTestInst.y, real_answer, rtol=1.0e-4, atol=1.0e-5) - else: - assert np.allclose(CySolverAccuracyTestInst.y, real_answer, rtol=1.0e-5, atol=1.0e-6) - - # Check the accuracy of the results - # import matplotlib.pyplot as plt - # fig, ax = plt.subplots() - # ax.plot(CySolverAccuracyTestInst.t, CySolverAccuracyTestInst.y[0], 'r', label='CyRK') - # ax.plot(CySolverAccuracyTestInst.t, CySolverAccuracyTestInst.y[1], 'r:') - # ax.plot(CySolverAccuracyTestInst.t, real_answer[0], 'b', label='Analytic') - # ax.plot(CySolverAccuracyTestInst.t, real_answer[1], 'b:') - # plt.show() - -import platform -if platform.system().lower() == 'darwin': - # TODO: For some reason the accuracy test is failing on macos after the switch from GCC. - # Since this is a deprecated function there is not a strong incentive to investigate since the new backend passes. - # But something to keep in mind if we ever revive it. - pytest.mark.skip("For some reason the accuracy test is failing on macos after the switch from GCC. Since this is a deprecated function there is not a strong incentive to investigate since the new backend passes. But something to keep in mind if we ever revive it.")(test_accuracy_CySolverTester) - -@pytest.mark.parametrize('complex_valued', (True, False)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_max_num_steps(rk_method, complex_valued): - """Check that the cython function cyrk_ode can use max_num_steps argument """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - # First test a number of max steps which is fine. - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span_large, initial_conds_to_use, rk_method=rk_method, max_num_steps=1000000) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - if complex_valued: - assert y_results.dtype == np.complex128 - else: - assert y_results.dtype == np.float64 - assert time_domain.size > 1 - assert time_domain.size == y_results[0].size - assert len(y_results.shape) == 2 - assert y_results[0].size == y_results[1].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - - # Now test an insufficient number of steps - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span_large, initial_conds_to_use, rk_method=rk_method, max_num_steps=4) - - assert not success - assert message == "Maximum number of steps (set by user) exceeded during integration." - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_max_num_steps_CySolverTester(rk_method, complex_valued): - """Check that the cython class solver correctly uses the max_num_steps argument. """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - # First test a number of max steps which is fine. - CySolverTesterInst = CySolverTester(time_span_large, initial_conds_to_use, rk_method=rk_method, auto_solve=True, max_num_steps=1000000) - - # Check that the ndarrays make sense - assert type(CySolverTesterInst.t) == np.ndarray - assert CySolverTesterInst.t.dtype == np.float64 - if complex_valued: - assert CySolverTesterInst.y.dtype == np.complex128 - else: - assert CySolverTesterInst.y.dtype == np.float64 - assert CySolverTesterInst.t.size > 1 - assert CySolverTesterInst.t.size == CySolverTesterInst.y[0].size - assert len(CySolverTesterInst.y.shape) == 2 - assert CySolverTesterInst.y[0].size == CySolverTesterInst.y[1].size - - # Check that the other output makes sense - assert type(CySolverTesterInst.success) == bool - assert CySolverTesterInst.success - assert type(CySolverTesterInst.message) == str - - # Now test an insufficient number of steps - CySolverTesterInst = CySolverTester( - time_span_large, initial_conds_to_use, rk_method=rk_method, auto_solve=True, max_num_steps=4) - - assert not CySolverTesterInst.success - assert CySolverTesterInst.status == -2 - -def test_bad_tols_cyrk(): - - # Too many rtols and atols - bad_rtols = np.asarray((1.0e-6, 1.0e-7, 1.0e-8), dtype=np.float64, order='C') - bad_atols = np.asarray((1.0e-7, 1.0e-8, 1.0e-9), dtype=np.float64, order='C') - - with pytest.raises(AttributeError): - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span_large, initial_conds, rk_method=1, rtols=bad_rtols) - - with pytest.raises(AttributeError): - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span_large, initial_conds, rk_method=1, atols=bad_atols) - - -def test_bad_tols_CySolver(): - - # Too many rtols and atols - bad_rtols = np.asarray((1.0e-6, 1.0e-7, 1.0e-8), dtype=np.float64, order='C') - bad_atols = np.asarray((1.0e-7, 1.0e-8, 1.0e-9), dtype=np.float64, order='C') - - with pytest.raises(AttributeError): - CySolverTesterInst = CySolverTester(time_span_large, initial_conds, - rk_method=1, rtols=bad_rtols, auto_solve=True) - - with pytest.raises(AttributeError): - CySolverTesterInst = CySolverTester(time_span_large, initial_conds, - rk_method=1, atols=bad_atols, auto_solve=True) - - -if __name__ == '__main__': - - test_basic_integration_cyrk_ode(False, False, 2, False) diff --git a/Tests/C_Cython_Tests/test_d_cy_extra_output.py b/Tests/C_Cython_Tests/test_d_cy_extra_output.py deleted file mode 100644 index 3149996..0000000 --- a/Tests/C_Cython_Tests/test_d_cy_extra_output.py +++ /dev/null @@ -1,183 +0,0 @@ -import numpy as np -from numba import njit - -from CyRK import cyrk_ode -from CyRK.cy.cysolvertest import CySolverExtraTest - -@njit -def diffeq_extra_outputs(t, y, output): - extra_0 = (1. - 0.01 * y[1]) - extra_1 = (0.02 * y[0] - 1.) - output[0] = extra_0 * y[0] - output[1] = extra_1 * y[1] - output[2] = extra_0 - output[3] = extra_1 - - -initial_conds = np.asarray((20., 20.), dtype=np.complex128) -initial_conds_float = np.asarray((20., 20.), dtype=np.float64) -time_span = (0., 10.) -time_span_large = (0., 1000.) -rtol = 1.0e-7 -atol = 1.0e-8 - - -def test_extra_output_integration(): - """Check that the cython function solver is able to run and capture additional outputs """ - - time_domain, all_output, success, message = \ - cyrk_ode(diffeq_extra_outputs, time_span, initial_conds, capture_extra=True, num_extra=2) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - assert all_output.dtype == np.complex128 - assert time_domain.size > 1 - assert time_domain.size == all_output[0].size - assert len(all_output.shape) == 2 - assert all_output.shape[0] == 4 - assert all_output[0].size == all_output[1].size - assert all_output[0].size == all_output[2].size - assert all_output[0].size == all_output[3].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -def test_extra_output_integration_CySolver(): - """Check that the cython class solver is able to run and capture additional outputs """ - - CySolverExtraTestInst = CySolverExtraTest(time_span, initial_conds_float, capture_extra=True, num_extra=2, auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverExtraTestInst.t) == np.ndarray - assert CySolverExtraTestInst.t.dtype == np.float64 - assert CySolverExtraTestInst.y.dtype == np.float64 - assert CySolverExtraTestInst.extra.dtype == np.float64 - assert CySolverExtraTestInst.t.size > 1 - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.y[0].size - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.y[1].size - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.extra[0].size - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.extra[1].size - assert CySolverExtraTestInst.y.shape[0] == 2 - assert CySolverExtraTestInst.extra.shape[0] == 2 - - # Check that the other output makes sense - assert type(CySolverExtraTestInst.success) == bool - assert CySolverExtraTestInst.success - assert type(CySolverExtraTestInst.message) == str - -def test_extra_output_integration_teval_no_extra_interpolation(): - """Check that the cython function solver is able to run and capture additional outputs. - Reduced t_eval used but no interpolation used on the extra parameters. - """ - - t_eval = np.linspace(time_span[0], time_span[1], 5) - - time_domain, all_output, success, message = \ - cyrk_ode( - diffeq_extra_outputs, time_span, initial_conds, t_eval=t_eval, - capture_extra=True, num_extra=2, interpolate_extra=False) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - assert all_output.dtype == np.complex128 - assert time_domain.size == t_eval.size - assert time_domain.size == all_output[0].size - assert len(all_output.shape) == 2 - assert all_output.shape[0] == 4 - assert all_output[0].size == all_output[1].size - assert all_output[0].size == all_output[2].size - assert all_output[0].size == all_output[3].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -def test_extra_output_integration_teval_no_extra_interpolation_CySolver(): - """Check that the cython class solver is able to run and capture additional outputs. - Reduced t_eval used but no interpolation used on the extra parameters. - """ - - t_eval = np.linspace(time_span[0], time_span[1], 5) - - CySolverExtraTestInst = CySolverExtraTest(time_span, initial_conds_float, t_eval=t_eval, - capture_extra=True, num_extra=2, interpolate_extra=False, auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverExtraTestInst.t) == np.ndarray - assert CySolverExtraTestInst.t.dtype == np.float64 - assert CySolverExtraTestInst.y.dtype == np.float64 - assert CySolverExtraTestInst.extra.dtype == np.float64 - assert CySolverExtraTestInst.t.size > 1 - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.y[0].size - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.y[1].size - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.extra[0].size - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.extra[1].size - assert CySolverExtraTestInst.y.shape[0] == 2 - assert CySolverExtraTestInst.extra.shape[0] == 2 - - # Check that the other output makes sense - assert type(CySolverExtraTestInst.success) == bool - assert CySolverExtraTestInst.success - assert type(CySolverExtraTestInst.message) == str - -def test_extra_output_integration_teval_with_extra_interpolation(): - """Check that the cython function solver is able to run and capture additional outputs - Reduced t_eval used with interpolation used on the extra parameters. - """ - - t_eval = np.linspace(time_span[0], time_span[1], 5) - - time_domain, all_output, success, message = \ - cyrk_ode( - diffeq_extra_outputs, time_span, initial_conds, t_eval=t_eval, - capture_extra=True, num_extra=2, interpolate_extra=True) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - assert all_output.dtype == np.complex128 - assert time_domain.size == t_eval.size - assert time_domain.size == all_output[0].size - assert len(all_output.shape) == 2 - assert all_output.shape[0] == 4 - assert all_output[0].size == all_output[1].size - assert all_output[0].size == all_output[2].size - assert all_output[0].size == all_output[3].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -def test_extra_output_integration_teval_with_extra_interpolation_CySolver(): - """Check that the cython class solver is able to run and capture additional outputs - Reduced t_eval used with interpolation used on the extra parameters. - """ - - t_eval = np.linspace(time_span[0], time_span[1], 5) - - CySolverExtraTestInst = CySolverExtraTest(time_span, initial_conds_float, t_eval=t_eval, - capture_extra=True, num_extra=2, interpolate_extra=True, auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverExtraTestInst.t) == np.ndarray - assert CySolverExtraTestInst.t.dtype == np.float64 - assert CySolverExtraTestInst.y.dtype == np.float64 - assert CySolverExtraTestInst.extra.dtype == np.float64 - assert CySolverExtraTestInst.t.size > 1 - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.y[0].size - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.y[1].size - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.extra[0].size - assert CySolverExtraTestInst.t.size == CySolverExtraTestInst.extra[1].size - assert CySolverExtraTestInst.y.shape[0] == 2 - assert CySolverExtraTestInst.extra.shape[0] == 2 - - # Check that the other output makes sense - assert type(CySolverExtraTestInst.success) == bool - assert CySolverExtraTestInst.success - assert type(CySolverExtraTestInst.message) == str diff --git a/Tests/C_Cython_Tests/test_e_cy_readonly.py b/Tests/C_Cython_Tests/test_e_cy_readonly.py deleted file mode 100644 index 2db376a..0000000 --- a/Tests/C_Cython_Tests/test_e_cy_readonly.py +++ /dev/null @@ -1,88 +0,0 @@ -import numpy as np -from numba import njit -import pytest - -from CyRK import cyrk_ode -from CyRK.cy.cysolvertest import CySolverTester - -@njit -def diffeq(t, y, dy): - dy[0] = (1. - 0.01 * y[1]) * y[0] - dy[1] = (0.02 * y[0] - 1.) * y[1] - - -@njit -def diffeq_args(t, y, dy, a, b): - dy[0] = (1. - a * y[1]) * y[0] - dy[1] = (b * y[0] - 1.) * y[1] - -initial_conds = np.asarray((20., 20.), dtype=np.float64) -initial_conds_complex = np.asarray((20. + 0.01j, 20. - 0.01j), dtype=np.complex128) -time_span = (0., 10.) -time_span_large = (0., 1000.) -rtol = 1.0e-7 -atol = 1.0e-8 - -@pytest.mark.parametrize('complex_valued', (True, False)) -def test_readonly_y0(complex_valued): - """ Test if a readonly array will work in cyrk_ode. """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - # Make readonly - initial_conds_to_use.setflags(write=False) - - time_domain, y_results, success, message = \ - cyrk_ode(diffeq, time_span, initial_conds_to_use, rk_method=1) - - # Check that the ndarrays make sense - assert type(time_domain) == np.ndarray - assert time_domain.dtype == np.float64 - if complex_valued: - assert y_results.dtype == np.complex128 - else: - assert y_results.dtype == np.float64 - assert time_domain.size > 1 - assert time_domain.size == y_results[0].size - assert len(y_results.shape) == 2 - assert y_results[0].size == y_results[1].size - - # Check that the other output makes sense - assert type(success) == bool - assert success - assert type(message) == str - -@pytest.mark.parametrize('complex_valued', (False,)) -def test_readonly_y0_CySolver(complex_valued): - """ Test if a readonly array will work in CySolver. """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - # Make readonly - initial_conds_to_use.setflags(write=False) - - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, rk_method=1, auto_solve=True) - - # Check that the ndarrays make sense - assert type(CySolverTesterInst.t) == np.ndarray - assert CySolverTesterInst.t.dtype == np.float64 - if complex_valued: - assert CySolverTesterInst.y.dtype == np.complex128 - else: - assert CySolverTesterInst.y.dtype == np.float64 - assert CySolverTesterInst.t.size > 1 - assert CySolverTesterInst.t.size == CySolverTesterInst.y[0].size - assert len(CySolverTesterInst.y.shape) == 2 - assert CySolverTesterInst.y[0].size == CySolverTesterInst.y[1].size - - # Check that the other output makes sense - assert type(CySolverTesterInst.success) == bool - assert CySolverTesterInst.success - assert type(CySolverTesterInst.message) == str \ No newline at end of file diff --git a/Tests/C_Cython_Tests/test_f_cysolver_resolve.py b/Tests/C_Cython_Tests/test_f_cysolver_resolve.py deleted file mode 100644 index 08fac1e..0000000 --- a/Tests/C_Cython_Tests/test_f_cysolver_resolve.py +++ /dev/null @@ -1,77 +0,0 @@ -import pytest -import numpy as np - -from CyRK.cy.cysolvertest import CySolverTester - -initial_conds = np.asarray((20., 20.), dtype=np.float64) -initial_conds_complex = np.asarray((20. + 0.01j, 20. - 0.01j), dtype=np.complex128) -time_span = (0., 10.) -time_span_large = (0., 1000.) -rtol = 1.0e-7 -atol = 1.0e-8 - - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_CySolverTester_resolve(rk_method, complex_valued): - """Check that the cython class solver produced the correct result if it is re-solved multiple times""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, rk_method=rk_method, auto_solve=False) - - # Solve once - CySolverTesterInst.solve() - assert CySolverTesterInst.success - solution_1_t = np.copy(CySolverTesterInst.t) - solution_1_y = np.copy(CySolverTesterInst.y) - - # Solve twice - CySolverTesterInst.solve() - assert CySolverTesterInst.success - solution_2_t = np.copy(CySolverTesterInst.t) - solution_2_y = np.copy(CySolverTesterInst.y) - - # Solve thrice - CySolverTesterInst.solve() - assert CySolverTesterInst.success - solution_3_t = np.copy(CySolverTesterInst.t) - solution_3_y = np.copy(CySolverTesterInst.y) - - # Check outputs - # 1 and 2 - assert solution_1_t.shape == solution_2_t.shape - assert np.all(solution_1_t == solution_2_t) - assert solution_1_y.shape == solution_2_y.shape - assert np.all(solution_1_y == solution_2_y) - - # 2 and 3 (if the above passed then this will implicitly check 1 and 3 too). - assert solution_2_t.shape == solution_3_t.shape - assert np.all(solution_2_t == solution_3_t) - assert solution_2_y.shape == solution_3_y.shape - assert np.all(solution_2_y == solution_3_y) - - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_CySolverTester_multi_resolve(rk_method, complex_valued): - """Check that the cython class solver can be resolved many times without memory access issues.""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, rk_method=rk_method, auto_solve=False) - - for i in range(10_000): - # Change y0 values for each loop - y0 = np.copy(initial_conds_to_use) - y0[0] += 0.1 - y0[1] -= 0.1 - CySolverTesterInst.change_y0(y0, auto_reset_state=False) - CySolverTesterInst.solve(reset=True) - assert CySolverTesterInst.success diff --git a/Tests/C_Cython_Tests/test_g_cysolver_change_param.py b/Tests/C_Cython_Tests/test_g_cysolver_change_param.py deleted file mode 100644 index 69441c5..0000000 --- a/Tests/C_Cython_Tests/test_g_cysolver_change_param.py +++ /dev/null @@ -1,92 +0,0 @@ -import pytest -import numpy as np - -from CyRK.cy.cysolvertest import CySolverTester - -initial_conds = np.asarray((20., 20.), dtype=np.float64) -initial_conds_2 = np.asarray((-10., 10.), dtype=np.float64) -initial_conds_complex = np.asarray((20. + 0.01j, 20. - 0.01j), dtype=np.complex128) -time_span = (0., 10.) -time_span_large = (0., 1000.) -rtol = 1.0e-7 -atol = 1.0e-8 - -rtols = np.asarray((1.0e-7, 1.0e-8), dtype=np.float64, order='C') -atols = np.asarray((1.0e-8, 1.0e-9), dtype=np.float64, order='C') - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -def test_CySolverTester_change_param(rk_method, complex_valued): - """ Test CySolver's change parameters functionality. """ - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, rk_method=rk_method, auto_solve=False, - rtol=1.0e-8, atol=1.0e-9) - - # Solve once - CySolverTesterInst.solve() - assert CySolverTesterInst.success - solution_1_t = np.copy(CySolverTesterInst.t) - solution_1_y = np.copy(CySolverTesterInst.y) - assert solution_1_t[0] == 0. - assert solution_1_t[-1] == 10. - - # Change timespan and solve again - CySolverTesterInst.change_t_span((0., 1.)) - CySolverTesterInst.solve() - assert CySolverTesterInst.success - solution_2_t = np.copy(CySolverTesterInst.t) - solution_2_y = np.copy(CySolverTesterInst.y) - assert solution_2_t[0] == 0. - assert solution_2_t[-1] == 1. - - # Change several things at once but keep the previous time span the same. - CySolverTesterInst.change_parameters(rtol=1.0e-11, atol=1.0e-12) - CySolverTesterInst.solve() - assert CySolverTesterInst.success - solution_3_t = np.copy(CySolverTesterInst.t) - solution_3_y = np.copy(CySolverTesterInst.y) - assert solution_3_t[0] == 0. - assert solution_3_t[-1] == 1. - # Due to the lower tolerances, we expect this solution to be larger than the previous ones. - assert solution_3_t.size > solution_2_t.size - - # Check that changing teval works - t_eval = np.linspace(0., 0.5, 10) - CySolverTesterInst.change_t_eval(t_eval) - CySolverTesterInst.solve() - assert CySolverTesterInst.success - solution_4_t = np.copy(CySolverTesterInst.t) - solution_4_y = np.copy(CySolverTesterInst.y) - assert solution_4_t[0] == 0. - assert solution_4_t[-1] == 0.5 - assert solution_4_t.size == 10 - assert solution_4_y.shape == (2, 10) - - # Check changing rtols/atols array - CySolverTesterInst.change_parameters(rtols=rtols, atols=atols) - CySolverTesterInst.solve() - assert CySolverTesterInst.success - - # Check that the correct error is raised when an incorrect y0 is provided - y0_bad = np.asarray((-10., 0., 10.), dtype=np.float64) # Should only have 2 values - with pytest.raises(AttributeError): - CySolverTesterInst.change_y0(y0_bad) - - # Check again with the wrapper change function - with pytest.raises(AttributeError): - CySolverTesterInst.change_parameters(y0=y0_bad) - - # Check changing rtol/atol to a bad array - # Too many rtols and atols - bad_rtols = np.asarray((1.0e-6, 1.0e-7, 1.0e-8), dtype=np.float64, order='C') - bad_atols = np.asarray((1.0e-7, 1.0e-8, 1.0e-9), dtype=np.float64, order='C') - # Check again with the wrapper change function - with pytest.raises(AttributeError): - CySolverTesterInst.change_parameters(rtols=bad_rtols) - with pytest.raises(AttributeError): - CySolverTesterInst.change_parameters(atols=bad_atols) diff --git a/Tests/C_Cython_Tests/test_h_cysolver_forcefail.py b/Tests/C_Cython_Tests/test_h_cysolver_forcefail.py deleted file mode 100644 index a170059..0000000 --- a/Tests/C_Cython_Tests/test_h_cysolver_forcefail.py +++ /dev/null @@ -1,56 +0,0 @@ -import pytest -import numpy as np - -from CyRK.cy.cysolvertest import CySolverTester - - -initial_conds = np.asarray((20., 20.), dtype=np.float64, order='C') -initial_conds_complex = np.asarray((20. + 0.01j, 20. - 0.01j), dtype=np.complex128, order='C') -time_span = (0., 10.) -time_span_large = (0., 1000.) -rtol = 1.0e-7 -atol = 1.0e-8 - -rtols = np.asarray((1.0e-7, 1.0e-8), dtype=np.float64, order='C') -atols = np.asarray((1.0e-8, 1.0e-9), dtype=np.float64, order='C') - - -def wrapper_func(initial_conds_to_use, rtols_use, atols_use, rk_method): - - # Build solver instance in a wrapper function - CySolverTesterInst = CySolverTester(time_span, initial_conds_to_use, - rtol=rtol, atol=atol, rtols=rtols_use, atols=atols_use, - rk_method=rk_method, auto_solve=True, force_fail=True) - - result = CySolverTesterInst.success - - # Delete solver - del CySolverTesterInst - - return result - - -@pytest.mark.parametrize('complex_valued', (False,)) -@pytest.mark.parametrize('rk_method', (0, 1, 2)) -@pytest.mark.parametrize('use_rtol_array', (True, False)) -@pytest.mark.parametrize('use_atol_array', (True, False)) -def test_basic_forcefailing_CySolverTester(use_atol_array, use_rtol_array, rk_method, complex_valued): - """Check that the cython class solver is able to run with its default arguments""" - - if complex_valued: - initial_conds_to_use = initial_conds_complex - else: - initial_conds_to_use = initial_conds - - if use_atol_array: - atols_use = atols - else: - atols_use = None - if use_rtol_array: - rtols_use = rtols - else: - rtols_use = None - - result = wrapper_func(initial_conds_to_use, rtols_use, atols_use, rk_method) - - assert not result diff --git a/Tests/D_Numba_Tests/test_a_numba.py b/Tests/C_Numba_Tests/test_a_numba.py similarity index 100% rename from Tests/D_Numba_Tests/test_a_numba.py rename to Tests/C_Numba_Tests/test_a_numba.py diff --git a/Tests/D_Numba_Tests/test_b_nb_extra_output.py b/Tests/C_Numba_Tests/test_b_nb_extra_output.py similarity index 100% rename from Tests/D_Numba_Tests/test_b_nb_extra_output.py rename to Tests/C_Numba_Tests/test_b_nb_extra_output.py diff --git a/Tests/E_PySolver_Tests/test_a_pysolve_ivp.py b/Tests/D_PySolver_Tests/test_a_pysolve_ivp.py similarity index 99% rename from Tests/E_PySolver_Tests/test_a_pysolve_ivp.py rename to Tests/D_PySolver_Tests/test_a_pysolve_ivp.py index 95142c5..f9de7d9 100644 --- a/Tests/E_PySolver_Tests/test_a_pysolve_ivp.py +++ b/Tests/D_PySolver_Tests/test_a_pysolve_ivp.py @@ -2,7 +2,7 @@ import pytest from numba import njit -from CyRK.cy.cysolverNew import pysolve_ivp, WrapCySolverResult +from CyRK import pysolve_ivp, WrapCySolverResult # To reduce number of tests, only test RK23 once since RK45 should capture all its functionality diff --git a/Tests/F_CySolver_Tests/test_a_cysolve_ivp.py b/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py similarity index 98% rename from Tests/F_CySolver_Tests/test_a_cysolve_ivp.py rename to Tests/E_CySolver_Tests/test_a_cysolve_ivp.py index bca252b..8a43eb5 100644 --- a/Tests/F_CySolver_Tests/test_a_cysolve_ivp.py +++ b/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py @@ -1,8 +1,8 @@ import numpy as np import pytest -from CyRK.cy.cysolverNew import WrapCySolverResult -from CyRK.cy.cysolverNew_test import cytester +from CyRK.cy.cysolver import WrapCySolverResult +from CyRK.cy.cysolver_test import cytester args = (0.01, 0.02) diff --git a/cython_extensions.json b/cython_extensions.json index edcc9b6..9f5fd16 100644 --- a/cython_extensions.json +++ b/cython_extensions.json @@ -31,30 +31,6 @@ "link_args": [], "is_cpp": false }, - "rk_constants": { - "name": "CyRK.rk.rk_constants", - "sources": [["CyRK", "rk", "rk_constants.pyx"]], - "include_dirs": [["CyRK", "rk"]], - "compile_args": [], - "link_args": [], - "is_cpp": false - }, - "rk": { - "name": "CyRK.rk.rk", - "sources": [["CyRK", "rk", "rk.pyx"]], - "include_dirs": [["CyRK", "rk"]], - "compile_args": [], - "link_args": [], - "is_cpp": false - }, - "common": { - "name": "CyRK.cy.common", - "sources": [["CyRK", "cy", "common.pyx"]], - "include_dirs": [["CyRK", "cy"]], - "compile_args": [], - "link_args": [], - "is_cpp": false - }, "pysolver_cyhook": { "name": "CyRK.cy.pysolver_cyhook", "sources": [["CyRK", "cy", "pysolver_cyhook.pyx"]], @@ -63,47 +39,33 @@ "link_args": [], "is_cpp": true }, - "cysolverNew": { - "name": "CyRK.cy.cysolverNew", - "sources": [["CyRK", "cy", "cysolverNew.pyx"]], + "cysolver_api": { + "name": "CyRK.cy.cysolver_api", + "sources": [ + ["CyRK", "cy", "cysolver_api.pyx"] + ], "include_dirs": [["CyRK", "cy"]], "compile_args": [], "link_args": [], "is_cpp": true }, - "cysolverNew_test": { - "name": "CyRK.cy.cysolverNew_test", - "sources": [["CyRK", "cy", "cysolverNew_test.pyx"]], + "cysolver_test": { + "name": "CyRK.cy.cysolver_test", + "sources": [["CyRK", "cy", "cysolver_test.pyx"]], "include_dirs": [["CyRK", "cy"]], "compile_args": [], "link_args": [], "is_cpp": true }, - "cyrk_ode": { - "name": "CyRK.cy.cyrk", - "sources": [["CyRK", "cy", "cyrk.pyx"]], - "include_dirs": [["CyRK", "cy"]], - "compile_args": [], - "link_args": [], - "is_cpp": false - }, - "cysolver": { - "name": "CyRK.cy.cysolver", + "pysolver": { + "name": "CyRK.cy.pysolver", "sources": [ - ["CyRK", "cy", "cysolver.pyx"] + ["CyRK", "cy", "pysolver.pyx"] ], "include_dirs": [["CyRK", "cy"]], "compile_args": [], "link_args": [], - "is_cpp": false - }, - "cysolver_test": { - "name": "CyRK.cy.cysolvertest", - "sources": [["CyRK", "cy", "cysolvertest.pyx"]], - "include_dirs": [["CyRK", "cy"]], - "compile_args": [], - "link_args": [], - "is_cpp": false + "is_cpp": true }, "cysolver_helpers": { "name": "CyRK.cy.helpers", diff --git a/pyproject.toml b/pyproject.toml index fd60638..1369f80 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name='CyRK' -version = '0.10.2' +version = '0.11.0a0.dev1' description='Runge-Kutta ODE Integrator Implemented in Cython and Numba.' authors= [ {name = 'Joe P. Renaud', email = 'joe.p.renaud@gmail.com'} From e7bdb1c32d955aba89154b20e08b4d35f83e276c Mon Sep 17 00:00:00 2001 From: Jrenaud-Desk Date: Fri, 8 Nov 2024 10:56:39 -0500 Subject: [PATCH 2/7] Fixed import error --- CyRK/cy/helpers.pxd | 2 +- pyproject.toml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/CyRK/cy/helpers.pxd b/CyRK/cy/helpers.pxd index c594206..e17cb46 100644 --- a/CyRK/cy/helpers.pxd +++ b/CyRK/cy/helpers.pxd @@ -1,5 +1,5 @@ from CyRK.utils.vector cimport vector -from CyRK.cy.cysolver cimport CySolveOutput, CySolverResult +from CyRK.cy.cysolver_api cimport CySolveOutput, CySolverResult cdef void interpolate_from_solution_list( double* y_result_ptr, diff --git a/pyproject.toml b/pyproject.toml index 1369f80..23546fc 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name='CyRK' -version = '0.11.0a0.dev1' +version = '0.11.0a0.dev2' description='Runge-Kutta ODE Integrator Implemented in Cython and Numba.' authors= [ {name = 'Joe P. Renaud', email = 'joe.p.renaud@gmail.com'} From f9d91cf5e4e7899a7ec216ad3c0c872d59f32e0b Mon Sep 17 00:00:00 2001 From: Jrenaud-Desk Date: Fri, 8 Nov 2024 11:10:33 -0500 Subject: [PATCH 3/7] fixed import issue; updated performance files --- Performance/cyrk_performance-DOP853.csv | 25 ++++++++++---------- Performance/cyrk_performance-RK23.csv | 25 ++++++++++---------- Performance/cyrk_performance-RK45.csv | 25 ++++++++++---------- Tests/E_CySolver_Tests/test_a_cysolve_ivp.py | 2 +- 4 files changed, 40 insertions(+), 37 deletions(-) diff --git a/Performance/cyrk_performance-DOP853.csv b/Performance/cyrk_performance-DOP853.csv index d5216ec..bd8a823 100644 --- a/Performance/cyrk_performance-DOP853.csv +++ b/Performance/cyrk_performance-DOP853.csv @@ -9,15 +9,16 @@ CyRK Version, Run-on Date, cython (avg), cython (std),CySolver (avg),CySolver (s 0.5.0a3.dev0, 28/03/2023 12:42:54,1.101,0.0252,#N/A,#N/A,0.192,0.0004,10.5338,0.0175,#N/A,#N/A,1.7754,0.0045,0.5119,0.008,#N/A,#N/A,0.1061,0.0001,4.716,0.0584,#N/A,#N/A,0.8671,0.0027,1.5785,0.0215,#N/A,#N/A,0.3171,0.0151,24.3099,2.8578,#N/A,#N/A,4.0586,0.0455,1.9298,0.0493,#N/A,#N/A,0.5502,0.0066,25.5103,0.0692,#N/A,#N/A,7.3534,0.0191 0.5.0a4.dev1, 28/03/2023 15:03:36,1.1174,0.0288,#N/A,#N/A,0.2091,0.0126,10.6654,0.0716,#N/A,#N/A,1.8152,0.0304,0.5364,0.0278,#N/A,#N/A,0.1082,0.0024,4.751,0.048,#N/A,#N/A,0.8862,0.0099,1.5926,0.0258,#N/A,#N/A,0.3166,0.0222,21.2931,0.1835,#N/A,#N/A,3.9808,0.0297,1.9513,0.0068,#N/A,#N/A,0.5477,0.0008,25.9224,0.0799,#N/A,#N/A,7.2492,0.0525 0.5.3, 29/03/2023 18:54:36,1.1012,0.0167,#N/A,#N/A,0.2044,0.0082,10.7259,0.0116,#N/A,#N/A,1.877,0.0371,0.5242,0.0063,#N/A,#N/A,0.1105,0.0049,4.8917,0.1128,#N/A,#N/A,0.8805,0.011,1.6723,0.0122,#N/A,#N/A,0.3094,0.0068,21.78,0.0313,#N/A,#N/A,4.0337,0.1086,2.0237,0.0332,#N/A,#N/A,0.5803,0.0223,26.9174,0.4865,#N/A,#N/A,7.6904,0.1039 -0.6.0.dev3, 27/07/2023 16:34:21, 1.1226, 0.0190, 0.1162, 0.0008, 0.1791, 0.0025, 11.0750, 0.0218, 0.6586, 0.0008, 1.5557, 0.0078, 0.5142, 0.0022, 0.0931, 0.0006, 0.1035, 0.0012, 4.9625, 0.0442, 0.4232, 0.0004, 0.8202, 0.0061, 1.6115, 0.0232, 0.1726, 0.0005, 0.2734, 0.0018, 22.0793, 0.2389, 1.7130, 0.0386, 3.5447, 0.0375, 1.9516, 0.0485, 0.1859, 0.0016, 0.4922, 0.0014, 26.6386, 0.4357, 1.7423, 0.0134, 6.7022, 0.0442 -0.6.0a4, 27/07/2023 19:01:55, 1.1085, 0.0280, 0.1259, 0.0038, 0.1928, 0.0068, 10.5592, 0.1295, 0.7260, 0.0161, 1.9403, 0.1159, 0.5095, 0.0229, 0.0981, 0.0039, 0.1154, 0.0031, 5.1162, 0.2334, 0.4771, 0.0345, 0.9215, 0.0410, 1.5993, 0.0191, 0.1972, 0.0056, 0.3029, 0.0043, 21.7690, 0.3977, 1.8171, 0.0565, 3.9987, 0.0936, 1.9748, 0.1240, 0.2101, 0.0042, 0.5470, 0.0321, 25.2882, 0.2939, 1.9768, 0.0476, 7.2745, 0.1060 -0.7.0.dev7, 27/08/2023 01:13:33, 1.0344, 0.0015, 0.0966, 0.0002, 0.1670, 0.0005, 10.2972, 0.0150, 0.5214, 0.0006, 1.5239, 0.0135, 0.4878, 0.0017, 0.0772, 0.0001, 0.0991, 0.0005, 4.5979, 0.0411, 0.3331, 0.0003, 0.8044, 0.0036, 1.4902, 0.0025, 0.1425, 0.0003, 0.2587, 0.0039, 20.1369, 0.0811, 1.2903, 0.0119, 3.3198, 0.0182, 1.7607, 0.0080, 0.1521, 0.0002, 0.4969, 0.0036, 24.0781, 0.1145, 1.3241, 0.0021, 6.6531, 0.0005 -0.7.0a1, 27/08/2023 01:23:48, 1.0094, 0.0030, 0.0955, 0.0002, 0.1660, 0.0003, 10.0515, 0.1271, 0.5152, 0.0038, 1.6281, 0.1728, 0.4916, 0.0152, 0.0772, 0.0003, 0.1002, 0.0004, 4.5604, 0.0592, 0.3398, 0.0057, 0.7978, 0.0034, 1.5030, 0.0145, 0.1439, 0.0036, 0.2601, 0.0077, 20.6049, 0.3711, 1.2741, 0.0087, 3.3549, 0.0756, 1.7522, 0.0166, 0.1538, 0.0012, 0.4985, 0.0037, 23.7129, 0.0492, 1.3207, 0.0154, 6.6875, 0.0549 -0.7.0a6, 28/08/2023 15:54:30, 1.0249, 0.0023, 0.1009, 0.0001, 0.1745, 0.0003, 10.0953, 0.0187, 0.5086, 0.0004, 1.6063, 0.0157, 0.4882, 0.0005, 0.0831, 0.0001, 0.1019, 0.0039, 4.6144, 0.0984, 0.3383, 0.0006, 0.7983, 0.0067, 1.4988, 0.0178, 0.1394, 0.0006, 0.2681, 0.0004, 20.1680, 0.0990, 1.2133, 0.0049, 3.4577, 0.0201, 1.7582, 0.0131, 0.1490, 0.0031, 0.5073, 0.0059, 24.8074, 0.4213, 1.2755, 0.0208, 6.5607, 0.0177 -0.7.1, 30/08/2023 13:06:08, 1.0108, 0.0108, 0.0930, 0.0004, 0.1709, 0.0004, 10.0508, 0.0336, 0.4942, 0.0005, 1.5619, 0.0081, 0.4779, 0.0045, 0.0741, 0.0001, 0.0993, 0.0009, 4.5178, 0.0105, 0.3211, 0.0018, 0.7910, 0.0070, 1.4697, 0.0163, 0.1282, 0.0002, 0.2644, 0.0022, 20.0282, 0.2074, 1.1535, 0.0006, 3.3897, 0.0012, 1.7311, 0.0088, 0.1364, 0.0027, 0.4774, 0.0019, 23.5503, 0.0176, 1.1954, 0.0037, 6.4767, 0.0802 -0.8.0, 06/09/2023 15:03:15, 0.9615, 0.0011, 0.0561, 0.0001, 0.1602, 0.0004, 9.8846, 0.1049, 0.4796, 0.0010, 1.4545, 0.0154, 0.4413, 0.0005, 0.0376, 0.0001, 0.0953, 0.0001, 4.3959, 0.0170, 0.2890, 0.0007, 0.7862, 0.0168, 1.4213, 0.0046, 0.0937, 0.0005, 0.2464, 0.0012, 19.5317, 0.0414, 1.1684, 0.0054, 3.1531, 0.0143, 1.6563, 0.0055, 0.0989, 0.0018, 0.4797, 0.0064, 22.9818, 0.1217, 1.2122, 0.0250, 6.4178, 0.0221 -0.8.3, 07/10/2023 02:40:03, 0.9727, 0.0033, 0.0587, 0.0014, 0.1625, 0.0006, 9.9439, 0.0246, 0.4990, 0.0070, 2.6214, 0.0527, 0.4393, 0.0008, 0.0400, 0.0006, 0.1034, 0.0063, 4.4720, 0.1096, 0.3114, 0.0025, 1.1428, 0.0021, 1.4298, 0.0046, 0.0987, 0.0009, 0.2440, 0.0019, 21.2338, 0.3276, 1.7444, 0.0077, 4.3900, 0.0738, 1.6848, 0.0280, 0.1039, 0.0003, 0.4644, 0.0006, 25.3711, 0.1346, 2.2809, 0.0329, 7.3621, 0.0222 -0.8.4, 18/10/2023 12:49:04, 0.9453, 0.0036, 0.0574, 0.0012, 0.1718, 0.0070, 9.9086, 0.1287, 0.4833, 0.0013, 1.4208, 0.0060, 0.4293, 0.0016, 0.0383, 0.0001, 0.0956, 0.0006, 4.2518, 0.0123, 0.2944, 0.0001, 0.7605, 0.0005, 1.3829, 0.0014, 0.0931, 0.0001, 0.2438, 0.0003, 19.2126, 0.0622, 1.1729, 0.0003, 3.1186, 0.0861, 1.6221, 0.0111, 0.0957, 0.0000, 0.4634, 0.0006, 22.3320, 0.0879, 1.2067, 0.0012, 6.1291, 0.0053 -0.8.6, 13/02/2024 17:08:45, 0.9814, 0.0156, 0.0611, 0.0001, 0.1640, 0.0017, 10.2798, 0.4311, 0.5307, 0.0079, 1.4800, 0.0021, 0.4434, 0.0036, 0.0420, 0.0005, 0.0991, 0.0000, 4.4219, 0.0575, 0.3169, 0.0014, 0.7947, 0.0034, 1.4053, 0.0155, 0.0973, 0.0004, 0.2517, 0.0009, 19.6548, 0.3540, 1.2133, 0.0019, 3.1887, 0.0088, 1.6764, 0.0156, 0.1001, 0.0001, 0.5250, 0.0036, 23.9277, 0.3592, 1.2488, 0.0017, 7.2941, 0.1608 -0.9.0, 22/05/2024 22:15:26, 0.9568, 0.0401, 0.0505, 0.0005, 0.1598, 0.0029, 9.3965, 0.0572, 0.4906, 0.0023, 1.4464, 0.0674, 0.4580, 0.0164, 0.0339, 0.0003, 0.0993, 0.0012, 4.4166, 0.0646, 0.3087, 0.0043, 0.7972, 0.0071, 1.6945, 0.2623, 0.0890, 0.0012, 0.2536, 0.0004, 19.7165, 0.1345, 1.1869, 0.0065, 3.1730, 0.0257, 1.6580, 0.0074, 0.0912, 0.0001, 0.4899, 0.0083, 22.9837, 0.2493, 1.2295, 0.0061, 6.4824, 0.0413 -0.10.2, 08/11/2024 11:02:10, 0.9853, 0.0169, 0.0553, 0.0007, 0.1699, 0.0033, 9.9766, 0.0900, 0.5358, 0.0034, 1.5520, 0.0278, 0.4402, 0.0089, 0.0348, 0.0008, 0.1026, 0.0024, 4.3588, 0.0575, 0.3116, 0.0045, 0.7952, 0.0149, 1.4109, 0.0202, 0.0941, 0.0009, 0.2507, 0.0039, 19.2016, 0.1355, 1.2542, 0.0158, 3.1896, 0.0388, 1.6382, 0.0208, 0.0963, 0.0011, 0.4927, 0.0082, 22.6130, 0.3102, 1.2996, 0.0167, 6.5094, 0.1422 +0.6.0.dev3, 27/07/2023 16:34:21,1.1226,0.019,0.1162,0.0008,0.1791,0.0025,11.075,0.0218,0.6586,0.0008,1.5557,0.0078,0.5142,0.0022,0.0931,0.0006,0.1035,0.0012,4.9625,0.0442,0.4232,0.0004,0.8202,0.0061,1.6115,0.0232,0.1726,0.0005,0.2734,0.0018,22.0793,0.2389,1.713,0.0386,3.5447,0.0375,1.9516,0.0485,0.1859,0.0016,0.4922,0.0014,26.6386,0.4357,1.7423,0.0134,6.7022,0.0442 +0.6.0a4, 27/07/2023 19:01:55,1.1085,0.028,0.1259,0.0038,0.1928,0.0068,10.5592,0.1295,0.726,0.0161,1.9403,0.1159,0.5095,0.0229,0.0981,0.0039,0.1154,0.0031,5.1162,0.2334,0.4771,0.0345,0.9215,0.041,1.5993,0.0191,0.1972,0.0056,0.3029,0.0043,21.769,0.3977,1.8171,0.0565,3.9987,0.0936,1.9748,0.124,0.2101,0.0042,0.547,0.0321,25.2882,0.2939,1.9768,0.0476,7.2745,0.106 +0.7.0.dev7, 27/08/2023 01:13:33,1.0344,0.0015,0.0966,0.0002,0.167,0.0005,10.2972,0.015,0.5214,0.0006,1.5239,0.0135,0.4878,0.0017,0.0772,0.0001,0.0991,0.0005,4.5979,0.0411,0.3331,0.0003,0.8044,0.0036,1.4902,0.0025,0.1425,0.0003,0.2587,0.0039,20.1369,0.0811,1.2903,0.0119,3.3198,0.0182,1.7607,0.008,0.1521,0.0002,0.4969,0.0036,24.0781,0.1145,1.3241,0.0021,6.6531,0.0005 +0.7.0a1, 27/08/2023 01:23:48,1.0094,0.003,0.0955,0.0002,0.166,0.0003,10.0515,0.1271,0.5152,0.0038,1.6281,0.1728,0.4916,0.0152,0.0772,0.0003,0.1002,0.0004,4.5604,0.0592,0.3398,0.0057,0.7978,0.0034,1.503,0.0145,0.1439,0.0036,0.2601,0.0077,20.6049,0.3711,1.2741,0.0087,3.3549,0.0756,1.7522,0.0166,0.1538,0.0012,0.4985,0.0037,23.7129,0.0492,1.3207,0.0154,6.6875,0.0549 +0.7.0a6, 28/08/2023 15:54:30,1.0249,0.0023,0.1009,0.0001,0.1745,0.0003,10.0953,0.0187,0.5086,0.0004,1.6063,0.0157,0.4882,0.0005,0.0831,0.0001,0.1019,0.0039,4.6144,0.0984,0.3383,0.0006,0.7983,0.0067,1.4988,0.0178,0.1394,0.0006,0.2681,0.0004,20.168,0.099,1.2133,0.0049,3.4577,0.0201,1.7582,0.0131,0.149,0.0031,0.5073,0.0059,24.8074,0.4213,1.2755,0.0208,6.5607,0.0177 +0.7.1, 30/08/2023 13:06:08,1.0108,0.0108,0.093,0.0004,0.1709,0.0004,10.0508,0.0336,0.4942,0.0005,1.5619,0.0081,0.4779,0.0045,0.0741,0.0001,0.0993,0.0009,4.5178,0.0105,0.3211,0.0018,0.791,0.007,1.4697,0.0163,0.1282,0.0002,0.2644,0.0022,20.0282,0.2074,1.1535,0.0006,3.3897,0.0012,1.7311,0.0088,0.1364,0.0027,0.4774,0.0019,23.5503,0.0176,1.1954,0.0037,6.4767,0.0802 +0.8.0, 06/09/2023 15:03:15,0.9615,0.0011,0.0561,0.0001,0.1602,0.0004,9.8846,0.1049,0.4796,0.001,1.4545,0.0154,0.4413,0.0005,0.0376,0.0001,0.0953,0.0001,4.3959,0.017,0.289,0.0007,0.7862,0.0168,1.4213,0.0046,0.0937,0.0005,0.2464,0.0012,19.5317,0.0414,1.1684,0.0054,3.1531,0.0143,1.6563,0.0055,0.0989,0.0018,0.4797,0.0064,22.9818,0.1217,1.2122,0.025,6.4178,0.0221 +0.8.3, 07/10/2023 02:40:03,0.9727,0.0033,0.0587,0.0014,0.1625,0.0006,9.9439,0.0246,0.499,0.007,2.6214,0.0527,0.4393,0.0008,0.04,0.0006,0.1034,0.0063,4.472,0.1096,0.3114,0.0025,1.1428,0.0021,1.4298,0.0046,0.0987,0.0009,0.244,0.0019,21.2338,0.3276,1.7444,0.0077,4.39,0.0738,1.6848,0.028,0.1039,0.0003,0.4644,0.0006,25.3711,0.1346,2.2809,0.0329,7.3621,0.0222 +0.8.4, 18/10/2023 12:49:04,0.9453,0.0036,0.0574,0.0012,0.1718,0.007,9.9086,0.1287,0.4833,0.0013,1.4208,0.006,0.4293,0.0016,0.0383,0.0001,0.0956,0.0006,4.2518,0.0123,0.2944,0.0001,0.7605,0.0005,1.3829,0.0014,0.0931,0.0001,0.2438,0.0003,19.2126,0.0622,1.1729,0.0003,3.1186,0.0861,1.6221,0.0111,0.0957,0,0.4634,0.0006,22.332,0.0879,1.2067,0.0012,6.1291,0.0053 +0.8.6, 13/02/2024 17:08:45,0.9814,0.0156,0.0611,0.0001,0.164,0.0017,10.2798,0.4311,0.5307,0.0079,1.48,0.0021,0.4434,0.0036,0.042,0.0005,0.0991,0,4.4219,0.0575,0.3169,0.0014,0.7947,0.0034,1.4053,0.0155,0.0973,0.0004,0.2517,0.0009,19.6548,0.354,1.2133,0.0019,3.1887,0.0088,1.6764,0.0156,0.1001,0.0001,0.525,0.0036,23.9277,0.3592,1.2488,0.0017,7.2941,0.1608 +0.9.0, 22/05/2024 22:15:26,0.9568,0.0401,0.0505,0.0005,0.1598,0.0029,9.3965,0.0572,0.4906,0.0023,1.4464,0.0674,0.458,0.0164,0.0339,0.0003,0.0993,0.0012,4.4166,0.0646,0.3087,0.0043,0.7972,0.0071,1.6945,0.2623,0.089,0.0012,0.2536,0.0004,19.7165,0.1345,1.1869,0.0065,3.173,0.0257,1.658,0.0074,0.0912,0.0001,0.4899,0.0083,22.9837,0.2493,1.2295,0.0061,6.4824,0.0413 +0.10.2, 08/11/2024 11:02:10,0.9853,0.0169,0.0553,0.0007,0.1699,0.0033,9.9766,0.09,0.5358,0.0034,1.552,0.0278,0.4402,0.0089,0.0348,0.0008,0.1026,0.0024,4.3588,0.0575,0.3116,0.0045,0.7952,0.0149,1.4109,0.0202,0.0941,0.0009,0.2507,0.0039,19.2016,0.1355,1.2542,0.0158,3.1896,0.0388,1.6382,0.0208,0.0963,0.0011,0.4927,0.0082,22.613,0.3102,1.2996,0.0167,6.5094,0.1422 +"After 0.11.0 Changes were made to functions: ""cython"" was `cyrk_ode` now is `pysolve_ivp`. ""CySolver"" was `CySolver` class method now is `cysolve_ivp`. Numba did not change.",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/Performance/cyrk_performance-RK23.csv b/Performance/cyrk_performance-RK23.csv index 3b365a2..29e4fd3 100644 --- a/Performance/cyrk_performance-RK23.csv +++ b/Performance/cyrk_performance-RK23.csv @@ -9,15 +9,16 @@ CyRK Version, Run-on Date, cython (avg), cython (std),CySolver (avg),CySolver (s 0.5.0a3.dev0, 28/03/2023 12:41:14,56.6555,87.5021,#N/A,#N/A,0.8593,0.0037,60.747,0.6072,#N/A,#N/A,9.5173,0.0707,54.8074,87.2917,#N/A,#N/A,0.6171,0.0381,37.755,0.2152,#N/A,#N/A,5.8001,0.0471,59.0615,89.1476,#N/A,#N/A,1.136,0.0656,119.4322,6.3822,#N/A,#N/A,21.4468,0.8531,56.7765,84.3508,#N/A,#N/A,1150.406,1989.3127,140.5121,0.2122,#N/A,#N/A,38.2787,0.2288 0.5.0a4.dev1, 28/03/2023 15:01:57,59.3399,91.9592,#N/A,#N/A,0.8934,0.0096,63.7064,1.3348,#N/A,#N/A,12.8172,0.4395,53.3725,85.1252,#N/A,#N/A,0.6898,0.0364,40.9606,0.8638,#N/A,#N/A,6.0094,0.0111,6.9182,0.0561,#N/A,#N/A,1.0516,0.0078,119.1599,0.1658,#N/A,#N/A,24.0576,0.5495,57.3195,84.8271,#N/A,#N/A,1236.1289,2137.0688,147.8034,2.0147,#N/A,#N/A,40.1323,0.5919 0.5.3, 29/03/2023 18:52:55,60.0504,92.5845,#N/A,#N/A,0.977,0.0467,64.0294,1.744,#N/A,#N/A,11.0573,0.6993,3.9994,0.0556,#N/A,#N/A,0.6373,0.0171,40.7177,1.2901,#N/A,#N/A,6.3661,0.082,55.8262,84.3719,#N/A,#N/A,1.0868,0.018,120.5543,2.1751,#N/A,#N/A,24.5811,0.6446,58.4356,86.3555,#N/A,#N/A,1228.348,2124.0493,147.4642,0.8251,#N/A,#N/A,41.4584,0.5506 -0.6.0.dev3, 27/07/2023 16:32:01, 57.1791, 87.5186, 0.3494, 0.0037, 0.8585, 0.0057, 63.9107, 0.2997, 3.0236, 0.0515, 9.3455, 0.1826, 4.1405, 0.0975, 0.2908, 0.0022, 0.6355, 0.0140, 40.3881, 0.2355, 2.4721, 0.0113, 6.8997, 0.2983, 7.1722, 0.1723, 0.4408, 0.0036, 0.9994, 0.0144, 120.0959, 0.8422, 6.7832, 0.0889, 20.7693, 0.1457, 59.6151, 87.9523, 0.5158, 0.0192, 1295.4767, 2240.3460, 148.6622, 1.4348, 8.6331, 0.0093, 36.2625, 0.2111 -0.6.0a4, 27/07/2023 18:59:35, 58.6676, 93.5182, 0.3900, 0.0126, 0.9633, 0.0266, 45.5975, 1.1797, 3.1403, 0.0138, 10.5973, 0.2912, 55.7416, 91.5188, 0.3192, 0.0082, 0.6436, 0.0150, 28.7644, 0.9448, 2.6510, 0.0471, 6.7978, 0.2528, 56.1384, 88.3532, 0.4677, 0.0044, 1.0281, 0.0150, 85.8300, 3.9745, 7.5308, 0.1815, 23.5595, 0.4995, 58.8041, 91.3233, 0.5090, 0.0065, 1386.0843, 2397.3464, 106.3878, 1.1220, 8.5241, 0.3540, 38.2326, 0.7181 -0.7.0.dev7, 27/08/2023 01:11:14, 4.8113, 0.1391, 0.3115, 0.0004, 0.8552, 0.0036, 45.1068, 0.6880, 2.6107, 0.0100, 9.8739, 0.6100, 2.8775, 0.0067, 0.2522, 0.0009, 0.6097, 0.0030, 28.9372, 0.8937, 2.0232, 0.0052, 6.1300, 0.1653, 4.9043, 0.0304, 0.3955, 0.0062, 0.9908, 0.0052, 82.1498, 1.0284, 5.9321, 0.0159, 20.9002, 0.4163, 5.8702, 0.1321, 0.4181, 0.0009, 1183.0684, 2046.0616, 100.8534, 0.6015, 8.7392, 0.1784, 35.7355, 0.3580 -0.7.0a1, 27/08/2023 01:21:31, 4.5590, 0.0620, 0.3149, 0.0066, 0.8748, 0.0195, 43.6144, 0.1123, 2.6232, 0.0313, 9.2402, 0.1733, 2.8469, 0.0036, 0.2520, 0.0032, 0.6048, 0.0044, 27.8211, 0.1951, 2.0357, 0.0363, 6.3501, 0.0787, 4.8713, 0.0372, 0.3889, 0.0021, 1.0088, 0.0276, 81.8194, 0.1423, 5.8619, 0.0337, 20.3528, 0.1749, 5.7740, 0.0594, 0.4174, 0.0006, 1139.2328, 1970.1475, 100.0822, 0.6212, 7.8009, 0.0816, 36.2940, 1.2287 -0.7.0a6, 28/08/2023 15:52:13, 4.5831, 0.0535, 0.3040, 0.0014, 0.8701, 0.0066, 44.4575, 0.1312, 2.5780, 0.2150, 10.0452, 0.5722, 2.8942, 0.0355, 0.2581, 0.0066, 0.6178, 0.0021, 28.1092, 0.4533, 2.0150, 0.0244, 6.2654, 0.0942, 4.8829, 0.0073, 0.3678, 0.0006, 1.0106, 0.0144, 83.3562, 0.5923, 5.4591, 0.0302, 22.3938, 0.7174, 5.8152, 0.0915, 0.3946, 0.0008, 1267.8939, 2192.9856, 102.3280, 1.0445, 7.0396, 0.2830, 36.1755, 0.3725 -0.7.1, 30/08/2023 13:03:46, 4.5783, 0.0691, 0.2913, 0.0003, 0.8521, 0.0037, 44.6829, 0.8883, 2.4223, 0.0259, 9.0549, 0.2553, 2.8797, 0.0312, 0.2429, 0.0002, 0.6060, 0.0057, 27.9517, 0.2481, 1.9483, 0.0099, 5.9059, 0.0472, 4.7863, 0.0076, 0.3516, 0.0008, 0.9815, 0.0151, 81.9632, 0.6779, 5.3389, 0.0114, 20.6745, 0.4038, 5.6843, 0.0111, 0.3861, 0.0015, 1229.8100, 2127.0902, 99.4341, 0.2647, 6.5017, 0.2603, 35.6680, 0.7413 -0.8.0, 06/09/2023 15:00:58, 4.4794, 0.0786, 0.2262, 0.0003, 0.8199, 0.0021, 43.1476, 0.0854, 2.1466, 0.0018, 10.1946, 0.1933, 2.7552, 0.0105, 0.1866, 0.0004, 0.5903, 0.0024, 26.9694, 0.1524, 1.7797, 0.0257, 5.9678, 0.0812, 4.7003, 0.0324, 0.2855, 0.0005, 0.9508, 0.0055, 80.1011, 0.3480, 4.8504, 0.0219, 20.8530, 0.2461, 5.5239, 0.0051, 0.3178, 0.0014, 1270.6912, 2197.9259, 95.6354, 0.1723, 5.4006, 0.0797, 35.0990, 0.8415 -0.8.3, 07/10/2023 02:37:45, 4.5212, 0.1075, 0.2681, 0.0021, 0.7992, 0.0038, 43.9629, 0.3217, 2.5955, 0.0502, 9.2842, 0.4116, 2.7602, 0.0088, 0.2146, 0.0037, 0.5896, 0.0074, 27.1210, 0.1858, 2.0566, 0.0327, 5.7936, 0.0150, 4.8923, 0.0594, 0.3719, 0.0011, 0.9807, 0.0023, 82.6179, 0.6252, 6.0628, 0.0336, 20.2684, 0.2082, 5.6639, 0.0115, 0.9587, 0.2834, 1525.4251, 2635.4115, 105.9372, 0.3232, 14.0169, 0.0614, 45.0599, 0.8249 -0.8.4, 18/10/2023 12:46:46, 4.4202, 0.0673, 0.2500, 0.0004, 0.8115, 0.0034, 43.1191, 0.0775, 2.4081, 0.0282, 10.0251, 0.7074, 2.7552, 0.0436, 0.2110, 0.0039, 0.5987, 0.0058, 26.5597, 0.2133, 1.9887, 0.0201, 5.8675, 0.1112, 4.7007, 0.0078, 0.3080, 0.0014, 0.9944, 0.0238, 81.1241, 0.3424, 5.5864, 0.7125, 19.9567, 0.1538, 5.4119, 0.0106, 0.3208, 0.0010, 1322.6941, 2287.9898, 96.8733, 2.3521, 5.5968, 0.1162, 36.6713, 0.3267 -0.8.6, 13/02/2024 17:06:17, 4.5290, 0.0708, 0.2875, 0.0033, 0.9640, 0.1354, 43.6531, 0.0926, 2.8374, 0.0722, 8.9517, 0.2453, 2.7551, 0.0064, 0.2243, 0.0006, 0.6140, 0.0013, 27.0492, 0.2018, 2.1363, 0.0025, 5.9659, 0.0384, 4.6135, 0.0079, 0.3487, 0.0003, 0.9485, 0.0007, 79.4872, 0.4035, 5.9439, 0.1090, 19.9015, 0.1388, 5.6296, 0.0271, 0.3621, 0.0012, 1454.8195, 2516.6233, 96.8326, 0.5951, 6.1248, 0.0257, 38.7549, 0.4298 -0.9.0, 22/05/2024 22:13:06, 4.4185, 0.0173, 0.2704, 0.0010, 0.8239, 0.0039, 44.0850, 0.4116, 2.6680, 0.0093, 9.1672, 0.2094, 2.7680, 0.0083, 0.2131, 0.0008, 0.6048, 0.0029, 27.4433, 0.1003, 2.0956, 0.0145, 6.7046, 0.1153, 4.6866, 0.0309, 0.3370, 0.0008, 0.9558, 0.0036, 80.4914, 0.3251, 5.7944, 0.0229, 20.3825, 0.1789, 5.5414, 0.0329, 0.3445, 0.0016, 1365.9393, 2362.3685, 98.7604, 2.1827, 6.2220, 0.0443, 38.7668, 0.8054 -0.10.2, 08/11/2024 10:59:41, 69.5788, 112.0606, 0.2889, 0.0047, 0.8876, 0.0190, 46.7394, 1.6160, 2.8167, 0.0156, 10.8890, 0.7678, 55.4932, 91.2530, 0.2294, 0.0037, 0.6269, 0.0189, 29.2544, 0.9478, 2.2476, 0.0679, 6.5125, 0.2182, 56.9203, 90.3589, 0.3629, 0.0033, 1.0035, 0.0335, 82.3765, 0.9914, 6.1898, 0.1192, 21.0103, 0.4202, 62.2463, 97.7605, 0.3806, 0.0013, 1647.3621, 2850.1921, 99.4554, 2.4595, 6.9598, 0.3918, 40.5718, 2.4595 +0.6.0.dev3, 27/07/2023 16:32:01,57.1791,87.5186,0.3494,0.0037,0.8585,0.0057,63.9107,0.2997,3.0236,0.0515,9.3455,0.1826,4.1405,0.0975,0.2908,0.0022,0.6355,0.014,40.3881,0.2355,2.4721,0.0113,6.8997,0.2983,7.1722,0.1723,0.4408,0.0036,0.9994,0.0144,120.0959,0.8422,6.7832,0.0889,20.7693,0.1457,59.6151,87.9523,0.5158,0.0192,1295.4767,2240.346,148.6622,1.4348,8.6331,0.0093,36.2625,0.2111 +0.6.0a4, 27/07/2023 18:59:35,58.6676,93.5182,0.39,0.0126,0.9633,0.0266,45.5975,1.1797,3.1403,0.0138,10.5973,0.2912,55.7416,91.5188,0.3192,0.0082,0.6436,0.015,28.7644,0.9448,2.651,0.0471,6.7978,0.2528,56.1384,88.3532,0.4677,0.0044,1.0281,0.015,85.83,3.9745,7.5308,0.1815,23.5595,0.4995,58.8041,91.3233,0.509,0.0065,1386.0843,2397.3464,106.3878,1.122,8.5241,0.354,38.2326,0.7181 +0.7.0.dev7, 27/08/2023 01:11:14,4.8113,0.1391,0.3115,0.0004,0.8552,0.0036,45.1068,0.688,2.6107,0.01,9.8739,0.61,2.8775,0.0067,0.2522,0.0009,0.6097,0.003,28.9372,0.8937,2.0232,0.0052,6.13,0.1653,4.9043,0.0304,0.3955,0.0062,0.9908,0.0052,82.1498,1.0284,5.9321,0.0159,20.9002,0.4163,5.8702,0.1321,0.4181,0.0009,1183.0684,2046.0616,100.8534,0.6015,8.7392,0.1784,35.7355,0.358 +0.7.0a1, 27/08/2023 01:21:31,4.559,0.062,0.3149,0.0066,0.8748,0.0195,43.6144,0.1123,2.6232,0.0313,9.2402,0.1733,2.8469,0.0036,0.252,0.0032,0.6048,0.0044,27.8211,0.1951,2.0357,0.0363,6.3501,0.0787,4.8713,0.0372,0.3889,0.0021,1.0088,0.0276,81.8194,0.1423,5.8619,0.0337,20.3528,0.1749,5.774,0.0594,0.4174,0.0006,1139.2328,1970.1475,100.0822,0.6212,7.8009,0.0816,36.294,1.2287 +0.7.0a6, 28/08/2023 15:52:13,4.5831,0.0535,0.304,0.0014,0.8701,0.0066,44.4575,0.1312,2.578,0.215,10.0452,0.5722,2.8942,0.0355,0.2581,0.0066,0.6178,0.0021,28.1092,0.4533,2.015,0.0244,6.2654,0.0942,4.8829,0.0073,0.3678,0.0006,1.0106,0.0144,83.3562,0.5923,5.4591,0.0302,22.3938,0.7174,5.8152,0.0915,0.3946,0.0008,1267.8939,2192.9856,102.328,1.0445,7.0396,0.283,36.1755,0.3725 +0.7.1, 30/08/2023 13:03:46,4.5783,0.0691,0.2913,0.0003,0.8521,0.0037,44.6829,0.8883,2.4223,0.0259,9.0549,0.2553,2.8797,0.0312,0.2429,0.0002,0.606,0.0057,27.9517,0.2481,1.9483,0.0099,5.9059,0.0472,4.7863,0.0076,0.3516,0.0008,0.9815,0.0151,81.9632,0.6779,5.3389,0.0114,20.6745,0.4038,5.6843,0.0111,0.3861,0.0015,1229.81,2127.0902,99.4341,0.2647,6.5017,0.2603,35.668,0.7413 +0.8.0, 06/09/2023 15:00:58,4.4794,0.0786,0.2262,0.0003,0.8199,0.0021,43.1476,0.0854,2.1466,0.0018,10.1946,0.1933,2.7552,0.0105,0.1866,0.0004,0.5903,0.0024,26.9694,0.1524,1.7797,0.0257,5.9678,0.0812,4.7003,0.0324,0.2855,0.0005,0.9508,0.0055,80.1011,0.348,4.8504,0.0219,20.853,0.2461,5.5239,0.0051,0.3178,0.0014,1270.6912,2197.9259,95.6354,0.1723,5.4006,0.0797,35.099,0.8415 +0.8.3, 07/10/2023 02:37:45,4.5212,0.1075,0.2681,0.0021,0.7992,0.0038,43.9629,0.3217,2.5955,0.0502,9.2842,0.4116,2.7602,0.0088,0.2146,0.0037,0.5896,0.0074,27.121,0.1858,2.0566,0.0327,5.7936,0.015,4.8923,0.0594,0.3719,0.0011,0.9807,0.0023,82.6179,0.6252,6.0628,0.0336,20.2684,0.2082,5.6639,0.0115,0.9587,0.2834,1525.4251,2635.4115,105.9372,0.3232,14.0169,0.0614,45.0599,0.8249 +0.8.4, 18/10/2023 12:46:46,4.4202,0.0673,0.25,0.0004,0.8115,0.0034,43.1191,0.0775,2.4081,0.0282,10.0251,0.7074,2.7552,0.0436,0.211,0.0039,0.5987,0.0058,26.5597,0.2133,1.9887,0.0201,5.8675,0.1112,4.7007,0.0078,0.308,0.0014,0.9944,0.0238,81.1241,0.3424,5.5864,0.7125,19.9567,0.1538,5.4119,0.0106,0.3208,0.001,1322.6941,2287.9898,96.8733,2.3521,5.5968,0.1162,36.6713,0.3267 +0.8.6, 13/02/2024 17:06:17,4.529,0.0708,0.2875,0.0033,0.964,0.1354,43.6531,0.0926,2.8374,0.0722,8.9517,0.2453,2.7551,0.0064,0.2243,0.0006,0.614,0.0013,27.0492,0.2018,2.1363,0.0025,5.9659,0.0384,4.6135,0.0079,0.3487,0.0003,0.9485,0.0007,79.4872,0.4035,5.9439,0.109,19.9015,0.1388,5.6296,0.0271,0.3621,0.0012,1454.8195,2516.6233,96.8326,0.5951,6.1248,0.0257,38.7549,0.4298 +0.9.0, 22/05/2024 22:13:06,4.4185,0.0173,0.2704,0.001,0.8239,0.0039,44.085,0.4116,2.668,0.0093,9.1672,0.2094,2.768,0.0083,0.2131,0.0008,0.6048,0.0029,27.4433,0.1003,2.0956,0.0145,6.7046,0.1153,4.6866,0.0309,0.337,0.0008,0.9558,0.0036,80.4914,0.3251,5.7944,0.0229,20.3825,0.1789,5.5414,0.0329,0.3445,0.0016,1365.9393,2362.3685,98.7604,2.1827,6.222,0.0443,38.7668,0.8054 +0.10.2, 08/11/2024 10:59:41,69.5788,112.0606,0.2889,0.0047,0.8876,0.019,46.7394,1.616,2.8167,0.0156,10.889,0.7678,55.4932,91.253,0.2294,0.0037,0.6269,0.0189,29.2544,0.9478,2.2476,0.0679,6.5125,0.2182,56.9203,90.3589,0.3629,0.0033,1.0035,0.0335,82.3765,0.9914,6.1898,0.1192,21.0103,0.4202,62.2463,97.7605,0.3806,0.0013,1647.3621,2850.1921,99.4554,2.4595,6.9598,0.3918,40.5718,2.4595 +"After 0.11.0 Changes were made to functions: ""cython"" was `cyrk_ode` now is `pysolve_ivp`. ""CySolver"" was `CySolver` class method now is `cysolve_ivp`. Numba did not change.",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/Performance/cyrk_performance-RK45.csv b/Performance/cyrk_performance-RK45.csv index bb5baf1..bb3bc99 100644 --- a/Performance/cyrk_performance-RK45.csv +++ b/Performance/cyrk_performance-RK45.csv @@ -9,15 +9,16 @@ CyRK Version, Run-on Date, cython (avg), cython (std),CySolver (avg),CySolver (s 0.5.0a3.dev0, 28/03/2023 12:42:18,1.4355,0.0038,#N/A,#N/A,0.2273,0.0006,13.8784,0.0545,#N/A,#N/A,2.0894,0.0244,1.0099,0.0026,#N/A,#N/A,0.1802,0.0007,9.5253,0.0467,#N/A,#N/A,1.574,0.0116,1.9879,0.0359,#N/A,#N/A,0.3394,0.0033,28.5659,0.1013,#N/A,#N/A,4.725,0.0673,2.3823,0.0177,#N/A,#N/A,0.6134,0.0056,34.5347,0.1064,#N/A,#N/A,8.6572,0.0694 0.5.0a4.dev1, 28/03/2023 15:03:00,1.6564,0.0976,#N/A,#N/A,0.2369,0.0042,14.2637,0.2702,#N/A,#N/A,2.4129,0.229,1.0572,0.0308,#N/A,#N/A,0.1929,0.0102,9.8867,0.2293,#N/A,#N/A,1.6442,0.0303,2.055,0.0588,#N/A,#N/A,0.3415,0.0025,29.0485,0.0882,#N/A,#N/A,4.6925,0.0758,2.438,0.0456,#N/A,#N/A,0.6565,0.0238,35.9287,0.5693,#N/A,#N/A,9.5987,0.8587 0.5.3, 29/03/2023 18:53:59,1.495,0.022,#N/A,#N/A,0.2382,0.0043,14.346,0.2391,#N/A,#N/A,2.1512,0.0124,1.0725,0.0588,#N/A,#N/A,0.1908,0.0059,9.9641,0.2233,#N/A,#N/A,1.6407,0.0169,2.098,0.0337,#N/A,#N/A,0.3471,0.0034,30.948,0.4268,#N/A,#N/A,5.0067,0.1861,2.4647,0.0475,#N/A,#N/A,0.6474,0.0015,37.4663,0.932,#N/A,#N/A,9.5284,0.2498 -0.6.0.dev3, 27/07/2023 16:33:27, 1.4976, 0.0078, 0.1263, 0.0020, 0.2183, 0.0048, 14.6415, 0.1659, 0.7735, 0.0326, 2.1201, 0.1075, 1.0564, 0.0226, 0.1215, 0.0014, 0.1799, 0.0041, 10.1866, 0.1168, 0.7128, 0.0174, 1.5160, 0.0183, 2.0563, 0.0244, 0.1735, 0.0048, 0.3245, 0.0064, 30.8844, 1.3249, 1.7317, 0.0159, 4.3405, 0.0464, 2.4736, 0.0144, 0.1848, 0.0019, 0.5841, 0.0089, 36.2224, 0.1844, 1.8375, 0.0131, 8.4909, 0.0345 -0.6.0a4, 27/07/2023 19:01:00, 1.3026, 0.0252, 0.1270, 0.0003, 0.2370, 0.0077, 13.1688, 0.2770, 0.7357, 0.0104, 2.0835, 0.0676, 0.9441, 0.0522, 0.1292, 0.0056, 0.1934, 0.0100, 8.5366, 0.0426, 0.7844, 0.0494, 1.6277, 0.0193, 1.7297, 0.0254, 0.1885, 0.0038, 0.3590, 0.0067, 25.4444, 0.1438, 2.2064, 0.1480, 5.1500, 0.1446, 2.1667, 0.1251, 0.2131, 0.0095, 0.6540, 0.0405, 32.0478, 1.1447, 2.0710, 0.0607, 9.6978, 0.4326 -0.7.0.dev7, 27/08/2023 01:12:37, 1.2641, 0.0062, 0.1031, 0.0019, 0.2173, 0.0053, 12.2412, 0.0395, 0.5690, 0.0008, 1.9169, 0.0142, 0.8811, 0.0057, 0.0958, 0.0004, 0.1712, 0.0007, 8.4969, 0.0834, 0.5321, 0.0026, 1.4975, 0.0028, 1.6713, 0.0148, 0.1467, 0.0011, 0.3058, 0.0012, 26.5646, 1.9359, 1.5104, 0.0006, 4.2413, 0.0166, 2.0245, 0.0408, 0.1609, 0.0097, 0.5685, 0.0021, 29.3066, 0.1643, 1.5506, 0.0036, 8.2832, 0.0310 -0.7.0a1, 27/08/2023 01:22:52, 1.2283, 0.0057, 0.1010, 0.0001, 0.2117, 0.0010, 11.9199, 0.0385, 0.5796, 0.0084, 1.8945, 0.0104, 0.8679, 0.0094, 0.0958, 0.0005, 0.1726, 0.0033, 8.2955, 0.0659, 0.5338, 0.0010, 1.4996, 0.0135, 1.6907, 0.0290, 0.1458, 0.0004, 0.3058, 0.0036, 24.5503, 0.1658, 1.5368, 0.0370, 4.3002, 0.1004, 2.0103, 0.0434, 0.1557, 0.0013, 0.5757, 0.0059, 28.7147, 0.0734, 1.5439, 0.0018, 8.2652, 0.0295 -0.7.0a6, 28/08/2023 15:53:37, 1.2422, 0.0017, 0.1071, 0.0001, 0.2161, 0.0008, 12.0481, 0.0702, 0.5705, 0.0113, 2.0538, 0.0396, 0.8788, 0.0042, 0.1046, 0.0002, 0.1716, 0.0003, 8.3498, 0.0205, 0.5435, 0.0008, 1.4974, 0.0019, 1.6924, 0.0167, 0.1459, 0.0001, 0.3222, 0.0085, 24.6399, 0.0578, 1.3955, 0.0234, 4.2863, 0.0472, 1.9800, 0.0062, 0.1529, 0.0005, 0.5698, 0.0008, 29.2582, 0.4323, 1.4362, 0.0020, 8.3727, 0.1087 -0.7.1, 30/08/2023 13:05:11, 1.2473, 0.0174, 0.0985, 0.0005, 0.2110, 0.0020, 12.1557, 0.1808, 0.5338, 0.0012, 1.9231, 0.0144, 0.8757, 0.0034, 0.0959, 0.0000, 0.1693, 0.0015, 8.4225, 0.0678, 0.5282, 0.0034, 1.4849, 0.0082, 1.6579, 0.0112, 0.1361, 0.0009, 0.3019, 0.0024, 24.1373, 0.0868, 1.3549, 0.0143, 4.1917, 0.0442, 1.9731, 0.0101, 0.1435, 0.0012, 0.5592, 0.0011, 28.7442, 0.0958, 1.3859, 0.0005, 8.1105, 0.0455 -0.8.0, 06/09/2023 15:02:20, 1.2080, 0.0171, 0.0582, 0.0001, 0.2023, 0.0008, 11.8032, 0.0256, 0.4807, 0.0012, 1.8475, 0.0119, 0.8318, 0.0034, 0.0569, 0.0002, 0.1659, 0.0003, 8.1177, 0.0578, 0.4684, 0.0018, 1.4517, 0.0058, 1.6145, 0.0023, 0.0921, 0.0005, 0.2928, 0.0011, 23.6490, 0.0748, 1.2090, 0.0118, 4.0150, 0.0179, 1.8902, 0.0034, 0.0969, 0.0009, 0.5533, 0.0009, 27.6976, 0.0946, 1.2947, 0.0416, 7.9394, 0.0140 -0.8.3, 07/10/2023 02:39:08, 1.2268, 0.0292, 0.0670, 0.0002, 0.2042, 0.0002, 13.0410, 0.0369, 1.0062, 0.0659, 2.6633, 0.0087, 0.8234, 0.0038, 0.0631, 0.0002, 0.1648, 0.0001, 8.8861, 0.0427, 0.7835, 0.0085, 2.1426, 0.0023, 1.6358, 0.0049, 0.1139, 0.0050, 0.6746, 0.0009, 26.8571, 0.1145, 3.0055, 0.0209, 6.6462, 0.1028, 1.9187, 0.0032, 0.1280, 0.0045, 0.9513, 0.0050, 32.9776, 0.3770, 4.3772, 0.1087, 10.9500, 0.0345 -0.8.4, 18/10/2023 12:48:10, 1.1825, 0.0070, 0.0622, 0.0001, 0.2012, 0.0008, 11.7285, 0.0223, 0.5412, 0.0092, 1.8985, 0.0613, 0.8106, 0.0029, 0.0601, 0.0012, 0.1661, 0.0004, 7.9235, 0.0105, 0.4982, 0.0007, 1.4473, 0.0029, 1.6015, 0.0058, 0.0981, 0.0003, 0.2963, 0.0039, 23.5090, 0.0487, 1.3260, 0.0138, 4.0189, 0.0470, 1.8400, 0.0072, 0.1011, 0.0002, 0.5443, 0.0013, 27.1240, 0.0951, 1.3706, 0.0024, 7.7848, 0.0081 -0.8.6, 13/02/2024 17:07:48, 1.1940, 0.0018, 0.0656, 0.0001, 0.2073, 0.0006, 12.0870, 0.1605, 0.5541, 0.0014, 1.8434, 0.0014, 0.8268, 0.0006, 0.0641, 0.0001, 0.1746, 0.0037, 8.1272, 0.0545, 0.5381, 0.0006, 1.4994, 0.0056, 1.5900, 0.0112, 0.0984, 0.0001, 0.2944, 0.0007, 23.5061, 0.1064, 1.2961, 0.0085, 3.9463, 0.0073, 1.8949, 0.0107, 0.1017, 0.0001, 0.6063, 0.0029, 28.0150, 0.1407, 1.3543, 0.0045, 8.5997, 0.0030 -0.9.0, 22/05/2024 22:14:31, 1.1960, 0.0130, 0.0572, 0.0002, 0.2087, 0.0020, 11.9870, 0.1021, 0.5485, 0.0132, 2.0033, 0.0304, 0.8442, 0.0170, 0.0573, 0.0014, 0.1752, 0.0058, 8.3417, 0.2007, 0.5387, 0.0105, 1.5645, 0.0520, 1.7154, 0.1224, 0.0902, 0.0011, 0.2965, 0.0014, 23.8292, 0.3713, 1.2821, 0.0044, 4.1381, 0.0798, 1.9019, 0.0220, 0.0982, 0.0035, 0.6217, 0.0603, 28.4668, 0.4076, 1.2589, 0.0169, 8.2552, 0.3280 -0.10.2, 08/11/2024 11:01:14, 1.2820, 0.0152, 0.0677, 0.0051, 0.2105, 0.0027, 12.0276, 0.2390, 0.6024, 0.0323, 2.1004, 0.1252, 0.8241, 0.0072, 0.0588, 0.0008, 0.1763, 0.0045, 8.0075, 0.2124, 0.5632, 0.0183, 1.4761, 0.0137, 1.5839, 0.0111, 0.0953, 0.0011, 0.2975, 0.0098, 23.2598, 0.4245, 1.3887, 0.0382, 4.1253, 0.1807, 1.9000, 0.0226, 0.1015, 0.0015, 0.5913, 0.0336, 27.3948, 0.5865, 1.4385, 0.0357, 8.1818, 0.0734 +0.6.0.dev3, 27/07/2023 16:33:27,1.4976,0.0078,0.1263,0.002,0.2183,0.0048,14.6415,0.1659,0.7735,0.0326,2.1201,0.1075,1.0564,0.0226,0.1215,0.0014,0.1799,0.0041,10.1866,0.1168,0.7128,0.0174,1.516,0.0183,2.0563,0.0244,0.1735,0.0048,0.3245,0.0064,30.8844,1.3249,1.7317,0.0159,4.3405,0.0464,2.4736,0.0144,0.1848,0.0019,0.5841,0.0089,36.2224,0.1844,1.8375,0.0131,8.4909,0.0345 +0.6.0a4, 27/07/2023 19:01:00,1.3026,0.0252,0.127,0.0003,0.237,0.0077,13.1688,0.277,0.7357,0.0104,2.0835,0.0676,0.9441,0.0522,0.1292,0.0056,0.1934,0.01,8.5366,0.0426,0.7844,0.0494,1.6277,0.0193,1.7297,0.0254,0.1885,0.0038,0.359,0.0067,25.4444,0.1438,2.2064,0.148,5.15,0.1446,2.1667,0.1251,0.2131,0.0095,0.654,0.0405,32.0478,1.1447,2.071,0.0607,9.6978,0.4326 +0.7.0.dev7, 27/08/2023 01:12:37,1.2641,0.0062,0.1031,0.0019,0.2173,0.0053,12.2412,0.0395,0.569,0.0008,1.9169,0.0142,0.8811,0.0057,0.0958,0.0004,0.1712,0.0007,8.4969,0.0834,0.5321,0.0026,1.4975,0.0028,1.6713,0.0148,0.1467,0.0011,0.3058,0.0012,26.5646,1.9359,1.5104,0.0006,4.2413,0.0166,2.0245,0.0408,0.1609,0.0097,0.5685,0.0021,29.3066,0.1643,1.5506,0.0036,8.2832,0.031 +0.7.0a1, 27/08/2023 01:22:52,1.2283,0.0057,0.101,0.0001,0.2117,0.001,11.9199,0.0385,0.5796,0.0084,1.8945,0.0104,0.8679,0.0094,0.0958,0.0005,0.1726,0.0033,8.2955,0.0659,0.5338,0.001,1.4996,0.0135,1.6907,0.029,0.1458,0.0004,0.3058,0.0036,24.5503,0.1658,1.5368,0.037,4.3002,0.1004,2.0103,0.0434,0.1557,0.0013,0.5757,0.0059,28.7147,0.0734,1.5439,0.0018,8.2652,0.0295 +0.7.0a6, 28/08/2023 15:53:37,1.2422,0.0017,0.1071,0.0001,0.2161,0.0008,12.0481,0.0702,0.5705,0.0113,2.0538,0.0396,0.8788,0.0042,0.1046,0.0002,0.1716,0.0003,8.3498,0.0205,0.5435,0.0008,1.4974,0.0019,1.6924,0.0167,0.1459,0.0001,0.3222,0.0085,24.6399,0.0578,1.3955,0.0234,4.2863,0.0472,1.98,0.0062,0.1529,0.0005,0.5698,0.0008,29.2582,0.4323,1.4362,0.002,8.3727,0.1087 +0.7.1, 30/08/2023 13:05:11,1.2473,0.0174,0.0985,0.0005,0.211,0.002,12.1557,0.1808,0.5338,0.0012,1.9231,0.0144,0.8757,0.0034,0.0959,0,0.1693,0.0015,8.4225,0.0678,0.5282,0.0034,1.4849,0.0082,1.6579,0.0112,0.1361,0.0009,0.3019,0.0024,24.1373,0.0868,1.3549,0.0143,4.1917,0.0442,1.9731,0.0101,0.1435,0.0012,0.5592,0.0011,28.7442,0.0958,1.3859,0.0005,8.1105,0.0455 +0.8.0, 06/09/2023 15:02:20,1.208,0.0171,0.0582,0.0001,0.2023,0.0008,11.8032,0.0256,0.4807,0.0012,1.8475,0.0119,0.8318,0.0034,0.0569,0.0002,0.1659,0.0003,8.1177,0.0578,0.4684,0.0018,1.4517,0.0058,1.6145,0.0023,0.0921,0.0005,0.2928,0.0011,23.649,0.0748,1.209,0.0118,4.015,0.0179,1.8902,0.0034,0.0969,0.0009,0.5533,0.0009,27.6976,0.0946,1.2947,0.0416,7.9394,0.014 +0.8.3, 07/10/2023 02:39:08,1.2268,0.0292,0.067,0.0002,0.2042,0.0002,13.041,0.0369,1.0062,0.0659,2.6633,0.0087,0.8234,0.0038,0.0631,0.0002,0.1648,0.0001,8.8861,0.0427,0.7835,0.0085,2.1426,0.0023,1.6358,0.0049,0.1139,0.005,0.6746,0.0009,26.8571,0.1145,3.0055,0.0209,6.6462,0.1028,1.9187,0.0032,0.128,0.0045,0.9513,0.005,32.9776,0.377,4.3772,0.1087,10.95,0.0345 +0.8.4, 18/10/2023 12:48:10,1.1825,0.007,0.0622,0.0001,0.2012,0.0008,11.7285,0.0223,0.5412,0.0092,1.8985,0.0613,0.8106,0.0029,0.0601,0.0012,0.1661,0.0004,7.9235,0.0105,0.4982,0.0007,1.4473,0.0029,1.6015,0.0058,0.0981,0.0003,0.2963,0.0039,23.509,0.0487,1.326,0.0138,4.0189,0.047,1.84,0.0072,0.1011,0.0002,0.5443,0.0013,27.124,0.0951,1.3706,0.0024,7.7848,0.0081 +0.8.6, 13/02/2024 17:07:48,1.194,0.0018,0.0656,0.0001,0.2073,0.0006,12.087,0.1605,0.5541,0.0014,1.8434,0.0014,0.8268,0.0006,0.0641,0.0001,0.1746,0.0037,8.1272,0.0545,0.5381,0.0006,1.4994,0.0056,1.59,0.0112,0.0984,0.0001,0.2944,0.0007,23.5061,0.1064,1.2961,0.0085,3.9463,0.0073,1.8949,0.0107,0.1017,0.0001,0.6063,0.0029,28.015,0.1407,1.3543,0.0045,8.5997,0.003 +0.9.0, 22/05/2024 22:14:31,1.196,0.013,0.0572,0.0002,0.2087,0.002,11.987,0.1021,0.5485,0.0132,2.0033,0.0304,0.8442,0.017,0.0573,0.0014,0.1752,0.0058,8.3417,0.2007,0.5387,0.0105,1.5645,0.052,1.7154,0.1224,0.0902,0.0011,0.2965,0.0014,23.8292,0.3713,1.2821,0.0044,4.1381,0.0798,1.9019,0.022,0.0982,0.0035,0.6217,0.0603,28.4668,0.4076,1.2589,0.0169,8.2552,0.328 +0.10.2, 08/11/2024 11:01:14,1.282,0.0152,0.0677,0.0051,0.2105,0.0027,12.0276,0.239,0.6024,0.0323,2.1004,0.1252,0.8241,0.0072,0.0588,0.0008,0.1763,0.0045,8.0075,0.2124,0.5632,0.0183,1.4761,0.0137,1.5839,0.0111,0.0953,0.0011,0.2975,0.0098,23.2598,0.4245,1.3887,0.0382,4.1253,0.1807,1.9,0.0226,0.1015,0.0015,0.5913,0.0336,27.3948,0.5865,1.4385,0.0357,8.1818,0.0734 +"After 0.11.0 Changes were made to functions: ""cython"" was `cyrk_ode` now is `pysolve_ivp`. ""CySolver"" was `CySolver` class method now is `cysolve_ivp`. Numba did not change.",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py b/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py index 8a43eb5..eeb2f54 100644 --- a/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py +++ b/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py @@ -1,7 +1,7 @@ import numpy as np import pytest -from CyRK.cy.cysolver import WrapCySolverResult +from CyRK.cy.cysolver_api import WrapCySolverResult from CyRK.cy.cysolver_test import cytester args = (0.01, 0.02) From f9275bb867e14f74e3a14207d8f280bd1d53019a Mon Sep 17 00:00:00 2001 From: Jrenaud-Desk Date: Fri, 8 Nov 2024 11:48:59 -0500 Subject: [PATCH 4/7] changes to tests; supports numpy 2.0+ --- CHANGES.md | 4 +++ Tests/D_PySolver_Tests/test_a_pysolve_ivp.py | 34 +++++++++++++++----- Tests/E_CySolver_Tests/test_a_cysolve_ivp.py | 10 +++--- pyproject.toml | 6 ++-- 4 files changed, 38 insertions(+), 16 deletions(-) diff --git a/CHANGES.md b/CHANGES.md index 755e73a..2ca2894 100644 --- a/CHANGES.md +++ b/CHANGES.md @@ -19,7 +19,11 @@ Other: Tests: * Updated tests to use pysolver where cyrk_ode was used. +* Changed tolerances and other inputs to try to make some tests faster. +Dependencies: +* Tested that CyRK works with numpy v2.X; removed upper version restriction. +* Tested that CyRK can not work with Python 3.13 yet due to numba dependence. See issue #### v0.10.2 (2024-11-05) diff --git a/Tests/D_PySolver_Tests/test_a_pysolve_ivp.py b/Tests/D_PySolver_Tests/test_a_pysolve_ivp.py index f9de7d9..01a15d4 100644 --- a/Tests/D_PySolver_Tests/test_a_pysolve_ivp.py +++ b/Tests/D_PySolver_Tests/test_a_pysolve_ivp.py @@ -78,11 +78,11 @@ def diffeq_scipy_style_args_extra(t, y, a, b): initial_conds = np.asarray((20., 20.), dtype=np.float64, order='C') time_span = (0., 10.) time_span_large = (0., 1000.) -rtol = 1.0e-7 -atol = 1.0e-8 +rtol = 1.0e-4 +atol = 1.0e-7 -rtols = np.asarray((1.0e-7, 1.0e-8), dtype=np.float64, order='C') -atols = np.asarray((1.0e-8, 1.0e-9), dtype=np.float64, order='C') +rtols = np.asarray((1.0e-4, 1.0e-5), dtype=np.float64, order='C') +atols = np.asarray((1.0e-6, 1.0e-7), dtype=np.float64, order='C') def test_pysolve_ivp_test(): @@ -91,23 +91,31 @@ def test_pysolve_ivp_test(): from CyRK import test_pysolver test_pysolver() +# njit is slow during testing so only do it once for each diffeq +njit_rk23_tested = False +njit_rk45_tested = False +njit_DOP853_tested = False + @pytest.mark.filterwarnings("error") # Some exceptions get propagated via cython as warnings; we want to make sure the lead to crashes. @pytest.mark.parametrize('capture_extra', (True, False)) @pytest.mark.parametrize('max_step', (1.0, 100_000.0)) -@pytest.mark.parametrize('first_step', (0.0, 0.01)) +@pytest.mark.parametrize('first_step', (0.0, 0.00001)) @pytest.mark.parametrize('integration_method', ("RK23", "RK45", "DOP853")) @pytest.mark.parametrize('use_different_tols', (True, False)) @pytest.mark.parametrize('use_rtol_array', (True, False)) @pytest.mark.parametrize('use_atol_array', (True, False)) @pytest.mark.parametrize('use_large_timespan', (True, False)) -@pytest.mark.parametrize('use_njit', (True, False)) +@pytest.mark.parametrize('use_njit_always', (False,)) @pytest.mark.parametrize('use_args', (True, False)) @pytest.mark.parametrize('use_scipy_style', (True, False)) -def test_pysolve_ivp(use_scipy_style, use_args, use_njit, +def test_pysolve_ivp(use_scipy_style, use_args, use_njit_always, use_large_timespan, use_atol_array, use_rtol_array, use_different_tols, integration_method, first_step, max_step, capture_extra): """Check that the pysolve_ivp function is able to run with various changes to its arguments. """ global RK23_TESTED + global njit_rk23_tested + global njit_rk45_tested + global njit_DOP853_tested # To reduce number of tests, only test RK23 once. if RK23_TESTED and SKIP_SOME_RK23_TESTS and (integration_method=="RK23"): @@ -138,8 +146,18 @@ def test_pysolve_ivp(use_scipy_style, use_args, use_njit, else: diffeq_to_use = diffeq - if use_njit: + if use_njit_always: diffeq_to_use = njit(diffeq_to_use) + else: + if (not njit_rk23_tested) and (integration_method=="RK23"): + diffeq_to_use = njit(diffeq_to_use) + njit_rk23_tested = True + elif (not njit_rk45_tested) and (integration_method=="RK45"): + diffeq_to_use = njit(diffeq_to_use) + njit_rk45_tested = True + elif (not njit_DOP853_tested) and (integration_method=="DOP853"): + diffeq_to_use = njit(diffeq_to_use) + njit_DOP853_tested = True if use_atol_array: atols_use = atols diff --git a/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py b/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py index eeb2f54..aff9f87 100644 --- a/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py +++ b/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py @@ -9,17 +9,17 @@ initial_conds = np.asarray((20., 20.), dtype=np.float64, order='C') time_span = (0., 10.) time_span_large = (0., 1000.) -rtol = 1.0e-7 -atol = 1.0e-8 +rtol = 1.0e-4 +atol = 1.0e-7 -rtols = np.asarray((1.0e-7, 1.0e-8), dtype=np.float64, order='C') -atols = np.asarray((1.0e-8, 1.0e-9), dtype=np.float64, order='C') +rtols = np.asarray((1.0e-4, 1.0e-5), dtype=np.float64, order='C') +atols = np.asarray((1.0e-6, 1.0e-7), dtype=np.float64, order='C') @pytest.mark.filterwarnings("error") # Some exceptions get propagated via cython as warnings; we want to make sure the lead to crashes. @pytest.mark.parametrize('capture_extra', (True, False)) @pytest.mark.parametrize('max_step', (1.0, 100_000.0)) -@pytest.mark.parametrize('first_step', (0.0, 0.01)) +@pytest.mark.parametrize('first_step', (0.0, 0.00001)) @pytest.mark.parametrize('integration_method', (0, 1, 2)) @pytest.mark.parametrize('use_different_tols', (True, False)) @pytest.mark.parametrize('use_rtol_array', (True, False)) diff --git a/pyproject.toml b/pyproject.toml index 23546fc..f183817 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name='CyRK' -version = '0.11.0a0.dev2' +version = '0.11.0a0.dev3' description='Runge-Kutta ODE Integrator Implemented in Cython and Numba.' authors= [ {name = 'Joe P. Renaud', email = 'joe.p.renaud@gmail.com'} @@ -8,7 +8,7 @@ authors= [ requires-python = ">=3.8,<3.13" dependencies = [ 'numba >= 0.54.1', - 'numpy >= 1.22, <1.27', + 'numpy >= 1.22', 'scipy >= 1.9.3' ] license = {file = "LICENSE.md"} @@ -60,7 +60,7 @@ dev = [ [build-system] requires = [ 'setuptools>=64.0.0', - 'numpy >= 1.22, <1.27', + 'numpy >= 1.22', 'cython>=3.0.0', 'wheel>=0.38' ] From 9cbe5f34dd688bf366c50618a55270edb2fb80b9 Mon Sep 17 00:00:00 2001 From: Jrenaud-Desk Date: Fri, 8 Nov 2024 13:19:47 -0500 Subject: [PATCH 5/7] Updated notebooks --- Benchmarks/Accuracy.ipynb | 27 +- Benchmarks/CyRK - SciPy Comparison.ipynb | 240 ++++++++---------- CHANGES.md | 10 +- CyRK/__init__.pxd | 2 +- CyRK/cy/cysolver_api.pxd | 3 - CyRK/cy/cysolver_api.pyx | 10 +- Demos/1 - Getting Started.ipynb | 153 ++++++----- Performance/Differential Equation Check.ipynb | 58 ++--- pyproject.toml | 6 +- 9 files changed, 252 insertions(+), 257 deletions(-) diff --git a/Benchmarks/Accuracy.ipynb b/Benchmarks/Accuracy.ipynb index 50eed05..fa1bbc6 100644 --- a/Benchmarks/Accuracy.ipynb +++ b/Benchmarks/Accuracy.ipynb @@ -53,7 +53,7 @@ "metadata": {}, "outputs": [], "source": [ - "from CyRK import pysolve_ivp, cyrk_ode\n", + "from CyRK import pysolve_ivp\n", "from scipy.integrate import solve_ivp" ] }, @@ -61,9 +61,7 @@ "cell_type": "code", "execution_count": 5, "id": "a1305367", - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -128,7 +126,6 @@ "rtols = [1.0e-5, 1.0e-7, 1.0e-9, 1.0e-11]\n", "\n", "integration_method = 'RK45'\n", - "rk_method = 1\n", "t_span = (0., 10.)\n", "t_eval = np.linspace(0.0, 10.0, 100)\n", "\n", @@ -142,21 +139,16 @@ " scipy_sol = solve_ivp(diffeq_accuracy_3, t_span, y0, rtol=rtol, atol=atol, method=integration_method)\n", " scipy_teval = solve_ivp(diffeq_accuracy_3, t_span, y0, rtol=rtol, atol=atol, method=integration_method, t_eval=t_eval)\n", " \n", - " cyrk_sol = cyrk_ode(diffeq_accuracy_2, t_span, y0, rtol=rtol, atol=atol, rk_method=rk_method, raise_warnings=False)\n", - " cyrk_teval = cyrk_ode(diffeq_accuracy_2, t_span, y0, rtol=rtol, atol=atol, rk_method=rk_method, t_eval=t_eval, raise_warnings=False)\n", - " \n", " pysolve_sol = pysolve_ivp(diffeq_accuracy, t_span, y0, rtol=rtol, atol=atol, method=integration_method, dense_output=True, pass_dy_as_arg=True)\n", " pysolve_teval = pysolve_ivp(diffeq_accuracy, t_span, y0, rtol=rtol, atol=atol, method=integration_method, t_eval=t_eval, pass_dy_as_arg=True)\n", " print(pysolve_sol.t.shape)\n", " chi_sci_sol = np.nansum((scipy_sol.y - correct_answer(scipy_sol.t, c1, c2))**2 / correct_answer(scipy_sol.t, c1, c2))\n", - " chi_crykode_sol = np.nansum((cyrk_sol[1] - correct_answer(cyrk_sol[0], c1, c2))**2 / correct_answer(cyrk_sol[0], c1, c2))\n", " chi_pysolve_sol = np.nansum((pysolve_sol.y - correct_answer(pysolve_sol.t, c1, c2))**2 / correct_answer(pysolve_sol.t, c1, c2))\n", " \n", - " print(f\"SciPy (sol)\\t|\\tPySolve (sol)\\t|\\tcyrk_ode (sol)\")\n", - " print(f\"{chi_sci_sol:0.5e}\\t|\\t{chi_pysolve_sol:0.5e}\\t|\\t{chi_crykode_sol:0.5e}\")\n", + " print(f\"SciPy (sol)\\t|\\tPySolve (sol)\")\n", + " print(f\"{chi_sci_sol:0.5e}\\t|\\t{chi_pysolve_sol:0.5e}\")\n", " \n", " chi_sci_teval = np.nansum((scipy_teval.y - correct_answer(scipy_teval.t, c1, c2))**2 / correct_answer(scipy_teval.t, c1, c2))\n", - " chi_crykode_teval = np.nansum((cyrk_teval[1] - correct_answer(cyrk_teval[0], c1, c2))**2 / correct_answer(cyrk_teval[0], c1, c2))\n", " chi_pysolve_teval = np.nansum((pysolve_teval.y - correct_answer(pysolve_teval.t, c1, c2))**2 / correct_answer(pysolve_teval.t, c1, c2))\n", " dense_sol = pysolve_sol(t_eval)\n", " chi_pysolve_dense = np.nansum((dense_sol - correct_answer(t_eval, c1, c2))**2 / correct_answer(t_eval, c1, c2))\n", @@ -202,16 +194,8 @@ "# ax5.scatter(pysolve_sol.t, np.zeros_like(scipy_sol.t), c='purple', s=5)\n", "# ax5.set(title=\"SciPy (sol) - pysolve\")\n", " \n", - "# fig5, ax5 = plt.subplots()\n", - "# ax5.plot(cyrk_sol[0], (cyrk_sol[1][0] - pysolve_sol.y[0]) / cyrk_sol[1][0], c='b')\n", - "# ax5.plot(cyrk_sol[0], (cyrk_sol[1][1] - pysolve_sol.y[1]) / cyrk_sol[1][1], c='r')\n", - "# ax5.scatter(scipy_sol.t, np.zeros_like(scipy_sol.t), c='g', s=1)\n", - "# ax5.scatter(pysolve_sol.t, np.zeros_like(scipy_sol.t), c='purple', s=5)\n", - "# ax5.set(title=\"cyrk_ode - pysolve_sol\")\n", - " \n", "# sci_step_size = np.diff(scipy_sol.t)\n", "# solpy_step_size = np.diff(pysolve_sol.t)\n", - "# cyrk_step_size = np.diff(cyrk_sol[0])\n", " \n", "# fig5, ax5 = plt.subplots()\n", "# # ax5.plot(scipy_sol.t, (scipy_sol.y[0] - pysolve_sol.y[0]) / scipy_sol.y[0], c='b', ls=':')\n", @@ -219,7 +203,6 @@ "# ax5b = ax5.twinx()\n", "# ax5b.plot(scipy_sol.t[1:], sci_step_size, c='b', marker='.')\n", "# ax5b.plot(pysolve_sol.t[1:], solpy_step_size, c='r', marker='.')\n", - "# # ax5b.plot(cyrk_sol[0][1:], cyrk_step_size, c='orange', marker='.')\n", "# ax5b.set(ylim=(0.3, 0.4))\n", "# plt.show()\n", " \n", @@ -444,7 +427,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.12.7" } }, "nbformat": 4, diff --git a/Benchmarks/CyRK - SciPy Comparison.ipynb b/Benchmarks/CyRK - SciPy Comparison.ipynb index 24bc321..9a9e68e 100644 --- a/Benchmarks/CyRK - SciPy Comparison.ipynb +++ b/Benchmarks/CyRK - SciPy Comparison.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "971e366b", "metadata": {}, "outputs": [ @@ -18,7 +18,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.10.1\n" + "0.11.0a0.dev4\n" ] } ], @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "eff22823", "metadata": {}, "outputs": [], @@ -55,12 +55,11 @@ "diffeq_num = 0\n", "\n", "if use_pendulum:\n", - " from CyRK.cy.cysolvertest import CySolverPendulum as CySolverTester\n", " time_span = (0., 10.)\n", " args = (1., 1., 9.81)\n", " initial_conds = np.asarray((0.01, 0.), dtype=np.float64, order='C')\n", " diffeq_num = 6\n", - " def diffeq(t, y, dy, l, m, g):\n", + " def diffeq(dy, t, y, l, m, g):\n", "\n", " # External torque\n", " torque = 0.1 * np.sin(t)\n", @@ -82,6 +81,7 @@ " dy[1] = (-3. * g / (2. * l)) * np.sin(y0) + (3. / (m * l**2)) * torque\n", " return dy\n", "\n", + " @njit\n", " def diffeq_scipy_njit(t, y, l, m, g):\n", "\n", " # External torque\n", @@ -94,21 +94,14 @@ " dy[1] = (-3. * g / (2. * l)) * np.sin(y0) + (3. / (m * l**2)) * torque\n", " return dy\n", " \n", - "else:\n", - " from CyRK.cy.cysolvertest import CySolverTester as CySolverTester\n", - " \n", + "else: \n", " initial_conds = np.asarray((20., 20.), dtype=np.float64)\n", " args = tuple()\n", " time_span = (0., 50.)\n", - " def diffeq(t, y, dy):\n", - " dy[0] = (1. - 0.01 * y[1]) * y[0]\n", - " dy[1] = (0.02 * y[0] - 1.) * y[1]\n", - " \n", - " def diffeq2(dy, t, y):\n", + " def diffeq(dy, t, y):\n", " dy[0] = (1. - 0.01 * y[1]) * y[0]\n", " dy[1] = (0.02 * y[0] - 1.) * y[1]\n", "\n", - "\n", " # Create helper function for scipy to work with this kind of diffeq\n", " def diffeq_scipy(t, y):\n", "\n", @@ -118,12 +111,7 @@ " return dy\n", " \n", " @njit\n", - " def diffeq_njit(t, y, dy):\n", - " dy[0] = (1. - 0.01 * y[1]) * y[0]\n", - " dy[1] = (0.02 * y[0] - 1.) * y[1]\n", - " \n", - " @njit\n", - " def diffeq2_njit(dy, t, y):\n", + " def diffeq_njit(dy, t, y):\n", " dy[0] = (1. - 0.01 * y[1]) * y[0]\n", " dy[1] = (0.02 * y[0] - 1.) * y[1]\n", " \n", @@ -164,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "bdae6603", "metadata": {}, "outputs": [ @@ -177,7 +165,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -195,11 +183,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "86846611", - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -210,7 +196,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -230,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "id": "3e9ff9df", "metadata": {}, "outputs": [ @@ -238,12 +224,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "CyRK (Cython - CySolver New) Solution\n" + "CyRK (Cython - cysolve_ivp) Solution\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -254,15 +240,15 @@ ], "source": [ "# CyRK - CySolver (Cython Based Solver)\n", - "from CyRK.cy.cysolverNew_test import cytester\n", + "from CyRK.cy.cysolver_test import cytester\n", "cysolverNew_results = cytester(diffeq_num, time_span, initial_conds, method=1, rtol=rtol, atol=atol)\n", - "print('CyRK (Cython - CySolver New) Solution')\n", + "print('CyRK (Cython - cysolve_ivp) Solution')\n", "diff_plot(cysolverNew_results.t, cysolverNew_results.y, fig_name='CyRK_CySolver')" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "id": "bb098d93", "metadata": {}, "outputs": [ @@ -270,12 +256,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "CyRK (PySolver) Solution\n" + "CyRK (pysolve_ivp) Solution\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -286,15 +272,15 @@ ], "source": [ "# CyRK - PySolver (Python based Solver)\n", - "from CyRK.cy.cysolverNew import pysolve_ivp\n", - "pysolver_results = pysolve_ivp(diffeq2, time_span, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True)\n", - "print('CyRK (PySolver) Solution')\n", + "from CyRK.cy.pysolver import pysolve_ivp\n", + "pysolver_results = pysolve_ivp(diffeq, time_span, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True)\n", + "print('CyRK (pysolve_ivp) Solution')\n", "diff_plot(pysolver_results.t, pysolver_results.y, fig_name='CyRK_PySolver')" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "id": "24a29b41", "metadata": {}, "outputs": [ @@ -302,12 +288,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "CyRK (PySolver with njit) Solution\n" + "CyRK (pysolve_ivp with njit) Solution\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -318,9 +304,9 @@ ], "source": [ "# CyRK - PySolver (Python based Solver) using njited function\n", - "from CyRK.cy.cysolverNew import pysolve_ivp\n", - "pysolver_results = pysolve_ivp(diffeq2_njit, time_span, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True)\n", - "print('CyRK (PySolver with njit) Solution')\n", + "from CyRK.cy.pysolver import pysolve_ivp\n", + "pysolver_results = pysolve_ivp(diffeq_njit, time_span, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True)\n", + "print('CyRK (pysolve_ivp with njit) Solution')\n", "diff_plot(pysolver_results.t, pysolver_results.y, fig_name='CyRK_PySolver (njit)')" ] }, @@ -334,11 +320,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 11, "id": "5c43792b", - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -352,8 +336,8 @@ "\tFinished SciPy.\n", "\tWorking on numba\n", "\tFinished numba.\n", - "\tWorking on cython - CySolver New\n", - "\tFinished cython - CySolver New.\n", + "\tWorking on cython - cysolve_ivp\n", + "\tFinished cython - cysolve_ivp.\n", "\tWorking on PySolver\n", "\tFinished PySolver.\n", "\tWorking on PySolver (njit)\n", @@ -364,8 +348,8 @@ "\tFinished SciPy.\n", "\tWorking on numba\n", "\tFinished numba.\n", - "\tWorking on cython - CySolver New\n", - "\tFinished cython - CySolver New.\n", + "\tWorking on cython - cysolve_ivp\n", + "\tFinished cython - cysolve_ivp.\n", "\tWorking on PySolver\n", "\tFinished PySolver.\n", "\tWorking on PySolver (njit)\n", @@ -376,8 +360,8 @@ "\tFinished SciPy.\n", "\tWorking on numba\n", "\tFinished numba.\n", - "\tWorking on cython - CySolver New\n", - "\tFinished cython - CySolver New.\n", + "\tWorking on cython - cysolve_ivp\n", + "\tFinished cython - cysolve_ivp.\n", "\tWorking on PySolver\n", "\tFinished PySolver.\n", "\tWorking on PySolver (njit)\n", @@ -388,8 +372,8 @@ "\tFinished SciPy.\n", "\tWorking on numba\n", "\tFinished numba.\n", - "\tWorking on cython - CySolver New\n", - "\tFinished cython - CySolver New.\n", + "\tWorking on cython - cysolve_ivp\n", + "\tFinished cython - cysolve_ivp.\n", "\tWorking on PySolver\n", "\tFinished PySolver.\n", "\tWorking on PySolver (njit)\n", @@ -400,8 +384,8 @@ "\tFinished SciPy.\n", "\tWorking on numba\n", "\tFinished numba.\n", - "\tWorking on cython - CySolver New\n", - "\tFinished cython - CySolver New.\n", + "\tWorking on cython - cysolve_ivp\n", + "\tFinished cython - cysolve_ivp.\n", "\tWorking on PySolver\n", "\tFinished PySolver.\n", "\tWorking on PySolver (njit)\n", @@ -412,8 +396,8 @@ "\tFinished SciPy.\n", "\tWorking on numba\n", "\tFinished numba.\n", - "\tWorking on cython - CySolver New\n", - "\tFinished cython - CySolver New.\n", + "\tWorking on cython - cysolve_ivp\n", + "\tFinished cython - cysolve_ivp.\n", "\tWorking on PySolver\n", "\tFinished PySolver.\n", "\tWorking on PySolver (njit)\n", @@ -424,8 +408,8 @@ "\tFinished SciPy.\n", "\tWorking on numba\n", "\tFinished numba.\n", - "\tWorking on cython - CySolver New\n", - "\tFinished cython - CySolver New.\n", + "\tWorking on cython - cysolve_ivp\n", + "\tFinished cython - cysolve_ivp.\n", "\tWorking on PySolver\n", "\tFinished PySolver.\n", "\tWorking on PySolver (njit)\n", @@ -436,8 +420,8 @@ "\tFinished SciPy.\n", "\tWorking on numba\n", "\tFinished numba.\n", - "\tWorking on cython - CySolver New\n", - "\tFinished cython - CySolver New.\n", + "\tWorking on cython - cysolve_ivp\n", + "\tFinished cython - cysolve_ivp.\n", "\tWorking on PySolver\n", "\tFinished PySolver.\n", "\tWorking on PySolver (njit)\n", @@ -458,19 +442,19 @@ "\n", "sci_steps = list()\n", "nb_steps = list()\n", - "cysolverNew_steps = list()\n", + "cysolver_steps = list()\n", "pysolver_steps = list()\n", "pysolver_njit_steps = list()\n", "\n", "sci_times = list()\n", "nb_times = list()\n", - "cysolverNew_times = list()\n", + "cysolver_times = list()\n", "pysolver_times = list()\n", "pysolver_njit_times = list()\n", "\n", "sci_errors = list()\n", "nb_errors = list()\n", - "cysolverNew_errors = list()\n", + "cysolver_errors = list()\n", "pysolver_errors = list()\n", "pysolver_njit_errors = list()\n", "\n", @@ -511,21 +495,21 @@ " nb_steps.append(_out.size)\n", " print('\\tFinished numba.')\n", " \n", - " print('\\tWorking on cython - CySolver New') \n", - " cysolverNew_timer = timeit.Timer(lambda: cytester(diffeq_num, time_s, initial_conds, method=1, rtol=rtol, atol=atol))\n", - " cysolverNew_times_list = list()\n", + " print('\\tWorking on cython - cysolve_ivp') \n", + " cysolver_timer = timeit.Timer(lambda: cytester(diffeq_num, time_s, initial_conds, method=1, rtol=rtol, atol=atol))\n", + " cysolver_times_list = list()\n", " for i in range(REPEATS):\n", - " N, T = cysolverNew_timer.autorange()\n", - " cysolverNew_times_list.append(T / N * 1000.)\n", - " cysolverNew_times_list = np.asarray(cysolverNew_times_list)\n", - " cysolverNew_times.append(np.average(cysolverNew_times_list))\n", - " cysolverNew_errors.append(np.std(cysolverNew_times_list))\n", - " cysolverNewResult = cytester(diffeq_num, time_s, initial_conds, method=1, rtol=rtol, atol=atol)\n", - " cysolverNew_steps.append(cysolverNewResult.size)\n", - " print('\\tFinished cython - CySolver New.')\n", + " N, T = cysolver_timer.autorange()\n", + " cysolver_times_list.append(T / N * 1000.)\n", + " cysolver_times_list = np.asarray(cysolver_times_list)\n", + " cysolver_times.append(np.average(cysolver_times_list))\n", + " cysolver_errors.append(np.std(cysolver_times_list))\n", + " cysolverResult = cytester(diffeq_num, time_s, initial_conds, method=1, rtol=rtol, atol=atol)\n", + " cysolver_steps.append(cysolverResult.size)\n", + " print('\\tFinished cython - cysolve_ivp.')\n", " \n", " print('\\tWorking on PySolver') \n", - " pysolver_timer = timeit.Timer(lambda: pysolve_ivp(diffeq2, time_s, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True))\n", + " pysolver_timer = timeit.Timer(lambda: pysolve_ivp(diffeq, time_s, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True))\n", " pysolver_times_list = list()\n", " for i in range(REPEATS):\n", " N, T = pysolver_timer.autorange()\n", @@ -533,12 +517,12 @@ " pysolver_times_list = np.asarray(pysolver_times_list)\n", " pysolver_times.append(np.average(pysolver_times_list))\n", " pysolver_errors.append(np.std(pysolver_times_list))\n", - " pysolverResult = pysolve_ivp(diffeq2, time_s, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True)\n", + " pysolverResult = pysolve_ivp(diffeq, time_s, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True)\n", " pysolver_steps.append(pysolverResult.size)\n", " print('\\tFinished PySolver.')\n", " \n", " print('\\tWorking on PySolver (njit)') \n", - " pysolver_njit_timer = timeit.Timer(lambda: pysolve_ivp(diffeq2_njit, time_s, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True))\n", + " pysolver_njit_timer = timeit.Timer(lambda: pysolve_ivp(diffeq_njit, time_s, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True))\n", " pysolver_njit_times_list = list()\n", " for i in range(REPEATS):\n", " N, T = pysolver_njit_timer.autorange()\n", @@ -546,7 +530,7 @@ " pysolver_njit_times_list = np.asarray(pysolver_njit_times_list)\n", " pysolver_njit_times.append(np.average(pysolver_njit_times_list))\n", " pysolver_njit_errors.append(np.std(pysolver_njit_times_list))\n", - " pysolver_njitResult = pysolve_ivp(diffeq2_njit, time_s, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True)\n", + " pysolver_njitResult = pysolve_ivp(diffeq_njit, time_s, initial_conds, method='RK45', args=args, rtol=rtol, atol=atol, pass_dy_as_arg=True)\n", " pysolver_njit_steps.append(pysolver_njitResult.size)\n", " print('\\tFinished PySolver (njit).')\n", " \n", @@ -555,15 +539,13 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 12, "id": "b8ad4501", - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACr4ElEQVR4nOzdd1xT1/sH8E8SQBFTFyiIgntvrVgrYGlR6sZVZxFbB1i/aFttHa2rVluts+KoSN114qiKq6CoVMU6EOXnYCNFEJAZVp7fH5iUkAAJEBLwefd1Xuaee3LuuTmhPJx7z7kCAATGGGOMMValCXXdAMYYY4wxVn4c1DHGGGOMVQMc1DHGGGOMVQMc1DHGGGOMVQMc1DHGGGOMVQMc1DHGGGOMVQMc1DHGGGOMVQMc1DHGGGOMVQMc1DHGGGOMVQMc1DHGqoTOnTtj165dCAsLQ1ZWFtLS0nDnzh3MmzcP9erV07i+8PBwEJE8paen486dO5g1a5ZSWXt7exARRo0apZBvbGyMs2fPIicnB5MnTy7zuRVmYGCA77//HuHh4ZBIJHj8+DG++OILtd5bu3Zt/PTTTzh//jxevnwJIsKSJUuKLd+9e3dcvHgRaWlpSE5OxrFjx9C8eXO1jjV48GDs3r0bDx48QE5ODoj44USM6QPixIkTJ31On3/+OeXk5FBwcDC5ubmRvb09ffTRR/Ttt9/S8+fP6fjx4xrXGR4eTgEBAWRjY0M2Njbk7OxMAQEBRES0YMEChbL29vZERDRq1Ch53jvvvEMBAQGUlZVFw4YNq7Bz3bFjB2VlZdHXX39N9vb29OOPP1J+fr5Sm1Qla2trSk5OJn9/f9qxYwcRES1ZskRl2bZt29Lr16/pypUr9PHHH5OzszMFBwdTTEwMmZqalnqsnTt30v/93//RH3/8Qbdv3yYqiOo4ceKk26TzBnDixIlTsalPnz6Um5tLZ8+eJSMjI6X9hoaGNHToUI3rDQ8Pp9OnTyvkicViSk5OpoiICIX8okGdmZkZ/fPPP/T69Wvq379/hZ1rhw4dKD8/n7799luF/O3bt1NGRgbVq1dP7boaNGhQYlB36NAhevnyJYnFYnmelZUVZWdn0+rVq0utXyAQyF9v3ryZgzpOnPQg8eVXxpheW7hwIYgI06dPR05OjtL+3NxcnD59GgCwc+dOvHr1CsbGxkrlLl++jIcPH5Z4rLS0NDx58gSNGjUqtoyVlRWuXbuGJk2awMHBAf7+/iXWaWpqiuzsbCxfvlxpX9u2bUFEmD17NgBgxIgREAqF8Pb2Vijn7e2NWrVqwcnJqcRjqUskEmHIkCE4duwY0tLS5PlRUVHw8/ODs7NzqXXw5VbG9A8HdYwxvSUUCuHg4IA7d+4gJiam1PIbN25E/fr1MWHCBIX89u3bw8HBAVu2bCnx/SKRCE2bNsWTJ09U7m/fvj2uXbsGY2Nj2NnZ4c6dO6W2KTExEX/++SdcXFwgEAgU9rm6uiI7Oxv79+8HAHTq1AkvX75EfHy8QrkHDx7I91eEli1bolatWvJ6ix6rVatWqFGjRoUcizFWeTioY4zpLVNTU5iYmCA8PFyt8sHBwfD391ea7PDFF1/g9evX2LNnj0K+QCCASCSSB3Oenp5o0KABFixYoLL+FStWwMLCAgMGDEBoaKja5+Ht7Q0rKyt8+OGH8jyhUIhJkybh9OnTSEpKAgA0aNBA/rqwzMxMZGdno0GDBmofsySyelQdKykpCUKhsEyTTxhjusVBHWOsWtm4cSO6d++Ovn37AgDEYjEmT56M3bt3IyMjQ6Hs4MGDkZeXh7y8PERFRWH69OmYPXs2zp49q7Lu06dPQygUYsuWLSov8Rbn3LlziIuLg6urqzxv4MCBsLS0xK5duxTKlnRZs6IveVbmsRhj2sdBHWNMbyUmJiIjI0PtZTYA4OTJkwgPD5eP1k2ZMgUmJiYqL70GBASgV69esLGxwaRJkxAeHo5ff/0V77//vsq6d+/ejWnTpqF///44c+YMatWqpVab8vPzsXfvXjg7O6NOnTrydr148QLnz5+Xl3v16pXK0bhatWqhRo0aKkfWyuLVq1cAoPJY9evXh1QqRUpKSoUcizFWeTioY4zpLalUisuXL6Nnz56wtLRU6z1EhC1btmD06NEwNzeHu7s7Ll++rPI+udevX+POnTu4desW9u/fjwEDBiA3Nxeenp5K97/J7Nq1C5999hns7Oxw9uxZtQM7b29vGBsbY9y4cahbty6GDRuGPXv2QCqVyssEBwejYcOGShM1OnfuDAClTvRQ1/Pnz5GZmSmvt+ixnj17huzs7Ao5FmOscul8Ci4nTpw4FZcKL2liaGiotN/AwICGDBmikFenTh1KS0ujy5cvExGpXEdO1ZImAGjJkiVERDRu3Dh5nqp16lxcXCgvL4+uXLlCJiYmap1LYGAg/f333+Tu7k5ERG3atFHYL1vSZP78+Qr5W7durfAlTf744w/6999/qXbt2vK8pk2bkkQioVWrVmnUR7ykCSdOepN03gBOnDhxKjHJFh9+8OABubm5kZ2dHX344Yf09ddf05MnT1QuPrxlyxYiIgoPD1dYU02WigvqTExMKC4ujh4/fkxCoZAA1UEdAJo8eTLl5eXR1atX1Qrspk2bRkREUVFRdO3aNZVlZIsPf/XVV2RnZ0c//PCDysWHv/vuO8rNzSU7OzuFfCcnJxo1ahRNmTKFiIgOHTpEo0aNolGjRpGxsbG8XNu2bSk1NZX8/f3JycmJRowYQQ8ePFC5+HBubi5dunRJIc/Kykpe79mzZ+Wfz6hRo6hnz546/85w4vSWJp03gBMnTpxKTV26dCFvb2+KiIggiURCaWlpdOfOHVq6dKnKJyDY2dkRESmNeslScUEdAHJzcyMiosmTJxNQfFAHgCZOnEi5ubl07do1hVEvVUksFlNGRgYREX322WcqyxgYGNCSJUvk5xkaGkpffPGFUjnZiKK9vb3SeRXH2tpaoWyPHj3o4sWLlJ6eTikpKXT8+HFq0aKF0rGIiPz8/BTyXFxcij2Ot7e3zr8vnDi9jUnw5gVjjFUra9euhZubG5o2bVphEwwYY0yfGei6AYwxVpFsbGzQpk0buLu7Y/v27RzQMcbeGjxSxxirVogIGRkZOHv2LFxdXZXWpmOMseqKgzrGGGOMsWqA16ljjDHGGKsGOKhjjBXru+++Q0hIiMJCvESkkFJSUuDn54dBgwZVSpuWLFlS5kdYjR8/Hh4eHhXcopLp+vNSh729vUIbs7Oz8fLlS1y7dg0//PADrKyslN7j4uICIoK1tbVC/ooVKxAZGYnc3FwkJycDAAwNDbF161a8ePECeXl5uHv3LgAgPDxc6fORJT8/P43Pw8DAAM+ePav0PmZMn+h8Ci4nTpz0L1lYWFBaWprSMh5ERIcPHyYbGxt67733aOLEifT48WPKz8+nQYMGab1dsqU8yvLe06dPU3h4eKV+jrr+vNRJsiVbvv32W7KxsaG+ffvS0KFD6YcffqAXL15QRkYGTZgwQeE9pqamZGNjQ0ZGRvK8YcOGERHRihUrqG/fvvL16v73v/8REdGsWbOoT58+1KlTJwIKll8JCAggGxsbpdS+ffsyncunn35Kr169ovr16+v8c+XESQdJ5w3gxImTHqbVq1dTdHS00sK9RESbN29WyGvRogUREV24cKHY+gwMDEgkEpW7XfoY1NWsWbPYfbr+vNRJJa3DV69ePbpz5w7l5OTIg7Hi0sKFC4mIyMzMTCF/x44dlJGRoVS+pLUCy5oMDQ0pMTFRabFmTpzehsSXXxljSgwNDfHZZ5/hwIEDal3qDAsLw8uXL+WX4mSX8yZNmoS1a9ciJiYG2dnZaNWqFQDgww8/xKVLl/D69WtkZGTg2rVrcHBwUKp30KBBuHv3LiQSCcLCwvDVV1+pPL67uzuuXLmC+Ph4pKen48GDB5g3bx4MDP5btcnPzw9DhgxBs2bNFC7zydSrVw9btmyRt/X58+f44YcfYGRkpHAsIsLmzZsxY8YMPHr0CNnZ2XBxcSn9Q9Xi59WvXz8QEcaNG6d0rMmTJ4OI0KtXL43aKJOcnIwZM2bA0NAQc+fOlecXvfwaHh6OlStXAgBevnwJIpJfKp82bRpq1aol/8w1/bwA1d8FVZfic3NzcejQIUyfPr1M58tYVafzyJITJ076lfr160dERE5OTkr7VI081a1bl/Ly8uSPvpKN/ERHR9Phw4dpyJAhNGjQIKpXrx5NnDiR8vPz6fjx4zRixAgaPHgwnTp1inJzc8nBwUFep4ODA+Xm5tLVq1dpxIgRNGrUKLp58yZFREQojdT98ssvNGPGDBowYAD179+fPDw86OXLl+Tl5SUv0759ewoICKAXL14oXOYDQDVq1KB79+5RWloaffnll/TRRx/RsmXLKCcnh/7880+l84+OjqZ79+7RuHHjqH///tShQ4diP8vK+rzu3LlDAQEBSse/efMm3bx5s8T+LmmkTpZiY2Pp6dOn8m3ZEyVkT6no1q0b/fbbb0RENGDAALKxsSFLS0uysbGhP//8kzIyMuSfuewJIOHh4fTnn3+SSCRSSoWPrcl3AQCNGTOGiKjUkUVOnKph0nkDOHHipGdp3rx5RETUsGFDpX1ERL/++iuJRCIyMDCgtm3b0pkzZ4iIyM3NjYD/ggR/f3+F9xobG1NiYiKdPHlSIV8gENDdu3fp77//lucFBgZSTEwM1ahRQ55Xu3ZtSkxMLPHyq0AgIJFIRJMmTaLc3FyqW7eufF9xl1+nT59ORESjR49W+Tl89NFHCuefnJysUG9JqbI+L1mQ1bVrV3ler169iOi/x50Vl9QJ6gIDAxUuoRYN6oD/Lo03aNBA4b3e3t6UlpamVGdJjzRbtGhRmb8LLVu2JCKiGTNm6PxniROnykx8+ZUxpqRx48aQSqVITExUuX/WrFnIy8tDbm4uQkND0bdvX3z33XfYunWrQrljx44pbPft2xcNGjTA7t27IRKJ5EkoFMLX1xfvvvsuatWqhVq1auHdd9/F8ePHkZ2dLX9/eno6Tp8+rdSebt264eTJk0hMTIRUKkVeXh727t0LAwMDtGnTptTzdXBwQHp6Oo4ePaqQ//vvvwMouPxZ2F9//YWUlBT5tlAoVDifwrOFK+PzAoCDBw8iPj4es2bNkr9/9uzZePnyJQ4dOlTqZ1CaoudUUQICAtCrVy+l5OXlBQAafxeAgsu/AGBpaamVNjOmr/gxYYwxJcbGxsjNzYVUKlW5/9ChQ1izZg2ICGlpaXj+/LnKsnFxcQrbjRo1AqAcvBRWv359EBFEIhH+/fdfpf1F85o2bYqAgAD83//9Hzw8PBAREQGJRILevXvD09MTxsbGpZ5vgwYNVB4rISEBubm5aNCgQYnn9fz5czRr1ky+vXTpUixbtky+re3PKzMzEzk5Odi+fTu++uorzJs3D4aGhhg7dizWrVuHnJyc4k9eTVZWVnjx4kW56ynq9evXuHPnTrH769Wrp/Z3QUYikQCAWn3PWHXCQR1jTEliYiJq1KiBWrVqITMzU2l/QkJCib+IZYrexC4b+fviiy/w999/q3xPfHw8DA0NIZVKYW5urrS/aN6IESNQu3ZtjBw5ElFRUfL8bt26ldo+mVevXsHGxkYp38zMDIaGhkojlkXPa+jQoahRo4Z8u2jwo+3PS2br1q349ttvMXXqVNSsWRMGBgbYtm1bqcctzbvvvgsLCwvs3Lmz3HVpKjk5We3vgkz9+vUBoNiRZsaqKw7qGGNKQkNDAQAtW7ZEcHBwhdV7/fp1JCcno0OHDtiyZUux5XJzc3Hr1i2MHDkS8+bNk192q127NoYOHapQVhYIFb40BwDTpk1Tqjc7O1vl6M3ly5fxySefYMSIEThx4oQ8/9NPP5XvL8nDhw9L3F9W6n5eMv/++y+OHDkCd3d3GBkZ4fTp04iOji5XG+rVq4dt27YhJycH69evL1ddZZGZman2d0GmRYsWAIBHjx5VWjsZ0wcc1DHGlPj7+wMA+vTpU6FBXUZGBmbPno3du3ejfv36OHr0KF6+fAkzMzN07doVZmZmcHd3B1DwNAtfX19cvHgRv/zyC0QiEb755htkZGQoXA69ePEisrOzcfDgQfz888+oWbMm3NzcUK9ePaXjBwcHY9SoUZg5cybu3LkDqVSKO3fuYM+ePZg1axZ2796NJUuWIDg4GP369cPChQtx5syZUoM6bdHk85LZuHEjbt26BQBwdXXV6HitW7eGjY0NhEIhGjRoABsbG3z22Wd455138Omnn2olSKpbt67KUdLs7Gzcu3cPgPrfBZk+ffogLy8PV69erfD2MqbvdD5bgxMnTvqXrly5orScB6B6iY6iqbTZlLa2tnT69GlKTEyk7Oxsio6OptOnTyuVHzJkCN27d48kEglFRETQ/PnzVS4+PHjwYLp79y5lZmZSdHQ0/fTTTzRw4EAiIrK3t5eXq1u3Lh0+fJiSkpIoPz9foZ569eqRp6cnxcbGUk5ODoWHh9PKlSsVnpig7vnr6vOSpbCwMAoJCVG7jbLjy+Tk5FBCQgJdv36dfvjhB7KyslJ6j7Znv0ZHR5fpuyD77hadMcyJ01uSdN4ATpw46WEaOXIk5ebmUuPGjXXeFk7qp86dOxPRf8ulVOekKqhr0aIF5efnKyxDw4nT25J4SRPGmErHjx/H7du3sWDBAl03hamhRYsW+OCDD7Bjxw68ePFCvhzL22bx4sW4fPkyLl26pOumMFbpOKhjjBVr2rRpePHihdbWKGMV57vvvsPFixdRu3ZtjBkzBllZWbpuUqUTiUR4/vy5wlp9jL1NBCgYsmOMMcYYY1UYj9QxxhhjjFUDHNQxxhhjjFUDHNQxxhhjjFUDHNQxxhhjjFUD/ESJStC4cWOkpaXpuhmMMcYYqwLEYrHSM6TVwUGdljVu3BixsbG6bgZjjDHGqhBLS0uNAzsO6rRMNkJnaWnJo3U6IhKJ4OjoiIsXLyI/P1/XzWEqcB9VDdxP+o/7SP+V1kdisRixsbFlihk4qKskaWlpHNTpiEgkQlZWFtLS0vh/cnqK+6hq4H7Sf9xH+k+bfcQTJbTE3d0dISEhuHXrlq6bwhhjjLG3AAd1WuLp6YmOHTuid+/eum4KY4wxxt4CHNQxxhhjjFUDfE+dHjA2NoaZmRk/NF1LRCIRTE1NYW1tzfeY6Knq1kdEhLS0NKSkpICIH6/NGKscHNTpWKdOnTB37lwYGhrquinVmrGxMRwcHHTdDFaC6thHoaGh+O2335CQkKDrpjDG3gIc1OmQsbEx5s6di8ePH8PHxwd5eXm6blK1JRaLefaxnqtOfSQSidCwYUOMHTsWK1euhLu7O/98M8a0joM6HTIzM4OhoSF8fHzw/PlzXTenWqtTpw5ev36t62awElS3PgoLC0NSUhIWL14Mc3NzxMTE6LpJjLFqjidK6JDsHjr+C56x6ik7OxtAwcgdY4xpG4/UVQu1AGS8eW0CIFOHbWGMMcaqKyEAWwAWAOIABACQ6rRFhfFIHat0Li4uSE5O1nUzGGOMMQ04A4gA4A/g4Jt/I97k6wcO6tRkbGyMiIgIrFmzRtdNUaFwN9qiMrrVzMwM27ZtQ2RkJCQSCeLi4uDr64s+ffqU+t5Dhw6hTZs28m0XFxcQkTy9ePEChw4dQrNmzbR4Bowxxpi6nAEcBWBZJN/yTb5+BHYc1Klp0aJFuHnzpq6boYIzgMeFtn1RGX85HDt2DF27doWLiwvatGmDYcOGwd/fH/Xr1y/1vRKJRGmJh9evX8Pc3BwWFhaYMGECunXrhlOnTkEo5K8oY4wxXRIC2FjoddF9ALBBxb7Kp/sWVAGtWrVCu3btcPbsWV03pQjZXw6Ni+Rr9y+HOnXqwNbWFt988w38/f0RFRWF27dvY/Xq1fLPqE6dOti+fTv+/fdfZGVlITg4GIMHDwag+vIrESE+Ph7//vsv/P39sWzZMnTu3BmtWrWCl5cXTp8+rVBeJBIhLi4Orq6uWjlHxhhjrIAtgKYoPmQSArB6U063qn1QZ2tri1OnTiE2NhZEhOHDhyuVcXNzQ1hYGLKyshAUFIR+/fop7F+7di0WLFhQWU1Wk+7+ckhPT0daWhpGjBgBIyMjpf0CgQDnzp1D3759MWnSJHTo0AHffvutRk8KyMrKAgAYGhpi586dcHJygrm5uXz/oEGDULt2bRw+fLj8J8QYY4wVy6KCy2lPtQ/qTExMcP/+fXzxxRcq948dOxYbNmzAypUr0b17dwQEBODcuXNo2rQpAGDYsGF48uQJnj59WpnNVoPu/nLIz8/HlClT4OLigpSUFFy7dg0rV65E586dAQAfffQRevfujZEjR+LSpUsIDw/HmTNn4Ovrq1b9lpaWmDdvHqKjo/HkyRMEBgbi//7v/zB58mR5GVdXVxw5cgQZGRkl1MQYY4yVV1wFl9Oear+kia+vb4nBxJdffgkvLy94eXkBAObOnYuBAwfCzc0NCxcuRJ8+fTBu3DiMGTMGtWvXhqGhIVJTU7FixQqV9RkZGaFGjRrybbFYDKDgcmHRtarKt3aVbv9yOH78OM6cOQNbW1u89957cHJywvz58/H555+jYcOGiImJ0SgQrlu3LtLS0iAQCGBiYoI7d+5g5MiRyM3NBQDs3LkT06dPx5o1a2BmZobBgwfjww8/VKtu2XqAAoGAn8Opp6p7H6n6+a+KRCIRhEJhtTiX6or7qOIR3YBUGo2CW5tUDaRIAcRAKLwBgaD0z720PipP31X7oK4khoaG6NmzJ1avXq2Qf+HCBfTt2xcAsHDhQixcuBBAwb1gnTp1KjagA4AFCxZg6dKlSvmOjo7yS4oypqamMDY2hlgsRp06dTRqe15eGtQZpDIxSYOBgWZ1a+L27du4ffs2Nm3ahE2bNmHFihXYvHkzhEJhsedUq1YtCAQC+f5atWohNTUV9vb2kEqlSEhIQGZmwVp7sjInTpzA6tWr5aOAUVFRCA4OVvtzMzExqYCzZdpUHftILBbD2NgYdnZ2SExM1HVzyk0kEqFHjx4QCAQa3U7BKg/3kXbExe3FnTsLUBDAFQ7spAAE6NlzHywsBqpVV2l9ZGxsXOZ2vtVBnampKQwMDBAfH6+QHx8fr3D/liZWrVqFdevWybfFYjFiY2Nx8eJFpedaWltbw8HBAWlpaWV4PNI5AKX/5ZCRcQ6VtTDivXv3MGjQINy8eROrVq1Cw4YNVY7WZWZmgojk55yZmQmpVIp79+4VW/fr169x4sQJjBkzBu+99x68vLzU/sxko0CpqanVchSoOqiufVS3bl1kZWXh6tWriIyM1HVzyk0kEoGI4OvrywGDnuI+0pZzEAr/gVS6HgW3PsnEQCj8EvfunUAJv8IUlNZHsit8ZfFWB3UyRX+JFHcJaPfu3aXWlZOTg5ycHLi7u2PWrFnyJTny8/OVOq98P3BSAB4omOWq6i8HAJgDbQR09evXx5EjR7Br1y48ePAAaWlp6NWrF+bPn4+TJ0/i6tWruHr1Ko4dO4Yvv/wSz549Q7t27UBEOH/+fJmPu3PnTvz5558QiURq9YWMrC+rU7BQ3VT3PlL1819VSaXSanU+1RH3kbYcA+CDok+UkEo1/z1bUh+Vp9/e6qAuMTEReXl5SqNyDRs2VBq905Snpyc8PT0hFouRmpparrqK5wNgNIBNAJoUyo9BQUDno5Wjpqen4+bNm5g7dy5atmwJQ0NDREdH47fffsOPP/4IABg1ahTWrl2LgwcPwsTEBM+ePcO3335bruNeunQJcXFxCAkJQVyc7m9IZYwx9raRArii60YU660O6nJzc3Hnzh04OjrixIkT8nxHR0ecPHlSdw3TiA+AiwBkl3ad3mxr75JrTk6Owr2GqiQnJ+Ozzz5TuW/37t0KI21Ft4tjbGyMunXryie1MMYYY+w/1T6oMzExQatWreTbzZs3R9euXZGUlITo6GisW7cOe/fuRVBQEAIDAzF9+nRYWVlh27Zt5Tpu0cuv2lU4gNOvhwtXBIFAAHNzc3z11Vd4/fo1Tp06pesmMcYYY3qn2gd1vXr1gr+/v3x7/fr1AIDff/8drq6uOHz4MBo0aIDvv/8eFhYWePjwIQYNGoSoqKhyHbdyLr/KZAIQaPkYumNlZYWIiAhER0djypQpfJ8IY4wxpkK1D+quXLkin1lXnK1bt2Lr1q2V1CKmqcjIyFL7kDHGGHvbVfsnSuiKu7s7QkJCcOvWLV03hTHGGGNvAQ7qtMTT0xMdO3ZE7969dd0UxhhjjL0FOKhjjDHGGKsGOKjTEr78yhhjjLHKxEGdlvDlV8YYY4xVJg7qqoFaAOhNqqXjtjDGGGNMNzioY0zHiAjDhw+vlGO5uLggOTm5Uo71wQcf4PHjx5W2HE1lfI5GRkaIjIxEjx49tHocxhgrCw7qqoHCnWiLyunURo0aYdOmTXj+/DkkEgmioqJw6tQpODg4qF2Ht7c3iAhEhNzcXERGRsLT0xN169ZVKBceHg4PDw+FvLVr1yI1NRUffPABAMDPzw8uLi7lPq/q7tChQ2jTpk2lHOvnn3/GypUrQUTyPENDQ8ybNw/37t1DRkYGEhIScO3aNUyZMgUGBuotm7lkyRLcvXtXW80uUU5ODtauXYuffvpJJ8dnjLGSVPvFh3Wlsh4T5gxgU6FtXwDRADxQ8FRYbbC2tsb169eRkpKC+fPn48GDBzA0NMTAgQOxZcsWtG/fXu26zp07B1dXVxgYGKBDhw7YtWsX6tatiwkTJqgsLxQK8dtvv2Ho0KFwcHBAUFBQRZ3WW0EikUAikWj9OO+99x5at26NI0eOyPMMDQ1x/vx5dO3aFd999x2uX7+O1NRU9OnTB19//TWePXuGa9euab1t5bV//36sWbMG7dq1Q2hoqK6bwxhjcjxSpyWVMVHCGcBRAI2L5Fu+yXfW0nE9PT1BROjduzeOHTuGp0+f4tGjR1i/fj369OkDAPDy8sLp06cV3icSiRAXFwdXV1d5XnZ2NuLj4xEbG4uLFy/i0KFDGDBggMrjGhkZ4ciRI3B0dISdnV2JAd2SJUsQGRkJiUSC2NjYUkdWhg4ditu3byMrKwsJCQk4duwYAOC7777DgwcPlMoHBQVh2bJlAAB7e3vcvHkT6enpSE5OxrVr12BlZSUvO3PmTDx79gzZ2dkIDQ3FpEmTim3HjRs3sGrVKoU8U1NT5OTkoH///gAKgqOffvoJMTExSE9Px99//w17e/sSz0+m8OXXNm3agIjQtm1bhTJz585FeHi4/NyICIMGDcK9e/eQlZWFv//+G506dSrxOOPGjcOFCxeQnZ0tz5szZw7s7Ozw4YcfwtPTE/fv30d4eDgOHjwIGxsbPH/+HJMnT0ZiYiKMjIwU6jt69Ch2794NFxcXLF26FN26dZOP8hYeoTU1NcXx48eRkZGBJ0+eYOjQoQr12NnZ4ebNm5BIJHjx4gVWrVoFkUgk3+/n54eNGzfip59+wqtXrxAXF4clS5Yo1JGUlIQbN25g/PjxpX3cjDFW6YiT9pJYLCYiIrFYrLTP2tqa9uzZQ9bW1hrXKwQoCqB8gEhFygco8k25ijyfevXqUX5+Pn377bcllnvvvfcoNzeXzM3N5XlDhw6ltLQ0MjExIQDk7e1NPj4+8v3Nmzenhw8fUlxcnEJd4eHhtGjRIrp48SKFhoZS06ZNlY7n5+dHLi4uBIBGjRpFKSkp5OTkRE2bNqV3332XZs+eXWxbBw0aRLm5ubR06VJq164ddenShRYsWEAAyNLSkvLy8qhXr17y8p07d6b8/Hxq3rw5iUQiSk5Opp9//platGhB7dq1o08//VTexhEjRlB2dja5ublR69atae7cuZSbm0v9+/eX10dENHz4cAJAs2bNooiICIX2zZo1i6Kjo0kgEBAA2rdvH127do369etHLVq0oK+++oqysrKoVatWpfafi4sLJScny7dv375Ny5cvVyhz+/ZtWrlyJQEge3t7IiIKCQmhjz76iDp16kSnTp2isLAwMjAwKPY4d+/epfnz5yvk3bt3j3x9fYt9T506dahmzZqUnJxMo0ePluc3aNCAJBIJ9e/fn2rWrElr1qyh4OBgatSoETVq1Ihq1qwp/xyjoqJo3Lhx1LJlS9qwYQOlpqZSvXr1CAA1btyY0tPT6ddff6W2bdvS8OHD6eXLl7RkyRKF71FKSgp9//331KpVK5o8eTLl5+fTRx99pNDW1atX019//VXq512en3F9TCKRiIYMGUIikUjnbeHEfVRVU2l9VFLcoEbS/QlW56StoM4eqoO5osm+gs/n3XffJSKiESNGlFr24cOHNG/ePPn28ePHadeuXfJtb29vys3NpbS0NMrMzCSZOXPmKNQTHh5OEomEEhISyMzMrNTjzp07l0JDQxWCjjp16hRb/vr167R3795i9585c4a2bNki3163bp38F3q9evWIiMjOzk7le69du0bbt29XyDt06BD9+eef8u3CQZ2pqSnl5ORQv379FNr3008/EQBq0aIF5efnk4WFhUKdFy9elAdiJaWiQd2cOXPo2bNn8u3WrVsTEVH79u0LvmdvgrqxY8fKy9SrV48yMjJozJgxxR4nOTmZJk2apJCXkZFBGzZsKPY9sj7asmULnTlzRp7/v//9T6GNS5Ysobt37yq9n4gUAtRatWpRfn4+DRw4kADQDz/8QI8fP1Z4j5ubG6WmpsoDZj8/P7p69apCmZs3b9KqVasU8mbPnk1hYWGlft4c1HHiPuKkaR+VJ6jjy69VlEUFl1OXbCZj4Zvfi7Nz5075pVYzMzMMHjwYu3btUijj5+eHbt26wcbGBps2bYKvry82b96sVNeFCxdgYmKChQsXlnrcI0eOwNjYGGFhYdixYwdGjBihcImtqG7duuHy5cvF7v/tt98wfvx41KhRAwYGBpg4caL8PJKTk+Ht7Y3z58/j1KlT+N///gdzc3P5e9u3b4/r168r1Hf9+vVi7ztMTEzExYsXMXHiRABAs2bN0LdvX+zfvx8A0KNHDwiFQjx58gRpaWnyZG9vj5YtW5b62RT1xx9/wNraGjY2NgCAiRMn4u7du3j8+LFCucDAQPnr5ORk/N///V+J904aGxsr3bsnEAjU+t789ttvGDBgABo3LrixwNXVFb///rta51P4UnlmZibS0tLQsGFDAAV9Ufg8gIK+EIvFaNKkico6ACAuLk5eh0xWVhZq1eIFhBhj+oWDOi3R9hMl4iq4nLqePn0KqVSq1mSIPXv2oEWLFujTpw8mTZqEiIgIpRvhMzIy8Pz5cwQHB8PDwwM1atRQuocJAC5fvoxhw4Zh+vTp2LRpk9L+wmJiYtC2bVvMmjULWVlZ8PT0xNmzZ4udXZmVlVVifadPn0Z2djacnZ0xdOhQ1KhRQ37PHQBMnToV7733Hm7cuIFPPvkET548kQdJgHIAXFpws3//fowePRoGBgaYMGECHj58KA80hEIh8vLy0LNnT3Tr1k2e2rdvrzRDWB3//vsv/Pz85BNTxo8fj3379qn13pLOITExEfXq1VPIe/LkiVrfm3v37uH+/fv49NNP0b17d3Tu3FntoC43N1epjbLJSqo+d1V/pJRUh0z9+vWRkJCgVpsYY6yycFCnJdqeKBGAglmu0mL2SwFEvSlXkZKTk3H+/HnMmjVL5UhFnTp15K+TkpJw4sQJuLq6wtXVFd7e3qXWv2zZMnz99dewsFAeY7x06RKGDBmCqVOn4tdffy2xHolEgtOnT8PDwwP9+/eHjY0NOnfurLLsgwcP8OGHHxZbV35+Pnbv3i0/jz/++EMpELx37x5Wr16N999/Hw8fPpQHSY8fP0a/fv0Uyvbt21dpJKywEydOoGbNmnBycsKECRMUgqy7d+/CwMAADRs2xPPnzxVSfHx8iZ9Jcfbv349PPvkEffr0QcuWLfHHH38olZFNgAGAunXrok2bNiXO/Lx79y46dOigkHfgwAF89NFH6Natm1J5kUik8H2SjfJOnToVly5dQkxMjHxfTk5OiSOvxXn06BH69u2rkNe3b1+kpqYiNjZWo7o6deqks2VVGGOsJDq/vlydk7buqQNAziiYEFF0soQsz1lL59SsWTN68eIFPXz4kEaOHEmtWrWidu3a0ezZs+nRo0cKZT/66COSSCSUm5urdB9Y0YkSsnT79m3avHmzfDs8PJw8PDzk2/b29pSWlqZwn1vh5OLiQlOnTqWOHTtS8+bNacWKFZSRkUH169dXWd7e3p7y8vLkEyU6deqkcC8gAGrVqhXl5uZSbm4u9e7dW+Gz+PHHH6lPnz5kZWVFjo6OlJiYSDNnziQANHz4cMrOzqYZM2ZQq1at5BMl7O3t5XUUvqdOlvbt20d3796l/Px8pYkhe/fupbCwMHJ2dqZmzZpRr169aP78+fTxxx+X2ndF76mTfUczMzPp7t27dPHiRaXPhogoODiYHBwcqGPHjnTixAmKiIggQ0PDYo/zxRdf0O3btxXyjIyM6MqVK/Tq1Styd3enLl26UPPmzWnMmDEUFBSkcB+hWCym9PR0kkgkCvfzAaDx48dTWloade3alRo0aEBGRkbFfo7JycnyCTSyiRKbN2+mtm3b0rBhw1ROlFi/fr1CHT4+PuTt7a2QFx4ernTPoKrE99Rx4j7ipGkf8UQJPU7aDOqAgsAtGopBXSS0F9DJkrm5OW3evFk+iSE6OppOnDihEKzIUnh4uMLEAFkqLqgbP348SSQSatKkifz9hYM6AGRra0upqam0detWpfcPHz6cAgMDKSUlhdLS0ujGjRs0dOjQkj9HZ2f6559/SCKR0MuXL+no0aNKZa5cuUIPHz5UyGvYsCEdP36cYmNjSSKRUHh4OC1dulR+4z0AmjlzJj179oyys7MpNDRUKRhQFYx8/PHHRETk7++v1A4DAwNaunQphYWFUXZ2Nr148YKOHTtGnTp1KrXfVAV1QMHkDSKiKVOmKOTLgrrBgwdTcHAwSSQSunnzJnXp0qXE49StW5cyMjKoTZs2CvlGRkb0zTff0P379ykzM5MSExMpICCAPv30U6Wge/fu3ZSYmCgP2grXceTIEUpKSiIikgdtpQV1AMjOzo5u3rxJEomEXrx4QatWrVL4H6s6QV2fPn0oKSlJPuu2pMRBHSfuI06a9hEHdXqctB3UAaDa+C+gG4iKX8akPMnY2JiSk5PJ2dlZp+0oafaruik0NJTmzp2r88+0MpMsqCvL5/fTTz/Rtm3bytxHFy5coI0bN+r8MyiaDh8+LF/yprTEQR0n7iNOmvYRz359yxW+ry4Axd9nV5kEAgEsLCywYsUKvH79GqdOndJ1k8rMzMwMX375JSwtLdW6L5AVWLlyJSIjIzV+qkq9evXwySefwMHBAVu2bNFS68rGyMgI9+/fx/r163XdFMYYU8KPCdOSynpMGABkAqicR6arz8rKChEREYiOjsaUKVOQn5+v6yaV2cuXL5GQkIDp06cjJSVF180p0dmzZ2Fra6ty348//qj0tAptSk1NLdPx/vnnH9SrVw/ffPMNnjx5ooWWlV1OTg5Wrlyp62YwxphKHNRpiaenJzw9PSEWi5Gamqrr5lS6yMhI+XIRVV1VOo/PP/8cxsbGKvclJSVpXN+VK1cq/fybN29eqcdjjLHqgoM6xqqRFy9e6LoJjDHGdITvqWOMMcYYqwY4qGOMMcYYqwY4qGOMMcYYqwY4qGOMMcYYqwY4qKsOatWCfPlhFc9jZYwxxlj1x0EdY3rAz8+v0ha0tba2BhGha9eulXI8xhhjlYODOi1xd3dHSEgIbt26pf2DFV7g2NZWcVtLGjVqhE2bNuH58+eQSCSIiorCqVOn4ODgoHYd3t7eICIQEXJzcxEZGQlPT0/UrVtXoVx4eDg8PDwU8tauXYvU1FR88MEHAAqCIhcXl3Kf19sgOjoa5ubmePjwoa6bwhhjrAJxUKclnp6e6NixI3r37q3dAzk7A48f/7ft6wtERBTka4m1tTXu3LkDBwcHzJ8/H507d4aTkxP8/Pw0fqzTuXPnYG5ujmbNmuHzzz/H0KFD4enpWWx5oVAILy8vfPrpp3BwcICfn195T+etI5VKER8fX6Wf8sEYY0wZB3VVmbMzcPQo0LixYr6lZUG+lgI7T09PEBF69+6NY8eO4enTp3j06BHWr1+PPn36AAC8vLxw+vRphfeJRCLExcXB1dVVnpednY34+HjExsbi4sWLOHToEAYMGKDyuEZGRjhy5AgcHR1hZ2eHoKCgYtu4ZMkSREZGQiKRIDY2Fj/99FOJZe/evYvp06cjKioKGRkZOHz4MOrUqQMAsLW1RU5ODho1aqTwvrVr1+LKlSsACh6LdurUKSQlJSE9PR0PHz7Exx9/LC9rZ2eHmzdvQiKR4MWLF1i1ahVEIpHK9vz4448IDAxUyr9//z6WLl0q354yZQoePXqErKwsPH78GG5ubsWeY2GFL78KBAJER0djxowZCmW6d+8OIpI/3YGIMHPmTJw9exaZmZkICwvD6NGj1ToeY4yxysFBXVUlFAIbN/73uug+ANiwocIvxdarVw9OTk7YsmULMjMzlfa/fv0aALBz5044OTnB3Nxcvm/QoEGoXbs2Dh8+rLLu5s2bw8nJCbm5uUr7ateujTNnzqBjx454//33ERoaWmwbR40ahblz52LGjBlo3bo1RowYgZCQkBLPq1WrVhg7diyGDh0KJycndOvWTT7qGBAQgLCwMEyePFleXiQSYdKkSfD29gYAbNmyBTVq1ICdnR06d+6Mb775Bunp6QCAxo0b4+zZs7h9+za6du0KNzc3fPbZZ1i8eLHKtuzfvx99+vRBixYt5HkdOnRAly5dsH//fgAFjwNbuXIlFi1ahPbt22PhwoVYsWIFPv300xLPsygiwh9//IGJEycq5E+YMAE3btxAeHi4PG/FihU4duwYunbtin379uHgwYNo166dRsdjjDGmXcRJe0ksFhMRkVgsVtpnbW1Ne/bsIWtra83rtrcn+Q1pJSV7+wo9n3fffZeIiEaMGFFq2YcPH9K8efPk28ePH6ddu3bJt729vSk3N5fS0tIoMzOTZObMmaNQT3h4OEkkEkpISCAzM7NSjzt37lwKDQ0lAwMDeV6dOnWKLb9kyRLKzc0lS0tLed7AgQMpLy+PGjVqRABo3rx5FBISIt8/bNgwSk1NpVq1ahEAun//Pn3//fcq6//hhx/o8ePHCnlubm6UmppKAoGAAJCfnx+tX79evv/evXu0ePFi+fbKlSvp5s2b8u3IyEgaN26cQp2LFi2i69evl/r5WFtbExFR165dCQB169aN8vPzycrKigCQQCCg6OhocnNzk7+HiMjT01OhnsDAQNqyZUuFfbdK6qOqmsr1M66HSSQS0ZAhQ0gkEum8LZy4j6pqKq2PSoobSks8UldVWVhUbDk1yR7uTkSllt25c6f8UquZmRkGDx6MXbt2KZTx8/NDt27dYGNjg02bNsHX1xebN29WquvChQswMTHBwoULSz3ukSNHYGxsjLCwMOzYsQMjRowo9lKnTFRUFGJjY+XbgYGBEIlEaNu2LQDg999/R6tWrWBjYwMAmDp1Kg4fPiwfrdy0aRMWL16Ma9euYenSpejcubO8rvbt2ytdTr1+/TrEYjGaNGmisj379+9XGD0bP368fJTO1NQUVlZW8PLyQlpamjwtXrwYLVu2LPXzKerevXsIDQ3F+PHjAQD29vZo2LCh0ohq0XMIDAxE+/btNT4eY4wx7eCgrqqKi6vYcmp6+vQppFKpWr/M9+zZgxYtWqBPnz6YNGkSIiIicO3aNYUyGRkZeP78OYKDg+Hh4YEaNWpgyZIlSnVdvnwZw4YNw/Tp07Fp06YSjxsTE4O2bdti1qxZyMrKgqenJ86ePQsDAwO1z1MWtMr+TUhIwOnTp+Hq6gozMzMMGjRIIUD18vJCixYtsHfvXnTu3BlBQUH44osvABQEwkWD4NKC4wMHDqBNmzbo3r07+vbti6ZNm+KPP/4AUDBZBACmTZuGbt26yVOnTp3k9zRqav/+/ZgwYQKAgkuv58+fx6tXr0p9nzrBPWOMscrBQV1VFRAAREcDUqnq/VIpEBVVUK4CJScn4/z585g1axZqqVjoWDa5AACSkpJw4sQJuLq6wtXVVX7/WUmWLVuGr7/+GhYqRhgvXbqEIUOGYOrUqfj1119LrEcikeD06dPw8PBA//79YWNjozB6VpSVlZXCMd977z3k5+fjyZMn8rydO3di3LhxmDFjBp4/f44bN24o1BETE4Pt27dj1KhR+OWXXzBt2jQAwKNHj9C3b1+Fsn379kVqaqrC6GBhsbGxuHr1KiZOnIiJEyfi0qVLePnyJQDg5cuXiImJQYsWLfD8+XOFFBERUeLnUpwDBw6gS5cu6NGjB0aPHi0fFSysaMDYp0+fEu9tZIwxVrk4qKuqpFJAtnZb0cBOtj1nTvFBXzm4u7tDJBLh1q1bGDlyJFq1aoV27dph9uzZSpfodu7cCRcXF7Rv3x67d+8ute4rV64gJCSk2Musfn5+GDx4MFxcXIpdPsXFxQVTp05Fx44d0bx5c0yePBmZmZmIjIws9rgSiQS7d+9Gly5d0K9fP2zatAmHDx9GfHy8vMz58+fx+vVrLF68WClAXb9+PQYMGIBmzZqhe/fucHBwwOM3S814enqiadOm2Lx5M9q2bYthw4Zh2bJlWLduXYkjXfv378e4ceMwZswY7Nu3T2Hf0qVLsWDBAvzvf/9D69at0alTJ0yZMgVz584ttr6SRERE4Pr16/Dy8oKBgQFOnjypVGbMmDFwdXVF69atsXTpUvTu3bvU4Joxxljl0vlNg9U5aW2ihCw5OxOioxUnR0RGFuRr8bzMzc1p8+bN8kkM0dHRdOLECbJXMTEjPDyc/vzzT6V8b29v8vHxUcofP348SSQSatKkifz9Hh4eCmVsbW0pNTWVtm7dqvT+4cOHU2BgIKWkpFBaWhrduHGDhg4dWuy5LFmyhO7evUszZ86kmJgYyszMpKNHj1LdunWVyi5btoxyc3PJ3NxcIX/Tpk309OlTysrKovj4eNq9ezfVr19fvt/Ozo5u3rxJEomEXrx4QatWrVK4SbboRAmgYOJAVlYWpaenk4mJicrP6Z9//iGJREKvXr0if39/tSawFJ0oIUtubm5ERPT7778rvYeIyM3Njc6fP09ZWVkUHh5On3zySYV+p3iihP4nvglf20lIgD0B4978K+Q+qoZJmxMloOuT0/dUu3ZtunXrFt29e5cePHhAn3/+uUbv13pQBxBq1/4voBs4kCDU/H8E2krGxsaUnJxMzloOMktLpc1+vXv3rlr17Nixg06ePKnzz7WyExHR8OHDddZHVTVxUMdJ/eRMQBRB/iBverOt2f87uY/0P2kzqFP/zvG3VGZmJuzt7ZGVlQVjY2M8fPgQx48fR1JSkq6b9p/Cl1gDArRyyVVTAoEA5ubm+Oqrr/D69WucOnVK100ql3feeQfvvvsuJk6ciOHDh+u6OYyxasUZwFEV+ZZv8kcD8KnUFrGqie+pK4VUKkVWVhYAoGbNmhCJRPKZi3ojMxMQCAqSigWBdcHKygovXrzA2LFjMXXq1Cr/SKqTJ0/i1KlT2L59Oy5duqTr5pRowYIFCkudFE5nz57VdfMYYwqEADYWel10HwBsULGPMWXVfqTO1tYW8+bNQ8+ePdG4cWOMGDFC6SZwNzc3zJs3DxYWFggJCcGcOXMUlt6oU6cOrly5gtatW2PevHlqLfXwtouMjNS/4LcYy5Ytw7Jly0os88EHH1RSa8pv27ZtxT61Q/YHiqaqSl8yVvXYAmhawn4hAKs35a5USotY1VXtgzoTExPcv38f3t7eOH78uNL+sWPHYsOGDXB3d8f169cxY8YMnDt3Dh06dEB0dDSAgkdfdevWDQ0bNsTx48dx9OhR+fISjOmb5ORkJCcn67oZjDG1qLtAfMUuJM+qp2of1Pn6+sLX17fY/V9++SW8vLzg5eUFAJg7dy4GDhwINzc3pWU1Xr58iQcPHsDOzg5Hj6q6/6HgofM1atSQb4vFYgAFzwot+lSD0p5ywCqGbJRJ1SLATD9U9z5S9fNfFYlEIgiFwmpxLvqC6KVat0ELhS8hEJT+uXMf6b/S+qg8fVftg7qSGBoaomfPnli9erVC/oULF+SLxTZs2BBZWVlIS0uDWCyGnZ0dtm7dWmydCxYswNKlS5XyHR0dlS59mZqawtjYGGKxWGHRXlbxTExMdN0EVorq2EdisRjGxsaws7NDYmKirptTbiKRCD169IBAIKjy98nqCyIhLl9OgETSAKrvm5OiZs1X+PDD2hAIPi61Pu4j/VdaHxkbG5e57rc6qDM1NYWBgYHCArMAEB8fD3NzcwBAkyZN4OXlBYFAAIFAgF9//RXBwcHF1rlq1SqsW7dOvi0WixEbG4uLFy8iLS1Noay1tTUcHByQlpaG169fV+CZscJko0CpqanVchSoOqiufVS3bl1kZWXh6tWrJS5+XVWIRCIQEXx9fTlgqEBEbgAOA5BCMbArGMLLyXGDr+8ZteriPtJ/pfWR7ApfWbzVQZ2MqudyyvL++ecfdO/eXe26cnJykJOTo5Sfn5+v1Hn8A1c5ij7Hlemf6t5Hqn7+qyqpVFqtzkc/HEPBsiUboThpIgbAHEilmi1nwn2k/0rqo/L021sd1CUmJiIvL08+KifTsGFDpdE7Tbm7u2PWrFnyh68zxhhjxfMBcBIFs1wtAMQBCIBstI4xdbzVEUdubi7u3LkDR0dHhXxHR0elh7VrytPTEx07dkTv3r3LVY86aqEW6M1/tVBL68djFc/Pzw/r16+vlGNZW1uDiNC1a1etH6t+/fqIj4+HtbW12u9xcXFRmL27ZMkS3L17t8T3mJmZ4eXLl2jcuHGZ28qY7klRsGzJH2/+5YCOaabaB3UmJibo2rWr/BdY8+bN0bVrVzRtWjDEvW7dOnz++edwdXVFu3btsG7dOlhZWWHbtm3lOq67uztCQkJw69atcp9DaYSFutEWtgrb2tKoUSNs2rQJz58/h0QiQVRUFE6dOgUHBwe16/D29pY/3Sw3NxeRkZHw9PRE3bp1FcqFh4fDw8NDIW/t2rVITU2Vrx/n5+cHFxeXcp/X2yA6Ohrm5uZ4+PCh1o+1YMECnD59WqP7yQ4dOoQ2bdrIt9euXYsPP/xQvu3t7Q0fH8XLUQkJCdi7d2+p6w0yxlh1Vu0vv/bq1Qv+/v7ybdloyO+//w5XV1ccPnwYDRo0wPfffw8LCws8fPgQgwYNQlRUVLmO6+npCU9PT4jFYqSmpparrpI4wxmbsEm+7QtfRCMaHvCAj5YeK2NtbY3r168jJSUF8+fPx4MHD2BoaIiBAwdiy5YtaN++vdp1nTt3Dq6urjAwMECHDh2wa9cu1K1bFxMmTFBZXigU4rfffsPQoUPh4OCAoKCgijqtt4ZUKi337QXqqFmzJj777DMMGjRIo/dJJBJIJBL5dkZGBjIyMkp9n7e3N27duoV58+YhJSVF0+YyxljphELA1hawsADi4vTm0ZyF6fzhttU5lfRg3vI+7NsZzpSPfMpH/pvxroIky3PW8EHQ6qYzZ85QdHQ01apVS2mf7KHsXl5edPr0aYV9IpGI4uLiyNXVlQCQt7c3+fj4KJRZu3YtJSYmKuSFh4eTh4cHGRkZ0bFjxygqKoratWunUMbPz49cXFzk20uWLKHIyEiSSCQUGxtL27ZtK/Z8lixZQnfv3qXp06dTVFQUZWRk0OHDh+XnYmtrSzk5OdSoUSOltl65coUAkJWVFZ06dYqSkpIoPT2dHj58SB9//LG8rJ2dHd28eZMkEgm9ePGCVq1apfAwZz8/P1q/fj0BoB9//JECAwOV2nn//n1aunSpfHvKlCn06NEjysrKosePH5Obm5ta/WdtbU1ERF27diWBQEDR0dE0Y8YMhTLdu3cnIqLmzZsTACIimjlzJp09e5YyMzMpLCyMRo8eXfL309mZXr58qZBnb29PREQODg50+/ZtysjIoOvXr1ObNm3kn7eLiwslJycr9Y/sdVH29vbysmFhYfLvlz6k8v6M61vih8Xrf+I+0mJydiZERRX+dVuw7azZ79rS+qikuKG0VO0vv+qKti+/CiHExjfPCyx6uVW2vQEbKvxSbL169eDk5IQtW7YgU8VzZmVLs+zcuRNOTk4Kk1AGDRqE2rVrF/sIq+bNm8PJyQm5ublK+2rXro0zZ86gY8eOeP/99xEaGlpsG0eNGoW5c+dixowZaN26NUaMGIGQkJASz6tVq1YYO3Yshg4dCicnJ3Tr1g1btmwBAAQEBCAsLAyTJ0+WlxeJRJg0aRK8vb0BAFu2bEGNGjVgZ2eHzp0745tvvkF6ejoAoHHjxjh79ixu376Nrl27ws3NDZ999hkWL16ssi379+9Hnz590KJFC3lehw4d0KVLF+zfvx8A8Pnnn2PlypVYtGgR2rdvj4ULF2LFihX49NNPSzzPoogIf/zxByZOnKiQP2HCBNy4cQPh4eHyvBUrVuDYsWPo2rUr9u3bh4MHD6Jdu3bF1m1nZ1fsSOrKlSvx1VdfoVevXsjLy8OuXbvUau/atWtx6NAhnDt3Dubm5jA3N1e4//XWrVuwtbVVqy7GGFObszNw9ChgaamYb2lZkO/srJt2qaD76LcaJ22N1NnDnhT/XFCd7GFf7nMonN59910iIhoxYkSpZR8+fEjz5s2Tbx8/fpx27dol3/b29qbc3FxKS0ujzMxM+cjLnDlzFOoJDw8niURCCQkJZGZmVupx586dS6GhoWRgYCDPk40CqUpLliyh3NxcsrS0lOcNHDiQ8vLy5KNz8+bNo5CQEPn+YcOGUWpqqny08v79+/T999+rrP+HH36gx48fK+S5ublRamoqCQQCAhRH6gDQvXv3aPHixfLtlStX0s2bN+XbkZGRNG7cOIU6Fy1aRNevXy/18yk8UgeAunXrRvn5+WRlZUUA5KN3hUf+iIg8PT0V6gkMDKQtW7YUexwfHx/auXOn4ve20EidLO/jjz8mIqKGDRsSUPJInex7U3SEV5Z++eUX+uuvvyr0O1+exCN1nLiPqkESCgtG5PLzVf+qzc8nREYWlKuAPuKRureQhZrPAVS3nLpki8Sqs57Yzp074erqCqBgduLgwYOVRmT8/PzQrVs32NjYYNOmTfD19cXmzZuV6rpw4QJMTEyUHt2mypEjR2BsbIywsDDs2LEDI0aMKPWxK1FRUYiNjZVvBwYGQiQSoW3btgAK7sFs1aoVbGxsAABTp07F4cOH5aOVmzZtwuLFi3Ht2jUsXboUnTt3ltfVvn17BAYGKhzv+vXrEIvFaNKkicr27N+/X2H0bPz48fJROlNTU1hZWcHLywtpaWnytHjxYrRs2bLUz6eoe/fuITQ0FOPHjwcA2Nvbo2HDhkojqkXPITAwsMT7J42NjRXujSvswYMH8tdxcXEACr4j5ZWVlYVatXgGOGOsAtnaAk2bFtxPp4pQCFhZFZTTMQ7qqqg4xFVoOXU9ffoUUqlUrckQe/bsQYsWLdCnTx9MmjQJERERuHbtmkKZjIwMPH/+HMHBwfDw8ECNGjWwZMkSpbouX76MYcOGYfr06di0aZPS/sJiYmLQtm1bzJo1C1lZWfD09MTZs2dhYKD+vKCii+EmJCTg9OnTcHV1hZmZGQYNGqQQoHp5eaFFixbYu3cvOnfujKCgIHzxxRcAVD/PtLTg+MCBA2jTpg26d++Ovn37omnTpvjjjz8AQL724bRp09CtWzd56tSpE/r06aP2ORa2f/9++eSUCRMm4Pz583j16lWp7yspuE9MTES9evVU7it8iV1WR0Ws6Vi/fn0kJCSUux7GGJOzUHNwRN1yWsRBnZZo+566AAQgGtGQFrOOkRRSRCEKAQio0OMmJyfj/PnzmDVrlsoRkcLPsE1KSsKJEyfg6uoKV1dX+f1nJVm2bBm+/vprWKj44bh06RKGDBmCqVOn4tdffy2xHolEgtOnT8PDwwP9+/eHjY2NwuhZUVZWVgrHfO+995Cfn48nT57I83bu3Ilx48ZhxowZeP78udJahjExMdi+fTtGjRqFX375BdOmTQMAPHr0SP4sYZm+ffsiNTVVYXSwsNjYWFy9ehUTJ07ExIkTcenSJbx8+RIA8PLlS8TExKBFixZ4/vy5QoqIiCjxcynOgQMH0KVLF/To0QOjR4+WjwoWVjRg7NOnT4n3Nt69excdOnQoU3tKkpOTU+zIa6dOnUpd044xxjQSp+bgiLrltIiDOi3R9uLDUkjhAQ/566L7AGAO5hQb9JWHu7s7RCIRbt26hZEjR6JVq1Zo164dZs+erXSJbufOnXBxcUH79u2xe/fuUuu+cuUKQkJCir3M6ufnh8GDB8PFxUU+kaEoFxcXTJ06FR07dkTz5s0xefJkZGZmlrhWmkQiwe7du9GlSxf069cPmzZtwuHDhxWW/jh//jxev36NxYsXKwWo69evx4ABA9CsWTN0794dDg4OePz4MYCC70LTpk2xefNmtG3bFsOGDcOyZcuwbt26Eke69u/fj3HjxmHMmDHYt2+fwr6lS5diwYIF+N///ofWrVujU6dOmDJlCubOnVtsfSWJiIjA9evX4eXlBQMDA5w8eVKpzJgxY+Dq6orWrVtj6dKl6N27d4nB9fnz59GxY0eldQfLKyIiAl26dEGbNm3QoEED+QissbExevbsiQsXLlTo8Rhjb7mAACA6uvilS6RSICqqoJwe0P1NiNU4aXNJE6BgWZNoRCvctRmJSK0tZyJL5ubmtHnzZvkkhujoaDpx4oTC8hKyFB4eTn/++adSfnE3vI8fP54kEgk1adJE/n4PDw+FMra2tpSamkpbt25Vev/w4cMpMDCQUlJSKC0tjW7cuEFDhw4t9lxkN+LPnDmTYmJiKDMzk44ePUp169ZVKrts2TLKzc0lc3NzhfxNmzbR06dPKSsri+Lj42n37t1Uv359+X5NljSRpTp16lBWVhalp6eTiYmJys/pn3/+IYlEQq9evSJ/f3+1JrAUnSghS25ubkRE9Pvvvyu9h4jIzc2Nzp8/T1lZWRQeHk6ffPJJqce6ceMGTZ8+Xb4tmyhReOJK165diYioc+fOBJQ+UcLU1JTOnz9PqampCkuajBs3TmlCiq4TT5TgxH1UTZKzc8GEiKKTJWR5Gixros2JEtD5B1XNk7aDOgBUG7Xl37CBGEhCqDcDpzKSsbExJScnk7OG6/hUdCpt9mvhoKGktGPHDjp58qTOP9fKTkREw4cP1/h9H3/8MYWEhMhn+arTR9OnT6fo6GiNj3Xz5k0aP368zj+rwomDOk7cR9UoqVqnLjJSr9apq/ZPlNAVd3d3zJo1q0Ju/i5N4UusAQjQyiVXTQkEApibm+Orr77C69evcerUKV03qVzeeecdvPvuu5g4cSKGDx+u6+ZUGefOnUPr1q1haWmJmJiYUss3adIEgwYNKnVdwaLMzMxw9OhRHDx4sKxNZYyxkvn4ACdP6vUTJTio05LKekwYAGQiEwIItHoMTVlZWSEiIgLR0dGYMmUK8vPzdd2kcjl58iR69+6N7du349KlS7puTokWLFhQ7D2JAQEBGj+2q7xKm61c2D///IPY2FhMmTJFo2MkJCRgzZo1GraMMcY0JJUCV67ouhXF4qCOaUVkZKR82Q59t2zZslIfBP/BBx9UUmvKb9u2bcU+tSMrK6tMdVZWXzZs2LBSjsMYY9URB3WMVTPJyclITk7WdTMYY4xVMl7ShDHGGGOsGuCgTku0vfgwY4wxxlhhHNRpibYXH2aMMcYYK4yDOsYYY4yxaoCDOsYYY4yxaoBnv1YHhgAWvXm9EkCuDtvCGGOMMZ3gkTrG1ODn54f169drrX57e3sQEerUqaO1YxTm7e0NHx+fSjnW8uXLsX379ko5ljqsra1BROjatWu56lmzZg02btxYQa1ijLHy46CuOii8LqxVkW0tadSoETZt2oTnz59DIpEgKioKp06dgoODg9p1eHt7yx+fl5ubi8jISHh6eqJu3boK5cLDw+Hh4aGQt3btWqSmpsoXBfbz84OLi0u5z+tt4eHhofFTG8qiYcOG8PDwwI8//ijPk/X7N998o1B28ODBICKtt6mi/Pzzz3B1dUWzZs103RTGWCURQgh72GMcxsEe9hDqWRilX62pRiptSZP2AL4otD0ZwJw3+VpibW2NO3fuwMHBAfPnz0fnzp3h5OQEPz8/bNmyRaO6zp07B3NzczRr1gyff/45hg4dCk9Pz2LLC4VCeHl54dNPP4WDgwP8/PzKezpvpdTUVLx+/Vrrx/nss88QGBiIyMhIhfysrCx88803SgF8VZKQkIALFy5g5syZum4KY6wSOMMZEYiAP/xxEAfhD39EIALOcNZ10+Q4qNOSSlnSpD2AsQDERfLfeZOvpcDO09MTRITevXvj2LFjePr0KR49eoT169ejT58+AAAvLy+cPn1a4X0ikQhxcXFwdXWV52VnZyM+Ph6xsbG4ePEiDh06hAEDBqg8rpGREY4cOQJHR0fY2dkhKCio2DYuWbIEkZGRkEgkiI2NxU8//VRi2bt372LSpEkIDw9HSkoKDh48iNq1ayuUMzAwwObNm5GcnIzExESsWLFCYb+bmxuePHmCrKws/Pvvvzhy5IhC2zdu3Ij4+HhkZWUhICAAvXr1Utmed955B5mZmRg4cKBCvrOzM9LT02FiYgIAaNy4Mf744w8kJSUhMTERJ06cgLW1dbHnWVjhy6/Tp09HTEyM0qPATp48id9//13hM5o+fTqioqKQkZGBw4cPl3q5eNy4cTh16pRS/qVLl/Dvv/9iwYIFxb5XdszCPDw8EB4ernQeCxYswL///ovk5GR8//33EIlE+Pnnn/Hq1StER0crfOdk2rVrh+vXryMrKwsPHz6Evb29fJ9QKMTOnTsRFhaGzMxMhIaG4n//+59SHadOncL48eNL/AwYY1WfM5xxFEdhCUuFfEtY4iiO6k1gx0FdVSUA4FToddF9eLO/gi/F1qtXD05OTtiyZQsyMzOV9stGf3bu3AknJyeYm5vL9w0aNAi1a9cu9rmkzZs3h5OTE3JzlWd61K5dG2fOnEHHjh3x/vvvIzQ0tNg2jho1CnPnzsWMGTPQunVrjBgxAiEhISWeV8uWLTFixAgMGTIEQ4YMgb29Pb799luFMi4uLsjLy4ONjQ3+97//Ye7cufj8888BAD179sSmTZvw/fffo23btnBycsLVq1fl7/35558xatQouLi4oEePHnj27BnOnz+PevXqKbUlNTUVZ86cwcSJExXyJ0yYgJMnTyIjIwPGxsbw8/NDeno67Ozs0K9fP6Snp8PX1xeGhoYlnmtRR44cgampqcLzbevWrYuBAwdi//798rxWrVph7NixGDp0KJycnNCtW7cSR2br1q2LTp06qQy+8/PzsXDhQsyePRuWlpYq3q0+BwcHNG7cGHZ2dvjyyy+xbNky/Pnnn0hOToaNjQ22bduGbdu2oUmTJgrvW7NmDX755Rd0794dN27cwKlTp1C/fn0ABUFdTEwMxo4diw4dOmD58uX48ccfMWbMGIU6bt26BSsrK1hZWZXrHBhj+ksIITZio/x10X0AsAEb9OZSLHHSXhKLxUREJBaLlfZZW1vTnj17yNraWvO6m4GwVI3UrGLP59133yUiohEjRpRa9uHDhzRv3jz59vHjx2nXrl3ybW9vb8rNzaW0tDTKzMwkmTlz5ijUEx4eThKJhBISEsjMzKzU486dO5dCQ0PJwMBAnlenTp1iyy9ZsoTS09Opdu3a8ryffvqJAgMD5dt+fn4UEhKi8L5Vq1bJ85ydnSklJUWhDlmqVasWZWdn0/jx4+V5BgYGFBMTQ19//TUBIHt7eyIieTtHjBhBqampZGxsLP8eZWZm0scff0wAyNXVlR4/fqxwHENDQ8rIyCBHR8dSPyNvb2/y8fGRb584cYJ27twp3542bRq9ePGChEKh/DPKzc0lS0tLeZmBAwdSXl4eNWrUSOUxunbtSkRETZo0KfbYN27ckB93woQJRAU31cmPeffuXYX3enh4UHh4uEJd4eHhJBAI5HmPHz+mK1euyLeFQiGlpaXRJ598Iv+5IyKaP3++vIxIJKKoqCiF72vR9Ouvv9KRI0cU8mQ/33Z2dirfU66fcT1MIpGIhgwZQiKRSOdt4cR9VFnJHvZv7v4uOdnDvkL6qKS4obSkH2El01zt0otoVE5Nskt06tzQvnPnTvllLzMzMwwePBi7du1SKOPn54du3brBxsYGmzZtgq+vLzZv3qxU14ULF2BiYoKFCxeWetwjR47A2NgYYWFh2LFjB0aMGAGRSFTieyIiIpCeni7fjouLQ8OGDRXK/P333wrbgYGBaN26NYRCIS5evIjIyEiEhYVhz549mDBhAoyNjQEUjAIaGRnh+vXr8vfm5eXh1q1baN9e9TXyM2fOIC8vD8OGDQNQMPqYlpaGCxcuACgYGWzVqhXS0tLkKSkpCTVr1kTLli1L/YyK2r9/P0aNGgUjIyMAwMSJE/HHH39AKpXKy0RFRSE2Nlbh/EUiEdq2bauyTtn5SySSYo/7zTffwMXFpdjPQR0hISEK38f4+HgEBwfLt6VSKV69eqXUn4GBgfLX+fn5CAoKUmjHjBkzcPv2bbx8+RJpaWmYNm2a0ohcVlYWAKBWrVplbj9jTL9ZwKJCy2kTB3VVVXrpRTQqp6anT59CKpWq9Ut4z549aNGiBfr06YNJkyYhIiIC165dUyiTkZGB58+fIzg4GB4eHqhRowaWLFmiVNfly5cxbNgwTJ8+HZs2bSrxuDExMWjbti1mzZqFrKwseHp64uzZszAwKH5ZxqKXfIkIQqH6Px7p6eno0aMHxo8fj7i4OCxfvhz3799HnTp1ig2EBQJBscFxbm4ujh49igkTJgAouPR66NAh5OfnAyi4PHjnzh1069ZNIbVp0wYHDhxQu90yp0+fhlAoxODBg9GkSRPY2tpi3759Jb5H1vbiziExMREAVF5ilgkICMD58+cVZsfKSKVSpfv8VF1aVtV3Ze1P2bmMGTMG69evx65duzBgwAB069YN3t7e8qBXRna5NiEhodS6GWNVUxziKrScNnFQV1VFAniNggFXVejN/shi9pdRcnIyzp8/j1mzZqkcnSh843xSUhJOnDgBV1dXuLq6wtvbu9T6ly1bhq+//hoWFsp/8Vy6dAlDhgzB1KlT8euvv5ZYj0QiwenTp+Hh4YH+/fvDxsYGnTt3VuMMiyebBFJ4WxbkAgWjPZcvX8Y333yDLl26oFmzZnBwcMCzZ8+QnZ2Nfv36yd9rYGCAXr164fHjx8Ueb//+/XByckKHDh3wwQcfKNzf9s8//6B169Z4+fIlnj9/rpBSU1M1PjeJRILjx49j4sSJGD9+PJ48eYJ//vlHoYyVlZVCv7z33nvIz8/HkydPVNb5/PlzvH79Gh06dCjx2N9++y2GDh2qNKkoISFB4Z5MAOjWrZsGZ1Wywv0pEonQs2dP+b2atra2uHHjBrZu3Yp79+7h+fPnKkdAO3XqhJycnFLv2WSMVV0BCEA0oiGFVOV+KaSIQhQCEFDJLVPGQV1VRQB8C70uug9v9pd+lVRj7u7uEIlEuHXrFkaOHIlWrVqhXbt2mD17tsIlLaDgEqzs8tru3btLrfvKlSsICQkp9jKrn58fBg8eDBcXl2Jv0ndxccHUqVPRsWNHNG/eHJMnT0ZmZqbSshqaatq0KX755Re0adMG48aNw+zZs+WLzw4ePBizZ89G165dYWVlhU8//RRCoRD/93//h8zMTGzduhVr1qzBwIED0b59e/z222+oVasWvLy8Svws4uPjsX//fkRERODmzZvyffv370diYiJOnjyJfv36oVmzZrCzs8OGDRvKPPFg//79GDx4MKZOnapylE4ikWD37t3o0qUL+vXrh02bNuHw4cOIj49XWR8R4dKlSwrBrCoPHz7E/v37MX36dIV8f39/mJmZYf78+WjRogXc3d3x8ccfl+ncVJk1axZGjBiBtm3bYsuWLahXr5789oBnz56hV69eGDBgAFq3bo3ly5fj3XffVarD1tYWAQEBJV5iZoxVbVJI4QEP+eui+wBgDuYUG/RVJg7qqrLHAA4DSCuSn/omv/hBoHKJiIhAjx494Ofnh19++QUPHz7ExYsX8eGHH8LNzU2h7KVLlxAXF4fz588jLk69oel169Zh2rRpSrMVZa5cuYJBgwZh8uTJ2Lp1q9L+lJQUTJs2DdevX8eDBw/w4YcfYty4cUhKStL8ZAvZs2cPjI2NcevWLWzZsgWbN2/Gjh075MccOXIk/vrrLzx+/BgzZ87E+PHj8ejRIwAFo1HHjh3D3r178c8//6BVq1YYOHAgUlJSSjzmwYMH0a1bN4VROqDgXi47OztERUXh+PHjePz4MXbt2gVjY+MyjdQBwF9//YWkpCS0a9dO5SXcZ8+e4fjx4zh79iwuXLiAhw8fwt3dvcQ6d+zYgXHjxildRi3qu+++UyoTGhoKd3d3zJo1C/fv30fv3r2xdu1azU+sGN9++y2++eYb3L9/H7a2thg+fDhevXoFANi2bRuOHz+OQ4cO4ebNm2jQoIHK9RPHjx+P3377rcLaxBjTTz7wwWiMRixiFfJjEIPRGA0f+OioZcp0PrOkOiZ3d3cKCQmhx48fa2f2a+FkhP9mu7YEQaD785clY2NjSk5OJmdnZ522o6TZr5xKT6pmoqqb/v77bxo3bly166NBgwZRSEhIibMMefYrJ+6j6pWEEJI97GkcxpE97EkIYYX3UXlmvxZ/5zgrF09PT3h6ekIsFpd55ERtVOh1VJFtHREIBDA3N8dXX32F169fq1yAlr0dpk+fji5duui6GRXOxMQErq6u8skrjLHqTwopruCKrptRLA7qqoNcAEt13QhFVlZWiIiIQHR0NKZMmcK/+CpZWlrRa/L/+fjjj5VmIWvTgwcP8ODBg0o7XmUp/MQQxhjTBxzUMa2IjIws9T4qpj0lzRItvNacupYtW4Zly5aVo0WMMca0jYM6xqqh58+f67oJjDHGKhnPftUh2UKnpT3tgDFWNckWvFbnCSyMMVZeHNTpkOy+p6KPL2KMVQ/t2rUD8N/TNRhjTJv48qsOpaSkIDQ0FGPHjkVSUhKys7N13aRqSywWo27durpuBitBdeojAwMDtGvXDmPHjoW/vz8yMzN13STG2FuAgzodIiL89ttvWLlyJRYvXqzr5lRrxsbG8oevM/1UHfvI399frcfjVQ4hAFsAFgDiAAQAerACPmOs4nBQp2MJCQlwd3eHubk531unJSKRCHZ2drh69SovraKnqlsfERESExP1aITOGcBGAE0L5UUD8AD0aCV8xlj5qBXUzZ49W+OKvb29kZ6ervH79E2TJk2wd+9eNGzYEHl5eVixYgWOHj1aocfIy8tDTExMhdbJ/iMSiZCYmIjIyMhqETBUR9xH2uQMQNX/syzf5I8GB3aMVQ9qBXUbNmxATEyM2v+zbdq0Kf78889qEdTl5eVhzpw5uH//PszMzPDPP//g7NmzevQXOGOMFUeIghE62eui+6QANgA4Cb4Uy1jVp/bl1169eiEhIUGtslp/LFYl+vfff/Hvv/8CKLhUmpSUhPr163NQxxirAmyheMm1KCEAqzfl9PfRR4wx9ai1pMmyZcs0GnX78ccfkZSUVOZGVSRbW1ucOnUKsbGxICIMHz5cqYybmxvCwsKQlZWFoKAg9OvXT2VdPXv2hFAo5EuljLEqwqKCyzHG9JlaQd3y5cs1mpW2evVqvH79usyNqkgmJia4f/8+vvjiC5X7x44diw0bNmDlypXo3r07AgICcO7cOTRtqvjXbf369bFnzx5Mnz69MprNGGMVIK6CyzHG9JnGs19r1qwJgUAgD/KsrKzg7OyMR48e4eLFixXewPLy9fWFr69vsfu//PJLeHl5wcvLCwAwd+5cDBw4EG5ubli4cCEAwMjICD4+Pli1ahUCAwNLPJ6RkRFq1Kgh3xaLxQAKbgTn2a26IRKJIBQK+fPXY9xH2kF0A1JpNAomRaj6G14KIAZC4Q0IBKV/9txP+o/7SLtIQIAVQLUJgnQBEAUISLPnnJfWR+XpO42DupMnT+L48ePYvn076tSpg5s3byI3Nxempqb48ssvsW3btjI3prIZGhqiZ8+eWL16tUL+hQsX0LdvX/n277//jr/++gv79u0rtc4FCxZg6dKlSvmOjo7Vbg2uqkIkEqFHjx4QCAQ8s1JPcR9pT1zcXty5swAFAVzhwE4KQICePffBwmKgWnVxP+k/7iPtiasbhxCrEEiMJAAAAqFmTk10jOoIixT1b2EorY+MjY3L3EaNg7oePXpg7ty5AIDRo0cjPj4e3bt3x6hRo7B8+fIqFdSZmprCwMAA8fHxCvnx8fEwNzcHALz//vv45JNP8ODBA4wYMQIAMHnyZDx8+FBlnatWrcK6devk22KxGLGxsbh48aL8sWCscolEIhARfH19+X9yeor7SJvOQSj8B1LpeihOmoiBUPgl7t07gXv31KuJ+0n/cR9pB7UjSEcrzxCXGEpwp+UdCI8KIQhVb8SutD6SXeErC42Dulq1asmDkwEDBuD48eMgIvz999+wtrZWqw4jIyP07t0bzZo1Q61atZCQkIC7d+8iIiJC0+ZUiKIP2xYIBPK869evazQUmpOTg5ycHLi7u2PWrFkQCgv+Ms7Pz+cfMB2SSqXcB3qO+0ibjqFgLTrFJ0pIpZovY8L9pP+4jyqYAMCAQq+L7iNAOkAKPCp4rY6S+qg8/aZxUPfs2TOMGDECPj4+GDhwINavXw+g4KH0pS1l8t5772H27NkYMWIEjIyMkJKSgqysLNSvXx81atRAWFgYduzYgW3btlXKGneJiYnIy8uTj8rJNGzYUGn0TlOenp7w9PSEWCyuVku8MMaqKil42RLGysAaQJ0S9gve7LcGEFEZDSqeWrNfC1u+fDnWrl2LiIgI3Lx5E3///TeAglG7u3fvFvu+EydO4OjRo4iNjcXAgQMhFothamqKpk2bwsTEBK1bt8YPP/yADz/8EE+ePMFHH31U9rNSU25uLu7cuQNHR0eFfEdHR9y4cUPrx2eMMcaYnqtdweW0SOORumPHjsHKygoWFha4f/++PP/y5cvw8Sn+UTMXLlzAmDFjkJubq3J/eHg4wsPDsWfPHnTo0AGNGzfWtGkqmZiYoFWrVvLt5s2bo2vXrkhKSkJ0dDTWrVuHvXv3IigoCIGBgZg+fTqsrKzKfW9g0cuvjDHGWImEQsDWFrCwAOLigIAAoAyXyFkFU/fCoZ48RIsqMwmFQrKzs6O6detWyvHs7e1JFW9vb3kZNzc3Cg8PJ4lEQkFBQWRra1thxxeLxUREJBaLK/Vz5vRfEolENGTIEBKJRDpvCyfuo6qcuJ+0mJydCVFRBKL/UlRUQT73kW6TAIS5ICwBYamKtOTNfkHF9FF54gaNR+pq1KiB2bNn44MPPkDDhg2VRqJ69uxZ4vulUinOnz+P9u3bIyUlRdPDa+zKlSsQCEqekbJ161Zs3bpV621hjDHGlDg7A0ePKudbWhbkjx4NlHAljGkZAfAFMPbNa0GRfXizn6BzGgd1u3btgqOjI44ePYpbt24pzRxVR3BwMFq0aKGz2a6VgS+/MsYYK5VQCGzc+N/rovukUmDDBuDkSb4Uq0uPARwG4ATFSROpKAjoHuuiUco0DuoGDx6MQYMGlWsiwaJFi7B27Vp89913uHPnDjIyMhT2V4f13Hj2K2OMsVLZ2gJFHkupQCgErKwKyl3h2cs69RhAKApmudZGwT10kdCLEToZjYO62NjYcgddssd2nTp1SmGkT7Y+nIGBxs1ijDHGqh4LNZ9EoG45pl0EnS9bUhKNo6evvvoKP/30E2bOnImoqKgyHfSDDz4o0/uqEr78yhhjrFRxcRVbjr3VNA7qgoKCULNmTYSFhSEzM1NpiZIGDRqUWsfVq1c1PWyVw5dfGWOMlSogAIiOLpgUoWoQQCoFYmIKyjFWCo2DuoMHD8LS0hILFy5EfHx8mSZKAEC/fv0wY8YMtGjRAmPGjMGLFy8wadIkhIeH4/r162WqkzHGGKtSpFLAw6NglqtUqhjYySZGzJnDkySYWjQO6vr27Yv33nsPDx48KPNBR44cib1792L//v3o0aMHatSoAaDgIbYLFy7E4MGDy1w3Y4wxVqX4+BQsW7Jxo+KkiZiYgoCOlzNhatL4hq/Q0FAYGxuX66CLFy/GzJkzMX36dIXLtzdu3ECPHj3KVTdjjDFW5fj4AM2aAf37A+PHF/zbvDkHdEwjGo/Uffvtt/jll1+waNEiBAcHK91Tp87M2LZt26q8ry41NRV169bVtEl6iSdKMMYY04hUysuWsHLROKiTLUdy+fJlhXxNliOJi4tDq1atEBkZqZDfr18/hIWFadokvcQTJRhjjDFWmTQO6ipiOZLt27dj48aNmDp1KogIjRs3xnvvvYe1a9di+fLl5a6fMcYYY+xto3FQVxHLkaxZswZ16tSBn58fatasiatXryI7Oxtr167Fli1byl0/Y4wxxtjbRq0bvjp37gyBQFB6wTc6dOgAkUhUYpnFixfD1NQUvXv3Rp8+fWBmZobvv/9e7WMwxhhjjLH/qBXU3b17V61FhWUCAwNhZWVV7H4vLy/Url0bWVlZuHPnDm7fvo2MjAzUqlULXl5eah9Hn7m7uyMkJAS3bt3SdVMYY4wx9hZQ6/KrQCDAihUrkJmZqValRkZGJe53cXHBt99+i/T0dIV8Y2NjfPrpp/jss8/UOo4+44kSjDHGGKtMagV1V69eRdu2bdWuNDAwEFlZWUr5YrEYAoEAAoEAYrEYEolEvk8kEmHQoEF4+fKl2sdhjDHGGGMF1ArqKmLGKwCkpKSAiEBEePLkidJ+IsKSJUsq5FiMMcYYY28TjWe/lscHH3wAgUCAv/76C6NGjUJSUpJ8X05ODiIjIxEXF1eZTWKMMcYYqxYqNaiTLYfSvHlzREVFqSzTtGlTREdHV2azGGOMMcaqPJ08wyosLAxmZmZK+fXr10d4eLgOWlTxePYrY4wxTQghhD3sMQ7jYA97CHXzK5pVYTr5xhS35l3t2rUVJk9UZZ6enujYsSN69+6t66YwxhjTc85wRgQi4A9/HMRB+MMfEYiAM5x13TRWhVTq5ddffvkFQMGEiOXLlysskSISiWBjY4N79+5VZpMYY4wxnXKGM47iqFK+JSxxFEcxGqPhAx8dtIxVNWUK6iZNmoSZM2eiefPmeO+99xAVFQUPDw+Eh4fj1KlTxb6ve/fuAApG6jp37oycnBz5vpycHNy/fx9r164tS5MYY4yxKkcIITZio/x10X1SSLEBG3ASJyGFVBdNZFWIxkHdzJkzsXz5cmzYsAGLFi2SPw4sJSUFc+bMKTGoc3BwAADs2rULHh4eSEtLK2OzGWOMsarPFrZoiqbF7hdCCCtYwRa2uIIrldgypooQgC0ACwBxAAIAvQq1Nb6nbvbs2Zg2bRp+/PFH5Ofny/ODgoLQuXNnteqYOnUq0tLS0LJlSwwYMAA1a9bUtBmMMcZYlWcBiwotx7THGUAEAH8AB9/8G/EmX19oHNQ1b94cd+/eVcrPzs6GiYmJWnXUq1cPly5dwpMnT3D27FlYWBR8WXfu3MmXXxljjL014qDe2qzqlmPa4QzgKADLIvmWb/L1JbDTOKgLDw9Ht27dlPI//vhjPHr0SK06NmzYgNzcXFhZWSlMljh06BCcnJw0bRJjjDFWJQUgANGILvZ+OSmkiEIUAhBQyS1jMkLgzV2PykGTbHuDin26oPE9dWvWrMGWLVtQs2ZNCAQC9O7dG+PHj8eCBQvw+eefq1XHgAEDMHDgQMTGxirkP336FNbW1po2iTHGGKuSpJDCAx44iqOQQqowWUIW6M3BHJ4koUO2QAl3PRYEc1Zvyun6rkeNg7rff/8dBgYG+Pnnn1GrVi0cOHAAsbGx8PDwwKFDh9Sqw8TERGGETsbU1BTZ2dmaNkkvubu7Y9asWRAK9SF2Z4wxpq984IPRGI2N2KgwaSIGMZiDObyciY6pezejPtz1WKaIY+fOnWjWrBkaNmwIc3NzWFlZYdeuXWq//+rVq/j000/l20QEgUCAefPmwc/PryxN0ju8+DBjjDF1+cAHzdAM/dEf4zEe/dEfzdGcAzo9oO7djPpw12O5Fh9+9epVmd43b948+Pv7o1evXjAyMsLPP/+Mjh07on79+nj//ffL0yTGGGOsSpJCysuW6KEAANEomBShaiRMCiDmTTld03ikrn79+vj1118REhKChIQEvHr1SiGp4/Hjx+jSpQtu3bqFixcvwsTEBMePH0f37t0RFham8UkwxhhjjGmDFIBHoddF9wHAHBX7dEHjkbp9+/ahZcuW8PLyQnx8PIioTAeOj4/H0qVLy/RexhhjjLHK4gNgNApmwRaeNBGDgoBOXy6SaxzU9evXD/369cODBw8qpAG1atXCJ598AmNjY1y4cAHPnj2rkHoZY4wxxiqKD4CT0O8nSmgc1IWGhsLY2LhMB2vatCn27t2LHj164O+//8Znn32GixcvonXr1gCArKwsfPzxxwgI0Icr04wxxhhj/5FC98uWlETje+rc3d2xcuVK2NnZoX79+hCLxQqpJGvXroWRkRHc3NyQmZmJ8+fP4+nTp7CwsECjRo1w9uxZviTLGGOMMVYGGo/UpaSkoE6dOvjrr78U8gUCAYgIBgbFV2lnZ4dhw4bh9u3bOHv2LBITEzF16lS8fPkSAPDDDz/g8uXLmjaJMcYYY+ytp3FQt3//fuTk5GDChAkaT5QwMzNDZGQkACA5ORmZmZmIj4+X7//3339Rr149TZvEGNMpIfT7LhPGGHs7aBzUderUCd27d8eTJ080PphsNE+mrDNnK9vx48fRv39/XL58GWPGjNF1cxjTI85Qng8WjYIFAPRlPhhjjL0dNA7qgoKC0LRp0zIFdQCwfPly+SPCjIyMsGjRIrx+/RpAwUxYfbRp0ybs2rULLi4uum4KY3rEGcBRFfmWb/JHgwM7xhirPBoHdZs3b8bGjRuxZs0aBAcHIzc3V2F/cHBwse+9evUq2rZtK9++ceMGWrRooVRG3/j7+8Pe3l7XzWBMjwhRMEIne110nxTABhQsAMCXYhljrDJoHNQdOnQIABSe9Sp7dmtpEyU++OCDMjSxfGxtbTFv3jz07NkTjRs3xogRI3Dy5EmFMm5ubpg3bx4sLCwQEhKCOXPm4Nq1a5XeVsaqDlsoXnItSgjA6k05fV4AgDHGqg+Ng7rmzZtrox1aY2Jigvv378Pb2xvHjx9X2j927Fhs2LAB7u7uuH79OmbMmIFz586hQ4cOiI6O1kGLGasKLCq4HGOMsfLSOKiLiorSRju0xtfXF76+vsXu//LLL+Hl5QUvLy8AwNy5czFw4EC4ublh4cKFGh/PyMgINWrUkG/L1u4TiUQQiUQa18fKTyQSQSgU8udfgYheQqrGVVWh8CUEgtI/d+6jqoH7Sf9xH+m/0vqoPH2nVlA3dOhQnDt3Dnl5eRg6dGiJZU+fPl3mxlQ2Q0ND9OzZE6tXr1bIv3DhAvr27VumOhcsWKByAWVHR0dkZWWVqU5WPiKRCD169IBAIEB+fr6um1MtEAlx+XICJJIGUL2GuRQ1a77Chx/WhkDwcan1cR9VDdxP+o/7SP+V1kdlfWoXoGZQd+LECZibmyMhIQEnTpwotlxp99TpG1NTUxgYGCislQcA8fHxMDc3l2/7+vqiR48eMDExQXR0NJydnREUFKSyzlWrVmHdunXybbFYjNjYWFy8eBFpaWnaORFWIpFIBCKCr68v/0+uAhG5ATiMgokQhQO7giG8nBw3+PqeUasu7qOqgftJ/3Ef6b/S+qi0p3OVRK0ITCQSoWnTpvLX1U3R9fKKrqfn5OSkdl05OTnIyclRys/Pz+cfMB2SSqXcBxXuGAqWLSm6Tl0MgDmQSjVbzoT7qGrgftJ/3Ef6r6Q+Kk+/qf3s1/DwcJiZmZX5QIUNHDgQ77//vnzb3d0dd+/exf79+1G3bt0KOYY6EhMTkZeXpzAqBwANGzZUGr3TlLu7O0JCQnDr1q1y1cOYfvMB0AxAfwDj3/zbHLw+HWNlIEDBj1OnN/8KdNkYVhWpHdQJBBX37VqzZg3eeecdAAVPqPjll19w9uxZtGjRQuHSpbbl5ubizp07cHR0VMh3dHTEjRs3ylW3p6cnOnbsiN69e5erHsb0nxQFy5b88eZfXpeOMY21BzAHwBQUDIBPebPdXlcNYlWRTm6Aa968OR49egQAGDVqFP78808sWrQI3bt3x9mzZyv0WCYmJmjVqpXCsbt27YqkpCRER0dj3bp12Lt3L4KCghAYGIjp06fDysoK27ZtK9dx3d3dMWvWLAiFasfNjDGmPUIhYGsLWFgAcXFAQADUmsLMtK89gLEq8t95k38YwONKbRGrojQK6j7//HOkp6eXWGbz5s2l1pOTkyN/JNhHH32EPXv2AACSkpLkI3gVpVevXvD395dvr1+/HgDw+++/w9XVFYcPH0aDBg3w/fffw8LCAg8fPsSgQYPKvXSLp6cnPD09IRaLkZqaWq66GGOsXJydgY0bgaaF7n2MjgY8PAAfvlSuUwIAToVeF91Hb/aHvnnNWAk0CupmzpxZ4g18RKRWUHft2jWsW7cO169fR+/evfHJJ58AANq0aYOYmBhNmlSqK1eulHrpeOvWrdi6dWuFHpcxxvSCszNwVMUzei0tC/JHj+bATpesAdQpYb/gzX5rABGV0SBWlWkU1PXq1QsJCQnlPugXX3wBT09PjB49Gm5ubnjx4gUA4OOPPy5xoeCqhC+/MsZ0TigsGKGTvS66TyoFNmwATp7kS7G6UruCy7G3mtpBXdFlP8ojOjpa5SLGX375ZYUdQ9f48itjTOdsbRUvuRYlFAJWVgXlrvAzenWi5DuaNC/H3mpqB3Xlnf0qFovli++WtrAeL9LLGGMVwELNZ++qW45VvEgAr1EwKULVr1kCkPqmHGOlUDuoW7ZsWamTJEqSnJwMCwsLJCQkICUlReXIn2zR36r0VArGGNNbcXEVW45VPALgi4JZrgTFwE72a9IXPEmCqUXt6Gn58uXlOpCDgwOSkpIAAB988EG56qoK+J46xpjOBQQUzHK1tFS+pw4ouI8uJqagHNOdxyhYtsQJipMmUlEQ0PFyJkxNlTYkdvXqVZWvqyu+p44xpnNSacGyJUePFrwuHNjJJkbMmcOTJPTBYxQsW2KNgkkR6Si45MojdEwDPIzEGGPVmY9PwbIlsbGK+TExvJyJviEULFvy8M2/HNAxDfHNa4wxVt35+BQsW8JPlGCsWitTUCcSidC/f3+0bNkSBw4cQHp6OiwsLJCamoqMjIyKbmOVxPfUMcb0ilTKy5YwVs1pHNRZWVnB19cXVlZWqFGjBi5evIj09HTMnz8fNWvWhJubm1p1vHz5EhKJpEyNrgr4njrGGGOMVSaNh5E2btyIoKAg1KtXD1lZWfJ8Hx8ffPjhh6W+XyAQ4OnTp2jSpImmh2aMMcYYY8XQeKSuX79+eP/995Gbm6uQHxkZCUtLy1LfT0R4+vQpGjRogGfPnml6eMYYY4wxpoLGI3VCoRAikUgpv0mTJmo/CWL+/PlYs2YNOnbsqOnhGWOMMcaYChoHdRcvXsScOXPk20QEExMTLFu2DGfPnlWrjn379qF37964f/8+MjMz8erVK4VUHbi7uyMkJAS3bt3SdVMYY4wx9hbQ+PLr3Llz4efnh5CQENSsWRMHDhxA69atkZiYiPHjx6tVR+GgsLriiRKMMcYYq0waB3VxcXHo1q0bxo8fjx49ekAoFMLLywv79+9Xezbrnj17NG4oY4wxxhgrXpnWqZNIJPD29oa3t3eZD9yiRQu4urqiZcuW8PDwQEJCAgYOHIjo6Gg8evSozPUyxhhjjL2NNA7qhg4dqjKfiCCRSPDs2TNERESUWIednR3OnTuH69evw87ODosWLUJCQgK6dOmCzz//HGPGjNG0WYwxxhhjbzWNg7oTJ06AiCAQCBTyZXlEhGvXrmHEiBFISUlRWcfq1auxePFirF+/XuF+Mz8/P3h4eGjaJMYYY4yxt57Gs18dHR1x+/ZtODo6ok6dOqhTpw4cHR1x69YtDBkyBHZ2dmjQoAHWrl1bbB2dO3eGj4qHSCckJKBBgwaaNokxxlgphBDCHvYYh3Gwhz2Emv/vnzGm5zQeqdu4cSOmT5+OwMBAed5ff/2Fr7/+Gjt27ECnTp0wZ84c7Nq1q9g6UlJSYGFhoXSZtnv37oiNjdW0SXqJn/3KGNMXznDGRmxEUzSV50UjGh7wgA+U/8BmjFVNGkccLVu2VLlER2pqKlq0aAEAePr0KUxNTYut48CBA/jpp5/QqFEjEBGEQiH69u2LtWvXVpuZsZ6enujYsSN69+6t66Ywxt5iznDGURyFJRSf+GMJSxzFUTjDWUctY4xVNI2Dujt37mDNmjUKQZupqSl+/vln3L59GwDQunVrxMTEFFvHokWLEBUVhdjYWNSuXRuPHj3C1atXcePGDfzwww9lOA3GGGNFCSHERmyUvy66DwA2YANfimWsmtD48utnn32GkydPIiYmBtHR0SAiWFlZISwsDMOHDwcA1K5dGytWrCi2jry8PEyaNAnff/89unfvDqFQiLt37/KzYBljrALZwlbhkmtRQghhBSvYwhZXcKUSW8YY0waNg7onT56gffv2GDhwINq0aQOBQIDQ0FBcvHgRRAQAOHnyZIl1tGrVCs+ePUNYWBjCwsLK1nLGGGMlsoBFhZZj2iUEYAvAAkAcgAAAUp22iFU1ZVp8GADOnz+P8+fPl+m9//d//4e4uDhcuXIFV65cgb+/P548eVLWpjDGGFMhDnEVWo5pjzOAjYDCuGo0AA+Ap7IwtZUpqKtVqxbs7e1hZWUFIyMjhX2bN28u9f0WFhZwcHCAvb095s6di61btyI+Pl4e4G3fvr0szWKMMVZIAAIQjWhYwlLlfXNSSBGDGAQgQAetYzLOAI6qyLd8kz8aHNgx9ZEmqVu3bvTixQtKSUmh3Nxcio+Pp/z8fEpLS6Pnz59rVJcstWzZkry9vSknJ4fy8vLKVIe+JrFYTEREYrFY5215W5NIJKIhQ4aQSCTSeVs4cR9VdnKGM+Ujn/KRTwSSJ1meM5y5n3SYhABFAZQPEKlI+QBFvinHfVQ9Uml9VJ64QeMpT+vXr8fp06dRv359ZGVloU+fPrC2tsadO3fw9ddfq1WHiYkJBg4ciFWrVuHGjRsIDg5Gly5dsHnzZowcOVLTJjHGGCuGD3wwGqMRC8U1QGMQg9EYzevU6ZgtCi65FvfLWAjA6k05xkqj8eXXbt26YcaMGZBKpcjPz0eNGjUQHh6O+fPnY/fu3SqfFFFUcnIykpKSsHfvXvzwww+4du2ayrXvqjJefJgxpi984IOTOAlb2MICFohDHAIQACnfhq9z6k5R4aksTB0aB3W5ubnyWa7x8fGwsrJCaGgoXr9+DSsrK7XqOHPmDPr164fJkyejadOmsLKygr+/P0JDQzVtjt7y9PSEp6cnxGJxtQtYGWNVjxRSXrZED6k7RYWnsjB1aDyMdPfuXfTq1QsA4Ofnh+XLl2PChAnYsGEDgoOD1arD2dkZZmZmcHR0xLVr1/Dhhx/C398fcXFxOHjwoKZNYowxxqqkABTMci1uzFQKIOpNOcZKo/FI3cKFCyEWiwEA3333HXbv3o2tW7fi2bNncHV11aiu4OBgiEQiGBoaokaNGnBycuJ76hhjjL01pChYtuTom9fCIvsAYA54vTqmHo2DuoSEBISEhAAAEhMTMXjwYI0POmfOHPTv3x+2trYQi8W4d+8erly5gu3bt+Pq1asa18cYY4xVVT4oWLak6Dp1MSgI6HgqC1OXRkGdQCDA06dP0bFjx3I90mvixInw9/fHb7/9hqtXryItLa3MdTHGGGNVnQ+Ak+AnSrDy0SioIyI8ffoUDRo0KFdQ9+6775b5vYwxxlh1JAV4KgsrF40vv86fPx9r1qyBm5ub/DJsWdSpUwefffYZ2rdvDyLC48eP4eXlxTNFGWOMMcbKQOPZr/v27UPv3r1x//59ZGZm4tWrVwpJHT179sTz588xd+5c1K9fH6amppg7dy6eP3+O7t27a3wSjDHGGGNvO41H6ubMmVPug65fvx6nTp3CtGnTkJ+fDwAQiUTYuXMnNmzYAHt7+3IfoyINHjwYv/zyC4RCIX766Sd4eXnpukmMMcYYYwo0Dur27NlT7oP26tVLIaADgPz8fPz8888ICgoqd/0VSSQSYd26dfjggw+QmpqKf/75B8ePH0dycrKum/aWEIJvHWaMMcZKV6ZnWLVo0QIrVqzAgQMHYGZmBgAYOHAgOnTooNb7U1NTVT59omnTpno3E7Z3794ICQnBixcvkJ6ejrNnz2LgwIG6btZbwhlABAB/AAff/BvxJp8xxhhjhWkc1NnZ2SE4OBg2NjYYOXIkateuDQDo0qULli1bplYdhw4dgpeXF8aOHYsmTZrA0tISn3zyCXbu3FnhT5SwtbXFqVOnEBsbCyLC8OHDlcq4ubkhLCwMWVlZCAoKQr9+/eT7GjdujNjY/x6EHRMTA0tLywptI1PFGQXLcRb9rC3f5HNgxxhjjBWmcVC3evVqLF68GAMGDEBOTo4838/PD++9955adXz99dc4fvw49uzZg4iICERGRuL333/H0aNH8c0332japBKZmJjg/v37+OKLL1TuHzt2LDZs2ICVK1eie/fuCAgIwLlz59C0acESkAKBQOk9smffMm0RomAZTtnrovsAYIOKfYwxxtjbS+Pfip07d4aPj/L61gkJCWjQoIFadeTm5mLOnDmoV68eunXrhu7du6N+/fqYP38+GjVqpGmTSuTr64vvvvtOZZsB4Msvv4SXlxe8vLwQGhqKuXPnIjo6Gm5ubgCA2NhYhZG5Jk2aIC6OH62sXbYoWFe9uK+nEIDVm3KMMcYYA8owUSIlJQUWFhaIiIhQyO/evbvCZUp1ZGVl4eHDh/LtLl264J9//oGBgcbNKhNDQ0P07NkTq1evVsi/cOEC+vbtCwC4desWOnXqhMaNGyM1NRWDBg3C8uXLi63TyMgINWrUkG/LnpMrEokgEom0cBbVj1RqCXUGQwUCSwiFpX+mIpEIQqGQP389xn1UNXA/6T/uI/1XWh+Vp+80jp4OHDiAn376CWPGjAERQSgUom/fvli7dm2FzIytTKampjAwMEB8fLxCfnx8PMzNzQEUzMr96quv4OfnB6FQiJ9//hlJSUnF1rlgwQIsXbpUKd/R0RFZWVkV2v7qKjHRCn//XXo5GxsrmJp+XGo5kUiEHj16QCAQKMy4ZvqD+6hq4H7Sf9xH+q+0PjI2Ni5z3RoHdYsWLcLvv/+O2NhYCAQCPHr0CCKRCAcOHMAPP/xQ5oboUtF75AQCgULe6dOncfr0abXqWrVqFdatWyffFovFiI2NxcWLF/VuZq++IjoPwB0FkyJUXYKVAojBrVu/QCAofXkTkUgEIoKvry//T05PcR9VDdxP+o/7SP+V1keyK3xloXFQl5eXh0mTJuH7779H9+7dIRQKcffu3XI9C1ZXEhMTkZeXJx+Vk2nYsKHS6J26cnJykJOTA3d3d8yaNQtCYUFQkp+fzz9gassH4IGCWa5SKAZ2siBuDqTSXLVrlEql3Ad6jvtIywQArAHUBpAOIBJAGeZ8cT/pP+4j/VdSH5Wn3zQO6uzs7HD16lWEhYUhLCxMo/d27ty5xP1t27bVtDnlkpubizt37sDR0REnTpyQ5zs6OuLkyZPlqtvT0xOenp4Qi8X8PNsy8QEwGgWzYJsWyo8BMOfNfsaYWtoDcAJQp1DeawC+AB7rpEWMMS3QOKi7ePEi/v33Xxw4cAD79u1DSEiI2u+9d+8eiKjYZUKKXvasCCYmJmjVqpV8u3nz5ujatSuSkpIQHR2NdevWYe/evQgKCkJgYCCmT58OKysrbNu2rULbwcrCB8BJ8BMlGCuH9gDGqsh/503+YXBgx1g1oXFQ17hxY4wbNw7jx4/H/Pnz8fDhQ+zbtw8HDhwodfZr8+bNy9zQsurVqxf8/f3l2+vXrwcA/P7773B1dcXhw4fRoEEDfP/997CwsMDDhw8xaNAgREVFleu4RS+/srKSArii60awkgiFgK0tYGEBxMUBAQGAlANvvSBAwQid7HXRffRmfyjKdCmWMaZ/qKypWbNmtHDhQgoODqbc3Fy6fPlymeuqrkksFhMRkVgs1nlb3tYkEoloyJAhJBKJdN6WapecnQlRUQSi/1JUVEE+95HuUzMQlqqRmnE/VZfEfaT/qbQ+Kk/cUK5hpIiICKxevRrffvstgoODYW9vX2xZ2RMa1NW4cePyNI0xpm3OzsDRo0DRx+ZZWhbkO/Oj3HSudgWXY4zptTIHdX379sWWLVsQFxeHAwcOICQkBEOGDCm2/O3bt7Fjxw68++67xZZ555138PnnnyM4OBgjR44sa9P0gru7O0JCQnDr1i1dN4WxiicUAhs3/ve66D4A2LBBeR+rXOkVXI4xptc0vqdu5cqVGD9+PBo3boxLly5hzpw5OHHiRKkL67Zv3x4LFy6Er68vcnNzERQUhBcvXkAikaBevXro0KEDOnbsiKCgIMybNw++vr5lPil9wLNfWbVmawuUNPouFAJWVgXlrvA9kToTiYJZru9A+Z46oOCCTeqbcoyxKk/jP6P79++PtWvXwtLSEkOGDMHBgwflAV3Xrl2LfV9ycjLmzZuHxo0bw83NDU+ePIGpqSlat24NANi/fz969uyJfv36VfmAjrFqz8KiYssx7SAULFsie110H97sL7qPMVYlaTxS9/777ytsv/POO5g4cSI+//xzdO3atdTntmZnZ8PHxwc+Pj6aHrpK4dmvrFqLi6vYckx7HqNg2ZKi69SlgtepY6ya0Tiok/nggw8wdepUjBw5EpGRkTh27Bg+++yzimxblcaXX1m1FhAAREcXTIpQ9YeLVArExBSUY7r3GAXLllij3E+UYIzpL42COktLS0yZMgVTp06FiYkJDh8+DENDQ4waNQqPH/Ofe4y9NaRSwMOjYJarVKoY2MnWqJszh9er0ycEIELXjWCMaZPa1wbPnDmDR48eoUOHDpg9ezYaN26M//3vf9psG6s0QgD2AMa9+ZcvGTM1+PgAo0cDRRcdj4kpyK/mt1gwxpi+UXukbsCAAdi0aRO2bt2KZ8+eabNN1ULVuafOGcrPV40G4AF+viorlY8PcPIkP1GCMcb0gNoRh62tLcRiMYKCgvD3339j1qxZMDU11WbbqjRPT0907NgRvXv31nVTSuAM4CiAIovHwvJNPi8ey9QglRYsW/LHHwX/ckDHGGM6oXZQ9/fff2P69OmwsLDA9u3bMW7cOMTGxkIoFMLR0RG1a/OS5FWLEAUjdLLXRfcBwAYV+xhjjDGmjzT+jZ2VlQVvb2/Y2tqic+fO+OWXX/Dtt9/i5cuXOHnypDbayLTCFgWXXIv7CggBWL0pxxhjjDF9V65hmCdPnuCbb75BkyZNMH78+IpqE6sU6i4Ky4vHMsYYY1VBhVxbk0qlOHnyJIYPH14R1bFKoe6isLx4LGOMMVYV8A1TWuLu7o6QkBDcunVL100pRgAKZrkWd1O7FEDUm3KMMcYY03cc1GmJ/s9+laJg2RLZ66L7AGCOin2MMcYY00cc1FVp5V002AfAaABFFo9FzJt8XqeOMcYYqyrK/OxXpmsVtWiwD4CTKJjlaoGCe+gCwCN0jDHGWNXCQV2VJFs0uCjZosGajrJJAVypgHYxxhhjTFc4qKtySls0WIqCRYNPgkfbWGUQQghb2MICFohDHAIQACl/9xhjrNLxPXVaor3Zr7xoMNMfznBGBCLgD38cxEH4wx8RiIAzP2KOMcYqHQd1WqK92a+8aDDTD85wxlEchWWRZwdbwhJHcZQDO8YYq2Qc1FU5vGgw0z0hhNj45jYAYZH/jci2N2CD0j7GGGPaw//HrXJ40WCme7awRVM0LTZoE0IIK1jBlm8DYIyxSsNBXZXDiwYz3bNQ8/K+uuWY9pV3VUvGmP7jn+sqiRcNZroVp+blfXXLMe1yBhABwB/AwTf/RrzJZ4xVH7ykSZXFiwYz3QlAAKIRDUtYqrwEK4UUMYhBAN8GoHMVvaolY0x/8UhdlSZbNPiPN/9yQMcqhxRSeLy5DaDomnSy7TmYw+vV6Vhpq1oCBata8i8CxqoH/llmjJWJD3wwGqMRW+Q2gBjEYDRGw4fHf3SOV7Vk7O3Cl1+1xN3dHbNmzYJQyHEzq7584IOTOMlPlNBTvKolY28XDuq0xNPTE56enhCLxUhNTdV1cxjTGimkuMLPDtZLvKolY28XHkZijLFqile1ZOztwkEdY4xVU7yqJWNvFw7qGGOsGuNVLRl7e/A9dYwxVs3xqpaMvR04qGOMsbeAbFVLxlj1xZdfGWOMMcaqAQ7qGGOMMcaqAQ7qGGOMMcaqAQ7q1HD8+HEkJSXhyJEjum4KY4wxxphKHNSpYdOmTfj000913QzGGGOMsWJxUKcGf39/pKWl6boZjOknAYBmADq9+Vegy8Ywxtjbq8oHdba2tjh16hRiY2NBRBg+fLhSGTc3N4SFhSErKwtBQUHo16+fDlrKWDXUHgWPJJiCgpVsp7zZbq+rBjHG2Nurygd1JiYmuH//Pr744guV+8eOHYsNGzZg5cqV6N69OwICAnDu3Dk0bdpUXiYoKAjBwcFKycLCorJOg7Gqpz2AsQDeKZL/zpt8DuwYY6xSVfnFh319feHr61vs/i+//BJeXl7w8vICAMydOxcDBw6Em5sbFi5cCADo1atXhbXHyMgINWrUkG+LxWIAgEgkgkgkqrDjMPWJRCIIhUL+/CsQCQhSpzfPIyh6uVUAgAA4AcKnQgio9Oux3EdVA/eT/uM+0n+l9VF5+q7KB3UlMTQ0RM+ePbF69WqF/AsXLqBv375aOeaCBQuwdOlSpXxHR0dkZWVp5ZisZCKRCD169IBAIEB+fr6um1MtJIoT8Xedv4svIABQB+g9pjdM00xLrY/7qGrgftJ/3Ef6r7Q+MjY2LnPd1TqoMzU1hYGBAeLj4xXy4+PjYW5urnY9vr6+6NGjB0xMTBAdHQ1nZ2cEBQWpLLtq1SqsW7dOvi0WixEbG4uLFy/yZAsdEYlEICL4+vry/+QqiLSjFGhbermbITchDCn9Lg/uo6qB+0n/cR/pv9L6SHaFryyqdVAnQ0QK2wKBQCmvJE5OTmqXzcnJQU5OjlJ+fn4+/4DpkFQq5T6oSKnqFaNUUvsz5z6qGrif9B/3kf4rqY/K029VfqJESRITE5GXl6c0KtewYUOl0buK5u7ujpCQENy6dUurx2FMJyIBvEbBvXOq0Jv9kZXWIsYYe+tV66AuNzcXd+7cgaOjo0K+o6Mjbty4odVje3p6omPHjujdu7dWj8OYThAA30Kvi+7Dm/3qD4gzxhgrpyp/+dXExAStWrWSbzdv3hxdu3ZFUlISoqOjsW7dOuzduxdBQUEIDAzE9OnTYWVlhW3btmm1Xe7u7pg1axaEwmodN2ufUAjY2gIWFkBcHBAQAEilum4VA4DHAA4DcAJQp1B+KgoCuse6aBRjjL3dqCone3t7UsXb21texs3NjcLDw0kikVBQUBDZ2tpWWvvEYjEREYnFYp1/VlUuOTsToqIIRP+lqKiCfA3qEYlENGTIEBKJRLo/p+qYBCA0A6HTm38FmtfBfVQ1EveT/ifuo/9v796joqzzP4C/ZwYswlHXGyA3SVMhUwgvuwbp7oa57jkpLunW2qZ77EI36Lrpr9TOVtZqJl2wyxrmWpZyJDu7ylonMRZdDSEQxC4qAiMiCDjcJefz+2NgYoYZGWDuvF/nfI8z3+f7PM9n5jPAx+9zGddvPeWoP3WD28/UHTx4EArF1e+DtXnzZmzevNlBEZFNxMcD6end+wMD9f0JCUBGhuPjou4EQKmzgyAiIh4btBNeKNEPSiWQkvLzY9NlALBpU/dlREREAxj/KtoJL5Toh9hYIDjYctGmVAIhIfpxREREBIBFHbkia79zl9/NS0REZMCijlxPZaVtxxEREQ0ALOrshOfU9UN2NlBebvnWJTodUFamH0dEREQAWNTZDc+p6wedDkhK+vmx6TIASE7m/eqIiIi6YFFHrikjQ3/bEo3GuL+igrczISIiMsPt71NHHiwjA9izh98oQUREZAUWdXbCrwmzEZ0OOHjQ2VEQERG5PFYcdsJz6oiIiMiRWNQREREReQAWdUREREQegEUdERERkQfghRJ24lYXSiiVLnuFqRJKxCIWAQhAJSqRjWzo4BqxERERuRI3qDjck9tcKBEfD5SWAllZwI4d+n9LS/X9ThaPeJSiFFnIwg7sQBayUIpSxMP5sREREbkaFnUDWXw8kJ4OBAYa9wcG6vudWNjFIx7pSEcgjGMLRCDSkc7CjoiIyASLuoFKqQRSUn5+bLoMADZt6r7MAZRQIgX62EQhyBqbhR2TdyBrbBZEIfrQsAlKfnyJiIgMeE7dQBUbCwQHW16uVAIhIfpxDr75byxiEYxg7A7fjaR5SagYWmFYFnQpCCmZKVhUsgixiMVB8MbEREREAGfqBq6AANuOs6EABGB3+G4kLE5AxZAKo2WaIRokLE7A7vDdCIDjYyMiInJVnKlzZwoAoQAGA2gEcBaAWLluZeXPj3VXgLJsoKESUAcAIbGAUtV9nIOcU5xD0rwkCET/GrsQhUAhCiTPS0bYyTDrXy/ZjRJALIAAAJUAsgFen0xE5AQs6uzE7rc0CQcwD8DQLn2XAGQCKLFi/exsoLwc0B4B9j8OaLvMiA0JAua+Dqhn6Mc5WHZoNmSo5WpNFILyoeWoCK0ASh0XF3UXDyAFQNcD+eUAkgBkOCUiIqKBi0WdnaSmpiI1NRVqtRparda2Gw8HsNhM/5CO/p3oubDT6YDVCcDYb9BtukurAdIXA6XTnXK/Ohls3fSbtePIPuIBpJvpD+zoTwALOyIiR+I5de5GAf0MXedj02XoWG66zNx2fnEUEHOFkej7f3G05+3YQ6ONx5HNKYGO65O7/xLpfL7JzDIiIrIf/s51N6HQH3K1VGwpOpaHOmg79nAW+kPJlibipGP5WYdFRCZioT/kaukXiBJASMc4IiJyDBZ17kZt5dRZT+MGW7k/a8fZkkB/bmDnY9Nl6FjOo69OY+11x7w+mYjIcVjUuZvrp9hmnKsf4iyB/txA09MRtbDunEGyK2uviXb8tdNERAMXL5RwNz4TgSEX9RczmJ2qUuivXvWZCKDA8nY6D3EOgflDsAJ9AeXMQ5wlAE6i77dtIbvJhv4q10CY/5+hDkBFxzgiInIMztS5m8oqYF7nKeoWrpSYt0k/7moEmJE5AwoooBDj7ShEAQUUmJE5w/kFlEB/25Kijn+dHQ8B0BdtSV0emy4DgGQzy4iIyH5Y1Lmb7Gxg8HQgYScwxPjL7jEkSN/vO63H+8spoUR6STp27tyJQK3xdoK0Qdi5cyd2lezi96uSRRnQ37ZEY9JfAd7OhIjIGXj41U7sdvNhnQ5ISgLS06EYvwBT9uXguqpKNPsFoPB3t0C8VUBCQo/3l+v8ftXgkmDEn4xHdmg2KgdXIqAxALFnY6ESlWEcv1+VLMkAsAf8RgkiIlfAos5O7Hrz4YwMxP9qPVLKn0Rw5RxDd3nAT0gKXo+Moz3PkXT93lSVqDCndE6P44jM0QEs+4mIXACPrbmheMQj/ejTCKw0Tl9gpRLpR59GPOJ73EalldclWjuOiIiInItFnZtRQomUjnv5m57v1vl8Ezb1eC5cNrJRjnLoLBwo00GHMpQhm9cvEhERuQUWdW6m81w4S0WbEkqEIASxPdzLXwcdkjquXzQt7DqfJyPZYtFHREREroVFnZux9hw3a8ZlIAMJSIDG5PrFClQgAQnI4PWLREREboMXSrgZW58Ll4EM7MEexCIWAQhAJSqRjWzO0BEREbkZFnVupvNcuEAEmj0Eq4MOFajo1blwOuh42xIiIiI3x8OvbobnwhEREZE5LOp6EBQUhAMHDqC4uBgFBQVISEhwdkg8F46IiIi64eHXHvz0009ITk5GQUEBRo0ahby8POzduxfNzc1OjYvnwhEREVFXLOp6cP78eZw/fx4AUF1djdraWgwfPtzpRR3Ac+GIiIjoZ25/+DU2Nhaff/45NBoNRAQLFizoNiYxMRGnT59GS0sLcnNzERMT06d9RUdHQ6lUoqKior9hExEREdmU28/U+fr6oqCgAGlpadi9e3e35YsXL8amTZvw0EMPIScnBw888AD27duHiIgIlJeXAwByc3NxzTXXdFt37ty5qKzU3xpk+PDh2LZtG1asWGHfF0RERETUB25f1GVmZiIzM9Pi8ieeeAJbtmzBli1bAACPP/44br/9diQmJmLVqlUAgGnTpl11H4MGDUJGRgbWrVuHw4cP2y54IiIiIhtx+6Luary9vREdHY1XXnnFqH///v2YNWuW1dvZunUrvvrqK2zfvr3HsYMGDTKa9VOr1QAAlUoFlUpl9T7JdlQqFZRKJd9/F8YcuQfmyfUxR66vpxz1J3ceXdSNHDkSXl5eqKqqMuqvqqqCv7+/Vdu45ZZbsGTJEhQWFmLhwoUAgHvuuQdFRUVmx69cuRJr167t1h8XF4eWlpZexU+2oVKpcPPNN0OhUODKlSvODofMYI7cA/Pk+pgj19dTjnx8fPq8bY8u6jqJiNFzhULRrc+SnJycXlXN69atw8aNGw3P1Wo1NBoNvvjiCzQ0NFi9HbIdlUoFEUFmZiZ/ybko5sg9ME+ujzlyfT3lqPMIX194dFFXU1ODn376qdus3OjRo7vN3tnK5cuXcfnyZTz00EN4+OGHoVTqLzC+cuUKf8CcSKfTMQcujjlyD8yT62OOXN/VctSfvLn9LU2upr29HceOHUNcXJxRf1xcHA4dOmTXfaempuLGG2/EjBkz7LofT6cEMBvAHzv+9egPLBERUT+4/Uydr68vxo8fb3geFhaGqVOnora2FuXl5di4cSP++c9/Ijc3F4cPH8b999+PkJAQvPPOO06MmqwRDyAFQHCXvnIASQC/CI2IiMiE2xd106ZNQ1ZWluH566+/DkB/xery5cuxc+dOjBgxAqtXr0ZAQACKioowf/58lJWV2TUu08Ov1DvxANLN9Ad29CeAhR0REVFXbl/UHTx4EAqF4qpjNm/ejM2bNzsoIr3U1FSkpqZCrVZDq9U6dN+9pQQQCyAAQCWAbMCp3yCrhH6GrvOx6TIdgE0A9sC5cRIREbkSTiMNcPEASgFkAdjR8W9pR7+zxEJ/yNXSh1MJIKRjHBEREemxqLOThx56CMXFxTh69Kjd9tHfiwg6D3EGmvR3HuJ0VmEXYONxREREAwGLOjux99Wv/Z1h6+kQJ6A/xOmMD0iljccRERENBCzq3JAtZthc+RBnNvRXuVo6X04HoKxjHBEREemxqLMTex1+tdUMmysf4tRBf9uSzsemywAg2cwyIiKigYxFnZ3Y6/CrrWbYXP0QZwb0ty3RmPRXgLczISIiMsftb2ky0Nhqhq3zEGcgzBeIOugLKGce4syA/rYlrnS7FSIiIlfFos7N2GqGrfMQZ3rHY6XJMsA1DnHqABx0cgxERETugIdf7cRe59TZ8iICHuIkIiLyHCzq7MRe59TZ+iKCDABjAcwBcFfHv2FgQUdERORuePjVDXXOsJl+2X0F9AVdbwsyHuIkIiJyfyzq3BQvIiAiIqKuWNS5Mc6wERERUSeeU2cnjvjuVyIiIqJOLOrsxN7f/UpERETUFYs6IiIiIg/Aoo6IiIjIA7CoIyIiIvIALOqIiIiIPACLOiIiIiIPwKLOTnhLEyIiInIkFnV2wluaEBERkSPxGyUcRK1WOzuEAUulUsHHxwdqtRpXrlxxdjhkBnPkHpgn18ccub6ectSfeoFFnZ11Jkej0Tg5EiIiInIXarUaDQ0NvVpHAUDsEw51GjNmTK8T0xtHjx61yWHevmzH2nWsGXe1MZaWmes37VOr1dBoNAgMDLRrHq7GHXJkzVhb5ci035Ny1Ndt2epnyV45Apyfp4GcI0vLmKO+rePqf5PUajXOnTvX08vohjN1DtCXxPSGTqezyQ9vX7Zj7TrWjLvaGEvLzPVbGtvQ0OC0gsEdcmTNWFvlyFK/J+Sor9uy1c+SvXMEOC9PAzlHlpYxR31bx9X/JvX1PeSFEh7g7bffdtp2rF3HmnFXG2Npmbl+W70ftuQOObJmrK1y1Nu4HMGW8TjzZ4k5st+2nJkjS8uYo76t46l/k3j4lTyeWq2GVqvFkCFDnDYLRFfHHLkH5sn1MUeuz5454kwdeby2tjasXbsWbW1tzg6FLGCO3APz5PqYI9dnzxxxpo6IiIjIA3CmjoiIiMgDsKgjIiIi8gAs6oiIiIg8AIs6IiIiIg/Aoo4GvN27d6O2tha7du1ydihkRlBQEA4cOIDi4mIUFBQgISHB2SGRicGDB+Po0aPIz89HYWEhVqxY4eyQyAIfHx+UlpZi/fr1zg6FzGhvb0d+fj7y8/Px/vvv93p9Xv1KA96cOXMwePBg3HvvvbjzzjudHQ6Z8Pf3h5+fHwoKCjBq1Cjk5eVh4sSJaG5udnZo1EGpVOKaa65BS0sLfHx8UFRUhOnTp6O2ttbZoZGJF198ETfccAPKysrw9NNPOzscMlFdXY1Ro0b1eX3O1NGAl5WVxZt0urDz58+joKAAgP4XXm1tLYYPH+7kqKgrnU6HlpYWAMC1114LlUoFhULh5KjI1Pjx4zFp0iTs3bvX2aGQnbCoI7cWGxuLzz//HBqNBiKCBQsWdBuTmJiI06dPo6WlBbm5uYiJiXFCpAOXLXMUHR0NpVKJiooKe4c9oNgiR0OHDsW3336LiooK/P3vf8fFixcdFf6AYIscbdiwAStXrnRUyAOOLXI0ZMgQ5ObmIjs7G7feemuvY2BRR27N19cXBQUFeOSRR8wuX7x4MTZt2oSXXnoJUVFRyM7Oxr59+xAcHOzgSAcuW+Vo+PDh2LZtG+6//35HhD2g2CJHly5dQmRkJMLCwnD33Xdj9OjRjgp/QOhvju644w58//33+OGHHxwZ9oBii5+jsWPHYtq0aXjwwQexbds2qNXqXschbGye0EREFixYYNT3v//9T1JTU436Tpw4IS+//LJR3+zZs2XXrl1Ofw2e3vqao0GDBsnBgwdl6dKlTn8Nnt7683PU2VJTUyUhIcHpr8VTW19y9PLLL0tZWZmcOXNGqqurpb6+Xp5//nmnvxZPbbb4Odq7d69ER0f3ar+cqSOP5e3tjejoaOzfv9+of//+/Zg1a5aToqKurM3R1q1b8dVXX2H79u2ODnHAsyZHo0ePNswoqNVq3Hrrrfjuu+8cHutAZU2OVq1ahZCQEISFheGpp57C+++/j7/97W/OCHdAsiZHw4YNw6BBgwAAgYGBiIiIwOnTp3u1Hy/bhEvkekaOHAkvLy9UVVUZ9VdVVcHf39/wPDMzEzfffDN8fX1RXl6O+Ph45ObmOjrcAcmaHN1yyy1YsmQJCgsLsXDhQgDAPffcg6KiIkeHOyBZk6OgoCBs2bIFCoUCCoUCb731Fo4fP+6McAcka3/XkfNYk6Pw8HC8++670Ol0EBEkJSWhrq6uV/thUUceT0SMnisUCqO+efPmOTokMnG1HOXk5EClUjkjLOriajnKy8tDVFSUM8KiLnr6Xdfpww8/dFRIZOJqOTp8+DCmTJnSr+3z8Ct5rJqaGvz000/d/qc6evTobv9bIudgjlwfc+T6mCPX56gcsagjj9Xe3o5jx44hLi7OqD8uLg6HDh1yUlTUFXPk+pgj18ccuT5H5sjpV4mwsfW1+fr6ytSpU2Xq1KkiIpKcnCxTp06V4OBgASCLFy+WtrY2Wb58uUyaNEk2btwoDQ0NEhIS4vTYB0pjjly/MUeu35gj128ukiPnvxFsbH1ts2fPFnPS0tIMYxITE+XMmTPS2toqubm5Ehsb6/S4B1Jjjly/MUeu35gj12+ukCN+9ysRERGRB+A5dUREREQegEUdERERkQdgUUdERETkAVjUEREREXkAFnVEREREHoBFHREREZEHYFFHRERE5AFY1BERERF5ABZ1RERERB6ARR0RWW3ixIk4fPgwWlpakJ+f7+xwerRmzRq7xZmWloaMjAy7bNsdnDlzBklJSc4Og4i6YFFH5IFGjhyJy5cvw8fHByqVCo2NjQgODu73dl944QU0NTVh4sSJ+O1vf2t2TFpaGkQEIoL29nacPXsWqampGDZsWL/331sbNmywGKe9zZ49GyKCoUOHWr2OKxaK9957L+rq6rr1T58+He+9957d93///ffj22+/RWNjI+rq6pCXl4dnnnnGsNwV3zMiZ/FydgBEZHu/+tWv8O2336KlpQUzZsxAbW0tysvL+73dcePG4d///jfKysquOm7fvn1Yvnw5vLy8EBERgQ8++ADDhg3D3Xff3e8YeqOpqQlNTU0Wl3t7e6O9vd2BEbmO/r72mpoaG0Zj3l/+8hds3LgRjz32GA4ePIhrrrkGU6ZMQUREhN33TeSuhI2NzbPaunXr5PXXXxcA8sQTT8iOHTt6XEehUMjzzz8v5eXl0traKvn5+XL77bcblptas2aN2e2kpaVJRkaGUd+GDRukpqbGqG/ZsmVy4sQJaWlpkZKSEklMTDRaPn36dMnLy5OWlhb55ptvZOHChSIiMnXqVAEg9957r9TV1Rmts2DBAhERw/M1a9ZIfn5+t9ieffZZ0Wg0cubMGQEgY8aMkU8++URqa2ulpqZGPvvsMwkNDTWsp1Qq5bXXXpO6ujqpqamRV199VbZu3drtdXZts2fPFhGRoUOHGsU7d+5cOXHihDQ0NMi+ffvE39/fEKup2bNnWxWfSqWSlJQUQ3yvvPJKt/gOHDggb775prz22mtSXV0tWVlZAkAef/xxKSwslMbGRikrK5O3335bfH19jV6DubyfOXNGkpKSDNsPDg6Wzz77TBoaGuTSpUvy6aefyujRo7vlYunSpXLmzBmpr6+XHTt2yODBgy2+hxkZGfLBBx9YXN6f96zzs7B69WqpqqqSS5cuyTvvvCPe3t6GMX/4wx+ksLBQmpubpaamRr744gu57rrrnP7zzcZ2leb0ANjY2GzQgoODpa6uTurq6qStrU2am5ulrq5OWltbpaWlRerq6uTtt9+2uH5ycrLU19fLkiVLZMKECfLKK69IW1ubjB8/XgCIn5+fHD9+XNavXy9+fn6GP/ymzbSoCwsLk6KiIqmsrDT0rVixQjQajcTHx8vYsWMlPj5eampq5M9//rMAkOuuu06qqqpkx44dEhERIb///e/lxx9/tElRp9Vq5cMPP5SIiAi58cYbxcfHR7777jv5xz/+IZMnT5ZJkybJ9u3bpaSkxPAH/umnn5a6ujpZtGiRTJo0Sd5//325dOlSr4u6trY22b9/v0RHR0tUVJQUFxfL9u3bBYD4+vrKJ598Inv37hU/Pz/x8/MTb29vq+JbtWqV1NTUyMKFC2XixImSmpoq9fX13Yo6rVYrr776qkyYMEEmTpwoACQpKUnmzJkjY8eOlV//+tdSUlJi+Jx4e3vLY489JvX19YaYOvNuWtQdO3ZMvv76a7n55ptlxowZkpubKwcOHDDKhVarlfT0dLnxxhslJiZGzp07Jy+++KLF93Dz5s1y4sQJCQkJMbu8P+9Z52eh8zM2f/58qaqqMsTj7+8vly9fluTkZAkNDZXJkydLYmKixc89G5uLNKcHwMbGZoOmUqkkNDRUbrrpJmlra5MpU6bI9ddfL1qtVmJjYyU0NFRGjBhhcf2KigpZuXKlUd+RI0fkrbfeMjzPz8+3OEPX2dLS0qS9vV0aGhqkubnZMIOSnJxsGHP27Fn54x//aLTe//3f/0lOTo4AkPvuu09qamrEx8fHsPyBBx6wSVFXWVlpNBuzfPlyKSkpMdqOt7e3NDU1SVxcnAAQjUYjzzzzjNF7XVZW1uuiTkTk+uuvN4xJTEw0KnbNzXJaE19lZaU8+eSThuVKpVJKS0u7FXV5eXk9fo4SEhKkurra8Nzc+wwYF3W33XabtLe3S1BQkGF5eHi4iIhMmzbNkIvGxkajmblXX31VDh8+bDEWf39/OXTokIiInDx5UtLS0uTOO+8UhULR7/csLS3N7GdMq9WKQqGQqKgoERGLBSUbmys2XihB5CGuXLmCs2fPYtKkSfjmm29QWFgIf39/VFVVITs7G2fPnsXFixfNrqtWqxEYGIicnByj/pycHISHh/c6lgMHDiAyMhIzZ87EG2+8gczMTLz55psA9BdxhISEYMuWLWhoaDC05557DuPGjQMAhIeHo6CgAC0tLYZtHj58uNdxmHP8+HGjc8mio6Mxfvx4o1hqa2tx7bXXYty4cRgyZAjGjBljtP8rV64gNze31/tuamrC6dOnDc8rKysxevToq65jTXz+/v44evSoYR2dTodjx45125a5mOfMmYP9+/ejoqICWq0W27Ztw8iRI3HddddZ/brCw8NRXl6OiooKQ19JSQnq6uqMPj+lpaVobGy0+vWfP38es2bNwuTJk/HGG2/A29sbH374ITIzM6FQKCyu19N71sncZ0ytViM4OBgFBQX48ssvcfz4cezcuRMrVqxwysU+RL3BCyWIPERRURFCQ0Ph7e0NpVKJhoYGeHl5wcvLCw0NDTh79iwmT5581W3oJ7l+plAouvVZo6mpCadOnQIAJCUl4auvvsKaNWuwevVqKJX6/0ved999OHLkiNF6V65cMey3Jzqdrts4b29vq2LrSqlU4tixY/jTn/7UbWx1dXWP2+sN0wsTRMTwflhibXzmcmfK9LWHhIRg7969eOedd/D888+jtrYWMTEx+OCDD6x6L7vuy9znxLS/L68fAIqLi1FcXIzU1FTccsst+O9//4vZs2cjKyvL7Pj+5lREoNPpEBcXh1mzZmHu3Ll49NFH8dJLL2HmzJkoLS3tcRtEzsCZOiIPMX/+fERGRuL8+fNYunQpIiMjUVRUhOTkZERGRmL+/PkW121oaIBGo0FMTIxR/6xZs1BSUtLv2F544QU89dRTCAgIwIULF1BRUYHrr78ep06dMmqdfyxPnDiBqVOn4tprrzVs45e//KXRNqurq6FWq41mlCIjI3sdW15eHm644QZcuHChWzxarRZarRbnzp0z2r9KpUJ0dHSv99WTy5cvQ6VS9Tq+8+fPY8aMGYZ1lEoloqKietzftGnT4OXlhSeffBJHjhzBDz/8gDFjxvQYk6kTJ04gJCQEQUFBhr7w8HAMGzbMJp8f030BgK+vr8X4enrPOpn7jDU0NBjNOB46dAhr165FVFQULl++jPj4eJu+HiJbYlFH5CHKysrQ2NgIPz8/7NmzB2VlZYiIiMDu3btx6tSpHm9Dsn79evz1r3/F4sWLMWHCBKxbtw6RkZFISUnpd2wHDx5EcXExVq1aBQBYu3YtVq5cicceeww33HADJk+ejGXLluHxxx8HAHz88cfQ6XTYsmULwsPD8bvf/Q5PPfWU0TaPHDmC5uZmvPzyyxg3bhzuuusuLFu2rNexffTRR6ipqcGePXsQExODsWPH4tZbb8WmTZsQGBgIAEhJScGzzz6LhQsXYuLEiXa7715paSmmTJmCCRMmYMSIEfDy8rIqvjfffBMrV67EHXfcgQkTJiAlJQW/+MUvepxlPXXqFLy9vfHoo48iLCwMS5cuxYMPPtgtJrVajd/85jcYMWIEfHx8um3nyy+/RGFhIT766CNERUVh+vTp2LZtG7KyssweBrZWamoqnnvuOcyaNQshISGYOXMmtm3bhgsXLhgOh/f1PQOAQYMGGT5j8+bNwwsvvIC33noLIoIZM2Zg5cqViI6ORnBwMBYtWoRRo0bZvEglsjWnn9jHxsZmm7ZkyRL5+uuvBYDExMTI999/b/W6XW9p0tbW1u2WJoD1F0qYu4DgrrvuktbWVsPJ9HfddZfk5eVJa2urXLx4UbKysmThwoWG8TNnzpT8/HxpbW2VvLw8iY+PN7pQAtBfGPH9999Lc3OzfP7557JixQqrbmliGpufn59s3bpVLly4IC0tLfLjjz/Ku+++K2q1WgD9hRGvv/661NfXS21trWzYsKHPtzTpOsb0wo6RI0fKf/7zH9FqtUa357AmvjfeeEPq6+vl4sWLsm7dOvn000/l448/Nmz7wIEDhtvcdG3Jycmi0WikqalJ9u3bJ0uXLjWKG4CkpqZKdXW1TW5p0nXfSUlJhtvKmGuLFi2Sf/3rX6LRaKS1tVUqKipk165dMnny5H6/Z52fhbVr10p1dbVotVp57733ZNCgQQJAJk2aJPv27ZOqqippaWmRkydPysMPP+z0n3E2tqs1RccDIiKXFhoaitLSUkRGRqKgoMDZ4bg0hUKBkpIS7Ny5E6tXr3Z2OC4pLS0Nw4YN4+FU8ii8UIKIyM2FhIRg7ty5hm9deOSRRxAWFoaPP/7Y2aERkQPxnDoiIjen0+mwbNkyfPPNN8jJycFNN92E2267DSdPnnR2aETkQDz8SkREROQBOFNHRERE5AFY1BERERF5ABZ1RERERB6ARR0RERGRB2BRR0REROQBWNQREREReQAWdUREREQegEUdERERkQdgUUdERETkAf4fwzzF3zd7Hi8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4fElEQVR4nOzdd1wURxsH8N/dIQpIEAQVEbD3giWiRkCxYOxEY1fE2MAYNFGjplhSjNFYI2oiEk1MbBGVREFNULE37PBa6IgIAlIPDnjeP/A2HHfAHe0An28+8wk7Ozs7e0N53NmZFQEgMMYYY4yxak2s7QYwxhhjjLGy46COMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMVasTp06Yffu3QgNDUVmZiZSU1Nx8+ZNLF68GMbGxhrXFxYWBiISUlpaGm7evIl58+YplXVwcAARYcyYMQr5enp6OHHiBLKzszF16tRSX1tBOjo6+PLLLxEWFgapVIrg4GB8+OGHah1bt25drF27Fv7+/njx4gWICCtWrFBZ9p133sHPP/+MGzduQCqVgohgbW2tUVsHDBiAS5cuIT09HfHx8fD29oaZmZlGdRQ2fvx4BAUFITMzEzExMdi4cSMMDAxKXZ+87xwcHMrULk189dVXICLcu3ev0s7JWFVDnDhx4qQqzZw5k7Kzs+nevXvk5uZGDg4ONHDgQFq6dCk9ffqUjhw5onGdYWFhFBgYSLa2tmRra0vOzs4UGBhIRETLli1TKOvg4EBERGPGjBHy3nrrLQoMDKTMzEwaOXJkuV3rTz/9RJmZmbRo0SJycHCgb7/9lnJzc5XapCpZW1tTUlISnT17ln766SciIlqxYoXKsl9++SWFhYXRkSNH6N9//yUiImtra7XbaW9vT9nZ2eTj40MDBw6kSZMmUVRUFN29e5d0dXVLde2TJk0iIqKffvqJ+vXrR7Nnz6akpCTy9/cv9ecp7zsHB4dK+V7t0qULZWZmUmxsLN27d69SzsmJUxVMWm8AJ06cqmDq1asXyWQyOnHihMpgoVatWjRixAiN6w0LCyNfX1+FPENDQ0pKSqLw8HCF/MJBnZmZGd26dYtevXpF/fr1K7drbd++PeXm5tLSpUsV8nfu3Enp6elkbGysdl3169cvNqgTiUTC15988onGQd3Vq1fp/v37JJFIhLzevXsTEdHcuXM1vnaxWEwxMTHk5+enkD9x4kQiIhoyZEipPtPKDOokEgndunWLNm3aRAEBARzUcXpjEw+/MsZUWr58OYgIs2fPRnZ2ttJ+mUwGX19fAMCuXbvw8uVL6OnpKZX7559/cP/+/WLPlZqaikePHqFhw4ZFlrGyssKFCxfQpEkTODo64uzZs8XWaWpqiqysLKxevVppX5s2bUBEmD9/PgBg9OjREIvF8Pb2Vijn7e0NfX19DBkypNhzaYKISn1s48aN0bNnT/z666/Izc0V8i9fvoz//e9/cHZ2FvJMTU2xbds2PHjwAKmpqYiLi8M///yDvn37KtTZq1cvNG7cWOnaDx06hNTUVIU6i9KmTRucPHlSGA7evn07DA0NVZYdMGAAzpw5g1evXiE9PR0XLlyAo6OjsH/UqFEgIoU8ublz54KI0KlTJ4X8pUuXwsTEBJ999lmJbWWsJuOgjjGmRCwWw9HRETdv3kR0dHSJ5Tdv3gwTExNMmjRJIb9du3ZwdHTEtm3bij1eIpHA0tISjx49Urm/Xbt2uHDhAvT09GBvb4+bN2+W2KaEhAT89ddfcHFxgUgkUtjn6uqKrKws7Nu3DwDQsWNHvHjxAnFxcQrl7t69K+yvCuTtkLeroLt37yq008TEBACwatUqDBs2DK6urggNDcXZs2cVnnMrqs6cnByEhISUeO0NGjTAuXPn0LFjR7i7u2Pq1KmoW7cufvzxR6WykydPxqlTp5CSkgIXFxeMGzcOiYmJ8Pf3F4K4v/76C3FxcXB1dVU6fvr06bh586bCM3Pt2rXD559/Djc3N6SnpxfbVsbeBFq/XciJE6eqlRo0aEBERL///rvaxwQEBNCtW7cU8rZt20bJyclkYGAg5IWFhdFff/1FEomEJBIJWVpa0s6dOykrK4uGDh2qcLx8CI+ISCaTUdu2bTW6juHDhxMR0cCBA4U8sVhM0dHRdOjQISHP39+fgoODVdYhlUppx44dap+zpOHXgknT4Vf5kKitra3Svh07dpBUKi3yWLFYTBKJhE6fPk1//vmnkL9s2TIiImrYsKHSMX5+fhQSElJsm9asWUO5ubnUuXNnhXx/f3+F4Vc9PT1KSEigY8eOKZQTiUQUFBREV65cEfLWr19P6enp9NZbbwl5bdu2JSKiefPmKRx7+fJl2rdvn8L3IQ+/cnpTE9+pY4yVi82bN6Nr167o06cPAMDQ0BBTp07Fnj17lO6gDBs2DDk5OcjJyUFkZCRmz56N+fPn48SJEyrr9vX1hVgsxrZt21QO8Rbl5MmTiI2NVbjr4+TkBAsLC+zevVuhbHHDomUZMq0IRbWncP6cOXNw8+ZNZGZmIjc3Fzk5ORg4cCDatWtX6joL69+/Px48eKB0p+/3339X2O7Tpw/q16+PPXv2QCKRCEksFsPPzw9vv/029PX1AQC7d++Gvr4+xo8fLxzv6uoKqVSqUO/HH3+MVq1aYcGCBcW2kbE3BQd1jDElCQkJSE9PR7NmzdQ+5tixYwgLCxOWJpk+fToMDAxUDr0GBgaiR48esLW1xZQpUxAWFoYff/wR77zzjsq69+zZg1mzZqFfv374+++/hT/+JcnNzcWvv/4KZ2dnGBkZCe169uwZ/P39hXIvX75E/fr1lY7X19dH7dq1kZiYqNb5KtrLly8BQGVbTUxMFNq5cOFC7NixA1evXsWYMWNga2uLHj164OTJkwqBsSZ1qlK/fn08f/5cKb9wnvx5yT///FMI6OVp6dKlEIvFwpDxw4cPce3aNSEYF4vFmDJlCo4dO4akpCQAgKWlJVavXo1Vq1YhOzsbRkZGMDIygo6ODsRiMYyMjFCnTp1i285YTaT124WcOHGqeunYsWOUnZ1NFhYWah/zySefUFZWFjVq1IiCg4Pp1KlTSmVUzX5t2bIlpaen0507dxRmhxae/Tp9+nTKycmhs2fPkr6+vlptkg/bzZkzh+rVq0eZmZm0Zs0ahTJFDUHa2toSEdHEiRPV/gwqcvi1cePGRES0ZMkSpX3BwcEKS5DcvHmT/v33X6VygYGBFBYWJmzLZ86OGzdOoZxEIqGUlBTauXNnsW26cuUK3b17VynfxcVFYfh18ODBwvBp9+7dVaZatWoJx8+dO5eIiNq2bUtDhw4lIiInJyel743ibNy4Ues/R5w4VXLSegM4ceJUBVPBJU0K/rGVJx0dHRo+fLhCnpGREaWmptI///xDRKRyHTlVQR0AWrFiBRERTZgwQchTtU6di4sL5eTk0Llz5xSe1SsuXb58ma5cuULu7u5ERNS6dWuF/fIlTQoHS9u3by/3JU0KptIsaSIPosRisZAnDz7nzJkj5N24cYNOnjypcGynTp0oJydHIaiTL2ly4sQJhbLjx49XCqRUJXWfqTMwMKDExETatm2bWtdpZGREGRkZ9N1339HBgwcpKipKIeA3MjIiBwcHpRQUFEShoaHk4OBALVq00PrPESdOlZy03gBOnDhV0SRffPju3bvk5uZG9vb2NGDAAFq0aBE9evRI5eLD27ZtIyKisLAwhT/C8lRUUGdgYECxsbEUHBwsBCyqgjoANHXqVMrJyaHz58+rFdjNmjWLiIgiIyPpwoULKsvIFx/+5JNPyN7enr7++muViw9/8cUXJJPJyN7eXiF/yJAhNGbMGJo+fToRER04cIDGjBlDY8aMIT09PaGcqampkP/LL78QUf76cmPGjFGqUyaT0ZkzZxTyHBwcKDs7m/78808aMGAATZw4kSIiIpQWH165ciXl5ubSypUrqX///jR37lx69uwZPX78WCGoA0CTJ08mIqIdO3aQg4MDzZw5kxITE5UWH7a3tyeZTEZffPGFkNewYUOKi4ujqKgocnFxoSFDhtCvv/5KERERCkGd/Dw5OTn0xx9/0JgxY8jOzo7ee+89WrVqFXl6eir1yb59++j58+cklUrp66+/Vut7lidKcHrDk9YbwIkTpyqcOnfuTN7e3hQeHk5SqZRSU1Pp5s2btHLlSjI1NVUqb29vX+QQIVB0UAeA3NzciIho6tSpBBQd1AH5AYJMJqMLFy5Q3bp1i70GQ0NDSk9PJyKiDz74QGUZHR0dWrFihXCdISEh9OGHHyqVk99RLLyoblhYWJHDgAXvxBU3bBgQEKBQp6o8ADRw4EC6dOkSZWRkUEJCAv3yyy9kZmamUKZWrVr0/fffU1RUFGVkZNCNGzdo5MiR5O3trRTUAaAJEybQ7du3SSqV0rNnz2jTpk1KAbO87YXvQrZt25b8/f2F9vz88880YsQIlZ+TnZ0d+fr6UkJCAmVlZVFUVBT5+vqq7OOBAwcKn03Lli3V+n7loI7Tm5xEr79gjLFysX79eri5ucHS0rLKTDBgjLE3gY62G8AYqxlsbW3RunVruLu7Y+fOnRzQMcZYJeM7dYyxckFESE9Px4kTJ+Dq6sqr+zPGWCXjoI4xxhhjrAbgxYcZY4wxxmoADuoYY0X64osv8ODBA4hEIiGPiBRScnIyAgICMHTo0Epp04oVK0r92q6JEyfCw8OjnFtUPG1/XupwcHBQaGNWVhZevHiBCxcu4Ouvv4aVlZXSMS4uLiAiWFtbK+R/9dVXiIiIgEwmE97+UKtWLWzfvh3Pnj1DTk4OgoKCAABhYWFKn488BQQEaHwdOjo6ePLkSaX3MWNVidan4HLixKnqJXNzc0pNTVVaaoKI6ODBg2Rra0u9e/emyZMnU3BwMOXm5tLQoUMrvF3yJUVKc6yvr6/K5TwqMmn781InyZcqWbp0Kdna2lKfPn1oxIgR9PXXX9OzZ88oPT2dJk2apHCMqakp2draKqyNN3LkSCIi+uqrr6hPnz7UvXt3AkAfffQREeW/TaJXr17UsWNHAvKXgQkMDCRbW1ul1K5du1Jdy7Rp0+jly5dkYmKi9c+VEyctJK03gBMnTlUwfffdd0qr+AP5QcrWrVsV8po3b05EpPK1YPKko6NDEomkzO2qikFdnTp1ityn7c9LnVTceoDGxsZ08+ZNys7OFoKxotLy5cuJiJTWzPvpp58oPT1dqXxxaxaWNtWqVYsSEhKUFo3mxOlNSDz8yhhTUqtWLXzwwQf4/fff1RrqDA0NxYsXL4ShOPlw3pQpU7B+/XpER0cjKysLLVu2BAAMGDAAZ86cwatXr5Ceno4LFy7A0dFRqd6hQ4ciKCgIUqkUoaGh+OSTT1Se393dHefOnUNcXBzS0tJw9+5dLF68GDo6/63aFBAQgOHDh6Np06YKw3xyxsbG2LZtm9DWp0+f4uuvv4aurq7CuYgIW7duxZw5c/Dw4UNkZWXBxcWl5A+1Aj+vvn37gogwYcIEpXNNnToVRIQePXpo1Ea5pKQkzJkzB7Vq1cLChQuF/MLDr2FhYfjmm28AAC9evAARCUPls2bNgr6+vvCZa/p5Aaq/F1QNxctkMhw4cACzZ88u1fUyVt1pPbLkxIlT1Up9+/YlIqIhQ4Yo7VN156levXqUk5MjvIJLfucnKiqKDh48SMOHD6ehQ4eSsbExTZ48mXJzc+nIkSM0evRoGjZsGB0/fpxkMhk5OjoKdTo6OpJMJqPz58/T6NGjacyYMXT16lUKDw9XulP3ww8/0Jw5c2jw4MHUr18/8vDwoBcvXpCXl5dQpl27dhQYGEjPnj1TGOYDQLVr16bbt29TamoqffzxxzRw4EBatWoVZWdn019//aV0/VFRUXT79m2aMGEC9evXj9q3b1/kZ1lZn9fNmzcpMDBQ6fxXr16lq1evFtvfxd2pk6eYmBh6/PixsO3i4kJE/70tw8bGhn7++WciIho8eDDZ2tqShYUF2dra0l9//UXp6enCZy5/E0lYWBj99ddfJJFIlFLBc2vyvQCA3n//fSKiEu8scuJUA5PWG8CJE6cqlhYvXkxERA0aNFDaR0T0448/kkQiIR0dHWrTpg39/fffRETk5uZGwH9BwtmzZxWO1dPTo4SEBDp27JhCvkgkoqCgILpy5YqQd/nyZYqOjqbatWsLeXXr1qWEhIRih19FIhFJJBKaMmUKyWQyqlevnrCvqOHX2bNnExHR2LFjVX4OAwcOVLj+pKQkhXqLS5X1ecmDrC5dugh5PXr0IKL/XrtWVFInqLt8+bLCEGrhoA74b2i8fv36Csd6e3tTamqqUp3FvVrts88+K/X3QosWLYiIaM6cOVr/WeLEqTITD78yxpQ0btwYeXl5SEhIULl/3rx5yMnJgUwmQ0hICPr06YMvvvgC27dvVyj3559/Kmz36dMH9evXx549eyCRSIQkFovh5+eHt99+G/r6+tDX18fbb7+NI0eOICsrSzg+LS0Nvr6+Su2xsbHBsWPHkJCQgLy8POTk5ODXX3+Fjo4OWrduXeL1Ojo6Ii0tDYcPH1bI/+WXXwDkD38W9O+//yI5OVnYFovFCtdTcLZwZXxeAPDHH38gLi4O8+bNE46fP38+Xrx4gQMHDpT4GZSk8DWVl8DAQPTo0UMpeXl5AYDG3wtA/vAvAFhYWFRImxmrqvg1YYwxJXp6epDJZMjLy1O5/8CBA1i3bh2ICKmpqXj69KnKsrGxsQrbDRs2BKAcvBRkYmICIoJEIsHz58+V9hfOs7S0RGBgIP73v//Bw8MD4eHhkEql6NmzJzw9PaGnp1fi9davX1/lueLj4yGTyVC/fv1ir+vp06do2rSpsL1y5UqsWrVK2K7ozysjIwPZ2dnYuXMnPvnkEyxevBi1atXCuHHjsGHDBmRnZxd98WqysrLCs2fPylxPYa9evcLNmzeL3G9sbKz294KcVCoFALX6nrGahIM6xpiShIQE1K5dG/r6+sjIyFDaHx8fX+wfYrnCD7HL7/x9+OGHuHLlispj4uLiUKtWLeTl5aFRo0ZK+wvnjR49GnXr1sV7772HyMhIId/GxqbE9sm9fPkStra2SvlmZmaoVauW0h3Lwtc1YsQI1K5dW9guHPxU9Oclt337dixduhQzZsxAnTp1oKOjgx07dpR43pK8/fbbMDc3x65du8pcl6aSkpLU/l6QMzExAYAi7zQzVlNxUMcYUxISEgIAaNGiBe7du1du9V68eBFJSUlo3749tm3bVmQ5mUyGa9eu4b333sPixYuFYbe6detixIgRCmXlgVDBoTkAmDVrllK9WVlZKu/e/PPPPxg/fjxGjx6No0ePCvnTpk0T9hfn/v37xe4vLXU/L7nnz5/j0KFDcHd3h66uLnx9fREVFVWmNhgbG2PHjh3Izs7Gxo0by1RXaWRkZKj9vSDXvHlzAMDDhw8rrZ2MVQUc1DHGlJw9exYA0KtXr3IN6tLT0zF//nzs2bMHJiYmOHz4MF68eAEzMzN06dIFZmZmcHd3B5D/Ngs/Pz+cPn0aP/zwAyQSCT799FOkp6crDIeePn0aWVlZ+OOPP/D999+jTp06cHNzg7GxsdL57927hzFjxmDu3Lm4efMm8vLycPPmTezduxfz5s3Dnj17sGLFCty7dw99+/bF8uXL8ffff5cY1FUUTT4vuc2bN+PatWsAAFdXV43O16pVK9ja2kIsFqN+/fqwtbXFBx98gLfeegvTpk2rkCCpXr16Ku+SZmVl4fbt2wDU/16Q69WrF3JycnD+/Plyby9jVZ3WZ2tw4sSp6qVz584pLecBqF6io3AqaTalnZ0d+fr6UkJCAmVlZVFUVBT5+voqlR8+fDjdvn2bpFIphYeH05IlS1QuPjxs2DAKCgqijIwMioqKorVr15KTkxMRETk4OAjl6tWrRwcPHqTExETKzc1VqMfY2Jg8PT0pJiaGsrOzKSwsjL755huFNyaoe/3a+rzkKTQ0lB48eKB2G+Xnl8vOzqb4+Hi6ePEiff3112RlZaV0TEXPfo2KiirV94L8e7fwjGFOnN6QpPUGcOLEqQqm9957j2QyGTVu3FjrbeGkfurUqRMR/bdcSk1OqoK65s2bU25ursIyNJw4vSmJlzRhjKl05MgRXL9+HcuWLdN2U5gamjdvjv79++Onn37Cs2fPhOVY3jSff/45/vnnH5w5c0bbTWGs0nFQxxgr0qxZs/Ds2bMKW6OMlZ8vvvgCp0+fRt26dfH+++8jMzNT202qdBKJBE+fPlVYq4+xN4kI+bfsGGOMMcZYNcZ36hhjjDHGagAO6hhjjDHGagAO6hhjjDHGagAO6hhjjDHGagB+o0QlaNy4MVJTU7XdDMYYY4xVA4aGhkrvkFYHB3UVxN3dHfPmzYOOjg5at26t7eYwxhhjrBqxsLDQOLDjJU0qmKGhIVJSUmBhYcF367REIpFg0KBBOH36NHJzc7XdHKYC91H1wP1U9XEfVX0l9ZGhoSFiYmLw1ltvaRw38J26SpKamspBnZZIJBJkZmYiNTWVf8lVUdxH1QP3U9XHfVT1VWQf8UQJxhhjjLEagIM6xhhjjLEagIM6xhhjjLEagJ+pqwL09PRgZmbGL02vIBKJBKamprC2tuZnTKoo7qPqoSz9RESIj49HZmZmBbWOMcZBnZZ17NgRCxcuRK1atbTdlBpNT08Pjo6O2m4GKwb3UfVQln6SyWTYuHEj7t+/X86tYowBHNRplZ6eHhYuXIjg4GD4+PggJydH202qsQwNDXn2cRXHfVQ9lLafdHR04OzsjIULF+LDDz/kO3aMVQAO6rTIzMwMtWrVgo+PD54+fart5tRoRkZGePXqlbabwYrBfVQ9lKWffHx80LlzZ5iZmSEyMrKcW8YY44kSatLT00N4eDjWrVtXbnXKn6HjO3SMsTeB/HcdPz/MWMXgO3Vq+uyzz3D16lVtN6MI+gDSX39tACBDi21hjDHGaioxADsA5gBiAQQCyNNqiwriO3VqaNmyJdq2bYsTJ05ouyk1gouLC5KSkrTdDMYYY0wDzgDCAZwF8Mfr/4e/zq8aanxQZ2dnh+PHjyMmJgZEhFGjRimVcXNzQ2hoKDIzM3Hjxg307dtXYf/69euxbNmyympyKRTsRjtURreamZlhx44diIiIgFQqRWxsLPz8/NCrV68Sjz1w4ABat24tbLu4uICIhPTs2TMcOHAATZs2rcArYIwxxtTlDOAwAItC+Rav86tGYFfjgzoDAwPcuXMHH374ocr948aNw6ZNm/DNN9+ga9euCAwMxMmTJ2FpaQkAGDlyJB49eoTHjx9XZrM14AwguMC2HyrjXw5//vknunTpAhcXF7Ru3RojR47E2bNnYWJiUuKxUqkU8fHxCnmvXr1Co0aNYG5ujkmTJsHGxgbHjx+HWFzjv0UZY4xVaWIAmwt8XXgfAGxSsa/y1fhn6vz8/ODn51fk/o8//hheXl7w8vICACxcuBBOTk5wc3PD8uXL0atXL0yYMAHvv/8+6tati1q1aiElJQVfffWVyvp0dXVRu3ZtYdvQ0BBA/qKdEolEoWzhbc3J/+VQmPxfDmMB+JTxHMqMjIxgZ2cHBwcHnD9/HgAQGRmJ69evK5T5/vvvMWrUKBgZGeHJkydYunQp/v77b7i4uGDTpk0wNjYWyhMR4uLiAADPnz/HqlWrsG/fPrRs2RKffvopGjRogBEjRgjlJRIJoqOjsXz5cnh7exfbXvlD2SKRCERUbp8DKz/cR9VDefWTqt+HrHxIJBKIxWL+fMsRkQPy8iyLKSEGYAWxuB9EonMl1ldSH5Wl72p8UFecWrVqoXv37vjuu+8U8k+dOoU+ffoAAJYvX47ly5cDyB8m7NixY5EBHQAsW7YMK1euVMofNGiQ0rpMpqam0NPTg6GhIYyMjDRqO5EYqalbkf97VdW/HPIgEm2BoeFZiETl+xCnRCJBamoqxo8fj+DgYGRnZyvsF4lE8Pf3R926dTFnzhyEhYWhbdu2qFOnDoyMjKCvrw+RSCRcc+FtAMIdOhMTE+zfvx8nTpxA69athcDv3XffRd26deHv76/WZ2dgYFBel88qCPdR9VCWfjI0NISenh7s7e2RkJBQjq1ichKJBN26dYNIJOK3s5STmBh7BAWVXK5LlyGwsNAvsVxJfaSnp1eaZgJ4w4M6U1NT6OjoCIGCXFxcHBo1alSqOtesWYMNGzYI24aGhoiJicHp06eVFuy0traGo6MjUlNTS7HukwOUx/YLEoOoCVJSOgMo+V8Ompo+fTp+/vlnuLq64tatWzh37hz279+Pe/fuYdCgQejevTvatWsnDFvfvXtXODYjIwNEJFxz4W0LCwu4u7sjKioKN2/ehEwmw//+9z+MGjVKWFJm3LhxOHToEJ49e1ZiW+V3F1JSUvguUBXFfVQ9lLWf6tWrh8zMTJw/fx4RERHl3TyG/ICBiODn58dBXTkhygCwuMRyd+744e5d9e7UFddH8hG+0nijgzq5wr+cihpa2LNnT4l1ZWdnIzs7G+7u7pg3b55wxyk3N1ep88r2A2dezuU0c+TIEfz999+ws7ND7969MWTIECxZsgQzZ85EgwYNEB0drdFziPXq1UNqaipEIhEMDAxw8+ZNvPfee5DJZACAXbt2Yfbs2Vi3bh3MzMwwbNgwDBgwQK265X3JwULVxX1UPZRXP6n6fcjKT15eHn/G5eosgCjk30hR9dxcHoBo5OWdhbrLmxTXR2XpN+0/1adFCQkJyMnJUbor16BBA6W7d5ry9PREhw4d0LNnzzLVU7TYci6nuaysLJw5cwZfffUV3nnnHfzyyy9YtWpVqV7/k5KSAhsbG3Tq1AkGBgbo0aMHbty4Iezfu3cvmjdvjl69emHKlCkIDw/HhQsXyvNyGGOMMRXyAHgU+LrwPgBYoGJf5XujgzqZTIabN29i0KBBCvmDBg3CpUuXtNQqdQUi/18ORX0T5QGIfF2ucjx8+BAGBga4e/cumjRpglatWql9bF5eHp4+fYqwsDBkZCgvnpyYmIijR4/C1dUVrq6uJU6OYIwxxsqPD/InH8YUyo9GRU1KLI0aP/xqYGCAli1bCtvNmjVDly5dkJiYiKioKGzYsAG//vorbty4gcuXL2P27NmwsrLCjh07ynTewsOv5U/+L4fDr78WF9oHVNS/HExMTHDo0CHs3r0bd+/eRWpqKnr06IElS5bg2LFjOH/+PM6fP48///wTH3/8MZ48eYK2bduCiODv71/q8+7atQt//fUXJBKJWkPhjDHGWPnxAXAMVfmNEgBANTk5ODiQKt7e3kIZNzc3CgsLI6lUSjdu3CA7O7tyO7+hoSERERkaGirts7a2pr1795K1tXUZzuFMQBQBVCBFvM6vmM9UV1eXvv32W7px4wYlJSVRWloaBQcH0+rVq6lOnToEgIyNjcnLy4vi4+MpIyOD7t69S0OHDiUA5OLiQklJSUJ9hbeLS2FhYfTXX39p3GYjIyOtfy9y4j6qCaks/VQ+v/M4FZckEgkNHz6cJBKJ1tvCqXR9VFzcoEbS/gXW5FTxQR0IqEsQAjonAsRav+6KSHp6epSUlETOzpoHrBwwVP3EfVQ9Egd1VTtxUFf1U0UGdW/0M3UVyd3dHQ8ePMC1a9cq4WwFb/1WvVvBZSUSiWBubo6vvvoKr169wvHjx7XdJMYYY6zKqfHP1GmLp6cnPD09YWhoiJSUlAo+WwYAUQWfQ3usrKwQHh6OqKgoTJ8+nafpM8YYYypwUMeqvIiICGHRU8YYY4ypxsOvFaRyh18ZY4wx9qbjoK6CVPziw4wxxhhj/+GgjjHGGGOsBuCgjjHGGGOsBuCgroLwM3WMMcYYq0wc1FWQynymTh//rTyoX+FnY4wxxlhVxEEdY1pGRBg1alSlnMvFxQVJSUmVcq7+/fsjODi40pajqYzPUVdXFxEREejWrVuFnocxxkqDg7oaoGAn2qFyOrVhw4bYsmULnj59CqlUisjISBw/fhyOjo5q1+Ht7Q0iAhFBJpMhIiICnp6eqFevnkK5sLAweHh4KOStX78eKSkp6N+/PwAgICAALi4uZb6umu7AgQNo3bp1pZzr+++/xzfffAMiEvJq1aqFxYsX4/bt20hPT0d8fDwuXLiA6dOnQ0dHvWUzV6xYgaCgoIpqdrGys7Oxfv16rF27VivnZ4yx4vDiw9WcM4AtBbb9AEQB8ADgU0HntLa2xsWLF5GcnIwlS5bg7t27qFWrFpycnLBt2za0a9dO7bpOnjwJV1dX6OjooH379ti9ezfq1auHSZMmqSwvFovx888/Y8SIEXB0dMSNGzfK67LeCFKpFFKptMLP07t3b7Rq1QqHDh0S8mrVqgV/f3906dIFX3zxBS5evIiUlBT06tULixYtwpMnT3DhwoUKb1tZ7du3D+vWrUPbtm0REhKi7eYwxpiA79RVY84ADgNoXCjf4nW+cwWd19PTE0SEnj174s8//8Tjx4/x8OFDbNy4Eb169QIAeHl5wdfXV+E4iUSC2NhYuLq6CnlZWVmIi4tDTEwMTp8+jQMHDmDw4MEqz6urq4tDhw5h0KBBsLe3LzagW7FiBSIiIiCVShETE1PinZURI0bg+vXryMzMRHx8PP78808AwBdffIG7d+8qlb9x4wZWrVoFAHBwcMDVq1eRlpaGpKQkXLhwAVZWVkLZuXPn4smTJ8jKykJISAimTJlSZDsuXbqENWvWKOSZmpoiOzsb/fr1A5AfHK1duxbR0dFIS0vDlStX4ODgUOz1yRUcfm3dujWICG3atFEos3DhQoSFhQnXRkQYOnQobt++jczMTFy5cgUdO3Ys9jwTJkzAqVOnkJWVJeQtWLAA9vb2GDBgADw9PXHnzh2EhYXhjz/+gK2tLZ4+fYqpU6ciISEBurq6CvUdPnwYe/bsgYuLC1auXAkbGxvhLm/BO7SmpqY4cuQI0tPT8ejRI4wYMUKhHnt7e1y9ehVSqRTPnj3DmjVrIJFIhP0BAQHYvHkz1q5di5cvXyI2NhYrVqxQqCMxMRGXLl3CxIkTS/q4GWOs0hGn8k/u7u704MEDCg4OJiIiQ0NDpTLW1ta0d+9esra21rh+MUCRAOUCRCpSLkARr8uV53UZGxtTbm4uLV26tNhyvXv3JplMRo0aNRLyRowYQampqWRgYEAAyNvbm3x8fIT9zZo1o/v371NsbKxCXWFhYfTZZ5/R6dOnKSQkhCwtLZXOFxAQQC4uLgSAxowZQ8nJyTRkyBCytLSkt99+m+bPn19kW4cOHUoymYxWrlxJbdu2pc6dO9OyZcsIAFlYWFBOTg716NFDKN+pUyfKzc2lZs2akUQioaSkJPr++++pefPm1LZtW5o2bZrQxtGjR1NWVha5ublRq1ataOHChSSTyahfv35CfUREo0aNIgA0b948Cg8PV2jfvHnzKCoqikQiEQGg3377jS5cuEB9+/al5s2b0yeffEKZmZnUsmXLEvvPxcWFkpKShO3r16/T6tWrFcpcv36dvvnmGwJADg4ORET04MEDGjhwIHXs2JGOHz9OoaGhpKOjU+R5goKCaMmSJQp5t2/fJj8/vyKPMTIyojp16lBSUhKNHTtWyK9fvz5JpVLq168f1alTh9atW0f37t2jhg0bUsOGDalOnTrC5xgZGUkTJkygFi1a0KZNmyglJYWMjY0JADVu3JjS0tLoxx9/pDZt2tCoUaPoxYsXtGLFCoXvo+TkZPryyy+pZcuWNHXqVMrNzaWBAwcqtPW7776jf//9t1x/tqpLMjIyKvWxZfmdx0m9JJFIaPjw4SSRSLTeFk6l6yNDQ8Mi4wY1kvYvsCan4jqnLL/gHKA6mCucHMr5et5++20iIho9enSJZe/fv0+LFy8Wto8cOUK7d+8Wtr29vUkmk1FqaiplZGSQ3IIFCxTqCQsLI6lUSvHx8WRmZlbieRcuXEghISEKQUdxf4guXrxIv/76a5H7//77b9q2bZuwvWHDBuEPurGxMRER2dvbqzz2woULtHPnToW8AwcO0F9//SVsFwzqTE1NKTs7m/r27avQvrVr1xIAat68OeXm5pK5ublCnadPnxYCseJS4aBuwYIF9OTJE2G7VatWRETUrl27/O+z10HduHHjhDLGxsaUnp5O77//fpHnSUpKoilTpijkpaen06ZNm4o8Rt5H27Zto7///lvI/+ijjxTauGLFCgoKClI6nogUAlR9fX3Kzc0lJycnAkBff/01BQcHKxzj5uZGKSkpQsAcEBBA58+fVyhz9epVWrNmjULe/PnzKTQ0tFx/tqpL4qCuaicO6qp+qsigjodfqynzci6nLvlMxoIPvxdl165dwlCrmZkZhg0bht27dyuUCQgIgI2NDWxtbbFlyxb4+flh69atSnWdOnUKBgYGWL58eYnnPXToEPT09BAaGoqffvoJo0ePVhhiK8zGxgb//PNPkft//vlnTJw4EbVr14aOjg4mT54sXEdSUhK8vb3h7++P48eP46OPPkKjRo2EY9u1a4eLFy8q1Hfx4sUinztMSEjA6dOnMXnyZABA06ZN0adPH+zbtw8A0K1bN4jFYjx69AipqalCcnBwQIsWLUr8bArbv38/rK2tYWtrCwCYPHkygoKCEBwcrFDu8uXLwtdJSUn43//+V+yzk3p6ekrP7olEIrW+b37++WcMHjwYjRvnP1jg6uqKX375Ra3rKThUnpGRgdTUVDRo0ABAfl8UvA4gvy8MDQ3RpEkTlXUAQGxsrFCHXGZmJvT1eQEhxljVwkFdNRVbzuXU9fjxY+Tl5ak1GWLv3r1o3rw5evXqhSlTpiA8PFzpQfj09HQ8ffoU9+7dg4eHB2rXrq30DBMA/PPPPxg5ciRmz56NLVu2KO0vKDo6Gm3atMG8efOQmZkJT09PnDhxosjZlZmZmcXW5+vri6ysLDg7O2PEiBGoXbu28MwdAMyYMQO9e/fGpUuXMH78eDx69EgIkgDlALik4Gbfvn0YO3YsdHR0MGnSJNy/f18INMRiMXJyctC9e3fY2NgIqV27dkozhNXx/PlzBAQECBNTJk6ciN9++02tY4u7hoSEBBgbGyvkPXr0SK3vm9u3b+POnTuYNm0aunbtik6dOqkd1MlkMqU2isX5v+ZUfe6q/pFSXB1yJiYmiI+PV6tNjDFWWTioq6YCkT/LNa+I/XkAIl+XK09JSUnw9/fHvHnzVN6pMDIyEr5OTEzE0aNH4erqCldXV3h7e5dY/6pVq7Bo0SKYmyvfYzxz5gyGDx+OGTNm4Mcffyy2HqlUCl9fX3h4eKBfv36wtbVFp06dVJa9e/cuBgwYUGRdubm52LNnj3Ad+/fvVwoEb9++je+++w7vvPMO7t+/LwRJwcHB6Nu3r0LZPn36KN0JK+jo0aOoU6cOhgwZgkmTJikEWUFBQdDR0UGDBg3w9OlThRQXF1fsZ1KUffv2Yfz48ejVqxdatGiB/fv3K5WRT4ABgHr16qF169bFzvwMCgpC+/btFfJ+//13DBw4EDY2NkrlJRKJwveT/C7vjBkzcObMGURHRwv7srOzi73zWpSHDx+iT58+Cnl9+vRBSkoKYmJiNKqrY8eOWltWhTHGiqP18eWanCrqmToA5Iz8CRGFJ0vI85wr6JqaNm1Kz549o/v379N7771HLVu2pLZt29L8+fPp4cOHCmUHDhxIUqmUZDKZ0nNghSdKyNP169dp69atwnZYWBh5eHgI2w4ODpSamqrwnFvB5OLiQjNmzKAOHTpQs2bN6KuvvqL09HQyMTFRWd7BwYFycnKEiRIdO3ZUeBYQALVs2ZJkMhnJZDLq2bOnwmfx7bffUq9evcjKyooGDRpECQkJNHfuXAJAo0aNoqysLJozZw61bNlSmCjh4OAg1FHwmTp5+u233ygoKIhyc3OVJob8+uuvFBoaSs7OztS0aVPq0aMHLVmyhN59990S+67wM3Xy79GMjAwKCgqi06dPK302RET37t0jR0dH6tChAx09epTCw8OpVq1aRZ7nww8/pOvXryvk6erq0rlz5+jly5fk7u5OnTt3pmbNmtH7779PN27cUHiO0NDQkNLS0kgqlSo8zweAJk6cSKmpqdSlSxeqX78+6erqFvk5JiUlCRNo5BMltm7dSm3atKGRI0eqnCixceNGhTp8fHzI29tbIS8sLEzpmcE3JfEzdVU78TN1VT/xRIlqmCp69qs8OQMUBcWgLgIVF9DJU6NGjWjr1q3CJIaoqCg6evSoQrAiT2FhYQoTA+SpqKBu4sSJJJVKqUmTJsLxBYM6AGRnZ0cpKSm0fft2peNHjRpFly9fpuTkZEpNTaVLly7RiBEjiv8cnZ3p1q1bJJVK6cWLF3T48GGlMufOnaP79+8r5DVo0ICOHDlCMTExJJVKKSwsjFauXCk8eA+A5s6dS0+ePKGsrCwKCQlRCgZUBSPvvvsuERGdPXtWqR06Ojq0cuVKCg0NpaysLHr27Bn9+eef1LFjxxL7TVVQB+RP3iAimj59ukK+PKgbNmwY3bt3j6RSKV29epU6d+5c7Hnq1atH6enp1Lp1a4V8XV1d+vTTT+nOnTuUkZFBCQkJFBgYSNOmTVMKuvfs2UMJCQlC0FawjkOHDlFiYiIRkRC0lRTUASB7e3u6evUqSaVSevbsGa1Zs0bhF6s6QV2vXr0oMTFRmHX7piUO6qp24qCu6icO6qpxqsg7dfJUF/8FdE4o/2VMypL09PQoKSmJnJ2dtdqOsvwhkqeQkBBauHCh1j/TykzyoK40n9/atWtpx44dpe6jU6dO0ebNm7X+GRROBw8eFJa8eRMTB3VVO3FQV/UTz35lxSr4XF0gin7OrjKJRCKYm5vjq6++wqtXr3D8+HFtN6nUzMzM8PHHH8PCwkKt5wJZvm+++QYRERFKkwxKYmxsjPHjx8PR0RHbtm2roNaVjq6uLu7cuYONGzdquymMMaaEXxNWA2QAqJxXpqvPysoK4eHhiIqKwvTp05Gbm6vtJpXaixcvEB8fj9mzZyM5OVnbzSnWiRMnYGdnp3Lft99+q/S2ioqUkpJSqvPdunULxsbG+PTTT/Ho0aMKaFnpZWdn45tvvtF2MxhjTCUO6liFiIiIEJaLqO6q03XMnDkTenp6KvclJiZqXN+5c+cq/fqbNWtWqedjjLGagoM6xmqQZ8+eabsJjDHGtISfqWOMMcYYqwE4qGOMMcYYqwE4qGOMMcYYqwE4qKsg7u7uePDgAa5du6btpjDGGGPsDcBBXQXx9PREhw4d0LNnz4o/mb4+hOWHVbyPlTHGGGM1Hwd1jFUBAQEBlbagrbW1NYgIXbp0qfBzmZiYIC4uDtbW1hV+LiLCqFGjKvQcurq6iIiIQLdu3Sr0PIwxVhoc1NUEBVfst7NT3K4gDRs2xJYtW/D06VNIpVJERkbi+PHjcHR0VLsOb29vEBGICDKZDBEREfD09ES9evUUyoWFhcHDw0Mhb/369UhJSUH//v0B5AdFLi4uZb6uN0FUVBQaNWqE+/fvV/i5li1bBl9fX0RERAD4L6CUp8TERJw7dw729vZq17lixQoEBQVVVJOLlZ2djfXr12Pt2rVaOT9jjBWHg7rqztkZCA7+b9vPDwgPz8+vINbW1rh58yYcHR2xZMkSdOrUCUOGDEFAQIDGr3U6efIkGjVqhKZNm2LmzJkYMWIEPD09iywvFovh5eWFadOmwdHREQEBAWW9nDdOXl4e4uLiKvwtH3Xq1MEHH3yAXbt2Ke0bMGAAGjVqBAcHB6SkpODEiROVcjevPOzbtw92dnZo27attpvCGGMKOKirzpydgcOHgcaNFfMtLPLzKyiw8/T0BBGhZ8+e+PPPP/H48WM8fPgQGzduRK9evQAAXl5e8PX1VThOIpEgNjYWrq6uQl5WVhbi4uIQExOD06dP48CBAxg8eLDK8+rq6uLQoUMYNGgQ7O3tcePGjSLbuGLFCkREREAqlSImJqbYOyvyOz+zZ89GZGQk0tPTcfDgQRgZGQEA7OzskJ2djYYNGyoct379epw7dw5A/mvRjh8/jsTERKSlpeH+/ft49913hbL29va4evUqpFIpnj17hjVr1kAikahsz7fffovLly8r5d+5cwcrV64UtqdPn46HDx8iMzMTwcHBcHNzK/IaCyo4/CoSiRAVFYU5c+YolOnatSuISHi7AxFh7ty5OHHiBDIyMhAaGoqxY8cWe553330XOTk5uHLlitK+ly9fIi4uDvfu3cOcOXNgYGCA/v37Y+rUqUhISICurq5C+cOHD2PPnj1wcXHBypUrYWNjI9ztK3iH1tTUFEeOHEF6ejoePXqEESNGKNRTUj8EBARg8+bNWLt2LV6+fInY2FisWLFCoY7ExERcunQJEydOLPb6GWNMG4hTxSVDQ0MiIjI0NFTaZ21tTXv37iVra2vN6xaLCZGRhNxcUhjPkqfcXEJERH65crweY2Njys3NpaVLlxZbrnfv3iSTyahRo0ZC3ogRIyg1NZUMDAwIAHl7e5OPj4+wv1mzZnT//n2KjY1VqCssLIw+++wzOn36NIWEhJClpaXS+QICAsjFxYUA0JgxYyg5OZmGDBlClpaW9Pbbb9P8+fOLbOuKFSsoNTWVzpw5Q126dCE7Ozt69OgR/fbbb0KZkJAQWrRokbAtkUjo+fPnNH36dAJAvr6+5O/vTx07dqRmzZrRsGHDyM7OjgBQ48aNKS0tjX788Udq06YNjRo1il68eEErVqxQaP/GjRsJAHXo0IGIiJo3by7sb9++PRERtWrVigDQzJkzKSYmhpydnalp06bk7OxMCQkJNG3atBL70NramoiIunTpQgBo3bp1dP78eYUy69ato4sXLwrbRETx8fH0wQcfUKtWrWj16tUkk8mobdu2RZ5n48aNdOLEiWLPDYDq1atHRESLFi2iOnXqUFJSEo0dO1bYX79+fZJKpdSvXz+qU6cOrVu3ju7du0cNGzakhg0bUp06dYQ2RkZG0oQJE6hFixa0adMmSklJIWNjY436ITk5mb788ktq2bIlTZ06lXJzc2ngwIEK1/Hdd9/Rv//+WyG/M6p6MjIyKvWxZfqdx0mtJJFIaPjw4SSRSLTeFk6l66Pi4gY1kvYvsCanCgvqHBxUB3OFk4NDuV7P22+/TUREo0ePLrHs/fv3afHixcL2kSNHaPfu3cK2t7c3yWQySk1NpYyMDJJbsGCBQj1hYWEklUopPj6ezMzMSjzvwoULKSQkhHR0dIS84v4QrVixgmQyGVlYWAh5Tk5OlJOTQw0bNiQAtHjxYnrw4IGwf+TIkZSSkkL6+voEgO7cuUNffvmlyvq//vprCg4OVshzc3OjlJQUEolEBCgGdQDo9u3b9Pnnnwvb33zzDV29elXYjoiIoAkTJijU+dlnnykEYkWlwoGVjY0N5ebmkpWVFQEgkUhEUVFR5ObmJhxDROTp6alQz+XLl2nbtm1FnsfHx4d27dpV7Ln19fVp+/btJJPJqHfv3gSAtm3bRn///bdwzEcffURPnjxR6K+goCCl8xERrV69WtjW19en3NxccnJy0qgfCge4V69epTVr1ijkzZ8/n0JDQ8v1Z6u6JA7qqnbioK7qp4oM6nj4tboyNy/fcmqSv9ydiEosu2vXLmGo1czMDMOGDcPu3bsVygQEBMDGxga2trbYsmUL/Pz8sHXrVqW6Tp06BQMDAyxfvrzE8x46dAh6enoIDQ3FTz/9hNGjRxc51CkXGRmJmJgYYfvy5cuQSCRo06YNAOCXX35By5YtYWtrCwCYMWMGDh48iIyMDADAli1b8Pnnn+PChQtYuXIlOnXqJNTVrl07peHUixcvwtDQEE2aNFHZnn379mHy5MnC9sSJE7Fv3z4A+UOMVlZW8PLyQmpqqpA+//xztGjRosTPp7Dbt28jJCREGE50cHBAgwYNcPDgQYVyha/h8uXLaNeuXZH16unpQSqVqtx36dIlod0jRowQhpIB4Oeff8bgwYPR+PVjBa6urvjll1/Uupa7d+8KX2dkZCA1NRUNGjQAoH4/FKwDAGJjY4U65DIzM6HPywcxxqoYDuqqq9jY8i2npsePHyMvL6/YP+Zye/fuRfPmzdGrVy9MmTIF4eHhuHDhgkKZ9PR0PH36FPfu3YOHhwdq166t9AwTAPzzzz8YOXIkZs+ejS1bthR73ujoaLRp0wbz5s1DZmYmPD09ceLECejo6Kh9nfKgVf7/+Ph4+Pr6wtXVFWZmZhg6dKhCgOrl5YXmzZvj119/RadOnXDjxg18+OGHAPID4cJBcEnB8e+//47WrVuja9eu6NOnDywtLbF//34A+ZNFAGDWrFmwsbERUseOHYVnGjW1b98+TJo0CQAwadIk+Pv74+XLlyUeV1xwn5CQAGNjY5X7xo8fjy5dusDMzAxNmjQRAlYgP8i8c+cOpk2bhq5du6JTp05qB3UymUypffLPS91+KK4OORMTE8THx6vVJsYYqywc1JWgbt26uHbtGoKCgnD37l3MnDlT203KFxgIREUBeXmq9+flAZGR+eXKUVJSEvz9/TFv3jyVdyrkkwuA/AfKjx49CldXV7i6usLb27vE+letWoVFixbBXMUdxjNnzmD48OGYMWMGfvzxx2LrkUql8PX1hYeHB/r16wdbW1uFu2eFWVlZKZyzd+/eyM3NxaNHj4S8Xbt2YcKECZgzZw6ePn2KS5cuKdQRHR2NnTt3YsyYMfjhhx8wa9YsAMDDhw/Rp08fhbJ9+vRBSkqKwt3BgmJiYnD+/HlMnjwZkydPxpkzZ/DixQsAwIsXLxAdHY3mzZvj6dOnCik8PLzYz6Uov//+Ozp37oxu3bph7NixCkGWXOGAsVevXggJCSmyzqCgILRv317lvqioKISGhiIxMVHlfvld3hkzZuDMmTOIjo4W9mVnZ5d451WV0vRDUTp27Ki1ZVUYY6w4Wh9frspJLBaTnp4eASA9PT16+vQpmZiYqH18hT1TBxCcnfMnRBSeLCHPc3aukM+kadOm9OzZM7p//z6999571LJlS2rbti3Nnz+fHj58qFB24MCBJJVKSSaTkbm5ucK+whMl5On69eu0detWYTssLIw8PDyEbQcHB0pNTS3yeS4XFxeaMWMGdejQgZo1a0ZfffUVpaenF9lv8okSp06dos6dO1Pfvn0pJCSEfv/9d4VyIpGIIiIiSCqV0pIlSxT2bdy4kQYPHkxNmzalrl270pUrV2j//v0E/PeA/tatW6lNmzY0cuTIYidKyNPMmTMpOjqaXrx4QZMnT1bY98EHH1B6ejp99NFH1KpVK+rYsSNNnz6dFi5cWGL/qZqsAIAuXLhAQUFBlJKSIkw+kCciohcvXpCrqyu1atWKVq5cSTk5OdSuXbsiz9OxY0fKzs6mevXqlXhuQPFZLUNDQ0pLSyOpVErjxo1TKDdx4kRKTU2lLl26UP369UlXV1do46hRoxTKJiUlCRNoStsPPj4+5O3trZAXFhZGU6ZMqZCfr6qe+Jm6qp34mbqqn3iiRBVJxsbGFB4eTvXr11f7mAoN6oD8wC0qSjGoi4iosIBOnho1akRbt24VJjFERUXR0aNHyUHFxIywsDD666+/lPKLCuomTpxIUqmUmjRpIhxfMKgDQHZ2dpSSkkLbt29XOn7UqFF0+fJlSk5OptTUVLp06RKNGDGiyGuRP3g/d+5cio6OpoyMDDp8+LBCMCJPq1atUprVC4C2bNlCjx8/pszMTIqLi6M9e/YoBJH29vZ09epVkkql9OzZM1qzZo3CD7SqYMLIyIgyMzMpLS1NmDFc+HO6desWSaVSevnyJZ09e1atCSxFBVZubm5ERPTLL78oHUNE5ObmRv7+/pSZmUlhYWE0fvz4Es916dIlmj17donnll9vwe09e/ZQQkKCELTJk66uLh06dIgSExOJiISgraSgrrT9UDio69WrFyUmJioFvm9K4qCuIpOYAAcCJrz+v+arF3BQV/UTB3VlSHZ2dnT8+HGKiYlR+UsfyP9jFhoaSpmZmXTjxg3q27evwn4jIyO6ffs2paenk7u7u0bnr/CgDiDUrftfQOfkVO7LmJQl6enpUVJSEjlXcJBZUipp9quq2ZSq0k8//UTHjh3T+uda2amon52S0rvvvksPHjwQZpdq0kenTp2izZs3a/3aC6eDBw/SsmXLtN4ObSUO6ioqORMQSRBe5E2vtzX73clBXdVPPPu1DAwMDHDnzh3hofXCxo0bh02bNuGbb75B165dERgYiJMnT8LS0lIo8+rVK9jY2KBZs2aYNGmS0kw4rSv4XF1gYNHP2VUikUgEc3NzfPXVV3j16hWOHz+u7SaVyVtvvYUBAwZg8uTJKmfnMtVOnjyJnTt3wsLCQu1jjI2NMX78eDg6Omr8hpKKpqurizt37lTae3rZm8IZwGEAhX9OLF7nV9wbgljNov50wGrKz88Pfn5+Re7/+OOP4eXlBS8vLwDAwoUL4eTkBDc3N6XlM168eIG7d+/C3t4ehw8fVlmfrq4uateuLWwbGhoCyH+bQuGHu0vzsLdKGRnA61l8VYWVlRXCw8MRFRWF6dOnV/grqYojn+Goavajuo4dO4aePXti586dOHPmTHk2r9wtW7asyKVfAgMDMXTo0EptT0mzlQHFPrp16xaMjY3x6aefKkxUqQqys7PxzTffaLsZWlMeP0uA6t+HbyoiMfLyNr/eKnyfRQwgD8AmiMV/QSQq+R/sEokEYrGYP98qrKQ+Kkvf1figrji1atVC9+7d8d133ynknzp1Spgl16BBA2RmZiI1NRWGhoawt7fH9u3bi6xz2bJlCq9ykhs0aBAyMzMV8kxNTaGnpwdDQ0OFWaM1QXJyMurVqydsa/v6DAwMity3adMmbNq0qdg2jh49Wvha29dSkt9//x0nT55UuU8qlZaq/fK+rMhrl/eRjY2NkFfVP+s3UXE/SyUxNDSEnp4e7O3tkZCQUI6tqr4SEjriyhXLYkqIAVihZ89PYGp6v8T6JBIJunXrBpFIpNV/TLOildRHenp6pa77jQ7qTE1NoaOjg7i4OIX8uLg4NGrUCADQpEkTeHl5QSQSQSQS4ccff8S9e/eKrHPNmjXYsGGDsG1oaCi81zQ1NVWhrLW1NRwdHZGamopXr16V45WxguR3F1JSUsp0d6G6ePXqFSIiIrTdDI28aX1UXZW1n+rVq4fMzEycP3++2n2PVpS8vLfUKnf1aiTEYtX/WCtIIpGAiODn58dBXRVVUh/JR/hK440O6uRULUgqz7t16xa6du2qdl3Z2dnIzs5Wys/NzVXqPP6BqxyFFxJmVQ/3UfVQXv2k6vfhm0u9NRKJYtT+zPLy8vgzruKK66Oy9FuNnyhRnISEBOTk5Ah35eQaNGigdPdOU+7u7njw4AGuXbtWpnoYY4zVZIEAopD/7JwqeQAiX5djrHhvdFAnk8lw8+ZNDBo0SCF/0KBBSm8L0JSnpyc6dOiAnj17lqkexhhjNVkeAI8CXxfeBwALVOxjTFmNH341MDBAy5Ythe1mzZqhS5cuSExMRFRUFDZs2IBff/0VN27cwOXLlzF79mxYWVlhx44dZTqvu7s75s2bp/TOSMYYY0yRD4CxADYDKDhpIhr5AZ2PFtrEVBKLATs7wNw8/93qVWQZsYK0vhBfRSYHBwdSpeAK8W5ubsKbEW7cuEF2dnbldv5KWXyYU4mpLAumcuI+4lQ+/cS/80pK/EaJKp2cnQmRkYpvcIqM1PgNTrz4cBmcO3dOmLlaMLm6ugpltm/fjmbNmqFOnTro0aMHAgOr17ML+tAHvf5PH/rabg4rhYCAgEpb0Nba2hpEhC5dulT4uUxMTBAXFwdra+sKPxcRYdSoURV+npooLCwMHh4eZapj2LBhuHXrljBDlpVGHoBzAPa//n/VugP0RnN2Bg4fBgovpG5hkZ/vXDUWiK7xQZ22VOZECXGBbrSDncJ2RWnYsCG2bNmCp0+fQiqVIjIyEsePH4ejo6PadXh7ewv/2JHJZIiIiICnp6fC+naA6j8469evR0pKCvr37w8gPyhycXEp83W9CaKiotCoUSPcv1/ymldltWzZMvj6+grLV8gDSnlKTEzEuXPnYG9vr3adK1asQFBQUEU1udK5uLiAiJTWFjQyMgIRwcHBQUst08zff/8NIsKkSZO03RTGypdYDGze/N/XhfcBwKZNyvu0QPstqKEqa6KEM5wRjGBh2w9+CEc4nCvwtTLW1ta4efMmHB0dsWTJEnTq1AlDhgxBQECAxq91OnnyJBo1aoSmTZti5syZGDFiBDw9PYssLxaL4eXlhWnTpsHR0REBAQFlvZw3Tl5eHuLi4ip8uYM6derggw8+wK5du5T2DRgwAI0aNYKDgwNSUlJw4sSJSrmbVxm8vb2xYsUKjY6RyWQYMGAA+vXrVzGNqiTe3t6YP3++tpvBWPmyswMsLYsO2sRiwMoqv5yWcVBXjTnDGYdxGI3RWCHfAhY4jMMVFth5enqCiNCzZ0/8+eefePz4MR4+fIiNGzeiV69eAAAvLy/4+voqHCeRSBAbG6sw9J2VlYW4uDhhgeYDBw5g8ODBKs+rq6uLQ4cOYdCgQbC3t8eNGzeKbOOKFSsQEREBqVSKmJgYrF27ttiyQUFBmD17NiIjI5Geno6DBw8KbzOws7NDdnY2GjZsqHDc+vXrce7cOQD5r0U7fvw4EhMTkZaWhvv37+Pdd98Vytrb2+Pq1auQSqV49uwZ1qxZU+SrYL799ltcvnxZKf/OnTsKbyuZPn06Hj58iMzMTAQHB8PNza3Iayyo4PCrSCRCVFQU5syZo1Cma9euICI0a9YMQP7Q5ty5c3HixAlkZGQgNDQUY8eOLfY87777LnJycnDlyhWlfS9fvkRcXBzu3buHOXPmwMDAAP3798fUqVORkJAAXV1dhfKHDx/Gnj174OLigpUrV8LGxka421fwDq2pqSmOHDmC9PR0PHr0CCNGjFCop6R+CAgIwObNm7F27Vq8fPkSsbGxGgdopZGeng5vb2+lt9sU5ODgACJSeMtGly5dQERCQOzi4oKkpCQMGzYMISEhSE9Px6FDh6Cvr49p06YhLCwMiYmJ2LJli9IkLkNDQ+zbtw+pqamIiYlRel/2woULcffuXcTExCAyMhLbtm1TervE8ePHYWtrK3zfMFYjmJuXb7kKpv2HD2twqqiJEmKIKRKRlItcUnxqMz/lIpciEEHiUjxoW1wyNjam3NxcWrp0abHlevfuTTKZjBo1aiTkjRgxglJTU8nAwIAAkLe3N/n4+Aj7mzVrRvfv36fY2FiFusLCwuizzz6j06dPU0hICFlaWiqdLyAggFxcXAgAjRkzhpKTk2nIkCFkaWlJb7/9Ns2fP7/Itq5YsYJSU1PpzJkz1KVLF7Kzs6NHjx7Rb7/9JpQJCQmhRYsWCdsSiYSeP39O06dPJwDk6+tL/v7+1LFjR2rWrBkNGzZMmHDTuHFjSktLox9//JHatGlDo0aNohcvXtCKFSsU2r9x40YCQB06dCAioubNmwv727dvT0RErVq1IgA0c+ZMiomJIWdnZ2ratCk5OztTQkICTZs2rcQ+tLa2JiKiLl26EABat24dnT9/XqHMunXr6OLFi8I2EVF8fDx98MEH1KpVK1q9ejXJZDJq27ZtkefZuHEjnThxothzA6B69eoREdGiRYuoTp06lJSURGPHjhX2169fn6RSKfXr14/q1KlD69ato3v37lHDhg2pYcOGVKdOHaGNkZGRNGHCBGrRogVt2rSJUlJSyNjYWKN+SE5Opi+//JJatmxJU6dOpdzcXBo4cKDaPyPe3t4KdZaUXFxcKCkpiczNzSk9PZ3GjBlDQP6EBCIiBwcHAv6b9FVwokKXLl2IiITfIS4uLpSVlUX+/v5kY2NDdnZ2FB8fT35+frR//35q164dDRs2jKRSKY0bN07hZ+zVq1f06aefUqtWrejDDz8kmUymcN0eHh7Ur18/6ty5M/Xv35+Cg4Np27ZtStfz/PnzIr8PeaJExSeeKFEBycFB1Z9Z5fT6Z7WsfVSWiRLQ+odVQ5O7uzs9ePCAgoODKySoc4CDGt9hRA5Q75tM3fT2228TEdHo0aNLLHv//n1avHixsH3kyBHavXu3sO3t7U0ymYxSU1MpIyNDmJm8YMEChXrkM5Pj4+PJzMysxPMuXLiQQkJCSEdHR8grbsbeihUrSCaTkYWFhZDn5OREOTk51LBhQwJAixcvpgcPHgj7R44cSSkpKaSvr08A6M6dO/Tll1+qrP/rr7+m4OBghTw3NzdKSUkhkUhEgGJQB4Bu375Nn3/+ubD9zTff0NWrV4XtiIgImjBhgkKdn332mUIgVlQqHFjZ2NhQbm4uWVlZEQASiUQUFRVFbm5uwjFERJ6engr1XL58WeUfdXny8fGhXbt2FXtufX192r59O8lkMurduzcBoG3bttHff/8tHPPRRx/RkydPFPorKChI6XxERKtXrxa29fX1KTc3l5ycnDTqh8IB7tWrV2nNmjVq/4yUNqgDQN9++y2FhISQRCIpdVBX+B8E27dvp7S0NOEfUwDo5MmTtH37doWfscIB+B9//KHQD4V/lsaOHUvx8fFK+2/evFnkzwIHdRWfOKirgCQW589yzc1V/ac2N5cQEZFfrhz6iGe/VkEV/UydOdS7zatuOXXJZ7aRGq8J2rVrlzDUamZmhmHDhmH37t0KZQICAmBjYwNbW1ts2bIFfn5+2Lp1q1Jdp06dgoGBAZYvX17ieQ8dOgQ9PT2Ehobip59+wujRo4sc6pSLjIxETMx/r+u5fPkyJBIJ2rRpAwD45Zdf0LJlS9ja2gIAZsyYgYMHDyIjIwMAsGXLFnz++ee4cOECVq5ciU6dOgl1tWvXTmk49eLFizA0NESTJk1Utmffvn2YPHmysD1x4kTs27cPQP4Qo5WVFby8vJCamiqkzz//HC1atCjx8yns9u3bCAkJwcSJEwHkD/M1aNAABw8eVChX+BouX76Mdu3aFVmvnp4epFKpyn2XLl0S2j1ixAhhKBkAfv75ZwwePBiNG+c/VuDq6opffvlFrWu5e/eu8HVGRgZSU1PRoEEDAOr3Q8E6ACA2NlaoQ5VJkyYp9MPkyZOxfPlyhTx1Jw+sXbsWZmZmmDFjhlrlVUlPT0doaKiwHRcXh/DwcKSnpyvkFb6mkvq3X79+OHXqFB4+fIiUlBTs3bsXpqam0NdXnHGfmZmplMdYtZaXB8gn6xVek06+vWBBlVivjoO6aioWseVaTl2PHz9GXl5esX/M5fbu3YvmzZujV69emDJlCsLDw3HhwgWFMunp6Xj69Cnu3bsHDw8P1K5dW+UzTP/88w9GjhyJ2bNnY8uWLcWeNzo6Gm3atMG8efOQmZkJT09PnDhxAjo66q+1LQ9a5f+Pj4+Hr68vXF1dYWZmhqFDhyoEqF5eXmjevDl+/fVXdOrUCTdu3BCeSSr4LmG5koLj33//Ha1bt0bXrl3Rp08fWFpaYv/+/QAgPAs1a9Ys2NjYCKljx47CM42a2rdvnxB4TJo0Cf7+/nj58mWJxxUX3CckJMDY2FjlvvHjx6NLly4wMzNDkyZNhIAVyA8y79y5g2nTpqFr167o1KmT2kGdTCZTap/881K3H4qrQ5Xjx48r9MPx48exY8cOpTx1vHr1CmvWrMGKFSuUAqO8138wCi4ZUqtWLaU6VLVf02sqWA7If2b0xIkTuH//PqZNm4bu3btj3rx5KttgYmKC+Pj4EutmrFrx8QHGjgViCr2rNzo6P9/HRzvtKoSDumoqEIGIQhTyiljHKA95iEQkAsv5fYFJSUnw9/fHvHnzVP5rvOBD3ImJiTh69ChcXV3h6uoKb2/vEutftWoVFi1aBHMVD5yeOXMGw4cPx4wZM/Djjz8WW49UKoWvry88PDzQr18/2NraKtw9K8zKykrhnL1790Zubi4ePXok5O3atQsTJkzAnDlz8PTpU6VXyUVHR2Pnzp0YM2YMfvjhB8yaNQsA8PDhQ/Tp00ehbJ8+fZCSkqJwd7CgmJgYnD9/HpMnT8bkyZNx5swZvHjxAgDw4sULREdHo3nz5nj69KlCCg8PL/ZzKcrvv/+Ozp07o1u3bhg7dqxCkCVXOGDs1asXQkJCiqwzKCgI7du3V7kvKioKoaGhSExMVLlffpd3xowZOHPmDKKjo4V92dnZJd55VaU0/aCOtLQ0hT5ITU1FYmKiQl5aWpra9W3duhV5eXlKy/jIA6WC36c2NjalbndhxfVvjx49oKOjg08++QQ3btzA48ePhTupBdWuXRstWrSoUUvOMCbw8QGaNgX69QMmTsz/f7NmVSagAzioqzAVvU5dHvLg8fp9gYUDO/n2AiwoMugrC3d3d0gkEly7dg3vvfceWrZsibZt22L+/PlKQzi7du2Ci4sL2rVrhz179pRY97lz5/DgwYMih1kDAgIwbNgwuLi4FLl8iouLC2bMmIEOHTqgWbNmmDp1KjIyMoS10lSRSqXYs2cPOnfujL59+2LLli04ePAg4uLihDL+/v549eoVPv/8c6UAdePGjRg8eDCaNm2Krl27wtHREcHB+UvNeHp6wtLSElu3bkWbNm0wcuRIrFq1Chs2bCj2Tte+ffswYcIEvP/++/jtt98U9q1cuRLLli3DRx99hFatWqFjx46YPn06Fi5cWGR9xQkPD8fFixfh5eUFHR0dHDt2TKnM+++/D1dXV7Rq1QorV65Ez549iw2u/f390aFDB6V1B9Wxb98+WFhYYNasWUpD9uHh4cLr/urXr680U7Yope2HypaVlYUVK1bgo48+Ush/8uQJIiMjsXLlSrRq1QpDhw7FJ598Um7nfeedd7B48WK0atUK7u7ueP/997H59dpcT58+Ra1atTB//nxYW1tjypQpmDt3rlIdvXr1QlZWlsrZ24zVCHl5wLlzwP79+f+vAkOuhWn/IcQanCr6NWHOcKYoRCk8tRmBCHKGZq8t0TQ1atSItm7dKkxiiIqKoqNHjwoPdRdMYWFh9NdffynlF579Kk8TJ04kqVRKTZo0EY738PBQKGNnZ0cpKSkKD3vL06hRo+jy5cuUnJxMqampdOnSJRoxYkSR1yJ/8H7u3LkUHR1NGRkZdPjwYapXr55S2VWrVinN6gVAW7ZsocePH1NmZibFxcXRnj17yMTERNhvb29PV69eJalUSs+ePaM1a9YoPCRbeKIEkP9AemZmptJD7gU/p1u3bpFUKqWXL1/S2bNn1ZrAomoGKpA/aYCI6JdfflE6hojIzc2N/P39KTMzk8LCwmj8+PElnuvSpUs0e/bsEs8tv96C23v27KGEhATS1dVVyNfV1aVDhw5RYmIiEZEw65mIaNSoUQplk5KShP2l7QcfHx+F1wqWlMoyUUKexGIx3b9/X2GiBADq06cP3blzhzIyMujcuXM0ZswYpYkShetSNbGk8M9eWFgYffHFF7R//35KS0uj2NhY+uijjxSOWbBgAcXExFB6ejqdPHmSpkyZojRxY8eOHSp/Jgv2P0+UqNjEEyWqfuLZr9U4Vca7X+uirhDQOcGp3JcxKUvS09OjpKQkctbw3XjlnUqa/apqNqWq9NNPP9GxY8e0/rlWdlIVMKmT3n33XXrw4IEwu1STPjp16hRt3rxZ69fOqfh+kidTU1NKSEigpk2bFnksB3UVnzioq/qpIoM69Z8cZ1VWwSHWQARWyJCrpkQiERo1aoRPPvkEr169UvtB8arqrbfewttvv43Jkyfz+0U1cPLkSbRq1QoWFhYKz8UVx9jYGIMHD4ajo6PSAris6mrWrBnc3d1L/VwnY6zsOKirATKQARGq1ku0raysEB4ejqioKEyfPr3CX0lV0Y4dO4aePXti586dOHPmjLabU6xly5YV+UxiYGAghg4dWqntKWm2cmG3bt2CsbExPv30U4WJKqxqu379Oq5fv67tZjD2RuOgroK4u7tj3rx5ai0bUBNFREQoLL1Qla1atQqrVq0qtkz//v0rqTVlt2PHDqU15uQyMzNLVWdl9iW/YooxxkqHg7oK4unpCU9PTxgaGiIlJUXbzWFvkKSkJCQlJWm7GYwxxirZm3kbiTHGGGOshuGgjjHGGGOsBuCgjjHGGGOsBuCgjjHGGGOsBuCJEowxxhhjahBDDDvYwRzmiEVslVkbVo7v1FWQin73q4JaAFa+TrUq/nSMMcbYm8YZzghHOM7iLP7AHziLswhHOJzhrO2mCTioqyCenp7o0KEDevbsqe2msHIQEBCAjRs3Vlj9Dg4OICIYGRlV2DkK8vb2ho+PT6Wca/Xq1di5c2elnEsd1tbWICJ06dKlTPWsW7dOeOE9Y6xmc4YzDuMwLGChkG8BCxzG4SoT2HFQVxMUXBfWqtB2BWnYsCG2bNmCp0+fQiqVIjIyEsePH4ejo6PadXh7e79+Yy1BJpMhIiICnp6eqFevnkK5sLAweHh4KOStX78eKSkpwqLAAQEBcHFxKfN1vSk8PDwwffr0Cj9PgwYN4OHhgW+//VbIk/f7p59+qlB22LBhIKIKb1N5+f777+Hq6oqmTZtquymMsQokhhibsVn4uvA+ANiETUr7tEH7LWBl0w5AwddjTgWw4HV+BbG2tsbNmzfh6OiIJUuWoFOnThgyZAgCAgKwbds2jeo6efIkGjVqhKZNm2LmzJkYMWIEPD09iywvFovh5eWFadOmwdHREQEBAWW9nDdSSkoKXr16VeHn+eCDD3D58mVEREQo5GdmZuLTTz9VCuCrk/j4eJw6dQpz587VdlMYYxXIDnawhGWRQZsYYljBCnawq+SWqWoLq77aARgHwLBQ/luv8ysosPP09AQRoWfPnvjzzz/x+PFjPHz4EBs3bkSvXr0AAF5eXvD19VU4TiKRIDY2Fq6urkJeVlYW4uLiEBMTg9OnT+PAgQMYPHiwyvPq6uri0KFDGDRoEOzt7XHjxo0i27hixQpERERAKpUiJiYGa9euLbZsUFAQpkyZgrCwMCQnJ+OPP/5A3bp1Fcrp6Ohg69atSEpKQkJCAr766iuF/W5ubnj06BEyMzPx/PlzHDp0SKHtmzdvRlxcHDIzMxEYGIgePXqobM9bb72FjIwMODk5KeQ7OzsjLS0NBgYGAIDGjRtj//79SExMREJCAo4ePQpra+sir7OggsOvs2fPRnR0tNKrwI4dO4ZffvlF4TOaPXs2IiMjkZ6ejoMHD5Y4XDxhwgQcP35cKf/MmTN4/vw5li1bVuSx8nMW5OHhgbCwMKXrWLZsGZ4/f46kpCR8+eWXkEgk+P777/Hy5UtERUUpfM/JtW3bFhcvXkRmZibu378PBwcHYZ9YLMauXbsQGhqKjIwMhISE4KOPPlKq4/jx45g4cWKxnwFjrHozh3m5lqtIHNRVVyIAQwp8XXgfXu8v56FYY2NjDBkyBNu2bUNGRobSfvndn127dmHIkCFo1KiRsG/o0KGoW7duke8lbdasGYYMGQKZTKa0r27duvj777/RoUMHvPPOOwgJCSmyjWPGjMHChQsxZ84ctGrVCqNHj8aDBw+Kva4WLVpg9OjRGD58OIYPHw4HBwcsXbpUoYyLiwtycnJga2uLjz76CAsXLsTMmTMBAN27d8eWLVvw5Zdfok2bNhgyZAjOnz8vHPv9999jzJgxcHFxQbdu3fDkyRP4+/vD2NhYqS0pKSn4+++/MXnyZIX8SZMm4dixY0hPT4eenh4CAgKQlpYGe3t79O3bF2lpafDz80OtWprNljl06BBMTU0V3m9br149ODk5Yd++fUJey5YtMW7cOIwYMQJDhgyBjY1NsXdm69Wrh44dO6oMvnNzc7F8+XLMnz8fFhYWKo5Wn6OjIxo3bgx7e3t8/PHHWLVqFf766y8kJSXB1tYWO3bswI4dO9CkSROF49atW4cffvgBXbt2xaVLl3D8+HGYmJgAyA/qoqOjMW7cOLRv3x6rV6/Gt99+i/fff1+hjmvXrsHKygpWVlZlugbGWNUVi9hyLVfRiFPFJUNDQyIiMjQ0VNpnbW1Ne/fuJWtra83rbgrCSjVS0/K9nrfffpuIiEaPHl1i2fv379PixYuF7SNHjtDu3buFbW9vb5LJZJSamkoZGRkkt2DBAoV6wsLCSCqVUnx8PJmZmZV43oULF1JISAjp6OgIeUZGRkWWX7FiBaWlpVHdunWFvLVr19Lly5eF7YCAAHrw4IHCcWvWrBHynJ2dKTk5WaEOedLX16esrCyaOHGikKejo0PR0dG0aNEiAkAODg5EREI7R48eTSkpKaSnpyd8H2VkZNC7775LAMjV1ZWCg4MVzlOrVi1KT0+nQYMGlfgZeXt7k4+Pj7B99OhR2rVrl7A9a9YsevbsGYnFYuEzkslkZGFhIZRxcnKinJwcatiwocpzdOnShYiImjRpUuS5L126JJx30qRJRPkP1QnnDAoKUjjWw8ODwsLCFOoKCwsjkUgk5AUHB9O5c+eEbbFYTKmpqTR+/Hjh546IaMmSJUIZiURCkZGRCt+vhdOPP/5Ihw4dUsiT/3zb29uX689ZVU7F/SyVlMr0O4+TWkkikdDw4cNJIpFovS01JYkhpkhEUi5yXz8FrphykUsRiCAxxOXSR8XFDSW3lVVPdUsuolE5NcmH6NR5oH3Xrl3CsJeZmRmGDRuG3bt3K5QJCAiAjY0NbG1tsWXLFvj5+WHr1q1KdZ06dQoGBgZYvnx5iec9dOgQ9PT0EBoaip9++gmjR4+GRCIp9pjw8HCkpaUJ27GxsWjQoIFCmStXrihsX758Ga1atYJYLMbp06cRERGB0NBQ7N27F5MmTYKenh6A/LuAurq6uHjxonBsTk4Orl27hnbtVI+R//3338jJycHIkSMB5N99TE1NxalTpwDk3xls2bIlUlNThZSYmIg6deqgRYsWJX5Ghe3btw9jxoyBrq4uAGDy5MnYv38/8vL+W38pMjISMTExCtcvkUjQpk0blXXKr18qlRZ53k8//RQuLi5Ffg7qePDggcL3Y1xcHO7duyds5+Xl4eXLl0r9efnyZeHr3Nxc3LhxQ6Edc+bMwfXr1/HixQukpqZi1qxZSnfkMjMzAQD6+vqlbj9jrGrLQx484CF8XXgfACzAgiqxXh0HddVVWslFNCqnpsePHyMvL0+tP8J79+5F8+bN0atXL0yZMgXh4eG4cOGCQpn09HQ8ffoU9+7dg4eHB2rXro0VK1Yo1fXPP/9g5MiRmD17NrZs2VLseaOjo9GmTRvMmzcPmZmZ8PT0xIkTJ6CjU/Ra24WHfIkIYrH6Px5paWno1q0bJk6ciNjYWKxevRp37tyBkZFRkYGwSCQqMjiWyWQ4fPgwJk2aBCB/6PXAgQPIzc0FkD88ePPmTdjY2Cik1q1b4/fff1e73XK+vr4Qi8UYNmwYmjRpAjs7O/z222/FHiNve1HXkJCQAAAqh5jlAgMD4e/vrzA7Vi4vL0/pOT9VQ8uq+q60/Sm/lvfffx8bN27E7t27MXjwYNjY2MDb21sIeuXkw7Xx8fEl1s0Yq7584IOxGIsYxCjkRyMaYzEWPvDRUssUcVBXQSp88eEIAK+Qf8NVFXq9P6KI/aWUlJQEf39/zJs3T+XdiYIPzicmJuLo0aNwdXWFq6srvL29S6x/1apVWLRoEczNlR84PXPmDIYPH44ZM2bgxx9/LLYeqVQKX19feHh4oF+/frC1tUWnTp3UuMKiySeBFNyWB7lA/t2ef/75B59++ik6d+6Mpk2bwtHREU+ePEFWVhb69u0rHKujo4MePXogODi4yPPt27cPQ4YMQfv27dG/f3+F59tu3bqFVq1a4cWLF3j69KlCSklJ0fjapFIpjhw5gsmTJ2PixIl49OgRbt26pVDGyspKoV969+6N3NxcPHr0SGWdT58+xatXr9C+fftiz7106VKMGDFCaU3H+Ph4hWcyAcDGxkaDqypewf6USCTo3r278KymnZ0dLl26hO3bt+P27dt4+vSpyjugHTt2RHZ2donPbDLGqj8f+KApmqIf+mEiJqIf+qEZmlWZgA7goK7CVPjiwwTAr8DXhffh9f6SR0k15u7uDolEgmvXruG9995Dy5Yt0bZtW8yfP19hSAvIH4KVD6/t2bOnxLrPnTuHBw8eFDnMGhAQgGHDhsHFxaXIh/RdXFwwY8YMdOjQAc2aNcPUqVORkZGhtKyGpiwtLfHDDz+gdevWmDBhAubPny8sPjts2DDMnz8fXbp0gZWVFaZNmwaxWIz//e9/yMjIwPbt27Fu3To4OTmhXbt2+Pnnn6Gvrw8vL69iP4u4uDjs27cP4eHhuHr1qrBv3759SEhIwLFjx9C3b180bdoU9vb22LRpU6knHuzbtw/Dhg3DjBkzVN6lk0ql2LNnDzp37oy+fftiy5YtOHjwIOLi4lTWR0Q4c+aMQjCryv3797Fv3z7Mnj1bIf/s2bMwMzPDkiVL0Lx5c7i7u+Pdd98t1bWpMm/ePIwePRpt2rTBtm3bYGxsLDwe8OTJE/To0QODBw9Gq1atsHr1arz99ttKddjZ2SEwMLDYIWbGWM2Rhzycwznsx36cw7kqMeRaEAd11VkwgIMAUgvlp7zOL/omUJmEh4ejW7duCAgIwA8//ID79+/j9OnTGDBgANzc3BTKnjlzBrGxsfD390dsrHozgzZs2IBZs2YpzVaUO3fuHIYOHYqpU6di+/btSvuTk5Mxa9YsXLx4EXfv3sWAAQMwYcIEJCYman6xBezduxd6enq4du0atm3bhq1bt+Knn34Szvnee+/h33//RXBwMObOnYuJEyfi4cOHAPLvRv3555/49ddfcevWLbRs2RJOTk5ITk4u9px//PEHbGxsFO7SAfnPctnb2yMyMhJHjhxBcHAwdu/eDT09vVLdqQOAf//9F4mJiWjbtq3KIdwnT57gyJEjOHHiBE6dOoX79+/D3d292Dp/+uknTJgwQWkYtbAvvvhCqUxISAjc3d0xb9483LlzBz179sT69es1v7AiLF26FJ9++inu3LkDOzs7jBo1Ci9fvgQA7NixA0eOHMGBAwdw9epV1K9fX+X6iRMnTsTPP/9cbm1ijLGy0vrMkpqcKmz2a8Gki/9mu7YAQaT965YnPT09SkpKImdnZ622oywz9jipnomqbrpy5QpNmDChxvXR0KFD6cGDB2/cLEOe/Vq1E89+rfqJZ7+y4lGBryMLbWuJSCSCubk5vvrqK7x69UrlArTszTB79uxiJ6lUVwYGBnB1dRUmrzDGmLbVvN+0byIZgJXaboQiKysrhIeHIyoqCtOnT+c/fJUsNbXwmPx/3n33XaVZyBXp7t27uHv3bqWdr7IUfGMIY4xVBRzUsQoRERFR4nNUrOIUN0u04Fpz6lq1ahVWrVpVhhYxxhiraBzUMVYDPX36VNtNYIwxVsn4mTotki90WtLbDhhjrCaQ/65T5400jDHNcVBXgiZNmiAgIAAPHjzAnTt3MHbs2HKrW/7cU+HXFzHGWE0k/11X2mV3GGPF4+HXEuTk5GDBggW4c+cOzMzMcOvWLZw4cQIZGRllrjs5ORkhISEYN24cEhMTkZWVVQ4tZqoYGhqiXr162m4GKwb3UfVQ2n6qXbs2xo0bh5CQELx69ar8G8YY46CuJM+fP8fz588B5L+2KDExESYmJuUS1BERfv75Z3zzzTf4/PPPy1wfK5qenp7w8nVWNXEfVQ9l6SepVIo1a9bw8CtjFaTGB3V2dnZYvHgxunfvjsaNG2P06NE4duyYQhk3NzcsXrwY5ubmePDgARYsWKByyYfu3btDLBYjOjq63NoXHx8Pd3d3NGrUiJ+tqyASiQT29vY4f/48L61SRXEfVQYxgB4AzADEA7gBaPiKo7L0U25uLp4/f46cnByNjmOMqU+toG7+/PkaV+zt7Y20tDSNjytvBgYGuHPnDry9vXHkyBGl/ePGjcOmTZvg7u6OixcvYs6cOTh58iTat2+PqKgooZyJiQn27t2LmTNnlnsbc3JyyjVQZIokEgkSEhIQERHBAUMVxX1U0ZwBbAZgWSAvCoAHoMHLyLmfGKva1ArqNm3ahOjoaLV/iC0tLfHXX39ViaDOz88Pfn5+Re7/+OOP4eXlJbxYfeHChXBycoKbm5vwUnldXV34+PhgzZo1Si+sZ4yxqs0ZwGEV+Rav88dCk8COMVZ1qT382qNHD8THx6tVtrrMbKpVqxa6d++O7777TiH/1KlT6NOnj7D9yy+/4N9//8Vvv/1WYp26urqoXbu2sG1oaAgg/1+4PLyqHRKJBGKxmD//Koz7qGIQiZGXt/n1VuHFDsTIH37dBLH4L4hEJQ/Fcj9VfdxHFYtEBFgBVJcgShMBkYCINFtov6Q+KkvfqRXUrVq1SqO7bt9++y0SExNL3ajKYmpqCh0dHcTFxSnkx8XFoVGjRgCAd955B+PHj8fdu3cxevRoAMDUqVNx//59lXUuW7YMK1euVMofNGgQPwSuJRKJBN26dYNIJOIhoyqK+6hiJCR0xJUrlsWUEAOwQs+en8DUVPXvtIK4n6o+7qOKE1svFg+sHkCqKwUAEAh1suugQ2QHmCebq11PSX2kp6dX6jaqFdStXr1ao0oL3/mq6grPxBKJRELexYsXNYqa16xZgw0bNgjbhoaGiImJwenTp4t9HyerOBKJBEQEPz8//iVXRXEfVYy8vLfUKnf1aiTE4pMlluN+qvq4jyoGtSXkjVW+my2tJcXNFjchPiyGKES9O3Yl9ZF8hK80NJ79WqdOHYhEIuGuk5WVFZydnfHw4UOcPn261A3RhoSEBOTk5Ah35eQaNGigdPdOXdnZ2cjOzoa7uzvmzZsHsTh/yCM3N5d/wLQoLy+P+6CK4z6qCOq955coRu3Pnfup6uM+KmciAIMLfF14HwF5g/OAh/lfq6O4PipLv2n8Roljx45h2rRpAAAjIyNcvXoVn3zyCY4dO4a5c+eWuiHaIJPJcPPmTQwaNEghf9CgQbh06VKZ6vb09ESHDh3Qs2fPMtXDGGOlF4j8Wa5FPS+XByDydTmmdWIx4OAATJiQ/38xv/SpSrAGYATlgE5O9Hq/daW1qEgaf8d069YNgYH5vwDGjh2LuLg4WFtbY9q0afjoo4/KvYFlZWBggC5duqBLly4AgGbNmqFLly6wtMx/zmTDhg2YOXMmXF1d0bZtW2zYsAFWVlbYsWOHNpvNGGPlIA/5y5bIvy68DwAWqNjHKp2zMxAeDpw9C/zxR/7/w8Pz85l21S3nchVI4+FXfX194dmwwYMH48iRIyAiXLlyBdbW6oWpurq66NmzJ5o2bQp9fX3Ex8cjKCgI4eHhmjanRD169MDZs2eF7Y0bNwLIn9Hq6uqKgwcPon79+vjyyy9hbm6O+/fvY+jQoYiMjCzTeQsPvzLGmHb4IH/ZksLr1EUjP6Dj5Uy0ztkZOKxi2RkLi/z8sWMBH+4nrVF3nqj2V3HTPKh78uQJRo8eDR8fHzg5OQlBUoMGDUpcyqR3796YP38+Ro8eDV1dXSQnJyMzMxMmJiaoXbs2QkND8dNPP2HHjh3ltsbduXPnIBIV//Di9u3bsX379nI5n5ynpyc8PT1haGhYbZZ4YYzVVD4AjgGwA2AOIBb5Q658h07rxGJg8+b/vi68Ly8P2LQJOHYs/2tW+SIAvALwFlQPwRKAlNfltEzj20irV6/G+vXrER4ejqtXr+LKlSsA8u/aBQUFFXnc0aNHcfjwYcTExMDJyQmGhoYwNTWFpaUlDAwM0KpVK3z99dcYMGAAHj16hIEDB5b+qhhjjBWSB+AcgP2v/88BQpVgZwdYWhb9/JxYDFhZ5Zdj2kEA/Ap8XXgfXu+vAq801vhO3Z9//gkrKyuYm5vjzp07Qv4///wDn2JuD586dQrvv/8+ZDKZyv1hYWEICwvD3r170b59ezRu3FjTplUpPPzKGGOsROZqrm+mbjlWMYIBHAQwBPmTIuRSkB/QBWujUco0DuqA/MV5Cy/5cf369WKP8fT0BACIxWL07dsXd+/eRXJyssqyDx8+xMOHD0vTtCqDh18ZY4yVKDa2fMuxihMMIAT5s1zrIv8ZughUiTt0choHdbVr18b8+fPRv39/NGjQQOlOVPfu3Ys9Pi8vD/7+/mjXrl2RQR1jjDH2RggMBKKi8idFqBrZycsDoqPzyzHtIwDh2m5E0TQO6nbv3o1Bgwbh8OHDuHbtmtLbGNRx7949NG/evEJmu1YVPPzKGGOsRHl5gIdH/izXvDzFwE4+MWLBAp4kwdRGmqTk5GTq06ePRscUToMGDaJbt27RsGHDqFGjRmRoaKiQylJ3VUuGhoZERDXuuqpTkkgkNHz4cJJIJFpvCyfuo+qcuJ8qMDk7EyIjCUT/pYiI/HzuoxqVSuqjssQNGt+pi4mJKfM7TP388qeRHD9+XOFOn/ydqzo6pXrUjzHGGKuefHzyly2xs8ufFBEbmz/kynfomAY0jp4++eQTrF27FnPnzi31Ar39+/cv1XGMMcZYjZWXB5w7p+1WsGpM46Duxo0bqFOnDkJDQ5GRkaG0REn9+vVLrOP8+fOanrba4WfqGGOMMVaZNA7q/vjjD1hYWGD58uWIi4sr1UQJAOjbty/mzJmD5s2b4/3338ezZ88wZcoUhIWF4eLFi6WqsyrhJU0YY4wxVpk0Dur69OmD3r174+7du6U+6XvvvYdff/0V+/btQ7du3VC7dm0AgKGhIZYvX45hw4aVum7GGGOMsTeRxmODISEh0NPTK9NJP//8c8ydOxezZ89WGL69dOkSunXrVqa6GWOMMcbeRBoHdUuXLsUPP/wABwcHmJiYwNDQUCGpo02bNiqfq0tJSUG9evU0bRJjjDHG2BtP4+FX+XIk//zzj0K+JsuRxMbGomXLloiIiFDI79u3L0JDQzVtUpXEEyUYY4wxVpk0DurKYzmSnTt3YvPmzZgxYwaICI0bN0bv3r2xfv16rF69usz1VwU8UYIxxhhjlUnjoK48liNZt24djIyMEBAQgDp16uD8+fPIysrC+vXrsW3btjLXzxhjjDH2plFrbLBTp04QiURqV9q+fXtIJJJiy3z++ecwNTVFz5490atXL5iZmeHLL79U+xyMMcYYY+w/agV1QUFBai0qLHf58mVYWVkVud/Lywt169ZFZmYmbt68ievXryM9PR36+vrw8vJS+zyMMcYYYyyfWsOvIpEIX331FTIyMtSqVFdXt9j9Li4uWLp0KdLS0hTy9fT0MG3aNHzwwQdqnYcxxhhjjOVTK6g7f/482rRpo3ally9fRmZmplK+oaEhRCIRRCIRDA0NIZVKhX0SiQRDhw7Fixcv1D4PY4wxVlOIIYYd7GAOc8QiFoEIRB7ytN0sVo2oFdSVx4xXAEhOTgYRgYjw6NEjpf1EhBUrVpTLubSNlzRhjDGmLmc4YzM2wxKWQl4UouABD/jAR4stY9WJxrNfy6J///4QiUT4999/MWbMGCQmJgr7srOzERERgdjY2MpsUoXhJU0YY4ypwxnOOIzDSvkWsMBhHMZYjOXAjqmlUoM6+XIozZo1Q2RkpMoylpaWiIqKqsxmMcYYY1ohhhibsVn4uvC+PORhEzbhGI7xUCwrkVbGBkNDQ2FmZqaUb2JigrCwMC20iDHGGKt8drCDJSyVAjo5McSwghXsYFfJLWOqiAE4AJjw+v9V7QGrSr1TJ1fUmnd169ZVmDzBGGOM1WTmMC/XcqziOAPYDBR46hGIAuABVJnB8UoN6n744QcA+RMiVq9erbBEikQiga2tLW7fvl2ZTWKMMca0JhbqPUeubjlWMZwBFU89Ahav88eiagR2pQrqpkyZgrlz56JZs2bo3bs3IiMj4eHhgbCwMBw/frzI47p27Qog/05dp06dkJ2dLezLzs7GnTt3sH79+tI0iTHGGKt2AhGIKETBAhYqh2DzkIdoRCMQgVpoHQPyh1g3F/i68L48AJsAHHv9tTZpHNTNnTsXq1evxqZNm/DZZ58JrwNLTk7GggULig3qHB0dAQC7d++Gh4cHUlNTS9lsxhhjrPrLQx484IHDOIw85CkEdvKJEQuwgCdJaJEdFIdcCxMDsHpd7lyltKj4tmhk/vz5mDVrFr799lvk5uYK+Tdu3ECnTp3UqmPGjBlITU1FixYtMHjwYNSpU0fTZjDGGGM1gg98MBZjEYMYhfxoRPNyJlWAuk8zVoWnHjW+U9esWTMEBQUp5WdlZcHAwECtOoyNjXHo0CH0798fRIRWrVohLCwMu3btQnJyMhYtWqRps6ocXnyYMcaYunzgg2M4xm+UqILUfZqxKjz1qHHEERYWBhsbG6X8d999Fw8fPlSrjk2bNkEmk8HKykphssSBAwcwZMgQTZtUJXl6eqJDhw7o2bOntpvCGGOsGshDHs7hHPZjP87hHAd0VUQg8me5FtUbeQAiX5fTNo3v1K1btw7btm1DnTp1IBKJ0LNnT0ycOBHLli3DzJkz1apj8ODBcHJyQkyM4q3mx48fw9raWtMmMcYYY4xViDzkL1ty+PXX4kL7AGABtD9JAihFUPfLL79AR0cH33//PfT19fH7778jJiYGHh4eOHDggFp1GBgYKNyhkzM1NUVWVpamTWKMMcYYqzA+yF+2pPA6ddHID+iqylOPpXrga9euXWjatCkaNGiARo0awcrKCrt371b7+PPnz2PatGnCNhFBJBJh8eLFCAgIKE2TGGOMMcYqjA+ApgD6AZj4+v/NUHUCOqCMiw+/fPmyVMctXrwYZ8+eRY8ePaCrq4vvv/8eHTp0gImJCd55552yNIkxxhhjrELkQfvLlhRH4zt1JiYm+PHHH/HgwQPEx8fj5cuXCkkdwcHB6Ny5M65du4bTp0/DwMAAR44cQdeuXREaGqrxRTDGGGOMvek0vlP322+/oUWLFvDy8kJcXByIqFQnjouLw8qVK0t1LGOMMcYYU6RxUNe3b1/07dsXd+/eLZcG6OvrY/z48dDT08OpU6fw5MmTcqmXMcYYY+xNovHwa0hICPT09Ep1MktLS5w9exYpKSk4deoULC0tcevWLezatQtbt27F7du3YWdnV6q6GWOMMcbeZBoHde7u7vjmm29gb28PExMTGBoaKqTirF+/Hrq6unBzc0NGRgb8/f3x+PFjmJubo2HDhjhx4kSVHJI9cuQIEhMTcejQIW03hTHGGGNMJY2HX5OTk2FkZIR///1XIV8kEoGIoKNTdJX29vYYOXIkrl+/jhMnTiAhIQEzZszAixcvAABff/01/vnnH02bVOG2bNmC3bt3w8XFRdtNYYwxxhhTSeOgbt++fcjOzsakSZM0nihhZmaGiIgIAEBSUhIyMjIQFxcn7H/+/DmMjY01bVKFO3v2LBwcHLTdDMaqKDEAO+S/zjoW+S/LqQprqzPG2JtF46CuY8eO6Nq1Kx49eqTxyeR38+RKO3NWE3Z2dli8eDG6d++Oxo0bY/To0Th27JhCGTc3NyxevBjm5uZ48OABFixYgAsXLlR42xir/pyhvMZ6FPJfqlOVluRkjLGaT+Og7saNG7C0tCxVUAcAq1evFl4Rpquri88++wyvXr0CkD8TtrwZGBjgzp078Pb2xpEjR5T2jxs3Dps2bYK7uzsuXryIOXPm4OTJk2jfvj2ioqLKvT2M1RzOyH8bYmEWr/PHggM7xhirPBoHdVu3bsXmzZuxbt063Lt3DzKZTGH/vXv3ijz2/PnzaNOmjbB96dIlNG/eXKlMefLz84Ofn1+R+z/++GN4eXnBy8sLALBw4UI4OTnBzc0Ny5cv1/h8urq6qF27trAtnzwikUggkUg0ro+VnUQigVgs5s+/HBGJkZe3+fVW4flWYuQPv26CWPwXRKKSh2K5j6oH7qeqj/uo6iupj8rSdxoHdQcOHAAAhXe9yt/dWtJEif79+5eiiRWnVq1a6N69O7777juF/FOnTqFPnz6lqnPZsmUqZ/AOGjQImZmZpaqTlY1EIkG3bt0gEomQm5ur7ebUCAkJHXHlimUxJcQArNCz5ycwNb1fYn3cR9UD91PVx31U9ZXUR6VdNg4oRVDXrFmzUp+sqjE1NYWOjo7CZA0g/20XjRo1Erb9/PzQrVs3GBgYICoqCs7Ozrhx44bKOtesWYMNGzYI24aGhoiJicHp06eRmppaMRfCiiWRSEBE8PPz419y5SQv7y21yl29Ggmx+GSJ5biPqgfup6qP+6jqK6mPSloerjgaB3WRkZGlPllVVXjCRuEJHUOGDFG7ruzsbGRnZ8Pd3R3z5s2DWJw/NJWbm8s/YFqUl5fHfVCuYtQqRRSj9mfOfVQ9cD9VfdxHVV9xfVSWflMrqBsxYgROnjyJnJwcjBgxotiyvr6+pW5MZUtISEBOTo7CXTkAaNCggdLdO015enrC09MThoaGSElJKVNdjFU9gcif5WoB1WuY5wGIfl2OMaYWEQBrAHUBpAGIAFDxi0SwGkStoO7o0aNo1KgR4uPjcfTo0SLLlfRMXVUjk8lw8+ZNDBo0SOG6Bg0apLTsCWOsoDzkL1ty+PXX4kL7AGABeL26KkQsBuzsAHNzIDYWCAwE8rh/qox2AIYAMCqQ9wqAH4BgrbSIVUNqRWASiQSWlpbC19WJgYEBWrZsKWw3a9YMXbp0QWJiIqKiorBhwwb8+uuvuHHjBi5fvozZs2fDysoKO3bsKNN5Cw+/Mlbz+CB/2ZLC69RFIz+g4+VMqgxnZ2DzZsCyQD9FRQEeHoAP95PWtQMwTkX+W6/zD4IDO6YWtSOOsLAwmJmZlctJnZyc8M477wjb7u7uCAoKwr59+1CvXr1yOYdcjx49cPv2bdy+fRsAsHHjRty+fRurV68GABw8eBALFizAl19+idu3b8Pe3h5Dhw4t87ODnp6e6NChA3r27FnWS2CsCvMB0BRAPwATX/+/GTigq0KcnYHDhwELC8V8C4v8fGdn7bSL5RMh/w6d/OvC+/B6f+F9jKmgdlAnEpXfd9S6devw1lv5s+c6duyIH374ASdOnEDz5s0VZo6Wh3PnzkEkEiklV1dXocz27dvRrFkz1KlTBz169EBgID8HxJj68gCcA7D/9f95SK/KEIvz79DJvy68DwA2bVLexyqPNfKHXIv6Eyt6vd+60lrEqjGtPADXrFkzPHz4EAAwZswY/PXXX/jss8/QtWtXnDhxQhtNKnc8/MoY0zo7O8Uh18LEYsDKKr/cuXOV1y72n7rlXI690TQK6mbOnIm0tLRiy2zdurXEerKzs4VXgg0cOBB79+4FACQmJgp38Ko7nv3KGNM6c/PyLcfKX/F/UjUvx95oGgV1c+fOLXb9FCJSK6i7cOECNmzYgIsXL6Jnz54YP348AKB169aIjo7WpEmMMcaKEhtbvuVY+YtA/izXt6B6CJYApLwux1gJNArqevTogfj4+DKf9MMPP4SnpyfGjh0LNzc3PHv2DADw7rvvFvueVsYYYxoIDMyf5Wphofq5ubw8IDo6vxzTDkL+siXjXn8tKrQPr/fzenVMDWoHdYXfulAWUVFRKhcx/vjjj8vtHNrGz9QxxrQuLy9/2ZLDh/O/Lvj7SL5G3YIFvF6dtgUjf9mSwuvUpYDXqWMaUTuoK+vsV0NDQ+HdpyW916wmvCOVn6ljjFUJPj7A2LHK69RFR+cHdLxOXdUQDCAE/EYJViZqB3WrVq0qcZJEcZKSkmBubo74+HgkJyervPMnf+dqdXorBWOMVXk+PsCxY/xGiaqOAIRruxGsOlM7epIv1ltajo6OSExMBAD079+/THUxxhjTUF4eL1vCWA1XabfEzp8/r/LrmoqfqWOMMcZYZeKIo4Lwa8IYY4wxVpk4qGOMMcYYqwFKFdRJJBIMGDAAs2fPRt26+e8uMTc3h4GBQbk2jjHGGGOMqUfjZ+qsrKzg5+cHKysr1K5dG6dPn0ZaWhqWLFmCOnXqwM3NTa06Xrx4AalUWqpGM8YYY4wxRRrfqdu8eTNu3LgBY2NjZGZmCvk+Pj4YMGBAiceLRCI8fvwYTZo00fTU1Yq7uzsePHiAa9euabspjDHGGHsDaBzU9e3bF19//TVkMplCfkREBCwsLEo8nojw+PFj1K9fX9NTVys8UYIxxhhjlUnjoE4sFkMikSjlN2nSRO03QSxZsgTr1q1Dhw4dND09Y4wxxhhTQeOg7vTp01iwYIGwTUQwMDDAqlWrcOLECbXq+O2339CzZ0/cuXMHGRkZePnypUJijDHGGGOa0XiixMKFCxEQEIAHDx6gTp06+P3339GqVSskJCRg4sSJatVRMChkjDHGGGNlp3FQFxsbCxsbG0ycOBHdunWDWCyGl5cX9u3bp/Zs1r1792rcUMYYY4wxVrRSvSZMKpXC29sb3t7epT5x8+bN4erqihYtWsDDwwPx8fFwcnJCVFQUHj58WOp6qwp+TRhjrCoRQww72MEc5ohFLAIRiDzkabtZjLFypHFQN2LECJX5RASpVIonT54gPDy82Drs7e1x8uRJXLx4Efb29vjss88QHx+Pzp07Y+bMmXj//fc1bVaV4+npCU9PTxgaGiIlJUXbzWGMvcGc4YzN2AxLWAp5UYiCBzzgAx8ttowxVp40DuqOHj0KIoJIJFLIl+cRES5cuIDRo0cjOTlZZR3fffcdPv/8c2zcuFEh4AkICICHh4emTWKMMVYEZzjjMA4r5VvAAodxGGMxlgM7xmoIjccGBw0ahOvXr2PQoEEwMjKCkZERBg0ahGvXrmH48OGwt7dH/fr1sX79+iLr6NSpE3x8lH+JxMfH1/j16xhjrLKIIcZmbBa+LrwPADZhk9I+xlj1VKo3Snz88cf4999/kZaWhrS0NPz7779YtGgR1q1bh0uXLmHBggUYNGhQkXUkJyfD3NxcKb9r166IiYnRtEmMMcZUsIMdLGFZZNAmhhhWsIId7Cq5ZYyxiqBxUNeiRQuVz4ilpKSgefPmAIDHjx/D1NS0yDp+//13rF27Fg0bNgQRQSwWo0+fPli/fj3PjGWMsXJiDuV/PJelHKtYYgAOACa8/j/fP2Wa0vh75ubNm1i3bp1C0GZqaorvv/8e169fBwC0atUK0dHRRdbx2WefITIyEjExMahbty4ePnyI8+fP49KlS/j6669LcRmMMcYKi0VsuZZjFccZQDiAswD+eP3/8Nf5jKlL44kSH3zwAY4dO4bo6GhERUWBiGBlZYXQ0FCMGjUKAFC3bl189dVXRdaRk5ODKVOm4Msvv0TXrl0hFosRFBSEJ0+elP5KGGOMKQhEIKIQBQtYqByCzUMeohGNQARqoXVMzhlQMZUFsHidPxbgqSxMLRoHdY8ePUK7du3g5OSE1q1bQyQSISQkBKdPnwYRAQCOHTtWbB0tW7bEkydPEBoaitDQ0NK1nDHGWLHykAcPeOAwDiMPeQqBnXyNugVYwOvVaZEYeD2VRXnoTAwgD8AmAMdef81YcUq1+DAA+Pv7w9/fv1TH/u9//0NsbCzOnTuHc+fO4ezZs3j06FFpm8IYY6wIPvDBWIxVWqcuGtFYgAW8nImW2QEFekWZGIDV63LnKqVFrDorVVCnr68PBwcHWFlZQVdXV2Hf1q1bSzze3Nwcjo6OcHBwwMKFC7F9+3bExcUJAd7OnTtL06wqhd8owRirKnzgg2M4xm+UqILUnaLCU1mYukiTZGNjQ8+ePaPk5GSSyWQUFxdHubm5lJqaSk+fPtWoLnlq0aIFeXt7U3Z2NuXk5JSqjqqaDA0NiYjI0NBQ6215U5NEIqHhw4eTRCLRels4cR9V58T9VP7JASBSIzlwH9WYVFIflSVu0Pg20saNG+Hr6wsTExNkZmaiV69esLa2xs2bN7Fo0SK16jAwMICTkxPWrFmDS5cu4d69e+jcuTO2bt2K9957T9MmMcYYY9VSIIAoFP28XB6AyNflGCuJxsOvNjY2mDNnDvLy8pCbm4vatWsjLCwMS5YswZ49e1S+KaKwpKQkJCYm4tdff8XXX3+NCxcu8PtRGWOMvXHyAHggf5ZrHhQnS8gDvQXgSRJMPRrfqZPJZMIs17i4OFhZWQEAXr16JXxdkr///hsSiQRTp07FtGnTMGnSJLRt21bTpjDGGGPVng/yly0p/D6laPByJkwzGt+pCwoKQo8ePfD48WMEBARg9erVMDU1xdSpU3Hv3j216nB2zl9OsVOnTnBwcMCAAQOwcuVKEBHOnj2LiRMnatosxhhjrNryQf6yJXbInxQRi/whV75DxzShcVC3fPlyGBoaAgC++OIL7NmzB9u3b8eTJ0/g6uqqUV337t2DRCJBrVq1ULt2bQwZMoSfqWOMMfZGygMvW8LKRuOgLj4+Hg8ePAAAJCQkYNiwYRqfdMGCBejXrx/s7OxgaGiI27dv49y5c9i5cyfOnz+vcX2MMcYYY286jYI6kUiEx48fo0OHDmV6pdfkyZNx9uxZ/Pzzzzh//jxSU1NLXRdjjDHGGNMwqCMiPH78GPXr1y9TUPf222+X+lhtGDZsGH744QeIxWKsXbsWXl5e2m4SY4wxxpgCjYdflyxZgnXr1sHNzU0Yhi0NIyMjfPDBB2jXrh2ICMHBwfDy8qpyS5tIJBJs2LAB/fv3R0pKCm7duoUjR44gKSlJ201jjDHGGBNovKTJb7/9hp49e+LOnTvIyMjAy5cvFZI6unfvjqdPn2LhwoUwMTGBqakpFi5ciKdPn6Jr164aX0RF6tmzJx48eIBnz54hLS0NJ06cgJOTk7abxRhjjDGmQOM7dQsWLCjzSTdu3Ijjx49j1qxZyM3NBZB/R2zXrl3YtGkTHBwcynwOOTs7OyxevBjdu3dH48aNMXr0aBw7dkyhjJubGxYvXgxzc3M8ePAACxYswIULFwAAjRs3RkzMf6sHRUdHw8LCotzaxxhjjDFWHjQO6vbu3Vvmk/bo0UMhoAOA3NxcfP/997hx40aZ6y/IwMAAd+7cgbe3N44cOaK0f9y4cdi0aRPc3d1x8eJFzJkzBydPnkT79u0RFRUFkUikdIx88WVWGcTglZsYY4yxkmkc1AFA8+bN4erqihYtWsDDwwPx8fFwcnJCVFQUHj58WOLxKSkpsLKywv/+9z+FfEtLy3KfCevn5wc/P78i93/88cfw8vISJj8sXLgQTk5OcHNzw/LlyxETE6NwZ65Jkya4evVqkfXp6uqidu3awrZ8TT+JRAKJRFLWy3mjEI1GXt5GAJYFcqMgFi+ESHRU7XokEgnEYjF//lUY91H1wP1U9XEfVX0l9VFZ+k7joM7e3h4nT57ExYsXYW9vj88++wzx8fHo3LkzZs6ciffff7/EOg4cOAAvLy8sWrQIly5dAhGhb9++WLduHf74449SXUhp1KpVC927d8d3332nkH/q1Cn06dMHAHDt2jV07NgRjRs3RkpKCoYOHYrVq1cXWeeyZcuwcuVKpfxBgwYhMzOzXNtfk8XG9sbNm8tU7LFAXt4hdO++Bubml9WqSyKRoFu3bhCJRAp3h1nVwX1UPXA/VX3cR1VfSX2kp6dX6ro1Duq+++47fP7559i4caPCTNWAgAB4eHioVceiRYtARNi7dy90dPKbIJPJsH37dixdulTTJpWaqakpdHR0EBcXp5AfFxeHRo0aAcgfFv7kk08QEBAAsViM77//HomJiUXWuWbNGmzYsEHYNjQ0RExMDE6fPs3r8amJSIy8PE8ABOW5PGIAebh5cwrE4pUQiUoeipVIJCAi+Pn58S+5Kor7qHrgfqr6uI+qvpL6SD7CVxoaB3WdOnXCpEmTlPLj4+NRv359teqQyWRYsGABli1bhhYtWkAkEuHJkyeQyWQwNzdHVFSUps0qk8LPyIlEIoU8X19f+Pr6qlVXdnY2srOzlfJzc3P5B0xtfaE45FqYGIAV8vL6QN2X6uTl/b+9+w+Lssz3B/6eGbAQR10zARGUMhUwUVE6x5yw3TCPp2t1jExbt6zjuotWYFttuv2wayvtZCqWo9UxzExLPZJdu0nWNyGOWjpqqEg/FfkRoggKKigyn+8fAxMzDDDAzDzz4/26rvuCuZ97nvnMfAb48DzPfY+JOfBwzJF3YJ48H3Pk+drKUVfy1uElTc6fP4+wsLAW/aNGjbKaJeqI2tpaHDt2DEePHkVtbS1iYmJw8uTJjobUaRUVFbh27ZrlqFyTfv36tTh611Hz5s1Dfn4+9u/f36X9+KeW76+ujSMiIvJ9HS7qNm3ahFdffRUhISEQEajVaowbNw7Lli1zysxYd6qvr8fBgweRlJRk1Z+UlIS9e/d2ad8GgwGxsbFISEjo0n78U5mTxxERVAAGARje+LXlxH4i8nIdPv3697//HevXr0dpaSlUKhWOHz8OjUaDTZs24aWXXnJFjF0SHByMwYMHW25HRUUhLi4OlZWVKC4uxvLly/H+++/DaDRi3759mDt3LiIjI7F27douPe68efMwf/58qNUdrpsJuQCKAYTD/v8dJgAljeNIcWo1oNMBYWFAWRmQmwuYuOyMR4kGMAlAr2Z9FwBkAShQJCIichHpTLvpppvk3nvvlfvuu08GDx7cqX3YthEjRsi1a9ecsq+mlpiYKPZkZGRYxqSkpMjJkyelrq5OjEaj6HQ6pz2+VqsVERGtVuvU5+X7TS9AQ2OTZq2pT+/wvjQajdxzzz2i0Wg84Hn5WNPrBUVFApFfW1GRub8D+2GOXNiiIXihsS1u1pr6opknX2rMkee39nLUlbqhU0uafPXVVzhx4gROnDjRofveeuutbW4fOnRoR8NpV05Ojt0FhJtbs2YN1qxZ4/THpq7IBJAMIB3WkyZKAKQ1bidF6fXAtm0t+8PDzf3JyUAm86QoFcxH6Jq+t90mjdu/a/yeiLxah4u6zz//HKdPn8amTZuwceNG5OfnO3zfb7/9FiLS6qc02M46JX+XCWAH+IkSHkitBtLTf/3edpvJBKxcCezYwVOxShoI61OutlSN2wcCKHRHQETkSh0u6vr3748ZM2Zg5syZePrpp3Hs2DFs3LgRmzZtanf2a1RUVKcD9Ta8ps5ZTHB02RJyI50OiGhj2Rm1GoiMNI/LYf4U08PJ44jIo3W4qDt37hxWr16N1atXY9CgQXjggQfw4IMP4pVXXsFXX32F3/3ud63et6ioqEvBehODwQCDwQCtVmu1SDORT7CzrFGXxpFrXHTyOCLyaF06jFRYWIilS5fimWeewdGjR5GYmNjq2Ii2/qu3o3///l0JjYhcqczB5WQcHUeucQrmWa6tXdUijdtPuS0iInKhThd148aNw+rVq1FWVoZNmzYhPz8f99xzT6vjDxw4gLfffhtjx45tdUzPnj0xZ84cHD16FNOmTetsaB6Biw+TT8vNBYqLW79ezmQCiorM40g5AvOyJU3f225D43ZeykzkEzp8+vXll1/GzJkz0b9/f3zxxRdIS0vDxx9/3O6H1UdHR2PRokXIyspCfX09jEYjfvnlF9TV1eE3v/kNYmJiEBsbC6PRiKeeegpZWVlt7s/T8fQr+TSTCUhNNc9yNZmsJ0s0FXppaZwk4QkKAGxBy3XqqsF16oh8TIeLugkTJmDZsmX46KOPcO7cOattcXFxyMvLs3u/qqoqPPXUU3j22WcxefJk6HQ6DBo0CEFBQaioqMAHH3yAzz77rEOzaYlIQZmZ5mVL0tOtJ02UlJgLOi5n4jkKYF62ZCDMkyIuwnzKlUfoiHxKh4u622+/3ep2z5498Yc//AFz5sxBXFwcAgLa3uWVK1eQmZmJTP7CJ/J+mZnmZUv4iRKeT8BlS4h8XIeLuiZ33nknHnnkEUybNg2nTp3C//7v/+K//uu/nBmbV+OSJuQ3TCYuW0JE5AE6VNSFh4dj9uzZeOSRRxAcHIwtW7YgMDAQ9957LwoKeGFGc7ymjoiIiNzJ4cNI//rXv3D8+HHExMTgscceQ//+/fH444+7MjZyGzWARAAzGr/y6CIREZG3cfhI3cSJE7Fq1SqsWbMGP/30kytjIrfSo+XnqxYDSAU/X5WIiMh7OHxIRqfTQavVwmg04uuvv8b8+fPRt29fV8ZGLqcHsA1AuE1/eGO/3u0RERERUec4XNR9/fXXmDt3LsLCwvDWW29hxowZKC0thVqtRlJSEnr04IcHNuf5iw+rYT5C1/S97TYAWGlnGxEREXmiDv/Frq2tRUZGBnQ6HW699Va8/vrreOaZZ3DmzBns2LHDFTF6JYPBgNjYWCQkJCgdSit0MJ9ybe0toAYQ2TiOiIiIPF2XDsP88MMP+Nvf/oYBAwZg5syZzoqJ3MLRD1rnB7ITERF5A6ecWzOZTNixYwemTJnijN2RWzj6Qev8QHYiIiJvwAum/FYuzLNcW1v53wSgqHEcEREReToWdX7LBPOyJU3f224DgDQ724iIiMgTsajzal1dNDgTQDKAUpv+ksZ+rlNH7VNDjUQkYgZmIBGJUPPXChGRIjr92a/UNtd/9quzFg3OBLAD5lmuYTBfQ5cLHqEjR+ihRzrSEdHsfViMYqQiFZn8p4CIyK34L7WLuHZJE2cvGmwCkAPgw8avLOiofXrosQ3bEG7zPgxHOLZhG/RcvJqIyK1Y1HkdLhpMylNDjfTG96Ht6dam2yuxkqdiiYjciL9xvQ4XDSbl6aBDBCJaLdrUUCMSkdDxfegxunoFLhF5Pl5T53W4aDApL8zB95ej48i1nHUFLhF5Nv6z5nW4aDApr8zB95ej48h1nH0FLhF5LhZ1XoeLBpPycpGLYhTD1Mr70AQTilCEXL4PFcUrcIn8C3+WvQ4XDSblmWBCauP70Lawa7qdhrRWiz5yD16BS+RfWNR5JS4aTMrLRCaSkYxSm/dhCUqQjGSuU+cBeAUukX/hRAkXcf3iw1w0mJSXiUzswA7ooEMYwlCGMuQil0foPASvwCXyLyzqXMRgMMBgMECr1aK6utpFj9K0aDCRckwwIYfvQ4/UdAVuOOyfljHBfHyfVz4S+QaefiUi8lG8ApfIv7CoIyLyYbwCl8h/8PQrEZGP4xW4RP6BRR0RkR/gFbhEvo+nX4mIiIh8AIs6IiIiIh/Aoo6IiIjIB7CoIyIiIvIBLOocsH37dlRWVmLr1q1Kh0JERERkF4s6B6xatQoPPvig0mEQERERtYpFnQOys7NRU1OjdBhEnkkFYBCA4Y1fVUoGQ0Tkv7y+qNPpdPjkk09QWloKEcGUKVNajElJScGJEydQW1sLo9GI8ePHKxApkQ+KhvlzpmbD/PEEsxtvRysVEBGR//L6oi44OBh5eXl49NFH7W6fPn06Vq5ciZdffhmjRo1Cbm4udu7ciYiICMsYo9GIo0ePtmhhYWHuehpE3icawHQAPW36ezb2s7AjInIrr/9EiaysLGRlZbW6/YknnsC6deuwbt06AMCCBQtw9913IyUlBYsWLQIAjBkzxmnxdOvWDdddd53ltlarBQBoNBpoNBqnPQ45TqPRQK1W8/V3IlEJTJMaP2TK9nSrCoAAmASof1RDJe2fj2WOvAPz5PmYI8/XXo66kjuvL+raEhgYiPj4eCxdutSqf9euXRg3bpxLHnPhwoVYvHhxi/6kpCTU1ta65DGpbRqNBqNHj4ZKpUJDQ4PS4fiECm0Fvu71desDVAB6AQn3JaBvTd9298cceQfmyfMxR56vvRwFBQV1et8+XdT17dsXAQEBKC8vt+ovLy9HaGiow/vJysrC6NGjERwcjOLiYuj1ehiNRrtjlyxZguXLl1tua7ValJaW4vPPP+dkC4VoNBqICLKysvhLzklMsSZgaPvjvsn/Bur89q/yYI68A/Pk+Zgjz9dejprO8HWGTxd1TUTE6rZKpWrR15ZJkyY5PPbq1au4evUq5s2bh/nz50OtNv9Ba2ho4A+YgkwmE3PgTNWODZNqcfg1Z468A/Pk+Zgjz9dWjrqSN6+fKNGWiooKXLt2rcVRuX79+rU4eudsBoMBsbGxSEhIcOnjECniFIALMF87Z480bj/ltoiIiPyeTxd19fX1OHjwIJKSkqz6k5KSsHfvXoWiog5Rq4HERGDGDPNXtU+/Zb2HAMhq9r3tNjRud/yAOBERdZHXn34NDg7G4MGDLbejoqIQFxeHyspKFBcXY/ny5Xj//fdhNBqxb98+zJ07F5GRkVi7dq1L47I9/UqdoNcD6elAs+VnUFwMpKYCmZnKxUVmBQC2AJgEoFez/mqYC7oCJYIiIvJv4s0tMTFR7MnIyLCMSUlJkZMnT0pdXZ0YjUbR6XRui0+r1YqIiFarVfy18qqm1wsaGsxN5NfW1KfXO7wvjUYj99xzj2g0GuWfly82FQSDIBje+FXV8X0wR97RmCfPb8yR57f2ctSVusHrj9Tl5ORApWp7Haw1a9ZgzZo1boqIukytNh+ha/redpvJBKxcCezYYf6elCUACpUOgoiIeG7QRebNm4f8/Hzs379f6VC8j05nPuXa2qlrtRqIjDSPIyIiIgAs6lyGs1+7wNGPZ+PHuBEREVmwqCPPU1bm3HFERER+gEWdi/D0axfk5ppnubZ2vZzJBBQVmccRERERABZ1LsPTr11gMpmXLWn63nYbAKSlcZIEERFRMyzqyDNlZgLJyUBpqXV/SYm5n+vUERERWfH6JU3Ih2Vmmpct0enMkyLKysynXHmEjoiIqAUWdeTZTCYgJ0fpKIiIiDweT7+6CCdKEBERkTuxqHMRTpQgIiIid2JRR0REROQDWNQRERER+QBOlCDzZ6lyhikREZFXY1HnIvPmzcP8+fOhbu1D6T2FXg+kpwMREb/2FRebF//1gLXg1FBDBx3CEIYylCEXuTCBBScREZEtD684vJdXTJTQ64Ft24DwcOv+8HBzv16vTFyN9NCjEIXIRjY2YzOykY1CFEIPZeMiIiLyRCzq/JVabT5C1/S97TYAWLmy5TY30UOPbdiGUFUosgdlY/PwzcgelI1QVSi2YRsLOyIiIhs8/eqvdDrrU6621GogMtI8zs2L/6qhRjrSsT16OxZMWoCSXiWWbQMuDMCKrBVYWbASO7CDp2KJiIga8UidvwoLc+44J9JBhwPRBzB9+nSU9Cyx2lbasxTTp0+HMdoIHXRuj42IiMhTsajzV2Vlzh3nRCGqEKROSoVAAJX1NlEJACBtUhpCVCFuj42IiMhT8fSri3j87NfcXPMs1/BwAAIU5QI1ZYA2DIjUAVABJSXmcW72/cDvrU652hKVoLhXMfoM7AMUui8uIiIiT8aizkUMBgMMBgO0Wi2qq6td8yAaFXDPCKBfd+DMZeCfR4AGcey+JpN52ZJ/PAB8tgCoaVZEaQcAd68AntukyHp1R3occeo4ci01AB2AMABlAHIBXulIRKQAFnXeanYCEFMMXM4z3w4HcHsYcDwCWL/fsX18lwlszWxxihM1pcDW+4DvnBmw4+SiY4Wpo+PIdfQA0gE0n3JTDCAVgPKrHBIR+RcPPTdIbZqdAAw6AFy2ud7t8mlz/2wH1sZTAZjU2sbGYmkSWhZ87nAKwIVfw2hBGrefcltEZIcewDaY/59oLryxn4vOEBG5F4s6b6NRmY/Q2a14Gvtii83j2jIQQC+0XrSpGrcP7GScXSEAspp9b7sNjdt5oE4xapiP0DV9b7sNAFba2UZERK7D37ne5p4RLY/QWRHgUpl5XFt6OPh4jo5ztgIAWwDYXo5Y3dhf4PaIqBkdzKdcW/sFogYQ2TiOiIjcg9fUeZt+3Z0z7qKDj+foOFcogPm6voEwF5cXYT7lyiN0inN09UL3r3JIROS/WNR5mzOXW17E1Nq4tjRdt9YT9k/BCsxHxZS+bk3AZUs8kKOrF7p/lUMiIv/F06/e5p9HgO5haPNiuOAw87i2CJCQlQAVVFCJ9b5UooIKKiRkJfCoGNmVC/Ms19aWLjEBKGocR0RE7sGizkXmzZuH/Px87N/v4PIijmoQ87IlAFoWdo238yPaXa9ODTW2FWzDli1bEF5tfehvQPUAbNmyBVsLtkLNtwjZYYJ52ZKm7223AUCanW1EROQ6PP3qIi5dfHj9/mbr1DU7wRUcai7oHFinTgcdIhCBiIII6L/TI3dgLsp6lCHsYhh0p3TQiMYyLgc5zo2ffEImgGS0XKeuBOaCjuvUERG5F4s6b7V+P1RqDUbceS+69+yBy9UXcWT3xxCTY1cxhTW7hF0jGkwonNDuOCJbmQB2gJ8oQUTkCVjUeSk99Eg3pSPi//16jKQYxUhFKjIdOEZS5uAl7I6OI/9lAngsl4jIA/CCKS+khx7bsA3hNtNgwxGObdgGvQNr+eciF8UohqmVYyommFCEIuTyUnciIiKvwKLOy6ihRnrjWv62kxiabq/EynYnOJhgQmrjpe62hV3T7TSktVr0ERERkWdhUedlmiY4tFa0qaFGJCKhc2At/0xkIhnJKEWpVX8JSpCMZIdO4xIREZFn4DV1XsbRiQuOjstEJnZgB3TQIQxhKEMZcpHLI3RERERehkWdl3HFBAcTTFy2hIiIyMvx9KuX4QQHIiIisodFXTsGDBiA3bt3Iz8/H3l5eUhOTlY0Hk5wICIiIntY1LXj2rVrSEtLQ2xsLO666y6sWLEC3bt3VzQmTnAgIiIiW7ymrh2nT5/G6dOnAQBnz55FZWUl+vTpg8uXLysaFyc4EBERUXNef6ROp9Phk08+QWlpKUQEU6ZMaTEmJSUFJ06cQG1tLYxGI8aPH9+px4qPj4darUZJSUlXw3aKpgkOH+JD5CCHBR0REZEf8/ojdcHBwcjLy0NGRga2b9/eYvv06dOxcuVKzJs3D3v27MGf//xn7Ny5EzExMSguLgYAGI1GXHfddS3uO3HiRJSVmWeR9unTBxs2bMCcOXNc+4SIiIiIOsHri7qsrCxkZWW1uv2JJ57AunXrsG7dOgDAggULcPfddyMlJQWLFi0CAIwZM6bNx+jWrRsyMzOxZMkS7Nu3r92xzQtErVYLANBoNNBoNA49J3IujUYDtVrN19+DMUfegXnyfMyR52svR13JndcXdW0JDAxEfHw8li5datW/a9cujBs3zuH9rF+/Hl9++SU2btzY7tiFCxdi8eLFLfqTkpJQW1vr8GOS82g0GowePRoqlQoNDQ1Kh0N2MEfegXnyfMyR52svR0FBQZ3et08XdX379kVAQADKy8ut+svLyxEaGurQPm6//Xbcf//9OHLkCKZOnQoA+OMf/4hjx47ZHb9kyRIsX77cclur1aK0tBSff/45ampqOvdEqEs0Gg1EBFlZWfwl56GYI+/APHk+5sjztZejpjN8neHTRV0TEbG6rVKpWvS1Zs+ePR06FHr16lVcvXq1RX9DQwN/wBRkMpmYAw/HHHkH5snzMUeer60cdSVvXj/7tS0VFRW4du1ai6Ny/fr1a3H0ztnmzZuH/Px87N+/36WPQ0RERAT4eFFXX1+PgwcPIikpyao/KSkJe/fudeljGwwGxMbGIiEhwaWPQ0RERAT4wOnX4OBgDB482HI7KioKcXFxqKysRHFxMZYvX473338fRqMR+/btw9y5cxEZGYm1a9e6NK558+Zh/vz5UKt9um4mIiIiD+H1Rd2YMWOQnZ1tub1ixQoA5hmrDz/8MLZs2YIbbrgBzz//PMLCwnDs2DFMnjwZRUVFLo3LYDDAYDBAq9WiurrapY9FRERE5PVFXU5ODlQqVZtj1qxZgzVr1rgpInImNQAdgDAAZQByAX5uBhERkR08N+ginCjRdXoAhQCyAWxu/FrY2E9ERETWWNS5CCdKdI0ewDYA4Tb94Y39LOyIiIissagjj6MGkN7se9ttALDSzjYiIiJ/xr+LBDWARAAzGr8q/abQAYhoIw41gMjGcURERGTm9RMlPJU7ljRxxiQCPcxHxSKa9RUDSAWQ6YQYOyPMyeOIiIj8gdIHZXyWq6+pc8YkAk+9bq3MyeOIiIj8AYs6L+SMYsyTr1vLhfloYWtHHU0AihrHERERkRmLOi/jrGLMk69bM8F8+rfpe9ttAJBmZxsREZE/Y1HnIq5ap85ZxZinX7eWCSAZQKlNf0ljv1LX+xEREXkqTpRwEVd9TJizijFvuG4tE8AO8BMliIiIHMGizss4qxhrum4tHPaP+plgPiqm9HVrJgA5CsdARETkDXj61cs4axIBr1sjIiLyLSzqvIwzizFet0ZEROQ7WNS5iKsmSgDOLcYyAQwCMAHAzMavUR3cBxERESmP19S5iKsmSjRx5iQCXrdGRETk/VjUeTEWY0RERNSEp1+JiIiIfACLOiIiIiIfwKKOiIiIyAewqCMiIiLyASzqXMSVS5oQERER2WJR5yIGgwGxsbFISEhQOhQiIiLyAyzqiIiIiHwAizoiIiIiH8CijoiIiMgH8BMl3ESr1Sodgt/SaDQICgqCVqtFQ0OD0uGQHcyRd2CePB9z5Pnay1FX6gUWdS7WlJzS0lKFIyEiIiJvodVqUVNT06H7qACIa8KhJv379+9wYjpi//79Tpll25n9OHofR8a1Naa1bfb6bfu0Wi1KS0sRHh7u0jy0xRty5MhYZ+XItt+XctTZfTnrZ8lVOQKUz5M/56i1bcxR5+7j6X+TtFotfvnll/aeRgs8UucGnUlMR5hMJqf88HZmP47ex5FxbY1pbZu9/tbG1tTUKFYweEOOHBnrrBy11u8LOersvpz1s+TqHAHK5cmfc9TaNuaoc/fx9L9JnX0NOVHCB6xevVqx/Th6H0fGtTWmtW32+p31ejiTN+TIkbHOylFH43IHZ8aj5M8Sc+S6fSmZo9a2MUedu4+v/k3i6VfyeVqtFtXV1ejZs6diR4GobcyRd2CePB9z5PlcmSMeqSOfd+XKFSxevBhXrlxROhRqBXPkHZgnz8cceT5X5ohH6oiIiIh8AI/UEREREfkAFnVEREREPoBFHREREZEPYFFHRERE5ANY1JHf2759OyorK7F161alQyE7BgwYgN27dyM/Px95eXlITk5WOiSy0aNHD+zfvx+HDx/GkSNHMGfOHKVDolYEBQWhsLAQr732mtKhkB319fU4fPgwDh8+jHfeeafD9+fsV/J7EyZMQI8ePfDQQw/hvvvuUzocshEaGoqQkBDk5eXhxhtvxKFDhzB06FBcvnxZ6dCokVqtxnXXXYfa2loEBQXh2LFjGDt2LCorK5UOjWy89NJLuOWWW1BUVISnnnpK6XDIxtmzZ3HjjTd2+v48Ukd+Lzs7m4t0erDTp08jLy8PgPkXXmVlJfr06aNwVNScyWRCbW0tAOD666+HRqOBSqVSOCqyNXjwYAwbNgyffvqp0qGQi7CoI6+m0+nwySefoLS0FCKCKVOmtBiTkpKCEydOoLa2FkajEePHj1cgUv/lzBzFx8dDrVajpKTE1WH7FWfkqFevXvj2229RUlKC//7v/8a5c+fcFb5fcEaOli1bhoULF7orZL/jjBz17NkTRqMRubm5uOOOOzocA4s68mrBwcHIy8vDo48+anf79OnTsXLlSrz88ssYNWoUcnNzsXPnTkRERLg5Uv/lrBz16dMHGzZswNy5c90Rtl9xRo4uXLiAkSNHIioqCg888AD69evnrvD9Qldz9Pvf/x4//PADfvzxR3eG7Vec8XM0aNAgjBkzBn/5y1+wYcMGaLXaDschbGy+0EREpkyZYtX39ddfi8FgsOo7fvy4vPLKK1Z9iYmJsnXrVsWfg6+3zuaoW7dukpOTI7NmzVL8Ofh668rPUVMzGAySnJys+HPx1daZHL3yyitSVFQkJ0+elLNnz8r58+flueeeU/y5+Gpzxs/Rp59+KvHx8R16XB6pI58VGBiI+Ph47Nq1y6p/165dGDdunEJRUXOO5mj9+vX48ssvsXHjRneH6PccyVG/fv0sRxS0Wi3uuOMOfP/9926P1V85kqNFixYhMjISUVFRePLJJ/HOO+/gH//4hxLh+iVHctS7d29069YNABAeHo6YmBicOHGiQ48T4JxwiTxP3759ERAQgPLycqv+8vJyhIaGWm5nZWVh9OjRCA4ORnFxMfR6PYxGo7vD9UuO5Oj222/H/fffjyNHjmDq1KkAgD/+8Y84duyYu8P1S47kaMCAAVi3bh1UKhVUKhXefPNNHD16VIlw/ZKjv+tIOY7kKDo6Gm+99RZMJhNEBKmpqaiqqurQ47CoI58nIla3VSqVVd+kSZPcHRLZaCtHe/bsgUajUSIsaqatHB06dAijRo1SIixqpr3fdU3ee+89d4VENtrK0b59+zBixIgu7Z+nX8lnVVRU4Nq1ay3+U+3Xr1+L/5ZIGcyR52OOPB9z5PnclSMWdeSz6uvrcfDgQSQlJVn1JyUlYe/evQpFRc0xR56POfJ8zJHnc2eOFJ8lwsbW2RYcHCxxcXESFxcnIiJpaWkSFxcnERERAkCmT58uV65ckYcffliGDRsmy5cvl5qaGomMjFQ8dn9pzJHnN+bI8xtz5PnNQ3Kk/AvBxtbZlpiYKPZkZGRYxqSkpMjJkyelrq5OjEaj6HQ6xeP2p8YceX5jjjy/MUee3zwhR/zsVyIiIiIfwGvqiIiIiHwAizoiIiIiH8CijoiIiMgHsKgjIiIi8gEs6oiIiIh8AIs6IiIiIh/Aoo6IiIjIB7CoIyIiIvIBLOqIiIiIfACLOiJy2NChQ7Fv3z7U1tbi8OHDSofTrhdeeMFlcWZkZCAzM9Ml+/YGJ0+eRGpqqtJhEFEzLOqIfFDfvn1x9epVBAUFQaPR4OLFi4iIiOjyfl988UVcunQJQ4cOxe9+9zu7YzIyMiAiEBHU19fj1KlTMBgM6N27d5cfv6OWLVvWapyulpiYCBFBr169HL6PJxaKDz30EKqqqlr0jx07Fm+//bbLH3/u3Ln49ttvcfHiRVRVVeHQoUN4+umnLds98TUjUkqA0gEQkfP9+7//O7799lvU1tYiISEBlZWVKC4u7vJ+b775ZvzrX/9CUVFRm+N27tyJhx9+GAEBAYiJicG7776L3r1744EHHuhyDB1x6dIlXLp0qdXtgYGBqK+vd2NEnqOrz72iosKJ0dj3yCOPYPny5Xj88ceRk5OD6667DiNGjEBMTIzLH5vIWwkbG5tvtSVLlsiKFSsEgDzxxBOyefPmdu+jUqnkueeek+LiYqmrq5PDhw/L3Xffbdlu64UXXrC7n4yMDMnMzLTqW7ZsmVRUVFj1zZ49W44fPy61tbVSUFAgKSkpVtvHjh0rhw4dktraWjlw4IBMnTpVRETi4uIEgDz00ENSVVVldZ8pU6aIiFhuv/DCC3L48OEWsT3zzDNSWloqJ0+eFADSv39/+fDDD6WyslIqKirk448/loEDB1rup1ar5fXXX5eqqiqpqKiQV199VdavX9/ieTZviYmJIiLSq1cvq3gnTpwox48fl5qaGtm5c6eEhoZaYrWVmJjoUHwajUbS09Mt8S1durRFfLt375Y33nhDXn/9dTl79qxkZ2cLAFmwYIEcOXJELl68KEVFRbJ69WoJDg62eg728n7y5ElJTU217D8iIkI+/vhjqampkQsXLshHH30k/fr1a5GLWbNmycmTJ+X8+fOyefNm6dGjR6uvYWZmprz77rutbu/Ka9b0Xnj++eelvLxcLly4IGvXrpXAwEDLmHvvvVeOHDkily9floqKCvn888+le/fuiv98s7G10RQPgI2NzQktIiJCqqqqpKqqSq5cuSKXL1+Wqqoqqaurk9raWqmqqpLVq1e3ev+0tDQ5f/683H///TJkyBBZunSpXLlyRQYPHiwAJCQkRI4ePSqvvfaahISEWP7w2zbboi4qKkqOHTsmZWVllr45c+ZIaWmp6PV6GTRokOj1eqmoqJAHH3xQAEj37t2lvLxcNm/eLDExMfKf//mf8tNPPzmlqKuurpb33ntPYmJiJDY2VoKCguT777+X//mf/5Hhw4fLsGHDZOPGjVJQUGD5A//UU09JVVWVTJs2TYYNGybvvPOOXLhwocNF3ZUrV2TXrl0SHx8vo0aNkvz8fNm4caMAkODgYPnwww/l008/lZCQEAkJCZHAwECH4lu0aJFUVFTI1KlTZejQoWIwGOT8+fMtirrq6mp59dVXZciQITJ06FABIKmpqTJhwgQZNGiQ3HnnnVJQUGB5nwQGBsrjjz8u58+ft8TUlHfbou7gwYPy1VdfyejRoyUhIUGMRqPs3r3bKhfV1dWybds2iY2NlfHjx8svv/wiL730Uquv4Zo1a+T48eMSGRlpd3tXXrOm90LTe2zy5MlSXl5uiSc0NFSuXr0qaWlpMnDgQBk+fLikpKS0+r5nY/OQpngAbGxsTmgajUYGDhwot956q1y5ckVGjBghN910k1RXV4tOp5OBAwfKDTfc0Or9S0pKZOHChVZ933zzjbz55puW24cPH271CF1Ty8jIkPr6eqmpqZHLly9bjqCkpaVZxpw6dUpmzJhhdb+///3vsmfPHgEgf/rTn6SiokKCgoIs2//85z87pagrKyuzOhrz8MMPS0FBgdV+AgMD5dKlS5KUlCQApLS0VJ5++mmr17qoqKjDRZ2IyE033WQZk5KSYlXs2jvK6Uh8ZWVl8te//tWyXa1WS2FhYYui7tChQ+2+j5KTk+Xs2bOW2/ZeZ8C6qLvrrrukvr5eBgwYYNkeHR0tIiJjxoyx5OLixYtWR+ZeffVV2bdvX6uxhIaGyt69e0VE5LvvvpOMjAy57777RKVSdfk1y8jIsPseq66uFpVKJaNGjRIRabWgZGPzxMaJEkQ+oqGhAadOncKwYcNw4MABHDlyBKGhoSgvL0dubi5OnTqFc+fO2b2vVqtFeHg49uzZY9W/Z88eREdHdziW3bt3Y+TIkbjtttuwatUqZGVl4Y033gBgnsQRGRmJdevWoaamxtKeffZZ3HzzzQCA6Oho5OXloba21rLPffv2dTgOe44ePWp1LVl8fDwGDx5sFUtlZSWuv/563HzzzejZsyf69+9v9fgNDQ0wGo0dfuxLly7hxIkTlttlZWXo169fm/dxJL7Q0FDs37/fch+TyYSDBw+22Je9mCdMmIBdu3ahpKQE1dXV2LBhA/r27Yvu3bs7/Lyio6NRXFyMkpISS19BQQGqqqqs3j+FhYW4ePGiw8//9OnTGDduHIYPH45Vq1YhMDAQ7733HrKysqBSqVq9X3uvWRN77zGtVouIiAjk5eXhiy++wNGjR7FlyxbMmTNHkck+RB3BiRJEPuLYsWMYOHAgAgMDoVarUVNTg4CAAAQEBKCmpganTp3C8OHD29yH+SDXr1QqVYs+R1y6dAk///wzACA1NRVffvklXnjhBTz//PNQq83/S/7pT3/CN998Y3W/hoYGy+O2x2QytRgXGBjoUGzNqdVqHDx4EH/4wx9ajD179my7++sI24kJImJ5PVrjaHz2cmfL9rlHRkbi008/xdq1a/Hcc8+hsrIS48ePx7vvvuvQa9n8sey9T2z7O/P8ASA/Px/5+fkwGAy4/fbb8X//939ITExEdna23fFdzamIwGQyISkpCePGjcPEiRPx2GOP4eWXX8Ztt92GwsLCdvdBpAQeqSPyEZMnT8bIkSNx+vRpzJo1CyNHjsSxY8eQlpaGkSNHYvLkya3et6amBqWlpRg/frxV/7hx41BQUNDl2F588UU8+eSTCAsLw5kzZ1BSUoKbbroJP//8s1Vr+mN5/PhxxMXF4frrr7fs49/+7d+s9nn27FlotVqrI0ojR47scGyHDh3CLbfcgjNnzrSIp7q6GtXV1fjll1+sHl+j0SA+Pr7Dj9Weq1evQqPRdDi+06dPIyEhwXIftVqNUaNGtft4Y8aMQUBAAP7617/im2++wY8//oj+/fu3G5Ot48ePIzIyEgMGDLD0RUdHo3fv3k55/9g+FgAEBwe3Gl97r1kTe++xmpoaqyOOe/fuxeLFizFq1ChcvXoVer3eqc+HyJlY1BH5iKKiIly8eBEhISHYsWMHioqKEBMTg+3bt+Pnn39udxmS1157DX/7298wffp0DBkyBEuWLMHIkSORnp7e5dhycnKQn5+PRYsWAQAWL16MhQsX4vHHH8ctt9yC4cOHY/bs2ViwYAEAYNOmTTCZTFi3bh2io6PxH//xH3jyySet9vnNN9/g8uXLeOWVV3DzzTdj5syZmD17dodj++CDD1BRUYEdO3Zg/PjxGDRoEO644w6sXLkS4eHhAID09HQ888wzmDp1KoYOHeqydfcKCwsxYsQIDBkyBDfccAMCAgIciu+NN97AwoUL8fvf/x5DhgxBeno6fvOb37R7lPXnn39GYGAgHnvsMURFRWHWrFn4y1/+0iImrVaL3/72t7jhhhsQFBTUYj9ffPEFjhw5gg8++ACjRo3C2LFjsWHDBmRnZ9s9Dewog8GAZ599FuPGjUNkZCRuu+02bNiwAWfOnLGcDu/sawYA3bp1s7zHJk2ahBdffBFvvvkmRAQJCQlYuHAh4uPjERERgWnTpuHGG290epFK5GyKX9jHxsbmnHb//ffLV199JQBk/Pjx8sMPPzh83+ZLmly5cqXFkiaA4xMl7E0gmDlzptTV1Vkupp85c6YcOnRI6urq5Ny5c5KdnS1Tp061jL/tttvk8OHDUldXJ4cOHRK9Xm81UQIwT4z44Ycf5PLly/LJJ5/InDlzHFrSxDa2kJAQWb9+vZw5c0Zqa2vlp59+krfeeku0Wq0A5okRK1askPPnz0tlZaUsW7as00uaNB9jO7Gjb9++8tlnn0l1dbXV8hyOxLdq1So5f/68nDt3TpYsWSIfffSRbNq0ybLv3bt3W5a5ad7S0tKktLRULl26JDt37pRZs2ZZxQ1ADAaDnD171ilLmjR/7NTUVMuyMvbatGnT5J///KeUlpZKXV2dlJSUyNatW2X48OFdfs2a3guLFy+Ws2fPSnV1tbz99tvSrVs3ASDDhg2TnTt3Snl5udTW1sp3330n8+fPV/xnnI2traZq/IaIyKMNHDgQhYWFGDlyJPLy8pQOx6OpVCoUFBRgy5YteP7555UOxyNlZGSgd+/ePJ1KPoUTJYiIvFxkZCQmTpxo+dSFRx99FFFRUdi0aZPSoRGRG/GaOiIiL2cymTB79mwcOHAAe/bswa233oq77roL3333ndKhEZEb8fQrERERkQ/gkToiIiIiH8CijoiIiMgHsKgjIiIi8gEs6oiIiIh8AIs6IiIiIh/Aoo6IiIjIB7CoIyIiIvIBLOqIiIiIfACLOiIiIiIf8P8Be4hvqkePam0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -580,19 +562,19 @@ "# Plot Results\n", "sci_steps = np.asarray(sci_steps)\n", "nb_steps = np.asarray(nb_steps)\n", - "cysolverNew_steps = np.asarray(cysolverNew_steps)\n", + "cysolver_steps = np.asarray(cysolver_steps)\n", "pysolver_steps = np.asarray(pysolver_steps)\n", "pysolver_njit_steps = np.asarray(pysolver_njit_steps)\n", "\n", "sci_times = np.asarray(sci_times)\n", "nb_times = np.asarray(nb_times)\n", - "cysolverNew_times = np.asarray(cysolverNew_times)\n", + "cysolver_times = np.asarray(cysolver_times)\n", "pysolver_times = np.asarray(pysolver_times)\n", "pysolver_njit_times = np.asarray(pysolver_njit_times)\n", "\n", "sci_errors = np.asarray(sci_errors)\n", "nb_errors = np.asarray(nb_errors)\n", - "cysolverNew_errors = np.asarray(cysolverNew_errors)\n", + "cysolver_errors = np.asarray(cysolver_errors)\n", "pysolver_errors = np.asarray(pysolver_errors)\n", "pysolver_njit_errors = np.asarray(pysolver_njit_errors)\n", "\n", @@ -601,15 +583,15 @@ "plot_vs_steps = True\n", "if plot_vs_steps:\n", " ax.errorbar(sci_steps[1:], sci_times[1:], yerr=sci_errors[1:], c='blue', label='SciPy', fmt='o')\n", - " ax.errorbar(cysolverNew_steps[1:], cysolverNew_times[1:], yerr=cysolverNew_errors[1:], c='red', label=\"CyRK's cysolve_ivp (Cython)\", fmt='o')\n", - " ax.errorbar(pysolver_steps[1:], pysolver_times[1:], yerr=pysolver_errors[1:], c='cyan', label=\"CyRK's pysolve_ivp\", fmt='o')\n", - " ax.errorbar(pysolver_njit_steps[1:], pysolver_njit_times[1:], yerr=pysolver_njit_errors[1:], c='magenta', label=\"CyRK's pysolve_ivp (njit)\", fmt='o')\n", + " ax.errorbar(cysolver_steps[1:], cysolver_times[1:], yerr=cysolver_errors[1:], c='red', label=\"CyRK's cysolve_ivp (Cython)\", fmt='o')\n", + " ax.errorbar(pysolver_steps[1:], pysolver_times[1:], yerr=pysolver_errors[1:], c='cyan', label=\"CyRK's pysolve_ivp (Python)\", fmt='o')\n", + " ax.errorbar(pysolver_njit_steps[1:], pysolver_njit_times[1:], yerr=pysolver_njit_errors[1:], c='magenta', label=\"CyRK's pysolve_ivp (Python + Numba)\", fmt='o')\n", " ax.errorbar(nb_steps[1:], nb_times[1:], yerr=nb_errors[1:], c='green', label=\"CyRK's nbsolve_ivp (Numba)\", fmt='o') \n", "else:\n", " ax.errorbar(end_times, sci_times, yerr=sci_errors, c='blue', label='SciPy', fmt='o')\n", - " ax.errorbar(end_times, cysolverNew_times, yerr=cysolverNew_errors, c='red', label=\"CyRK's CySolver2 (Cython)\", fmt='o')\n", - " ax.errorbar(end_times, pysolver_times, yerr=pysolver_errors, c='cyan', label=\"CyRK's pysolve_ivp\", fmt='o')\n", - " ax.errorbar(end_times, pysolver_njit_times, yerr=pysolver_njit_errors, c='magenta', label=\"CyRK's pysolve_ivp (njit)\", fmt='o')\n", + " ax.errorbar(end_times, cysolver_times, yerr=cysolver_errors, c='red', label=\"CyRK's cysolve_ivp (Cython)\", fmt='o')\n", + " ax.errorbar(end_times, pysolver_times, yerr=pysolver_errors, c='cyan', label=\"CyRK's pysolve_ivp (Python)\", fmt='o')\n", + " ax.errorbar(end_times, pysolver_njit_times, yerr=pysolver_njit_errors, c='magenta', label=\"CyRK's pysolve_ivp (Python + Numba)\", fmt='o')\n", " ax.errorbar(end_times, nb_times, yerr=nb_errors, c='green', label=\"CyRK's nbsolve_ivp (Numba)\", fmt='o')\n", "\n", "if use_pendulum:\n", @@ -637,7 +619,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 14, "id": "697a88bd", "metadata": {}, "outputs": [ @@ -647,52 +629,52 @@ "text": [ "How much faster X is vs. Y\n", "End Time: 1.0e-03\n", - "\t nbsolve_ivp = 11.82x SciPy\t nbsolve_ivp = 0.27x CySolver\n", - "\t PySolver = 18.49x SciPy\t PySolver = 0.42x CySolver\n", - "\t CySolverNew = 44.06x SciPy\t CySolverNew = 2.38x PySolver\n", + "\t nbsolve_ivp = 10.47x SciPy\t nbsolve_ivp = 0.19x cysolve_ivp\n", + "\t pysolve_ivp = 16.47x SciPy\t pysolve_ivp = 0.31x cysolve_ivp\n", + "\t cysolve_ivp = 53.95x SciPy\t cysolve_ivp = 3.28x pysolve_ivp\n", "End Time: 1.0e-02\n", - "\t nbsolve_ivp = 11.70x SciPy\t nbsolve_ivp = 0.22x CySolver\n", - "\t PySolver = 18.44x SciPy\t PySolver = 0.35x CySolver\n", - "\t CySolverNew = 52.61x SciPy\t CySolverNew = 2.85x PySolver\n", + "\t nbsolve_ivp = 10.73x SciPy\t nbsolve_ivp = 0.20x cysolve_ivp\n", + "\t pysolve_ivp = 16.52x SciPy\t pysolve_ivp = 0.31x cysolve_ivp\n", + "\t cysolve_ivp = 53.17x SciPy\t cysolve_ivp = 3.22x pysolve_ivp\n", "End Time: 1.0e-01\n", - "\t nbsolve_ivp = 17.22x SciPy\t nbsolve_ivp = 0.24x CySolver\n", - "\t PySolver = 22.65x SciPy\t PySolver = 0.31x CySolver\n", - "\t CySolverNew = 72.66x SciPy\t CySolverNew = 3.21x PySolver\n", + "\t nbsolve_ivp = 15.32x SciPy\t nbsolve_ivp = 0.20x cysolve_ivp\n", + "\t pysolve_ivp = 20.02x SciPy\t pysolve_ivp = 0.27x cysolve_ivp\n", + "\t cysolve_ivp = 75.01x SciPy\t cysolve_ivp = 3.75x pysolve_ivp\n", "End Time: 1.0e+00\n", - "\t nbsolve_ivp = 35.84x SciPy\t nbsolve_ivp = 0.24x CySolver\n", - "\t PySolver = 32.40x SciPy\t PySolver = 0.21x CySolver\n", - "\t CySolverNew = 151.35x SciPy\t CySolverNew = 4.67x PySolver\n", + "\t nbsolve_ivp = 30.98x SciPy\t nbsolve_ivp = 0.21x cysolve_ivp\n", + "\t pysolve_ivp = 27.98x SciPy\t pysolve_ivp = 0.19x cysolve_ivp\n", + "\t cysolve_ivp = 146.63x SciPy\t cysolve_ivp = 5.24x pysolve_ivp\n", "End Time: 1.0e+01\n", - "\t nbsolve_ivp = 113.44x SciPy\t nbsolve_ivp = 0.25x CySolver\n", - "\t PySolver = 43.17x SciPy\t PySolver = 0.10x CySolver\n", - "\t CySolverNew = 447.86x SciPy\t CySolverNew = 10.37x PySolver\n", + "\t nbsolve_ivp = 100.16x SciPy\t nbsolve_ivp = 0.25x cysolve_ivp\n", + "\t pysolve_ivp = 38.21x SciPy\t pysolve_ivp = 0.10x cysolve_ivp\n", + "\t cysolve_ivp = 399.41x SciPy\t cysolve_ivp = 10.45x pysolve_ivp\n", "End Time: 1.0e+02\n", - "\t nbsolve_ivp = 153.39x SciPy\t nbsolve_ivp = 0.28x CySolver\n", - "\t PySolver = 44.95x SciPy\t PySolver = 0.08x CySolver\n", - "\t CySolverNew = 541.80x SciPy\t CySolverNew = 12.05x PySolver\n", + "\t nbsolve_ivp = 138.31x SciPy\t nbsolve_ivp = 0.30x cysolve_ivp\n", + "\t pysolve_ivp = 38.94x SciPy\t pysolve_ivp = 0.09x cysolve_ivp\n", + "\t cysolve_ivp = 453.69x SciPy\t cysolve_ivp = 11.65x pysolve_ivp\n", "End Time: 1.0e+03\n", - "\t nbsolve_ivp = 156.97x SciPy\t nbsolve_ivp = 0.28x CySolver\n", - "\t PySolver = 45.55x SciPy\t PySolver = 0.08x CySolver\n", - "\t CySolverNew = 563.25x SciPy\t CySolverNew = 12.37x PySolver\n", + "\t nbsolve_ivp = 134.20x SciPy\t nbsolve_ivp = 0.28x cysolve_ivp\n", + "\t pysolve_ivp = 38.52x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", + "\t cysolve_ivp = 486.82x SciPy\t cysolve_ivp = 12.64x pysolve_ivp\n", "End Time: 1.0e+04\n", - "\t nbsolve_ivp = 134.80x SciPy\t nbsolve_ivp = 0.25x CySolver\n", - "\t PySolver = 45.50x SciPy\t PySolver = 0.08x CySolver\n", - "\t CySolverNew = 547.66x SciPy\t CySolverNew = 12.04x PySolver\n" + "\t nbsolve_ivp = 115.93x SciPy\t nbsolve_ivp = 0.25x cysolve_ivp\n", + "\t pysolve_ivp = 39.61x SciPy\t pysolve_ivp = 0.09x cysolve_ivp\n", + "\t cysolve_ivp = 463.79x SciPy\t cysolve_ivp = 11.71x pysolve_ivp\n" ] } ], "source": [ "# Print Differences\n", "print('How much faster X is vs. Y')\n", - "for end_time, sci, nb, cysN, pys in zip(end_times, sci_times, nb_times, cysolverNew_times, pysolver_njit_times):\n", + "for end_time, sci, nb, cysN, pys in zip(end_times, sci_times, nb_times, cysolver_times, pysolver_njit_times):\n", " \n", " print(f'End Time: {end_time:0.1e}')\n", - " print(f'\\t nbsolve_ivp = {sci / nb:5.2f}x SciPy', end='')\n", - " print(f'\\t nbsolve_ivp = {cysN / nb:5.2f}x CySolver', end='\\n')\n", - " print(f'\\t PySolver = { sci / pys:5.2f}x SciPy', end='')\n", - " print(f'\\t PySolver = { cysN / pys:5.2f}x CySolver', end='\\n')\n", - " print(f'\\t CySolverNew = { sci / cysN:5.2f}x SciPy', end='')\n", - " print(f'\\t CySolverNew = { pys / cysN:5.2f}x PySolver', end='\\n')" + " print(f'\\t nbsolve_ivp = {sci / nb:5.2f}x SciPy', end='')\n", + " print(f'\\t nbsolve_ivp = {cysN / nb:5.2f}x cysolve_ivp', end='\\n')\n", + " print(f'\\t pysolve_ivp = { sci / pys:5.2f}x SciPy', end='')\n", + " print(f'\\t pysolve_ivp = { cysN / pys:5.2f}x cysolve_ivp', end='\\n')\n", + " print(f'\\t cysolve_ivp = { sci / cysN:5.2f}x SciPy', end='')\n", + " print(f'\\t cysolve_ivp = { pys / cysN:5.2f}x pysolve_ivp', end='\\n')" ] } ], @@ -712,7 +694,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.12.7" } }, "nbformat": 4, diff --git a/CHANGES.md b/CHANGES.md index 2ca2894..cca9693 100644 --- a/CHANGES.md +++ b/CHANGES.md @@ -4,10 +4,14 @@ #### v0.11.0 (2024-NNN) +New: +* `WrapCySolverResult` result class now provides user access to attribute `num_y`. + Removed: * Removed previous `cyrk_ode` and older version of the `CySolver` class-based solver. * The functionality of `cyrk_ode` is now handled by the new (as of v0.10.0) `pysolve_ivp` function. * The functionality of `CySolver` is partly handled by the new (as of v0.10.0) `cysolve_ivp` function. + * Note that the new cysolve_ivp is a functional approach. A class based approach like the older CySolver class supported is no longer available but could be easy to implement. If there is interest please create a Github issue for it. Refactors: * Refactored the new cysolver and pysolver files to remove "New". This will break imports based on previous versions. @@ -17,12 +21,16 @@ Other: * Changed the default ordering for diffeq function inputs to follow the scheme dydt(dy, t, y); previously it was dydt(t, y, dy). This affects the `cy2nb` and `nb2cy` helper functions. * Updated performance module to use new methods over old. +Demos: +* Fixed typo in the type of the mixed-type args container. +* Updated to work with new refactoring. + Tests: * Updated tests to use pysolver where cyrk_ode was used. * Changed tolerances and other inputs to try to make some tests faster. Dependencies: -* Tested that CyRK works with numpy v2.X; removed upper version restriction. +* Tested that CyRK works with numpy v2.X; but a lot of other packages don't right now. So setting it as upper limit. * Tested that CyRK can not work with Python 3.13 yet due to numba dependence. See issue #### v0.10.2 (2024-11-05) diff --git a/CyRK/__init__.pxd b/CyRK/__init__.pxd index 83f0912..f28c9e1 100644 --- a/CyRK/__init__.pxd +++ b/CyRK/__init__.pxd @@ -1,2 +1,2 @@ -from CyRK.cy.cysolver cimport cysolve_ivp, cysolve_ivp_gil, DiffeqFuncType, PreEvalFunc, CySolverResult, WrapCySolverResult, CySolverBase, CySolveOutput, RK23_METHOD_INT, RK45_METHOD_INT, DOP853_METHOD_INT +from CyRK.cy.cysolver_api cimport cysolve_ivp, cysolve_ivp_gil, DiffeqFuncType, PreEvalFunc, CySolverResult, WrapCySolverResult, CySolverBase, CySolveOutput, RK23_METHOD_INT, RK45_METHOD_INT, DOP853_METHOD_INT from CyRK.cy.helpers cimport interpolate_from_solution_list \ No newline at end of file diff --git a/CyRK/cy/cysolver_api.pxd b/CyRK/cy/cysolver_api.pxd index b871555..e0fe4c5 100644 --- a/CyRK/cy/cysolver_api.pxd +++ b/CyRK/cy/cysolver_api.pxd @@ -94,9 +94,6 @@ cdef class WrapCySolverResult: cdef double[::1] time_view cdef double[::1] y_view - cdef size_t size - cdef size_t num_dy - cdef void set_cyresult_pointer(self, shared_ptr[CySolverResult] cyresult_shptr) diff --git a/CyRK/cy/cysolver_api.pyx b/CyRK/cy/cysolver_api.pyx index bc08e89..264a273 100644 --- a/CyRK/cy/cysolver_api.pyx +++ b/CyRK/cy/cysolver_api.pyx @@ -13,8 +13,6 @@ cdef class WrapCySolverResult: # Store c++ based result and pull out key information self.cyresult_shptr = cyresult_shptr self.cyresult_ptr = cyresult_shptr.get() - self.size = self.cyresult_ptr[0].size - self.num_dy = self.cyresult_ptr[0].num_dy # Convert solution to pointers and views if self.cyresult_ptr.size > 0: @@ -72,6 +70,14 @@ cdef class WrapCySolverResult: def size(self): return self.cyresult_ptr.size + @property + def num_y(self): + return self.cyresult_ptr.num_y + + @property + def num_dy(self): + return self.cyresult_ptr.num_dy + @property def error_code(self): return self.cyresult_ptr.error_code diff --git a/Demos/1 - Getting Started.ipynb b/Demos/1 - Getting Started.ipynb index a0dc80a..b3e0e56 100644 --- a/Demos/1 - Getting Started.ipynb +++ b/Demos/1 - Getting Started.ipynb @@ -6,17 +6,36 @@ "metadata": {}, "source": [ "## SciPy's `solve_ivp` (For Comparison)\n", - "As of CyRK v0.10.0, on a mid-tier desktop the following timings were found:\n", + "As of CyRK v0.11.0, on a mid-tier desktop the following timings were found:\n", "\n", - "- SciPy.solve_ivp : 41.600 ms\n", - "- CyRK.nbsolve_ivp: 0.357 ms\n", - "- CyRK.pysolve_ivp: 1.270 ms\n", - "- CyRK.cysolve_ivp: 0.089 ms" + "- SciPy.solve_ivp : 39.300 ms\n", + "- CyRK.nbsolve_ivp: 0.361 ms\n", + "- CyRK.pysolve_ivp: 1.250 ms\n", + "- CyRK.cysolve_ivp: 0.107 ms" ] }, { "cell_type": "code", "execution_count": 1, + "id": "c12341b6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CyRK Version: 0.11.0a0.dev3\n" + ] + } + ], + "source": [ + "import CyRK\n", + "print(\"CyRK Version:\", CyRK.__version__)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "id": "50275b32", "metadata": {}, "outputs": [ @@ -30,7 +49,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACH4ElEQVR4nO2deZyU1ZX3f9Vb9UJ3s0k3DYgtghu4gQvEBUVRErcQRxOz6MQ3iXGJjDq+UWcmzEwixjcuCU6cMTGuUUziEjPGBaOihKCAEAEVQUBAum3W3ruqu+q+f9y+dZ+nqOVZ7rOf7+dTVFFd/fTTvz733HPPPffeGGOMgSAIgiAIwkeUeH0DBEEQBEEQ2VCAQhAEQRCE76AAhSAIgiAI30EBCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoBAEQRAE4TvKvL4BK6TTaezcuRO1tbWIxWJe3w5BEARBEAZgjKGzsxNNTU0oKSmcIwlkgLJz506MGzfO69sgCIIgCMIC27dvx9ixYwt+JpABSm1tLQD+C9bV1Xl8NwRBEARBGKGjowPjxo3L9OOFCGSAIqZ16urqKEAhCIIgiIBhpDyDimQJgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+gwIUgiAIgiB8BwUoBEEQBEH4DgpQCIIgCILwHRSgEARBEAThOyhAIQiCIAjCd1CAQhAEQRCE76AAxYesXg38938D6bTXd+IP/vhH4C9/8fou/MHAAPDrXwM7d3p9J/5g507g4YeB/n6v78QfrFwJvPyy13fhH557DvjgA6/vwh/09AC/+Q3Q0eH1nRgnkKcZh52zzgL27wcSCeCGG7y+G2/ZuRO4+GL5evRoT2/Hcx57DPjOd4ChQ4G9ewEDB4KGmh/8AHjmGeCdd3hQH2XSaeD004HeXuCNN4CZM72+I2957z1g7lz+ursbqK729n685uc/B267DXjgAWDFCq/vxhiUQfEZfX08OAGAX/zC01vxBatXy9cPPujdffgFMTrevx946y1Pb8UXPPMMf/6f/wG6ury9F6/Zto0HJwCwYIG39+IHli+Xr3/1K+/uwy88/jh/XrkSWL/e23sxCgUoPkNrOJs3Ay0t3t2LH3j/ffn6D3/w7j78wq5d8vWf/uTdffgB0RkLli3z5j78wrp18vVf/sKnA6PMhg3y9YsvencffkFbMvDSS97dhxkoQPEZa9bo///pp57chm/QBijbtnl3H36AMWDtWvn/7du9uxc/8NFH+v/v2OHNffgF7eAmlQJaW727Fz+gDdiibht9fcCmTfL/QdGDAhSfke10P/vMm/vwC9oCt44OoLPTu3vxml27gD175P+D4mScIjtNHfWALVuPqNuH1ndEXYuPP+ZBqyAoelCA4jO0KXwgOIbkFNl6RDlgyx4RR902SA89pIcklQI+/1z+v7MzWKtXVJNdKhAU26AAxWfs3cufhwzhz1HukBmTGQOhR1AalhNk28bOnfpRUdQQetTW8uco2wZwoB5Rzii1t3P/Acj2EmU9gmobFKD4DNEhT5nCn6McoPT0AMkkf33MMfw5yp2QcDJHHQWUlPAiyLY2b+/JS4Qexx7Ln6NsG4D0HdRW9B1yczN/TXpI22hpCcbeQRSg+IxsJxPlAEVoUV4OHH44fx1lPYSTGTVK7gcTlJGQE2Q73Sh3QADpoUVoMXw4MG4cf016AEccwf0pY8EooqYAxWfQqFAiApQRI4CxY/nrKOuhdbqkx4Ed8v790d0Lpb9f1liQ78jdViiYB0aOBMaM4a+DYB8UoPgIxqQhaad4xFxq1NA6GdGoopxBEQGb1ulGWQ9hH+PHy7n1qB4BIDZ3BICjj+bPZBt63xFV2wCC60spQPER7e2y6PGoo/hzX190R4XaDMqoUfr3oohwMiNG8JGQ9r0oog3Yoq6H+L3r64HGRv17UUTbIUfdNgC9HiNG6N/zMxSg+AhhMNXVwLBhQDzO/79vn3f35CXaDnn4cP17UUTrZEgP0kOLVothw/jrzs5gFEI6AdmGnqDqQQGKj9BmDGIx6WiCYEhOoB0hB6lROUVQnYwTJJMys0h66G1j6FD5ftQHN2QbnKDqQQGKjxBFbvX1/DlIhuQE7e38eehQfbAW1Zoc0dkMG0a2oa25GDqU9BC/97BhQGmpDFJID7INILh6UIDiI8SIUGwsJAwpqqMgrR5Ci4GB6NbkiG3+a2spuya0GDKE7wkTdT1EmxDFwkHqhJxA2EddHdkGoNcjSLZBAYqP6O7mzzU1/DnqDUvoMWQIUFUla3KirkdNTbCcjBNkt5Wo65FvcBNVPXK1le5uIJHw7p68Ip2WJ38HzXdQgOIjyMnoEXrU1PCanKhnlChAkVCAoof00KPVo76e+w8gmr6jp0e+DprvoADFR1AGRQ85XQlj+oySNliLYk0OBfN6qK3o0dpH1KcAhRaxGM9EB8k2KEDxEVSDooc6IUlvrwxEtKOgVErOL0cJ6pD1UFvRQ/YhEVpUV/NgLUhaUIDiI8jJ6KGMkkRoAXBHU1UFVFby/0dRD+30H0BthTpkPfn0iOJgL58Wvb2yNsWvUIDiI6hD1kMBm0RoUVXFl5EC0dZDO90FRFsLgAKUbMh3SLK1qKuTPsTvARsFKD6Cpnj0kNOVZGsBkB5A7hFyOu3NPXkJdcgSbb0W+Y4DtQjSJqAUoPiIfI0qqufPZDtd0aiiGLBlawEEx8k4QfYUj9AinZYbHkYJyr5K+vr09VpAtPXINbgJii+lAMVHZHdCYjdIsaNqlMg1ChI77FIHxKmr489RLpIVbSUeB8rL+WvSQ7aVKGqh3cixupo/R7mt5BrcBEUPClB8RPaoUOwK2dkZvaWkiYRM1WvnToFoByi5nEyU9dCmraOsR7bviLIWwja09VqkR+7Bjd/1oADFR2R3QsKItNmEqKAdBZHTPbADAkgPgPQQZHdC2sFN1Ahyh+wEQdaDAhQfkZ2KE+vWAf8bkmpEo6qsPHAUFGWnSxkUDumhJ9/gprMzekXDFLzqCXJboQDFR1DaWpLLyYhRYdS0AII9CnICqsmRMJZ/igeI3uGauTrkKGeUghywUYDiI7Q7/gmi6nSpQ9ZTyMlEzTYACmC1aOu1hB7aouGo6UG+Q0+hgM3vepgKUB544AEcc8wxqKurQ11dHaZPn46XXnop83XGGObPn4+mpiZUVVVh5syZWL9+ve4aiUQC119/PUaOHImamhpceOGF2LFjh5rfJuD09fHnqir5XlAMSTW5tNA6magVDYsdH7XBa1RtA5AHoOUK5qOmh/YwOKFHlLOvhQZ6UdMCKNxW/D64MRWgjB07FnfeeSdWrlyJlStX4qyzzsJFF12UCULuuusu3HPPPbj//vuxYsUKNDY24pxzzkGnRoV58+bhueeew6JFi7B06VJ0dXXh/PPPRyqVUvubBYx0Wh4FLrYwB6LbsESHnCtASaX8v0WzagrpETXbAIoHsFFCaFFaKrMmQHQDWLINPUH2HaYClAsuuABf/OIXMWnSJEyaNAk/+clPMGTIECxfvhyMMdx33324/fbbMXfuXEyePBmPPvooenp68OSTTwIA2tvb8dBDD+Huu+/G2WefjeOPPx5PPPEE1q5di9dee82RXzAoiOAECKYhqUY4GW2wVlMjj00nPaJrGwDpoSVXBwQEZ5SsmkK2EcWi4SC3Fcs1KKlUCosWLUJ3dzemT5+OLVu2oLW1FbNnz858Jh6P44wzzsCyZcsAAKtWrUJ/f7/uM01NTZg8eXLmM7lIJBLo6OjQPcKGMCIgmIakmlxOV5u2jqrTpeCVE+RRoWpydUBAdPUoZBtR3LIhUgHK2rVrMWTIEMTjcVx99dV47rnncNRRR6G1tRUA0NDQoPt8Q0ND5mutra2oqKjAMLHPbo7P5GLBggWor6/PPMaNG2f2tn2PaFT50rRR7ZCznW5U09bCPoLoZJwgyE5XNRSg6MmlR2UlUFbGX0fNlwY5mDcdoBx++OFYs2YNli9fju9///u44oor8MEHH2S+HhM5+EEYYwe8l02xz9x6661ob2/PPLZv3272tn0PORk9uTpkILp6FEtbR61ouJgeUaLYFA+1FZ59jergJpceQdHCdIBSUVGBww47DNOmTcOCBQtw7LHH4uc//zkaGxsB4IBMSFtbWyar0tjYiGQyiX1ZJxRpP5OLeDyeWTkkHmGDnIyeXFMaQHT1yGUfwskMDOinCMMOY4X1iJpt0OBGD/lSPUEO5m3vg8IYQyKRQHNzMxobG7F48eLM15LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZ6IKORk9pIeeXHpo9zWIkh79/TJjRFM8NB2aDfkOPcWmePycfS0z8+HbbrsNc+bMwbhx49DZ2YlFixbhzTffxMsvv4xYLIZ58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpOPvssx35BYMCVeLroVGQnlxOt6SEd0KdnVyPAknIUEEF5XrId+ih6WE9hTIoomhYO9jxE6YClM8//xzf/OY30dLSgvr6ehxzzDF4+eWXcc455wAAbrnlFvT29uKaa67Bvn37cPLJJ+PVV19FrQjlAdx7770oKyvDpZdeit7eXsyaNQuPPPIISsWBKxGFRkF6io2Coup0c3VCIkCJCto9cOJx+Zo6IP37UdeDBjecXPYhTnpOpbgeoQhQHnrooYJfj8VimD9/PubPn5/3M5WVlVi4cCEWLlxo5keHHsoY6MmnBwVs+vfr6oDPPouWHlottLX12WnrIrX5oYECFD2kh558WzbU1gL793M9mpo8ubWi0Fk8PoEalR7SQw9llCTFtBgY0G98GHZocKOn2BRPlNoKEGxfSgGKT6BGpYecrh7SQ5JPi6gWDdP0sJ58UzxR1COV4kXlAAUohA2oUekJctTvBNQJSfJpUVIigxTSg9oK6aEvKA9iETUFKD6hWKPq7ZWRcBSgjIEeKvyT5GsrQDT1oLaih1bxSLQBiragHAiGHhSg+IRiRaGAvyNd1VDNhSToaVrV5GsrQDT1oLaih4J5idCirExu9S8Igh4UoPiEfE6mokK+52dDUg1NaUjy7fsBBMPJqIYyKHqKBSjJZDSLhqmt5A/WgGD4UgpQfEKhUWEUDwyktLVEu+8HOV1jAQq1FSoapraSP1gDgqEHBSg+gUaFesjJSIQW5eV8cyUt1CHribJ9ZLeV0lKgpoa/jqIeQSwKVU3Q+xUKUHwCOV09xTIoPT18v4soUMjJBCFNqxrSQ0/QOyHV5MsaRNk2CvUrfg7YKEDxCeRk9BSrQQGAri737sdLKHjVY8TpRkkPsg8JY5R91UJTPIQSaF5dDxUNSyh41RN0p6sa8h2SZFK+zpd9TSSiUzQcdN9BAYpPEA2mouLAr0U5NZm9dh+Inh5BdzKqKWQbUdaD7CP/QZJANLdsCPp0KAUoPkEEKOR0OWIkRHqQbWQj9KCMAYfsQ6LNjGTrEcWi4aDbBgUoPiHohqSSgQEgneavSY/C2TVt0XAq5d49eYkRPdrb3bsfrynkO8QoOSp6CC3Ky3OfZh1V3xFUP0oBik+gjIGk0CgICEZqUiVGOiAgOlmDQm0linsGGbGPqOhRyDaA6OkRdNugAMUnBN2QVGI0QInKKp5CTjce56NFIHr2QW2FY6R+LSptpZBtANGzDyNtpa/Pv1s2UIDiEwoZktgRMmqNKhY7cGMygJxMNlG1D2orHMooSait6DESvAL+1YMCFJ9Ao0KJ1uHmmkeOmh40KtRjpK1EJWMAkO/QQm1FTyE9Kipk4OJXPShA8QnkdCXkZPQUGgUBZB9atLbBmHv35CUUoEjE4IbaCqdYTY7fM0oUoPgEcjISClD0kB56jKSt02n9nhhhhTGa4tFCbUWPUT38GrBRgOITjDhdalQcv0f9qqGVCXoK6SH2uQCioYd259RcviNqbYUCFD1Gs69+1YMCFJ9AGRQJORk9pIeeQnqUlESrU6YVb3qoregJuh4UoPgEIysTenv9uxxMJVRzoYcySnpID4k2g0KDm+DXXKiGAhTCNqmU3AW02GZcUeiUaUpDT9DTtKoJ+ry6SoQWZWU8e5RNVG2D2gon6L6UAhQfUGwUFI9zBwREy+kGtVGphjpkPdQJSYzahp8341IJtRU9Qc82UoDiA4rNI8di5HS1+L1RqYYCNj1BHxWqxKhtAKQHEC3bAII/XU4Big/QBihi2/JsotSwyMnooQ5ZD9mHpFgHVFERraMQyDb0BF0PClB8gNaIcu2cCvjfkFRiplFFYTMumtLQE3Snq5JiwSvg/1GySiiY1xP0tkIBig8oZkSA/w1JJUY75HSaz62HHZry0kN6SMh36CnmO6JkG0DwAzYKUHxAsUYFRKthFWtUUduMK+ijIJUwRoWQWihA0WPGNij76n/boADFB5CT0VNMj6huxkUdMl+JIjqWoDpdlZDv0GO0rUTlKISgZxspQPEBZpxMFDohI3r4vWGphDIokmJL8oFo6WEk+xolPYxkX0WdXxT0CPrghgIUH2Cm0I0aFSdKehg9oTUKWhRbkg9ESw8jvoOCeUksRnpo8XtboQDFB1CHrIf00EObcUmEFiUlcvPCbMg29Ph9lKwS8h16gj64oQDFB1Cj0mMmbU1OV44IgfDbB03/6SHfoYcWHOihDAphG3IyemjKS08x+4jHo7MZFwWvesh36CE99BgNUBIJoL/fnXsyAwUoPoBGhXrIyeihNL6Eglc9VCSrhzaukzBm/HRnwJ/2QQGKD6AOSA8FbHqKzSMD0emEKHjVQwGbHrIPiZEVbxUV0q/4UQ8KUHwAjYL0kJPRQ3pIzAbzYd+Mi4J5PdRWJNoAJahTohSg+AAaBemhgE0POV2JGS3SaaCnx/l78hLKvuoh3yExsiQf8LceFKD4AApQ9JAeklSKPwBamQAY64Cqq+XrqOhBbYVDvkMibKO0lD/y4Wc9TAUoCxYswIknnoja2lqMGjUKF198MTZs2KD7zJVXXolYLKZ7nHLKKbrPJBIJXH/99Rg5ciRqampw4YUXYseOHfZ/m4BCNQZ6zOgR9lGhkXlkIDr2YcQ2onQUAvkOPbTMWGLENgB/24epAGXJkiW49tprsXz5cixevBgDAwOYPXs2uru7dZ8777zz0NLSknn8+c9/1n193rx5eO6557Bo0SIsXboUXV1dOP/885ESQ8WIYcSQRKOKwmZc5HQlYZhHVomRETJAemiJSlsBaBWPFqNtxc8BW569GHPz8ssv6/7/8MMPY9SoUVi1ahVOP/30zPvxeByNjY05r9He3o6HHnoIjz/+OM4++2wAwBNPPIFx48bhtddew7nnnmv2dwg8ZjpkgBvSsGHO3pOXmAnY/NioVGI2QImKHkZGhS0tpAcQHdsASA8tkcugZNPe3g4AGD58uO79N998E6NGjcKkSZPwne98B21tbZmvrVq1Cv39/Zg9e3bmvaamJkyePBnLli3L+XMSiQQ6Ojp0jzBhxJC0m3FFJfInJyO1KCvjUxf5iJoeQXa6KjETzPt1My6VkO+QmG0rfuxXLAcojDHceOONOPXUUzF58uTM+3PmzMFvf/tbvP7667j77ruxYsUKnHXWWUgMTg62traioqICw7JSAA0NDWhtbc35sxYsWID6+vrMY9y4cVZv25eQ09VDTkZCtqGH9NBjJfsaZsh3SMLQVkxN8Wi57rrr8P7772Pp0qW69y+77LLM68mTJ2PatGkYP348XnzxRcydOzfv9RhjiIlzsLO49dZbceONN2b+39HREaogxYwh7d3rT0NSCc2rS4zaRtSmvEgPjhE9xGZcySQfJWclvEMFBSiSMAQoljIo119/PV544QW88cYbGDt2bMHPjh49GuPHj8fGjRsBAI2NjUgmk9i3b5/uc21tbWhoaMh5jXg8jrq6Ot0jTITBkFRidhVPmDfjItvQQ3roIT0k2q3dqX4tHLZhKkBhjOG6667Ds88+i9dffx3Nzc1Fv2fPnj3Yvn07Ro8eDQCYOnUqysvLsXjx4sxnWlpasG7dOsyYMcPk7YeDMBiSSswEKOk00Nvr/D15RRjmkVVCq3j0kO+QaFc30oq3cGQbTU3xXHvttXjyySfxxz/+EbW1tZmakfr6elRVVaGrqwvz58/HV77yFYwePRpbt27FbbfdhpEjR+LLX/5y5rNXXXUVbrrpJowYMQLDhw/HzTffjClTpmRW9USNMBiSSozokb0Zl/b/YYI6ID2khx7SQ2JlST5jQJ7KgsATBtswFaA88MADAICZM2fq3n/44Ydx5ZVXorS0FGvXrsVjjz2G/fv3Y/To0TjzzDPx9NNPo1ZTqXXvvfeirKwMl156KXp7ezFr1iw88sgjKC203V2IoVGyHjObcXV18YaVZ3Yw8ITByaiE9NBDgxuJ2QBFHIVQU+PsfXlFGPoVUwEKKzLZX1VVhVdeeaXodSorK7Fw4UIsXLjQzI8PLeR0JUbnkQGuhwhQwgrZhh7SQw/pIdEGKGUFerbqaj7ASae5HhSg8Gc/2gadxeMDwmBIqkilZNEr6UEj5GxIDz1hGCWrQqtFoWmbWCwa9hGGfoUCFB8QBkNShdE0LRAtPYxqEfbNuKit6CE9JEa1AKIRoBg5lwjwt21QgOIDyMlIrAQoURkVFkK7GRfpEQ3bAMh3aDEToETBPsKQbaQAxQeEwZBUYXQeGYiWHsVsQ2zGBZAeQDQ6ZID00GJ0CToQLT2M2kYyqfe/foACFB8QhlScKozOIwPR06MYpIckCloANLjRQm1FTxiyrxSg+ABKW0vIyeghPfRQgKKH9JBQW9FjNKNUXi4/4zc9KEDxAeRkJORk9FDhnx6zGQM6CoFDgxs95Dv0+FUPClB8AAUokjA0KpWQHnrMthXGgO5uZ+/JK9Jpub07+Q4K5rMJg++gAMUHUIAiMVqPA9CoMBvSQ1JTI2uYwqqHdjk5+Q5qK9lQgEIogQIUCY2C9ITByajEqB5R2IyL9gzSQ21FTxh8KQUoPsDsvHqYN+MiJ6OH9NBDeki0AUp5eeHP+rUDUgnZhp4wZJQoQPEYK/PIQHgbFjkZPaSHHtJDIqZDS0v5oxBh1wIg28gmDHpQgOIxZuaRtZtx+S3SVUUYGpVKSA89YUhbq8KKbfhxMy5VUFvREwY9KEDxGDPzyIB/DUkVYWhUKqEOWQ/Zh8SKFgANbgBqK9n4ta1QgOIxFKDoCUOjUkkY5pFVQnpIzGjh5824VEErAPWEwZdSgOIxwoiMzCMD/jUkVVgZBYV5M64wOBmVkB4SM1oApIeWsGsBhCOjRAGKx5h1Mn41JFVYOfCLMaCnx7l78hI6AE0PdUIS8h16yDb0hCHbSAGKx9AoSI8ZPbSbcZEe4bcNgPTQQr5Dj9UOmbKv/rUNClA8xqqT8VukqwozekRhMy4r8+ph1QIIR9paFeQ79FjpkMN8FAIFKIRtaBSkh/TQQx2yJJXi+wYBwXa6qqC2oseMHlVVQMlg70d6+Nc2KEDxGHIyekgPPWGYR1aF1RVvYdeD2gqHsq96KEAhbENORo/Vwj/qhKRthPUoBFqSr4d8hx6a8tIThuwrBSgeQ05GD+mhx+pmXGHUQ9TjAMXPngHINrIhPfSQHhK/akEBisfQUkE95GT00GZcEqFFeblcvVUIsg095Dv0kH1IhBb9/f46CoECFI+hRqWH9NBDekhICz1m9sgBaEojm6jYR5CzrxSgeAzNm+ohJ6OHRskS0kIPtRU9ZB96zOhRVgZUVvLXftKDAhSPISejh/TQQwGsxKoW3d1yeXKYoLaih/SQMCYL5YOsBwUoHkONSg+NgvSQfUisahHWoxDINvRQMC/RruILsi+lAMVjyMnoISejh+xDYlaL6upwb8ZFtqGH9JCYXZIP+FMPClA8hjIGesjJ6CE9JGa1CPtmXOQ79FBbkdgJUPw02KMAxWOsNqpk0l/LwVRh5uwZINxOJizzyKow21YA0kOLHzsglVCAIhFaxGJAaamx7/GjHhSgeIzVRgWE09GQk5GEZR5ZFVYCFNJDEua2AlBGSYt2CbqRPYMAf9oHBSgeY7ZRRWUzLnK64UnTqsJOBoX0CH/2lXyHJCzZRgpQPCYshqQKGgVJwlLopgpqK3rsZF9JDwpes/GjL6UAxWPM1lwA5HS1RMHJBH0eWRUUoOgxq4dfN+NSBWVQJGFpKxSgeExYDEkVdgIUxpy5J6/QahHkeWRVUFvRE5ZRsiooQJGEZTqUAhSPISejx85mXN3dztyTV1CHrMfs2TNANPQIeiekCgpQJGHxHRSgeExYDEkVtBmXhIJXPaSHHvIdeuxkX8N2FEJYbIMCFI+hUZAes6PkMG/GRbahh/TQE5ZOSAWpFH8A5gvsAcq+Av60DQpQPCYshqQKGiVLyDb0kB56SA+JlRVvVVUy+xq2ADYsftRUgLJgwQKceOKJqK2txahRo3DxxRdjw4YNus8wxjB//nw0NTWhqqoKM2fOxPr163WfSSQSuP766zFy5EjU1NTgwgsvxI4dO+z/NgGEnIweGiVLqOZCD7UVPaSHxEqAEouFX4+g24apAGXJkiW49tprsXz5cixevBgDAwOYPXs2ujX5sbvuugv33HMP7r//fqxYsQKNjY0455xz0Kn5refNm4fnnnsOixYtwtKlS9HV1YXzzz8fKZGjixBhMSRVWNGjro4/d3Sovx8vsWMbyaRcwh4WyDb02LGPsOmhDVDKy41/X1jtIyxtpczMh19++WXd/x9++GGMGjUKq1atwumnnw7GGO677z7cfvvtmDt3LgDg0UcfRUNDA5588kl873vfQ3t7Ox566CE8/vjjOPvsswEATzzxBMaNG4fXXnsN5557rqJfLRiExZBUYGUeGZB6tLervycvsWMbANdj1Ci19+QldvQIm20A1vSor+fPYfMdQovSUuN7BgFcj+3bw2cfdm2DMeNbGziJrRqU9sG/6vDhwwEAW7ZsQWtrK2bPnp35TDwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPcICOV2JlbNnANmwwqaHFdsoLZVzySFqJgDsOd2w2QZAemixogUQXl9qxzbSaf8UDVsOUBhjuPHGG3Hqqadi8uTJAIDW1lYAQENDg+6zDQ0Nma+1traioqICw4YNy/uZbBYsWID6+vrMY9y4cVZv23eQk5FYmUcGwj8qNOt0w24fZBsc8h0SK/VaQHj1sLJDeXW1zD75RQ/LAcp1112H999/H0899dQBX4tl5YYYYwe8l02hz9x6661ob2/PPLZv3271tn2HlYYV1kZldR457HpQgMKx2yGHeadho5Bt6AlrAGtFj1jMfxklSwHK9ddfjxdeeAFvvPEGxo4dm3m/sbERAA7IhLS1tWWyKo2NjUgmk9i3b1/ez2QTj8dRV1ene4QFcjISoUVZmVz+Z4Sw60Fpa46dtpJKAT096u/JS2h6WELBvJ6w6GEqQGGM4brrrsOzzz6L119/Hc3NzbqvNzc3o7GxEYsXL868l0wmsWTJEsyYMQMAMHXqVJSXl+s+09LSgnXr1mU+EyUobS2hDllPWJyMKqzoUVMjg13Sg2wjG9JDj9/6FlOreK699lo8+eST+OMf/4ja2tpMpqS+vh5VVVWIxWKYN28e7rjjDkycOBETJ07EHXfcgerqalx++eWZz1511VW46aabMGLECAwfPhw333wzpkyZklnVEyVUpK39UG2tAnIyesLiZFRhJ229fz+3j6YmR27NE2hwI6HBjZ6w+FJTAcoDDzwAAJg5c6bu/YcffhhXXnklAOCWW25Bb28vrrnmGuzbtw8nn3wyXn31VdSKBfgA7r33XpSVleHSSy9Fb28vZs2ahUceeQSlZtaHhQQ7Tqa/H+jr4zsihgHqkPWExcmowo4e+/eHyz4YowyKFmoresKih6kAhRmoMovFYpg/fz7mz5+f9zOVlZVYuHAhFi5caObHhxKrWxLHYtxJtbdTgOK3RqUK0kMP6SFJpWTRr5UApbOTLyc1U+vlZ8g29IRFj5CYZ3CxYkglJXJHSL8YkgrC0qhUQXroIT0kdpfkMxaunagp+6onLFNeFKB4jFivbmZZLRBOp0ta6AmLk1EFBSgS7TEGZvSIx2X7CpMeZBt6wqIHBSgeop1Hpg2G7GvR0cHT1mGBAjY9FLBJtBmUMhMT9bFYOLMGZBt6wpJRogDFQ7Rbu1OAIjtks1oIJ8NYuE40VhGwhQkru2MC4Wwr2g7I7Cq+MOpBwbweyqAQtrE6jwyEsxOy2qiqquQoMkx6WA3Y/OZkVGFXD7INThjtw24w39OjHzAGnbD4DgpQPEQ7jxx0Q1KB1UalTVuHSY+wjIJUQXpIrGoBhFMPu9lXgIqGAf/ZBgUoHmL1iHDAf4akAhoV6gnLKEgVpIeE2ooeqxmU8nJ+SB4QLj3sBmx+0YICFA+xOqcO+M+QVECjQj12O+TubmBgQO09eUlYRoUqsBOghNF3kC/VE5bpUApQPIRGQXpIDz12VyYA4Upbh2VUqAIVwbxfOiEVkO/QE5ZgngIUD6GMgR47eoSxE7LqdCsqgMpK/josejAWnlGhCqhD1kO+VI/dtpJM8mNUvIYCFA8hJ6NHhR7UCXHCZh/aqaqgjwpVQLahh3yHHqt61NbKZet+sA8KUDyEon495HT1kH1IaMWbHrINPeQ79Fi1D78do0IBiodQ1K+HnK4ecroSFQFKIqG/TpAh29BD08N6VBRR+6FvoQDFQ8jJ6CE99FhdOgmETw+hRUmJ+SX5YkQIhE8POx2yHzogVZDv0BMWPShA8RCK+vVQBkWPiqWTYemE7Djc0lJ/pa1VEJYOSBWkh56w+FIKUDxERaPq69NvmR9kwpKWVAU5XYmdbBIQPvsg29ATlg5ZFWGxDwpQPERFBgXwhyGpICyNShXkdCV2sklA+PRQZRuMqbsnL6F6Pglj4fEdFKB4iJ1GVVYG1NTw134wJBWEpVGpggI2iR0tANJDi9AileKH5IUBqteSaA89DLoeFKB4iN20tZ8MSQXUIeshPSR2glcgfHrYsY2aGl5sDIRPD6rns7fiDfDXdCgFKB5CaWs9lLbWQ9uZSyiDoseObcRi/uqEVEDBvERbkxj0bDQFKB6iyumSk5FaDAwAvb3q7skr0mm5eyodCEdtJRsK2PTQFI9E2EZpqfkl+YC/9KAAxUMoba3HjtMdMkRu0RyGTshumjZstmG3rVDApids9mEnGy206OzkA4OgEybboADFQ+waUticrqq0dRj0CFOaVgVhcroqoMGNHhXZV8aAri519+QVYbINClA8JEyGpALqhCTaDAoFKGQb2ZAeeuxM8cTjQHk5fx0GPcI0HUoBioeQk9FDAZtEaFFeLqeuzKB1MmFIW5Nt6FGlhx86IRXYmeKJxcJlH2HKzFOA4iEUoOghPSSqtGAM6O5Wc09eQrahJ0ydkArIPiRhCuYpQPEKxkJlSLZgDGCMnIwgnbatRWUl38wPCIcelDHQoMA+wtRWtL40DNMatkillNlGT49+0zcvoADFCx59FBgyBIkNWwFE3MkwBnzrW8DIkUj2pQBEPGDbtQuYNAnJr/8jAOtaxGLA0KH89f79Su7MG/7yF6C2Fon/XQzAflsJtBYAMH8+UFWFZNs+ANbtIxS20d8PzJyJ1CETkOKuw7bvCLQemzYBTU1Izv8JAPtaAN770jJvf3wE2bQJuPJKAEBy9ToAh0S7Q378ceCJJwAAiXg/gFLLnVAonO6NNwKffIIERgCw3iEDXI/duwOsR28vcPbZAIDEa28BOCfatrF6NfDv/w4ASHyyA8CwaOvxi18Ab7+NJCozb1nVY9gw/rxvn4L78oqrrgLa2pBoexeAdS3Kyvi2DV1d3D5GjlR3i2ahDIrb/OEPmZeJHh72R7pRPfxw5qXdNG3g9ejpAZ56CgCQABfBToASeD1eey3zMgkexVsN5oUWvb36FVKB4je/ybxMtPcBiHBbAYAHHwQg2wpg3z4Cq8ennwJvvQVAje/wSwBLAYrbvPtu5qVwupF1MqkUsHIlAIABSDA1nVBg9VizBiJXbbdDBkKgx6BtAPadbl2dXA0VBj2SjK+LjWxbaW8HPv4YgJoAxS8dsmVWrMi8DJPvoADFbUSAMn16pmGpcDKBPH9mwwaeR6yuxsCUE8AGzTGyAZtwMiefLDvkCutrhAOvh+iQtXpYtI2SEtkJBVKP/n4ewAJK9Ah8h/zee/z5kEOQHNEEAKgoT1takg+EqK2cdBJlUAiL7NwJfPYZ95Zz59o2JNGoBgYCupRUdMgnnIDk+ImZtyM7KhRO5otfRKKCrwONw/p8RKA7ZMakfVxyiZJRoV+criXWrwf6+njh2axZyqa8AmkbgGwr06YhMeZQAEBFacry5UKjxyWXyH6ldMDy5fyiBwUobrJ2LX8+/HDgqKNsO5maGrmU1GtDssT77/PnqVMzTgaI8KhQjJCnTkVy5OCoMGX95EPhZAKpR0sLX9FUWgpcdJF0uuURzSgJ2zjhBODQQ5UNbrq6vF9KaonVq/nzCScg0dQMIBwdsmWEfcyahWQlXz1R0W99336/DG4oQHGTTz7hz5MmAePH23YysVjAO6FNm/jzpElINh0CAChBOhN0mSXQTiadlvZx+OFIDKat4wPWU2OB1kPYxvjxvEOOVQEA4gnrS9ZCocfhhwPNzbZ9h3YpaaB9xxFHINl4MAB72cZA28a+fcCePfz1pElIDG8EAMSTnZYv6Zd+hQIUNxGNasIEYPx4mUFJWo90A92wRId82GFINHAnUxFLFviGwgRai5YWvsSktJTbxqCTqUhE3DYmTABKS5GsHgoAqOjYY/mSodHjkEOk7yi3VnxWVgbU1vLXQdcjcdBYAEBFOqLToUKLhga+v1b9KABAvNd6MO8XPShAcRMRoBx2GDekksFR4d4Wy5cMrNPVZgwmTEBi1DgAakZBiQTv6wOF0GL8eKC8HImhg04mYX1ry8DaBqDvkAEkqviQP96xy/IlAz0FqNVj3DiZQbGhh19GyabZtw/Yu5e/PvRQJEaOAQDEUz2WLxlYLYAD2kqyjm9cUtFtveH7RQ8KUNxEG6AASJRUA7AXoPgl0jVNSwsv+isr4xmDg7iTqWAJyxtV1NbyBAQQQD2yO+Qh3MnE+yI6pZHtdCv4cL+iY7flS4ZFD1ZWjsTg5mTxfa2WLxlYPbIyBkkRzKfsT4e2t2dW+gcHTSYaABJV/JexMx3ql36FAhS3SKeBzZv560FDSsYG07SdEUxba2sMysqQiGtWreyxpod2e/fA6iFso2IIAHvTf4HVAjjQ6ZYOZht791u+ZGDbijZjMGECBjS1oJEM2A7Irg0FMFhQbjG6EFoAAdyZ+4BgvgYAUNFnvwbFa9ugAMUtWlp4ZqC0FBjHpzPExmTxzgg6GRGsiUY1MLgHio0ABQhwp5ylR6KcByjxpP0pHq/TtJbI7oREkWyP/bR1YG2jsRGoqdElGO34jsC2lewOOc6za3EkLP8y5eV8VSQQQD2yfUcp/0XsZF/9Mh1KZ/G4xY4d/LmpKbM2OLMbZBQzKEIPEawNOt0KJPkBMhYJbKf86af8efx4AECiTONkGIOVHaiEFj09/BgBO3uIuEpXl8wYDOqRyTZ27bV82cB2yNm2oQ1Q2tssXzawbWXbNv58yCEAgESK+9M4Etx3WDw8ZuhQvp9UYO1D6JHJNlr/RQ47DPjxj4ExY+zenD1MZ1DeeustXHDBBWhqakIsFsPzzz+v+/qVV16JWCyme5xyyim6zyQSCVx//fUYOXIkampqcOGFF2KH6LDCymef8efBvzhjQFI0LAVOJnCNSvy9x/IK/MwR4TYzKIHXYzBgSw46mYp0H9BpLVVbXx/Q7d2FFnV1/AEgwQaLQrvs20bgOuRs2xhc6FaCFEr32i+SDZRtAMD27fw51+Amar4jnT7AlyYHF19UdO+3fNmmJuD22zPn2nqG6QClu7sbxx57LO6///68nznvvPPQ0tKSefz5z3/WfX3evHl47rnnsGjRIixduhRdXV04//zzkQpcdZIJRIAijEizmjaSo6CsgE3ooSqDEignk0rxXYYB6XTTPLuWGRVaoKRE7ncRKD2yOiBAo4eCVSuB0gLI2yHbsQ0gPHpkDhlVpEegfGlbG99pLxbjUQU051b1d/L0aYAxPcUzZ84czJkzp+Bn4vE4Ghsbc36tvb0dDz30EB5//HGcPXiU+hNPPIFx48bhtddew7nnnmv2loKBiHKzOmQAqNgbwUr8rIAt0hmUlhYepJSV8ZUJyNEJHXpogQvkZ+hQ7nADpUeOACWZ5q6qop0ClEgH80De6WHeViK2b5DQYvRoXkgDIJHWTHnt2QNUV3t1d7ZxpEj2zTffxKhRozBp0iR85zvfQVubzBCsWrUK/f39mD17dua9pqYmTJ48GcuWLct5vUQigY6ODt0jcOTpkAGgYt/nli8byEYF5A3Y7I6CAllnIDqgMWMy66R1nVDUAjahx2BbAYDEANcl3rUbumUsJhBadHZavoQ3ZOmhKoMSyLaiLRLJ0kNVwLbXepmT++QK5pN8XteuHn5AeYAyZ84c/Pa3v8Xrr7+Ou+++GytWrMBZZ52FxKAVtba2oqKiAsO067oANDQ0oLU1dyZhwYIFqK+vzzzGaf4YgSFPh1yKAZTusT/FE6hG1dcnG86gHqqczPDh/DlQeuSa0lDUCQVSj6wRMgAk+rnTjSNh+ZcRHTIQsE65YMbAum2MGMGfA2Uboq3U1mbmL1UNbkRbCZRt5ArmFdmHH1AeoFx22WX40pe+hMmTJ+OCCy7ASy+9hI8//hgvvvhiwe9jjCGWZ6XCrbfeivb29sxju/ijBIliUxrM2pbV2g7I4iXcR9RbVFZmfgFVUzyBdroaJ6MqjR9oPRSPCsvKZE1OYPRIpaTvUDzFE8jg1cFgXrQVG+7HfQroQRkUA4wePRrjx4/Hxo0bAQCNjY1IJpPYlxWmtrW1oWFw/j2beDyOuro63SNQMJY3g1KBJHdCFncHEo2qv59nPwOBtkB2MChV7XQD5WRyZQwUZ1ACpQd1QpLWVlmfNFjXd4AWFkcmgdMCKNhWKGDjqMoo+QHHA5Q9e/Zg+/btGD16NABg6tSpKC8vx+LFizOfaWlpwbp16zBjxgynb8cb9u3j0xqArLTOOJlBa7LYKqqr5YmmgXE0WSt4gCyna8NDBDJjUEwPG8sKAqmHyLAN6pFOy5qRCiRt6RG4Tkho0diYqU/S2UYyKX2LSYQW3d2WT5dwnxxtRdch29gGNpABW1ZbAbLsI3Db4uoxvYqnq6sLm8S23AC2bNmCNWvWYPjw4Rg+fDjmz5+Pr3zlKxg9ejS2bt2K2267DSNHjsSXv/xlAEB9fT2uuuoq3HTTTRgxYgSGDx+Om2++GVOmTMms6gkdIuofOZJPa0BjRCX9QBqWDSkW446mpYU73cG9nPxN1rp9IMvJ2CiCDmTGoGXwLKbB4BXIyijZcDKB06O3VwYgg3roluRHrRMSHVA+2wC4HlVVpi9dX8+XoqfT3HcMjiH9TY62osugKGgrgQlegeL2EbUAZeXKlTjzzDMz/7/xxhsBAFdccQUeeOABrF27Fo899hj279+P0aNH48wzz8TTTz+NWnG2N4B7770XZWVluPTSS9Hb24tZs2bhkUceQak46S1sZNWfABojKh2wFaAA3Om2tATI6RbIGNhtVKID2rePO96SIBzmIJyMpofQj4KsD28Dl0ERHVBVldykTbtzqs0AJXCdUCHbKB0AUuB65NnWoRAlJbzIfs+eAAUoBTrkyAWvjMn2ktd3RCxAmTlzJliBOc9XXnml6DUqKyuxcOFCLFy40OyPDyaFUvhlKaAfSrIGgXG6WfU4QJ609WC2yQxCi3Sat82sxWL+Q+tkcowKuZOxlsIHAphB0XZAWfVJAFCO/mh1QoVsoyzNAxQbvmPECK5F4PRwoEPOXnBg4XQJd+nokBuxhTRACcL4Mvjk6JAzGZSyNH8RJadbKKOkTVtbIB6Xh34FImBrb+fTGoDOyahK0wY2g5LD4ZaXDKAELPIZlIxtlA8OFKOoR74pno4O20XDiURANmAVbaWuTjo9hGuKhwIUN8jRIWei3HJ1AUpgnEyhjJI40C4qdRfCyQwdqqsjUD0qDIQWQMEOKF42eBRGlIL5QhmUCvsBSqD0SKf5qiYgZ8AWR4J/psvabrI1NZnNWIPhS3O0FYAyKIRZCk1pCCcTlcLQdLpw5XnlYF7VZtoaCIeTyYwKLSK0aG8PyO6pOTIoKrONgWorQOEMyuDqvcgMbvbs4fspALqaG7ngYNDAbSw4CFTAlqOtABSgEGYpNKVRMdghR2UU1NbGe8qSEp2TyehRNVgoHZVOKI+TOWBVk8W0tbYGJxA7ZBbKoCjMGASiQwYKZ1Di9n1HINvKQQfJVAc0wXz1YEllVKa8crSVVIo/AJriIYxSKIMi6kCj0qiEFg0NOZ1MvNp+gBKoTshImjaVsrwLX+B2Ty1UBKkgQAlUhzwwwAN6ILceVeoGN4GwjTxtJRPMK/QdgbCPAtlGgDIohBF6e+XQNVeRbOXgnyAqjSrH9A6g0UPhKCgQehTJoFSU2K+7CJQehfZ1UFCfFKgO+fPPeeastJRnDQahbGOeKY0hgwOeqAz2CrQVYDCD0t0dkLnd3FCA4jTafR3EUBbaUdDgn4BqLgAA8Rr7AUrQ9WBMo0fdYKFBVPQolEGpVDel0dWld+a+RLuLrGZDH8o25s6gVAwZjGCjMtgr0FYAzYpIG32L11CA4jTaOWTNwvrIjoKKBSgKRkFBdzIDA7LkREWAEhj70GYbc2VQFGQbhw6VzdD3nXKO+hNAG6BQthHQ6FFrP0AJegYlU49TAcTEPlIBnuahAMVpclThA85lDNJpy5dxh2JTGrWDHXJUNq4rlqats+9kAjNKFktI82YbB4P5ri5ZCWgSsXsqEIBOOY/vyLSVGnXBvO9tAyg+uFGYbfS9beTZRVY3HSraEAUoRF6KTmmomzdNpwOQzSumh4JRkHAyvj/Ik7GCW5kDQHzo4N4onZ2Wf0xg9NBqock2yoyBxl1Z3OsCCFAnZDTbqMg2LC4Uc4+ig5tB36HANnzfVjo7ZeF8runQODJHRdixD6+hAMVpijUqkUGx0ajicWDIEP7a9w2r2DyyyKDYaFQjR/Jn32vR0ZFzF1nhZEpKgLK6av6fKOiRZ0pDN8VTNthebOgh6k137bJ8CXcwWhSqwDYSCcsLxdyj6OAmQr5D2EZtrXT+yApQxPsUoBB5KToKGoz6OzttDWFC43QVjIICo4Wwjfp6oLo687YuTSsO2YxCh1xsOjQeU6JHYDoho0WhNrSoqZEbGPvaPvJMaQAa+6gfnA6NUlvJZxta32HDl3oNBShOU6TQrUKMggYG9Ll9kwin6+uGpd3XIV/ApsDJCC26u2WCwpcUK4JUNAoSTtf3HbLLevi6rQCuBPNAQPTIs4ssoOmU69T5jsC0lbzBPJQE815DAYrT5BkV9g0eUFtVVyHfDHsnlGdfB0ATsClwMvX1cg84X+tRrAhS0SgoEMEr4JoegeiQgeKj5DrNlIaN7Gsg7EN0yCNHajbEyVqSrzCD0t7u82XoxTLzFKAQhshjSCJAqawuken9sDvdPPs6AJqAbZh9JxOLBczp5rENVU4mELYBGMugRGWKx0i2UQTzqZQ0GgsEYnCTx4+KpAoAVAy170eHDZOuyddF1MVqGysgs400xUPkpLcX2L+fv86XQalCdDqhPE4GkFMxVcMHJ8RtNqpABCjFsmuKbWPvXsurc90hjx4Z24hSWymQbczoMSwu3wx7hi1Ph6yNy6pG2C8oLymRK3l8rUceX6q6rXgNBShOkmcXWUAaUmUllI4Kfd2o8jgZxjQZpRE1/IXNRhWIUWGejIHOySiouRDL0Bnz+X4XRTJKlZWITg2K0KJAtrGyulRmX8OuR5EOGQDiw+xrAQREjyIBm6p+xWsoQHESrRFp9nUAIup0i8ypA5oApafH1nA/UHoYcTI2Rsjl5XJzMt/q0dcnoycjGRQFGQNfB695bANwLqPkaz0MdMixOjUdciD0cCnb6DUUoDhJgSmNnGl8BTUogWhUBUZBVSNr5H/CnrYuUp+k0sn43j5EB1RZyfej16B6VKgNXn27OZkB3xGp7GueQ0ZVB/NAQPQQ7aWQHlSDQhTEQM2FE07XtxQZBcViQHltJZ93B8IdsGl3kc0TsKlM0/re6Wq1yMo2OpUxSCR87LuNBigKOqFA+A4zGYOwZ187O+XfmzIohGXydMiAs6NC31JsRVMlECtRsxmX7/Vob8+5iyzgzDyy7wM2FzMG1dWD14KP7cNIQXmUpngM+A7tjqqhHtwILerq9L8zqAaFMIPZKZ6wb06WJ2DTOVwgGgGK0GLoUN0uskCeItmwb8blYsYgFgtAJ5SnYBiI4BRPOm2soDweV3IUgu/1cDGY9xoKUJykQAZFl8ZXUCRbVyc3J/Nlw+rvz7uvg65RAUr0CKWTCfNmXC5mDIDgBmyplNz7Q3UGxbebkxXYRVbXVmKxaNTzGW0rVINCFMRsJxTmUWGBfR0OCFAi7mRy2obNoxBCp0eUanI0aPf9UJVR8v3mZEKLUaPkKGyQvL4jzNlXyqAQSnDZkHzdsArs6+DkFI9vNyczOwoCIut0ncyg+DJgM5BtBNT5Dt9vTmbUNoDIZ1/zthXfLlcrDAUoTlFgF9mBAf4A1DpdXzcso8EaoESPESN4Vokxn3ZCBfa50OlRWiq9r4KMkuj3fIfRmgvFNTmff27rMs7Q2sqfy8tl5DCI6IDKywcXuykO2HxpH0ZtA1Cix6hR/Hn3bl7+4jvMDnxtHoXgJRSgOEWBXWTzpmltOpmGBv7sS6drdEUToMTJlJVJ3+5LPcyMChXo4WvbAFzPoIhSBl/qoQ1e8+0iq7CtAAHRw0xbURDMp1I+n/IqpkeNmj2lvIQCFKcwsIssoHaDIV93QlbStBHVw4lOSHRAu3b5cMqru5tXaAKuTYcGwjaK7SILKG8rInnjK1xuK+XlMhvta/sopkepmqMQvIQCFKcw0CFXVAwOkBSPgsjJcII6KnSq8C8W8+moUATzQ4bI31VDzo3rbG7GRbahJ6h6OFGDAvg4YCuwwSPgTPbVSyhAcQoPnIyvR4UuT/EAIXIyCkbJvp7yKqAFkLVnkLZouLvb8o/0rW0AnnRAQdUjcr50/375S7voS72CAhSnMNMhK4r6g5pBccrp+nZUuG+f3HDCRSfjW/soMKXBmFxdXVk5+I84CkFBTY4vp7xcLgoFfNwhA8YLyoHwT5cLLYYN0/zSEqemAL2CAhSncLmwC/BxowLMjYLCnqYVWowYwXe/zEKXMQDC3wkZsA1gUI+YuqMQYjG+SsN3U15W2opN3+HbYD6Vkg3Yg8GN73xHgeAVoAwKYRQrUxr9/bY24/JtIWR/v1z7TKOgolMaupoLIPxO12CAoroQUkx5BUmPyE3xCGdWUiLX/2pwenBDvsNbKEBxCiujIMD2BkNiVOirvT8K7CILRHCKp0DKGnBulBxEpytso7RUs4lohPUoOEK2sRmXb6e8hBYNDfKcHQ2RC9jM1GsBFKAQeTBwDk/GiBQtBysrk/2/rxpWgV1kgQgWyRocBdEUTw7bAMIdwCYScs7JTAZFwVEIvpzyMtghq86++tI2APN6UA0KcQC9vbwQEjDudMOcmrTaqBRpsXu3T0eFLs8jB3GK54AOGQh3ACuC+XicF0JmUTD7aqMT8u2Ul0dTGr70o0BBPRijZcaEEQrsIgsUGRUqivyD6GRUFw1rR4W+mvLyKEDxpdMtsuQ6chkUrRZZGzwCOfTQHoUQRvswO6WheHDT1hacwc3AgNyan2pQiPwU2EUWcGdU6CsnU2C6CyjQIXd32zoMo6xM7ggZ6IAtzLuFdnbK/UyMFFAD4a5BMWsbQHQCthw4FcwHccpL2AZAGRSiEGYbFRDuNL5VJwOEcy65SJrW6SkeX015CS3q6/VnhwwSuSkeD32HL/UosqzWqeyrdsrLN77DYLYR0OxeQDUoxAGYzRgA4a5BKaLHAU6mslIW04ZNj3S6oNPt75dJI9WjIF+u8jK7rwMQ7oyB2bYChLsw1Orgxmb2FfBhwLZnD3cQgPxjadDW42QS91HLoLz11lu44IIL0NTUhFgshueff173dcYY5s+fj6amJlRVVWHmzJlYv3697jOJRALXX389Ro4ciZqaGlx44YXYsWOHrV/EV9hJ0ypyMsLP+QKzTka7GVfY9Nizh08WAzmdjFP7fgD6VV6+0YPaih4rGRTFO1EHSY+806FA+OxDaHHQQfwgtyycDOa9wnSA0t3djWOPPRb3339/zq/fdddduOeee3D//fdjxYoVaGxsxDnnnINOjUDz5s3Dc889h0WLFmHp0qXo6urC+eefj5Rv8s42+ewz/my08hxQPir0TaMCpB5FRoVO6CH+BKJte47Q4qCDNBt7SJxO0wo9xG14ThHbcLJDFlrs2iVPHvAcs6tWgPC2lYEBmc4xah+KjkIAgDFj+LNv9PAwmPeKA3e+KcKcOXMwZ86cnF9jjOG+++7D7bffjrlz5wIAHn30UTQ0NODJJ5/E9773PbS3t+Ohhx7C448/jrPPPhsA8MQTT2DcuHF47bXXcO6559r4dXzC9u38edy4nF/u6eHPuil3RU5GNCrfdEB9fXIXWdIDEJnCsWNzfllo4VSadswYYM0aHzndIno42SGPHMkHoskkD+jHj7d1OTUIPYThZnHAqhUgvG2lpYXXXZSX59zgEchhHyL7un+/7U7Zd3oI2/Agu+YVSmtQtmzZgtbWVsyePTvzXjwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPXxNEacrFi3oOmRFhiQaVUeHT4Jm0borK2XVWRZCD7FXHQDlevjGydgJXm0ehQD4UA8rbUVRhxyL+SyjxFhR+yioh8IO2camtOoQWowZk3ODR8bytBfFGTZf2AZg2DZ0fjRqUzyFaB2sJmoQ1UWDNDQ0ZL7W2tqKiooKDMvahEj7mWwWLFiA+vr6zGNcnj+QL2BMOt0inVBOQ7LpZOrqZPv0RcPSapFjyTVQpFO2qYfvnIzBDjlnsAZQwAYoTVv7yj7275cGYMU+FHXI3d18gOM5RWwjmZSr0ZzolH03xWOwX8kbzPsi6jSHI6t4YlkdEWPsgPeyKfSZW2+9Fe3t7ZnHdmG4fmTXLj7K1Q7PsnA60vVVJyT+VnkcLuCsHlonY7OoXw1WOuSyMpnTD1va2sqoUGHa2ledkNBixIisORyJk9OhNTVyX0lf6VGkrQARmR62k10bGPBRoZVxlAYojYMVmtmZkLa2tkxWpbGxEclkEvvEVvA5PpNNPB5HXV2d7uFbRJTb0JCz0hpw1skAPmtYRRpVf79cOeeEHmKvvIEBnyyttdIhA+FMWycSsgjSg/okIFhtBaDBjRahRXl5Vr254imvlhaf7BtkMGBzKvvqBUoDlObmZjQ2NmLx4sWZ95LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZwINORk9BtOSgDOj5PJyeUq7r/QoUiR7wJ5lYUxbi5swW58U0bYCOD/lFSQ9cnbIgNI9pUpKeHDS1mbrUvbR1ieZqddSeBSCF5hexdPV1YVNmzZl/r9lyxasWbMGw4cPx8EHH4x58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpmVU9gaZIBwQ4W9gF+MzJFGlUQouSEs2yWkB5J/T551yP44+3fTnrGKhPyulkAOUByu7dPIGh09xttLZhpT5JbMaVo4DSKL5sK2YHN2H3HR61lbIyHqS0tPBYOs9KZ3dob7dWnwRwPXp7oxGgrFy5EmeeeWbm/zfeeCMA4IorrsAjjzyCW265Bb29vbjmmmuwb98+nHzyyXj11VdRq9m+/N5770VZWRkuvfRS9Pb2YtasWXjkkUdQKtavBxkDTsbJIlkgWE5Gq4Wuj1Ksx3vv+UCP3bvlWsA8y0gLOhnAth7Dh/OgJJHgTre52dbl7GE32yg+oP2/SXy194eBei2np7x8NQVoZUoDUD64aWnhekydavty1tHWJx3wC3MKZl/b2nyyrNMcpgOUmTNnghWoBo7FYpg/fz7mz5+f9zOVlZVYuHAhFi5caPbH+x8TRaGRmFf3OGMA+EgPbX1SntRFXiejaJQci3E9Nm/mengaoFjNNoqjENJproeNACV7aW2RWn5nKdIhp9Pu1eR4HrAlk7I+ycyUBqBcj5UrfeA7rAbzQKCXGtNZPKoxMY8c+nn13l5ZmVpkisfpURDgAz2srmgCHBkle94JmXC6uk5IexSCoimvnh6eRfeUIr5De1pt6LOvImKMx/Nu0pY3QFG487Jv9LAazAOB3qyNAhTVFOmEGCsyj6xwM67WVo+rz0Wjqq4Gsva9ETi9agXwkZMxMf0XiYyS1elQQFmnXFUlTdNTPQxs0uZ0QTngI9vQdshF6pPcCOY914MyKIRt0mlpyQU2FxL7ceQskgVsO11t9bmnJ5Na3aQNCOdmXAaya07XoAA+7ITMZlCA8AVse/YYrk/SHvYNwBEtWlvlmZaeYHWqHAjnlJeKwU0Aa1AoQFFJWxuPQEpKim7SBmR1QtrNuBRUn4tDAz11utu28WePpzR80QEB1osggXCOkk3o4WSGzRcBrNBi1Cjz9UnaoxBsbsY1ahRfmZpOezy4UZFdU9hWRCztGQameCiDQhRm61b+PGZMzpNqAdmoDthcCFBqSMKOPW1Yn37Knw85JO9H3JjSED5u3z59gOg6wj4K6OGGkxF6iPjRE3p65CGSBU7pc2OUfPDB/NlTPURbMaBF3mANsK1HaanslIOih5M1KFrb8HSneAN6UA0KURgDHVDeqB9QakjCjj11MnY6ZIVa1NfLLbxFO/cEE/bhZIcsbMNTLcQPr68Hhg7N+zE3prx8oYcd2ygrk0fYhsU+7PhSB4LXri4+wPGEdNrQYI8yKERh7HTIgCOdkLglT1DRIYvNuGwibsEzPZJJOZFtx8ko6JDFj9+508PjOQzYRt5jEIDwBWwmfMcBWgBK9fC8rWh/uBU9FGpRVSV3ovbMPlpaeEMoK8tbOgBQDQpRDDsdMuBIJxQUJ5O3Q9Z+yAaed0Lbt/MccVVV3mWTgIG0tQKne9BB/Da0C0dcx0RbAZzNsAW+rQDhyigx5ptso/YWPLMP8YPHjeNBSh4og0IUxs48MhCuUWEqJXs/K06mqkouVQhDJ6R1uAV2A3PD6cZiMnXtmX2Y6IAOOAYBcKStbN/u4bJ8VYObMPiOXbv4pi+xmLUVbyJ4VZR99VwPA7YBuDO4cRsKUFTiIyfjeYe8cydfp1hWVvAQi7xOJhZzpCYnKE7G6VGQ5/ZhMmNwQEyneBl6aSnPore02L6cNexmUMKUURI/uKmp4GFRRYN5IBzZV4O+w62MkptQgKIKk2lJt4pk9+0DOjpsX848QouDD+bePw9uTXmFxskomkcOgh5uBfNlZXKg7oke+/fLbWytrNIAHMugeLJyxW4wH+bsax7SabnTsJP1a25DAYoq2tr4RktF0pLCRpzukGtr+cFwgEdO166TAcKVUbKrh+I0redF1D7KGAAeB2zihx50UB7HwHGrBkW4r54eeVKFqxhYsQIUmNJQeBQC4INgfssW/lxAD+0xCJRBIQ5EWG9TE1BRkfdjwkZynm/mUBrfzwGKW3oIJ9PaKjfsdBUDemiPQdBubQFAapFMKll646lt9PTwgF57Izlwa9WK9jY8CdgMthVDgxsFelRWyllZP/uOgvahcC+UIATz2l9T7PeZgWpQCKONSky31NXl+GIEna74VXPqobBhaU8p92RvGIMZA5FSPyBg074R9Ckvg3ugGGorYZjyErZRYHoHcK+taG/FzwGK24Obffs86ONTKemwCugh7mvIkKxjEADKoBBQ06jClMY3sKIJkJ1QQSejoBOKxTzMGiSTch/1AvYhtCgpyZHGV7wZl7iN7ds9OHPFZx0Q4HFbIT30+GywV1cnD5R03XcY3AOlYPCq8CgEt6EARRUG5gkBg05G0ajQ0zS+Sj2CPio0uAeKVoucK5EVBrCjR/OjFlIpDw5CM2gbBTsgxcF8EKZD3cwoeaaHwcUGQEQCNoN7oBQc6Ck8CsFtKEBRxaZN/Pmwwwp+LBKNKpmUP9RHeng25fXJJ/z50EML7oFSUAvtFxToUVIiiyE906O5ueDHvApeXV+54nM9XOXzz3mNUkmJ3KwnB8kkkEjw1wUD2KAHbCZtI6cWirOvbkIBiipMBihu1qC43qg+/ZSve6uqKrgHCmPujpI9C9g2buTPRWyjoBaAY6Nk1/UQbWXixIIfM9RWFG3GNW4cjx37+lw+xTedNqyHFxklkexyDdFWxo83tNgAyFFQDjjmS13Xw6RtuDG4cRMKUFSQSMhCJoOdkBs1KKJR7drlsl1qg7UCGYO+PrlzpxujwgkT9LfnGiY7ZLecjOd62Gkr4k3G9HviW6SiQg7YXdWjpYWvES0t9dWUhrCNTz5xOaNksq1UVeWZ+YhYWzHsOwK2FwoFKCrYsoWPhIYMARoaCn7UTSdTXy8PuhIDE1cwmDEwPApS1KiEz3NVC0C9k1FkH57okU7LtLWdDIrizbi0t+OqHsI2DjmEFwUVwM36teZmHjP19Lhco2QyeC2abQyybWh/oJ22AlAGJdIYzBgA7joZwGOna7BDzrk0DlDeqMTt7N0L7Nmj5JLGUDXFozjD5olt7NjBM47l5QU3NASKZFAUH4UAeKSHwQ4IcHeLgvJyWfbg58FN3mBecQ2K+PNs2uTieU2Mqck2AoHdC4UCFBUYNCLA4Ly6os24AGDSJP788cdKLmcMn86b1tQAY8bw16453VQK2LyZv1Y1xaPI6Wptw7U0vrCN5uaCqxIAb/VwDYO+Y2BA7hbqxvQwIM3Vz77DrYzB+PE8aEsmXTwBfPdueQTCoYcW/KjhDApN8UQQEwGK28vBgpBBcTPqd12P7dv5/gPxODB2bMGPuh2wiUVFnZ1yY1fHMZExcDtt7WkGxcR0qBvTw4AHejCmLoOiWI/SUlmH4poewo+OG5dje1g9VCRL5Mdgh9zfL5fG5TQkB5aDuT4qHBiQpe52VjQB4ZjyEj/o0EPzzGNJ3O6QKytlYajrTtduMA84NsWzaZOShUHGMFkUWlGR54BfB7KvrreVtjbe1ktKii6r9WJKw3U9VGXmAQpQIo3JjAHgXtra9TTtp5/yICUel/MpeXB7FAR4ELAZ7IAAbzJKnunhQ6fremGoiRoDw20FUD7l5XqHfPDBeaIwiReDG9fbioX6JKpBIfT095velKyyskDBvkOFofv2uVQYKpzMhAlFMwZepCU9y6CoyBiEIaNkImBzWw/XC0NbWng0ZGCJcdGaCweyr+JP9MknLhWGmmgrXgxuQpFBoRqUiLF1K2+9VVUFz0oADDQq7RcVNazqaln64ErkbyFjUHTVSleXspy7NqPkSmGojzMGgMtOV7spWRE90mnpS0Orh9CiyKZkgEHfoXiUfPDB/LYSCZcKQy1M/4XWNrQ/SEX2laZ4IspHH/HnSZOKLjEuOiIEgj93KvRQ2agAJZtxATyxE4vxzs+VHUNFVOjTUaGraesdO/jufGVlBbcxB/gGsYLQ1hkI0VVkk7RfVDRKdr0w1IQeXhbYb9nCE+eOYqJgGPAmYHMDClDs8sEH/Pnoo4t+dN8+/ixOxsxJ0OdOLegxdGieD1RXK9+MKx6XW9477nQTCTkqPOqooh8XKwrd2gcFcLkwVNjGpElFNyUTWmhnLg4g6AGb0OPII4t+tGgHBAQ/a2BCj6JtRfFRCAAvqauq4iV2jh8P0dLCf8nSUqpBIWwgGpWBDshUgBJ0J6NCDwc24wJc7IQ2buTTf/X1Raf/AL6BHAAMH57nAw4Er4ccwn1gby/w2WfKLpsbi7aRNzHpYE2OqwGKCT3y2gbgqO9wXI/+fvlDVPgOxUchAHysJJIZjvvS9ev582GHFS0YTqeB/fv5azd9hxtQgGIXE1G/VwGK6JDF7Itj7N0LtLby16r0cCBAOfxw/vzhh8oumRvhZI46quj0H2MmnK5CLcrLpdN1XA8L2TW3O+QjjuDPmzYpW62bHxN6iODV7bYi9BC36hibNvEgZciQotN/gIG2Ul0t21wQ9TARvLa3y3o6N32HG1CAYod0Wnp1VRkUB5zM5Mn8+cMPHZ47FVqMG1dkspzjVcAm9Fi7Vtklc2PCyfT2yg4xrx4in93RobTCd8oU/uy4HtqArQiGOmStHooYN45fdmAA2LBB2WUPpKNDVp6q8h0O6CFsY906ZZfMjXagVySYBwxkG2MxqYeYD1KAa23FQnaturpArbUDWrgBBSh22L6dz3GWl8tqsgIYcjL19fxZ5OwUMH48j3u0WVRHMNGoAIN6iAIVhXq47mRMZAxKSwvEdkKLZFLue64AVwI2xtRPhwo9xIcVEIu5pIcI5puaChRhSQxllIRYCvUQptvS4vA2BQHxHa4NbkQwryrbKIRSqIUbUIBiBxNFf4DBRuWAIZWUuNSwTDoZQ6NkB5yu0MJxp2sxY5B3ADlkCI9gAKV6uDJK/uwzPrIvLZVzjgXwqkMGXNLDibbiQIc8ZIjcG8ZRPUx0yNqaC7d9h7CNDz5wcG8Yk8G8Kdvo6HDxtEP7UIBih4B0yIBLWQMnRkEO6FFbK/fFcszpJpOykk5VxiAWczSjtH69g75L2MbEiUX3/ABMthXFo0JXgnkTwSvgj4DNL76jo0MuzHHbdxx6KF/Jo12gp5zWVn7PJSWyYK4AprJJQKCyKBSg2CEgHTLgPyfT2yvPJQplJ7RpEy9kqK0tekggYNA2tB9wwOn29fFdQx3ByRR+kDMoBjIGgLe+w/G2oi34MTGlUVVVYAk64Fg2WtyiY/YhbGPChCK/IMdQ8FpeLusbFduHk1CAYgcKUCQdHXwjLsDUCp7S0iJ7OwQ1ja+1DQNFf4acDOCIHqWl0oQd08NECh8wmTHQRrsKEB3y1q0OLnoIoO9wzDY++YRnHKur1azgEQTVlzqRmQccyb46DQUoVtHOExrokAF/OBnHnK4o+hs92kBL0W/SVrD/dniU7JiTMZnCN+xkIuJ0Da9aEcajUI8RI7gZAw51yl1d/FBNwJAe6bTBgM2hDkgboDhyPIRoK0ceWfT8LsDACh6BQ77D8YySxWDeK9/hJBSgWGXLFp41qKgwNE8IWAhQFHoDx53umjX8WbTeInjdqBx3usJ7qXYyQXS66bQ0OoN6GArYSkqCOc0jLtrYaKCX5QMKr2ouALkGQLsyWikmbcNPvsMRRCNUWZ8EUIASKd57jz9PmWKo6C+RkCtDDTmZgQH9gSQKcHSULPSYOtXQx712MpMm8W3UOzqAbduUXpoj9DjhBEMfN+1kHBolO2Ibn3zCha6sVJttBBzPGjjaVkzahuGaC8VtpbxcblDmiB6rVvFng3r4Jdu4aZPS1f6cVEoO9kzaB2VQCMnq1fzZZKMqKZFbneSkulouWVZsSMccw5///nell+WYdLpeO5mKCjlAEX9KZezdyzNsAHD88Ya+xWsnc+yx/HnjRgemAIVtHHMMjwoN4PWoULQV5bYBON9WurqU78go7EPculICFsw3NACjRvGslnJf+vHHfGv+mhpDy/EBCzUoUQ5Q5s+fj1gspns0NjZmvs4Yw/z589HU1ISqqirMnDkT68WcW5Aw2aja2vjzyJFFplljMcecrkhurFih9LLcGb7/Pn9tUo+DDiryQQc3GJo2jT8r10P0aoceamgTLgDYtYs/jxhR5IMO2UZDA99FlTEHOiGTbSWVkk7XKz1OPJE/r1rFk5lKMZkx2L2bPxfVQjvyUdxehB7K20pbGy+uj8WA444z9C1CD6+C11jMQT1EWznuOLnnUREM20cAN2tzJINy9NFHo6WlJfNYq8kL3nXXXbjnnntw//33Y8WKFWhsbMQ555yDziCdEcCYdDIGR8iiQx41ysCHHWpYJ53En9esUbrogRdAJpPcQR56qKFvEXo0NBT5oNBi717lxSJCj3ffVXpZ09NdAPD55/zZlB6KcdzpGtRjzx4+Oo3FeEBfEIf0OPxwvkK8t1fxuSuJhCxeMKiH4bZSViaXxCnWQ9jGu+8qbobCNiZNMnQ8BuCvtqLcd5gMXgET9iEiOkd3p1SLIwFKWVkZGhsbM4+DBofJjDHcd999uP322zF37lxMnjwZjz76KHp6evDkk086cSvOsHMnH/KWlspccBEMNyrAMUNqbuZRdn+/4tSkcDLHH29oSS0g9SgasIlhQTKpvCZHOJmVK5WdyM4xmTEATDgZ0WOLYZNCHHG62mDeoB7CNkaMMDAj5JAeJSUyw6ZUj7VreUpmxAiesjKA4bYCSD0U+47jjuN/i88/l7sJKCHgbcWxYN5EtlFkXw3rEfUAZePGjWhqakJzczO++tWvYvPmzQCALVu2oLW1FbNnz858Nh6P44wzzsCyZcvyXi+RSKCjo0P38BRhREceySvXDGAqgyLmPYTlKSIWk1kDpQ3LSSdTUyMrAxXrMWUKP8l8/37Fu0Ka7JDTaQtOxgGn64htfPopzwSWlxtepWEqmBdtJSh6aNuKyWDekB7CPhS3laoqWRyqNGCz4DsM6yFso6eHPxQiApQNGxSev5dOy+lhJ7KNDtmGkygPUE4++WQ89thjeOWVV/CrX/0Kra2tmDFjBvbs2YPW1lYAQEOWZTU0NGS+losFCxagvr4+8xhncOThGE52yIArTtcRJ+PElIa25SnWo7xc/gmVdUIdHXKLe4P2sWeP3GK+aE2Og7Yh/nxbtyr0YdrVbvG4oW+x1CEHJaPkZIcMOGofjmQNRDDvhO+orZULDhTrcdBB8riMlSsVXdTCajdT2UYHbcMplAcoc+bMwVe+8hVMmTIFZ599Nl588UUAwKOPPpr5TCxr5MAYO+A9Lbfeeiva29szj+2OLMY3gckVPIDFNK0Dka7yAMXCsjjAHxklwIFOSGhx8MEGhjQcrZMpeuakuOb+/cpXatTXy+WkyjohpztkF9rK2rUKl5M62SEDrmTYlLWVvXt5NAwYruUzlW2MxYKVYbOw2s0vtuEUji8zrqmpwZQpU7Bx48bMap7sbElbW9sBWRUt8XgcdXV1uodnMCZDZoONCrCYQXGwQ/7oI0WpyQ0bePq0upofBGeAdNp/GSVlTsZGkZvhAmqxDMyBuWTlAZsFPUwF8w7axtix3D61MbgtLKx2AyxmUBz0HcpqtsRAb8IEw6vdTGUbgWDVoTiZiQb0NSgBOdHY8QAlkUjgww8/xOjRo9Hc3IzGxkYsXrw48/VkMoklS5ZgxowZTt+KGrZt40fHl5VZMiSvMwba1KSShiVqh046yfCyuH375NJNU07GQaf73nuKVjb97W/8WVRYGsCUkyktlUXUDmYNli9XcLF0GnjnHf5aCG0Av4wKtTVb4s9qi9WrebH3sGG8Yt0glrKvDuhx1FF8HNLZqWhlk4W2IoL54cMNZBsBVzJsf/ubopVNNnyHIdsQCw4YC8xeKMoDlJtvvhlLlizBli1b8M477+CSSy5BR0cHrrjiCsRiMcybNw933HEHnnvuOaxbtw5XXnklqqurcfnll6u+FWdYupQ/n3ACL+A0iF8yBgDwhS/w57feUnCxt9/mz6eeavhbhBZDhxosS3BQj4kTeeNOJBRkDRiT9nHaaYa/zVSHDDiqh7jtv/5VwQzSBx9wR1hTY3iPC8BGW3HgzAKhx5IlCi4mbOMLXzB05gxgIdvoYIdcViZ9x5tvKrig0MOE7/BTWznpJO6/Wlpk2ZlltA7IKT3Ky2WmKiDTPMoDlB07duBrX/saDj/8cMydOxcVFRVYvnw5xo8fDwC45ZZbMG/ePFxzzTWYNm0aPvvsM7z66quoNbgG3nMsNCrGTKbxHa62njmTP7/xhoKL2XAyhrQAHNUjFlOox5Yt3FtVVMjhlQFMO10H9ZgyhY9Ou7rk7IxlRPA6fbrhOXXApB5iVNjfzwsMFXPmmfz5rbcUZMWFHiaC17175c/1esoLkG3FdoCSSsnsq5PBvIMZpcpK4JRT+GvbeqxcyYOUUaMMT5UDNgK2gKzkUR6gLFq0CDt37kQymcRnn32GZ555BkdpDj2KxWKYP38+Wlpa0NfXhyVLlmCywQPmfIGFDnnPHm57sRg/H6woWiNyYFQonO4779hcfbdzJ7B5Mx8NTp9u+Ns++4w/i8MLi+JwoxJ62HYyogOaNq3IoSl6REmWIdsAHO2ESkqAM87gr23rYaGtADzGAww63aoqmcl0wD6OO47vfbZ/v829gyxm14RtDBtm6MgvxwshRYCyZInNOpT33+dzRXV1hg8YBaQefumQlQVs2rZicPk5YEGPgBXK0lk8Zti3T+4CKXKdBhAnqzc2mpzSSCSUb04G8M1ex47lg84C288U569/5c/HHCN3sDSAOJxvMKlWHJdGhX/7G9DXZ+NCFjtkYR8HH2zwG1zKsCkL2EzokUjIAMWwHg52QmVlMp6wpceGDdx+KytN1a6JtuIX25g2jdeh7N5tsw5F2MYXvmC4dg3wd1uxNZa0kF0D/GcfqqEAxQyiN580ycT8hAUjqq6WG8CJHJ5CYjGZNbA1rWGxQzath9DaAS0Avq15YyMPTkRNpyUsjJABC05XpFoK7B1kB+F0ly61UYeybRuwfTvvfEQe3ABil9LKSoMF1IAcPjpkH0oCNmEbJ59sMBXCEbZhOJgXttHZ6cjgpqJCUR2KTd9hWg+H2soppyioQ0mn5WDPZOmAZftwSA/VUIBiBm2RmwlMd8ixGNDUxF+L4aRi/BCgGG5UQoudOx2Z8tLWoVh2urt28bXbAGBiRVo6zftxwKIeDjB5Mi/t6O62sQmVxWJybbBmONPtsB7CNmzVoVjIJgEWgtfaWqm3Q77DdlthzLYefmkrSupQ1q/nc4gmi8n37JFT9Ib3LnVYD9VQgGIGsezF6QAFcM3prljBB1um6eiQm0OY1MO00xXFKr29CveV1iP0eO01ixcQHfLRRxs4ZlXS2sqzFKWl8k9eFIdtQ1uHYlkPmylrwx0Q4Lgexx/PN7Frb7dROGwxu2ZaD+3gxmHf8cYbFk963ryZG77JYnLAhu9waHADyMGeZvcMc1gsJhe20dBgouSNApSQsn+/zP/PmmXqW205XVFRqpjmZuCww7iDefVVCxf4y1/48P+ww3hBi0G0aUnDTqaqSp5M6lDDOu88/rxsmcX9z4R3Ej27QYRtjBljwje54GSEHv/7vxYvIPQ4/XRT32baNgDH9SgtBc45h7/+058sXGDzZv4oKzNVTA74U4+TTuLNce9ei/vDCNs46SRTxeTd3bJtGvalIkBJJh3b+2POHP78yiv8x5hGjAJM+g7T2SSAApTQ8tprPL97xBFypzOD+DGDAgAXXcSf//hHC9/88sv8WbROg7S38yWsgIm0JOC4HuPH81rfdBp46SWT38yY/CaTetjqgFpbHdsR8vzz+fO771qYKdi4kZ8rUl4OnHWWqW/1YzAPABdeyJ8tBSjCNr7wBVPF5IA/O6GyMuBLX+KvX3jBwgWEHiIKNoiwjfp6/jBEPC6Xojukx7RpvLSjs9PCfjnJpAxQTOrhR9tQDQUoRhEdskkjAix2QmPG8GcHDUk43RdfNJmqVdAhjxhhqjTBVT1MO92PP+ZnilRUyHyvQSx1yKNG8XkY7S5eihk9Wm7+OniclnGEbZx2Gq+JMIFfne4Xv8gl//vf5T0axmJb6e+Xv5Lf9LjgAv5sOmBLJHj2FXAnmAdcmRIVAb1pPZYt45HNqFGmjj8AbAbzn39ucX7OXShAMQJjlgOU7m65uMBvTmbGDF4usXevyeXGH37IKzvjcdNpyS1b+LMpLQBXR8kvv2xy23vRAZ1+usmoS56VZsrplpbKanw/BmwhDOZHjJClVqY6ob4+4PXX+WuTHfL27dz1VFSYWjToiu8491yeINuwgT8Ms3Qpd4oNDaYKQgH/BiiADNheeMFkqYvwHeeea3h3YYEl33HQQdx/ODi4UQkFKEZYv553jJWVpufUxcKOgw4yVTvpSodcViYjf1PTPKIDmjmTL4k2wYcf8mdxaq5hXHAyU6fyzIHpVK3FETIg7ePww01+o4tOd/FiExv69fbKpWEm9ejr46UaAF/Jbxihxd69NjeyKYylrMFbb3FNmpr4Nr0mELYxcaLJvssF31FfL8cmpvTQTu+Y7JCFHqZsA3ClrZx9Nu8ePv1UbpVlCIvTXYAMDE3p4dLgRhUUoBhB2yGL/UkMIjpkzWa6xnB4aa1AjJKff97Ej7HRqGzr4aDT1aZqn33W4Df19MhoxoIeYrMrP+pxzDF8dNbXJ5tAUZYs4d8wdixf0WSCjz/mA7v6ehO7DAP8fBFRbOlCRumNN3gsZAhtWzGxQyjgb9sApB7PPGPimyzWrgH+1qO6mgcpgAk9duwA1q7ldjF7tqmfl0zy9gLY0ENsOuRjKEAxwvPP82cbjerII01+o1gZ091twhua57zz+KzE5s0GK/L375fLrd10MiKPaboAwByXXsqfn37a4GD8tdf4fNDBB5v+I+/dK/dLMp1REnqIPK8DxGLAZZfx1489ZvCbxLKfOXMsd8hHH23yW2MxOWfooB6HHw4ceyyvDVm0yMA3MCYLeGy0FZNxntRi2zbHiqgB4JJLeFC/fLnsLAuyZQvPRpeUyGVRJli/nj9b1sNB2wBkW3n8cYODvT//mT+fdJLc4dUgmzbxEpLaWlOLKDku6aECClCKsX273OVv7lzT3y4yBqYDlKoqOYwUeW8HqKkB/uEf+OtHHjHwDc8/z8P3o482PS+RTtvIoBx6KH92UAuA17iOHcvjMEOp66ef5s9z51rukA8+2HQtqWt6XHEFf37xRQO7Yw8MAL//PX/95S+b/lmWg1fAdT0efdTAh9es4SuaKit5jYFJLOsxdiyfv9VW2TrA6NFy4P/44wa+4Xe/488zZ5qc7+ar/0QCxLQvdck2vvxlYMgQ/mPEtjcFEVHuxReb/lla2zDpdlzTQwUUoBRDONzTTrMQqtrokAFgwgT+7LAhXXklf376aQO1BqJRffWrpn/O9u38+uXl8lczTHMzf96/37H9DAA+RfvNb/LXRTuhnh5ZvGNBjyB0yEcfzWtzBgaAp54q8uElS3jh3fDhMt9tgiDocfnl3EbefVfWRORFCHb++aYjUMZsZFBKS+VWCC4FbI89ZuDwQBu+Q2jR1MRn9EwhbGPLFpsnHBZGO9gr6jtaWuTWsyH1HSqgAKUYYoQs8ncmSCZ5Kg6wEPUD0pA++cTCNxvntNO4P+vokLNZOdm9W67Zt6CHaFSTJpnaMJFTXS2LuxzWQzjdl18ucmTFiy/yKbhDDjG9IyZg08m4FLwCJrIGogO65BIehZpEpPD97HQbGviSY6CIHum09B0WOqAdO3ixdlkZ3wvRNC7pcdFFvGZo27YiheUffcQzSmVlljLRloM1gG+4VFqqP4nSIURb+d3vigz2fv97HoWecorpfbUARW1FLKn0MRSgFGLLFj5UKinhTtck77/Pp4CHDTOxjbkWlzqhkhLZsH7zmwIffOYZ/gsdfzxfWmCS1av5s4nT1fW45HQPP5z7jVSqSO2FdkRoOs/K99QALDpdkVHat8/RjBIAfO1rPN547z15usEBJJOyOtBCh9zTIw9bs6SHi6NCbdYg72GKy5fzXru2VkY0Jnj/ff48aZKpswUlLulRVSXrth56qMAHRVuZPVtunGYCoYelDrmsTNZdOKyHGOx1dgJ/+EOBDwo9vvY1Sz/Hlh5a23BwAYYKKEAphDCimTPliakmEHuLTJ9uqf9yLYMC8GmekhK+h1LeTshGihbQ62EJFzuh73yHP//iF3m2r25vlwWQFvTo75cnJ5g47FdSUyNt0uGR0MiRctD7s5/l+dArr/BAqbHR9FJ8gI8DUim+pYnY1sQULo4Kzz+f/5o7dxaY9hJfuPhi0yv/AFn2dvLJlm7R1bby3e/y56eflpuH6WDMtu8Iih4lJdJ3/Oxnefr/rVv5ioRYTM4JmWDPHjm9aEmPgw/mN9rX5/tTjSlAyUcqBTz4IH/9jW9YuoTokE0cbqtHZFBcCFAOOUSOhH760xwf+OgjPmdaUmLJyaTTcpWQZT2Ek7F8rrlxvv51XgT42WfAb3+b4wOPP85TxkcdxdfjmmTNGr49xtChFlbwCIQeYh7RQW65hT8vWpSn+P9Xv+LPX/0qT6ebRHRAM2ZYDOZFRmn3bl6n5CDxODBvHn991105yhp6eoAnnuCvLY6QhR4mz+GUuNhWpk3jxeUDA8A99+T4wNtv8007qqrk+Rom6OqyfC6pRPhSF/T4/vd5sezatXmOzfj1r/nzmWeaXE/PEf3KEUdYSkbxdKhYBeiCHnagACUfL7/MPfGwYZbqLQAFHbLoubZv5wUiDvN//y9//t3vcvR5DzzAn88/38JWjnwZ4t693EeZ3EBSIvKZYgLWQeJx4MYb+euf/jSrE2IM+OUv+evvf99Sj6rtkE3uVyVxUY8TTuArQ1Mp4O67s764datcXnz11Zaub7tDrq2Vhzu5oMfVV/Njddavl6tFMzz1FA+SmptN728B8Izdu+/y15b1ELbxwQeOFoYKfvhD/vyrX+U4bPO//os/f+Mbps8iAmR2bexYS66H42JbGTYM+N73+OsDBnuJhAzmv/99S9e33VYAqYepXeXchwKUfIgO6B//0fRuqQAvctu2jQ8mxZkmphk2TOa7XTCk447j2zWk08D/+3+aL3R1yTXI115r6dqiUZ14oqX6SY7YiXPdOlec7ne/ywsAN2zI2u79jTf48qwhQ4BvfcvStcUoyJaTEcU8a9fauIhxRAD70ENZS44feIAHbWefbWFLXH12LSh61NfL/uXOOzVfYAy4/37++pprLGWTVq/m2ffhwy3JyZk4kRevdHc7vncQwIPX44/nySMRjwDg82Bi10ObviMotgEA//RP3M+99RYvR8rwhz/wlW5jxljKJgGK9ND6Uh9DAUouNm+WuTmLI0Kxh8a0abwfs4wwJJca1q238udHHtHMLP32tzyDc9hhlpaPArJcw+TRPXomTuSt3iWnW1cnfeq//qumIFJ0QN/6lqURYX+/XAx12mk2btBl2zjrLG7Pvb3Aj388+GZvr6yOvO46S9d95x2ecBgyhG+EZhmXne4NN/AY4K9/1Ryo+Le/8fmIykrg29+2dN1XXuHPp55qcboL4IWhYumgC/YRi8lpwHvu0Rzz8uCDfO7n1FMt/3GFHkrayubN3H84zJgxsjLg1ls1tSgierv6aksjtX37ZO2aLT1cDtgswwJIe3s7A8Da29ud+QE/+AFjAGPnnGP5ErNm8Uv89Kc27+Wf/5lf6NprbV7IGOk0Y2efzX/knDmMpfsHGDvqKP7GPfdYumZnJ2OVlfwSq1fbvMFjjuEX+uMfbV7IGLt3MzZ8OP+R997LGNu8mbGSEv7GunWWrvnyy/zbR41ibGDAxs21tvILxWKMdXfbuJBxXn2V/8iSEsbWrGGM/epX/I2DD7b8y9x4I7/E175m8+Yee4xf6PTTbV7IOKJ5HnooY729jLF/+Af+xj/+o+VrTp7ML/HwwzZv7hvf4Bf6yU9sXsgYAwOMnXCC5tfv7WWssZG/sWiRpWvu2MG/HWBs+3abNzhqFL/Qu+/avJAxtmyRfu+ppxj/uQBj5eW87Vrg4Yf5JY4+2ubNrV7NLzR0KHf6LmKm/6YAJZudO6VVLV5s6RK7dzNWWsovsWmTzft5/HF+oS98weaFjPPRR7wNAYw9O2+JNOT9+y1d73e/45eYMEFBWxBOd/58mxcyzoMP8h9ZW8vYzktv4P+ZPdvy9a66il/i6qsV3Jxwun/7m4KLGeOSSwZNckaKpQ8ez//zs59ZulY6zWMbgLFnn7V5Y2vW8AvV1zOWStm8mDE6OhgbM4b/2H//fovsTdessXS9Dz+UfdjevTZv7qc/5Rf7yldsXsg4y5ZJCZb94CkZvCYSlq7385/zS8yYoeDmxMjrf/5HwcWM8R//wX9kUxNjHefM5f/51rcsX++LX1Tk/vr6GCsr4xfbssXmxcxBAYoNPr7ix2wdjuItwmJv+tBD/O9+7LEKbmjDBn6xeNxyI7fCbbfxHzuu7DPWiRrGfvxjy9e67DJ+rVtuUXBjCxfyi517roKLGSOVYuykk/iP/SoGne4771i6VjIpMzJ/+YuCm7vgAlvZLSts28ZYdTX/sb/BlXyUbDGDs3w5v86QIYz19Ni8sf5+eWMWs1tWWLSI/8jKkj62ERN4FsUiokObM0fBjS1ZIntHF0fJ3/42/7HHlb3PEihn7Ne/tnytU0/VZC/tcvvt/GJXXqngYsbo7eUDM4Cxf8LdPCiwOGrdt08OHNevV3BzJ57IL/bkkwouZhwKUCzyl0VtbAg62BH4gLU/+5qla6TTMs1po0/XX3DkSNdHyd3djB0ysoMBjF1W8SxLt3dYus6OHYxVVCjMrK5axS9WV+faKJkxxlauZKwklmIAY78+9heWryM6s5EjeX9qmwUL+AUvuUTBxYxz538mGcBYDTrZ+tt/a/k6ojP76lcV3diZZ/ILPvigogsWJ51mbNaJ7bxTxnus570PLV0nmWSsuXkw8PuNghvr7paj5K1bFVzQGG1tjA2r6mEAYz+of4T/YhZYt05mY7ZtU3BjL77ILzZpkoKLGefPL6Yzv8cL595v+Tr33adoekdwww38gtddp+iCxqAAxSK7XlrBxpTuZABjF1yQttT/iTZQU8PYrl2KbuzCC/lF775b0QUN0N7O3j7oy6wMSVsDdNEGTj1V0SCuv5+LCzD2/vsKLmiQv/2N/Ri382RWRYqtXGn+EqmULOf5939XdF9ilDx6tKuj5P75P2Zn4TUGMHb4pBSz0hQ/+UT2n8uWKboxMUq+4gpFFzRAKsW2n3IJOwifZ+ovrPwpfv1rWZukrKRIjJJ/az2INE1LC/tjzdcynbLVAbrIvCqbodqzR0Y8ypyzAV54gV2HX/DZx7qUpQRKTw9v4gBj//3fiu7r6af5BY8/XtEFjUEBig3eWZpk8TiPeK+91twgPZVi7OST+d/85psV3tRdd/GLfvGLCi9ahGuvZQxgC0f8iAG8pub3vzd3ic8+k+U8r76q8N7EXPJ99ym8aAESCcaOPpqlEGMXjH0vkzXfsMHcZUT2ZOhQnq5VQne3TFF98IGiixbhww8Zq6hgn+MgNnZ4FwP4n8RspyqyJ0pn6156aXBucpx7Adv//A9jAPtLfA4rKUlbCkATCcYOOcSBcYioQP72txVetAhf+QpjALut4dcMYKyqirHXTCak163jtd8AY3//u8J7O/poW0W7ptm/n7ExY1gC5Wx601Ye0B/OfaMZRPbERjnPgXz2mSyydzFgowDFJk88IQPt//N/jC9OuOMOlmmQLS0Kb2jt2sFJ7krGuroUXjgPy5ZlvEN68WuZjqSkhGtjhIEBxs46i3/fKaco7ivuuYdfeNYshRctwL//O/95Bx3E9n2yJ+PjGhuNzwXv2MHYQQc5VN977rn8wnfdpfjCOUilZGHAnDnsneXpTEJr5ky+YssIf/qTpphSVfaEMT7UrKqyVahqih07+HTjYKHEvffK3+v2243bvVg4qDR7whiPDADGGhrcmRJ99lkmRjQDK1ez88+Xruvll41doqeHD+oBxubOVXx/t9zCL/yNbyi+cB6uvpr/vMMOYzs29mQKwg87zPi01QcfyKSx8vre447jF37sMcUXzg8FKAp45BG5mnTWrOJL3P70J/n5hx5SfDPptBxePf+84otn0dnJ2JFHskyumvFg4x//UTreG2/kReD5SKUY+6d/klNdygf2H3/ML15WZnllkWH+/ndZmfbUU4wxPscuVjvX1RUP2vbvZ2z6dFk4bbsYNBtROHzaaYovnAOxrKKmJlPXsHQpX+EEcNMptpR87VqeRQIYu/56B+5RTIn+5386cHEN6TTL9MAnn5wZyfzsZ7KtzJ3LV/UVQhTVAw6snk8k5B/HYmG3YXbtkvMQt97KGON+QtRxl5byP0mhAV9/v1yoN3KkotoTLW+9xS8+fLiiIrAC/OUv8g/7xhuMMb5gRrjyUaN4SUAhPv+csSOO4J8/80wHbvlf/oVf3EZht1koQFHE734nB2NDh/IK+2xn097OB9giHfmtbzmUWRZDLGXVhDlIp+Ua0sZGPmc7SCrF2Lx5sr0dcQQPurPr37ZsYeyii+TnHJv6Fq1WeTSoYdcu6U0uuED3h929m6/8Fr/nnDmMvf22/m+fTvP3Jk7kn6mvV7DsPBdbt8pUrZPFkEuWyKKRhQt1X1q+XPZN5eU88Mi+lUSC/7nEaPCUUxxamCb2ZjnySGenecSSm/JyHnVp+OUvZVzb0MCnbTqy6sx375Y1Wpo+XT2XXsp/wA03OPQDGHcEM2eyzBxGb2/mS4mEDDoAxqZO5YmW7ITOhx/yLWxEttbstJAh+vsZGzGC/5Bi0YEdtmyRixu++13dl7ZtY2zKFKnHpZcy9t57+m9PpfhsZVMT/8yYMTxYUY7Ym6WqyvnB3iAUoCjko49knZkYtJ9wAp9mnTVLrmoEGPvOdwpnFmzx3nv8h1RU8CG8E/z4x9Lh/vWvOT/ywgty6w2AD87OPJOxL3+ZdzgiUKuosLW6sDh33il7OSfQOtwJE3IOg/v7eXAq9rwBeCd9wQV8YD1pknz/4IMd3h9KzKf92785c/2tW6XDveyynB3/rl364FQEsl/+MmPnnSf7BZGVdGzae/9+2TCXLnXmZ4ipDCCvoa9cyftq8bGKCm6uc+fyNiMCGIDPPNjatK8Qf/6zzBpoAgelXHMN/xlDhuRc4p1O8wGNSOaIQd/s2TzhJVY+Cp/yhz84c5uMMTnSuvhiZ67f2SlTrMcfn3POrrdXZpm1PuKiixj70pcYGz9evn/kkTx4c4R0Wlbu//KXDv0QPRSgKKa/n1eii3nR7MeRRzL26KMu3Mi0afwHKlm/nIXYjayAwxXs3cvrbRoacusxaxZjK1aov0Udra1yNK+65+/vZ+zyyws6XC0bNvDgNB4/UIuqKr7tguM1aE89JSMk1XNIO3fKjFUehytIp/nI95xzctvG6NF8Y1PHOmOBmJO87DL1137jDRkA/eAHBT/a18cTOtpgVfs47jge9DvKwIDcDc+JUcNPfiIzeEV+mc8/57U5YopP+ygt5YG92eJz06xfL3/g5s1qr93TI2vCRo0qOke1Zg13NdpBjnjU1fEVwEbruiwjCqeOOsqFhmmu/44xxpibW+uroKOjA/X19Whvb0edhbNQrMIYPwDw3XeB1lZg6FBg0iTgpJNsnJlhht/+lh/wUF/Pz5QYPlzNdX/5S3nozI035jiuNjepFD8sdcUKfgJrfT0wfTpwyCFqbqsoV1wBPPYYPx9o8WI11+zvB77+deD3v+fnmTz3HD/B2QA9PcCqVfx4i4oKfhT6rFmWjusxTyLBjXHbNuCuu4B//mc1192xgx/Cs3EjP2Bk2TLDR8ru2sUPSvv0U37OzsEHA6efzmV1nPffl2e/rF5t4wjtLF59lR/y1tcHnHceP3TLwC/EGG+yy5cD7e388OXjjpNHxDjO3XcDN9/M/wgbNvCzguzCGPCjHwH/+Z/8/ybsrr+f/4lWreL/r6sDZs4EGhvt35Yhzj2X/y2/+U3uQ1TQ3Q1ceCHw+uv8gNnFiw0fZd/Zyf3ohx/yP82oUdytVVWpubWCiJO39+/nWnzzm47+OFP9t+PhkgO4nUHxDakUr7IE+PIiuySTsrYF4NWvLp/LYIstW2Se/Omn7V9v5065QqWiwrXzfpTxyCNy6KWiFuXtt2VhyfjxfOOSICGyYNOn268uTKcZ+8UvZNbuS19ybrrECXp6GBs7lt/7v/yL/et1dekLS2wfOuYyK1bIrM9gAastNm6U0zq1tbwYN0iIKfOmpuJV3TahKZ4w8+abstDDztKwtWv5hLhwMPPnBys4EYgq9Pp66xO16TRjzzwjDzarq+MVakFjYEAuFzrlFOvrVfv6eHGN6IyPOoqxTz9Ve69usHWrXAJsZ2OinTsze3swgJ9q6OKxE8oQh2KVlBhf85uL5cvlfiKlpYzdb313VE8Rh2KNGcOXi1shnebb/tbXy2md5cuV3qYrdHfLgqkvfcny7r9GoAAl7IjdMktL+bIIM4HFZ5/xan7R+dTVBS9ToCWZlJ3y6NHM9BavK1bwJTii85k8mS9jDiqbN0tnOXOmueKXgQGeidJWdn7tay5MgjuIqM2xUona3s6PEhBBTlkZn68PYiAvEJsaVVaa37Lgk0/494sBUkMDX9kVVDo7pa1PnMhXRBglneaZF5FxBfj5bWZ3YPMTq1bJQrq5cw9cdqYIClDCTirFKy9Fw7jgAh6153OcXV2M/e//8s5GW8l58cUObDTgAbt2yTPqy8v5aLnQiL+lhRcLijWN4vtuv92BTUo84K9/5cW9AM8KPfBAfmeTTvONav7zP/nuUUKPhgZeGR7kzlhw993y9zrxRL6qJV+gkkjw9Pz3v6+v5DzxxAPXggaRRELu3QIw9vWvFz4yYv9+vqTm4ov1lZxXXOHcakI32bpVLpmpqeGZ5NbW/J/fto0vsRcLFgBeMH3XXY5mHVzjf/9XTps3N/PMsmIfQEWyUSCdBhYs4EVqqRR/b+xYYOpUXmkWiwF79wKbNvFqtIEB+b1f+ALwb/8GzJ7tzb07wb59wFVX8aJWweTJ/DF8OP/9d+7kBYIbN8rPlJbyotjbb+dFpmHh/feByy4DPvqI/z8eB6ZNAw47jFes9vby6tW1a4G2Nvl9Q4cC8+YBN9zAX4eFp54CvvtdoKuL/3/ECODEE3mbKS/nVYqbNwNr1vBqZ8Hhh3PbuPxybithIJkEfvhD4N575XuHHsqrdhsaeLe7axdvJ+vWcV8jOO884F//1XDxZyBoaeE+4I03+P9LSniB9ZFHAsOGcb127OArAj79VH5fPM59zg9/CIwb5829O8Ff/wp89av8dx4xgrcLhf0sFclGiQ8+4MVqYke5fI/x4/matRUrwjEqzkU6zUfHZ5xRWItYjC+XXbAgHBmkfPT18Z1f861xFY/KSr4hxSOPBHs6pxgtLXwPDO2GLLkeI0fyNvXKK64su/SMlSv5JjXaDVlyPQ47jE+PZW1GFypSKT69edJJhbUoLeX1XffdVzjTEnQ6Onh9n/K99SmDEk26u/n65w8+4KOfWIxHvRMm8LWMzc1e36G7tLYC77zDo/99+/goeeRIrse0aeqWaAcBxnjmaOVKPirq6eFrGceM4VmjE07go8GokEzyTMmaNcDnn/MMZHU1byNHHcVHziUlXt+le7S387ayYQOwezfPFNXX87Zy/PHcTqLE9u1cj08/5dqUl/Os9IQJPOtWW+v1HQYaM/03BSgEQRAEQbiCmf7b02HCL3/5SzQ3N6OyshJTp07F22+/7eXtEARBEAThEzwLUJ5++mnMmzcPt99+O1avXo3TTjsNc+bMwbZt27y6JYIgCIIgfIJnUzwnn3wyTjjhBDzwwAOZ94488khcfPHFWLBgQcHvpSkegiAIgggevp/iSSaTWLVqFWZnLXOdPXs2li1b5sUtEQRBEAThI9w4tusAdu/ejVQqhYaGBt37DQ0NaG1tPeDziUQCiUQi8/+Ojg7H75EgCIIgCO/wtEg2lnUEMGPsgPcAYMGCBaivr888xoVpUxyCIAiCIA7AkwBl5MiRKC0tPSBb0tbWdkBWBQBuvfVWtLe3Zx7bt29361YJgiAIgvAATwKUiooKTJ06FYsXL9a9v3jxYszIsYVyPB5HXV2d7kEQBEEQRHjxpAYFAG688UZ885vfxLRp0zB9+nQ8+OCD2LZtG66++mqvbokgCIIgCJ/gWYBy2WWXYc+ePfiP//gPtLS0YPLkyfjzn/+M8ePHe3VLBEEQBEH4BNrqniAIgiAIV/D9PigEQRAEQRCFoACFIAiCIAjf4VkNih3ErBRt2EYQBEEQwUH020aqSwIZoHR2dgIAbdhGEARBEAGks7MT9fX1BT8TyCLZdDqNnTt3ora2NufOs3bo6OjAuHHjsH37dirAdRDS2R1IZ3cgnd2DtHYHp3RmjKGzsxNNTU0oKSlcZRLIDEpJSQnGjh3r6M+gDeHcgXR2B9LZHUhn9yCt3cEJnYtlTgRUJEsQBEEQhO+gAIUgCIIgCN9BAUoW8XgcP/rRjxCPx72+lVBDOrsD6ewOpLN7kNbu4AedA1kkSxAEQRBEuKEMCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoGj45S9/iebmZlRWVmLq1Kl4++23vb6lwPPWW2/hggsuQFNTE2KxGJ5//nnd1xljmD9/PpqamlBVVYWZM2di/fr13txsQFmwYAFOPPFE1NbWYtSoUbj44ouxYcMG3WdIZzU88MADOOaYYzKbV02fPh0vvfRS5uuks3oWLFiAWCyGefPmZd4jndUwf/58xGIx3aOxsTHzda91pgBlkKeffhrz5s3D7bffjtWrV+O0007DnDlzsG3bNq9vLdB0d3fj2GOPxf3335/z63fddRfuuece3H///VixYgUaGxtxzjnnZM5bIoqzZMkSXHvttVi+fDkWL16MgYEBzJ49G93d3ZnPkM5qGDt2LO68806sXLkSK1euxFlnnYWLLroo47RJZ7WsWLECDz74II455hjd+6SzOo4++mi0tLRkHmvXrs18zXOdGcEYY+ykk05iV199te69I444gv3whz/06I7CBwD23HPPZf6fTqdZY2Mju/POOzPv9fX1sfr6evbf//3fHtxhOGhra2MA2JIlSxhjpLPTDBs2jP36178mnRXT2dnJJk6cyBYvXszOOOMMdsMNNzDGyJ5V8qMf/Ygde+yxOb/mB50pgwIgmUxi1apVmD17tu792bNnY9myZR7dVfjZsmULWltbdbrH43GcccYZpLsN2tvbAQDDhw8HQDo7RSqVwqJFi9Dd3Y3p06eTzoq59tpr8aUvfQlnn3227n3SWS0bN25EU1MTmpub8dWvfhWbN28G4A+dA3lYoGp2796NVCqFhoYG3fsNDQ1obW316K7Cj9A2l+6ffvqpF7cUeBhjuPHGG3Hqqadi8uTJAEhn1axduxbTp09HX18fhgwZgueeew5HHXVUxmmTzvZZtGgR3nvvPaxYseKAr5E9q+Pkk0/GY489hkmTJuHzzz/Hj3/8Y8yYMQPr16/3hc4UoGiIxWK6/zPGDniPUA/pro7rrrsO77//PpYuXXrA10hnNRx++OFYs2YN9u/fj2eeeQZXXHEFlixZkvk66WyP7du344YbbsCrr76KysrKvJ8jne0zZ86czOspU6Zg+vTpmDBhAh599FGccsopALzVmaZ4AIwcORKlpaUHZEva2toOiB4JdYhqcdJdDddffz1eeOEFvPHGGxg7dmzmfdJZLRUVFTjssMMwbdo0LFiwAMceeyx+/vOfk86KWLVqFdra2jB16lSUlZWhrKwMS5YswS9+8QuUlZVltCSd1VNTU4MpU6Zg48aNvrBnClDAHc7UqVOxePFi3fuLFy/GjBkzPLqr8NPc3IzGxkad7slkEkuWLCHdTcAYw3XXXYdnn30Wr7/+Opqbm3VfJ52dhTGGRCJBOiti1qxZWLt2LdasWZN5TJs2DV//+texZs0aHHrooaSzQyQSCXz44YcYPXq0P+zZlVLcALBo0SJWXl7OHnroIfbBBx+wefPmsZqaGrZ161avby3QdHZ2stWrV7PVq1czAOyee+5hq1evZp9++iljjLE777yT1dfXs2effZatXbuWfe1rX2OjR49mHR0dHt95cPj+97/P6uvr2ZtvvslaWloyj56ensxnSGc13Hrrreytt95iW7ZsYe+//z677bbbWElJCXv11VcZY6SzU2hX8TBGOqvipptuYm+++SbbvHkzW758OTv//PNZbW1tpt/zWmcKUDT813/9Fxs/fjyrqKhgJ5xwQmaZJmGdN954gwE44HHFFVcwxvhSth/96EessbGRxeNxdvrpp7O1a9d6e9MBI5e+ANjDDz+c+QzprIZvf/vbGR9x0EEHsVmzZmWCE8ZIZ6fIDlBIZzVcdtllbPTo0ay8vJw1NTWxuXPnsvXr12e+7rXOMcYYcydXQxAEQRAEYQyqQSEIgiAIwndQgEIQBEEQhO+gAIUgCIIgCN9BAQpBEARBEL6DAhSCIAiCIHwHBSgEQRAEQfgOClAIgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+4/8DeFXPzROS4iMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH4ElEQVR4nO2deZyU1ZX3f9Vb9UJ3s0k3DYgtghu4gQvEBUVRErcQRxOz6MQ3iXGJjDq+UWcmzEwixjcuCU6cMTGuUUziEjPGBaOihKCAEAEVQUBAum3W3ruqu+q+f9y+dZ+nqOVZ7rOf7+dTVFFd/fTTvz733HPPPffeGGOMgSAIgiAIwkeUeH0DBEEQBEEQ2VCAQhAEQRCE76AAhSAIgiAI30EBCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoBAEQRAE4TvKvL4BK6TTaezcuRO1tbWIxWJe3w5BEARBEAZgjKGzsxNNTU0oKSmcIwlkgLJz506MGzfO69sgCIIgCMIC27dvx9ixYwt+JpABSm1tLQD+C9bV1Xl8NwRBEARBGKGjowPjxo3L9OOFCGSAIqZ16urqKEAhCIIgiIBhpDyDimQJgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+gwIUgiAIgiB8BwUoBEEQBEH4DgpQCIIgCILwHRSgEARBEAThOyhAIQiCIAjCd1CAQhAEQRCE76AAxYesXg38938D6bTXd+IP/vhH4C9/8fou/MHAAPDrXwM7d3p9J/5g507g4YeB/n6v78QfrFwJvPyy13fhH557DvjgA6/vwh/09AC/+Q3Q0eH1nRgnkKcZh52zzgL27wcSCeCGG7y+G2/ZuRO4+GL5evRoT2/Hcx57DPjOd4ChQ4G9ewEDB4KGmh/8AHjmGeCdd3hQH2XSaeD004HeXuCNN4CZM72+I2957z1g7lz+ursbqK729n685uc/B267DXjgAWDFCq/vxhiUQfEZfX08OAGAX/zC01vxBatXy9cPPujdffgFMTrevx946y1Pb8UXPPMMf/6f/wG6ury9F6/Zto0HJwCwYIG39+IHli+Xr3/1K+/uwy88/jh/XrkSWL/e23sxCgUoPkNrOJs3Ay0t3t2LH3j/ffn6D3/w7j78wq5d8vWf/uTdffgB0RkLli3z5j78wrp18vVf/sKnA6PMhg3y9YsvencffkFbMvDSS97dhxkoQPEZa9bo///pp57chm/QBijbtnl3H36AMWDtWvn/7du9uxc/8NFH+v/v2OHNffgF7eAmlQJaW727Fz+gDdiibht9fcCmTfL/QdGDAhSfke10P/vMm/vwC9oCt44OoLPTu3vxml27gD175P+D4mScIjtNHfWALVuPqNuH1ndEXYuPP+ZBqyAoelCA4jO0KXwgOIbkFNl6RDlgyx4RR902SA89pIcklQI+/1z+v7MzWKtXVJNdKhAU26AAxWfs3cufhwzhz1HukBmTGQOhR1AalhNk28bOnfpRUdQQetTW8uco2wZwoB5Rzii1t3P/Acj2EmU9gmobFKD4DNEhT5nCn6McoPT0AMkkf33MMfw5yp2QcDJHHQWUlPAiyLY2b+/JS4Qexx7Ln6NsG4D0HdRW9B1yczN/TXpI22hpCcbeQRSg+IxsJxPlAEVoUV4OHH44fx1lPYSTGTVK7gcTlJGQE2Q73Sh3QADpoUVoMXw4MG4cf016AEccwf0pY8EooqYAxWfQqFAiApQRI4CxY/nrKOuhdbqkx4Ed8v790d0Lpb9f1liQ78jdViiYB0aOBMaM4a+DYB8UoPgIxqQhaad4xFxq1NA6GdGoopxBEQGb1ulGWQ9hH+PHy7n1qB4BIDZ3BICjj+bPZBt63xFV2wCC60spQPER7e2y6PGoo/hzX190R4XaDMqoUfr3oohwMiNG8JGQ9r0oog3Yoq6H+L3r64HGRv17UUTbIUfdNgC9HiNG6N/zMxSg+AhhMNXVwLBhQDzO/79vn3f35CXaDnn4cP17UUTrZEgP0kOLVothw/jrzs5gFEI6AdmGnqDqQQGKj9BmDGIx6WiCYEhOoB0hB6lROUVQnYwTJJMys0h66G1j6FD5ftQHN2QbnKDqQQGKjxBFbvX1/DlIhuQE7e38eehQfbAW1Zoc0dkMG0a2oa25GDqU9BC/97BhQGmpDFJID7INILh6UIDiI8SIUGwsJAwpqqMgrR5Ci4GB6NbkiG3+a2spuya0GDKE7wkTdT1EmxDFwkHqhJxA2EddHdkGoNcjSLZBAYqP6O7mzzU1/DnqDUvoMWQIUFUla3KirkdNTbCcjBNkt5Wo65FvcBNVPXK1le5uIJHw7p68Ip2WJ38HzXdQgOIjyMnoEXrU1PCanKhnlChAkVCAoof00KPVo76e+w8gmr6jp0e+DprvoADFR1AGRQ85XQlj+oySNliLYk0OBfN6qK3o0dpH1KcAhRaxGM9EB8k2KEDxEVSDooc6IUlvrwxEtKOgVErOL0cJ6pD1UFvRQ/YhEVpUV/NgLUhaUIDiI8jJ6KGMkkRoAXBHU1UFVFby/0dRD+30H0BthTpkPfn0iOJgL58Wvb2yNsWvUIDiI6hD1kMBm0RoUVXFl5EC0dZDO90FRFsLgAKUbMh3SLK1qKuTPsTvARsFKD6Cpnj0kNOVZGsBkB5A7hFyOu3NPXkJdcgSbb0W+Y4DtQjSJqAUoPiIfI0qqufPZDtd0aiiGLBlawEEx8k4QfYUj9AinZYbHkYJyr5K+vr09VpAtPXINbgJii+lAMVHZHdCYjdIsaNqlMg1ChI77FIHxKmr489RLpIVbSUeB8rL+WvSQ7aVKGqh3cixupo/R7mt5BrcBEUPClB8RPaoUOwK2dkZvaWkiYRM1WvnToFoByi5nEyU9dCmraOsR7bviLIWwja09VqkR+7Bjd/1oADFR2R3QsKItNmEqKAdBZHTPbADAkgPgPQQZHdC2sFN1Ahyh+wEQdaDAhQfkZ2KE+vWAf8bkmpEo6qsPHAUFGWnSxkUDumhJ9/gprMzekXDFLzqCXJboQDFR1DaWpLLyYhRYdS0AII9CnICqsmRMJZ/igeI3uGauTrkKGeUghywUYDiI7Q7/gmi6nSpQ9ZTyMlEzTYACmC1aOu1hB7aouGo6UG+Q0+hgM3vepgKUB544AEcc8wxqKurQ11dHaZPn46XXnop83XGGObPn4+mpiZUVVVh5syZWL9+ve4aiUQC119/PUaOHImamhpceOGF2LFjh5rfJuD09fHnqir5XlAMSTW5tNA6magVDYsdH7XBa1RtA5AHoOUK5qOmh/YwOKFHlLOvhQZ6UdMCKNxW/D64MRWgjB07FnfeeSdWrlyJlStX4qyzzsJFF12UCULuuusu3HPPPbj//vuxYsUKNDY24pxzzkGnRoV58+bhueeew6JFi7B06VJ0dXXh/PPPRyqVUvubBYx0Wh4FLrYwB6LbsESHnCtASaX8v0WzagrpETXbAIoHsFFCaFFaKrMmQHQDWLINPUH2HaYClAsuuABf/OIXMWnSJEyaNAk/+clPMGTIECxfvhyMMdx33324/fbbMXfuXEyePBmPPvooenp68OSTTwIA2tvb8dBDD+Huu+/G2WefjeOPPx5PPPEE1q5di9dee82RXzAoiOAECKYhqUY4GW2wVlMjj00nPaJrGwDpoSVXBwQEZ5SsmkK2EcWi4SC3Fcs1KKlUCosWLUJ3dzemT5+OLVu2oLW1FbNnz858Jh6P44wzzsCyZcsAAKtWrUJ/f7/uM01NTZg8eXLmM7lIJBLo6OjQPcKGMCIgmIakmlxOV5u2jqrTpeCVE+RRoWpydUBAdPUoZBtR3LIhUgHK2rVrMWTIEMTjcVx99dV47rnncNRRR6G1tRUA0NDQoPt8Q0ND5mutra2oqKjAMLHPbo7P5GLBggWor6/PPMaNG2f2tn2PaFT50rRR7ZCznW5U09bCPoLoZJwgyE5XNRSg6MmlR2UlUFbGX0fNlwY5mDcdoBx++OFYs2YNli9fju9///u44oor8MEHH2S+HhM5+EEYYwe8l02xz9x6661ob2/PPLZv3272tn0PORk9uTpkILp6FEtbR61ouJgeUaLYFA+1FZ59jergJpceQdHCdIBSUVGBww47DNOmTcOCBQtw7LHH4uc//zkaGxsB4IBMSFtbWyar0tjYiGQyiX1ZJxRpP5OLeDyeWTkkHmGDnIyeXFMaQHT1yGUfwskMDOinCMMOY4X1iJpt0OBGD/lSPUEO5m3vg8IYQyKRQHNzMxobG7F48eLM15LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZ6IKORk9pIeeXHpo9zWIkh79/TJjRFM8NB2aDfkOPcWmePycfS0z8+HbbrsNc+bMwbhx49DZ2YlFixbhzTffxMsvv4xYLIZ58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpOPvssx35BYMCVeLroVGQnlxOt6SEd0KdnVyPAknIUEEF5XrId+ih6WE9hTIoomhYO9jxE6YClM8//xzf/OY30dLSgvr6ehxzzDF4+eWXcc455wAAbrnlFvT29uKaa67Bvn37cPLJJ+PVV19FrQjlAdx7770oKyvDpZdeit7eXsyaNQuPPPIISsWBKxGFRkF6io2Coup0c3VCIkCJCto9cOJx+Zo6IP37UdeDBjecXPYhTnpOpbgeoQhQHnrooYJfj8VimD9/PubPn5/3M5WVlVi4cCEWLlxo5keHHsoY6MmnBwVs+vfr6oDPPouWHlottLX12WnrIrX5oYECFD2kh558WzbU1gL793M9mpo8ubWi0Fk8PoEalR7SQw9llCTFtBgY0G98GHZocKOn2BRPlNoKEGxfSgGKT6BGpYecrh7SQ5JPi6gWDdP0sJ58UzxR1COV4kXlAAUohA2oUekJctTvBNQJSfJpUVIigxTSg9oK6aEvKA9iETUFKD6hWKPq7ZWRcBSgjIEeKvyT5GsrQDT1oLaih1bxSLQBiragHAiGHhSg+IRiRaGAvyNd1VDNhSToaVrV5GsrQDT1oLaih4J5idCirExu9S8Igh4UoPiEfE6mokK+52dDUg1NaUjy7fsBBMPJqIYyKHqKBSjJZDSLhqmt5A/WgGD4UgpQfEKhUWEUDwyktLVEu+8HOV1jAQq1FSoapraSP1gDgqEHBSg+gUaFesjJSIQW5eV8cyUt1CHribJ9ZLeV0lKgpoa/jqIeQSwKVU3Q+xUKUHwCOV09xTIoPT18v4soUMjJBCFNqxrSQ0/QOyHV5MsaRNk2CvUrfg7YKEDxCeRk9BSrQQGAri737sdLKHjVY8TpRkkPsg8JY5R91UJTPIQSaF5dDxUNSyh41RN0p6sa8h2SZFK+zpd9TSSiUzQcdN9BAYpPEA2mouLAr0U5NZm9dh+Inh5BdzKqKWQbUdaD7CP/QZJANLdsCPp0KAUoPkEEKOR0OWIkRHqQbWQj9KCMAYfsQ6LNjGTrEcWi4aDbBgUoPiHohqSSgQEgneavSY/C2TVt0XAq5d49eYkRPdrb3bsfrynkO8QoOSp6CC3Ky3OfZh1V3xFUP0oBik+gjIGk0CgICEZqUiVGOiAgOlmDQm0linsGGbGPqOhRyDaA6OkRdNugAMUnBN2QVGI0QInKKp5CTjce56NFIHr2QW2FY6R+LSptpZBtANGzDyNtpa/Pv1s2UIDiEwoZktgRMmqNKhY7cGMygJxMNlG1D2orHMooSait6DESvAL+1YMCFJ9Ao0KJ1uHmmkeOmh40KtRjpK1EJWMAkO/QQm1FTyE9Kipk4OJXPShA8QnkdCXkZPQUGgUBZB9atLbBmHv35CUUoEjE4IbaCqdYTY7fM0oUoPgEcjISClD0kB56jKSt02n9nhhhhTGa4tFCbUWPUT38GrBRgOITjDhdalQcv0f9qqGVCXoK6SH2uQCioYd259RcviNqbYUCFD1Gs69+1YMCFJ9AGRQJORk9pIeeQnqUlESrU6YVb3qoregJuh4UoPgEIysTenv9uxxMJVRzoYcySnpID4k2g0KDm+DXXKiGAhTCNqmU3AW02GZcUeiUaUpDT9DTtKoJ+ry6SoQWZWU8e5RNVG2D2gon6L6UAhQfUGwUFI9zBwREy+kGtVGphjpkPdQJSYzahp8341IJtRU9Qc82UoDiA4rNI8di5HS1+L1RqYYCNj1BHxWqxKhtAKQHEC3bAII/XU4Big/QBihi2/JsotSwyMnooQ5ZD9mHpFgHVFERraMQyDb0BF0PClB8gNaIcu2cCvjfkFRiplFFYTMumtLQE3Snq5JiwSvg/1GySiiY1xP0tkIBig8oZkSA/w1JJUY75HSaz62HHZry0kN6SMh36CnmO6JkG0DwAzYKUHxAsUYFRKthFWtUUduMK+ijIJUwRoWQWihA0WPGNij76n/boADFB5CT0VNMj6huxkUdMl+JIjqWoDpdlZDv0GO0rUTlKISgZxspQPEBZpxMFDohI3r4vWGphDIokmJL8oFo6WEk+xolPYxkX0WdXxT0CPrghgIUH2Cm0I0aFSdKehg9oTUKWhRbkg9ESw8jvoOCeUksRnpo8XtboQDFB1CHrIf00EObcUmEFiUlcvPCbMg29Ph9lKwS8h16gj64oQDFB1Cj0mMmbU1OV44IgfDbB03/6SHfoYcWHOihDAphG3IyemjKS08x+4jHo7MZFwWvesh36CE99BgNUBIJoL/fnXsyAwUoPoBGhXrIyeihNL6Eglc9VCSrhzaukzBm/HRnwJ/2QQGKD6AOSA8FbHqKzSMD0emEKHjVQwGbHrIPiZEVbxUV0q/4UQ8KUHwAjYL0kJPRQ3pIzAbzYd+Mi4J5PdRWJNoAJahTohSg+AAaBemhgE0POV2JGS3SaaCnx/l78hLKvuoh3yExsiQf8LceFKD4AApQ9JAeklSKPwBamQAY64Cqq+XrqOhBbYVDvkMibKO0lD/y4Wc9TAUoCxYswIknnoja2lqMGjUKF198MTZs2KD7zJVXXolYLKZ7nHLKKbrPJBIJXH/99Rg5ciRqampw4YUXYseOHfZ/m4BCNQZ6zOgR9lGhkXlkIDr2YcQ2onQUAvkOPbTMWGLENgB/24epAGXJkiW49tprsXz5cixevBgDAwOYPXs2uru7dZ8777zz0NLSknn8+c9/1n193rx5eO6557Bo0SIsXboUXV1dOP/885ESQ8WIYcSQRKOKwmZc5HQlYZhHVomRETJAemiJSlsBaBWPFqNtxc8BW569GHPz8ssv6/7/8MMPY9SoUVi1ahVOP/30zPvxeByNjY05r9He3o6HHnoIjz/+OM4++2wAwBNPPIFx48bhtddew7nnnmv2dwg8ZjpkgBvSsGHO3pOXmAnY/NioVGI2QImKHkZGhS0tpAcQHdsASA8tkcugZNPe3g4AGD58uO79N998E6NGjcKkSZPwne98B21tbZmvrVq1Cv39/Zg9e3bmvaamJkyePBnLli3L+XMSiQQ6Ojp0jzBhxJC0m3FFJfInJyO1KCvjUxf5iJoeQXa6KjETzPt1My6VkO+QmG0rfuxXLAcojDHceOONOPXUUzF58uTM+3PmzMFvf/tbvP7667j77ruxYsUKnHXWWUgMTg62traioqICw7JSAA0NDWhtbc35sxYsWID6+vrMY9y4cVZv25eQ09VDTkZCtqGH9NBjJfsaZsh3SMLQVkxN8Wi57rrr8P7772Pp0qW69y+77LLM68mTJ2PatGkYP348XnzxRcydOzfv9RhjiIlzsLO49dZbceONN2b+39HREaogxYwh7d3rT0NSCc2rS4zaRtSmvEgPjhE9xGZcySQfJWclvEMFBSiSMAQoljIo119/PV544QW88cYbGDt2bMHPjh49GuPHj8fGjRsBAI2NjUgmk9i3b5/uc21tbWhoaMh5jXg8jrq6Ot0jTITBkFRidhVPmDfjItvQQ3roIT0k2q3dqX4tHLZhKkBhjOG6667Ds88+i9dffx3Nzc1Fv2fPnj3Yvn07Ro8eDQCYOnUqysvLsXjx4sxnWlpasG7dOsyYMcPk7YeDMBiSSswEKOk00Nvr/D15RRjmkVVCq3j0kO+QaFc30oq3cGQbTU3xXHvttXjyySfxxz/+EbW1tZmakfr6elRVVaGrqwvz58/HV77yFYwePRpbt27FbbfdhpEjR+LLX/5y5rNXXXUVbrrpJowYMQLDhw/HzTffjClTpmRW9USNMBiSSozokb0Zl/b/YYI6ID2khx7SQ2JlST5jQJ7KgsATBtswFaA88MADAICZM2fq3n/44Ydx5ZVXorS0FGvXrsVjjz2G/fv3Y/To0TjzzDPx9NNPo1ZTqXXvvfeirKwMl156KXp7ezFr1iw88sgjKC203V2IoVGyHjObcXV18YaVZ3Yw8ITByaiE9NBDgxuJ2QBFHIVQU+PsfXlFGPoVUwEKKzLZX1VVhVdeeaXodSorK7Fw4UIsXLjQzI8PLeR0JUbnkQGuhwhQwgrZhh7SQw/pIdEGKGUFerbqaj7ASae5HhSg8Gc/2gadxeMDwmBIqkilZNEr6UEj5GxIDz1hGCWrQqtFoWmbWCwa9hGGfoUCFB8QBkNShdE0LRAtPYxqEfbNuKit6CE9JEa1AKIRoBg5lwjwt21QgOIDyMlIrAQoURkVFkK7GRfpEQ3bAMh3aDEToETBPsKQbaQAxQeEwZBUYXQeGYiWHsVsQ2zGBZAeQDQ6ZID00GJ0CToQLT2M2kYyqfe/foACFB8QhlScKozOIwPR06MYpIckCloANLjRQm1FTxiyrxSg+ABKW0vIyeghPfRQgKKH9JBQW9FjNKNUXi4/4zc9KEDxAeRkJORk9FDhnx6zGQM6CoFDgxs95Dv0+FUPClB8AAUokjA0KpWQHnrMthXGgO5uZ+/JK9Jpub07+Q4K5rMJg++gAMUHUIAiMVqPA9CoMBvSQ1JTI2uYwqqHdjk5+Q5qK9lQgEIogQIUCY2C9ITByajEqB5R2IyL9gzSQ21FTxh8KQUoPsDsvHqYN+MiJ6OH9NBDeki0AUp5eeHP+rUDUgnZhp4wZJQoQPEYK/PIQHgbFjkZPaSHHtJDIqZDS0v5oxBh1wIg28gmDHpQgOIxZuaRtZtx+S3SVUUYGpVKSA89YUhbq8KKbfhxMy5VUFvREwY9KEDxGDPzyIB/DUkVYWhUKqEOWQ/Zh8SKFgANbgBqK9n4ta1QgOIxFKDoCUOjUkkY5pFVQnpIzGjh5824VEErAPWEwZdSgOIxwoiMzCMD/jUkVVgZBYV5M64wOBmVkB4SM1oApIeWsGsBhCOjRAGKx5h1Mn41JFVYOfCLMaCnx7l78hI6AE0PdUIS8h16yDb0hCHbSAGKx9AoSI8ZPbSbcZEe4bcNgPTQQr5Dj9UOmbKv/rUNClA8xqqT8VukqwozekRhMy4r8+ph1QIIR9paFeQ79FjpkMN8FAIFKIRtaBSkh/TQQx2yJJXi+wYBwXa6qqC2oseMHlVVQMlg70d6+Nc2KEDxGHIyekgPPWGYR1aF1RVvYdeD2gqHsq96KEAhbENORo/Vwj/qhKRthPUoBFqSr4d8hx6a8tIThuwrBSgeQ05GD+mhx+pmXGHUQ9TjAMXPngHINrIhPfSQHhK/akEBisfQUkE95GT00GZcEqFFeblcvVUIsg095Dv0kH1IhBb9/f46CoECFI+hRqWH9NBDekhICz1m9sgBaEojm6jYR5CzrxSgeAzNm+ohJ6OHRskS0kIPtRU9ZB96zOhRVgZUVvLXftKDAhSPISejh/TQQwGsxKoW3d1yeXKYoLaih/SQMCYL5YOsBwUoHkONSg+NgvSQfUisahHWoxDINvRQMC/RruILsi+lAMVjyMnoISejh+xDYlaL6upwb8ZFtqGH9JCYXZIP+FMPClA8hjIGesjJ6CE9JGa1CPtmXOQ79FBbkdgJUPw02KMAxWOsNqpk0l/LwVRh5uwZINxOJizzyKow21YA0kOLHzsglVCAIhFaxGJAaamx7/GjHhSgeIzVRgWE09GQk5GEZR5ZFVYCFNJDEua2AlBGSYt2CbqRPYMAf9oHBSgeY7ZRRWUzLnK64UnTqsJOBoX0CH/2lXyHJCzZRgpQPCYshqQKGgVJwlLopgpqK3rsZF9JDwpes/GjL6UAxWPM1lwA5HS1RMHJBH0eWRUUoOgxq4dfN+NSBWVQJGFpKxSgeExYDEkVdgIUxpy5J6/QahHkeWRVUFvRE5ZRsiooQJGEZTqUAhSPISejx85mXN3dztyTV1CHrMfs2TNANPQIeiekCgpQJGHxHRSgeExYDEkVtBmXhIJXPaSHHvIdeuxkX8N2FEJYbIMCFI+hUZAes6PkMG/GRbahh/TQE5ZOSAWpFH8A5gvsAcq+Av60DQpQPCYshqQKGiVLyDb0kB56SA+JlRVvVVUy+xq2ADYsftRUgLJgwQKceOKJqK2txahRo3DxxRdjw4YNus8wxjB//nw0NTWhqqoKM2fOxPr163WfSSQSuP766zFy5EjU1NTgwgsvxI4dO+z/NgGEnIweGiVLqOZCD7UVPaSHxEqAEouFX4+g24apAGXJkiW49tprsXz5cixevBgDAwOYPXs2ujX5sbvuugv33HMP7r//fqxYsQKNjY0455xz0Kn5refNm4fnnnsOixYtwtKlS9HV1YXzzz8fKZGjixBhMSRVWNGjro4/d3Sovx8vsWMbyaRcwh4WyDb02LGPsOmhDVDKy41/X1jtIyxtpczMh19++WXd/x9++GGMGjUKq1atwumnnw7GGO677z7cfvvtmDt3LgDg0UcfRUNDA5588kl873vfQ3t7Ox566CE8/vjjOPvsswEATzzxBMaNG4fXXnsN5557rqJfLRiExZBUYGUeGZB6tLervycvsWMbANdj1Ci19+QldvQIm20A1vSor+fPYfMdQovSUuN7BgFcj+3bw2cfdm2DMeNbGziJrRqU9sG/6vDhwwEAW7ZsQWtrK2bPnp35TDwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPcICOV2JlbNnANmwwqaHFdsoLZVzySFqJgDsOd2w2QZAemixogUQXl9qxzbSaf8UDVsOUBhjuPHGG3Hqqadi8uTJAIDW1lYAQENDg+6zDQ0Nma+1traioqICw4YNy/uZbBYsWID6+vrMY9y4cVZv23eQk5FYmUcGwj8qNOt0w24fZBsc8h0SK/VaQHj1sLJDeXW1zD75RQ/LAcp1112H999/H0899dQBX4tl5YYYYwe8l02hz9x6661ob2/PPLZv3271tn2HlYYV1kZldR457HpQgMKx2yGHeadho5Bt6AlrAGtFj1jMfxklSwHK9ddfjxdeeAFvvPEGxo4dm3m/sbERAA7IhLS1tWWyKo2NjUgmk9i3b1/ez2QTj8dRV1ene4QFcjISoUVZmVz+Z4Sw60Fpa46dtpJKAT096u/JS2h6WELBvJ6w6GEqQGGM4brrrsOzzz6L119/Hc3NzbqvNzc3o7GxEYsXL868l0wmsWTJEsyYMQMAMHXqVJSXl+s+09LSgnXr1mU+EyUobS2hDllPWJyMKqzoUVMjg13Sg2wjG9JDj9/6FlOreK699lo8+eST+OMf/4ja2tpMpqS+vh5VVVWIxWKYN28e7rjjDkycOBETJ07EHXfcgerqalx++eWZz1511VW46aabMGLECAwfPhw333wzpkyZklnVEyVUpK39UG2tAnIyesLiZFRhJ229fz+3j6YmR27NE2hwI6HBjZ6w+FJTAcoDDzwAAJg5c6bu/YcffhhXXnklAOCWW25Bb28vrrnmGuzbtw8nn3wyXn31VdSKBfgA7r33XpSVleHSSy9Fb28vZs2ahUceeQSlZtaHhQQ7Tqa/H+jr4zsihgHqkPWExcmowo4e+/eHyz4YowyKFmoresKih6kAhRmoMovFYpg/fz7mz5+f9zOVlZVYuHAhFi5caObHhxKrWxLHYtxJtbdTgOK3RqUK0kMP6SFJpWTRr5UApbOTLyc1U+vlZ8g29IRFj5CYZ3CxYkglJXJHSL8YkgrC0qhUQXroIT0kdpfkMxaunagp+6onLFNeFKB4jFivbmZZLRBOp0ta6AmLk1EFBSgS7TEGZvSIx2X7CpMeZBt6wqIHBSgeop1Hpg2G7GvR0cHT1mGBAjY9FLBJtBmUMhMT9bFYOLMGZBt6wpJRogDFQ7Rbu1OAIjtks1oIJ8NYuE40VhGwhQkru2MC4Wwr2g7I7Cq+MOpBwbweyqAQtrE6jwyEsxOy2qiqquQoMkx6WA3Y/OZkVGFXD7INThjtw24w39OjHzAGnbD4DgpQPEQ7jxx0Q1KB1UalTVuHSY+wjIJUQXpIrGoBhFMPu9lXgIqGAf/ZBgUoHmL1iHDAf4akAhoV6gnLKEgVpIeE2ooeqxmU8nJ+SB4QLj3sBmx+0YICFA+xOqcO+M+QVECjQj12O+TubmBgQO09eUlYRoUqsBOghNF3kC/VE5bpUApQPIRGQXpIDz12VyYA4Upbh2VUqAIVwbxfOiEVkO/QE5ZgngIUD6GMgR47eoSxE7LqdCsqgMpK/josejAWnlGhCqhD1kO+VI/dtpJM8mNUvIYCFA8hJ6NHhR7UCXHCZh/aqaqgjwpVQLahh3yHHqt61NbKZet+sA8KUDyEon495HT1kH1IaMWbHrINPeQ79Fi1D78do0IBiodQ1K+HnK4ecroSFQFKIqG/TpAh29BD08N6VBRR+6FvoQDFQ8jJ6CE99FhdOgmETw+hRUmJ+SX5YkQIhE8POx2yHzogVZDv0BMWPShA8RCK+vVQBkWPiqWTYemE7Djc0lJ/pa1VEJYOSBWkh56w+FIKUDxERaPq69NvmR9kwpKWVAU5XYmdbBIQPvsg29ATlg5ZFWGxDwpQPERFBgXwhyGpICyNShXkdCV2sklA+PRQZRuMqbsnL6F6Pglj4fEdFKB4iJ1GVVYG1NTw134wJBWEpVGpggI2iR0tANJDi9AileKH5IUBqteSaA89DLoeFKB4iN20tZ8MSQXUIeshPSR2glcgfHrYsY2aGl5sDIRPD6rns7fiDfDXdCgFKB5CaWs9lLbWQ9uZSyiDoseObcRi/uqEVEDBvERbkxj0bDQFKB6iyumSk5FaDAwAvb3q7skr0mm5eyodCEdtJRsK2PTQFI9E2EZpqfkl+YC/9KAAxUMoba3HjtMdMkRu0RyGTshumjZstmG3rVDApids9mEnGy206OzkA4OgEybboADFQ+waUticrqq0dRj0CFOaVgVhcroqoMGNHhXZV8aAri519+QVYbINClA8JEyGpALqhCTaDAoFKGQb2ZAeeuxM8cTjQHk5fx0GPcI0HUoBioeQk9FDAZtEaFFeLqeuzKB1MmFIW5Nt6FGlhx86IRXYmeKJxcJlH2HKzFOA4iEUoOghPSSqtGAM6O5Wc09eQrahJ0ydkArIPiRhCuYpQPEKxkJlSLZgDGCMnIwgnbatRWUl38wPCIcelDHQoMA+wtRWtL40DNMatkillNlGT49+0zcvoADFCx59FBgyBIkNWwFE3MkwBnzrW8DIkUj2pQBEPGDbtQuYNAnJr/8jAOtaxGLA0KH89f79Su7MG/7yF6C2Fon/XQzAflsJtBYAMH8+UFWFZNs+ANbtIxS20d8PzJyJ1CETkOKuw7bvCLQemzYBTU1Izv8JAPtaAN770jJvf3wE2bQJuPJKAEBy9ToAh0S7Q378ceCJJwAAiXg/gFLLnVAonO6NNwKffIIERgCw3iEDXI/duwOsR28vcPbZAIDEa28BOCfatrF6NfDv/w4ASHyyA8CwaOvxi18Ab7+NJCozb1nVY9gw/rxvn4L78oqrrgLa2pBoexeAdS3Kyvi2DV1d3D5GjlR3i2ahDIrb/OEPmZeJHh72R7pRPfxw5qXdNG3g9ejpAZ56CgCQABfBToASeD1eey3zMgkexVsN5oUWvb36FVKB4je/ybxMtPcBiHBbAYAHHwQg2wpg3z4Cq8ennwJvvQVAje/wSwBLAYrbvPtu5qVwupF1MqkUsHIlAIABSDA1nVBg9VizBiJXbbdDBkKgx6BtAPadbl2dXA0VBj2SjK+LjWxbaW8HPv4YgJoAxS8dsmVWrMi8DJPvoADFbUSAMn16pmGpcDKBPH9mwwaeR6yuxsCUE8AGzTGyAZtwMiefLDvkCutrhAOvh+iQtXpYtI2SEtkJBVKP/n4ewAJK9Ah8h/zee/z5kEOQHNEEAKgoT1takg+EqK2cdBJlUAiL7NwJfPYZ95Zz59o2JNGoBgYCupRUdMgnnIDk+ImZtyM7KhRO5otfRKKCrwONw/p8RKA7ZMakfVxyiZJRoV+criXWrwf6+njh2axZyqa8AmkbgGwr06YhMeZQAEBFacry5UKjxyWXyH6ldMDy5fyiBwUobrJ2LX8+/HDgqKNsO5maGrmU1GtDssT77/PnqVMzTgaI8KhQjJCnTkVy5OCoMGX95EPhZAKpR0sLX9FUWgpcdJF0uuURzSgJ2zjhBODQQ5UNbrq6vF9KaonVq/nzCScg0dQMIBwdsmWEfcyahWQlXz1R0W99336/DG4oQHGTTz7hz5MmAePH23YysVjAO6FNm/jzpElINh0CAChBOhN0mSXQTiadlvZx+OFIDKat4wPWU2OB1kPYxvjxvEOOVQEA4gnrS9ZCocfhhwPNzbZ9h3YpaaB9xxFHINl4MAB72cZA28a+fcCePfz1pElIDG8EAMSTnZYv6Zd+hQIUNxGNasIEYPx4mUFJWo90A92wRId82GFINHAnUxFLFviGwgRai5YWvsSktJTbxqCTqUhE3DYmTABKS5GsHgoAqOjYY/mSodHjkEOk7yi3VnxWVgbU1vLXQdcjcdBYAEBFOqLToUKLhga+v1b9KABAvNd6MO8XPShAcRMRoBx2GDekksFR4d4Wy5cMrNPVZgwmTEBi1DgAakZBiQTv6wOF0GL8eKC8HImhg04mYX1ry8DaBqDvkAEkqviQP96xy/IlAz0FqNVj3DiZQbGhh19GyabZtw/Yu5e/PvRQJEaOAQDEUz2WLxlYLYAD2kqyjm9cUtFtveH7RQ8KUNxEG6AASJRUA7AXoPgl0jVNSwsv+isr4xmDg7iTqWAJyxtV1NbyBAQQQD2yO+Qh3MnE+yI6pZHtdCv4cL+iY7flS4ZFD1ZWjsTg5mTxfa2WLxlYPbIyBkkRzKfsT4e2t2dW+gcHTSYaABJV/JexMx3ql36FAhS3SKeBzZv560FDSsYG07SdEUxba2sMysqQiGtWreyxpod2e/fA6iFso2IIAHvTf4HVAjjQ6ZYOZht791u+ZGDbijZjMGECBjS1oJEM2A7Irg0FMFhQbjG6EFoAAdyZ+4BgvgYAUNFnvwbFa9ugAMUtWlp4ZqC0FBjHpzPExmTxzgg6GRGsiUY1MLgHio0ABQhwp5ylR6KcByjxpP0pHq/TtJbI7oREkWyP/bR1YG2jsRGoqdElGO34jsC2lewOOc6za3EkLP8y5eV8VSQQQD2yfUcp/0XsZF/9Mh1KZ/G4xY4d/LmpKbM2OLMbZBQzKEIPEawNOt0KJPkBMhYJbKf86af8efx4AECiTONkGIOVHaiEFj09/BgBO3uIuEpXl8wYDOqRyTZ27bV82cB2yNm2oQ1Q2tssXzawbWXbNv58yCEAgESK+9M4Etx3WDw8ZuhQvp9UYO1D6JHJNlr/RQ47DPjxj4ExY+zenD1MZ1DeeustXHDBBWhqakIsFsPzzz+v+/qVV16JWCyme5xyyim6zyQSCVx//fUYOXIkampqcOGFF2KH6LDCymef8efBvzhjQFI0LAVOJnCNSvy9x/IK/MwR4TYzKIHXYzBgSw46mYp0H9BpLVVbXx/Q7d2FFnV1/AEgwQaLQrvs20bgOuRs2xhc6FaCFEr32i+SDZRtAMD27fw51+Amar4jnT7AlyYHF19UdO+3fNmmJuD22zPn2nqG6QClu7sbxx57LO6///68nznvvPPQ0tKSefz5z3/WfX3evHl47rnnsGjRIixduhRdXV04//zzkQpcdZIJRIAijEizmjaSo6CsgE3ooSqDEignk0rxXYYB6XTTPLuWGRVaoKRE7ncRKD2yOiBAo4eCVSuB0gLI2yHbsQ0gPHpkDhlVpEegfGlbG99pLxbjUQU051b1d/L0aYAxPcUzZ84czJkzp+Bn4vE4Ghsbc36tvb0dDz30EB5//HGcPXiU+hNPPIFx48bhtddew7nnnmv2loKBiHKzOmQAqNgbwUr8rIAt0hmUlhYepJSV8ZUJyNEJHXpogQvkZ+hQ7nADpUeOACWZ5q6qop0ClEgH80De6WHeViK2b5DQYvRoXkgDIJHWTHnt2QNUV3t1d7ZxpEj2zTffxKhRozBp0iR85zvfQVubzBCsWrUK/f39mD17dua9pqYmTJ48GcuWLct5vUQigY6ODt0jcOTpkAGgYt/nli8byEYF5A3Y7I6CAllnIDqgMWMy66R1nVDUAjahx2BbAYDEANcl3rUbumUsJhBadHZavoQ3ZOmhKoMSyLaiLRLJ0kNVwLbXepmT++QK5pN8XteuHn5AeYAyZ84c/Pa3v8Xrr7+Ou+++GytWrMBZZ52FxKAVtba2oqKiAsO067oANDQ0oLU1dyZhwYIFqK+vzzzGaf4YgSFPh1yKAZTusT/FE6hG1dcnG86gHqqczPDh/DlQeuSa0lDUCQVSj6wRMgAk+rnTjSNh+ZcRHTIQsE65YMbAum2MGMGfA2Uboq3U1mbmL1UNbkRbCZRt5ArmFdmHH1AeoFx22WX40pe+hMmTJ+OCCy7ASy+9hI8//hgvvvhiwe9jjCGWZ6XCrbfeivb29sxju/ijBIliUxrM2pbV2g7I4iXcR9RbVFZmfgFVUzyBdroaJ6MqjR9oPRSPCsvKZE1OYPRIpaTvUDzFE8jg1cFgXrQVG+7HfQroQRkUA4wePRrjx4/Hxo0bAQCNjY1IJpPYlxWmtrW1oWFw/j2beDyOuro63SNQMJY3g1KBJHdCFncHEo2qv59nPwOBtkB2MChV7XQD5WRyZQwUZ1ACpQd1QpLWVlmfNFjXd4AWFkcmgdMCKNhWKGDjqMoo+QHHA5Q9e/Zg+/btGD16NABg6tSpKC8vx+LFizOfaWlpwbp16zBjxgynb8cb9u3j0xqArLTOOJlBa7LYKqqr5YmmgXE0WSt4gCyna8NDBDJjUEwPG8sKAqmHyLAN6pFOy5qRCiRt6RG4Tkho0diYqU/S2UYyKX2LSYQW3d2WT5dwnxxtRdch29gGNpABW1ZbAbLsI3Db4uoxvYqnq6sLm8S23AC2bNmCNWvWYPjw4Rg+fDjmz5+Pr3zlKxg9ejS2bt2K2267DSNHjsSXv/xlAEB9fT2uuuoq3HTTTRgxYgSGDx+Om2++GVOmTMms6gkdIuofOZJPa0BjRCX9QBqWDSkW446mpYU73cG9nPxN1rp9IMvJ2CiCDmTGoGXwLKbB4BXIyijZcDKB06O3VwYgg3roluRHrRMSHVA+2wC4HlVVpi9dX8+XoqfT3HcMjiH9TY62osugKGgrgQlegeL2EbUAZeXKlTjzzDMz/7/xxhsBAFdccQUeeOABrF27Fo899hj279+P0aNH48wzz8TTTz+NWnG2N4B7770XZWVluPTSS9Hb24tZs2bhkUceQak46S1sZNWfABojKh2wFaAA3Om2tATI6RbIGNhtVKID2rePO96SIBzmIJyMpofQj4KsD28Dl0ERHVBVldykTbtzqs0AJXCdUCHbKB0AUuB65NnWoRAlJbzIfs+eAAUoBTrkyAWvjMn2ktd3RCxAmTlzJliBOc9XXnml6DUqKyuxcOFCLFy40OyPDyaFUvhlKaAfSrIGgXG6WfU4QJ609WC2yQxCi3Sat82sxWL+Q+tkcowKuZOxlsIHAphB0XZAWfVJAFCO/mh1QoVsoyzNAxQbvmPECK5F4PRwoEPOXnBg4XQJd+nokBuxhTRACcL4Mvjk6JAzGZSyNH8RJadbKKOkTVtbIB6Xh34FImBrb+fTGoDOyahK0wY2g5LD4ZaXDKAELPIZlIxtlA8OFKOoR74pno4O20XDiURANmAVbaWuTjo9hGuKhwIUN8jRIWei3HJ1AUpgnEyhjJI40C4qdRfCyQwdqqsjUD0qDIQWQMEOKF42eBRGlIL5QhmUCvsBSqD0SKf5qiYgZ8AWR4J/psvabrI1NZnNWIPhS3O0FYAyKIRZCk1pCCcTlcLQdLpw5XnlYF7VZtoaCIeTyYwKLSK0aG8PyO6pOTIoKrONgWorQOEMyuDqvcgMbvbs4fspALqaG7ngYNDAbSw4CFTAlqOtABSgEGYpNKVRMdghR2UU1NbGe8qSEp2TyehRNVgoHZVOKI+TOWBVk8W0tbYGJxA7ZBbKoCjMGASiQwYKZ1Di9n1HINvKQQfJVAc0wXz1YEllVKa8crSVVIo/AJriIYxSKIMi6kCj0qiEFg0NOZ1MvNp+gBKoTshImjaVsrwLX+B2Ty1UBKkgQAlUhzwwwAN6ILceVeoGN4GwjTxtJRPMK/QdgbCPAtlGgDIohBF6e+XQNVeRbOXgnyAqjSrH9A6g0UPhKCgQehTJoFSU2K+7CJQehfZ1UFCfFKgO+fPPeeastJRnDQahbGOeKY0hgwOeqAz2CrQVYDCD0t0dkLnd3FCA4jTafR3EUBbaUdDgn4BqLgAA8Rr7AUrQ9WBMo0fdYKFBVPQolEGpVDel0dWld+a+RLuLrGZDH8o25s6gVAwZjGCjMtgr0FYAzYpIG32L11CA4jTaOWTNwvrIjoKKBSgKRkFBdzIDA7LkREWAEhj70GYbc2VQFGQbhw6VzdD3nXKO+hNAG6BQthHQ6FFrP0AJegYlU49TAcTEPlIBnuahAMVpclThA85lDNJpy5dxh2JTGrWDHXJUNq4rlqats+9kAjNKFktI82YbB4P5ri5ZCWgSsXsqEIBOOY/vyLSVGnXBvO9tAyg+uFGYbfS9beTZRVY3HSraEAUoRF6KTmmomzdNpwOQzSumh4JRkHAyvj/Ik7GCW5kDQHzo4N4onZ2Wf0xg9NBqock2yoyBxl1Z3OsCCFAnZDTbqMg2LC4Uc4+ig5tB36HANnzfVjo7ZeF8runQODJHRdixD6+hAMVpijUqkUGx0ajicWDIEP7a9w2r2DyyyKDYaFQjR/Jn32vR0ZFzF1nhZEpKgLK6av6fKOiRZ0pDN8VTNthebOgh6k137bJ8CXcwWhSqwDYSCcsLxdyj6OAmQr5D2EZtrXT+yApQxPsUoBB5KToKGoz6OzttDWFC43QVjIICo4Wwjfp6oLo687YuTSsO2YxCh1xsOjQeU6JHYDoho0WhNrSoqZEbGPvaPvJMaQAa+6gfnA6NUlvJZxta32HDl3oNBShOU6TQrUKMggYG9Ll9kwin6+uGpd3XIV/ApsDJCC26u2WCwpcUK4JUNAoSTtf3HbLLevi6rQCuBPNAQPTIs4ssoOmU69T5jsC0lbzBPJQE815DAYrT5BkV9g0eUFtVVyHfDHsnlGdfB0ATsClwMvX1cg84X+tRrAhS0SgoEMEr4JoegeiQgeKj5DrNlIaN7Gsg7EN0yCNHajbEyVqSrzCD0t7u82XoxTLzFKAQhshjSCJAqawuken9sDvdPPs6AJqAbZh9JxOLBczp5rENVU4mELYBGMugRGWKx0i2UQTzqZQ0GgsEYnCTx4+KpAoAVAy170eHDZOuyddF1MVqGysgs400xUPkpLcX2L+fv86XQalCdDqhPE4GkFMxVcMHJ8RtNqpABCjFsmuKbWPvXsurc90hjx4Z24hSWymQbczoMSwu3wx7hi1Ph6yNy6pG2C8oLymRK3l8rUceX6q6rXgNBShOkmcXWUAaUmUllI4Kfd2o8jgZxjQZpRE1/IXNRhWIUWGejIHOySiouRDL0Bnz+X4XRTJKlZWITg2K0KJAtrGyulRmX8OuR5EOGQDiw+xrAQREjyIBm6p+xWsoQHESrRFp9nUAIup0i8ypA5oApafH1nA/UHoYcTI2Rsjl5XJzMt/q0dcnoycjGRQFGQNfB695bANwLqPkaz0MdMixOjUdciD0cCnb6DUUoDhJgSmNnGl8BTUogWhUBUZBVSNr5H/CnrYuUp+k0sn43j5EB1RZyfej16B6VKgNXn27OZkB3xGp7GueQ0ZVB/NAQPQQ7aWQHlSDQhTEQM2FE07XtxQZBcViQHltJZ93B8IdsGl3kc0TsKlM0/re6Wq1yMo2OpUxSCR87LuNBigKOqFA+A4zGYOwZ187O+XfmzIohGXydMiAs6NC31JsRVMlECtRsxmX7/Vob8+5iyzgzDyy7wM2FzMG1dWD14KP7cNIQXmUpngM+A7tjqqhHtwILerq9L8zqAaFMIPZKZ6wb06WJ2DTOVwgGgGK0GLoUN0uskCeItmwb8blYsYgFgtAJ5SnYBiI4BRPOm2soDweV3IUgu/1cDGY9xoKUJykQAZFl8ZXUCRbVyc3J/Nlw+rvz7uvg65RAUr0CKWTCfNmXC5mDIDgBmyplNz7Q3UGxbebkxXYRVbXVmKxaNTzGW0rVINCFMRsJxTmUWGBfR0OCFAi7mRy2obNoxBCp0eUanI0aPf9UJVR8v3mZEKLUaPkKGyQvL4jzNlXyqAQSnDZkHzdsArs6+DkFI9vNyczOwoCIut0ncyg+DJgM5BtBNT5Dt9vTmbUNoDIZ1/zthXfLlcrDAUoTlFgF9mBAf4A1DpdXzcso8EaoESPESN4Vokxn3ZCBfa50OlRWiq9r4KMkuj3fIfRmgvFNTmff27rMs7Q2sqfy8tl5DCI6IDKywcXuykO2HxpH0ZtA1Cix6hR/Hn3bl7+4jvMDnxtHoXgJRSgOEWBXWTzpmltOpmGBv7sS6drdEUToMTJlJVJ3+5LPcyMChXo4WvbAFzPoIhSBl/qoQ1e8+0iq7CtAAHRw0xbURDMp1I+n/IqpkeNmj2lvIQCFKcwsIssoHaDIV93QlbStBHVw4lOSHRAu3b5cMqru5tXaAKuTYcGwjaK7SILKG8rInnjK1xuK+XlMhvta/sopkepmqMQvIQCFKcw0CFXVAwOkBSPgsjJcII6KnSq8C8W8+moUATzQ4bI31VDzo3rbG7GRbahJ6h6OFGDAvg4YCuwwSPgTPbVSyhAcQoPnIyvR4UuT/EAIXIyCkbJvp7yKqAFkLVnkLZouLvb8o/0rW0AnnRAQdUjcr50/375S7voS72CAhSnMNMhK4r6g5pBccrp+nZUuG+f3HDCRSfjW/soMKXBmFxdXVk5+I84CkFBTY4vp7xcLgoFfNwhA8YLyoHwT5cLLYYN0/zSEqemAL2CAhSncLmwC/BxowLMjYLCnqYVWowYwXe/zEKXMQDC3wkZsA1gUI+YuqMQYjG+SsN3U15W2opN3+HbYD6Vkg3Yg8GN73xHgeAVoAwKYRQrUxr9/bY24/JtIWR/v1z7TKOgolMaupoLIPxO12CAoroQUkx5BUmPyE3xCGdWUiLX/2pwenBDvsNbKEBxCiujIMD2BkNiVOirvT8K7CILRHCKp0DKGnBulBxEpytso7RUs4lohPUoOEK2sRmXb6e8hBYNDfKcHQ2RC9jM1GsBFKAQeTBwDk/GiBQtBysrk/2/rxpWgV1kgQgWyRocBdEUTw7bAMIdwCYScs7JTAZFwVEIvpzyMtghq86++tI2APN6UA0KcQC9vbwQEjDudMOcmrTaqBRpsXu3T0eFLs8jB3GK54AOGQh3ACuC+XicF0JmUTD7aqMT8u2Ul0dTGr70o0BBPRijZcaEEQrsIgsUGRUqivyD6GRUFw1rR4W+mvLyKEDxpdMtsuQ6chkUrRZZGzwCOfTQHoUQRvswO6WheHDT1hacwc3AgNyan2pQiPwU2EUWcGdU6CsnU2C6CyjQIXd32zoMo6xM7ggZ6IAtzLuFdnbK/UyMFFAD4a5BMWsbQHQCthw4FcwHccpL2AZAGRSiEGYbFRDuNL5VJwOEcy65SJrW6SkeX015CS3q6/VnhwwSuSkeD32HL/UosqzWqeyrdsrLN77DYLYR0OxeQDUoxAGYzRgA4a5BKaLHAU6mslIW04ZNj3S6oNPt75dJI9WjIF+u8jK7rwMQ7oyB2bYChLsw1Orgxmb2FfBhwLZnD3cQgPxjadDW42QS91HLoLz11lu44IIL0NTUhFgshueff173dcYY5s+fj6amJlRVVWHmzJlYv3697jOJRALXX389Ro4ciZqaGlx44YXYsWOHrV/EV9hJ0ypyMsLP+QKzTka7GVfY9Nizh08WAzmdjFP7fgD6VV6+0YPaih4rGRTFO1EHSY+806FA+OxDaHHQQfwgtyycDOa9wnSA0t3djWOPPRb3339/zq/fdddduOeee3D//fdjxYoVaGxsxDnnnINOjUDz5s3Dc889h0WLFmHp0qXo6urC+eefj5Rv8s42+ewz/my08hxQPir0TaMCpB5FRoVO6CH+BKJte47Q4qCDNBt7SJxO0wo9xG14ThHbcLJDFlrs2iVPHvAcs6tWgPC2lYEBmc4xah+KjkIAgDFj+LNv9PAwmPeKA3e+KcKcOXMwZ86cnF9jjOG+++7D7bffjrlz5wIAHn30UTQ0NODJJ5/E9773PbS3t+Ohhx7C448/jrPPPhsA8MQTT2DcuHF47bXXcO6559r4dXzC9u38edy4nF/u6eHPuil3RU5GNCrfdEB9fXIXWdIDEJnCsWNzfllo4VSadswYYM0aHzndIno42SGPHMkHoskkD+jHj7d1OTUIPYThZnHAqhUgvG2lpYXXXZSX59zgEchhHyL7un+/7U7Zd3oI2/Agu+YVSmtQtmzZgtbWVsyePTvzXjwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPXxNEacrFi3oOmRFhiQaVUeHT4Jm0borK2XVWRZCD7FXHQDlevjGydgJXm0ehQD4UA8rbUVRhxyL+SyjxFhR+yioh8IO2camtOoQWowZk3ODR8bytBfFGTZf2AZg2DZ0fjRqUzyFaB2sJmoQ1UWDNDQ0ZL7W2tqKiooKDMvahEj7mWwWLFiA+vr6zGNcnj+QL2BMOt0inVBOQ7LpZOrqZPv0RcPSapFjyTVQpFO2qYfvnIzBDjlnsAZQwAYoTVv7yj7275cGYMU+FHXI3d18gOM5RWwjmZSr0ZzolH03xWOwX8kbzPsi6jSHI6t4YlkdEWPsgPeyKfSZW2+9Fe3t7ZnHdmG4fmTXLj7K1Q7PsnA60vVVJyT+VnkcLuCsHlonY7OoXw1WOuSyMpnTD1va2sqoUGHa2ledkNBixIisORyJk9OhNTVyX0lf6VGkrQARmR62k10bGPBRoZVxlAYojYMVmtmZkLa2tkxWpbGxEclkEvvEVvA5PpNNPB5HXV2d7uFbRJTb0JCz0hpw1skAPmtYRRpVf79cOeeEHmKvvIEBnyyttdIhA+FMWycSsgjSg/okIFhtBaDBjRahRXl5Vr254imvlhaf7BtkMGBzKvvqBUoDlObmZjQ2NmLx4sWZ95LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZwINORk9BtOSgDOj5PJyeUq7r/QoUiR7wJ5lYUxbi5swW58U0bYCOD/lFSQ9cnbIgNI9pUpKeHDS1mbrUvbR1ieZqddSeBSCF5hexdPV1YVNmzZl/r9lyxasWbMGw4cPx8EHH4x58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpmVU9gaZIBwQ4W9gF+MzJFGlUQouSEs2yWkB5J/T551yP44+3fTnrGKhPyulkAOUByu7dPIGh09xttLZhpT5JbMaVo4DSKL5sK2YHN2H3HR61lbIyHqS0tPBYOs9KZ3dob7dWnwRwPXp7oxGgrFy5EmeeeWbm/zfeeCMA4IorrsAjjzyCW265Bb29vbjmmmuwb98+nHzyyXj11VdRq9m+/N5770VZWRkuvfRS9Pb2YtasWXjkkUdQKtavBxkDTsbJIlkgWE5Gq4Wuj1Ksx3vv+UCP3bvlWsA8y0gLOhnAth7Dh/OgJJHgTre52dbl7GE32yg+oP2/SXy194eBei2np7x8NQVoZUoDUD64aWnhekydavty1tHWJx3wC3MKZl/b2nyyrNMcpgOUmTNnghWoBo7FYpg/fz7mz5+f9zOVlZVYuHAhFi5caPbH+x8TRaGRmFf3OGMA+EgPbX1SntRFXiejaJQci3E9Nm/mengaoFjNNoqjENJproeNACV7aW2RWn5nKdIhp9Pu1eR4HrAlk7I+ycyUBqBcj5UrfeA7rAbzQKCXGtNZPKoxMY8c+nn13l5ZmVpkisfpURDgAz2srmgCHBkle94JmXC6uk5IexSCoimvnh6eRfeUIr5De1pt6LOvImKMx/Nu0pY3QFG487Jv9LAazAOB3qyNAhTVFOmEGCsyj6xwM67WVo+rz0Wjqq4Gsva9ETi9agXwkZMxMf0XiYyS1elQQFmnXFUlTdNTPQxs0uZ0QTngI9vQdshF6pPcCOY914MyKIRt0mlpyQU2FxL7ceQskgVsO11t9bmnJ5Na3aQNCOdmXAaya07XoAA+7ITMZlCA8AVse/YYrk/SHvYNwBEtWlvlmZaeYHWqHAjnlJeKwU0Aa1AoQFFJWxuPQEpKim7SBmR1QtrNuBRUn4tDAz11utu28WePpzR80QEB1osggXCOkk3o4WSGzRcBrNBi1Cjz9UnaoxBsbsY1ahRfmZpOezy4UZFdU9hWRCztGQameCiDQhRm61b+PGZMzpNqAdmoDthcCFBqSMKOPW1Yn37Knw85JO9H3JjSED5u3z59gOg6wj4K6OGGkxF6iPjRE3p65CGSBU7pc2OUfPDB/NlTPURbMaBF3mANsK1HaanslIOih5M1KFrb8HSneAN6UA0KURgDHVDeqB9QakjCjj11MnY6ZIVa1NfLLbxFO/cEE/bhZIcsbMNTLcQPr68Hhg7N+zE3prx8oYcd2ygrk0fYhsU+7PhSB4LXri4+wPGEdNrQYI8yKERh7HTIgCOdkLglT1DRIYvNuGwibsEzPZJJOZFtx8ko6JDFj9+508PjOQzYRt5jEIDwBWwmfMcBWgBK9fC8rWh/uBU9FGpRVSV3ovbMPlpaeEMoK8tbOgBQDQpRDDsdMuBIJxQUJ5O3Q9Z+yAaed0Lbt/MccVVV3mWTgIG0tQKne9BB/Da0C0dcx0RbAZzNsAW+rQDhyigx5ptso/YWPLMP8YPHjeNBSh4og0IUxs48MhCuUWEqJXs/K06mqkouVQhDJ6R1uAV2A3PD6cZiMnXtmX2Y6IAOOAYBcKStbN/u4bJ8VYObMPiOXbv4pi+xmLUVbyJ4VZR99VwPA7YBuDO4cRsKUFTiIyfjeYe8cydfp1hWVvAQi7xOJhZzpCYnKE7G6VGQ5/ZhMmNwQEyneBl6aSnPore02L6cNexmUMKUURI/uKmp4GFRRYN5IBzZV4O+w62MkptQgKIKk2lJt4pk9+0DOjpsX848QouDD+bePw9uTXmFxskomkcOgh5uBfNlZXKg7oke+/fLbWytrNIAHMugeLJyxW4wH+bsax7SabnTsJP1a25DAYoq2tr4RktF0pLCRpzukGtr+cFwgEdO166TAcKVUbKrh+I0redF1D7KGAAeB2zihx50UB7HwHGrBkW4r54eeVKFqxhYsQIUmNJQeBQC4INgfssW/lxAD+0xCJRBIQ5EWG9TE1BRkfdjwkZynm/mUBrfzwGKW3oIJ9PaKjfsdBUDemiPQdBubQFAapFMKll646lt9PTwgF57Izlwa9WK9jY8CdgMthVDgxsFelRWyllZP/uOgvahcC+UIATz2l9T7PeZgWpQCKONSky31NXl+GIEna74VXPqobBhaU8p92RvGIMZA5FSPyBg074R9Ckvg3ugGGorYZjyErZRYHoHcK+taG/FzwGK24Obffs86ONTKemwCugh7mvIkKxjEADKoBBQ06jClMY3sKIJkJ1QQSejoBOKxTzMGiSTch/1AvYhtCgpyZHGV7wZl7iN7ds9OHPFZx0Q4HFbIT30+GywV1cnD5R03XcY3AOlYPCq8CgEt6EARRUG5gkBg05G0ajQ0zS+Sj2CPio0uAeKVoucK5EVBrCjR/OjFlIpDw5CM2gbBTsgxcF8EKZD3cwoeaaHwcUGQEQCNoN7oBQc6Ck8CsFtKEBRxaZN/Pmwwwp+LBKNKpmUP9RHeng25fXJJ/z50EML7oFSUAvtFxToUVIiiyE906O5ueDHvApeXV+54nM9XOXzz3mNUkmJ3KwnB8kkkEjw1wUD2KAHbCZtI6cWirOvbkIBiipMBihu1qC43qg+/ZSve6uqKrgHCmPujpI9C9g2buTPRWyjoBaAY6Nk1/UQbWXixIIfM9RWFG3GNW4cjx37+lw+xTedNqyHFxklkexyDdFWxo83tNgAyFFQDjjmS13Xw6RtuDG4cRMKUFSQSMhCJoOdkBs1KKJR7drlsl1qg7UCGYO+PrlzpxujwgkT9LfnGiY7ZLecjOd62Gkr4k3G9HviW6SiQg7YXdWjpYWvES0t9dWUhrCNTz5xOaNksq1UVeWZ+YhYWzHsOwK2FwoFKCrYsoWPhIYMARoaCn7UTSdTXy8PuhIDE1cwmDEwPApS1KiEz3NVC0C9k1FkH57okU7LtLWdDIrizbi0t+OqHsI2DjmEFwUVwM36teZmHjP19Lhco2QyeC2abQyybWh/oJ22AlAGJdIYzBgA7joZwGOna7BDzrk0DlDeqMTt7N0L7Nmj5JLGUDXFozjD5olt7NjBM47l5QU3NASKZFAUH4UAeKSHwQ4IcHeLgvJyWfbg58FN3mBecQ2K+PNs2uTieU2Mqck2AoHdC4UCFBUYNCLA4Ly6os24AGDSJP788cdKLmcMn86b1tQAY8bw16453VQK2LyZv1Y1xaPI6Wptw7U0vrCN5uaCqxIAb/VwDYO+Y2BA7hbqxvQwIM3Vz77DrYzB+PE8aEsmXTwBfPdueQTCoYcW/KjhDApN8UQQEwGK28vBgpBBcTPqd12P7dv5/gPxODB2bMGPuh2wiUVFnZ1yY1fHMZExcDtt7WkGxcR0qBvTw4AHejCmLoOiWI/SUlmH4poewo+OG5dje1g9VCRL5Mdgh9zfL5fG5TQkB5aDuT4qHBiQpe52VjQB4ZjyEj/o0EPzzGNJ3O6QKytlYajrTtduMA84NsWzaZOShUHGMFkUWlGR54BfB7KvrreVtjbe1ktKii6r9WJKw3U9VGXmAQpQIo3JjAHgXtra9TTtp5/yICUel/MpeXB7FAR4ELAZ7IAAbzJKnunhQ6fremGoiRoDw20FUD7l5XqHfPDBeaIwiReDG9fbioX6JKpBIfT095velKyyskDBvkOFofv2uVQYKpzMhAlFMwZepCU9y6CoyBiEIaNkImBzWw/XC0NbWng0ZGCJcdGaCweyr+JP9MknLhWGmmgrXgxuQpFBoRqUiLF1K2+9VVUFz0oADDQq7RcVNazqaln64ErkbyFjUHTVSleXspy7NqPkSmGojzMGgMtOV7spWRE90mnpS0Orh9CiyKZkgEHfoXiUfPDB/LYSCZcKQy1M/4XWNrQ/SEX2laZ4IspHH/HnSZOKLjEuOiIEgj93KvRQ2agAJZtxATyxE4vxzs+VHUNFVOjTUaGraesdO/jufGVlBbcxB/gGsYLQ1hkI0VVkk7RfVDRKdr0w1IQeXhbYb9nCE+eOYqJgGPAmYHMDClDs8sEH/Pnoo4t+dN8+/ixOxsxJ0OdOLegxdGieD1RXK9+MKx6XW9477nQTCTkqPOqooh8XKwrd2gcFcLkwVNjGpElFNyUTWmhnLg4g6AGb0OPII4t+tGgHBAQ/a2BCj6JtRfFRCAAvqauq4iV2jh8P0dLCf8nSUqpBIWwgGpWBDshUgBJ0J6NCDwc24wJc7IQ2buTTf/X1Raf/AL6BHAAMH57nAw4Er4ccwn1gby/w2WfKLpsbi7aRNzHpYE2OqwGKCT3y2gbgqO9wXI/+fvlDVPgOxUchAHysJJIZjvvS9ev582GHFS0YTqeB/fv5azd9hxtQgGIXE1G/VwGK6JDF7Itj7N0LtLby16r0cCBAOfxw/vzhh8oumRvhZI46quj0H2MmnK5CLcrLpdN1XA8L2TW3O+QjjuDPmzYpW62bHxN6iODV7bYi9BC36hibNvEgZciQotN/gIG2Ul0t21wQ9TARvLa3y3o6N32HG1CAYod0Wnp1VRkUB5zM5Mn8+cMPHZ47FVqMG1dkspzjVcAm9Fi7Vtklc2PCyfT2yg4xrx4in93RobTCd8oU/uy4HtqArQiGOmStHooYN45fdmAA2LBB2WUPpKNDVp6q8h0O6CFsY906ZZfMjXagVySYBwxkG2MxqYeYD1KAa23FQnaturpArbUDWrgBBSh22L6dz3GWl8tqsgIYcjL19fxZ5OwUMH48j3u0WVRHMNGoAIN6iAIVhXq47mRMZAxKSwvEdkKLZFLue64AVwI2xtRPhwo9xIcVEIu5pIcI5puaChRhSQxllIRYCvUQptvS4vA2BQHxHa4NbkQwryrbKIRSqIUbUIBiBxNFf4DBRuWAIZWUuNSwTDoZQ6NkB5yu0MJxp2sxY5B3ADlkCI9gAKV6uDJK/uwzPrIvLZVzjgXwqkMGXNLDibbiQIc8ZIjcG8ZRPUx0yNqaC7d9h7CNDz5wcG8Yk8G8Kdvo6HDxtEP7UIBih4B0yIBLWQMnRkEO6FFbK/fFcszpJpOykk5VxiAWczSjtH69g75L2MbEiUX3/ABMthXFo0JXgnkTwSvgj4DNL76jo0MuzHHbdxx6KF/Jo12gp5zWVn7PJSWyYK4AprJJQKCyKBSg2CEgHTLgPyfT2yvPJQplJ7RpEy9kqK0tekggYNA2tB9wwOn29fFdQx3ByRR+kDMoBjIGgLe+w/G2oi34MTGlUVVVYAk64Fg2WtyiY/YhbGPChCK/IMdQ8FpeLusbFduHk1CAYgcKUCQdHXwjLsDUCp7S0iJ7OwQ1ja+1DQNFf4acDOCIHqWl0oQd08NECh8wmTHQRrsKEB3y1q0OLnoIoO9wzDY++YRnHKur1azgEQTVlzqRmQccyb46DQUoVtHOExrokAF/OBnHnK4o+hs92kBL0W/SVrD/dniU7JiTMZnCN+xkIuJ0Da9aEcajUI8RI7gZAw51yl1d/FBNwJAe6bTBgM2hDkgboDhyPIRoK0ceWfT8LsDACh6BQ77D8YySxWDeK9/hJBSgWGXLFp41qKgwNE8IWAhQFHoDx53umjX8WbTeInjdqBx3usJ7qXYyQXS66bQ0OoN6GArYSkqCOc0jLtrYaKCX5QMKr2ouALkGQLsyWikmbcNPvsMRRCNUWZ8EUIASKd57jz9PmWKo6C+RkCtDDTmZgQH9gSQKcHSULPSYOtXQx712MpMm8W3UOzqAbduUXpoj9DjhBEMfN+1kHBolO2Ibn3zCha6sVJttBBzPGjjaVkzahuGaC8VtpbxcblDmiB6rVvFng3r4Jdu4aZPS1f6cVEoO9kzaB2VQCMnq1fzZZKMqKZFbneSkulouWVZsSMccw5///nell+WYdLpeO5mKCjlAEX9KZezdyzNsAHD88Ya+xWsnc+yx/HnjRgemAIVtHHMMjwoN4PWoULQV5bYBON9WurqU78go7EPculICFsw3NACjRvGslnJf+vHHfGv+mhpDy/EBCzUoUQ5Q5s+fj1gspns0NjZmvs4Yw/z589HU1ISqqirMnDkT68WcW5Aw2aja2vjzyJFFplljMcecrkhurFih9LLcGb7/Pn9tUo+DDiryQQc3GJo2jT8r10P0aoceamgTLgDYtYs/jxhR5IMO2UZDA99FlTEHOiGTbSWVkk7XKz1OPJE/r1rFk5lKMZkx2L2bPxfVQjvyUdxehB7K20pbGy+uj8WA444z9C1CD6+C11jMQT1EWznuOLnnUREM20cAN2tzJINy9NFHo6WlJfNYq8kL3nXXXbjnnntw//33Y8WKFWhsbMQ555yDziCdEcCYdDIGR8iiQx41ysCHHWpYJ53En9esUbrogRdAJpPcQR56qKFvEXo0NBT5oNBi717lxSJCj3ffVXpZ09NdAPD55/zZlB6KcdzpGtRjzx4+Oo3FeEBfEIf0OPxwvkK8t1fxuSuJhCxeMKiH4bZSViaXxCnWQ9jGu+8qbobCNiZNMnQ8BuCvtqLcd5gMXgET9iEiOkd3p1SLIwFKWVkZGhsbM4+DBofJjDHcd999uP322zF37lxMnjwZjz76KHp6evDkk086cSvOsHMnH/KWlspccBEMNyrAMUNqbuZRdn+/4tSkcDLHH29oSS0g9SgasIlhQTKpvCZHOJmVK5WdyM4xmTEATDgZ0WOLYZNCHHG62mDeoB7CNkaMMDAj5JAeJSUyw6ZUj7VreUpmxAiesjKA4bYCSD0U+47jjuN/i88/l7sJKCHgbcWxYN5EtlFkXw3rEfUAZePGjWhqakJzczO++tWvYvPmzQCALVu2oLW1FbNnz858Nh6P44wzzsCyZcvyXi+RSKCjo0P38BRhREceySvXDGAqgyLmPYTlKSIWk1kDpQ3LSSdTUyMrAxXrMWUKP8l8/37Fu0Ka7JDTaQtOxgGn64htfPopzwSWlxtepWEqmBdtJSh6aNuKyWDekB7CPhS3laoqWRyqNGCz4DsM6yFso6eHPxQiApQNGxSev5dOy+lhJ7KNDtmGkygPUE4++WQ89thjeOWVV/CrX/0Kra2tmDFjBvbs2YPW1lYAQEOWZTU0NGS+losFCxagvr4+8xhncOThGE52yIArTtcRJ+PElIa25SnWo7xc/gmVdUIdHXKLe4P2sWeP3GK+aE2Og7Yh/nxbtyr0YdrVbvG4oW+x1CEHJaPkZIcMOGofjmQNRDDvhO+orZULDhTrcdBB8riMlSsVXdTCajdT2UYHbcMplAcoc+bMwVe+8hVMmTIFZ599Nl588UUAwKOPPpr5TCxr5MAYO+A9Lbfeeiva29szj+2OLMY3gckVPIDFNK0Dka7yAMXCsjjAHxklwIFOSGhx8MEGhjQcrZMpeuakuOb+/cpXatTXy+WkyjohpztkF9rK2rUKl5M62SEDrmTYlLWVvXt5NAwYruUzlW2MxYKVYbOw2s0vtuEUji8zrqmpwZQpU7Bx48bMap7sbElbW9sBWRUt8XgcdXV1uodnMCZDZoONCrCYQXGwQ/7oI0WpyQ0bePq0upofBGeAdNp/GSVlTsZGkZvhAmqxDMyBuWTlAZsFPUwF8w7axtix3D61MbgtLKx2AyxmUBz0HcpqtsRAb8IEw6vdTGUbgWDVoTiZiQb0NSgBOdHY8QAlkUjgww8/xOjRo9Hc3IzGxkYsXrw48/VkMoklS5ZgxowZTt+KGrZt40fHl5VZMiSvMwba1KSShiVqh046yfCyuH375NJNU07GQaf73nuKVjb97W/8WVRYGsCUkyktlUXUDmYNli9XcLF0GnjnHf5aCG0Av4wKtTVb4s9qi9WrebH3sGG8Yt0glrKvDuhx1FF8HNLZqWhlk4W2IoL54cMNZBsBVzJsf/ubopVNNnyHIdsQCw4YC8xeKMoDlJtvvhlLlizBli1b8M477+CSSy5BR0cHrrjiCsRiMcybNw933HEHnnvuOaxbtw5XXnklqqurcfnll6u+FWdYupQ/n3ACL+A0iF8yBgDwhS/w57feUnCxt9/mz6eeavhbhBZDhxosS3BQj4kTeeNOJBRkDRiT9nHaaYa/zVSHDDiqh7jtv/5VwQzSBx9wR1hTY3iPC8BGW3HgzAKhx5IlCi4mbOMLXzB05gxgIdvoYIdcViZ9x5tvKrig0MOE7/BTWznpJO6/Wlpk2ZlltA7IKT3Ky2WmKiDTPMoDlB07duBrX/saDj/8cMydOxcVFRVYvnw5xo8fDwC45ZZbMG/ePFxzzTWYNm0aPvvsM7z66quoNbgG3nMsNCrGTKbxHa62njmTP7/xhoKL2XAyhrQAHNUjFlOox5Yt3FtVVMjhlQFMO10H9ZgyhY9Ou7rk7IxlRPA6fbrhOXXApB5iVNjfzwsMFXPmmfz5rbcUZMWFHiaC17175c/1esoLkG3FdoCSSsnsq5PBvIMZpcpK4JRT+GvbeqxcyYOUUaMMT5UDNgK2gKzkUR6gLFq0CDt37kQymcRnn32GZ555BkdpDj2KxWKYP38+Wlpa0NfXhyVLlmCywQPmfIGFDnnPHm57sRg/H6woWiNyYFQonO4779hcfbdzJ7B5Mx8NTp9u+Ns++4w/i8MLi+JwoxJ62HYyogOaNq3IoSl6REmWIdsAHO2ESkqAM87gr23rYaGtADzGAww63aoqmcl0wD6OO47vfbZ/v829gyxm14RtDBtm6MgvxwshRYCyZInNOpT33+dzRXV1hg8YBaQefumQlQVs2rZicPk5YEGPgBXK0lk8Zti3T+4CKXKdBhAnqzc2mpzSSCSUb04G8M1ex47lg84C288U569/5c/HHCN3sDSAOJxvMKlWHJdGhX/7G9DXZ+NCFjtkYR8HH2zwG1zKsCkL2EzokUjIAMWwHg52QmVlMp6wpceGDdx+KytN1a6JtuIX25g2jdeh7N5tsw5F2MYXvmC4dg3wd1uxNZa0kF0D/GcfqqEAxQyiN580ycT8hAUjqq6WG8CJHJ5CYjGZNbA1rWGxQzath9DaAS0Avq15YyMPTkRNpyUsjJABC05XpFoK7B1kB+F0ly61UYeybRuwfTvvfEQe3ABil9LKSoMF1IAcPjpkH0oCNmEbJ59sMBXCEbZhOJgXttHZ6cjgpqJCUR2KTd9hWg+H2soppyioQ0mn5WDPZOmAZftwSA/VUIBiBm2RmwlMd8ixGNDUxF+L4aRi/BCgGG5UQoudOx2Z8tLWoVh2urt28bXbAGBiRVo6zftxwKIeDjB5Mi/t6O62sQmVxWJybbBmONPtsB7CNmzVoVjIJgEWgtfaWqm3Q77DdlthzLYefmkrSupQ1q/nc4gmi8n37JFT9Ib3LnVYD9VQgGIGsezF6QAFcM3prljBB1um6eiQm0OY1MO00xXFKr29CveV1iP0eO01ixcQHfLRRxs4ZlXS2sqzFKWl8k9eFIdtQ1uHYlkPmylrwx0Q4Lgexx/PN7Frb7dROGwxu2ZaD+3gxmHf8cYbFk963ryZG77JYnLAhu9waHADyMGeZvcMc1gsJhe20dBgouSNApSQsn+/zP/PmmXqW205XVFRqpjmZuCww7iDefVVCxf4y1/48P+ww3hBi0G0aUnDTqaqSp5M6lDDOu88/rxsmcX9z4R3Ej27QYRtjBljwje54GSEHv/7vxYvIPQ4/XRT32baNgDH9SgtBc45h7/+058sXGDzZv4oKzNVTA74U4+TTuLNce9ei/vDCNs46SRTxeTd3bJtGvalIkBJJh3b+2POHP78yiv8x5hGjAJM+g7T2SSAApTQ8tprPL97xBFypzOD+DGDAgAXXcSf//hHC9/88sv8WbROg7S38yWsgIm0JOC4HuPH81rfdBp46SWT38yY/CaTetjqgFpbHdsR8vzz+fO771qYKdi4kZ8rUl4OnHWWqW/1YzAPABdeyJ8tBSjCNr7wBVPF5IA/O6GyMuBLX+KvX3jBwgWEHiIKNoiwjfp6/jBEPC6Xojukx7RpvLSjs9PCfjnJpAxQTOrhR9tQDQUoRhEdskkjAix2QmPG8GcHDUk43RdfNJmqVdAhjxhhqjTBVT1MO92PP+ZnilRUyHyvQSx1yKNG8XkY7S5eihk9Wm7+OniclnGEbZx2Gq+JMIFfne4Xv8gl//vf5T0axmJb6e+Xv5Lf9LjgAv5sOmBLJHj2FXAnmAdcmRIVAb1pPZYt45HNqFGmjj8AbAbzn39ucX7OXShAMQJjlgOU7m65uMBvTmbGDF4usXevyeXGH37IKzvjcdNpyS1b+LMpLQBXR8kvv2xy23vRAZ1+usmoS56VZsrplpbKanw/BmwhDOZHjJClVqY6ob4+4PXX+WuTHfL27dz1VFSYWjToiu8491yeINuwgT8Ms3Qpd4oNDaYKQgH/BiiADNheeMFkqYvwHeeea3h3YYEl33HQQdx/ODi4UQkFKEZYv553jJWVpufUxcKOgw4yVTvpSodcViYjf1PTPKIDmjmTL4k2wYcf8mdxaq5hXHAyU6fyzIHpVK3FETIg7ePww01+o4tOd/FiExv69fbKpWEm9ejr46UaAF/Jbxihxd69NjeyKYylrMFbb3FNmpr4Nr0mELYxcaLJvssF31FfL8cmpvTQTu+Y7JCFHqZsA3ClrZx9Nu8ePv1UbpVlCIvTXYAMDE3p4dLgRhUUoBhB2yGL/UkMIjpkzWa6xnB4aa1AjJKff97Ej7HRqGzr4aDT1aZqn33W4Df19MhoxoIeYrMrP+pxzDF8dNbXJ5tAUZYs4d8wdixf0WSCjz/mA7v6ehO7DAP8fBFRbOlCRumNN3gsZAhtWzGxQyjgb9sApB7PPGPimyzWrgH+1qO6mgcpgAk9duwA1q7ldjF7tqmfl0zy9gLY0ENsOuRjKEAxwvPP82cbjerII01+o1gZ091twhua57zz+KzE5s0GK/L375fLrd10MiKPaboAwByXXsqfn37a4GD8tdf4fNDBB5v+I+/dK/dLMp1REnqIPK8DxGLAZZfx1489ZvCbxLKfOXMsd8hHH23yW2MxOWfooB6HHw4ceyyvDVm0yMA3MCYLeGy0FZNxntRi2zbHiqgB4JJLeFC/fLnsLAuyZQvPRpeUyGVRJli/nj9b1sNB2wBkW3n8cYODvT//mT+fdJLc4dUgmzbxEpLaWlOLKDku6aECClCKsX273OVv7lzT3y4yBqYDlKoqOYwUeW8HqKkB/uEf+OtHHjHwDc8/z8P3o482PS+RTtvIoBx6KH92UAuA17iOHcvjMEOp66ef5s9z51rukA8+2HQtqWt6XHEFf37xRQO7Yw8MAL//PX/95S+b/lmWg1fAdT0efdTAh9es4SuaKit5jYFJLOsxdiyfv9VW2TrA6NFy4P/44wa+4Xe/488zZ5qc7+ar/0QCxLQvdck2vvxlYMgQ/mPEtjcFEVHuxReb/lla2zDpdlzTQwUUoBRDONzTTrMQqtrokAFgwgT+7LAhXXklf376aQO1BqJRffWrpn/O9u38+uXl8lczTHMzf96/37H9DAA+RfvNb/LXRTuhnh5ZvGNBjyB0yEcfzWtzBgaAp54q8uElS3jh3fDhMt9tgiDocfnl3EbefVfWRORFCHb++aYjUMZsZFBKS+VWCC4FbI89ZuDwQBu+Q2jR1MRn9EwhbGPLFpsnHBZGO9gr6jtaWuTWsyH1HSqgAKUYYoQs8ncmSCZ5Kg6wEPUD0pA++cTCNxvntNO4P+vokLNZOdm9W67Zt6CHaFSTJpnaMJFTXS2LuxzWQzjdl18ucmTFiy/yKbhDDjG9IyZg08m4FLwCJrIGogO65BIehZpEpPD97HQbGviSY6CIHum09B0WOqAdO3ixdlkZ3wvRNC7pcdFFvGZo27YiheUffcQzSmVlljLRloM1gG+4VFqqP4nSIURb+d3vigz2fv97HoWecorpfbUARW1FLKn0MRSgFGLLFj5UKinhTtck77/Pp4CHDTOxjbkWlzqhkhLZsH7zmwIffOYZ/gsdfzxfWmCS1av5s4nT1fW45HQPP5z7jVSqSO2FdkRoOs/K99QALDpdkVHat8/RjBIAfO1rPN547z15usEBJJOyOtBCh9zTIw9bs6SHi6NCbdYg72GKy5fzXru2VkY0Jnj/ff48aZKpswUlLulRVSXrth56qMAHRVuZPVtunGYCoYelDrmsTNZdOKyHGOx1dgJ/+EOBDwo9vvY1Sz/Hlh5a23BwAYYKKEAphDCimTPliakmEHuLTJ9uqf9yLYMC8GmekhK+h1LeTshGihbQ62EJFzuh73yHP//iF3m2r25vlwWQFvTo75cnJ5g47FdSUyNt0uGR0MiRctD7s5/l+dArr/BAqbHR9FJ8gI8DUim+pYnY1sQULo4Kzz+f/5o7dxaY9hJfuPhi0yv/AFn2dvLJlm7R1bby3e/y56eflpuH6WDMtu8Iih4lJdJ3/Oxnefr/rVv5ioRYTM4JmWDPHjm9aEmPgw/mN9rX5/tTjSlAyUcqBTz4IH/9jW9YuoTokE0cbqtHZFBcCFAOOUSOhH760xwf+OgjPmdaUmLJyaTTcpWQZT2Ek7F8rrlxvv51XgT42WfAb3+b4wOPP85TxkcdxdfjmmTNGr49xtChFlbwCIQeYh7RQW65hT8vWpSn+P9Xv+LPX/0qT6ebRHRAM2ZYDOZFRmn3bl6n5CDxODBvHn991105yhp6eoAnnuCvLY6QhR4mz+GUuNhWpk3jxeUDA8A99+T4wNtv8007qqrk+Rom6OqyfC6pRPhSF/T4/vd5sezatXmOzfj1r/nzmWeaXE/PEf3KEUdYSkbxdKhYBeiCHnagACUfL7/MPfGwYZbqLQAFHbLoubZv5wUiDvN//y9//t3vcvR5DzzAn88/38JWjnwZ4t693EeZ3EBSIvKZYgLWQeJx4MYb+euf/jSrE2IM+OUv+evvf99Sj6rtkE3uVyVxUY8TTuArQ1Mp4O67s764datcXnz11Zaub7tDrq2Vhzu5oMfVV/Njddavl6tFMzz1FA+SmptN728B8Izdu+/y15b1ELbxwQeOFoYKfvhD/vyrX+U4bPO//os/f+Mbps8iAmR2bexYS66H42JbGTYM+N73+OsDBnuJhAzmv/99S9e33VYAqYepXeXchwKUfIgO6B//0fRuqQAvctu2jQ8mxZkmphk2TOa7XTCk447j2zWk08D/+3+aL3R1yTXI115r6dqiUZ14oqX6SY7YiXPdOlec7ne/ywsAN2zI2u79jTf48qwhQ4BvfcvStcUoyJaTEcU8a9fauIhxRAD70ENZS44feIAHbWefbWFLXH12LSh61NfL/uXOOzVfYAy4/37++pprLGWTVq/m2ffhwy3JyZk4kRevdHc7vncQwIPX44/nySMRjwDg82Bi10ObviMotgEA//RP3M+99RYvR8rwhz/wlW5jxljKJgGK9ND6Uh9DAUouNm+WuTmLI0Kxh8a0abwfs4wwJJca1q238udHHtHMLP32tzyDc9hhlpaPArJcw+TRPXomTuSt3iWnW1cnfeq//qumIFJ0QN/6lqURYX+/XAx12mk2btBl2zjrLG7Pvb3Aj388+GZvr6yOvO46S9d95x2ecBgyhG+EZhmXne4NN/AY4K9/1Ryo+Le/8fmIykrg29+2dN1XXuHPp55qcboL4IWhYumgC/YRi8lpwHvu0Rzz8uCDfO7n1FMt/3GFHkrayubN3H84zJgxsjLg1ls1tSgierv6aksjtX37ZO2aLT1cDtgswwJIe3s7A8Da29ud+QE/+AFjAGPnnGP5ErNm8Uv89Kc27+Wf/5lf6NprbV7IGOk0Y2efzX/knDmMpfsHGDvqKP7GPfdYumZnJ2OVlfwSq1fbvMFjjuEX+uMfbV7IGLt3MzZ8OP+R997LGNu8mbGSEv7GunWWrvnyy/zbR41ibGDAxs21tvILxWKMdXfbuJBxXn2V/8iSEsbWrGGM/epX/I2DD7b8y9x4I7/E175m8+Yee4xf6PTTbV7IOKJ5HnooY729jLF/+Af+xj/+o+VrTp7ML/HwwzZv7hvf4Bf6yU9sXsgYAwOMnXCC5tfv7WWssZG/sWiRpWvu2MG/HWBs+3abNzhqFL/Qu+/avJAxtmyRfu+ppxj/uQBj5eW87Vrg4Yf5JY4+2ubNrV7NLzR0KHf6LmKm/6YAJZudO6VVLV5s6RK7dzNWWsovsWmTzft5/HF+oS98weaFjPPRR7wNAYw9O2+JNOT9+y1d73e/45eYMEFBWxBOd/58mxcyzoMP8h9ZW8vYzktv4P+ZPdvy9a66il/i6qsV3Jxwun/7m4KLGeOSSwZNckaKpQ8ez//zs59ZulY6zWMbgLFnn7V5Y2vW8AvV1zOWStm8mDE6OhgbM4b/2H//fovsTdessXS9Dz+UfdjevTZv7qc/5Rf7yldsXsg4y5ZJCZb94CkZvCYSlq7385/zS8yYoeDmxMjrf/5HwcWM8R//wX9kUxNjHefM5f/51rcsX++LX1Tk/vr6GCsr4xfbssXmxcxBAYoNPr7ix2wdjuItwmJv+tBD/O9+7LEKbmjDBn6xeNxyI7fCbbfxHzuu7DPWiRrGfvxjy9e67DJ+rVtuUXBjCxfyi517roKLGSOVYuykk/iP/SoGne4771i6VjIpMzJ/+YuCm7vgAlvZLSts28ZYdTX/sb/BlXyUbDGDs3w5v86QIYz19Ni8sf5+eWMWs1tWWLSI/8jKkj62ERN4FsUiokObM0fBjS1ZIntHF0fJ3/42/7HHlb3PEihn7Ne/tnytU0/VZC/tcvvt/GJXXqngYsbo7eUDM4Cxf8LdPCiwOGrdt08OHNevV3BzJ57IL/bkkwouZhwKUCzyl0VtbAg62BH4gLU/+5qla6TTMs1po0/XX3DkSNdHyd3djB0ysoMBjF1W8SxLt3dYus6OHYxVVCjMrK5axS9WV+faKJkxxlauZKwklmIAY78+9heWryM6s5EjeX9qmwUL+AUvuUTBxYxz538mGcBYDTrZ+tt/a/k6ojP76lcV3diZZ/ILPvigogsWJ51mbNaJ7bxTxnus570PLV0nmWSsuXkw8PuNghvr7paj5K1bFVzQGG1tjA2r6mEAYz+of4T/YhZYt05mY7ZtU3BjL77ILzZpkoKLGefPL6Yzv8cL595v+Tr33adoekdwww38gtddp+iCxqAAxSK7XlrBxpTuZABjF1yQttT/iTZQU8PYrl2KbuzCC/lF775b0QUN0N7O3j7oy6wMSVsDdNEGTj1V0SCuv5+LCzD2/vsKLmiQv/2N/Ri382RWRYqtXGn+EqmULOf5939XdF9ilDx6tKuj5P75P2Zn4TUGMHb4pBSz0hQ/+UT2n8uWKboxMUq+4gpFFzRAKsW2n3IJOwifZ+ovrPwpfv1rWZukrKRIjJJ/az2INE1LC/tjzdcynbLVAbrIvCqbodqzR0Y8ypyzAV54gV2HX/DZx7qUpQRKTw9v4gBj//3fiu7r6af5BY8/XtEFjUEBig3eWZpk8TiPeK+91twgPZVi7OST+d/85psV3tRdd/GLfvGLCi9ahGuvZQxgC0f8iAG8pub3vzd3ic8+k+U8r76q8N7EXPJ99ym8aAESCcaOPpqlEGMXjH0vkzXfsMHcZUT2ZOhQnq5VQne3TFF98IGiixbhww8Zq6hgn+MgNnZ4FwP4n8RspyqyJ0pn6156aXBucpx7Adv//A9jAPtLfA4rKUlbCkATCcYOOcSBcYioQP72txVetAhf+QpjALut4dcMYKyqirHXTCak163jtd8AY3//u8J7O/poW0W7ptm/n7ExY1gC5Wx601Ye0B/OfaMZRPbERjnPgXz2mSyydzFgowDFJk88IQPt//N/jC9OuOMOlmmQLS0Kb2jt2sFJ7krGuroUXjgPy5ZlvEN68WuZjqSkhGtjhIEBxs46i3/fKaco7ivuuYdfeNYshRctwL//O/95Bx3E9n2yJ+PjGhuNzwXv2MHYQQc5VN977rn8wnfdpfjCOUilZGHAnDnsneXpTEJr5ky+YssIf/qTpphSVfaEMT7UrKqyVahqih07+HTjYKHEvffK3+v2243bvVg4qDR7whiPDADGGhrcmRJ99lkmRjQDK1ez88+Xruvll41doqeHD+oBxubOVXx/t9zCL/yNbyi+cB6uvpr/vMMOYzs29mQKwg87zPi01QcfyKSx8vre447jF37sMcUXzg8FKAp45BG5mnTWrOJL3P70J/n5hx5SfDPptBxePf+84otn0dnJ2JFHskyumvFg4x//UTreG2/kReD5SKUY+6d/klNdygf2H3/ML15WZnllkWH+/ndZmfbUU4wxPscuVjvX1RUP2vbvZ2z6dFk4bbsYNBtROHzaaYovnAOxrKKmJlPXsHQpX+EEcNMptpR87VqeRQIYu/56B+5RTIn+5386cHEN6TTL9MAnn5wZyfzsZ7KtzJ3LV/UVQhTVAw6snk8k5B/HYmG3YXbtkvMQt97KGON+QtRxl5byP0mhAV9/v1yoN3KkotoTLW+9xS8+fLiiIrAC/OUv8g/7xhuMMb5gRrjyUaN4SUAhPv+csSOO4J8/80wHbvlf/oVf3EZht1koQFHE734nB2NDh/IK+2xn097OB9giHfmtbzmUWRZDLGXVhDlIp+Ua0sZGPmc7SCrF2Lx5sr0dcQQPurPr37ZsYeyii+TnHJv6Fq1WeTSoYdcu6U0uuED3h929m6/8Fr/nnDmMvf22/m+fTvP3Jk7kn6mvV7DsPBdbt8pUrZPFkEuWyKKRhQt1X1q+XPZN5eU88Mi+lUSC/7nEaPCUUxxamCb2ZjnySGenecSSm/JyHnVp+OUvZVzb0MCnbTqy6sx375Y1Wpo+XT2XXsp/wA03OPQDGHcEM2eyzBxGb2/mS4mEDDoAxqZO5YmW7ITOhx/yLWxEttbstJAh+vsZGzGC/5Bi0YEdtmyRixu++13dl7ZtY2zKFKnHpZcy9t57+m9PpfhsZVMT/8yYMTxYUY7Ym6WqyvnB3iAUoCjko49knZkYtJ9wAp9mnTVLrmoEGPvOdwpnFmzx3nv8h1RU8CG8E/z4x9Lh/vWvOT/ywgty6w2AD87OPJOxL3+ZdzgiUKuosLW6sDh33il7OSfQOtwJE3IOg/v7eXAq9rwBeCd9wQV8YD1pknz/4IMd3h9KzKf92785c/2tW6XDveyynB3/rl364FQEsl/+MmPnnSf7BZGVdGzae/9+2TCXLnXmZ4ipDCCvoa9cyftq8bGKCm6uc+fyNiMCGIDPPNjatK8Qf/6zzBpoAgelXHMN/xlDhuRc4p1O8wGNSOaIQd/s2TzhJVY+Cp/yhz84c5uMMTnSuvhiZ67f2SlTrMcfn3POrrdXZpm1PuKiixj70pcYGz9evn/kkTx4c4R0Wlbu//KXDv0QPRSgKKa/n1eii3nR7MeRRzL26KMu3Mi0afwHKlm/nIXYjayAwxXs3cvrbRoacusxaxZjK1aov0Udra1yNK+65+/vZ+zyyws6XC0bNvDgNB4/UIuqKr7tguM1aE89JSMk1XNIO3fKjFUehytIp/nI95xzctvG6NF8Y1PHOmOBmJO87DL1137jDRkA/eAHBT/a18cTOtpgVfs47jge9DvKwIDcDc+JUcNPfiIzeEV+mc8/57U5YopP+ygt5YG92eJz06xfL3/g5s1qr93TI2vCRo0qOke1Zg13NdpBjnjU1fEVwEbruiwjCqeOOsqFhmmu/44xxpibW+uroKOjA/X19Whvb0edhbNQrMIYPwDw3XeB1lZg6FBg0iTgpJNsnJlhht/+lh/wUF/Pz5QYPlzNdX/5S3nozI035jiuNjepFD8sdcUKfgJrfT0wfTpwyCFqbqsoV1wBPPYYPx9o8WI11+zvB77+deD3v+fnmTz3HD/B2QA9PcCqVfx4i4oKfhT6rFmWjusxTyLBjXHbNuCuu4B//mc1192xgx/Cs3EjP2Bk2TLDR8ru2sUPSvv0U37OzsEHA6efzmV1nPffl2e/rF5t4wjtLF59lR/y1tcHnHceP3TLwC/EGG+yy5cD7e388OXjjpNHxDjO3XcDN9/M/wgbNvCzguzCGPCjHwH/+Z/8/ybsrr+f/4lWreL/r6sDZs4EGhvt35Yhzj2X/y2/+U3uQ1TQ3Q1ceCHw+uv8gNnFiw0fZd/Zyf3ohx/yP82oUdytVVWpubWCiJO39+/nWnzzm47+OFP9t+PhkgO4nUHxDakUr7IE+PIiuySTsrYF4NWvLp/LYIstW2Se/Omn7V9v5065QqWiwrXzfpTxyCNy6KWiFuXtt2VhyfjxfOOSICGyYNOn268uTKcZ+8UvZNbuS19ybrrECXp6GBs7lt/7v/yL/et1dekLS2wfOuYyK1bIrM9gAastNm6U0zq1tbwYN0iIKfOmpuJV3TahKZ4w8+abstDDztKwtWv5hLhwMPPnBys4EYgq9Pp66xO16TRjzzwjDzarq+MVakFjYEAuFzrlFOvrVfv6eHGN6IyPOoqxTz9Ve69usHWrXAJsZ2OinTsze3swgJ9q6OKxE8oQh2KVlBhf85uL5cvlfiKlpYzdb313VE8Rh2KNGcOXi1shnebb/tbXy2md5cuV3qYrdHfLgqkvfcny7r9GoAAl7IjdMktL+bIIM4HFZ5/xan7R+dTVBS9ToCWZlJ3y6NHM9BavK1bwJTii85k8mS9jDiqbN0tnOXOmueKXgQGeidJWdn7tay5MgjuIqM2xUona3s6PEhBBTlkZn68PYiAvEJsaVVaa37Lgk0/494sBUkMDX9kVVDo7pa1PnMhXRBglneaZF5FxBfj5bWZ3YPMTq1bJQrq5cw9cdqYIClDCTirFKy9Fw7jgAh6153OcXV2M/e//8s5GW8l58cUObDTgAbt2yTPqy8v5aLnQiL+lhRcLijWN4vtuv92BTUo84K9/5cW9AM8KPfBAfmeTTvONav7zP/nuUUKPhgZeGR7kzlhw993y9zrxRL6qJV+gkkjw9Pz3v6+v5DzxxAPXggaRRELu3QIw9vWvFz4yYv9+vqTm4ov1lZxXXOHcakI32bpVLpmpqeGZ5NbW/J/fto0vsRcLFgBeMH3XXY5mHVzjf/9XTps3N/PMsmIfQEWyUSCdBhYs4EVqqRR/b+xYYOpUXmkWiwF79wKbNvFqtIEB+b1f+ALwb/8GzJ7tzb07wb59wFVX8aJWweTJ/DF8OP/9d+7kBYIbN8rPlJbyotjbb+dFpmHh/feByy4DPvqI/z8eB6ZNAw47jFes9vby6tW1a4G2Nvl9Q4cC8+YBN9zAX4eFp54CvvtdoKuL/3/ECODEE3mbKS/nVYqbNwNr1vBqZ8Hhh3PbuPxybithIJkEfvhD4N575XuHHsqrdhsaeLe7axdvJ+vWcV8jOO884F//1XDxZyBoaeE+4I03+P9LSniB9ZFHAsOGcb127OArAj79VH5fPM59zg9/CIwb5829O8Ff/wp89av8dx4xgrcLhf0sFclGiQ8+4MVqYke5fI/x4/matRUrwjEqzkU6zUfHZ5xRWItYjC+XXbAgHBmkfPT18Z1f861xFY/KSr4hxSOPBHs6pxgtLXwPDO2GLLkeI0fyNvXKK64su/SMlSv5JjXaDVlyPQ47jE+PZW1GFypSKT69edJJhbUoLeX1XffdVzjTEnQ6Onh9n/K99SmDEk26u/n65w8+4KOfWIxHvRMm8LWMzc1e36G7tLYC77zDo/99+/goeeRIrse0aeqWaAcBxnjmaOVKPirq6eFrGceM4VmjE07go8GokEzyTMmaNcDnn/MMZHU1byNHHcVHziUlXt+le7S387ayYQOwezfPFNXX87Zy/PHcTqLE9u1cj08/5dqUl/Os9IQJPOtWW+v1HQYaM/03BSgEQRAEQbiCmf7b02HCL3/5SzQ3N6OyshJTp07F22+/7eXtEARBEAThEzwLUJ5++mnMmzcPt99+O1avXo3TTjsNc+bMwbZt27y6JYIgCIIgfIJnUzwnn3wyTjjhBDzwwAOZ94488khcfPHFWLBgQcHvpSkegiAIgggevp/iSSaTWLVqFWZnLXOdPXs2li1b5sUtEQRBEAThI9w4tusAdu/ejVQqhYaGBt37DQ0NaG1tPeDziUQCiUQi8/+Ojg7H75EgCIIgCO/wtEg2lnUEMGPsgPcAYMGCBaivr888xoVpUxyCIAiCIA7AkwBl5MiRKC0tPSBb0tbWdkBWBQBuvfVWtLe3Zx7bt29361YJgiAIgvAATwKUiooKTJ06FYsXL9a9v3jxYszIsYVyPB5HXV2d7kEQBEEQRHjxpAYFAG688UZ885vfxLRp0zB9+nQ8+OCD2LZtG66++mqvbokgCIIgCJ/gWYBy2WWXYc+ePfiP//gPtLS0YPLkyfjzn/+M8ePHe3VLBEEQBEH4BNrqniAIgiAIV/D9PigEQRAEQRCFoACFIAiCIAjf4VkNih3ErBRt2EYQBEEQwUH020aqSwIZoHR2dgIAbdhGEARBEAGks7MT9fX1BT8TyCLZdDqNnTt3ora2NufOs3bo6OjAuHHjsH37dirAdRDS2R1IZ3cgnd2DtHYHp3RmjKGzsxNNTU0oKSlcZRLIDEpJSQnGjh3r6M+gDeHcgXR2B9LZHUhn9yCt3cEJnYtlTgRUJEsQBEEQhO+gAIUgCIIgCN9BAUoW8XgcP/rRjxCPx72+lVBDOrsD6ewOpLN7kNbu4AedA1kkSxAEQRBEuKEMCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoGj45S9/iebmZlRWVmLq1Kl4++23vb6lwPPWW2/hggsuQFNTE2KxGJ5//nnd1xljmD9/PpqamlBVVYWZM2di/fr13txsQFmwYAFOPPFE1NbWYtSoUbj44ouxYcMG3WdIZzU88MADOOaYYzKbV02fPh0vvfRS5uuks3oWLFiAWCyGefPmZd4jndUwf/58xGIx3aOxsTHzda91pgBlkKeffhrz5s3D7bffjtWrV+O0007DnDlzsG3bNq9vLdB0d3fj2GOPxf3335/z63fddRfuuece3H///VixYgUaGxtxzjnnZM5bIoqzZMkSXHvttVi+fDkWL16MgYEBzJ49G93d3ZnPkM5qGDt2LO68806sXLkSK1euxFlnnYWLLroo47RJZ7WsWLECDz74II455hjd+6SzOo4++mi0tLRkHmvXrs18zXOdGcEYY+ykk05iV199te69I444gv3whz/06I7CBwD23HPPZf6fTqdZY2Mju/POOzPv9fX1sfr6evbf//3fHtxhOGhra2MA2JIlSxhjpLPTDBs2jP36178mnRXT2dnJJk6cyBYvXszOOOMMdsMNNzDGyJ5V8qMf/Ygde+yxOb/mB50pgwIgmUxi1apVmD17tu792bNnY9myZR7dVfjZsmULWltbdbrH43GcccYZpLsN2tvbAQDDhw8HQDo7RSqVwqJFi9Dd3Y3p06eTzoq59tpr8aUvfQlnn3227n3SWS0bN25EU1MTmpub8dWvfhWbN28G4A+dA3lYoGp2796NVCqFhoYG3fsNDQ1obW316K7Cj9A2l+6ffvqpF7cUeBhjuPHGG3Hqqadi8uTJAEhn1axduxbTp09HX18fhgwZgueeew5HHXVUxmmTzvZZtGgR3nvvPaxYseKAr5E9q+Pkk0/GY489hkmTJuHzzz/Hj3/8Y8yYMQPr16/3hc4UoGiIxWK6/zPGDniPUA/pro7rrrsO77//PpYuXXrA10hnNRx++OFYs2YN9u/fj2eeeQZXXHEFlixZkvk66WyP7du344YbbsCrr76KysrKvJ8jne0zZ86czOspU6Zg+vTpmDBhAh599FGccsopALzVmaZ4AIwcORKlpaUHZEva2toOiB4JdYhqcdJdDddffz1eeOEFvPHGGxg7dmzmfdJZLRUVFTjssMMwbdo0LFiwAMceeyx+/vOfk86KWLVqFdra2jB16lSUlZWhrKwMS5YswS9+8QuUlZVltCSd1VNTU4MpU6Zg48aNvrBnClDAHc7UqVOxePFi3fuLFy/GjBkzPLqr8NPc3IzGxkad7slkEkuWLCHdTcAYw3XXXYdnn30Wr7/+Opqbm3VfJ52dhTGGRCJBOiti1qxZWLt2LdasWZN5TJs2DV//+texZs0aHHrooaSzQyQSCXz44YcYPXq0P+zZlVLcALBo0SJWXl7OHnroIfbBBx+wefPmsZqaGrZ161avby3QdHZ2stWrV7PVq1czAOyee+5hq1evZp9++iljjLE777yT1dfXs2effZatXbuWfe1rX2OjR49mHR0dHt95cPj+97/P6uvr2ZtvvslaWloyj56ensxnSGc13Hrrreytt95iW7ZsYe+//z677bbbWElJCXv11VcZY6SzU2hX8TBGOqvipptuYm+++SbbvHkzW758OTv//PNZbW1tpt/zWmcKUDT813/9Fxs/fjyrqKhgJ5xwQmaZJmGdN954gwE44HHFFVcwxvhSth/96EessbGRxeNxdvrpp7O1a9d6e9MBI5e+ANjDDz+c+QzprIZvf/vbGR9x0EEHsVmzZmWCE8ZIZ6fIDlBIZzVcdtllbPTo0ay8vJw1NTWxuXPnsvXr12e+7rXOMcYYcydXQxAEQRAEYQyqQSEIgiAIwndQgEIQBEEQhO+gAIUgCIIgCN9BAQpBEARBEL6DAhSCIAiCIHwHBSgEQRAEQfgOClAIgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+4/8DeFXPzROS4iMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -68,7 +87,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "2dd92e77", "metadata": {}, "outputs": [ @@ -76,7 +95,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "41 ms ± 399 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" + "39.3 ms ± 543 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] } ], @@ -94,7 +113,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "c8e974e4", "metadata": {}, "outputs": [ @@ -109,7 +128,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACH4ElEQVR4nO2deZyU1ZX3f9Vb9UJ3s0k3DYgtghu4gQvEBUVRErcQRxOz6MQ3iXGJjDq+UWcmzEwixjcuCU6cMTGuUUziEjPGBaOihKCAEAEVQUBAum3W3ruqu+q+f9y+dZ+nqOVZ7rOf7+dTVFFd/fTTvz733HPPPffeGGOMgSAIgiAIwkeUeH0DBEEQBEEQ2VCAQhAEQRCE76AAhSAIgiAI30EBCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoBAEQRAE4TvKvL4BK6TTaezcuRO1tbWIxWJe3w5BEARBEAZgjKGzsxNNTU0oKSmcIwlkgLJz506MGzfO69sgCIIgCMIC27dvx9ixYwt+JpABSm1tLQD+C9bV1Xl8NwRBEARBGKGjowPjxo3L9OOFCGSAIqZ16urqKEAhCIIgiIBhpDyDimQJgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+gwIUgiAIgiB8BwUoBEEQBEH4DgpQCIIgCILwHRSgEARBEAThOyhAIQiCIAjCd1CAQhAEQRCE76AAxYesXg38938D6bTXd+IP/vhH4C9/8fou/MHAAPDrXwM7d3p9J/5g507g4YeB/n6v78QfrFwJvPyy13fhH557DvjgA6/vwh/09AC/+Q3Q0eH1nRgnkKcZh52zzgL27wcSCeCGG7y+G2/ZuRO4+GL5evRoT2/Hcx57DPjOd4ChQ4G9ewEDB4KGmh/8AHjmGeCdd3hQH2XSaeD004HeXuCNN4CZM72+I2957z1g7lz+ursbqK729n685uc/B267DXjgAWDFCq/vxhiUQfEZfX08OAGAX/zC01vxBatXy9cPPujdffgFMTrevx946y1Pb8UXPPMMf/6f/wG6ury9F6/Zto0HJwCwYIG39+IHli+Xr3/1K+/uwy88/jh/XrkSWL/e23sxCgUoPkNrOJs3Ay0t3t2LH3j/ffn6D3/w7j78wq5d8vWf/uTdffgB0RkLli3z5j78wrp18vVf/sKnA6PMhg3y9YsvencffkFbMvDSS97dhxkoQPEZa9bo///pp57chm/QBijbtnl3H36AMWDtWvn/7du9uxc/8NFH+v/v2OHNffgF7eAmlQJaW727Fz+gDdiibht9fcCmTfL/QdGDAhSfke10P/vMm/vwC9oCt44OoLPTu3vxml27gD175P+D4mScIjtNHfWALVuPqNuH1ndEXYuPP+ZBqyAoelCA4jO0KXwgOIbkFNl6RDlgyx4RR902SA89pIcklQI+/1z+v7MzWKtXVJNdKhAU26AAxWfs3cufhwzhz1HukBmTGQOhR1AalhNk28bOnfpRUdQQetTW8uco2wZwoB5Rzii1t3P/Acj2EmU9gmobFKD4DNEhT5nCn6McoPT0AMkkf33MMfw5yp2QcDJHHQWUlPAiyLY2b+/JS4Qexx7Ln6NsG4D0HdRW9B1yczN/TXpI22hpCcbeQRSg+IxsJxPlAEVoUV4OHH44fx1lPYSTGTVK7gcTlJGQE2Q73Sh3QADpoUVoMXw4MG4cf016AEccwf0pY8EooqYAxWfQqFAiApQRI4CxY/nrKOuhdbqkx4Ed8v790d0Lpb9f1liQ78jdViiYB0aOBMaM4a+DYB8UoPgIxqQhaad4xFxq1NA6GdGoopxBEQGb1ulGWQ9hH+PHy7n1qB4BIDZ3BICjj+bPZBt63xFV2wCC60spQPER7e2y6PGoo/hzX190R4XaDMqoUfr3oohwMiNG8JGQ9r0oog3Yoq6H+L3r64HGRv17UUTbIUfdNgC9HiNG6N/zMxSg+AhhMNXVwLBhQDzO/79vn3f35CXaDnn4cP17UUTrZEgP0kOLVothw/jrzs5gFEI6AdmGnqDqQQGKj9BmDGIx6WiCYEhOoB0hB6lROUVQnYwTJJMys0h66G1j6FD5ftQHN2QbnKDqQQGKjxBFbvX1/DlIhuQE7e38eehQfbAW1Zoc0dkMG0a2oa25GDqU9BC/97BhQGmpDFJID7INILh6UIDiI8SIUGwsJAwpqqMgrR5Ci4GB6NbkiG3+a2spuya0GDKE7wkTdT1EmxDFwkHqhJxA2EddHdkGoNcjSLZBAYqP6O7mzzU1/DnqDUvoMWQIUFUla3KirkdNTbCcjBNkt5Wo65FvcBNVPXK1le5uIJHw7p68Ip2WJ38HzXdQgOIjyMnoEXrU1PCanKhnlChAkVCAoof00KPVo76e+w8gmr6jp0e+DprvoADFR1AGRQ85XQlj+oySNliLYk0OBfN6qK3o0dpH1KcAhRaxGM9EB8k2KEDxEVSDooc6IUlvrwxEtKOgVErOL0cJ6pD1UFvRQ/YhEVpUV/NgLUhaUIDiI8jJ6KGMkkRoAXBHU1UFVFby/0dRD+30H0BthTpkPfn0iOJgL58Wvb2yNsWvUIDiI6hD1kMBm0RoUVXFl5EC0dZDO90FRFsLgAKUbMh3SLK1qKuTPsTvARsFKD6Cpnj0kNOVZGsBkB5A7hFyOu3NPXkJdcgSbb0W+Y4DtQjSJqAUoPiIfI0qqufPZDtd0aiiGLBlawEEx8k4QfYUj9AinZYbHkYJyr5K+vr09VpAtPXINbgJii+lAMVHZHdCYjdIsaNqlMg1ChI77FIHxKmr489RLpIVbSUeB8rL+WvSQ7aVKGqh3cixupo/R7mt5BrcBEUPClB8RPaoUOwK2dkZvaWkiYRM1WvnToFoByi5nEyU9dCmraOsR7bviLIWwja09VqkR+7Bjd/1oADFR2R3QsKItNmEqKAdBZHTPbADAkgPgPQQZHdC2sFN1Ahyh+wEQdaDAhQfkZ2KE+vWAf8bkmpEo6qsPHAUFGWnSxkUDumhJ9/gprMzekXDFLzqCXJboQDFR1DaWpLLyYhRYdS0AII9CnICqsmRMJZ/igeI3uGauTrkKGeUghywUYDiI7Q7/gmi6nSpQ9ZTyMlEzTYACmC1aOu1hB7aouGo6UG+Q0+hgM3vepgKUB544AEcc8wxqKurQ11dHaZPn46XXnop83XGGObPn4+mpiZUVVVh5syZWL9+ve4aiUQC119/PUaOHImamhpceOGF2LFjh5rfJuD09fHnqir5XlAMSTW5tNA6magVDYsdH7XBa1RtA5AHoOUK5qOmh/YwOKFHlLOvhQZ6UdMCKNxW/D64MRWgjB07FnfeeSdWrlyJlStX4qyzzsJFF12UCULuuusu3HPPPbj//vuxYsUKNDY24pxzzkGnRoV58+bhueeew6JFi7B06VJ0dXXh/PPPRyqVUvubBYx0Wh4FLrYwB6LbsESHnCtASaX8v0WzagrpETXbAIoHsFFCaFFaKrMmQHQDWLINPUH2HaYClAsuuABf/OIXMWnSJEyaNAk/+clPMGTIECxfvhyMMdx33324/fbbMXfuXEyePBmPPvooenp68OSTTwIA2tvb8dBDD+Huu+/G2WefjeOPPx5PPPEE1q5di9dee82RXzAoiOAECKYhqUY4GW2wVlMjj00nPaJrGwDpoSVXBwQEZ5SsmkK2EcWi4SC3Fcs1KKlUCosWLUJ3dzemT5+OLVu2oLW1FbNnz858Jh6P44wzzsCyZcsAAKtWrUJ/f7/uM01NTZg8eXLmM7lIJBLo6OjQPcKGMCIgmIakmlxOV5u2jqrTpeCVE+RRoWpydUBAdPUoZBtR3LIhUgHK2rVrMWTIEMTjcVx99dV47rnncNRRR6G1tRUA0NDQoPt8Q0ND5mutra2oqKjAMLHPbo7P5GLBggWor6/PPMaNG2f2tn2PaFT50rRR7ZCznW5U09bCPoLoZJwgyE5XNRSg6MmlR2UlUFbGX0fNlwY5mDcdoBx++OFYs2YNli9fju9///u44oor8MEHH2S+HhM5+EEYYwe8l02xz9x6661ob2/PPLZv3272tn0PORk9uTpkILp6FEtbR61ouJgeUaLYFA+1FZ59jergJpceQdHCdIBSUVGBww47DNOmTcOCBQtw7LHH4uc//zkaGxsB4IBMSFtbWyar0tjYiGQyiX1ZJxRpP5OLeDyeWTkkHmGDnIyeXFMaQHT1yGUfwskMDOinCMMOY4X1iJpt0OBGD/lSPUEO5m3vg8IYQyKRQHNzMxobG7F48eLM15LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZ6IKORk9pIeeXHpo9zWIkh79/TJjRFM8NB2aDfkOPcWmePycfS0z8+HbbrsNc+bMwbhx49DZ2YlFixbhzTffxMsvv4xYLIZ58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpOPvssx35BYMCVeLroVGQnlxOt6SEd0KdnVyPAknIUEEF5XrId+ih6WE9hTIoomhYO9jxE6YClM8//xzf/OY30dLSgvr6ehxzzDF4+eWXcc455wAAbrnlFvT29uKaa67Bvn37cPLJJ+PVV19FrQjlAdx7770oKyvDpZdeit7eXsyaNQuPPPIISsWBKxGFRkF6io2Coup0c3VCIkCJCto9cOJx+Zo6IP37UdeDBjecXPYhTnpOpbgeoQhQHnrooYJfj8VimD9/PubPn5/3M5WVlVi4cCEWLlxo5keHHsoY6MmnBwVs+vfr6oDPPouWHlottLX12WnrIrX5oYECFD2kh558WzbU1gL793M9mpo8ubWi0Fk8PoEalR7SQw9llCTFtBgY0G98GHZocKOn2BRPlNoKEGxfSgGKT6BGpYecrh7SQ5JPi6gWDdP0sJ58UzxR1COV4kXlAAUohA2oUekJctTvBNQJSfJpUVIigxTSg9oK6aEvKA9iETUFKD6hWKPq7ZWRcBSgjIEeKvyT5GsrQDT1oLaih1bxSLQBiragHAiGHhSg+IRiRaGAvyNd1VDNhSToaVrV5GsrQDT1oLaih4J5idCirExu9S8Igh4UoPiEfE6mokK+52dDUg1NaUjy7fsBBMPJqIYyKHqKBSjJZDSLhqmt5A/WgGD4UgpQfEKhUWEUDwyktLVEu+8HOV1jAQq1FSoapraSP1gDgqEHBSg+gUaFesjJSIQW5eV8cyUt1CHribJ9ZLeV0lKgpoa/jqIeQSwKVU3Q+xUKUHwCOV09xTIoPT18v4soUMjJBCFNqxrSQ0/QOyHV5MsaRNk2CvUrfg7YKEDxCeRk9BSrQQGAri737sdLKHjVY8TpRkkPsg8JY5R91UJTPIQSaF5dDxUNSyh41RN0p6sa8h2SZFK+zpd9TSSiUzQcdN9BAYpPEA2mouLAr0U5NZm9dh+Inh5BdzKqKWQbUdaD7CP/QZJANLdsCPp0KAUoPkEEKOR0OWIkRHqQbWQj9KCMAYfsQ6LNjGTrEcWi4aDbBgUoPiHohqSSgQEgneavSY/C2TVt0XAq5d49eYkRPdrb3bsfrynkO8QoOSp6CC3Ky3OfZh1V3xFUP0oBik+gjIGk0CgICEZqUiVGOiAgOlmDQm0linsGGbGPqOhRyDaA6OkRdNugAMUnBN2QVGI0QInKKp5CTjce56NFIHr2QW2FY6R+LSptpZBtANGzDyNtpa/Pv1s2UIDiEwoZktgRMmqNKhY7cGMygJxMNlG1D2orHMooSait6DESvAL+1YMCFJ9Ao0KJ1uHmmkeOmh40KtRjpK1EJWMAkO/QQm1FTyE9Kipk4OJXPShA8QnkdCXkZPQUGgUBZB9atLbBmHv35CUUoEjE4IbaCqdYTY7fM0oUoPgEcjISClD0kB56jKSt02n9nhhhhTGa4tFCbUWPUT38GrBRgOITjDhdalQcv0f9qqGVCXoK6SH2uQCioYd259RcviNqbYUCFD1Gs69+1YMCFJ9AGRQJORk9pIeeQnqUlESrU6YVb3qoregJuh4UoPgEIysTenv9uxxMJVRzoYcySnpID4k2g0KDm+DXXKiGAhTCNqmU3AW02GZcUeiUaUpDT9DTtKoJ+ry6SoQWZWU8e5RNVG2D2gon6L6UAhQfUGwUFI9zBwREy+kGtVGphjpkPdQJSYzahp8341IJtRU9Qc82UoDiA4rNI8di5HS1+L1RqYYCNj1BHxWqxKhtAKQHEC3bAII/XU4Big/QBihi2/JsotSwyMnooQ5ZD9mHpFgHVFERraMQyDb0BF0PClB8gNaIcu2cCvjfkFRiplFFYTMumtLQE3Snq5JiwSvg/1GySiiY1xP0tkIBig8oZkSA/w1JJUY75HSaz62HHZry0kN6SMh36CnmO6JkG0DwAzYKUHxAsUYFRKthFWtUUduMK+ijIJUwRoWQWihA0WPGNij76n/boADFB5CT0VNMj6huxkUdMl+JIjqWoDpdlZDv0GO0rUTlKISgZxspQPEBZpxMFDohI3r4vWGphDIokmJL8oFo6WEk+xolPYxkX0WdXxT0CPrghgIUH2Cm0I0aFSdKehg9oTUKWhRbkg9ESw8jvoOCeUksRnpo8XtboQDFB1CHrIf00EObcUmEFiUlcvPCbMg29Ph9lKwS8h16gj64oQDFB1Cj0mMmbU1OV44IgfDbB03/6SHfoYcWHOihDAphG3IyemjKS08x+4jHo7MZFwWvesh36CE99BgNUBIJoL/fnXsyAwUoPoBGhXrIyeihNL6Eglc9VCSrhzaukzBm/HRnwJ/2QQGKD6AOSA8FbHqKzSMD0emEKHjVQwGbHrIPiZEVbxUV0q/4UQ8KUHwAjYL0kJPRQ3pIzAbzYd+Mi4J5PdRWJNoAJahTohSg+AAaBemhgE0POV2JGS3SaaCnx/l78hLKvuoh3yExsiQf8LceFKD4AApQ9JAeklSKPwBamQAY64Cqq+XrqOhBbYVDvkMibKO0lD/y4Wc9TAUoCxYswIknnoja2lqMGjUKF198MTZs2KD7zJVXXolYLKZ7nHLKKbrPJBIJXH/99Rg5ciRqampw4YUXYseOHfZ/m4BCNQZ6zOgR9lGhkXlkIDr2YcQ2onQUAvkOPbTMWGLENgB/24epAGXJkiW49tprsXz5cixevBgDAwOYPXs2uru7dZ8777zz0NLSknn8+c9/1n193rx5eO6557Bo0SIsXboUXV1dOP/885ESQ8WIYcSQRKOKwmZc5HQlYZhHVomRETJAemiJSlsBaBWPFqNtxc8BW569GHPz8ssv6/7/8MMPY9SoUVi1ahVOP/30zPvxeByNjY05r9He3o6HHnoIjz/+OM4++2wAwBNPPIFx48bhtddew7nnnmv2dwg8ZjpkgBvSsGHO3pOXmAnY/NioVGI2QImKHkZGhS0tpAcQHdsASA8tkcugZNPe3g4AGD58uO79N998E6NGjcKkSZPwne98B21tbZmvrVq1Cv39/Zg9e3bmvaamJkyePBnLli3L+XMSiQQ6Ojp0jzBhxJC0m3FFJfInJyO1KCvjUxf5iJoeQXa6KjETzPt1My6VkO+QmG0rfuxXLAcojDHceOONOPXUUzF58uTM+3PmzMFvf/tbvP7667j77ruxYsUKnHXWWUgMTg62traioqICw7JSAA0NDWhtbc35sxYsWID6+vrMY9y4cVZv25eQ09VDTkZCtqGH9NBjJfsaZsh3SMLQVkxN8Wi57rrr8P7772Pp0qW69y+77LLM68mTJ2PatGkYP348XnzxRcydOzfv9RhjiIlzsLO49dZbceONN2b+39HREaogxYwh7d3rT0NSCc2rS4zaRtSmvEgPjhE9xGZcySQfJWclvEMFBSiSMAQoljIo119/PV544QW88cYbGDt2bMHPjh49GuPHj8fGjRsBAI2NjUgmk9i3b5/uc21tbWhoaMh5jXg8jrq6Ot0jTITBkFRidhVPmDfjItvQQ3roIT0k2q3dqX4tHLZhKkBhjOG6667Ds88+i9dffx3Nzc1Fv2fPnj3Yvn07Ro8eDQCYOnUqysvLsXjx4sxnWlpasG7dOsyYMcPk7YeDMBiSSswEKOk00Nvr/D15RRjmkVVCq3j0kO+QaFc30oq3cGQbTU3xXHvttXjyySfxxz/+EbW1tZmakfr6elRVVaGrqwvz58/HV77yFYwePRpbt27FbbfdhpEjR+LLX/5y5rNXXXUVbrrpJowYMQLDhw/HzTffjClTpmRW9USNMBiSSozokb0Zl/b/YYI6ID2khx7SQ2JlST5jQJ7KgsATBtswFaA88MADAICZM2fq3n/44Ydx5ZVXorS0FGvXrsVjjz2G/fv3Y/To0TjzzDPx9NNPo1ZTqXXvvfeirKwMl156KXp7ezFr1iw88sgjKC203V2IoVGyHjObcXV18YaVZ3Yw8ITByaiE9NBDgxuJ2QBFHIVQU+PsfXlFGPoVUwEKKzLZX1VVhVdeeaXodSorK7Fw4UIsXLjQzI8PLeR0JUbnkQGuhwhQwgrZhh7SQw/pIdEGKGUFerbqaj7ASae5HhSg8Gc/2gadxeMDwmBIqkilZNEr6UEj5GxIDz1hGCWrQqtFoWmbWCwa9hGGfoUCFB8QBkNShdE0LRAtPYxqEfbNuKit6CE9JEa1AKIRoBg5lwjwt21QgOIDyMlIrAQoURkVFkK7GRfpEQ3bAMh3aDEToETBPsKQbaQAxQeEwZBUYXQeGYiWHsVsQ2zGBZAeQDQ6ZID00GJ0CToQLT2M2kYyqfe/foACFB8QhlScKozOIwPR06MYpIckCloANLjRQm1FTxiyrxSg+ABKW0vIyeghPfRQgKKH9JBQW9FjNKNUXi4/4zc9KEDxAeRkJORk9FDhnx6zGQM6CoFDgxs95Dv0+FUPClB8AAUokjA0KpWQHnrMthXGgO5uZ+/JK9Jpub07+Q4K5rMJg++gAMUHUIAiMVqPA9CoMBvSQ1JTI2uYwqqHdjk5+Q5qK9lQgEIogQIUCY2C9ITByajEqB5R2IyL9gzSQ21FTxh8KQUoPsDsvHqYN+MiJ6OH9NBDeki0AUp5eeHP+rUDUgnZhp4wZJQoQPEYK/PIQHgbFjkZPaSHHtJDIqZDS0v5oxBh1wIg28gmDHpQgOIxZuaRtZtx+S3SVUUYGpVKSA89YUhbq8KKbfhxMy5VUFvREwY9KEDxGDPzyIB/DUkVYWhUKqEOWQ/Zh8SKFgANbgBqK9n4ta1QgOIxFKDoCUOjUkkY5pFVQnpIzGjh5824VEErAPWEwZdSgOIxwoiMzCMD/jUkVVgZBYV5M64wOBmVkB4SM1oApIeWsGsBhCOjRAGKx5h1Mn41JFVYOfCLMaCnx7l78hI6AE0PdUIS8h16yDb0hCHbSAGKx9AoSI8ZPbSbcZEe4bcNgPTQQr5Dj9UOmbKv/rUNClA8xqqT8VukqwozekRhMy4r8+ph1QIIR9paFeQ79FjpkMN8FAIFKIRtaBSkh/TQQx2yJJXi+wYBwXa6qqC2oseMHlVVQMlg70d6+Nc2KEDxGHIyekgPPWGYR1aF1RVvYdeD2gqHsq96KEAhbENORo/Vwj/qhKRthPUoBFqSr4d8hx6a8tIThuwrBSgeQ05GD+mhx+pmXGHUQ9TjAMXPngHINrIhPfSQHhK/akEBisfQUkE95GT00GZcEqFFeblcvVUIsg095Dv0kH1IhBb9/f46CoECFI+hRqWH9NBDekhICz1m9sgBaEojm6jYR5CzrxSgeAzNm+ohJ6OHRskS0kIPtRU9ZB96zOhRVgZUVvLXftKDAhSPISejh/TQQwGsxKoW3d1yeXKYoLaih/SQMCYL5YOsBwUoHkONSg+NgvSQfUisahHWoxDINvRQMC/RruILsi+lAMVjyMnoISejh+xDYlaL6upwb8ZFtqGH9JCYXZIP+FMPClA8hjIGesjJ6CE9JGa1CPtmXOQ79FBbkdgJUPw02KMAxWOsNqpk0l/LwVRh5uwZINxOJizzyKow21YA0kOLHzsglVCAIhFaxGJAaamx7/GjHhSgeIzVRgWE09GQk5GEZR5ZFVYCFNJDEua2AlBGSYt2CbqRPYMAf9oHBSgeY7ZRRWUzLnK64UnTqsJOBoX0CH/2lXyHJCzZRgpQPCYshqQKGgVJwlLopgpqK3rsZF9JDwpes/GjL6UAxWPM1lwA5HS1RMHJBH0eWRUUoOgxq4dfN+NSBWVQJGFpKxSgeExYDEkVdgIUxpy5J6/QahHkeWRVUFvRE5ZRsiooQJGEZTqUAhSPISejx85mXN3dztyTV1CHrMfs2TNANPQIeiekCgpQJGHxHRSgeExYDEkVtBmXhIJXPaSHHvIdeuxkX8N2FEJYbIMCFI+hUZAes6PkMG/GRbahh/TQE5ZOSAWpFH8A5gvsAcq+Av60DQpQPCYshqQKGiVLyDb0kB56SA+JlRVvVVUy+xq2ADYsftRUgLJgwQKceOKJqK2txahRo3DxxRdjw4YNus8wxjB//nw0NTWhqqoKM2fOxPr163WfSSQSuP766zFy5EjU1NTgwgsvxI4dO+z/NgGEnIweGiVLqOZCD7UVPaSHxEqAEouFX4+g24apAGXJkiW49tprsXz5cixevBgDAwOYPXs2ujX5sbvuugv33HMP7r//fqxYsQKNjY0455xz0Kn5refNm4fnnnsOixYtwtKlS9HV1YXzzz8fKZGjixBhMSRVWNGjro4/d3Sovx8vsWMbyaRcwh4WyDb02LGPsOmhDVDKy41/X1jtIyxtpczMh19++WXd/x9++GGMGjUKq1atwumnnw7GGO677z7cfvvtmDt3LgDg0UcfRUNDA5588kl873vfQ3t7Ox566CE8/vjjOPvsswEATzzxBMaNG4fXXnsN5557rqJfLRiExZBUYGUeGZB6tLervycvsWMbANdj1Ci19+QldvQIm20A1vSor+fPYfMdQovSUuN7BgFcj+3bw2cfdm2DMeNbGziJrRqU9sG/6vDhwwEAW7ZsQWtrK2bPnp35TDwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPcICOV2JlbNnANmwwqaHFdsoLZVzySFqJgDsOd2w2QZAemixogUQXl9qxzbSaf8UDVsOUBhjuPHGG3Hqqadi8uTJAIDW1lYAQENDg+6zDQ0Nma+1traioqICw4YNy/uZbBYsWID6+vrMY9y4cVZv23eQk5FYmUcGwj8qNOt0w24fZBsc8h0SK/VaQHj1sLJDeXW1zD75RQ/LAcp1112H999/H0899dQBX4tl5YYYYwe8l02hz9x6661ob2/PPLZv3271tn2HlYYV1kZldR457HpQgMKx2yGHeadho5Bt6AlrAGtFj1jMfxklSwHK9ddfjxdeeAFvvPEGxo4dm3m/sbERAA7IhLS1tWWyKo2NjUgmk9i3b1/ez2QTj8dRV1ene4QFcjISoUVZmVz+Z4Sw60Fpa46dtpJKAT096u/JS2h6WELBvJ6w6GEqQGGM4brrrsOzzz6L119/Hc3NzbqvNzc3o7GxEYsXL868l0wmsWTJEsyYMQMAMHXqVJSXl+s+09LSgnXr1mU+EyUobS2hDllPWJyMKqzoUVMjg13Sg2wjG9JDj9/6FlOreK699lo8+eST+OMf/4ja2tpMpqS+vh5VVVWIxWKYN28e7rjjDkycOBETJ07EHXfcgerqalx++eWZz1511VW46aabMGLECAwfPhw333wzpkyZklnVEyVUpK39UG2tAnIyesLiZFRhJ229fz+3j6YmR27NE2hwI6HBjZ6w+FJTAcoDDzwAAJg5c6bu/YcffhhXXnklAOCWW25Bb28vrrnmGuzbtw8nn3wyXn31VdSKBfgA7r33XpSVleHSSy9Fb28vZs2ahUceeQSlZtaHhQQ7Tqa/H+jr4zsihgHqkPWExcmowo4e+/eHyz4YowyKFmoresKih6kAhRmoMovFYpg/fz7mz5+f9zOVlZVYuHAhFi5caObHhxKrWxLHYtxJtbdTgOK3RqUK0kMP6SFJpWTRr5UApbOTLyc1U+vlZ8g29IRFj5CYZ3CxYkglJXJHSL8YkgrC0qhUQXroIT0kdpfkMxaunagp+6onLFNeFKB4jFivbmZZLRBOp0ta6AmLk1EFBSgS7TEGZvSIx2X7CpMeZBt6wqIHBSgeop1Hpg2G7GvR0cHT1mGBAjY9FLBJtBmUMhMT9bFYOLMGZBt6wpJRogDFQ7Rbu1OAIjtks1oIJ8NYuE40VhGwhQkru2MC4Wwr2g7I7Cq+MOpBwbweyqAQtrE6jwyEsxOy2qiqquQoMkx6WA3Y/OZkVGFXD7INThjtw24w39OjHzAGnbD4DgpQPEQ7jxx0Q1KB1UalTVuHSY+wjIJUQXpIrGoBhFMPu9lXgIqGAf/ZBgUoHmL1iHDAf4akAhoV6gnLKEgVpIeE2ooeqxmU8nJ+SB4QLj3sBmx+0YICFA+xOqcO+M+QVECjQj12O+TubmBgQO09eUlYRoUqsBOghNF3kC/VE5bpUApQPIRGQXpIDz12VyYA4Upbh2VUqAIVwbxfOiEVkO/QE5ZgngIUD6GMgR47eoSxE7LqdCsqgMpK/josejAWnlGhCqhD1kO+VI/dtpJM8mNUvIYCFA8hJ6NHhR7UCXHCZh/aqaqgjwpVQLahh3yHHqt61NbKZet+sA8KUDyEon495HT1kH1IaMWbHrINPeQ79Fi1D78do0IBiodQ1K+HnK4ecroSFQFKIqG/TpAh29BD08N6VBRR+6FvoQDFQ8jJ6CE99FhdOgmETw+hRUmJ+SX5YkQIhE8POx2yHzogVZDv0BMWPShA8RCK+vVQBkWPiqWTYemE7Djc0lJ/pa1VEJYOSBWkh56w+FIKUDxERaPq69NvmR9kwpKWVAU5XYmdbBIQPvsg29ATlg5ZFWGxDwpQPERFBgXwhyGpICyNShXkdCV2sklA+PRQZRuMqbsnL6F6Pglj4fEdFKB4iJ1GVVYG1NTw134wJBWEpVGpggI2iR0tANJDi9AileKH5IUBqteSaA89DLoeFKB4iN20tZ8MSQXUIeshPSR2glcgfHrYsY2aGl5sDIRPD6rns7fiDfDXdCgFKB5CaWs9lLbWQ9uZSyiDoseObcRi/uqEVEDBvERbkxj0bDQFKB6iyumSk5FaDAwAvb3q7skr0mm5eyodCEdtJRsK2PTQFI9E2EZpqfkl+YC/9KAAxUMoba3HjtMdMkRu0RyGTshumjZstmG3rVDApids9mEnGy206OzkA4OgEybboADFQ+waUticrqq0dRj0CFOaVgVhcroqoMGNHhXZV8aAri519+QVYbINClA8JEyGpALqhCTaDAoFKGQb2ZAeeuxM8cTjQHk5fx0GPcI0HUoBioeQk9FDAZtEaFFeLqeuzKB1MmFIW5Nt6FGlhx86IRXYmeKJxcJlH2HKzFOA4iEUoOghPSSqtGAM6O5Wc09eQrahJ0ydkArIPiRhCuYpQPEKxkJlSLZgDGCMnIwgnbatRWUl38wPCIcelDHQoMA+wtRWtL40DNMatkillNlGT49+0zcvoADFCx59FBgyBIkNWwFE3MkwBnzrW8DIkUj2pQBEPGDbtQuYNAnJr/8jAOtaxGLA0KH89f79Su7MG/7yF6C2Fon/XQzAflsJtBYAMH8+UFWFZNs+ANbtIxS20d8PzJyJ1CETkOKuw7bvCLQemzYBTU1Izv8JAPtaAN770jJvf3wE2bQJuPJKAEBy9ToAh0S7Q378ceCJJwAAiXg/gFLLnVAonO6NNwKffIIERgCw3iEDXI/duwOsR28vcPbZAIDEa28BOCfatrF6NfDv/w4ASHyyA8CwaOvxi18Ab7+NJCozb1nVY9gw/rxvn4L78oqrrgLa2pBoexeAdS3Kyvi2DV1d3D5GjlR3i2ahDIrb/OEPmZeJHh72R7pRPfxw5qXdNG3g9ejpAZ56CgCQABfBToASeD1eey3zMgkexVsN5oUWvb36FVKB4je/ybxMtPcBiHBbAYAHHwQg2wpg3z4Cq8ennwJvvQVAje/wSwBLAYrbvPtu5qVwupF1MqkUsHIlAIABSDA1nVBg9VizBiJXbbdDBkKgx6BtAPadbl2dXA0VBj2SjK+LjWxbaW8HPv4YgJoAxS8dsmVWrMi8DJPvoADFbUSAMn16pmGpcDKBPH9mwwaeR6yuxsCUE8AGzTGyAZtwMiefLDvkCutrhAOvh+iQtXpYtI2SEtkJBVKP/n4ewAJK9Ah8h/zee/z5kEOQHNEEAKgoT1takg+EqK2cdBJlUAiL7NwJfPYZ95Zz59o2JNGoBgYCupRUdMgnnIDk+ImZtyM7KhRO5otfRKKCrwONw/p8RKA7ZMakfVxyiZJRoV+criXWrwf6+njh2axZyqa8AmkbgGwr06YhMeZQAEBFacry5UKjxyWXyH6ldMDy5fyiBwUobrJ2LX8+/HDgqKNsO5maGrmU1GtDssT77/PnqVMzTgaI8KhQjJCnTkVy5OCoMGX95EPhZAKpR0sLX9FUWgpcdJF0uuURzSgJ2zjhBODQQ5UNbrq6vF9KaonVq/nzCScg0dQMIBwdsmWEfcyahWQlXz1R0W99336/DG4oQHGTTz7hz5MmAePH23YysVjAO6FNm/jzpElINh0CAChBOhN0mSXQTiadlvZx+OFIDKat4wPWU2OB1kPYxvjxvEOOVQEA4gnrS9ZCocfhhwPNzbZ9h3YpaaB9xxFHINl4MAB72cZA28a+fcCePfz1pElIDG8EAMSTnZYv6Zd+hQIUNxGNasIEYPx4mUFJWo90A92wRId82GFINHAnUxFLFviGwgRai5YWvsSktJTbxqCTqUhE3DYmTABKS5GsHgoAqOjYY/mSodHjkEOk7yi3VnxWVgbU1vLXQdcjcdBYAEBFOqLToUKLhga+v1b9KABAvNd6MO8XPShAcRMRoBx2GDekksFR4d4Wy5cMrNPVZgwmTEBi1DgAakZBiQTv6wOF0GL8eKC8HImhg04mYX1ry8DaBqDvkAEkqviQP96xy/IlAz0FqNVj3DiZQbGhh19GyabZtw/Yu5e/PvRQJEaOAQDEUz2WLxlYLYAD2kqyjm9cUtFtveH7RQ8KUNxEG6AASJRUA7AXoPgl0jVNSwsv+isr4xmDg7iTqWAJyxtV1NbyBAQQQD2yO+Qh3MnE+yI6pZHtdCv4cL+iY7flS4ZFD1ZWjsTg5mTxfa2WLxlYPbIyBkkRzKfsT4e2t2dW+gcHTSYaABJV/JexMx3ql36FAhS3SKeBzZv560FDSsYG07SdEUxba2sMysqQiGtWreyxpod2e/fA6iFso2IIAHvTf4HVAjjQ6ZYOZht791u+ZGDbijZjMGECBjS1oJEM2A7Irg0FMFhQbjG6EFoAAdyZ+4BgvgYAUNFnvwbFa9ugAMUtWlp4ZqC0FBjHpzPExmTxzgg6GRGsiUY1MLgHio0ABQhwp5ylR6KcByjxpP0pHq/TtJbI7oREkWyP/bR1YG2jsRGoqdElGO34jsC2lewOOc6za3EkLP8y5eV8VSQQQD2yfUcp/0XsZF/9Mh1KZ/G4xY4d/LmpKbM2OLMbZBQzKEIPEawNOt0KJPkBMhYJbKf86af8efx4AECiTONkGIOVHaiEFj09/BgBO3uIuEpXl8wYDOqRyTZ27bV82cB2yNm2oQ1Q2tssXzawbWXbNv58yCEAgESK+9M4Etx3WDw8ZuhQvp9UYO1D6JHJNlr/RQ47DPjxj4ExY+zenD1MZ1DeeustXHDBBWhqakIsFsPzzz+v+/qVV16JWCyme5xyyim6zyQSCVx//fUYOXIkampqcOGFF2KH6LDCymef8efBvzhjQFI0LAVOJnCNSvy9x/IK/MwR4TYzKIHXYzBgSw46mYp0H9BpLVVbXx/Q7d2FFnV1/AEgwQaLQrvs20bgOuRs2xhc6FaCFEr32i+SDZRtAMD27fw51+Amar4jnT7AlyYHF19UdO+3fNmmJuD22zPn2nqG6QClu7sbxx57LO6///68nznvvPPQ0tKSefz5z3/WfX3evHl47rnnsGjRIixduhRdXV04//zzkQpcdZIJRIAijEizmjaSo6CsgE3ooSqDEignk0rxXYYB6XTTPLuWGRVaoKRE7ncRKD2yOiBAo4eCVSuB0gLI2yHbsQ0gPHpkDhlVpEegfGlbG99pLxbjUQU051b1d/L0aYAxPcUzZ84czJkzp+Bn4vE4Ghsbc36tvb0dDz30EB5//HGcPXiU+hNPPIFx48bhtddew7nnnmv2loKBiHKzOmQAqNgbwUr8rIAt0hmUlhYepJSV8ZUJyNEJHXpogQvkZ+hQ7nADpUeOACWZ5q6qop0ClEgH80De6WHeViK2b5DQYvRoXkgDIJHWTHnt2QNUV3t1d7ZxpEj2zTffxKhRozBp0iR85zvfQVubzBCsWrUK/f39mD17dua9pqYmTJ48GcuWLct5vUQigY6ODt0jcOTpkAGgYt/nli8byEYF5A3Y7I6CAllnIDqgMWMy66R1nVDUAjahx2BbAYDEANcl3rUbumUsJhBadHZavoQ3ZOmhKoMSyLaiLRLJ0kNVwLbXepmT++QK5pN8XteuHn5AeYAyZ84c/Pa3v8Xrr7+Ou+++GytWrMBZZ52FxKAVtba2oqKiAsO067oANDQ0oLU1dyZhwYIFqK+vzzzGaf4YgSFPh1yKAZTusT/FE6hG1dcnG86gHqqczPDh/DlQeuSa0lDUCQVSj6wRMgAk+rnTjSNh+ZcRHTIQsE65YMbAum2MGMGfA2Uboq3U1mbmL1UNbkRbCZRt5ArmFdmHH1AeoFx22WX40pe+hMmTJ+OCCy7ASy+9hI8//hgvvvhiwe9jjCGWZ6XCrbfeivb29sxju/ijBIliUxrM2pbV2g7I4iXcR9RbVFZmfgFVUzyBdroaJ6MqjR9oPRSPCsvKZE1OYPRIpaTvUDzFE8jg1cFgXrQVG+7HfQroQRkUA4wePRrjx4/Hxo0bAQCNjY1IJpPYlxWmtrW1oWFw/j2beDyOuro63SNQMJY3g1KBJHdCFncHEo2qv59nPwOBtkB2MChV7XQD5WRyZQwUZ1ACpQd1QpLWVlmfNFjXd4AWFkcmgdMCKNhWKGDjqMoo+QHHA5Q9e/Zg+/btGD16NABg6tSpKC8vx+LFizOfaWlpwbp16zBjxgynb8cb9u3j0xqArLTOOJlBa7LYKqqr5YmmgXE0WSt4gCyna8NDBDJjUEwPG8sKAqmHyLAN6pFOy5qRCiRt6RG4Tkho0diYqU/S2UYyKX2LSYQW3d2WT5dwnxxtRdch29gGNpABW1ZbAbLsI3Db4uoxvYqnq6sLm8S23AC2bNmCNWvWYPjw4Rg+fDjmz5+Pr3zlKxg9ejS2bt2K2267DSNHjsSXv/xlAEB9fT2uuuoq3HTTTRgxYgSGDx+Om2++GVOmTMms6gkdIuofOZJPa0BjRCX9QBqWDSkW446mpYU73cG9nPxN1rp9IMvJ2CiCDmTGoGXwLKbB4BXIyijZcDKB06O3VwYgg3roluRHrRMSHVA+2wC4HlVVpi9dX8+XoqfT3HcMjiH9TY62osugKGgrgQlegeL2EbUAZeXKlTjzzDMz/7/xxhsBAFdccQUeeOABrF27Fo899hj279+P0aNH48wzz8TTTz+NWnG2N4B7770XZWVluPTSS9Hb24tZs2bhkUceQak46S1sZNWfABojKh2wFaAA3Om2tATI6RbIGNhtVKID2rePO96SIBzmIJyMpofQj4KsD28Dl0ERHVBVldykTbtzqs0AJXCdUCHbKB0AUuB65NnWoRAlJbzIfs+eAAUoBTrkyAWvjMn2ktd3RCxAmTlzJliBOc9XXnml6DUqKyuxcOFCLFy40OyPDyaFUvhlKaAfSrIGgXG6WfU4QJ609WC2yQxCi3Sat82sxWL+Q+tkcowKuZOxlsIHAphB0XZAWfVJAFCO/mh1QoVsoyzNAxQbvmPECK5F4PRwoEPOXnBg4XQJd+nokBuxhTRACcL4Mvjk6JAzGZSyNH8RJadbKKOkTVtbIB6Xh34FImBrb+fTGoDOyahK0wY2g5LD4ZaXDKAELPIZlIxtlA8OFKOoR74pno4O20XDiURANmAVbaWuTjo9hGuKhwIUN8jRIWei3HJ1AUpgnEyhjJI40C4qdRfCyQwdqqsjUD0qDIQWQMEOKF42eBRGlIL5QhmUCvsBSqD0SKf5qiYgZ8AWR4J/psvabrI1NZnNWIPhS3O0FYAyKIRZCk1pCCcTlcLQdLpw5XnlYF7VZtoaCIeTyYwKLSK0aG8PyO6pOTIoKrONgWorQOEMyuDqvcgMbvbs4fspALqaG7ngYNDAbSw4CFTAlqOtABSgEGYpNKVRMdghR2UU1NbGe8qSEp2TyehRNVgoHZVOKI+TOWBVk8W0tbYGJxA7ZBbKoCjMGASiQwYKZ1Di9n1HINvKQQfJVAc0wXz1YEllVKa8crSVVIo/AJriIYxSKIMi6kCj0qiEFg0NOZ1MvNp+gBKoTshImjaVsrwLX+B2Ty1UBKkgQAlUhzwwwAN6ILceVeoGN4GwjTxtJRPMK/QdgbCPAtlGgDIohBF6e+XQNVeRbOXgnyAqjSrH9A6g0UPhKCgQehTJoFSU2K+7CJQehfZ1UFCfFKgO+fPPeeastJRnDQahbGOeKY0hgwOeqAz2CrQVYDCD0t0dkLnd3FCA4jTafR3EUBbaUdDgn4BqLgAA8Rr7AUrQ9WBMo0fdYKFBVPQolEGpVDel0dWld+a+RLuLrGZDH8o25s6gVAwZjGCjMtgr0FYAzYpIG32L11CA4jTaOWTNwvrIjoKKBSgKRkFBdzIDA7LkREWAEhj70GYbc2VQFGQbhw6VzdD3nXKO+hNAG6BQthHQ6FFrP0AJegYlU49TAcTEPlIBnuahAMVpclThA85lDNJpy5dxh2JTGrWDHXJUNq4rlqats+9kAjNKFktI82YbB4P5ri5ZCWgSsXsqEIBOOY/vyLSVGnXBvO9tAyg+uFGYbfS9beTZRVY3HSraEAUoRF6KTmmomzdNpwOQzSumh4JRkHAyvj/Ik7GCW5kDQHzo4N4onZ2Wf0xg9NBqock2yoyBxl1Z3OsCCFAnZDTbqMg2LC4Uc4+ig5tB36HANnzfVjo7ZeF8runQODJHRdixD6+hAMVpijUqkUGx0ajicWDIEP7a9w2r2DyyyKDYaFQjR/Jn32vR0ZFzF1nhZEpKgLK6av6fKOiRZ0pDN8VTNthebOgh6k137bJ8CXcwWhSqwDYSCcsLxdyj6OAmQr5D2EZtrXT+yApQxPsUoBB5KToKGoz6OzttDWFC43QVjIICo4Wwjfp6oLo687YuTSsO2YxCh1xsOjQeU6JHYDoho0WhNrSoqZEbGPvaPvJMaQAa+6gfnA6NUlvJZxta32HDl3oNBShOU6TQrUKMggYG9Ll9kwin6+uGpd3XIV/ApsDJCC26u2WCwpcUK4JUNAoSTtf3HbLLevi6rQCuBPNAQPTIs4ssoOmU69T5jsC0lbzBPJQE815DAYrT5BkV9g0eUFtVVyHfDHsnlGdfB0ATsClwMvX1cg84X+tRrAhS0SgoEMEr4JoegeiQgeKj5DrNlIaN7Gsg7EN0yCNHajbEyVqSrzCD0t7u82XoxTLzFKAQhshjSCJAqawuken9sDvdPPs6AJqAbZh9JxOLBczp5rENVU4mELYBGMugRGWKx0i2UQTzqZQ0GgsEYnCTx4+KpAoAVAy170eHDZOuyddF1MVqGysgs400xUPkpLcX2L+fv86XQalCdDqhPE4GkFMxVcMHJ8RtNqpABCjFsmuKbWPvXsurc90hjx4Z24hSWymQbczoMSwu3wx7hi1Ph6yNy6pG2C8oLymRK3l8rUceX6q6rXgNBShOkmcXWUAaUmUllI4Kfd2o8jgZxjQZpRE1/IXNRhWIUWGejIHOySiouRDL0Bnz+X4XRTJKlZWITg2K0KJAtrGyulRmX8OuR5EOGQDiw+xrAQREjyIBm6p+xWsoQHESrRFp9nUAIup0i8ypA5oApafH1nA/UHoYcTI2Rsjl5XJzMt/q0dcnoycjGRQFGQNfB695bANwLqPkaz0MdMixOjUdciD0cCnb6DUUoDhJgSmNnGl8BTUogWhUBUZBVSNr5H/CnrYuUp+k0sn43j5EB1RZyfej16B6VKgNXn27OZkB3xGp7GueQ0ZVB/NAQPQQ7aWQHlSDQhTEQM2FE07XtxQZBcViQHltJZ93B8IdsGl3kc0TsKlM0/re6Wq1yMo2OpUxSCR87LuNBigKOqFA+A4zGYOwZ187O+XfmzIohGXydMiAs6NC31JsRVMlECtRsxmX7/Vob8+5iyzgzDyy7wM2FzMG1dWD14KP7cNIQXmUpngM+A7tjqqhHtwILerq9L8zqAaFMIPZKZ6wb06WJ2DTOVwgGgGK0GLoUN0uskCeItmwb8blYsYgFgtAJ5SnYBiI4BRPOm2soDweV3IUgu/1cDGY9xoKUJykQAZFl8ZXUCRbVyc3J/Nlw+rvz7uvg65RAUr0CKWTCfNmXC5mDIDgBmyplNz7Q3UGxbebkxXYRVbXVmKxaNTzGW0rVINCFMRsJxTmUWGBfR0OCFAi7mRy2obNoxBCp0eUanI0aPf9UJVR8v3mZEKLUaPkKGyQvL4jzNlXyqAQSnDZkHzdsArs6+DkFI9vNyczOwoCIut0ncyg+DJgM5BtBNT5Dt9vTmbUNoDIZ1/zthXfLlcrDAUoTlFgF9mBAf4A1DpdXzcso8EaoESPESN4Vokxn3ZCBfa50OlRWiq9r4KMkuj3fIfRmgvFNTmff27rMs7Q2sqfy8tl5DCI6IDKywcXuykO2HxpH0ZtA1Cix6hR/Hn3bl7+4jvMDnxtHoXgJRSgOEWBXWTzpmltOpmGBv7sS6drdEUToMTJlJVJ3+5LPcyMChXo4WvbAFzPoIhSBl/qoQ1e8+0iq7CtAAHRw0xbURDMp1I+n/IqpkeNmj2lvIQCFKcwsIssoHaDIV93QlbStBHVw4lOSHRAu3b5cMqru5tXaAKuTYcGwjaK7SILKG8rInnjK1xuK+XlMhvta/sopkepmqMQvIQCFKcw0CFXVAwOkBSPgsjJcII6KnSq8C8W8+moUATzQ4bI31VDzo3rbG7GRbahJ6h6OFGDAvg4YCuwwSPgTPbVSyhAcQoPnIyvR4UuT/EAIXIyCkbJvp7yKqAFkLVnkLZouLvb8o/0rW0AnnRAQdUjcr50/375S7voS72CAhSnMNMhK4r6g5pBccrp+nZUuG+f3HDCRSfjW/soMKXBmFxdXVk5+I84CkFBTY4vp7xcLgoFfNwhA8YLyoHwT5cLLYYN0/zSEqemAL2CAhSncLmwC/BxowLMjYLCnqYVWowYwXe/zEKXMQDC3wkZsA1gUI+YuqMQYjG+SsN3U15W2opN3+HbYD6Vkg3Yg8GN73xHgeAVoAwKYRQrUxr9/bY24/JtIWR/v1z7TKOgolMaupoLIPxO12CAoroQUkx5BUmPyE3xCGdWUiLX/2pwenBDvsNbKEBxCiujIMD2BkNiVOirvT8K7CILRHCKp0DKGnBulBxEpytso7RUs4lohPUoOEK2sRmXb6e8hBYNDfKcHQ2RC9jM1GsBFKAQeTBwDk/GiBQtBysrk/2/rxpWgV1kgQgWyRocBdEUTw7bAMIdwCYScs7JTAZFwVEIvpzyMtghq86++tI2APN6UA0KcQC9vbwQEjDudMOcmrTaqBRpsXu3T0eFLs8jB3GK54AOGQh3ACuC+XicF0JmUTD7aqMT8u2Ul0dTGr70o0BBPRijZcaEEQrsIgsUGRUqivyD6GRUFw1rR4W+mvLyKEDxpdMtsuQ6chkUrRZZGzwCOfTQHoUQRvswO6WheHDT1hacwc3AgNyan2pQiPwU2EUWcGdU6CsnU2C6CyjQIXd32zoMo6xM7ggZ6IAtzLuFdnbK/UyMFFAD4a5BMWsbQHQCthw4FcwHccpL2AZAGRSiEGYbFRDuNL5VJwOEcy65SJrW6SkeX015CS3q6/VnhwwSuSkeD32HL/UosqzWqeyrdsrLN77DYLYR0OxeQDUoxAGYzRgA4a5BKaLHAU6mslIW04ZNj3S6oNPt75dJI9WjIF+u8jK7rwMQ7oyB2bYChLsw1Orgxmb2FfBhwLZnD3cQgPxjadDW42QS91HLoLz11lu44IIL0NTUhFgshueff173dcYY5s+fj6amJlRVVWHmzJlYv3697jOJRALXX389Ro4ciZqaGlx44YXYsWOHrV/EV9hJ0ypyMsLP+QKzTka7GVfY9Nizh08WAzmdjFP7fgD6VV6+0YPaih4rGRTFO1EHSY+806FA+OxDaHHQQfwgtyycDOa9wnSA0t3djWOPPRb3339/zq/fdddduOeee3D//fdjxYoVaGxsxDnnnINOjUDz5s3Dc889h0WLFmHp0qXo6urC+eefj5Rv8s42+ewz/my08hxQPir0TaMCpB5FRoVO6CH+BKJte47Q4qCDNBt7SJxO0wo9xG14ThHbcLJDFlrs2iVPHvAcs6tWgPC2lYEBmc4xah+KjkIAgDFj+LNv9PAwmPeKA3e+KcKcOXMwZ86cnF9jjOG+++7D7bffjrlz5wIAHn30UTQ0NODJJ5/E9773PbS3t+Ohhx7C448/jrPPPhsA8MQTT2DcuHF47bXXcO6559r4dXzC9u38edy4nF/u6eHPuil3RU5GNCrfdEB9fXIXWdIDEJnCsWNzfllo4VSadswYYM0aHzndIno42SGPHMkHoskkD+jHj7d1OTUIPYThZnHAqhUgvG2lpYXXXZSX59zgEchhHyL7un+/7U7Zd3oI2/Agu+YVSmtQtmzZgtbWVsyePTvzXjwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPXxNEacrFi3oOmRFhiQaVUeHT4Jm0borK2XVWRZCD7FXHQDlevjGydgJXm0ehQD4UA8rbUVRhxyL+SyjxFhR+yioh8IO2camtOoQWowZk3ODR8bytBfFGTZf2AZg2DZ0fjRqUzyFaB2sJmoQ1UWDNDQ0ZL7W2tqKiooKDMvahEj7mWwWLFiA+vr6zGNcnj+QL2BMOt0inVBOQ7LpZOrqZPv0RcPSapFjyTVQpFO2qYfvnIzBDjlnsAZQwAYoTVv7yj7275cGYMU+FHXI3d18gOM5RWwjmZSr0ZzolH03xWOwX8kbzPsi6jSHI6t4YlkdEWPsgPeyKfSZW2+9Fe3t7ZnHdmG4fmTXLj7K1Q7PsnA60vVVJyT+VnkcLuCsHlonY7OoXw1WOuSyMpnTD1va2sqoUGHa2ledkNBixIisORyJk9OhNTVyX0lf6VGkrQARmR62k10bGPBRoZVxlAYojYMVmtmZkLa2tkxWpbGxEclkEvvEVvA5PpNNPB5HXV2d7uFbRJTb0JCz0hpw1skAPmtYRRpVf79cOeeEHmKvvIEBnyyttdIhA+FMWycSsgjSg/okIFhtBaDBjRahRXl5Vr254imvlhaf7BtkMGBzKvvqBUoDlObmZjQ2NmLx4sWZ95LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZwINORk9BtOSgDOj5PJyeUq7r/QoUiR7wJ5lYUxbi5swW58U0bYCOD/lFSQ9cnbIgNI9pUpKeHDS1mbrUvbR1ieZqddSeBSCF5hexdPV1YVNmzZl/r9lyxasWbMGw4cPx8EHH4x58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpmVU9gaZIBwQ4W9gF+MzJFGlUQouSEs2yWkB5J/T551yP44+3fTnrGKhPyulkAOUByu7dPIGh09xttLZhpT5JbMaVo4DSKL5sK2YHN2H3HR61lbIyHqS0tPBYOs9KZ3dob7dWnwRwPXp7oxGgrFy5EmeeeWbm/zfeeCMA4IorrsAjjzyCW265Bb29vbjmmmuwb98+nHzyyXj11VdRq9m+/N5770VZWRkuvfRS9Pb2YtasWXjkkUdQKtavBxkDTsbJIlkgWE5Gq4Wuj1Ksx3vv+UCP3bvlWsA8y0gLOhnAth7Dh/OgJJHgTre52dbl7GE32yg+oP2/SXy194eBei2np7x8NQVoZUoDUD64aWnhekydavty1tHWJx3wC3MKZl/b2nyyrNMcpgOUmTNnghWoBo7FYpg/fz7mz5+f9zOVlZVYuHAhFi5caPbH+x8TRaGRmFf3OGMA+EgPbX1SntRFXiejaJQci3E9Nm/mengaoFjNNoqjENJproeNACV7aW2RWn5nKdIhp9Pu1eR4HrAlk7I+ycyUBqBcj5UrfeA7rAbzQKCXGtNZPKoxMY8c+nn13l5ZmVpkisfpURDgAz2srmgCHBkle94JmXC6uk5IexSCoimvnh6eRfeUIr5De1pt6LOvImKMx/Nu0pY3QFG487Jv9LAazAOB3qyNAhTVFOmEGCsyj6xwM67WVo+rz0Wjqq4Gsva9ETi9agXwkZMxMf0XiYyS1elQQFmnXFUlTdNTPQxs0uZ0QTngI9vQdshF6pPcCOY914MyKIRt0mlpyQU2FxL7ceQskgVsO11t9bmnJ5Na3aQNCOdmXAaya07XoAA+7ITMZlCA8AVse/YYrk/SHvYNwBEtWlvlmZaeYHWqHAjnlJeKwU0Aa1AoQFFJWxuPQEpKim7SBmR1QtrNuBRUn4tDAz11utu28WePpzR80QEB1osggXCOkk3o4WSGzRcBrNBi1Cjz9UnaoxBsbsY1ahRfmZpOezy4UZFdU9hWRCztGQameCiDQhRm61b+PGZMzpNqAdmoDthcCFBqSMKOPW1Yn37Knw85JO9H3JjSED5u3z59gOg6wj4K6OGGkxF6iPjRE3p65CGSBU7pc2OUfPDB/NlTPURbMaBF3mANsK1HaanslIOih5M1KFrb8HSneAN6UA0KURgDHVDeqB9QakjCjj11MnY6ZIVa1NfLLbxFO/cEE/bhZIcsbMNTLcQPr68Hhg7N+zE3prx8oYcd2ygrk0fYhsU+7PhSB4LXri4+wPGEdNrQYI8yKERh7HTIgCOdkLglT1DRIYvNuGwibsEzPZJJOZFtx8ko6JDFj9+508PjOQzYRt5jEIDwBWwmfMcBWgBK9fC8rWh/uBU9FGpRVSV3ovbMPlpaeEMoK8tbOgBQDQpRDDsdMuBIJxQUJ5O3Q9Z+yAaed0Lbt/MccVVV3mWTgIG0tQKne9BB/Da0C0dcx0RbAZzNsAW+rQDhyigx5ptso/YWPLMP8YPHjeNBSh4og0IUxs48MhCuUWEqJXs/K06mqkouVQhDJ6R1uAV2A3PD6cZiMnXtmX2Y6IAOOAYBcKStbN/u4bJ8VYObMPiOXbv4pi+xmLUVbyJ4VZR99VwPA7YBuDO4cRsKUFTiIyfjeYe8cydfp1hWVvAQi7xOJhZzpCYnKE7G6VGQ5/ZhMmNwQEyneBl6aSnPore02L6cNexmUMKUURI/uKmp4GFRRYN5IBzZV4O+w62MkptQgKIKk2lJt4pk9+0DOjpsX848QouDD+bePw9uTXmFxskomkcOgh5uBfNlZXKg7oke+/fLbWytrNIAHMugeLJyxW4wH+bsax7SabnTsJP1a25DAYoq2tr4RktF0pLCRpzukGtr+cFwgEdO166TAcKVUbKrh+I0redF1D7KGAAeB2zihx50UB7HwHGrBkW4r54eeVKFqxhYsQIUmNJQeBQC4INgfssW/lxAD+0xCJRBIQ5EWG9TE1BRkfdjwkZynm/mUBrfzwGKW3oIJ9PaKjfsdBUDemiPQdBubQFAapFMKll646lt9PTwgF57Izlwa9WK9jY8CdgMthVDgxsFelRWyllZP/uOgvahcC+UIATz2l9T7PeZgWpQCKONSky31NXl+GIEna74VXPqobBhaU8p92RvGIMZA5FSPyBg074R9Ckvg3ugGGorYZjyErZRYHoHcK+taG/FzwGK24Obffs86ONTKemwCugh7mvIkKxjEADKoBBQ06jClMY3sKIJkJ1QQSejoBOKxTzMGiSTch/1AvYhtCgpyZHGV7wZl7iN7ds9OHPFZx0Q4HFbIT30+GywV1cnD5R03XcY3AOlYPCq8CgEt6EARRUG5gkBg05G0ajQ0zS+Sj2CPio0uAeKVoucK5EVBrCjR/OjFlIpDw5CM2gbBTsgxcF8EKZD3cwoeaaHwcUGQEQCNoN7oBQc6Ck8CsFtKEBRxaZN/Pmwwwp+LBKNKpmUP9RHeng25fXJJ/z50EML7oFSUAvtFxToUVIiiyE906O5ueDHvApeXV+54nM9XOXzz3mNUkmJ3KwnB8kkkEjw1wUD2KAHbCZtI6cWirOvbkIBiipMBihu1qC43qg+/ZSve6uqKrgHCmPujpI9C9g2buTPRWyjoBaAY6Nk1/UQbWXixIIfM9RWFG3GNW4cjx37+lw+xTedNqyHFxklkexyDdFWxo83tNgAyFFQDjjmS13Xw6RtuDG4cRMKUFSQSMhCJoOdkBs1KKJR7drlsl1qg7UCGYO+PrlzpxujwgkT9LfnGiY7ZLecjOd62Gkr4k3G9HviW6SiQg7YXdWjpYWvES0t9dWUhrCNTz5xOaNksq1UVeWZ+YhYWzHsOwK2FwoFKCrYsoWPhIYMARoaCn7UTSdTXy8PuhIDE1cwmDEwPApS1KiEz3NVC0C9k1FkH57okU7LtLWdDIrizbi0t+OqHsI2DjmEFwUVwM36teZmHjP19Lhco2QyeC2abQyybWh/oJ22AlAGJdIYzBgA7joZwGOna7BDzrk0DlDeqMTt7N0L7Nmj5JLGUDXFozjD5olt7NjBM47l5QU3NASKZFAUH4UAeKSHwQ4IcHeLgvJyWfbg58FN3mBecQ2K+PNs2uTieU2Mqck2AoHdC4UCFBUYNCLA4Ly6os24AGDSJP788cdKLmcMn86b1tQAY8bw16453VQK2LyZv1Y1xaPI6Wptw7U0vrCN5uaCqxIAb/VwDYO+Y2BA7hbqxvQwIM3Vz77DrYzB+PE8aEsmXTwBfPdueQTCoYcW/KjhDApN8UQQEwGK28vBgpBBcTPqd12P7dv5/gPxODB2bMGPuh2wiUVFnZ1yY1fHMZExcDtt7WkGxcR0qBvTw4AHejCmLoOiWI/SUlmH4poewo+OG5dje1g9VCRL5Mdgh9zfL5fG5TQkB5aDuT4qHBiQpe52VjQB4ZjyEj/o0EPzzGNJ3O6QKytlYajrTtduMA84NsWzaZOShUHGMFkUWlGR54BfB7KvrreVtjbe1ktKii6r9WJKw3U9VGXmAQpQIo3JjAHgXtra9TTtp5/yICUel/MpeXB7FAR4ELAZ7IAAbzJKnunhQ6fremGoiRoDw20FUD7l5XqHfPDBeaIwiReDG9fbioX6JKpBIfT095velKyyskDBvkOFofv2uVQYKpzMhAlFMwZepCU9y6CoyBiEIaNkImBzWw/XC0NbWng0ZGCJcdGaCweyr+JP9MknLhWGmmgrXgxuQpFBoRqUiLF1K2+9VVUFz0oADDQq7RcVNazqaln64ErkbyFjUHTVSleXspy7NqPkSmGojzMGgMtOV7spWRE90mnpS0Orh9CiyKZkgEHfoXiUfPDB/LYSCZcKQy1M/4XWNrQ/SEX2laZ4IspHH/HnSZOKLjEuOiIEgj93KvRQ2agAJZtxATyxE4vxzs+VHUNFVOjTUaGraesdO/jufGVlBbcxB/gGsYLQ1hkI0VVkk7RfVDRKdr0w1IQeXhbYb9nCE+eOYqJgGPAmYHMDClDs8sEH/Pnoo4t+dN8+/ixOxsxJ0OdOLegxdGieD1RXK9+MKx6XW9477nQTCTkqPOqooh8XKwrd2gcFcLkwVNjGpElFNyUTWmhnLg4g6AGb0OPII4t+tGgHBAQ/a2BCj6JtRfFRCAAvqauq4iV2jh8P0dLCf8nSUqpBIWwgGpWBDshUgBJ0J6NCDwc24wJc7IQ2buTTf/X1Raf/AL6BHAAMH57nAw4Er4ccwn1gby/w2WfKLpsbi7aRNzHpYE2OqwGKCT3y2gbgqO9wXI/+fvlDVPgOxUchAHysJJIZjvvS9ev582GHFS0YTqeB/fv5azd9hxtQgGIXE1G/VwGK6JDF7Itj7N0LtLby16r0cCBAOfxw/vzhh8oumRvhZI46quj0H2MmnK5CLcrLpdN1XA8L2TW3O+QjjuDPmzYpW62bHxN6iODV7bYi9BC36hibNvEgZciQotN/gIG2Ul0t21wQ9TARvLa3y3o6N32HG1CAYod0Wnp1VRkUB5zM5Mn8+cMPHZ47FVqMG1dkspzjVcAm9Fi7Vtklc2PCyfT2yg4xrx4in93RobTCd8oU/uy4HtqArQiGOmStHooYN45fdmAA2LBB2WUPpKNDVp6q8h0O6CFsY906ZZfMjXagVySYBwxkG2MxqYeYD1KAa23FQnaturpArbUDWrgBBSh22L6dz3GWl8tqsgIYcjL19fxZ5OwUMH48j3u0WVRHMNGoAIN6iAIVhXq47mRMZAxKSwvEdkKLZFLue64AVwI2xtRPhwo9xIcVEIu5pIcI5puaChRhSQxllIRYCvUQptvS4vA2BQHxHa4NbkQwryrbKIRSqIUbUIBiBxNFf4DBRuWAIZWUuNSwTDoZQ6NkB5yu0MJxp2sxY5B3ADlkCI9gAKV6uDJK/uwzPrIvLZVzjgXwqkMGXNLDibbiQIc8ZIjcG8ZRPUx0yNqaC7d9h7CNDz5wcG8Yk8G8Kdvo6HDxtEP7UIBih4B0yIBLWQMnRkEO6FFbK/fFcszpJpOykk5VxiAWczSjtH69g75L2MbEiUX3/ABMthXFo0JXgnkTwSvgj4DNL76jo0MuzHHbdxx6KF/Jo12gp5zWVn7PJSWyYK4AprJJQKCyKBSg2CEgHTLgPyfT2yvPJQplJ7RpEy9kqK0tekggYNA2tB9wwOn29fFdQx3ByRR+kDMoBjIGgLe+w/G2oi34MTGlUVVVYAk64Fg2WtyiY/YhbGPChCK/IMdQ8FpeLusbFduHk1CAYgcKUCQdHXwjLsDUCp7S0iJ7OwQ1ja+1DQNFf4acDOCIHqWl0oQd08NECh8wmTHQRrsKEB3y1q0OLnoIoO9wzDY++YRnHKur1azgEQTVlzqRmQccyb46DQUoVtHOExrokAF/OBnHnK4o+hs92kBL0W/SVrD/dniU7JiTMZnCN+xkIuJ0Da9aEcajUI8RI7gZAw51yl1d/FBNwJAe6bTBgM2hDkgboDhyPIRoK0ceWfT8LsDACh6BQ77D8YySxWDeK9/hJBSgWGXLFp41qKgwNE8IWAhQFHoDx53umjX8WbTeInjdqBx3usJ7qXYyQXS66bQ0OoN6GArYSkqCOc0jLtrYaKCX5QMKr2ouALkGQLsyWikmbcNPvsMRRCNUWZ8EUIASKd57jz9PmWKo6C+RkCtDDTmZgQH9gSQKcHSULPSYOtXQx712MpMm8W3UOzqAbduUXpoj9DjhBEMfN+1kHBolO2Ibn3zCha6sVJttBBzPGjjaVkzahuGaC8VtpbxcblDmiB6rVvFng3r4Jdu4aZPS1f6cVEoO9kzaB2VQCMnq1fzZZKMqKZFbneSkulouWVZsSMccw5///nell+WYdLpeO5mKCjlAEX9KZezdyzNsAHD88Ya+xWsnc+yx/HnjRgemAIVtHHMMjwoN4PWoULQV5bYBON9WurqU78go7EPculICFsw3NACjRvGslnJf+vHHfGv+mhpDy/EBCzUoUQ5Q5s+fj1gspns0NjZmvs4Yw/z589HU1ISqqirMnDkT68WcW5Aw2aja2vjzyJFFplljMcecrkhurFih9LLcGb7/Pn9tUo+DDiryQQc3GJo2jT8r10P0aoceamgTLgDYtYs/jxhR5IMO2UZDA99FlTEHOiGTbSWVkk7XKz1OPJE/r1rFk5lKMZkx2L2bPxfVQjvyUdxehB7K20pbGy+uj8WA444z9C1CD6+C11jMQT1EWznuOLnnUREM20cAN2tzJINy9NFHo6WlJfNYq8kL3nXXXbjnnntw//33Y8WKFWhsbMQ555yDziCdEcCYdDIGR8iiQx41ysCHHWpYJ53En9esUbrogRdAJpPcQR56qKFvEXo0NBT5oNBi717lxSJCj3ffVXpZ09NdAPD55/zZlB6KcdzpGtRjzx4+Oo3FeEBfEIf0OPxwvkK8t1fxuSuJhCxeMKiH4bZSViaXxCnWQ9jGu+8qbobCNiZNMnQ8BuCvtqLcd5gMXgET9iEiOkd3p1SLIwFKWVkZGhsbM4+DBofJjDHcd999uP322zF37lxMnjwZjz76KHp6evDkk086cSvOsHMnH/KWlspccBEMNyrAMUNqbuZRdn+/4tSkcDLHH29oSS0g9SgasIlhQTKpvCZHOJmVK5WdyM4xmTEATDgZ0WOLYZNCHHG62mDeoB7CNkaMMDAj5JAeJSUyw6ZUj7VreUpmxAiesjKA4bYCSD0U+47jjuN/i88/l7sJKCHgbcWxYN5EtlFkXw3rEfUAZePGjWhqakJzczO++tWvYvPmzQCALVu2oLW1FbNnz858Nh6P44wzzsCyZcvyXi+RSKCjo0P38BRhREceySvXDGAqgyLmPYTlKSIWk1kDpQ3LSSdTUyMrAxXrMWUKP8l8/37Fu0Ka7JDTaQtOxgGn64htfPopzwSWlxtepWEqmBdtJSh6aNuKyWDekB7CPhS3laoqWRyqNGCz4DsM6yFso6eHPxQiApQNGxSev5dOy+lhJ7KNDtmGkygPUE4++WQ89thjeOWVV/CrX/0Kra2tmDFjBvbs2YPW1lYAQEOWZTU0NGS+losFCxagvr4+8xhncOThGE52yIArTtcRJ+PElIa25SnWo7xc/gmVdUIdHXKLe4P2sWeP3GK+aE2Og7Yh/nxbtyr0YdrVbvG4oW+x1CEHJaPkZIcMOGofjmQNRDDvhO+orZULDhTrcdBB8riMlSsVXdTCajdT2UYHbcMplAcoc+bMwVe+8hVMmTIFZ599Nl588UUAwKOPPpr5TCxr5MAYO+A9Lbfeeiva29szj+2OLMY3gckVPIDFNK0Dka7yAMXCsjjAHxklwIFOSGhx8MEGhjQcrZMpeuakuOb+/cpXatTXy+WkyjohpztkF9rK2rUKl5M62SEDrmTYlLWVvXt5NAwYruUzlW2MxYKVYbOw2s0vtuEUji8zrqmpwZQpU7Bx48bMap7sbElbW9sBWRUt8XgcdXV1uodnMCZDZoONCrCYQXGwQ/7oI0WpyQ0bePq0upofBGeAdNp/GSVlTsZGkZvhAmqxDMyBuWTlAZsFPUwF8w7axtix3D61MbgtLKx2AyxmUBz0HcpqtsRAb8IEw6vdTGUbgWDVoTiZiQb0NSgBOdHY8QAlkUjgww8/xOjRo9Hc3IzGxkYsXrw48/VkMoklS5ZgxowZTt+KGrZt40fHl5VZMiSvMwba1KSShiVqh046yfCyuH375NJNU07GQaf73nuKVjb97W/8WVRYGsCUkyktlUXUDmYNli9XcLF0GnjnHf5aCG0Av4wKtTVb4s9qi9WrebH3sGG8Yt0glrKvDuhx1FF8HNLZqWhlk4W2IoL54cMNZBsBVzJsf/ubopVNNnyHIdsQCw4YC8xeKMoDlJtvvhlLlizBli1b8M477+CSSy5BR0cHrrjiCsRiMcybNw933HEHnnvuOaxbtw5XXnklqqurcfnll6u+FWdYupQ/n3ACL+A0iF8yBgDwhS/w57feUnCxt9/mz6eeavhbhBZDhxosS3BQj4kTeeNOJBRkDRiT9nHaaYa/zVSHDDiqh7jtv/5VwQzSBx9wR1hTY3iPC8BGW3HgzAKhx5IlCi4mbOMLXzB05gxgIdvoYIdcViZ9x5tvKrig0MOE7/BTWznpJO6/Wlpk2ZlltA7IKT3Ky2WmKiDTPMoDlB07duBrX/saDj/8cMydOxcVFRVYvnw5xo8fDwC45ZZbMG/ePFxzzTWYNm0aPvvsM7z66quoNbgG3nMsNCrGTKbxHa62njmTP7/xhoKL2XAyhrQAHNUjFlOox5Yt3FtVVMjhlQFMO10H9ZgyhY9Ou7rk7IxlRPA6fbrhOXXApB5iVNjfzwsMFXPmmfz5rbcUZMWFHiaC17175c/1esoLkG3FdoCSSsnsq5PBvIMZpcpK4JRT+GvbeqxcyYOUUaMMT5UDNgK2gKzkUR6gLFq0CDt37kQymcRnn32GZ555BkdpDj2KxWKYP38+Wlpa0NfXhyVLlmCywQPmfIGFDnnPHm57sRg/H6woWiNyYFQonO4779hcfbdzJ7B5Mx8NTp9u+Ns++4w/i8MLi+JwoxJ62HYyogOaNq3IoSl6REmWIdsAHO2ESkqAM87gr23rYaGtADzGAww63aoqmcl0wD6OO47vfbZ/v829gyxm14RtDBtm6MgvxwshRYCyZInNOpT33+dzRXV1hg8YBaQefumQlQVs2rZicPk5YEGPgBXK0lk8Zti3T+4CKXKdBhAnqzc2mpzSSCSUb04G8M1ex47lg84C288U569/5c/HHCN3sDSAOJxvMKlWHJdGhX/7G9DXZ+NCFjtkYR8HH2zwG1zKsCkL2EzokUjIAMWwHg52QmVlMp6wpceGDdx+KytN1a6JtuIX25g2jdeh7N5tsw5F2MYXvmC4dg3wd1uxNZa0kF0D/GcfqqEAxQyiN580ycT8hAUjqq6WG8CJHJ5CYjGZNbA1rWGxQzath9DaAS0Avq15YyMPTkRNpyUsjJABC05XpFoK7B1kB+F0ly61UYeybRuwfTvvfEQe3ABil9LKSoMF1IAcPjpkH0oCNmEbJ59sMBXCEbZhOJgXttHZ6cjgpqJCUR2KTd9hWg+H2soppyioQ0mn5WDPZOmAZftwSA/VUIBiBm2RmwlMd8ixGNDUxF+L4aRi/BCgGG5UQoudOx2Z8tLWoVh2urt28bXbAGBiRVo6zftxwKIeDjB5Mi/t6O62sQmVxWJybbBmONPtsB7CNmzVoVjIJgEWgtfaWqm3Q77DdlthzLYefmkrSupQ1q/nc4gmi8n37JFT9Ib3LnVYD9VQgGIGsezF6QAFcM3prljBB1um6eiQm0OY1MO00xXFKr29CveV1iP0eO01ixcQHfLRRxs4ZlXS2sqzFKWl8k9eFIdtQ1uHYlkPmylrwx0Q4Lgexx/PN7Frb7dROGwxu2ZaD+3gxmHf8cYbFk963ryZG77JYnLAhu9waHADyMGeZvcMc1gsJhe20dBgouSNApSQsn+/zP/PmmXqW205XVFRqpjmZuCww7iDefVVCxf4y1/48P+ww3hBi0G0aUnDTqaqSp5M6lDDOu88/rxsmcX9z4R3Ej27QYRtjBljwje54GSEHv/7vxYvIPQ4/XRT32baNgDH9SgtBc45h7/+058sXGDzZv4oKzNVTA74U4+TTuLNce9ei/vDCNs46SRTxeTd3bJtGvalIkBJJh3b+2POHP78yiv8x5hGjAJM+g7T2SSAApTQ8tprPL97xBFypzOD+DGDAgAXXcSf//hHC9/88sv8WbROg7S38yWsgIm0JOC4HuPH81rfdBp46SWT38yY/CaTetjqgFpbHdsR8vzz+fO771qYKdi4kZ8rUl4OnHWWqW/1YzAPABdeyJ8tBSjCNr7wBVPF5IA/O6GyMuBLX+KvX3jBwgWEHiIKNoiwjfp6/jBEPC6Xojukx7RpvLSjs9PCfjnJpAxQTOrhR9tQDQUoRhEdskkjAix2QmPG8GcHDUk43RdfNJmqVdAhjxhhqjTBVT1MO92PP+ZnilRUyHyvQSx1yKNG8XkY7S5eihk9Wm7+OniclnGEbZx2Gq+JMIFfne4Xv8gl//vf5T0axmJb6e+Xv5Lf9LjgAv5sOmBLJHj2FXAnmAdcmRIVAb1pPZYt45HNqFGmjj8AbAbzn39ucX7OXShAMQJjlgOU7m65uMBvTmbGDF4usXevyeXGH37IKzvjcdNpyS1b+LMpLQBXR8kvv2xy23vRAZ1+usmoS56VZsrplpbKanw/BmwhDOZHjJClVqY6ob4+4PXX+WuTHfL27dz1VFSYWjToiu8491yeINuwgT8Ms3Qpd4oNDaYKQgH/BiiADNheeMFkqYvwHeeea3h3YYEl33HQQdx/ODi4UQkFKEZYv553jJWVpufUxcKOgw4yVTvpSodcViYjf1PTPKIDmjmTL4k2wYcf8mdxaq5hXHAyU6fyzIHpVK3FETIg7ePww01+o4tOd/FiExv69fbKpWEm9ejr46UaAF/Jbxihxd69NjeyKYylrMFbb3FNmpr4Nr0mELYxcaLJvssF31FfL8cmpvTQTu+Y7JCFHqZsA3ClrZx9Nu8ePv1UbpVlCIvTXYAMDE3p4dLgRhUUoBhB2yGL/UkMIjpkzWa6xnB4aa1AjJKff97Ej7HRqGzr4aDT1aZqn33W4Df19MhoxoIeYrMrP+pxzDF8dNbXJ5tAUZYs4d8wdixf0WSCjz/mA7v6ehO7DAP8fBFRbOlCRumNN3gsZAhtWzGxQyjgb9sApB7PPGPimyzWrgH+1qO6mgcpgAk9duwA1q7ldjF7tqmfl0zy9gLY0ENsOuRjKEAxwvPP82cbjerII01+o1gZ091twhua57zz+KzE5s0GK/L375fLrd10MiKPaboAwByXXsqfn37a4GD8tdf4fNDBB5v+I+/dK/dLMp1REnqIPK8DxGLAZZfx1489ZvCbxLKfOXMsd8hHH23yW2MxOWfooB6HHw4ceyyvDVm0yMA3MCYLeGy0FZNxntRi2zbHiqgB4JJLeFC/fLnsLAuyZQvPRpeUyGVRJli/nj9b1sNB2wBkW3n8cYODvT//mT+fdJLc4dUgmzbxEpLaWlOLKDku6aECClCKsX273OVv7lzT3y4yBqYDlKoqOYwUeW8HqKkB/uEf+OtHHjHwDc8/z8P3o482PS+RTtvIoBx6KH92UAuA17iOHcvjMEOp66ef5s9z51rukA8+2HQtqWt6XHEFf37xRQO7Yw8MAL//PX/95S+b/lmWg1fAdT0efdTAh9es4SuaKit5jYFJLOsxdiyfv9VW2TrA6NFy4P/44wa+4Xe/488zZ5qc7+ar/0QCxLQvdck2vvxlYMgQ/mPEtjcFEVHuxReb/lla2zDpdlzTQwUUoBRDONzTTrMQqtrokAFgwgT+7LAhXXklf376aQO1BqJRffWrpn/O9u38+uXl8lczTHMzf96/37H9DAA+RfvNb/LXRTuhnh5ZvGNBjyB0yEcfzWtzBgaAp54q8uElS3jh3fDhMt9tgiDocfnl3EbefVfWRORFCHb++aYjUMZsZFBKS+VWCC4FbI89ZuDwQBu+Q2jR1MRn9EwhbGPLFpsnHBZGO9gr6jtaWuTWsyH1HSqgAKUYYoQs8ncmSCZ5Kg6wEPUD0pA++cTCNxvntNO4P+vokLNZOdm9W67Zt6CHaFSTJpnaMJFTXS2LuxzWQzjdl18ucmTFiy/yKbhDDjG9IyZg08m4FLwCJrIGogO65BIehZpEpPD97HQbGviSY6CIHum09B0WOqAdO3ixdlkZ3wvRNC7pcdFFvGZo27YiheUffcQzSmVlljLRloM1gG+4VFqqP4nSIURb+d3vigz2fv97HoWecorpfbUARW1FLKn0MRSgFGLLFj5UKinhTtck77/Pp4CHDTOxjbkWlzqhkhLZsH7zmwIffOYZ/gsdfzxfWmCS1av5s4nT1fW45HQPP5z7jVSqSO2FdkRoOs/K99QALDpdkVHat8/RjBIAfO1rPN547z15usEBJJOyOtBCh9zTIw9bs6SHi6NCbdYg72GKy5fzXru2VkY0Jnj/ff48aZKpswUlLulRVSXrth56qMAHRVuZPVtunGYCoYelDrmsTNZdOKyHGOx1dgJ/+EOBDwo9vvY1Sz/Hlh5a23BwAYYKKEAphDCimTPliakmEHuLTJ9uqf9yLYMC8GmekhK+h1LeTshGihbQ62EJFzuh73yHP//iF3m2r25vlwWQFvTo75cnJ5g47FdSUyNt0uGR0MiRctD7s5/l+dArr/BAqbHR9FJ8gI8DUim+pYnY1sQULo4Kzz+f/5o7dxaY9hJfuPhi0yv/AFn2dvLJlm7R1bby3e/y56eflpuH6WDMtu8Iih4lJdJ3/Oxnefr/rVv5ioRYTM4JmWDPHjm9aEmPgw/mN9rX5/tTjSlAyUcqBTz4IH/9jW9YuoTokE0cbqtHZFBcCFAOOUSOhH760xwf+OgjPmdaUmLJyaTTcpWQZT2Ek7F8rrlxvv51XgT42WfAb3+b4wOPP85TxkcdxdfjmmTNGr49xtChFlbwCIQeYh7RQW65hT8vWpSn+P9Xv+LPX/0qT6ebRHRAM2ZYDOZFRmn3bl6n5CDxODBvHn991105yhp6eoAnnuCvLY6QhR4mz+GUuNhWpk3jxeUDA8A99+T4wNtv8007qqrk+Rom6OqyfC6pRPhSF/T4/vd5sezatXmOzfj1r/nzmWeaXE/PEf3KEUdYSkbxdKhYBeiCHnagACUfL7/MPfGwYZbqLQAFHbLoubZv5wUiDvN//y9//t3vcvR5DzzAn88/38JWjnwZ4t693EeZ3EBSIvKZYgLWQeJx4MYb+euf/jSrE2IM+OUv+evvf99Sj6rtkE3uVyVxUY8TTuArQ1Mp4O67s764datcXnz11Zaub7tDrq2Vhzu5oMfVV/Njddavl6tFMzz1FA+SmptN728B8Izdu+/y15b1ELbxwQeOFoYKfvhD/vyrX+U4bPO//os/f+Mbps8iAmR2bexYS66H42JbGTYM+N73+OsDBnuJhAzmv/99S9e33VYAqYepXeXchwKUfIgO6B//0fRuqQAvctu2jQ8mxZkmphk2TOa7XTCk447j2zWk08D/+3+aL3R1yTXI115r6dqiUZ14oqX6SY7YiXPdOlec7ne/ywsAN2zI2u79jTf48qwhQ4BvfcvStcUoyJaTEcU8a9fauIhxRAD70ENZS44feIAHbWefbWFLXH12LSh61NfL/uXOOzVfYAy4/37++pprLGWTVq/m2ffhwy3JyZk4kRevdHc7vncQwIPX44/nySMRjwDg82Bi10ObviMotgEA//RP3M+99RYvR8rwhz/wlW5jxljKJgGK9ND6Uh9DAUouNm+WuTmLI0Kxh8a0abwfs4wwJJca1q238udHHtHMLP32tzyDc9hhlpaPArJcw+TRPXomTuSt3iWnW1cnfeq//qumIFJ0QN/6lqURYX+/XAx12mk2btBl2zjrLG7Pvb3Aj388+GZvr6yOvO46S9d95x2ecBgyhG+EZhmXne4NN/AY4K9/1Ryo+Le/8fmIykrg29+2dN1XXuHPp55qcboL4IWhYumgC/YRi8lpwHvu0Rzz8uCDfO7n1FMt/3GFHkrayubN3H84zJgxsjLg1ls1tSgierv6aksjtX37ZO2aLT1cDtgswwJIe3s7A8Da29ud+QE/+AFjAGPnnGP5ErNm8Uv89Kc27+Wf/5lf6NprbV7IGOk0Y2efzX/knDmMpfsHGDvqKP7GPfdYumZnJ2OVlfwSq1fbvMFjjuEX+uMfbV7IGLt3MzZ8OP+R997LGNu8mbGSEv7GunWWrvnyy/zbR41ibGDAxs21tvILxWKMdXfbuJBxXn2V/8iSEsbWrGGM/epX/I2DD7b8y9x4I7/E175m8+Yee4xf6PTTbV7IOKJ5HnooY729jLF/+Af+xj/+o+VrTp7ML/HwwzZv7hvf4Bf6yU9sXsgYAwOMnXCC5tfv7WWssZG/sWiRpWvu2MG/HWBs+3abNzhqFL/Qu+/avJAxtmyRfu+ppxj/uQBj5eW87Vrg4Yf5JY4+2ubNrV7NLzR0KHf6LmKm/6YAJZudO6VVLV5s6RK7dzNWWsovsWmTzft5/HF+oS98weaFjPPRR7wNAYw9O2+JNOT9+y1d73e/45eYMEFBWxBOd/58mxcyzoMP8h9ZW8vYzktv4P+ZPdvy9a66il/i6qsV3Jxwun/7m4KLGeOSSwZNckaKpQ8ez//zs59ZulY6zWMbgLFnn7V5Y2vW8AvV1zOWStm8mDE6OhgbM4b/2H//fovsTdessXS9Dz+UfdjevTZv7qc/5Rf7yldsXsg4y5ZJCZb94CkZvCYSlq7385/zS8yYoeDmxMjrf/5HwcWM8R//wX9kUxNjHefM5f/51rcsX++LX1Tk/vr6GCsr4xfbssXmxcxBAYoNPr7ix2wdjuItwmJv+tBD/O9+7LEKbmjDBn6xeNxyI7fCbbfxHzuu7DPWiRrGfvxjy9e67DJ+rVtuUXBjCxfyi517roKLGSOVYuykk/iP/SoGne4771i6VjIpMzJ/+YuCm7vgAlvZLSts28ZYdTX/sb/BlXyUbDGDs3w5v86QIYz19Ni8sf5+eWMWs1tWWLSI/8jKkj62ERN4FsUiokObM0fBjS1ZIntHF0fJ3/42/7HHlb3PEihn7Ne/tnytU0/VZC/tcvvt/GJXXqngYsbo7eUDM4Cxf8LdPCiwOGrdt08OHNevV3BzJ57IL/bkkwouZhwKUCzyl0VtbAg62BH4gLU/+5qla6TTMs1po0/XX3DkSNdHyd3djB0ysoMBjF1W8SxLt3dYus6OHYxVVCjMrK5axS9WV+faKJkxxlauZKwklmIAY78+9heWryM6s5EjeX9qmwUL+AUvuUTBxYxz538mGcBYDTrZ+tt/a/k6ojP76lcV3diZZ/ILPvigogsWJ51mbNaJ7bxTxnus570PLV0nmWSsuXkw8PuNghvr7paj5K1bFVzQGG1tjA2r6mEAYz+of4T/YhZYt05mY7ZtU3BjL77ILzZpkoKLGefPL6Yzv8cL595v+Tr33adoekdwww38gtddp+iCxqAAxSK7XlrBxpTuZABjF1yQttT/iTZQU8PYrl2KbuzCC/lF775b0QUN0N7O3j7oy6wMSVsDdNEGTj1V0SCuv5+LCzD2/vsKLmiQv/2N/Ri382RWRYqtXGn+EqmULOf5939XdF9ilDx6tKuj5P75P2Zn4TUGMHb4pBSz0hQ/+UT2n8uWKboxMUq+4gpFFzRAKsW2n3IJOwifZ+ovrPwpfv1rWZukrKRIjJJ/az2INE1LC/tjzdcynbLVAbrIvCqbodqzR0Y8ypyzAV54gV2HX/DZx7qUpQRKTw9v4gBj//3fiu7r6af5BY8/XtEFjUEBig3eWZpk8TiPeK+91twgPZVi7OST+d/85psV3tRdd/GLfvGLCi9ahGuvZQxgC0f8iAG8pub3vzd3ic8+k+U8r76q8N7EXPJ99ym8aAESCcaOPpqlEGMXjH0vkzXfsMHcZUT2ZOhQnq5VQne3TFF98IGiixbhww8Zq6hgn+MgNnZ4FwP4n8RspyqyJ0pn6156aXBucpx7Adv//A9jAPtLfA4rKUlbCkATCcYOOcSBcYioQP72txVetAhf+QpjALut4dcMYKyqirHXTCak163jtd8AY3//u8J7O/poW0W7ptm/n7ExY1gC5Wx601Ye0B/OfaMZRPbERjnPgXz2mSyydzFgowDFJk88IQPt//N/jC9OuOMOlmmQLS0Kb2jt2sFJ7krGuroUXjgPy5ZlvEN68WuZjqSkhGtjhIEBxs46i3/fKaco7ivuuYdfeNYshRctwL//O/95Bx3E9n2yJ+PjGhuNzwXv2MHYQQc5VN977rn8wnfdpfjCOUilZGHAnDnsneXpTEJr5ky+YssIf/qTpphSVfaEMT7UrKqyVahqih07+HTjYKHEvffK3+v2243bvVg4qDR7whiPDADGGhrcmRJ99lkmRjQDK1ez88+Xruvll41doqeHD+oBxubOVXx/t9zCL/yNbyi+cB6uvpr/vMMOYzs29mQKwg87zPi01QcfyKSx8vre447jF37sMcUXzg8FKAp45BG5mnTWrOJL3P70J/n5hx5SfDPptBxePf+84otn0dnJ2JFHskyumvFg4x//UTreG2/kReD5SKUY+6d/klNdygf2H3/ML15WZnllkWH+/ndZmfbUU4wxPscuVjvX1RUP2vbvZ2z6dFk4bbsYNBtROHzaaYovnAOxrKKmJlPXsHQpX+EEcNMptpR87VqeRQIYu/56B+5RTIn+5386cHEN6TTL9MAnn5wZyfzsZ7KtzJ3LV/UVQhTVAw6snk8k5B/HYmG3YXbtkvMQt97KGON+QtRxl5byP0mhAV9/v1yoN3KkotoTLW+9xS8+fLiiIrAC/OUv8g/7xhuMMb5gRrjyUaN4SUAhPv+csSOO4J8/80wHbvlf/oVf3EZht1koQFHE734nB2NDh/IK+2xn097OB9giHfmtbzmUWRZDLGXVhDlIp+Ua0sZGPmc7SCrF2Lx5sr0dcQQPurPr37ZsYeyii+TnHJv6Fq1WeTSoYdcu6U0uuED3h929m6/8Fr/nnDmMvf22/m+fTvP3Jk7kn6mvV7DsPBdbt8pUrZPFkEuWyKKRhQt1X1q+XPZN5eU88Mi+lUSC/7nEaPCUUxxamCb2ZjnySGenecSSm/JyHnVp+OUvZVzb0MCnbTqy6sx375Y1Wpo+XT2XXsp/wA03OPQDGHcEM2eyzBxGb2/mS4mEDDoAxqZO5YmW7ITOhx/yLWxEttbstJAh+vsZGzGC/5Bi0YEdtmyRixu++13dl7ZtY2zKFKnHpZcy9t57+m9PpfhsZVMT/8yYMTxYUY7Ym6WqyvnB3iAUoCjko49knZkYtJ9wAp9mnTVLrmoEGPvOdwpnFmzx3nv8h1RU8CG8E/z4x9Lh/vWvOT/ywgty6w2AD87OPJOxL3+ZdzgiUKuosLW6sDh33il7OSfQOtwJE3IOg/v7eXAq9rwBeCd9wQV8YD1pknz/4IMd3h9KzKf92785c/2tW6XDveyynB3/rl364FQEsl/+MmPnnSf7BZGVdGzae/9+2TCXLnXmZ4ipDCCvoa9cyftq8bGKCm6uc+fyNiMCGIDPPNjatK8Qf/6zzBpoAgelXHMN/xlDhuRc4p1O8wGNSOaIQd/s2TzhJVY+Cp/yhz84c5uMMTnSuvhiZ67f2SlTrMcfn3POrrdXZpm1PuKiixj70pcYGz9evn/kkTx4c4R0Wlbu//KXDv0QPRSgKKa/n1eii3nR7MeRRzL26KMu3Mi0afwHKlm/nIXYjayAwxXs3cvrbRoacusxaxZjK1aov0Udra1yNK+65+/vZ+zyyws6XC0bNvDgNB4/UIuqKr7tguM1aE89JSMk1XNIO3fKjFUehytIp/nI95xzctvG6NF8Y1PHOmOBmJO87DL1137jDRkA/eAHBT/a18cTOtpgVfs47jge9DvKwIDcDc+JUcNPfiIzeEV+mc8/57U5YopP+ygt5YG92eJz06xfL3/g5s1qr93TI2vCRo0qOke1Zg13NdpBjnjU1fEVwEbruiwjCqeOOsqFhmmu/44xxpibW+uroKOjA/X19Whvb0edhbNQrMIYPwDw3XeB1lZg6FBg0iTgpJNsnJlhht/+lh/wUF/Pz5QYPlzNdX/5S3nozI035jiuNjepFD8sdcUKfgJrfT0wfTpwyCFqbqsoV1wBPPYYPx9o8WI11+zvB77+deD3v+fnmTz3HD/B2QA9PcCqVfx4i4oKfhT6rFmWjusxTyLBjXHbNuCuu4B//mc1192xgx/Cs3EjP2Bk2TLDR8ru2sUPSvv0U37OzsEHA6efzmV1nPffl2e/rF5t4wjtLF59lR/y1tcHnHceP3TLwC/EGG+yy5cD7e388OXjjpNHxDjO3XcDN9/M/wgbNvCzguzCGPCjHwH/+Z/8/ybsrr+f/4lWreL/r6sDZs4EGhvt35Yhzj2X/y2/+U3uQ1TQ3Q1ceCHw+uv8gNnFiw0fZd/Zyf3ohx/yP82oUdytVVWpubWCiJO39+/nWnzzm47+OFP9t+PhkgO4nUHxDakUr7IE+PIiuySTsrYF4NWvLp/LYIstW2Se/Omn7V9v5065QqWiwrXzfpTxyCNy6KWiFuXtt2VhyfjxfOOSICGyYNOn268uTKcZ+8UvZNbuS19ybrrECXp6GBs7lt/7v/yL/et1dekLS2wfOuYyK1bIrM9gAastNm6U0zq1tbwYN0iIKfOmpuJV3TahKZ4w8+abstDDztKwtWv5hLhwMPPnBys4EYgq9Pp66xO16TRjzzwjDzarq+MVakFjYEAuFzrlFOvrVfv6eHGN6IyPOoqxTz9Ve69usHWrXAJsZ2OinTsze3swgJ9q6OKxE8oQh2KVlBhf85uL5cvlfiKlpYzdb313VE8Rh2KNGcOXi1shnebb/tbXy2md5cuV3qYrdHfLgqkvfcny7r9GoAAl7IjdMktL+bIIM4HFZ5/xan7R+dTVBS9ToCWZlJ3y6NHM9BavK1bwJTii85k8mS9jDiqbN0tnOXOmueKXgQGeidJWdn7tay5MgjuIqM2xUona3s6PEhBBTlkZn68PYiAvEJsaVVaa37Lgk0/494sBUkMDX9kVVDo7pa1PnMhXRBglneaZF5FxBfj5bWZ3YPMTq1bJQrq5cw9cdqYIClDCTirFKy9Fw7jgAh6153OcXV2M/e//8s5GW8l58cUObDTgAbt2yTPqy8v5aLnQiL+lhRcLijWN4vtuv92BTUo84K9/5cW9AM8KPfBAfmeTTvONav7zP/nuUUKPhgZeGR7kzlhw993y9zrxRL6qJV+gkkjw9Pz3v6+v5DzxxAPXggaRRELu3QIw9vWvFz4yYv9+vqTm4ov1lZxXXOHcakI32bpVLpmpqeGZ5NbW/J/fto0vsRcLFgBeMH3XXY5mHVzjf/9XTps3N/PMsmIfQEWyUSCdBhYs4EVqqRR/b+xYYOpUXmkWiwF79wKbNvFqtIEB+b1f+ALwb/8GzJ7tzb07wb59wFVX8aJWweTJ/DF8OP/9d+7kBYIbN8rPlJbyotjbb+dFpmHh/feByy4DPvqI/z8eB6ZNAw47jFes9vby6tW1a4G2Nvl9Q4cC8+YBN9zAX4eFp54CvvtdoKuL/3/ECODEE3mbKS/nVYqbNwNr1vBqZ8Hhh3PbuPxybithIJkEfvhD4N575XuHHsqrdhsaeLe7axdvJ+vWcV8jOO884F//1XDxZyBoaeE+4I03+P9LSniB9ZFHAsOGcb127OArAj79VH5fPM59zg9/CIwb5829O8Ff/wp89av8dx4xgrcLhf0sFclGiQ8+4MVqYke5fI/x4/matRUrwjEqzkU6zUfHZ5xRWItYjC+XXbAgHBmkfPT18Z1f861xFY/KSr4hxSOPBHs6pxgtLXwPDO2GLLkeI0fyNvXKK64su/SMlSv5JjXaDVlyPQ47jE+PZW1GFypSKT69edJJhbUoLeX1XffdVzjTEnQ6Onh9n/K99SmDEk26u/n65w8+4KOfWIxHvRMm8LWMzc1e36G7tLYC77zDo/99+/goeeRIrse0aeqWaAcBxnjmaOVKPirq6eFrGceM4VmjE07go8GokEzyTMmaNcDnn/MMZHU1byNHHcVHziUlXt+le7S387ayYQOwezfPFNXX87Zy/PHcTqLE9u1cj08/5dqUl/Os9IQJPOtWW+v1HQYaM/03BSgEQRAEQbiCmf7b02HCL3/5SzQ3N6OyshJTp07F22+/7eXtEARBEAThEzwLUJ5++mnMmzcPt99+O1avXo3TTjsNc+bMwbZt27y6JYIgCIIgfIJnUzwnn3wyTjjhBDzwwAOZ94488khcfPHFWLBgQcHvpSkegiAIgggevp/iSSaTWLVqFWZnLXOdPXs2li1b5sUtEQRBEAThI9w4tusAdu/ejVQqhYaGBt37DQ0NaG1tPeDziUQCiUQi8/+Ojg7H75EgCIIgCO/wtEg2lnUEMGPsgPcAYMGCBaivr888xoVpUxyCIAiCIA7AkwBl5MiRKC0tPSBb0tbWdkBWBQBuvfVWtLe3Zx7bt29361YJgiAIgvAATwKUiooKTJ06FYsXL9a9v3jxYszIsYVyPB5HXV2d7kEQBEEQRHjxpAYFAG688UZ885vfxLRp0zB9+nQ8+OCD2LZtG66++mqvbokgCIIgCJ/gWYBy2WWXYc+ePfiP//gPtLS0YPLkyfjzn/+M8ePHe3VLBEEQBEH4BNrqniAIgiAIV/D9PigEQRAEQRCFoACFIAiCIAjf4VkNih3ErBRt2EYQBEEQwUH020aqSwIZoHR2dgIAbdhGEARBEAGks7MT9fX1BT8TyCLZdDqNnTt3ora2NufOs3bo6OjAuHHjsH37dirAdRDS2R1IZ3cgnd2DtHYHp3RmjKGzsxNNTU0oKSlcZRLIDEpJSQnGjh3r6M+gDeHcgXR2B9LZHUhn9yCt3cEJnYtlTgRUJEsQBEEQhO+gAIUgCIIgCN9BAUoW8XgcP/rRjxCPx72+lVBDOrsD6ewOpLN7kNbu4AedA1kkSxAEQRBEuKEMCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoGj45S9/iebmZlRWVmLq1Kl4++23vb6lwPPWW2/hggsuQFNTE2KxGJ5//nnd1xljmD9/PpqamlBVVYWZM2di/fr13txsQFmwYAFOPPFE1NbWYtSoUbj44ouxYcMG3WdIZzU88MADOOaYYzKbV02fPh0vvfRS5uuks3oWLFiAWCyGefPmZd4jndUwf/58xGIx3aOxsTHzda91pgBlkKeffhrz5s3D7bffjtWrV+O0007DnDlzsG3bNq9vLdB0d3fj2GOPxf3335/z63fddRfuuece3H///VixYgUaGxtxzjnnZM5bIoqzZMkSXHvttVi+fDkWL16MgYEBzJ49G93d3ZnPkM5qGDt2LO68806sXLkSK1euxFlnnYWLLroo47RJZ7WsWLECDz74II455hjd+6SzOo4++mi0tLRkHmvXrs18zXOdGcEYY+ykk05iV199te69I444gv3whz/06I7CBwD23HPPZf6fTqdZY2Mju/POOzPv9fX1sfr6evbf//3fHtxhOGhra2MA2JIlSxhjpLPTDBs2jP36178mnRXT2dnJJk6cyBYvXszOOOMMdsMNNzDGyJ5V8qMf/Ygde+yxOb/mB50pgwIgmUxi1apVmD17tu792bNnY9myZR7dVfjZsmULWltbdbrH43GcccYZpLsN2tvbAQDDhw8HQDo7RSqVwqJFi9Dd3Y3p06eTzoq59tpr8aUvfQlnn3227n3SWS0bN25EU1MTmpub8dWvfhWbN28G4A+dA3lYoGp2796NVCqFhoYG3fsNDQ1obW316K7Cj9A2l+6ffvqpF7cUeBhjuPHGG3Hqqadi8uTJAEhn1axduxbTp09HX18fhgwZgueeew5HHXVUxmmTzvZZtGgR3nvvPaxYseKAr5E9q+Pkk0/GY489hkmTJuHzzz/Hj3/8Y8yYMQPr16/3hc4UoGiIxWK6/zPGDniPUA/pro7rrrsO77//PpYuXXrA10hnNRx++OFYs2YN9u/fj2eeeQZXXHEFlixZkvk66WyP7du344YbbsCrr76KysrKvJ8jne0zZ86czOspU6Zg+vTpmDBhAh599FGccsopALzVmaZ4AIwcORKlpaUHZEva2toOiB4JdYhqcdJdDddffz1eeOEFvPHGGxg7dmzmfdJZLRUVFTjssMMwbdo0LFiwAMceeyx+/vOfk86KWLVqFdra2jB16lSUlZWhrKwMS5YswS9+8QuUlZVltCSd1VNTU4MpU6Zg48aNvrBnClDAHc7UqVOxePFi3fuLFy/GjBkzPLqr8NPc3IzGxkad7slkEkuWLCHdTcAYw3XXXYdnn30Wr7/+Opqbm3VfJ52dhTGGRCJBOiti1qxZWLt2LdasWZN5TJs2DV//+texZs0aHHrooaSzQyQSCXz44YcYPXq0P+zZlVLcALBo0SJWXl7OHnroIfbBBx+wefPmsZqaGrZ161avby3QdHZ2stWrV7PVq1czAOyee+5hq1evZp9++iljjLE777yT1dfXs2effZatXbuWfe1rX2OjR49mHR0dHt95cPj+97/P6uvr2ZtvvslaWloyj56ensxnSGc13Hrrreytt95iW7ZsYe+//z677bbbWElJCXv11VcZY6SzU2hX8TBGOqvipptuYm+++SbbvHkzW758OTv//PNZbW1tpt/zWmcKUDT813/9Fxs/fjyrqKhgJ5xwQmaZJmGdN954gwE44HHFFVcwxvhSth/96EessbGRxeNxdvrpp7O1a9d6e9MBI5e+ANjDDz+c+QzprIZvf/vbGR9x0EEHsVmzZmWCE8ZIZ6fIDlBIZzVcdtllbPTo0ay8vJw1NTWxuXPnsvXr12e+7rXOMcYYcydXQxAEQRAEYQyqQSEIgiAIwndQgEIQBEEQhO+gAIUgCIIgCN9BAQpBEARBEL6DAhSCIAiCIHwHBSgEQRAEQfgOClAIgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+4/8DeFXPzROS4iMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH4ElEQVR4nO2deZyU1ZX3f9Vb9UJ3s0k3DYgtghu4gQvEBUVRErcQRxOz6MQ3iXGJjDq+UWcmzEwixjcuCU6cMTGuUUziEjPGBaOihKCAEAEVQUBAum3W3ruqu+q+f9y+dZ+nqOVZ7rOf7+dTVFFd/fTTvz733HPPPffeGGOMgSAIgiAIwkeUeH0DBEEQBEEQ2VCAQhAEQRCE76AAhSAIgiAI30EBCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoBAEQRAE4TvKvL4BK6TTaezcuRO1tbWIxWJe3w5BEARBEAZgjKGzsxNNTU0oKSmcIwlkgLJz506MGzfO69sgCIIgCMIC27dvx9ixYwt+JpABSm1tLQD+C9bV1Xl8NwRBEARBGKGjowPjxo3L9OOFCGSAIqZ16urqKEAhCIIgiIBhpDyDimQJgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+gwIUgiAIgiB8BwUoBEEQBEH4DgpQCIIgCILwHRSgEARBEAThOyhAIQiCIAjCd1CAQhAEQRCE76AAxYesXg38938D6bTXd+IP/vhH4C9/8fou/MHAAPDrXwM7d3p9J/5g507g4YeB/n6v78QfrFwJvPyy13fhH557DvjgA6/vwh/09AC/+Q3Q0eH1nRgnkKcZh52zzgL27wcSCeCGG7y+G2/ZuRO4+GL5evRoT2/Hcx57DPjOd4ChQ4G9ewEDB4KGmh/8AHjmGeCdd3hQH2XSaeD004HeXuCNN4CZM72+I2957z1g7lz+ursbqK729n685uc/B267DXjgAWDFCq/vxhiUQfEZfX08OAGAX/zC01vxBatXy9cPPujdffgFMTrevx946y1Pb8UXPPMMf/6f/wG6ury9F6/Zto0HJwCwYIG39+IHli+Xr3/1K+/uwy88/jh/XrkSWL/e23sxCgUoPkNrOJs3Ay0t3t2LH3j/ffn6D3/w7j78wq5d8vWf/uTdffgB0RkLli3z5j78wrp18vVf/sKnA6PMhg3y9YsvencffkFbMvDSS97dhxkoQPEZa9bo///pp57chm/QBijbtnl3H36AMWDtWvn/7du9uxc/8NFH+v/v2OHNffgF7eAmlQJaW727Fz+gDdiibht9fcCmTfL/QdGDAhSfke10P/vMm/vwC9oCt44OoLPTu3vxml27gD175P+D4mScIjtNHfWALVuPqNuH1ndEXYuPP+ZBqyAoelCA4jO0KXwgOIbkFNl6RDlgyx4RR902SA89pIcklQI+/1z+v7MzWKtXVJNdKhAU26AAxWfs3cufhwzhz1HukBmTGQOhR1AalhNk28bOnfpRUdQQetTW8uco2wZwoB5Rzii1t3P/Acj2EmU9gmobFKD4DNEhT5nCn6McoPT0AMkkf33MMfw5yp2QcDJHHQWUlPAiyLY2b+/JS4Qexx7Ln6NsG4D0HdRW9B1yczN/TXpI22hpCcbeQRSg+IxsJxPlAEVoUV4OHH44fx1lPYSTGTVK7gcTlJGQE2Q73Sh3QADpoUVoMXw4MG4cf016AEccwf0pY8EooqYAxWfQqFAiApQRI4CxY/nrKOuhdbqkx4Ed8v790d0Lpb9f1liQ78jdViiYB0aOBMaM4a+DYB8UoPgIxqQhaad4xFxq1NA6GdGoopxBEQGb1ulGWQ9hH+PHy7n1qB4BIDZ3BICjj+bPZBt63xFV2wCC60spQPER7e2y6PGoo/hzX190R4XaDMqoUfr3oohwMiNG8JGQ9r0oog3Yoq6H+L3r64HGRv17UUTbIUfdNgC9HiNG6N/zMxSg+AhhMNXVwLBhQDzO/79vn3f35CXaDnn4cP17UUTrZEgP0kOLVothw/jrzs5gFEI6AdmGnqDqQQGKj9BmDGIx6WiCYEhOoB0hB6lROUVQnYwTJJMys0h66G1j6FD5ftQHN2QbnKDqQQGKjxBFbvX1/DlIhuQE7e38eehQfbAW1Zoc0dkMG0a2oa25GDqU9BC/97BhQGmpDFJID7INILh6UIDiI8SIUGwsJAwpqqMgrR5Ci4GB6NbkiG3+a2spuya0GDKE7wkTdT1EmxDFwkHqhJxA2EddHdkGoNcjSLZBAYqP6O7mzzU1/DnqDUvoMWQIUFUla3KirkdNTbCcjBNkt5Wo65FvcBNVPXK1le5uIJHw7p68Ip2WJ38HzXdQgOIjyMnoEXrU1PCanKhnlChAkVCAoof00KPVo76e+w8gmr6jp0e+DprvoADFR1AGRQ85XQlj+oySNliLYk0OBfN6qK3o0dpH1KcAhRaxGM9EB8k2KEDxEVSDooc6IUlvrwxEtKOgVErOL0cJ6pD1UFvRQ/YhEVpUV/NgLUhaUIDiI8jJ6KGMkkRoAXBHU1UFVFby/0dRD+30H0BthTpkPfn0iOJgL58Wvb2yNsWvUIDiI6hD1kMBm0RoUVXFl5EC0dZDO90FRFsLgAKUbMh3SLK1qKuTPsTvARsFKD6Cpnj0kNOVZGsBkB5A7hFyOu3NPXkJdcgSbb0W+Y4DtQjSJqAUoPiIfI0qqufPZDtd0aiiGLBlawEEx8k4QfYUj9AinZYbHkYJyr5K+vr09VpAtPXINbgJii+lAMVHZHdCYjdIsaNqlMg1ChI77FIHxKmr489RLpIVbSUeB8rL+WvSQ7aVKGqh3cixupo/R7mt5BrcBEUPClB8RPaoUOwK2dkZvaWkiYRM1WvnToFoByi5nEyU9dCmraOsR7bviLIWwja09VqkR+7Bjd/1oADFR2R3QsKItNmEqKAdBZHTPbADAkgPgPQQZHdC2sFN1Ahyh+wEQdaDAhQfkZ2KE+vWAf8bkmpEo6qsPHAUFGWnSxkUDumhJ9/gprMzekXDFLzqCXJboQDFR1DaWpLLyYhRYdS0AII9CnICqsmRMJZ/igeI3uGauTrkKGeUghywUYDiI7Q7/gmi6nSpQ9ZTyMlEzTYACmC1aOu1hB7aouGo6UG+Q0+hgM3vepgKUB544AEcc8wxqKurQ11dHaZPn46XXnop83XGGObPn4+mpiZUVVVh5syZWL9+ve4aiUQC119/PUaOHImamhpceOGF2LFjh5rfJuD09fHnqir5XlAMSTW5tNA6magVDYsdH7XBa1RtA5AHoOUK5qOmh/YwOKFHlLOvhQZ6UdMCKNxW/D64MRWgjB07FnfeeSdWrlyJlStX4qyzzsJFF12UCULuuusu3HPPPbj//vuxYsUKNDY24pxzzkGnRoV58+bhueeew6JFi7B06VJ0dXXh/PPPRyqVUvubBYx0Wh4FLrYwB6LbsESHnCtASaX8v0WzagrpETXbAIoHsFFCaFFaKrMmQHQDWLINPUH2HaYClAsuuABf/OIXMWnSJEyaNAk/+clPMGTIECxfvhyMMdx33324/fbbMXfuXEyePBmPPvooenp68OSTTwIA2tvb8dBDD+Huu+/G2WefjeOPPx5PPPEE1q5di9dee82RXzAoiOAECKYhqUY4GW2wVlMjj00nPaJrGwDpoSVXBwQEZ5SsmkK2EcWi4SC3Fcs1KKlUCosWLUJ3dzemT5+OLVu2oLW1FbNnz858Jh6P44wzzsCyZcsAAKtWrUJ/f7/uM01NTZg8eXLmM7lIJBLo6OjQPcKGMCIgmIakmlxOV5u2jqrTpeCVE+RRoWpydUBAdPUoZBtR3LIhUgHK2rVrMWTIEMTjcVx99dV47rnncNRRR6G1tRUA0NDQoPt8Q0ND5mutra2oqKjAMLHPbo7P5GLBggWor6/PPMaNG2f2tn2PaFT50rRR7ZCznW5U09bCPoLoZJwgyE5XNRSg6MmlR2UlUFbGX0fNlwY5mDcdoBx++OFYs2YNli9fju9///u44oor8MEHH2S+HhM5+EEYYwe8l02xz9x6661ob2/PPLZv3272tn0PORk9uTpkILp6FEtbR61ouJgeUaLYFA+1FZ59jergJpceQdHCdIBSUVGBww47DNOmTcOCBQtw7LHH4uc//zkaGxsB4IBMSFtbWyar0tjYiGQyiX1ZJxRpP5OLeDyeWTkkHmGDnIyeXFMaQHT1yGUfwskMDOinCMMOY4X1iJpt0OBGD/lSPUEO5m3vg8IYQyKRQHNzMxobG7F48eLM15LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZ6IKORk9pIeeXHpo9zWIkh79/TJjRFM8NB2aDfkOPcWmePycfS0z8+HbbrsNc+bMwbhx49DZ2YlFixbhzTffxMsvv4xYLIZ58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpOPvssx35BYMCVeLroVGQnlxOt6SEd0KdnVyPAknIUEEF5XrId+ih6WE9hTIoomhYO9jxE6YClM8//xzf/OY30dLSgvr6ehxzzDF4+eWXcc455wAAbrnlFvT29uKaa67Bvn37cPLJJ+PVV19FrQjlAdx7770oKyvDpZdeit7eXsyaNQuPPPIISsWBKxGFRkF6io2Coup0c3VCIkCJCto9cOJx+Zo6IP37UdeDBjecXPYhTnpOpbgeoQhQHnrooYJfj8VimD9/PubPn5/3M5WVlVi4cCEWLlxo5keHHsoY6MmnBwVs+vfr6oDPPouWHlottLX12WnrIrX5oYECFD2kh558WzbU1gL793M9mpo8ubWi0Fk8PoEalR7SQw9llCTFtBgY0G98GHZocKOn2BRPlNoKEGxfSgGKT6BGpYecrh7SQ5JPi6gWDdP0sJ58UzxR1COV4kXlAAUohA2oUekJctTvBNQJSfJpUVIigxTSg9oK6aEvKA9iETUFKD6hWKPq7ZWRcBSgjIEeKvyT5GsrQDT1oLaih1bxSLQBiragHAiGHhSg+IRiRaGAvyNd1VDNhSToaVrV5GsrQDT1oLaih4J5idCirExu9S8Igh4UoPiEfE6mokK+52dDUg1NaUjy7fsBBMPJqIYyKHqKBSjJZDSLhqmt5A/WgGD4UgpQfEKhUWEUDwyktLVEu+8HOV1jAQq1FSoapraSP1gDgqEHBSg+gUaFesjJSIQW5eV8cyUt1CHribJ9ZLeV0lKgpoa/jqIeQSwKVU3Q+xUKUHwCOV09xTIoPT18v4soUMjJBCFNqxrSQ0/QOyHV5MsaRNk2CvUrfg7YKEDxCeRk9BSrQQGAri737sdLKHjVY8TpRkkPsg8JY5R91UJTPIQSaF5dDxUNSyh41RN0p6sa8h2SZFK+zpd9TSSiUzQcdN9BAYpPEA2mouLAr0U5NZm9dh+Inh5BdzKqKWQbUdaD7CP/QZJANLdsCPp0KAUoPkEEKOR0OWIkRHqQbWQj9KCMAYfsQ6LNjGTrEcWi4aDbBgUoPiHohqSSgQEgneavSY/C2TVt0XAq5d49eYkRPdrb3bsfrynkO8QoOSp6CC3Ky3OfZh1V3xFUP0oBik+gjIGk0CgICEZqUiVGOiAgOlmDQm0linsGGbGPqOhRyDaA6OkRdNugAMUnBN2QVGI0QInKKp5CTjce56NFIHr2QW2FY6R+LSptpZBtANGzDyNtpa/Pv1s2UIDiEwoZktgRMmqNKhY7cGMygJxMNlG1D2orHMooSait6DESvAL+1YMCFJ9Ao0KJ1uHmmkeOmh40KtRjpK1EJWMAkO/QQm1FTyE9Kipk4OJXPShA8QnkdCXkZPQUGgUBZB9atLbBmHv35CUUoEjE4IbaCqdYTY7fM0oUoPgEcjISClD0kB56jKSt02n9nhhhhTGa4tFCbUWPUT38GrBRgOITjDhdalQcv0f9qqGVCXoK6SH2uQCioYd259RcviNqbYUCFD1Gs69+1YMCFJ9AGRQJORk9pIeeQnqUlESrU6YVb3qoregJuh4UoPgEIysTenv9uxxMJVRzoYcySnpID4k2g0KDm+DXXKiGAhTCNqmU3AW02GZcUeiUaUpDT9DTtKoJ+ry6SoQWZWU8e5RNVG2D2gon6L6UAhQfUGwUFI9zBwREy+kGtVGphjpkPdQJSYzahp8341IJtRU9Qc82UoDiA4rNI8di5HS1+L1RqYYCNj1BHxWqxKhtAKQHEC3bAII/XU4Big/QBihi2/JsotSwyMnooQ5ZD9mHpFgHVFERraMQyDb0BF0PClB8gNaIcu2cCvjfkFRiplFFYTMumtLQE3Snq5JiwSvg/1GySiiY1xP0tkIBig8oZkSA/w1JJUY75HSaz62HHZry0kN6SMh36CnmO6JkG0DwAzYKUHxAsUYFRKthFWtUUduMK+ijIJUwRoWQWihA0WPGNij76n/boADFB5CT0VNMj6huxkUdMl+JIjqWoDpdlZDv0GO0rUTlKISgZxspQPEBZpxMFDohI3r4vWGphDIokmJL8oFo6WEk+xolPYxkX0WdXxT0CPrghgIUH2Cm0I0aFSdKehg9oTUKWhRbkg9ESw8jvoOCeUksRnpo8XtboQDFB1CHrIf00EObcUmEFiUlcvPCbMg29Ph9lKwS8h16gj64oQDFB1Cj0mMmbU1OV44IgfDbB03/6SHfoYcWHOihDAphG3IyemjKS08x+4jHo7MZFwWvesh36CE99BgNUBIJoL/fnXsyAwUoPoBGhXrIyeihNL6Eglc9VCSrhzaukzBm/HRnwJ/2QQGKD6AOSA8FbHqKzSMD0emEKHjVQwGbHrIPiZEVbxUV0q/4UQ8KUHwAjYL0kJPRQ3pIzAbzYd+Mi4J5PdRWJNoAJahTohSg+AAaBemhgE0POV2JGS3SaaCnx/l78hLKvuoh3yExsiQf8LceFKD4AApQ9JAeklSKPwBamQAY64Cqq+XrqOhBbYVDvkMibKO0lD/y4Wc9TAUoCxYswIknnoja2lqMGjUKF198MTZs2KD7zJVXXolYLKZ7nHLKKbrPJBIJXH/99Rg5ciRqampw4YUXYseOHfZ/m4BCNQZ6zOgR9lGhkXlkIDr2YcQ2onQUAvkOPbTMWGLENgB/24epAGXJkiW49tprsXz5cixevBgDAwOYPXs2uru7dZ8777zz0NLSknn8+c9/1n193rx5eO6557Bo0SIsXboUXV1dOP/885ESQ8WIYcSQRKOKwmZc5HQlYZhHVomRETJAemiJSlsBaBWPFqNtxc8BW569GHPz8ssv6/7/8MMPY9SoUVi1ahVOP/30zPvxeByNjY05r9He3o6HHnoIjz/+OM4++2wAwBNPPIFx48bhtddew7nnnmv2dwg8ZjpkgBvSsGHO3pOXmAnY/NioVGI2QImKHkZGhS0tpAcQHdsASA8tkcugZNPe3g4AGD58uO79N998E6NGjcKkSZPwne98B21tbZmvrVq1Cv39/Zg9e3bmvaamJkyePBnLli3L+XMSiQQ6Ojp0jzBhxJC0m3FFJfInJyO1KCvjUxf5iJoeQXa6KjETzPt1My6VkO+QmG0rfuxXLAcojDHceOONOPXUUzF58uTM+3PmzMFvf/tbvP7667j77ruxYsUKnHXWWUgMTg62traioqICw7JSAA0NDWhtbc35sxYsWID6+vrMY9y4cVZv25eQ09VDTkZCtqGH9NBjJfsaZsh3SMLQVkxN8Wi57rrr8P7772Pp0qW69y+77LLM68mTJ2PatGkYP348XnzxRcydOzfv9RhjiIlzsLO49dZbceONN2b+39HREaogxYwh7d3rT0NSCc2rS4zaRtSmvEgPjhE9xGZcySQfJWclvEMFBSiSMAQoljIo119/PV544QW88cYbGDt2bMHPjh49GuPHj8fGjRsBAI2NjUgmk9i3b5/uc21tbWhoaMh5jXg8jrq6Ot0jTITBkFRidhVPmDfjItvQQ3roIT0k2q3dqX4tHLZhKkBhjOG6667Ds88+i9dffx3Nzc1Fv2fPnj3Yvn07Ro8eDQCYOnUqysvLsXjx4sxnWlpasG7dOsyYMcPk7YeDMBiSSswEKOk00Nvr/D15RRjmkVVCq3j0kO+QaFc30oq3cGQbTU3xXHvttXjyySfxxz/+EbW1tZmakfr6elRVVaGrqwvz58/HV77yFYwePRpbt27FbbfdhpEjR+LLX/5y5rNXXXUVbrrpJowYMQLDhw/HzTffjClTpmRW9USNMBiSSozokb0Zl/b/YYI6ID2khx7SQ2JlST5jQJ7KgsATBtswFaA88MADAICZM2fq3n/44Ydx5ZVXorS0FGvXrsVjjz2G/fv3Y/To0TjzzDPx9NNPo1ZTqXXvvfeirKwMl156KXp7ezFr1iw88sgjKC203V2IoVGyHjObcXV18YaVZ3Yw8ITByaiE9NBDgxuJ2QBFHIVQU+PsfXlFGPoVUwEKKzLZX1VVhVdeeaXodSorK7Fw4UIsXLjQzI8PLeR0JUbnkQGuhwhQwgrZhh7SQw/pIdEGKGUFerbqaj7ASae5HhSg8Gc/2gadxeMDwmBIqkilZNEr6UEj5GxIDz1hGCWrQqtFoWmbWCwa9hGGfoUCFB8QBkNShdE0LRAtPYxqEfbNuKit6CE9JEa1AKIRoBg5lwjwt21QgOIDyMlIrAQoURkVFkK7GRfpEQ3bAMh3aDEToETBPsKQbaQAxQeEwZBUYXQeGYiWHsVsQ2zGBZAeQDQ6ZID00GJ0CToQLT2M2kYyqfe/foACFB8QhlScKozOIwPR06MYpIckCloANLjRQm1FTxiyrxSg+ABKW0vIyeghPfRQgKKH9JBQW9FjNKNUXi4/4zc9KEDxAeRkJORk9FDhnx6zGQM6CoFDgxs95Dv0+FUPClB8AAUokjA0KpWQHnrMthXGgO5uZ+/JK9Jpub07+Q4K5rMJg++gAMUHUIAiMVqPA9CoMBvSQ1JTI2uYwqqHdjk5+Q5qK9lQgEIogQIUCY2C9ITByajEqB5R2IyL9gzSQ21FTxh8KQUoPsDsvHqYN+MiJ6OH9NBDeki0AUp5eeHP+rUDUgnZhp4wZJQoQPEYK/PIQHgbFjkZPaSHHtJDIqZDS0v5oxBh1wIg28gmDHpQgOIxZuaRtZtx+S3SVUUYGpVKSA89YUhbq8KKbfhxMy5VUFvREwY9KEDxGDPzyIB/DUkVYWhUKqEOWQ/Zh8SKFgANbgBqK9n4ta1QgOIxFKDoCUOjUkkY5pFVQnpIzGjh5824VEErAPWEwZdSgOIxwoiMzCMD/jUkVVgZBYV5M64wOBmVkB4SM1oApIeWsGsBhCOjRAGKx5h1Mn41JFVYOfCLMaCnx7l78hI6AE0PdUIS8h16yDb0hCHbSAGKx9AoSI8ZPbSbcZEe4bcNgPTQQr5Dj9UOmbKv/rUNClA8xqqT8VukqwozekRhMy4r8+ph1QIIR9paFeQ79FjpkMN8FAIFKIRtaBSkh/TQQx2yJJXi+wYBwXa6qqC2oseMHlVVQMlg70d6+Nc2KEDxGHIyekgPPWGYR1aF1RVvYdeD2gqHsq96KEAhbENORo/Vwj/qhKRthPUoBFqSr4d8hx6a8tIThuwrBSgeQ05GD+mhx+pmXGHUQ9TjAMXPngHINrIhPfSQHhK/akEBisfQUkE95GT00GZcEqFFeblcvVUIsg095Dv0kH1IhBb9/f46CoECFI+hRqWH9NBDekhICz1m9sgBaEojm6jYR5CzrxSgeAzNm+ohJ6OHRskS0kIPtRU9ZB96zOhRVgZUVvLXftKDAhSPISejh/TQQwGsxKoW3d1yeXKYoLaih/SQMCYL5YOsBwUoHkONSg+NgvSQfUisahHWoxDINvRQMC/RruILsi+lAMVjyMnoISejh+xDYlaL6upwb8ZFtqGH9JCYXZIP+FMPClA8hjIGesjJ6CE9JGa1CPtmXOQ79FBbkdgJUPw02KMAxWOsNqpk0l/LwVRh5uwZINxOJizzyKow21YA0kOLHzsglVCAIhFaxGJAaamx7/GjHhSgeIzVRgWE09GQk5GEZR5ZFVYCFNJDEua2AlBGSYt2CbqRPYMAf9oHBSgeY7ZRRWUzLnK64UnTqsJOBoX0CH/2lXyHJCzZRgpQPCYshqQKGgVJwlLopgpqK3rsZF9JDwpes/GjL6UAxWPM1lwA5HS1RMHJBH0eWRUUoOgxq4dfN+NSBWVQJGFpKxSgeExYDEkVdgIUxpy5J6/QahHkeWRVUFvRE5ZRsiooQJGEZTqUAhSPISejx85mXN3dztyTV1CHrMfs2TNANPQIeiekCgpQJGHxHRSgeExYDEkVtBmXhIJXPaSHHvIdeuxkX8N2FEJYbIMCFI+hUZAes6PkMG/GRbahh/TQE5ZOSAWpFH8A5gvsAcq+Av60DQpQPCYshqQKGiVLyDb0kB56SA+JlRVvVVUy+xq2ADYsftRUgLJgwQKceOKJqK2txahRo3DxxRdjw4YNus8wxjB//nw0NTWhqqoKM2fOxPr163WfSSQSuP766zFy5EjU1NTgwgsvxI4dO+z/NgGEnIweGiVLqOZCD7UVPaSHxEqAEouFX4+g24apAGXJkiW49tprsXz5cixevBgDAwOYPXs2ujX5sbvuugv33HMP7r//fqxYsQKNjY0455xz0Kn5refNm4fnnnsOixYtwtKlS9HV1YXzzz8fKZGjixBhMSRVWNGjro4/d3Sovx8vsWMbyaRcwh4WyDb02LGPsOmhDVDKy41/X1jtIyxtpczMh19++WXd/x9++GGMGjUKq1atwumnnw7GGO677z7cfvvtmDt3LgDg0UcfRUNDA5588kl873vfQ3t7Ox566CE8/vjjOPvsswEATzzxBMaNG4fXXnsN5557rqJfLRiExZBUYGUeGZB6tLervycvsWMbANdj1Ci19+QldvQIm20A1vSor+fPYfMdQovSUuN7BgFcj+3bw2cfdm2DMeNbGziJrRqU9sG/6vDhwwEAW7ZsQWtrK2bPnp35TDwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPcICOV2JlbNnANmwwqaHFdsoLZVzySFqJgDsOd2w2QZAemixogUQXl9qxzbSaf8UDVsOUBhjuPHGG3Hqqadi8uTJAIDW1lYAQENDg+6zDQ0Nma+1traioqICw4YNy/uZbBYsWID6+vrMY9y4cVZv23eQk5FYmUcGwj8qNOt0w24fZBsc8h0SK/VaQHj1sLJDeXW1zD75RQ/LAcp1112H999/H0899dQBX4tl5YYYYwe8l02hz9x6661ob2/PPLZv3271tn2HlYYV1kZldR457HpQgMKx2yGHeadho5Bt6AlrAGtFj1jMfxklSwHK9ddfjxdeeAFvvPEGxo4dm3m/sbERAA7IhLS1tWWyKo2NjUgmk9i3b1/ez2QTj8dRV1ene4QFcjISoUVZmVz+Z4Sw60Fpa46dtpJKAT096u/JS2h6WELBvJ6w6GEqQGGM4brrrsOzzz6L119/Hc3NzbqvNzc3o7GxEYsXL868l0wmsWTJEsyYMQMAMHXqVJSXl+s+09LSgnXr1mU+EyUobS2hDllPWJyMKqzoUVMjg13Sg2wjG9JDj9/6FlOreK699lo8+eST+OMf/4ja2tpMpqS+vh5VVVWIxWKYN28e7rjjDkycOBETJ07EHXfcgerqalx++eWZz1511VW46aabMGLECAwfPhw333wzpkyZklnVEyVUpK39UG2tAnIyesLiZFRhJ229fz+3j6YmR27NE2hwI6HBjZ6w+FJTAcoDDzwAAJg5c6bu/YcffhhXXnklAOCWW25Bb28vrrnmGuzbtw8nn3wyXn31VdSKBfgA7r33XpSVleHSSy9Fb28vZs2ahUceeQSlZtaHhQQ7Tqa/H+jr4zsihgHqkPWExcmowo4e+/eHyz4YowyKFmoresKih6kAhRmoMovFYpg/fz7mz5+f9zOVlZVYuHAhFi5caObHhxKrWxLHYtxJtbdTgOK3RqUK0kMP6SFJpWTRr5UApbOTLyc1U+vlZ8g29IRFj5CYZ3CxYkglJXJHSL8YkgrC0qhUQXroIT0kdpfkMxaunagp+6onLFNeFKB4jFivbmZZLRBOp0ta6AmLk1EFBSgS7TEGZvSIx2X7CpMeZBt6wqIHBSgeop1Hpg2G7GvR0cHT1mGBAjY9FLBJtBmUMhMT9bFYOLMGZBt6wpJRogDFQ7Rbu1OAIjtks1oIJ8NYuE40VhGwhQkru2MC4Wwr2g7I7Cq+MOpBwbweyqAQtrE6jwyEsxOy2qiqquQoMkx6WA3Y/OZkVGFXD7INThjtw24w39OjHzAGnbD4DgpQPEQ7jxx0Q1KB1UalTVuHSY+wjIJUQXpIrGoBhFMPu9lXgIqGAf/ZBgUoHmL1iHDAf4akAhoV6gnLKEgVpIeE2ooeqxmU8nJ+SB4QLj3sBmx+0YICFA+xOqcO+M+QVECjQj12O+TubmBgQO09eUlYRoUqsBOghNF3kC/VE5bpUApQPIRGQXpIDz12VyYA4Upbh2VUqAIVwbxfOiEVkO/QE5ZgngIUD6GMgR47eoSxE7LqdCsqgMpK/josejAWnlGhCqhD1kO+VI/dtpJM8mNUvIYCFA8hJ6NHhR7UCXHCZh/aqaqgjwpVQLahh3yHHqt61NbKZet+sA8KUDyEon495HT1kH1IaMWbHrINPeQ79Fi1D78do0IBiodQ1K+HnK4ecroSFQFKIqG/TpAh29BD08N6VBRR+6FvoQDFQ8jJ6CE99FhdOgmETw+hRUmJ+SX5YkQIhE8POx2yHzogVZDv0BMWPShA8RCK+vVQBkWPiqWTYemE7Djc0lJ/pa1VEJYOSBWkh56w+FIKUDxERaPq69NvmR9kwpKWVAU5XYmdbBIQPvsg29ATlg5ZFWGxDwpQPERFBgXwhyGpICyNShXkdCV2sklA+PRQZRuMqbsnL6F6Pglj4fEdFKB4iJ1GVVYG1NTw134wJBWEpVGpggI2iR0tANJDi9AileKH5IUBqteSaA89DLoeFKB4iN20tZ8MSQXUIeshPSR2glcgfHrYsY2aGl5sDIRPD6rns7fiDfDXdCgFKB5CaWs9lLbWQ9uZSyiDoseObcRi/uqEVEDBvERbkxj0bDQFKB6iyumSk5FaDAwAvb3q7skr0mm5eyodCEdtJRsK2PTQFI9E2EZpqfkl+YC/9KAAxUMoba3HjtMdMkRu0RyGTshumjZstmG3rVDApids9mEnGy206OzkA4OgEybboADFQ+waUticrqq0dRj0CFOaVgVhcroqoMGNHhXZV8aAri519+QVYbINClA8JEyGpALqhCTaDAoFKGQb2ZAeeuxM8cTjQHk5fx0GPcI0HUoBioeQk9FDAZtEaFFeLqeuzKB1MmFIW5Nt6FGlhx86IRXYmeKJxcJlH2HKzFOA4iEUoOghPSSqtGAM6O5Wc09eQrahJ0ydkArIPiRhCuYpQPEKxkJlSLZgDGCMnIwgnbatRWUl38wPCIcelDHQoMA+wtRWtL40DNMatkillNlGT49+0zcvoADFCx59FBgyBIkNWwFE3MkwBnzrW8DIkUj2pQBEPGDbtQuYNAnJr/8jAOtaxGLA0KH89f79Su7MG/7yF6C2Fon/XQzAflsJtBYAMH8+UFWFZNs+ANbtIxS20d8PzJyJ1CETkOKuw7bvCLQemzYBTU1Izv8JAPtaAN770jJvf3wE2bQJuPJKAEBy9ToAh0S7Q378ceCJJwAAiXg/gFLLnVAonO6NNwKffIIERgCw3iEDXI/duwOsR28vcPbZAIDEa28BOCfatrF6NfDv/w4ASHyyA8CwaOvxi18Ab7+NJCozb1nVY9gw/rxvn4L78oqrrgLa2pBoexeAdS3Kyvi2DV1d3D5GjlR3i2ahDIrb/OEPmZeJHh72R7pRPfxw5qXdNG3g9ejpAZ56CgCQABfBToASeD1eey3zMgkexVsN5oUWvb36FVKB4je/ybxMtPcBiHBbAYAHHwQg2wpg3z4Cq8ennwJvvQVAje/wSwBLAYrbvPtu5qVwupF1MqkUsHIlAIABSDA1nVBg9VizBiJXbbdDBkKgx6BtAPadbl2dXA0VBj2SjK+LjWxbaW8HPv4YgJoAxS8dsmVWrMi8DJPvoADFbUSAMn16pmGpcDKBPH9mwwaeR6yuxsCUE8AGzTGyAZtwMiefLDvkCutrhAOvh+iQtXpYtI2SEtkJBVKP/n4ewAJK9Ah8h/zee/z5kEOQHNEEAKgoT1takg+EqK2cdBJlUAiL7NwJfPYZ95Zz59o2JNGoBgYCupRUdMgnnIDk+ImZtyM7KhRO5otfRKKCrwONw/p8RKA7ZMakfVxyiZJRoV+criXWrwf6+njh2axZyqa8AmkbgGwr06YhMeZQAEBFacry5UKjxyWXyH6ldMDy5fyiBwUobrJ2LX8+/HDgqKNsO5maGrmU1GtDssT77/PnqVMzTgaI8KhQjJCnTkVy5OCoMGX95EPhZAKpR0sLX9FUWgpcdJF0uuURzSgJ2zjhBODQQ5UNbrq6vF9KaonVq/nzCScg0dQMIBwdsmWEfcyahWQlXz1R0W99336/DG4oQHGTTz7hz5MmAePH23YysVjAO6FNm/jzpElINh0CAChBOhN0mSXQTiadlvZx+OFIDKat4wPWU2OB1kPYxvjxvEOOVQEA4gnrS9ZCocfhhwPNzbZ9h3YpaaB9xxFHINl4MAB72cZA28a+fcCePfz1pElIDG8EAMSTnZYv6Zd+hQIUNxGNasIEYPx4mUFJWo90A92wRId82GFINHAnUxFLFviGwgRai5YWvsSktJTbxqCTqUhE3DYmTABKS5GsHgoAqOjYY/mSodHjkEOk7yi3VnxWVgbU1vLXQdcjcdBYAEBFOqLToUKLhga+v1b9KABAvNd6MO8XPShAcRMRoBx2GDekksFR4d4Wy5cMrNPVZgwmTEBi1DgAakZBiQTv6wOF0GL8eKC8HImhg04mYX1ry8DaBqDvkAEkqviQP96xy/IlAz0FqNVj3DiZQbGhh19GyabZtw/Yu5e/PvRQJEaOAQDEUz2WLxlYLYAD2kqyjm9cUtFtveH7RQ8KUNxEG6AASJRUA7AXoPgl0jVNSwsv+isr4xmDg7iTqWAJyxtV1NbyBAQQQD2yO+Qh3MnE+yI6pZHtdCv4cL+iY7flS4ZFD1ZWjsTg5mTxfa2WLxlYPbIyBkkRzKfsT4e2t2dW+gcHTSYaABJV/JexMx3ql36FAhS3SKeBzZv560FDSsYG07SdEUxba2sMysqQiGtWreyxpod2e/fA6iFso2IIAHvTf4HVAjjQ6ZYOZht791u+ZGDbijZjMGECBjS1oJEM2A7Irg0FMFhQbjG6EFoAAdyZ+4BgvgYAUNFnvwbFa9ugAMUtWlp4ZqC0FBjHpzPExmTxzgg6GRGsiUY1MLgHio0ABQhwp5ylR6KcByjxpP0pHq/TtJbI7oREkWyP/bR1YG2jsRGoqdElGO34jsC2lewOOc6za3EkLP8y5eV8VSQQQD2yfUcp/0XsZF/9Mh1KZ/G4xY4d/LmpKbM2OLMbZBQzKEIPEawNOt0KJPkBMhYJbKf86af8efx4AECiTONkGIOVHaiEFj09/BgBO3uIuEpXl8wYDOqRyTZ27bV82cB2yNm2oQ1Q2tssXzawbWXbNv58yCEAgESK+9M4Etx3WDw8ZuhQvp9UYO1D6JHJNlr/RQ47DPjxj4ExY+zenD1MZ1DeeustXHDBBWhqakIsFsPzzz+v+/qVV16JWCyme5xyyim6zyQSCVx//fUYOXIkampqcOGFF2KH6LDCymef8efBvzhjQFI0LAVOJnCNSvy9x/IK/MwR4TYzKIHXYzBgSw46mYp0H9BpLVVbXx/Q7d2FFnV1/AEgwQaLQrvs20bgOuRs2xhc6FaCFEr32i+SDZRtAMD27fw51+Amar4jnT7AlyYHF19UdO+3fNmmJuD22zPn2nqG6QClu7sbxx57LO6///68nznvvPPQ0tKSefz5z3/WfX3evHl47rnnsGjRIixduhRdXV04//zzkQpcdZIJRIAijEizmjaSo6CsgE3ooSqDEignk0rxXYYB6XTTPLuWGRVaoKRE7ncRKD2yOiBAo4eCVSuB0gLI2yHbsQ0gPHpkDhlVpEegfGlbG99pLxbjUQU051b1d/L0aYAxPcUzZ84czJkzp+Bn4vE4Ghsbc36tvb0dDz30EB5//HGcPXiU+hNPPIFx48bhtddew7nnnmv2loKBiHKzOmQAqNgbwUr8rIAt0hmUlhYepJSV8ZUJyNEJHXpogQvkZ+hQ7nADpUeOACWZ5q6qop0ClEgH80De6WHeViK2b5DQYvRoXkgDIJHWTHnt2QNUV3t1d7ZxpEj2zTffxKhRozBp0iR85zvfQVubzBCsWrUK/f39mD17dua9pqYmTJ48GcuWLct5vUQigY6ODt0jcOTpkAGgYt/nli8byEYF5A3Y7I6CAllnIDqgMWMy66R1nVDUAjahx2BbAYDEANcl3rUbumUsJhBadHZavoQ3ZOmhKoMSyLaiLRLJ0kNVwLbXepmT++QK5pN8XteuHn5AeYAyZ84c/Pa3v8Xrr7+Ou+++GytWrMBZZ52FxKAVtba2oqKiAsO067oANDQ0oLU1dyZhwYIFqK+vzzzGaf4YgSFPh1yKAZTusT/FE6hG1dcnG86gHqqczPDh/DlQeuSa0lDUCQVSj6wRMgAk+rnTjSNh+ZcRHTIQsE65YMbAum2MGMGfA2Uboq3U1mbmL1UNbkRbCZRt5ArmFdmHH1AeoFx22WX40pe+hMmTJ+OCCy7ASy+9hI8//hgvvvhiwe9jjCGWZ6XCrbfeivb29sxju/ijBIliUxrM2pbV2g7I4iXcR9RbVFZmfgFVUzyBdroaJ6MqjR9oPRSPCsvKZE1OYPRIpaTvUDzFE8jg1cFgXrQVG+7HfQroQRkUA4wePRrjx4/Hxo0bAQCNjY1IJpPYlxWmtrW1oWFw/j2beDyOuro63SNQMJY3g1KBJHdCFncHEo2qv59nPwOBtkB2MChV7XQD5WRyZQwUZ1ACpQd1QpLWVlmfNFjXd4AWFkcmgdMCKNhWKGDjqMoo+QHHA5Q9e/Zg+/btGD16NABg6tSpKC8vx+LFizOfaWlpwbp16zBjxgynb8cb9u3j0xqArLTOOJlBa7LYKqqr5YmmgXE0WSt4gCyna8NDBDJjUEwPG8sKAqmHyLAN6pFOy5qRCiRt6RG4Tkho0diYqU/S2UYyKX2LSYQW3d2WT5dwnxxtRdch29gGNpABW1ZbAbLsI3Db4uoxvYqnq6sLm8S23AC2bNmCNWvWYPjw4Rg+fDjmz5+Pr3zlKxg9ejS2bt2K2267DSNHjsSXv/xlAEB9fT2uuuoq3HTTTRgxYgSGDx+Om2++GVOmTMms6gkdIuofOZJPa0BjRCX9QBqWDSkW446mpYU73cG9nPxN1rp9IMvJ2CiCDmTGoGXwLKbB4BXIyijZcDKB06O3VwYgg3roluRHrRMSHVA+2wC4HlVVpi9dX8+XoqfT3HcMjiH9TY62osugKGgrgQlegeL2EbUAZeXKlTjzzDMz/7/xxhsBAFdccQUeeOABrF27Fo899hj279+P0aNH48wzz8TTTz+NWnG2N4B7770XZWVluPTSS9Hb24tZs2bhkUceQak46S1sZNWfABojKh2wFaAA3Om2tATI6RbIGNhtVKID2rePO96SIBzmIJyMpofQj4KsD28Dl0ERHVBVldykTbtzqs0AJXCdUCHbKB0AUuB65NnWoRAlJbzIfs+eAAUoBTrkyAWvjMn2ktd3RCxAmTlzJliBOc9XXnml6DUqKyuxcOFCLFy40OyPDyaFUvhlKaAfSrIGgXG6WfU4QJ609WC2yQxCi3Sat82sxWL+Q+tkcowKuZOxlsIHAphB0XZAWfVJAFCO/mh1QoVsoyzNAxQbvmPECK5F4PRwoEPOXnBg4XQJd+nokBuxhTRACcL4Mvjk6JAzGZSyNH8RJadbKKOkTVtbIB6Xh34FImBrb+fTGoDOyahK0wY2g5LD4ZaXDKAELPIZlIxtlA8OFKOoR74pno4O20XDiURANmAVbaWuTjo9hGuKhwIUN8jRIWei3HJ1AUpgnEyhjJI40C4qdRfCyQwdqqsjUD0qDIQWQMEOKF42eBRGlIL5QhmUCvsBSqD0SKf5qiYgZ8AWR4J/psvabrI1NZnNWIPhS3O0FYAyKIRZCk1pCCcTlcLQdLpw5XnlYF7VZtoaCIeTyYwKLSK0aG8PyO6pOTIoKrONgWorQOEMyuDqvcgMbvbs4fspALqaG7ngYNDAbSw4CFTAlqOtABSgEGYpNKVRMdghR2UU1NbGe8qSEp2TyehRNVgoHZVOKI+TOWBVk8W0tbYGJxA7ZBbKoCjMGASiQwYKZ1Di9n1HINvKQQfJVAc0wXz1YEllVKa8crSVVIo/AJriIYxSKIMi6kCj0qiEFg0NOZ1MvNp+gBKoTshImjaVsrwLX+B2Ty1UBKkgQAlUhzwwwAN6ILceVeoGN4GwjTxtJRPMK/QdgbCPAtlGgDIohBF6e+XQNVeRbOXgnyAqjSrH9A6g0UPhKCgQehTJoFSU2K+7CJQehfZ1UFCfFKgO+fPPeeastJRnDQahbGOeKY0hgwOeqAz2CrQVYDCD0t0dkLnd3FCA4jTafR3EUBbaUdDgn4BqLgAA8Rr7AUrQ9WBMo0fdYKFBVPQolEGpVDel0dWld+a+RLuLrGZDH8o25s6gVAwZjGCjMtgr0FYAzYpIG32L11CA4jTaOWTNwvrIjoKKBSgKRkFBdzIDA7LkREWAEhj70GYbc2VQFGQbhw6VzdD3nXKO+hNAG6BQthHQ6FFrP0AJegYlU49TAcTEPlIBnuahAMVpclThA85lDNJpy5dxh2JTGrWDHXJUNq4rlqats+9kAjNKFktI82YbB4P5ri5ZCWgSsXsqEIBOOY/vyLSVGnXBvO9tAyg+uFGYbfS9beTZRVY3HSraEAUoRF6KTmmomzdNpwOQzSumh4JRkHAyvj/Ik7GCW5kDQHzo4N4onZ2Wf0xg9NBqock2yoyBxl1Z3OsCCFAnZDTbqMg2LC4Uc4+ig5tB36HANnzfVjo7ZeF8runQODJHRdixD6+hAMVpijUqkUGx0ajicWDIEP7a9w2r2DyyyKDYaFQjR/Jn32vR0ZFzF1nhZEpKgLK6av6fKOiRZ0pDN8VTNthebOgh6k137bJ8CXcwWhSqwDYSCcsLxdyj6OAmQr5D2EZtrXT+yApQxPsUoBB5KToKGoz6OzttDWFC43QVjIICo4Wwjfp6oLo687YuTSsO2YxCh1xsOjQeU6JHYDoho0WhNrSoqZEbGPvaPvJMaQAa+6gfnA6NUlvJZxta32HDl3oNBShOU6TQrUKMggYG9Ll9kwin6+uGpd3XIV/ApsDJCC26u2WCwpcUK4JUNAoSTtf3HbLLevi6rQCuBPNAQPTIs4ssoOmU69T5jsC0lbzBPJQE815DAYrT5BkV9g0eUFtVVyHfDHsnlGdfB0ATsClwMvX1cg84X+tRrAhS0SgoEMEr4JoegeiQgeKj5DrNlIaN7Gsg7EN0yCNHajbEyVqSrzCD0t7u82XoxTLzFKAQhshjSCJAqawuken9sDvdPPs6AJqAbZh9JxOLBczp5rENVU4mELYBGMugRGWKx0i2UQTzqZQ0GgsEYnCTx4+KpAoAVAy170eHDZOuyddF1MVqGysgs400xUPkpLcX2L+fv86XQalCdDqhPE4GkFMxVcMHJ8RtNqpABCjFsmuKbWPvXsurc90hjx4Z24hSWymQbczoMSwu3wx7hi1Ph6yNy6pG2C8oLymRK3l8rUceX6q6rXgNBShOkmcXWUAaUmUllI4Kfd2o8jgZxjQZpRE1/IXNRhWIUWGejIHOySiouRDL0Bnz+X4XRTJKlZWITg2K0KJAtrGyulRmX8OuR5EOGQDiw+xrAQREjyIBm6p+xWsoQHESrRFp9nUAIup0i8ypA5oApafH1nA/UHoYcTI2Rsjl5XJzMt/q0dcnoycjGRQFGQNfB695bANwLqPkaz0MdMixOjUdciD0cCnb6DUUoDhJgSmNnGl8BTUogWhUBUZBVSNr5H/CnrYuUp+k0sn43j5EB1RZyfej16B6VKgNXn27OZkB3xGp7GueQ0ZVB/NAQPQQ7aWQHlSDQhTEQM2FE07XtxQZBcViQHltJZ93B8IdsGl3kc0TsKlM0/re6Wq1yMo2OpUxSCR87LuNBigKOqFA+A4zGYOwZ187O+XfmzIohGXydMiAs6NC31JsRVMlECtRsxmX7/Vob8+5iyzgzDyy7wM2FzMG1dWD14KP7cNIQXmUpngM+A7tjqqhHtwILerq9L8zqAaFMIPZKZ6wb06WJ2DTOVwgGgGK0GLoUN0uskCeItmwb8blYsYgFgtAJ5SnYBiI4BRPOm2soDweV3IUgu/1cDGY9xoKUJykQAZFl8ZXUCRbVyc3J/Nlw+rvz7uvg65RAUr0CKWTCfNmXC5mDIDgBmyplNz7Q3UGxbebkxXYRVbXVmKxaNTzGW0rVINCFMRsJxTmUWGBfR0OCFAi7mRy2obNoxBCp0eUanI0aPf9UJVR8v3mZEKLUaPkKGyQvL4jzNlXyqAQSnDZkHzdsArs6+DkFI9vNyczOwoCIut0ncyg+DJgM5BtBNT5Dt9vTmbUNoDIZ1/zthXfLlcrDAUoTlFgF9mBAf4A1DpdXzcso8EaoESPESN4Vokxn3ZCBfa50OlRWiq9r4KMkuj3fIfRmgvFNTmff27rMs7Q2sqfy8tl5DCI6IDKywcXuykO2HxpH0ZtA1Cix6hR/Hn3bl7+4jvMDnxtHoXgJRSgOEWBXWTzpmltOpmGBv7sS6drdEUToMTJlJVJ3+5LPcyMChXo4WvbAFzPoIhSBl/qoQ1e8+0iq7CtAAHRw0xbURDMp1I+n/IqpkeNmj2lvIQCFKcwsIssoHaDIV93QlbStBHVw4lOSHRAu3b5cMqru5tXaAKuTYcGwjaK7SILKG8rInnjK1xuK+XlMhvta/sopkepmqMQvIQCFKcw0CFXVAwOkBSPgsjJcII6KnSq8C8W8+moUATzQ4bI31VDzo3rbG7GRbahJ6h6OFGDAvg4YCuwwSPgTPbVSyhAcQoPnIyvR4UuT/EAIXIyCkbJvp7yKqAFkLVnkLZouLvb8o/0rW0AnnRAQdUjcr50/375S7voS72CAhSnMNMhK4r6g5pBccrp+nZUuG+f3HDCRSfjW/soMKXBmFxdXVk5+I84CkFBTY4vp7xcLgoFfNwhA8YLyoHwT5cLLYYN0/zSEqemAL2CAhSncLmwC/BxowLMjYLCnqYVWowYwXe/zEKXMQDC3wkZsA1gUI+YuqMQYjG+SsN3U15W2opN3+HbYD6Vkg3Yg8GN73xHgeAVoAwKYRQrUxr9/bY24/JtIWR/v1z7TKOgolMaupoLIPxO12CAoroQUkx5BUmPyE3xCGdWUiLX/2pwenBDvsNbKEBxCiujIMD2BkNiVOirvT8K7CILRHCKp0DKGnBulBxEpytso7RUs4lohPUoOEK2sRmXb6e8hBYNDfKcHQ2RC9jM1GsBFKAQeTBwDk/GiBQtBysrk/2/rxpWgV1kgQgWyRocBdEUTw7bAMIdwCYScs7JTAZFwVEIvpzyMtghq86++tI2APN6UA0KcQC9vbwQEjDudMOcmrTaqBRpsXu3T0eFLs8jB3GK54AOGQh3ACuC+XicF0JmUTD7aqMT8u2Ul0dTGr70o0BBPRijZcaEEQrsIgsUGRUqivyD6GRUFw1rR4W+mvLyKEDxpdMtsuQ6chkUrRZZGzwCOfTQHoUQRvswO6WheHDT1hacwc3AgNyan2pQiPwU2EUWcGdU6CsnU2C6CyjQIXd32zoMo6xM7ggZ6IAtzLuFdnbK/UyMFFAD4a5BMWsbQHQCthw4FcwHccpL2AZAGRSiEGYbFRDuNL5VJwOEcy65SJrW6SkeX015CS3q6/VnhwwSuSkeD32HL/UosqzWqeyrdsrLN77DYLYR0OxeQDUoxAGYzRgA4a5BKaLHAU6mslIW04ZNj3S6oNPt75dJI9WjIF+u8jK7rwMQ7oyB2bYChLsw1Orgxmb2FfBhwLZnD3cQgPxjadDW42QS91HLoLz11lu44IIL0NTUhFgshueff173dcYY5s+fj6amJlRVVWHmzJlYv3697jOJRALXX389Ro4ciZqaGlx44YXYsWOHrV/EV9hJ0ypyMsLP+QKzTka7GVfY9Nizh08WAzmdjFP7fgD6VV6+0YPaih4rGRTFO1EHSY+806FA+OxDaHHQQfwgtyycDOa9wnSA0t3djWOPPRb3339/zq/fdddduOeee3D//fdjxYoVaGxsxDnnnINOjUDz5s3Dc889h0WLFmHp0qXo6urC+eefj5Rv8s42+ewz/my08hxQPir0TaMCpB5FRoVO6CH+BKJte47Q4qCDNBt7SJxO0wo9xG14ThHbcLJDFlrs2iVPHvAcs6tWgPC2lYEBmc4xah+KjkIAgDFj+LNv9PAwmPeKA3e+KcKcOXMwZ86cnF9jjOG+++7D7bffjrlz5wIAHn30UTQ0NODJJ5/E9773PbS3t+Ohhx7C448/jrPPPhsA8MQTT2DcuHF47bXXcO6559r4dXzC9u38edy4nF/u6eHPuil3RU5GNCrfdEB9fXIXWdIDEJnCsWNzfllo4VSadswYYM0aHzndIno42SGPHMkHoskkD+jHj7d1OTUIPYThZnHAqhUgvG2lpYXXXZSX59zgEchhHyL7un+/7U7Zd3oI2/Agu+YVSmtQtmzZgtbWVsyePTvzXjwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPXxNEacrFi3oOmRFhiQaVUeHT4Jm0borK2XVWRZCD7FXHQDlevjGydgJXm0ehQD4UA8rbUVRhxyL+SyjxFhR+yioh8IO2camtOoQWowZk3ODR8bytBfFGTZf2AZg2DZ0fjRqUzyFaB2sJmoQ1UWDNDQ0ZL7W2tqKiooKDMvahEj7mWwWLFiA+vr6zGNcnj+QL2BMOt0inVBOQ7LpZOrqZPv0RcPSapFjyTVQpFO2qYfvnIzBDjlnsAZQwAYoTVv7yj7275cGYMU+FHXI3d18gOM5RWwjmZSr0ZzolH03xWOwX8kbzPsi6jSHI6t4YlkdEWPsgPeyKfSZW2+9Fe3t7ZnHdmG4fmTXLj7K1Q7PsnA60vVVJyT+VnkcLuCsHlonY7OoXw1WOuSyMpnTD1va2sqoUGHa2ledkNBixIisORyJk9OhNTVyX0lf6VGkrQARmR62k10bGPBRoZVxlAYojYMVmtmZkLa2tkxWpbGxEclkEvvEVvA5PpNNPB5HXV2d7uFbRJTb0JCz0hpw1skAPmtYRRpVf79cOeeEHmKvvIEBnyyttdIhA+FMWycSsgjSg/okIFhtBaDBjRahRXl5Vr254imvlhaf7BtkMGBzKvvqBUoDlObmZjQ2NmLx4sWZ95LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZwINORk9BtOSgDOj5PJyeUq7r/QoUiR7wJ5lYUxbi5swW58U0bYCOD/lFSQ9cnbIgNI9pUpKeHDS1mbrUvbR1ieZqddSeBSCF5hexdPV1YVNmzZl/r9lyxasWbMGw4cPx8EHH4x58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpmVU9gaZIBwQ4W9gF+MzJFGlUQouSEs2yWkB5J/T551yP44+3fTnrGKhPyulkAOUByu7dPIGh09xttLZhpT5JbMaVo4DSKL5sK2YHN2H3HR61lbIyHqS0tPBYOs9KZ3dob7dWnwRwPXp7oxGgrFy5EmeeeWbm/zfeeCMA4IorrsAjjzyCW265Bb29vbjmmmuwb98+nHzyyXj11VdRq9m+/N5770VZWRkuvfRS9Pb2YtasWXjkkUdQKtavBxkDTsbJIlkgWE5Gq4Wuj1Ksx3vv+UCP3bvlWsA8y0gLOhnAth7Dh/OgJJHgTre52dbl7GE32yg+oP2/SXy194eBei2np7x8NQVoZUoDUD64aWnhekydavty1tHWJx3wC3MKZl/b2nyyrNMcpgOUmTNnghWoBo7FYpg/fz7mz5+f9zOVlZVYuHAhFi5caPbH+x8TRaGRmFf3OGMA+EgPbX1SntRFXiejaJQci3E9Nm/mengaoFjNNoqjENJproeNACV7aW2RWn5nKdIhp9Pu1eR4HrAlk7I+ycyUBqBcj5UrfeA7rAbzQKCXGtNZPKoxMY8c+nn13l5ZmVpkisfpURDgAz2srmgCHBkle94JmXC6uk5IexSCoimvnh6eRfeUIr5De1pt6LOvImKMx/Nu0pY3QFG487Jv9LAazAOB3qyNAhTVFOmEGCsyj6xwM67WVo+rz0Wjqq4Gsva9ETi9agXwkZMxMf0XiYyS1elQQFmnXFUlTdNTPQxs0uZ0QTngI9vQdshF6pPcCOY914MyKIRt0mlpyQU2FxL7ceQskgVsO11t9bmnJ5Na3aQNCOdmXAaya07XoAA+7ITMZlCA8AVse/YYrk/SHvYNwBEtWlvlmZaeYHWqHAjnlJeKwU0Aa1AoQFFJWxuPQEpKim7SBmR1QtrNuBRUn4tDAz11utu28WePpzR80QEB1osggXCOkk3o4WSGzRcBrNBi1Cjz9UnaoxBsbsY1ahRfmZpOezy4UZFdU9hWRCztGQameCiDQhRm61b+PGZMzpNqAdmoDthcCFBqSMKOPW1Yn37Knw85JO9H3JjSED5u3z59gOg6wj4K6OGGkxF6iPjRE3p65CGSBU7pc2OUfPDB/NlTPURbMaBF3mANsK1HaanslIOih5M1KFrb8HSneAN6UA0KURgDHVDeqB9QakjCjj11MnY6ZIVa1NfLLbxFO/cEE/bhZIcsbMNTLcQPr68Hhg7N+zE3prx8oYcd2ygrk0fYhsU+7PhSB4LXri4+wPGEdNrQYI8yKERh7HTIgCOdkLglT1DRIYvNuGwibsEzPZJJOZFtx8ko6JDFj9+508PjOQzYRt5jEIDwBWwmfMcBWgBK9fC8rWh/uBU9FGpRVSV3ovbMPlpaeEMoK8tbOgBQDQpRDDsdMuBIJxQUJ5O3Q9Z+yAaed0Lbt/MccVVV3mWTgIG0tQKne9BB/Da0C0dcx0RbAZzNsAW+rQDhyigx5ptso/YWPLMP8YPHjeNBSh4og0IUxs48MhCuUWEqJXs/K06mqkouVQhDJ6R1uAV2A3PD6cZiMnXtmX2Y6IAOOAYBcKStbN/u4bJ8VYObMPiOXbv4pi+xmLUVbyJ4VZR99VwPA7YBuDO4cRsKUFTiIyfjeYe8cydfp1hWVvAQi7xOJhZzpCYnKE7G6VGQ5/ZhMmNwQEyneBl6aSnPore02L6cNexmUMKUURI/uKmp4GFRRYN5IBzZV4O+w62MkptQgKIKk2lJt4pk9+0DOjpsX848QouDD+bePw9uTXmFxskomkcOgh5uBfNlZXKg7oke+/fLbWytrNIAHMugeLJyxW4wH+bsax7SabnTsJP1a25DAYoq2tr4RktF0pLCRpzukGtr+cFwgEdO166TAcKVUbKrh+I0redF1D7KGAAeB2zihx50UB7HwHGrBkW4r54eeVKFqxhYsQIUmNJQeBQC4INgfssW/lxAD+0xCJRBIQ5EWG9TE1BRkfdjwkZynm/mUBrfzwGKW3oIJ9PaKjfsdBUDemiPQdBubQFAapFMKll646lt9PTwgF57Izlwa9WK9jY8CdgMthVDgxsFelRWyllZP/uOgvahcC+UIATz2l9T7PeZgWpQCKONSky31NXl+GIEna74VXPqobBhaU8p92RvGIMZA5FSPyBg074R9Ckvg3ugGGorYZjyErZRYHoHcK+taG/FzwGK24Obffs86ONTKemwCugh7mvIkKxjEADKoBBQ06jClMY3sKIJkJ1QQSejoBOKxTzMGiSTch/1AvYhtCgpyZHGV7wZl7iN7ds9OHPFZx0Q4HFbIT30+GywV1cnD5R03XcY3AOlYPCq8CgEt6EARRUG5gkBg05G0ajQ0zS+Sj2CPio0uAeKVoucK5EVBrCjR/OjFlIpDw5CM2gbBTsgxcF8EKZD3cwoeaaHwcUGQEQCNoN7oBQc6Ck8CsFtKEBRxaZN/Pmwwwp+LBKNKpmUP9RHeng25fXJJ/z50EML7oFSUAvtFxToUVIiiyE906O5ueDHvApeXV+54nM9XOXzz3mNUkmJ3KwnB8kkkEjw1wUD2KAHbCZtI6cWirOvbkIBiipMBihu1qC43qg+/ZSve6uqKrgHCmPujpI9C9g2buTPRWyjoBaAY6Nk1/UQbWXixIIfM9RWFG3GNW4cjx37+lw+xTedNqyHFxklkexyDdFWxo83tNgAyFFQDjjmS13Xw6RtuDG4cRMKUFSQSMhCJoOdkBs1KKJR7drlsl1qg7UCGYO+PrlzpxujwgkT9LfnGiY7ZLecjOd62Gkr4k3G9HviW6SiQg7YXdWjpYWvES0t9dWUhrCNTz5xOaNksq1UVeWZ+YhYWzHsOwK2FwoFKCrYsoWPhIYMARoaCn7UTSdTXy8PuhIDE1cwmDEwPApS1KiEz3NVC0C9k1FkH57okU7LtLWdDIrizbi0t+OqHsI2DjmEFwUVwM36teZmHjP19Lhco2QyeC2abQyybWh/oJ22AlAGJdIYzBgA7joZwGOna7BDzrk0DlDeqMTt7N0L7Nmj5JLGUDXFozjD5olt7NjBM47l5QU3NASKZFAUH4UAeKSHwQ4IcHeLgvJyWfbg58FN3mBecQ2K+PNs2uTieU2Mqck2AoHdC4UCFBUYNCLA4Ly6os24AGDSJP788cdKLmcMn86b1tQAY8bw16453VQK2LyZv1Y1xaPI6Wptw7U0vrCN5uaCqxIAb/VwDYO+Y2BA7hbqxvQwIM3Vz77DrYzB+PE8aEsmXTwBfPdueQTCoYcW/KjhDApN8UQQEwGK28vBgpBBcTPqd12P7dv5/gPxODB2bMGPuh2wiUVFnZ1yY1fHMZExcDtt7WkGxcR0qBvTw4AHejCmLoOiWI/SUlmH4poewo+OG5dje1g9VCRL5Mdgh9zfL5fG5TQkB5aDuT4qHBiQpe52VjQB4ZjyEj/o0EPzzGNJ3O6QKytlYajrTtduMA84NsWzaZOShUHGMFkUWlGR54BfB7KvrreVtjbe1ktKii6r9WJKw3U9VGXmAQpQIo3JjAHgXtra9TTtp5/yICUel/MpeXB7FAR4ELAZ7IAAbzJKnunhQ6fremGoiRoDw20FUD7l5XqHfPDBeaIwiReDG9fbioX6JKpBIfT095velKyyskDBvkOFofv2uVQYKpzMhAlFMwZepCU9y6CoyBiEIaNkImBzWw/XC0NbWng0ZGCJcdGaCweyr+JP9MknLhWGmmgrXgxuQpFBoRqUiLF1K2+9VVUFz0oADDQq7RcVNazqaln64ErkbyFjUHTVSleXspy7NqPkSmGojzMGgMtOV7spWRE90mnpS0Orh9CiyKZkgEHfoXiUfPDB/LYSCZcKQy1M/4XWNrQ/SEX2laZ4IspHH/HnSZOKLjEuOiIEgj93KvRQ2agAJZtxATyxE4vxzs+VHUNFVOjTUaGraesdO/jufGVlBbcxB/gGsYLQ1hkI0VVkk7RfVDRKdr0w1IQeXhbYb9nCE+eOYqJgGPAmYHMDClDs8sEH/Pnoo4t+dN8+/ixOxsxJ0OdOLegxdGieD1RXK9+MKx6XW9477nQTCTkqPOqooh8XKwrd2gcFcLkwVNjGpElFNyUTWmhnLg4g6AGb0OPII4t+tGgHBAQ/a2BCj6JtRfFRCAAvqauq4iV2jh8P0dLCf8nSUqpBIWwgGpWBDshUgBJ0J6NCDwc24wJc7IQ2buTTf/X1Raf/AL6BHAAMH57nAw4Er4ccwn1gby/w2WfKLpsbi7aRNzHpYE2OqwGKCT3y2gbgqO9wXI/+fvlDVPgOxUchAHysJJIZjvvS9ev582GHFS0YTqeB/fv5azd9hxtQgGIXE1G/VwGK6JDF7Itj7N0LtLby16r0cCBAOfxw/vzhh8oumRvhZI46quj0H2MmnK5CLcrLpdN1XA8L2TW3O+QjjuDPmzYpW62bHxN6iODV7bYi9BC36hibNvEgZciQotN/gIG2Ul0t21wQ9TARvLa3y3o6N32HG1CAYod0Wnp1VRkUB5zM5Mn8+cMPHZ47FVqMG1dkspzjVcAm9Fi7Vtklc2PCyfT2yg4xrx4in93RobTCd8oU/uy4HtqArQiGOmStHooYN45fdmAA2LBB2WUPpKNDVp6q8h0O6CFsY906ZZfMjXagVySYBwxkG2MxqYeYD1KAa23FQnaturpArbUDWrgBBSh22L6dz3GWl8tqsgIYcjL19fxZ5OwUMH48j3u0WVRHMNGoAIN6iAIVhXq47mRMZAxKSwvEdkKLZFLue64AVwI2xtRPhwo9xIcVEIu5pIcI5puaChRhSQxllIRYCvUQptvS4vA2BQHxHa4NbkQwryrbKIRSqIUbUIBiBxNFf4DBRuWAIZWUuNSwTDoZQ6NkB5yu0MJxp2sxY5B3ADlkCI9gAKV6uDJK/uwzPrIvLZVzjgXwqkMGXNLDibbiQIc8ZIjcG8ZRPUx0yNqaC7d9h7CNDz5wcG8Yk8G8Kdvo6HDxtEP7UIBih4B0yIBLWQMnRkEO6FFbK/fFcszpJpOykk5VxiAWczSjtH69g75L2MbEiUX3/ABMthXFo0JXgnkTwSvgj4DNL76jo0MuzHHbdxx6KF/Jo12gp5zWVn7PJSWyYK4AprJJQKCyKBSg2CEgHTLgPyfT2yvPJQplJ7RpEy9kqK0tekggYNA2tB9wwOn29fFdQx3ByRR+kDMoBjIGgLe+w/G2oi34MTGlUVVVYAk64Fg2WtyiY/YhbGPChCK/IMdQ8FpeLusbFduHk1CAYgcKUCQdHXwjLsDUCp7S0iJ7OwQ1ja+1DQNFf4acDOCIHqWl0oQd08NECh8wmTHQRrsKEB3y1q0OLnoIoO9wzDY++YRnHKur1azgEQTVlzqRmQccyb46DQUoVtHOExrokAF/OBnHnK4o+hs92kBL0W/SVrD/dniU7JiTMZnCN+xkIuJ0Da9aEcajUI8RI7gZAw51yl1d/FBNwJAe6bTBgM2hDkgboDhyPIRoK0ceWfT8LsDACh6BQ77D8YySxWDeK9/hJBSgWGXLFp41qKgwNE8IWAhQFHoDx53umjX8WbTeInjdqBx3usJ7qXYyQXS66bQ0OoN6GArYSkqCOc0jLtrYaKCX5QMKr2ouALkGQLsyWikmbcNPvsMRRCNUWZ8EUIASKd57jz9PmWKo6C+RkCtDDTmZgQH9gSQKcHSULPSYOtXQx712MpMm8W3UOzqAbduUXpoj9DjhBEMfN+1kHBolO2Ibn3zCha6sVJttBBzPGjjaVkzahuGaC8VtpbxcblDmiB6rVvFng3r4Jdu4aZPS1f6cVEoO9kzaB2VQCMnq1fzZZKMqKZFbneSkulouWVZsSMccw5///nell+WYdLpeO5mKCjlAEX9KZezdyzNsAHD88Ya+xWsnc+yx/HnjRgemAIVtHHMMjwoN4PWoULQV5bYBON9WurqU78go7EPculICFsw3NACjRvGslnJf+vHHfGv+mhpDy/EBCzUoUQ5Q5s+fj1gspns0NjZmvs4Yw/z589HU1ISqqirMnDkT68WcW5Aw2aja2vjzyJFFplljMcecrkhurFih9LLcGb7/Pn9tUo+DDiryQQc3GJo2jT8r10P0aoceamgTLgDYtYs/jxhR5IMO2UZDA99FlTEHOiGTbSWVkk7XKz1OPJE/r1rFk5lKMZkx2L2bPxfVQjvyUdxehB7K20pbGy+uj8WA444z9C1CD6+C11jMQT1EWznuOLnnUREM20cAN2tzJINy9NFHo6WlJfNYq8kL3nXXXbjnnntw//33Y8WKFWhsbMQ555yDziCdEcCYdDIGR8iiQx41ysCHHWpYJ53En9esUbrogRdAJpPcQR56qKFvEXo0NBT5oNBi717lxSJCj3ffVXpZ09NdAPD55/zZlB6KcdzpGtRjzx4+Oo3FeEBfEIf0OPxwvkK8t1fxuSuJhCxeMKiH4bZSViaXxCnWQ9jGu+8qbobCNiZNMnQ8BuCvtqLcd5gMXgET9iEiOkd3p1SLIwFKWVkZGhsbM4+DBofJjDHcd999uP322zF37lxMnjwZjz76KHp6evDkk086cSvOsHMnH/KWlspccBEMNyrAMUNqbuZRdn+/4tSkcDLHH29oSS0g9SgasIlhQTKpvCZHOJmVK5WdyM4xmTEATDgZ0WOLYZNCHHG62mDeoB7CNkaMMDAj5JAeJSUyw6ZUj7VreUpmxAiesjKA4bYCSD0U+47jjuN/i88/l7sJKCHgbcWxYN5EtlFkXw3rEfUAZePGjWhqakJzczO++tWvYvPmzQCALVu2oLW1FbNnz858Nh6P44wzzsCyZcvyXi+RSKCjo0P38BRhREceySvXDGAqgyLmPYTlKSIWk1kDpQ3LSSdTUyMrAxXrMWUKP8l8/37Fu0Ka7JDTaQtOxgGn64htfPopzwSWlxtepWEqmBdtJSh6aNuKyWDekB7CPhS3laoqWRyqNGCz4DsM6yFso6eHPxQiApQNGxSev5dOy+lhJ7KNDtmGkygPUE4++WQ89thjeOWVV/CrX/0Kra2tmDFjBvbs2YPW1lYAQEOWZTU0NGS+losFCxagvr4+8xhncOThGE52yIArTtcRJ+PElIa25SnWo7xc/gmVdUIdHXKLe4P2sWeP3GK+aE2Og7Yh/nxbtyr0YdrVbvG4oW+x1CEHJaPkZIcMOGofjmQNRDDvhO+orZULDhTrcdBB8riMlSsVXdTCajdT2UYHbcMplAcoc+bMwVe+8hVMmTIFZ599Nl588UUAwKOPPpr5TCxr5MAYO+A9Lbfeeiva29szj+2OLMY3gckVPIDFNK0Dka7yAMXCsjjAHxklwIFOSGhx8MEGhjQcrZMpeuakuOb+/cpXatTXy+WkyjohpztkF9rK2rUKl5M62SEDrmTYlLWVvXt5NAwYruUzlW2MxYKVYbOw2s0vtuEUji8zrqmpwZQpU7Bx48bMap7sbElbW9sBWRUt8XgcdXV1uodnMCZDZoONCrCYQXGwQ/7oI0WpyQ0bePq0upofBGeAdNp/GSVlTsZGkZvhAmqxDMyBuWTlAZsFPUwF8w7axtix3D61MbgtLKx2AyxmUBz0HcpqtsRAb8IEw6vdTGUbgWDVoTiZiQb0NSgBOdHY8QAlkUjgww8/xOjRo9Hc3IzGxkYsXrw48/VkMoklS5ZgxowZTt+KGrZt40fHl5VZMiSvMwba1KSShiVqh046yfCyuH375NJNU07GQaf73nuKVjb97W/8WVRYGsCUkyktlUXUDmYNli9XcLF0GnjnHf5aCG0Av4wKtTVb4s9qi9WrebH3sGG8Yt0glrKvDuhx1FF8HNLZqWhlk4W2IoL54cMNZBsBVzJsf/ubopVNNnyHIdsQCw4YC8xeKMoDlJtvvhlLlizBli1b8M477+CSSy5BR0cHrrjiCsRiMcybNw933HEHnnvuOaxbtw5XXnklqqurcfnll6u+FWdYupQ/n3ACL+A0iF8yBgDwhS/w57feUnCxt9/mz6eeavhbhBZDhxosS3BQj4kTeeNOJBRkDRiT9nHaaYa/zVSHDDiqh7jtv/5VwQzSBx9wR1hTY3iPC8BGW3HgzAKhx5IlCi4mbOMLXzB05gxgIdvoYIdcViZ9x5tvKrig0MOE7/BTWznpJO6/Wlpk2ZlltA7IKT3Ky2WmKiDTPMoDlB07duBrX/saDj/8cMydOxcVFRVYvnw5xo8fDwC45ZZbMG/ePFxzzTWYNm0aPvvsM7z66quoNbgG3nMsNCrGTKbxHa62njmTP7/xhoKL2XAyhrQAHNUjFlOox5Yt3FtVVMjhlQFMO10H9ZgyhY9Ou7rk7IxlRPA6fbrhOXXApB5iVNjfzwsMFXPmmfz5rbcUZMWFHiaC17175c/1esoLkG3FdoCSSsnsq5PBvIMZpcpK4JRT+GvbeqxcyYOUUaMMT5UDNgK2gKzkUR6gLFq0CDt37kQymcRnn32GZ555BkdpDj2KxWKYP38+Wlpa0NfXhyVLlmCywQPmfIGFDnnPHm57sRg/H6woWiNyYFQonO4779hcfbdzJ7B5Mx8NTp9u+Ns++4w/i8MLi+JwoxJ62HYyogOaNq3IoSl6REmWIdsAHO2ESkqAM87gr23rYaGtADzGAww63aoqmcl0wD6OO47vfbZ/v829gyxm14RtDBtm6MgvxwshRYCyZInNOpT33+dzRXV1hg8YBaQefumQlQVs2rZicPk5YEGPgBXK0lk8Zti3T+4CKXKdBhAnqzc2mpzSSCSUb04G8M1ex47lg84C288U569/5c/HHCN3sDSAOJxvMKlWHJdGhX/7G9DXZ+NCFjtkYR8HH2zwG1zKsCkL2EzokUjIAMWwHg52QmVlMp6wpceGDdx+KytN1a6JtuIX25g2jdeh7N5tsw5F2MYXvmC4dg3wd1uxNZa0kF0D/GcfqqEAxQyiN580ycT8hAUjqq6WG8CJHJ5CYjGZNbA1rWGxQzath9DaAS0Avq15YyMPTkRNpyUsjJABC05XpFoK7B1kB+F0ly61UYeybRuwfTvvfEQe3ABil9LKSoMF1IAcPjpkH0oCNmEbJ59sMBXCEbZhOJgXttHZ6cjgpqJCUR2KTd9hWg+H2soppyioQ0mn5WDPZOmAZftwSA/VUIBiBm2RmwlMd8ixGNDUxF+L4aRi/BCgGG5UQoudOx2Z8tLWoVh2urt28bXbAGBiRVo6zftxwKIeDjB5Mi/t6O62sQmVxWJybbBmONPtsB7CNmzVoVjIJgEWgtfaWqm3Q77DdlthzLYefmkrSupQ1q/nc4gmi8n37JFT9Ib3LnVYD9VQgGIGsezF6QAFcM3prljBB1um6eiQm0OY1MO00xXFKr29CveV1iP0eO01ixcQHfLRRxs4ZlXS2sqzFKWl8k9eFIdtQ1uHYlkPmylrwx0Q4Lgexx/PN7Frb7dROGwxu2ZaD+3gxmHf8cYbFk963ryZG77JYnLAhu9waHADyMGeZvcMc1gsJhe20dBgouSNApSQsn+/zP/PmmXqW205XVFRqpjmZuCww7iDefVVCxf4y1/48P+ww3hBi0G0aUnDTqaqSp5M6lDDOu88/rxsmcX9z4R3Ej27QYRtjBljwje54GSEHv/7vxYvIPQ4/XRT32baNgDH9SgtBc45h7/+058sXGDzZv4oKzNVTA74U4+TTuLNce9ei/vDCNs46SRTxeTd3bJtGvalIkBJJh3b+2POHP78yiv8x5hGjAJM+g7T2SSAApTQ8tprPL97xBFypzOD+DGDAgAXXcSf//hHC9/88sv8WbROg7S38yWsgIm0JOC4HuPH81rfdBp46SWT38yY/CaTetjqgFpbHdsR8vzz+fO771qYKdi4kZ8rUl4OnHWWqW/1YzAPABdeyJ8tBSjCNr7wBVPF5IA/O6GyMuBLX+KvX3jBwgWEHiIKNoiwjfp6/jBEPC6Xojukx7RpvLSjs9PCfjnJpAxQTOrhR9tQDQUoRhEdskkjAix2QmPG8GcHDUk43RdfNJmqVdAhjxhhqjTBVT1MO92PP+ZnilRUyHyvQSx1yKNG8XkY7S5eihk9Wm7+OniclnGEbZx2Gq+JMIFfne4Xv8gl//vf5T0axmJb6e+Xv5Lf9LjgAv5sOmBLJHj2FXAnmAdcmRIVAb1pPZYt45HNqFGmjj8AbAbzn39ucX7OXShAMQJjlgOU7m65uMBvTmbGDF4usXevyeXGH37IKzvjcdNpyS1b+LMpLQBXR8kvv2xy23vRAZ1+usmoS56VZsrplpbKanw/BmwhDOZHjJClVqY6ob4+4PXX+WuTHfL27dz1VFSYWjToiu8491yeINuwgT8Ms3Qpd4oNDaYKQgH/BiiADNheeMFkqYvwHeeea3h3YYEl33HQQdx/ODi4UQkFKEZYv553jJWVpufUxcKOgw4yVTvpSodcViYjf1PTPKIDmjmTL4k2wYcf8mdxaq5hXHAyU6fyzIHpVK3FETIg7ePww01+o4tOd/FiExv69fbKpWEm9ejr46UaAF/Jbxihxd69NjeyKYylrMFbb3FNmpr4Nr0mELYxcaLJvssF31FfL8cmpvTQTu+Y7JCFHqZsA3ClrZx9Nu8ePv1UbpVlCIvTXYAMDE3p4dLgRhUUoBhB2yGL/UkMIjpkzWa6xnB4aa1AjJKff97Ej7HRqGzr4aDT1aZqn33W4Df19MhoxoIeYrMrP+pxzDF8dNbXJ5tAUZYs4d8wdixf0WSCjz/mA7v6ehO7DAP8fBFRbOlCRumNN3gsZAhtWzGxQyjgb9sApB7PPGPimyzWrgH+1qO6mgcpgAk9duwA1q7ldjF7tqmfl0zy9gLY0ENsOuRjKEAxwvPP82cbjerII01+o1gZ091twhua57zz+KzE5s0GK/L375fLrd10MiKPaboAwByXXsqfn37a4GD8tdf4fNDBB5v+I+/dK/dLMp1REnqIPK8DxGLAZZfx1489ZvCbxLKfOXMsd8hHH23yW2MxOWfooB6HHw4ceyyvDVm0yMA3MCYLeGy0FZNxntRi2zbHiqgB4JJLeFC/fLnsLAuyZQvPRpeUyGVRJli/nj9b1sNB2wBkW3n8cYODvT//mT+fdJLc4dUgmzbxEpLaWlOLKDku6aECClCKsX273OVv7lzT3y4yBqYDlKoqOYwUeW8HqKkB/uEf+OtHHjHwDc8/z8P3o482PS+RTtvIoBx6KH92UAuA17iOHcvjMEOp66ef5s9z51rukA8+2HQtqWt6XHEFf37xRQO7Yw8MAL//PX/95S+b/lmWg1fAdT0efdTAh9es4SuaKit5jYFJLOsxdiyfv9VW2TrA6NFy4P/44wa+4Xe/488zZ5qc7+ar/0QCxLQvdck2vvxlYMgQ/mPEtjcFEVHuxReb/lla2zDpdlzTQwUUoBRDONzTTrMQqtrokAFgwgT+7LAhXXklf376aQO1BqJRffWrpn/O9u38+uXl8lczTHMzf96/37H9DAA+RfvNb/LXRTuhnh5ZvGNBjyB0yEcfzWtzBgaAp54q8uElS3jh3fDhMt9tgiDocfnl3EbefVfWRORFCHb++aYjUMZsZFBKS+VWCC4FbI89ZuDwQBu+Q2jR1MRn9EwhbGPLFpsnHBZGO9gr6jtaWuTWsyH1HSqgAKUYYoQs8ncmSCZ5Kg6wEPUD0pA++cTCNxvntNO4P+vokLNZOdm9W67Zt6CHaFSTJpnaMJFTXS2LuxzWQzjdl18ucmTFiy/yKbhDDjG9IyZg08m4FLwCJrIGogO65BIehZpEpPD97HQbGviSY6CIHum09B0WOqAdO3ixdlkZ3wvRNC7pcdFFvGZo27YiheUffcQzSmVlljLRloM1gG+4VFqqP4nSIURb+d3vigz2fv97HoWecorpfbUARW1FLKn0MRSgFGLLFj5UKinhTtck77/Pp4CHDTOxjbkWlzqhkhLZsH7zmwIffOYZ/gsdfzxfWmCS1av5s4nT1fW45HQPP5z7jVSqSO2FdkRoOs/K99QALDpdkVHat8/RjBIAfO1rPN547z15usEBJJOyOtBCh9zTIw9bs6SHi6NCbdYg72GKy5fzXru2VkY0Jnj/ff48aZKpswUlLulRVSXrth56qMAHRVuZPVtunGYCoYelDrmsTNZdOKyHGOx1dgJ/+EOBDwo9vvY1Sz/Hlh5a23BwAYYKKEAphDCimTPliakmEHuLTJ9uqf9yLYMC8GmekhK+h1LeTshGihbQ62EJFzuh73yHP//iF3m2r25vlwWQFvTo75cnJ5g47FdSUyNt0uGR0MiRctD7s5/l+dArr/BAqbHR9FJ8gI8DUim+pYnY1sQULo4Kzz+f/5o7dxaY9hJfuPhi0yv/AFn2dvLJlm7R1bby3e/y56eflpuH6WDMtu8Iih4lJdJ3/Oxnefr/rVv5ioRYTM4JmWDPHjm9aEmPgw/mN9rX5/tTjSlAyUcqBTz4IH/9jW9YuoTokE0cbqtHZFBcCFAOOUSOhH760xwf+OgjPmdaUmLJyaTTcpWQZT2Ek7F8rrlxvv51XgT42WfAb3+b4wOPP85TxkcdxdfjmmTNGr49xtChFlbwCIQeYh7RQW65hT8vWpSn+P9Xv+LPX/0qT6ebRHRAM2ZYDOZFRmn3bl6n5CDxODBvHn991105yhp6eoAnnuCvLY6QhR4mz+GUuNhWpk3jxeUDA8A99+T4wNtv8007qqrk+Rom6OqyfC6pRPhSF/T4/vd5sezatXmOzfj1r/nzmWeaXE/PEf3KEUdYSkbxdKhYBeiCHnagACUfL7/MPfGwYZbqLQAFHbLoubZv5wUiDvN//y9//t3vcvR5DzzAn88/38JWjnwZ4t693EeZ3EBSIvKZYgLWQeJx4MYb+euf/jSrE2IM+OUv+evvf99Sj6rtkE3uVyVxUY8TTuArQ1Mp4O67s764datcXnz11Zaub7tDrq2Vhzu5oMfVV/Njddavl6tFMzz1FA+SmptN728B8Izdu+/y15b1ELbxwQeOFoYKfvhD/vyrX+U4bPO//os/f+Mbps8iAmR2bexYS66H42JbGTYM+N73+OsDBnuJhAzmv/99S9e33VYAqYepXeXchwKUfIgO6B//0fRuqQAvctu2jQ8mxZkmphk2TOa7XTCk447j2zWk08D/+3+aL3R1yTXI115r6dqiUZ14oqX6SY7YiXPdOlec7ne/ywsAN2zI2u79jTf48qwhQ4BvfcvStcUoyJaTEcU8a9fauIhxRAD70ENZS44feIAHbWefbWFLXH12LSh61NfL/uXOOzVfYAy4/37++pprLGWTVq/m2ffhwy3JyZk4kRevdHc7vncQwIPX44/nySMRjwDg82Bi10ObviMotgEA//RP3M+99RYvR8rwhz/wlW5jxljKJgGK9ND6Uh9DAUouNm+WuTmLI0Kxh8a0abwfs4wwJJca1q238udHHtHMLP32tzyDc9hhlpaPArJcw+TRPXomTuSt3iWnW1cnfeq//qumIFJ0QN/6lqURYX+/XAx12mk2btBl2zjrLG7Pvb3Aj388+GZvr6yOvO46S9d95x2ecBgyhG+EZhmXne4NN/AY4K9/1Ryo+Le/8fmIykrg29+2dN1XXuHPp55qcboL4IWhYumgC/YRi8lpwHvu0Rzz8uCDfO7n1FMt/3GFHkrayubN3H84zJgxsjLg1ls1tSgierv6aksjtX37ZO2aLT1cDtgswwJIe3s7A8Da29ud+QE/+AFjAGPnnGP5ErNm8Uv89Kc27+Wf/5lf6NprbV7IGOk0Y2efzX/knDmMpfsHGDvqKP7GPfdYumZnJ2OVlfwSq1fbvMFjjuEX+uMfbV7IGLt3MzZ8OP+R997LGNu8mbGSEv7GunWWrvnyy/zbR41ibGDAxs21tvILxWKMdXfbuJBxXn2V/8iSEsbWrGGM/epX/I2DD7b8y9x4I7/E175m8+Yee4xf6PTTbV7IOKJ5HnooY729jLF/+Af+xj/+o+VrTp7ML/HwwzZv7hvf4Bf6yU9sXsgYAwOMnXCC5tfv7WWssZG/sWiRpWvu2MG/HWBs+3abNzhqFL/Qu+/avJAxtmyRfu+ppxj/uQBj5eW87Vrg4Yf5JY4+2ubNrV7NLzR0KHf6LmKm/6YAJZudO6VVLV5s6RK7dzNWWsovsWmTzft5/HF+oS98weaFjPPRR7wNAYw9O2+JNOT9+y1d73e/45eYMEFBWxBOd/58mxcyzoMP8h9ZW8vYzktv4P+ZPdvy9a66il/i6qsV3Jxwun/7m4KLGeOSSwZNckaKpQ8ez//zs59ZulY6zWMbgLFnn7V5Y2vW8AvV1zOWStm8mDE6OhgbM4b/2H//fovsTdessXS9Dz+UfdjevTZv7qc/5Rf7yldsXsg4y5ZJCZb94CkZvCYSlq7385/zS8yYoeDmxMjrf/5HwcWM8R//wX9kUxNjHefM5f/51rcsX++LX1Tk/vr6GCsr4xfbssXmxcxBAYoNPr7ix2wdjuItwmJv+tBD/O9+7LEKbmjDBn6xeNxyI7fCbbfxHzuu7DPWiRrGfvxjy9e67DJ+rVtuUXBjCxfyi517roKLGSOVYuykk/iP/SoGne4771i6VjIpMzJ/+YuCm7vgAlvZLSts28ZYdTX/sb/BlXyUbDGDs3w5v86QIYz19Ni8sf5+eWMWs1tWWLSI/8jKkj62ERN4FsUiokObM0fBjS1ZIntHF0fJ3/42/7HHlb3PEihn7Ne/tnytU0/VZC/tcvvt/GJXXqngYsbo7eUDM4Cxf8LdPCiwOGrdt08OHNevV3BzJ57IL/bkkwouZhwKUCzyl0VtbAg62BH4gLU/+5qla6TTMs1po0/XX3DkSNdHyd3djB0ysoMBjF1W8SxLt3dYus6OHYxVVCjMrK5axS9WV+faKJkxxlauZKwklmIAY78+9heWryM6s5EjeX9qmwUL+AUvuUTBxYxz538mGcBYDTrZ+tt/a/k6ojP76lcV3diZZ/ILPvigogsWJ51mbNaJ7bxTxnus570PLV0nmWSsuXkw8PuNghvr7paj5K1bFVzQGG1tjA2r6mEAYz+of4T/YhZYt05mY7ZtU3BjL77ILzZpkoKLGefPL6Yzv8cL595v+Tr33adoekdwww38gtddp+iCxqAAxSK7XlrBxpTuZABjF1yQttT/iTZQU8PYrl2KbuzCC/lF775b0QUN0N7O3j7oy6wMSVsDdNEGTj1V0SCuv5+LCzD2/vsKLmiQv/2N/Ri382RWRYqtXGn+EqmULOf5939XdF9ilDx6tKuj5P75P2Zn4TUGMHb4pBSz0hQ/+UT2n8uWKboxMUq+4gpFFzRAKsW2n3IJOwifZ+ovrPwpfv1rWZukrKRIjJJ/az2INE1LC/tjzdcynbLVAbrIvCqbodqzR0Y8ypyzAV54gV2HX/DZx7qUpQRKTw9v4gBj//3fiu7r6af5BY8/XtEFjUEBig3eWZpk8TiPeK+91twgPZVi7OST+d/85psV3tRdd/GLfvGLCi9ahGuvZQxgC0f8iAG8pub3vzd3ic8+k+U8r76q8N7EXPJ99ym8aAESCcaOPpqlEGMXjH0vkzXfsMHcZUT2ZOhQnq5VQne3TFF98IGiixbhww8Zq6hgn+MgNnZ4FwP4n8RspyqyJ0pn6156aXBucpx7Adv//A9jAPtLfA4rKUlbCkATCcYOOcSBcYioQP72txVetAhf+QpjALut4dcMYKyqirHXTCak163jtd8AY3//u8J7O/poW0W7ptm/n7ExY1gC5Wx601Ye0B/OfaMZRPbERjnPgXz2mSyydzFgowDFJk88IQPt//N/jC9OuOMOlmmQLS0Kb2jt2sFJ7krGuroUXjgPy5ZlvEN68WuZjqSkhGtjhIEBxs46i3/fKaco7ivuuYdfeNYshRctwL//O/95Bx3E9n2yJ+PjGhuNzwXv2MHYQQc5VN977rn8wnfdpfjCOUilZGHAnDnsneXpTEJr5ky+YssIf/qTpphSVfaEMT7UrKqyVahqih07+HTjYKHEvffK3+v2243bvVg4qDR7whiPDADGGhrcmRJ99lkmRjQDK1ez88+Xruvll41doqeHD+oBxubOVXx/t9zCL/yNbyi+cB6uvpr/vMMOYzs29mQKwg87zPi01QcfyKSx8vre447jF37sMcUXzg8FKAp45BG5mnTWrOJL3P70J/n5hx5SfDPptBxePf+84otn0dnJ2JFHskyumvFg4x//UTreG2/kReD5SKUY+6d/klNdygf2H3/ML15WZnllkWH+/ndZmfbUU4wxPscuVjvX1RUP2vbvZ2z6dFk4bbsYNBtROHzaaYovnAOxrKKmJlPXsHQpX+EEcNMptpR87VqeRQIYu/56B+5RTIn+5386cHEN6TTL9MAnn5wZyfzsZ7KtzJ3LV/UVQhTVAw6snk8k5B/HYmG3YXbtkvMQt97KGON+QtRxl5byP0mhAV9/v1yoN3KkotoTLW+9xS8+fLiiIrAC/OUv8g/7xhuMMb5gRrjyUaN4SUAhPv+csSOO4J8/80wHbvlf/oVf3EZht1koQFHE734nB2NDh/IK+2xn097OB9giHfmtbzmUWRZDLGXVhDlIp+Ua0sZGPmc7SCrF2Lx5sr0dcQQPurPr37ZsYeyii+TnHJv6Fq1WeTSoYdcu6U0uuED3h929m6/8Fr/nnDmMvf22/m+fTvP3Jk7kn6mvV7DsPBdbt8pUrZPFkEuWyKKRhQt1X1q+XPZN5eU88Mi+lUSC/7nEaPCUUxxamCb2ZjnySGenecSSm/JyHnVp+OUvZVzb0MCnbTqy6sx375Y1Wpo+XT2XXsp/wA03OPQDGHcEM2eyzBxGb2/mS4mEDDoAxqZO5YmW7ITOhx/yLWxEttbstJAh+vsZGzGC/5Bi0YEdtmyRixu++13dl7ZtY2zKFKnHpZcy9t57+m9PpfhsZVMT/8yYMTxYUY7Ym6WqyvnB3iAUoCjko49knZkYtJ9wAp9mnTVLrmoEGPvOdwpnFmzx3nv8h1RU8CG8E/z4x9Lh/vWvOT/ywgty6w2AD87OPJOxL3+ZdzgiUKuosLW6sDh33il7OSfQOtwJE3IOg/v7eXAq9rwBeCd9wQV8YD1pknz/4IMd3h9KzKf92785c/2tW6XDveyynB3/rl364FQEsl/+MmPnnSf7BZGVdGzae/9+2TCXLnXmZ4ipDCCvoa9cyftq8bGKCm6uc+fyNiMCGIDPPNjatK8Qf/6zzBpoAgelXHMN/xlDhuRc4p1O8wGNSOaIQd/s2TzhJVY+Cp/yhz84c5uMMTnSuvhiZ67f2SlTrMcfn3POrrdXZpm1PuKiixj70pcYGz9evn/kkTx4c4R0Wlbu//KXDv0QPRSgKKa/n1eii3nR7MeRRzL26KMu3Mi0afwHKlm/nIXYjayAwxXs3cvrbRoacusxaxZjK1aov0Udra1yNK+65+/vZ+zyyws6XC0bNvDgNB4/UIuqKr7tguM1aE89JSMk1XNIO3fKjFUehytIp/nI95xzctvG6NF8Y1PHOmOBmJO87DL1137jDRkA/eAHBT/a18cTOtpgVfs47jge9DvKwIDcDc+JUcNPfiIzeEV+mc8/57U5YopP+ygt5YG92eJz06xfL3/g5s1qr93TI2vCRo0qOke1Zg13NdpBjnjU1fEVwEbruiwjCqeOOsqFhmmu/44xxpibW+uroKOjA/X19Whvb0edhbNQrMIYPwDw3XeB1lZg6FBg0iTgpJNsnJlhht/+lh/wUF/Pz5QYPlzNdX/5S3nozI035jiuNjepFD8sdcUKfgJrfT0wfTpwyCFqbqsoV1wBPPYYPx9o8WI11+zvB77+deD3v+fnmTz3HD/B2QA9PcCqVfx4i4oKfhT6rFmWjusxTyLBjXHbNuCuu4B//mc1192xgx/Cs3EjP2Bk2TLDR8ru2sUPSvv0U37OzsEHA6efzmV1nPffl2e/rF5t4wjtLF59lR/y1tcHnHceP3TLwC/EGG+yy5cD7e388OXjjpNHxDjO3XcDN9/M/wgbNvCzguzCGPCjHwH/+Z/8/ybsrr+f/4lWreL/r6sDZs4EGhvt35Yhzj2X/y2/+U3uQ1TQ3Q1ceCHw+uv8gNnFiw0fZd/Zyf3ohx/yP82oUdytVVWpubWCiJO39+/nWnzzm47+OFP9t+PhkgO4nUHxDakUr7IE+PIiuySTsrYF4NWvLp/LYIstW2Se/Omn7V9v5065QqWiwrXzfpTxyCNy6KWiFuXtt2VhyfjxfOOSICGyYNOn268uTKcZ+8UvZNbuS19ybrrECXp6GBs7lt/7v/yL/et1dekLS2wfOuYyK1bIrM9gAastNm6U0zq1tbwYN0iIKfOmpuJV3TahKZ4w8+abstDDztKwtWv5hLhwMPPnBys4EYgq9Pp66xO16TRjzzwjDzarq+MVakFjYEAuFzrlFOvrVfv6eHGN6IyPOoqxTz9Ve69usHWrXAJsZ2OinTsze3swgJ9q6OKxE8oQh2KVlBhf85uL5cvlfiKlpYzdb313VE8Rh2KNGcOXi1shnebb/tbXy2md5cuV3qYrdHfLgqkvfcny7r9GoAAl7IjdMktL+bIIM4HFZ5/xan7R+dTVBS9ToCWZlJ3y6NHM9BavK1bwJTii85k8mS9jDiqbN0tnOXOmueKXgQGeidJWdn7tay5MgjuIqM2xUona3s6PEhBBTlkZn68PYiAvEJsaVVaa37Lgk0/494sBUkMDX9kVVDo7pa1PnMhXRBglneaZF5FxBfj5bWZ3YPMTq1bJQrq5cw9cdqYIClDCTirFKy9Fw7jgAh6153OcXV2M/e//8s5GW8l58cUObDTgAbt2yTPqy8v5aLnQiL+lhRcLijWN4vtuv92BTUo84K9/5cW9AM8KPfBAfmeTTvONav7zP/nuUUKPhgZeGR7kzlhw993y9zrxRL6qJV+gkkjw9Pz3v6+v5DzxxAPXggaRRELu3QIw9vWvFz4yYv9+vqTm4ov1lZxXXOHcakI32bpVLpmpqeGZ5NbW/J/fto0vsRcLFgBeMH3XXY5mHVzjf/9XTps3N/PMsmIfQEWyUSCdBhYs4EVqqRR/b+xYYOpUXmkWiwF79wKbNvFqtIEB+b1f+ALwb/8GzJ7tzb07wb59wFVX8aJWweTJ/DF8OP/9d+7kBYIbN8rPlJbyotjbb+dFpmHh/feByy4DPvqI/z8eB6ZNAw47jFes9vby6tW1a4G2Nvl9Q4cC8+YBN9zAX4eFp54CvvtdoKuL/3/ECODEE3mbKS/nVYqbNwNr1vBqZ8Hhh3PbuPxybithIJkEfvhD4N575XuHHsqrdhsaeLe7axdvJ+vWcV8jOO884F//1XDxZyBoaeE+4I03+P9LSniB9ZFHAsOGcb127OArAj79VH5fPM59zg9/CIwb5829O8Ff/wp89av8dx4xgrcLhf0sFclGiQ8+4MVqYke5fI/x4/matRUrwjEqzkU6zUfHZ5xRWItYjC+XXbAgHBmkfPT18Z1f861xFY/KSr4hxSOPBHs6pxgtLXwPDO2GLLkeI0fyNvXKK64su/SMlSv5JjXaDVlyPQ47jE+PZW1GFypSKT69edJJhbUoLeX1XffdVzjTEnQ6Onh9n/K99SmDEk26u/n65w8+4KOfWIxHvRMm8LWMzc1e36G7tLYC77zDo/99+/goeeRIrse0aeqWaAcBxnjmaOVKPirq6eFrGceM4VmjE07go8GokEzyTMmaNcDnn/MMZHU1byNHHcVHziUlXt+le7S387ayYQOwezfPFNXX87Zy/PHcTqLE9u1cj08/5dqUl/Os9IQJPOtWW+v1HQYaM/03BSgEQRAEQbiCmf7b02HCL3/5SzQ3N6OyshJTp07F22+/7eXtEARBEAThEzwLUJ5++mnMmzcPt99+O1avXo3TTjsNc+bMwbZt27y6JYIgCIIgfIJnUzwnn3wyTjjhBDzwwAOZ94488khcfPHFWLBgQcHvpSkegiAIgggevp/iSSaTWLVqFWZnLXOdPXs2li1b5sUtEQRBEAThI9w4tusAdu/ejVQqhYaGBt37DQ0NaG1tPeDziUQCiUQi8/+Ojg7H75EgCIIgCO/wtEg2lnUEMGPsgPcAYMGCBaivr888xoVpUxyCIAiCIA7AkwBl5MiRKC0tPSBb0tbWdkBWBQBuvfVWtLe3Zx7bt29361YJgiAIgvAATwKUiooKTJ06FYsXL9a9v3jxYszIsYVyPB5HXV2d7kEQBEEQRHjxpAYFAG688UZ885vfxLRp0zB9+nQ8+OCD2LZtG66++mqvbokgCIIgCJ/gWYBy2WWXYc+ePfiP//gPtLS0YPLkyfjzn/+M8ePHe3VLBEEQBEH4BNrqniAIgiAIV/D9PigEQRAEQRCFoACFIAiCIAjf4VkNih3ErBRt2EYQBEEQwUH020aqSwIZoHR2dgIAbdhGEARBEAGks7MT9fX1BT8TyCLZdDqNnTt3ora2NufOs3bo6OjAuHHjsH37dirAdRDS2R1IZ3cgnd2DtHYHp3RmjKGzsxNNTU0oKSlcZRLIDEpJSQnGjh3r6M+gDeHcgXR2B9LZHUhn9yCt3cEJnYtlTgRUJEsQBEEQhO+gAIUgCIIgCN9BAUoW8XgcP/rRjxCPx72+lVBDOrsD6ewOpLN7kNbu4AedA1kkSxAEQRBEuKEMCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoGj45S9/iebmZlRWVmLq1Kl4++23vb6lwPPWW2/hggsuQFNTE2KxGJ5//nnd1xljmD9/PpqamlBVVYWZM2di/fr13txsQFmwYAFOPPFE1NbWYtSoUbj44ouxYcMG3WdIZzU88MADOOaYYzKbV02fPh0vvfRS5uuks3oWLFiAWCyGefPmZd4jndUwf/58xGIx3aOxsTHzda91pgBlkKeffhrz5s3D7bffjtWrV+O0007DnDlzsG3bNq9vLdB0d3fj2GOPxf3335/z63fddRfuuece3H///VixYgUaGxtxzjnnZM5bIoqzZMkSXHvttVi+fDkWL16MgYEBzJ49G93d3ZnPkM5qGDt2LO68806sXLkSK1euxFlnnYWLLroo47RJZ7WsWLECDz74II455hjd+6SzOo4++mi0tLRkHmvXrs18zXOdGcEYY+ykk05iV199te69I444gv3whz/06I7CBwD23HPPZf6fTqdZY2Mju/POOzPv9fX1sfr6evbf//3fHtxhOGhra2MA2JIlSxhjpLPTDBs2jP36178mnRXT2dnJJk6cyBYvXszOOOMMdsMNNzDGyJ5V8qMf/Ygde+yxOb/mB50pgwIgmUxi1apVmD17tu792bNnY9myZR7dVfjZsmULWltbdbrH43GcccYZpLsN2tvbAQDDhw8HQDo7RSqVwqJFi9Dd3Y3p06eTzoq59tpr8aUvfQlnn3227n3SWS0bN25EU1MTmpub8dWvfhWbN28G4A+dA3lYoGp2796NVCqFhoYG3fsNDQ1obW316K7Cj9A2l+6ffvqpF7cUeBhjuPHGG3Hqqadi8uTJAEhn1axduxbTp09HX18fhgwZgueeew5HHXVUxmmTzvZZtGgR3nvvPaxYseKAr5E9q+Pkk0/GY489hkmTJuHzzz/Hj3/8Y8yYMQPr16/3hc4UoGiIxWK6/zPGDniPUA/pro7rrrsO77//PpYuXXrA10hnNRx++OFYs2YN9u/fj2eeeQZXXHEFlixZkvk66WyP7du344YbbsCrr76KysrKvJ8jne0zZ86czOspU6Zg+vTpmDBhAh599FGccsopALzVmaZ4AIwcORKlpaUHZEva2toOiB4JdYhqcdJdDddffz1eeOEFvPHGGxg7dmzmfdJZLRUVFTjssMMwbdo0LFiwAMceeyx+/vOfk86KWLVqFdra2jB16lSUlZWhrKwMS5YswS9+8QuUlZVltCSd1VNTU4MpU6Zg48aNvrBnClDAHc7UqVOxePFi3fuLFy/GjBkzPLqr8NPc3IzGxkad7slkEkuWLCHdTcAYw3XXXYdnn30Wr7/+Opqbm3VfJ52dhTGGRCJBOiti1qxZWLt2LdasWZN5TJs2DV//+texZs0aHHrooaSzQyQSCXz44YcYPXq0P+zZlVLcALBo0SJWXl7OHnroIfbBBx+wefPmsZqaGrZ161avby3QdHZ2stWrV7PVq1czAOyee+5hq1evZp9++iljjLE777yT1dfXs2effZatXbuWfe1rX2OjR49mHR0dHt95cPj+97/P6uvr2ZtvvslaWloyj56ensxnSGc13Hrrreytt95iW7ZsYe+//z677bbbWElJCXv11VcZY6SzU2hX8TBGOqvipptuYm+++SbbvHkzW758OTv//PNZbW1tpt/zWmcKUDT813/9Fxs/fjyrqKhgJ5xwQmaZJmGdN954gwE44HHFFVcwxvhSth/96EessbGRxeNxdvrpp7O1a9d6e9MBI5e+ANjDDz+c+QzprIZvf/vbGR9x0EEHsVmzZmWCE8ZIZ6fIDlBIZzVcdtllbPTo0ay8vJw1NTWxuXPnsvXr12e+7rXOMcYYcydXQxAEQRAEYQyqQSEIgiAIwndQgEIQBEEQhO+gAIUgCIIgCN9BAQpBEARBEL6DAhSCIAiCIHwHBSgEQRAEQfgOClAIgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+4/8DeFXPzROS4iMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -150,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "1ba72bdb", "metadata": {}, "outputs": [ @@ -158,7 +177,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "354 µs ± 13.2 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" + "361 μs ± 12.8 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" ] } ], @@ -176,7 +195,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 8, "id": "77897175", "metadata": {}, "outputs": [ @@ -191,7 +210,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACH4ElEQVR4nO2deZyU1ZX3f9Vb9UJ3s0k3DYgtghu4gQvEBUVRErcQRxOz6MQ3iXGJjDq+UWcmzEwixjcuCU6cMTGuUUziEjPGBaOihKCAEAEVQUBAum3W3ruqu+q+f9y+dZ+nqOVZ7rOf7+dTVFFd/fTTvz733HPPPffeGGOMgSAIgiAIwkeUeH0DBEEQBEEQ2VCAQhAEQRCE76AAhSAIgiAI30EBCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoBAEQRAE4TvKvL4BK6TTaezcuRO1tbWIxWJe3w5BEARBEAZgjKGzsxNNTU0oKSmcIwlkgLJz506MGzfO69sgCIIgCMIC27dvx9ixYwt+JpABSm1tLQD+C9bV1Xl8NwRBEARBGKGjowPjxo3L9OOFCGSAIqZ16urqKEAhCIIgiIBhpDyDimQJgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+gwIUgiAIgiB8BwUoBEEQBEH4DgpQCIIgCILwHRSgEARBEAThOyhAIQiCIAjCd1CAQhAEQRCE76AAxYesXg38938D6bTXd+IP/vhH4C9/8fou/MHAAPDrXwM7d3p9J/5g507g4YeB/n6v78QfrFwJvPyy13fhH557DvjgA6/vwh/09AC/+Q3Q0eH1nRgnkKcZh52zzgL27wcSCeCGG7y+G2/ZuRO4+GL5evRoT2/Hcx57DPjOd4ChQ4G9ewEDB4KGmh/8AHjmGeCdd3hQH2XSaeD004HeXuCNN4CZM72+I2957z1g7lz+ursbqK729n685uc/B267DXjgAWDFCq/vxhiUQfEZfX08OAGAX/zC01vxBatXy9cPPujdffgFMTrevx946y1Pb8UXPPMMf/6f/wG6ury9F6/Zto0HJwCwYIG39+IHli+Xr3/1K+/uwy88/jh/XrkSWL/e23sxCgUoPkNrOJs3Ay0t3t2LH3j/ffn6D3/w7j78wq5d8vWf/uTdffgB0RkLli3z5j78wrp18vVf/sKnA6PMhg3y9YsvencffkFbMvDSS97dhxkoQPEZa9bo///pp57chm/QBijbtnl3H36AMWDtWvn/7du9uxc/8NFH+v/v2OHNffgF7eAmlQJaW727Fz+gDdiibht9fcCmTfL/QdGDAhSfke10P/vMm/vwC9oCt44OoLPTu3vxml27gD175P+D4mScIjtNHfWALVuPqNuH1ndEXYuPP+ZBqyAoelCA4jO0KXwgOIbkFNl6RDlgyx4RR902SA89pIcklQI+/1z+v7MzWKtXVJNdKhAU26AAxWfs3cufhwzhz1HukBmTGQOhR1AalhNk28bOnfpRUdQQetTW8uco2wZwoB5Rzii1t3P/Acj2EmU9gmobFKD4DNEhT5nCn6McoPT0AMkkf33MMfw5yp2QcDJHHQWUlPAiyLY2b+/JS4Qexx7Ln6NsG4D0HdRW9B1yczN/TXpI22hpCcbeQRSg+IxsJxPlAEVoUV4OHH44fx1lPYSTGTVK7gcTlJGQE2Q73Sh3QADpoUVoMXw4MG4cf016AEccwf0pY8EooqYAxWfQqFAiApQRI4CxY/nrKOuhdbqkx4Ed8v790d0Lpb9f1liQ78jdViiYB0aOBMaM4a+DYB8UoPgIxqQhaad4xFxq1NA6GdGoopxBEQGb1ulGWQ9hH+PHy7n1qB4BIDZ3BICjj+bPZBt63xFV2wCC60spQPER7e2y6PGoo/hzX190R4XaDMqoUfr3oohwMiNG8JGQ9r0oog3Yoq6H+L3r64HGRv17UUTbIUfdNgC9HiNG6N/zMxSg+AhhMNXVwLBhQDzO/79vn3f35CXaDnn4cP17UUTrZEgP0kOLVothw/jrzs5gFEI6AdmGnqDqQQGKj9BmDGIx6WiCYEhOoB0hB6lROUVQnYwTJJMys0h66G1j6FD5ftQHN2QbnKDqQQGKjxBFbvX1/DlIhuQE7e38eehQfbAW1Zoc0dkMG0a2oa25GDqU9BC/97BhQGmpDFJID7INILh6UIDiI8SIUGwsJAwpqqMgrR5Ci4GB6NbkiG3+a2spuya0GDKE7wkTdT1EmxDFwkHqhJxA2EddHdkGoNcjSLZBAYqP6O7mzzU1/DnqDUvoMWQIUFUla3KirkdNTbCcjBNkt5Wo65FvcBNVPXK1le5uIJHw7p68Ip2WJ38HzXdQgOIjyMnoEXrU1PCanKhnlChAkVCAoof00KPVo76e+w8gmr6jp0e+DprvoADFR1AGRQ85XQlj+oySNliLYk0OBfN6qK3o0dpH1KcAhRaxGM9EB8k2KEDxEVSDooc6IUlvrwxEtKOgVErOL0cJ6pD1UFvRQ/YhEVpUV/NgLUhaUIDiI8jJ6KGMkkRoAXBHU1UFVFby/0dRD+30H0BthTpkPfn0iOJgL58Wvb2yNsWvUIDiI6hD1kMBm0RoUVXFl5EC0dZDO90FRFsLgAKUbMh3SLK1qKuTPsTvARsFKD6Cpnj0kNOVZGsBkB5A7hFyOu3NPXkJdcgSbb0W+Y4DtQjSJqAUoPiIfI0qqufPZDtd0aiiGLBlawEEx8k4QfYUj9AinZYbHkYJyr5K+vr09VpAtPXINbgJii+lAMVHZHdCYjdIsaNqlMg1ChI77FIHxKmr489RLpIVbSUeB8rL+WvSQ7aVKGqh3cixupo/R7mt5BrcBEUPClB8RPaoUOwK2dkZvaWkiYRM1WvnToFoByi5nEyU9dCmraOsR7bviLIWwja09VqkR+7Bjd/1oADFR2R3QsKItNmEqKAdBZHTPbADAkgPgPQQZHdC2sFN1Ahyh+wEQdaDAhQfkZ2KE+vWAf8bkmpEo6qsPHAUFGWnSxkUDumhJ9/gprMzekXDFLzqCXJboQDFR1DaWpLLyYhRYdS0AII9CnICqsmRMJZ/igeI3uGauTrkKGeUghywUYDiI7Q7/gmi6nSpQ9ZTyMlEzTYACmC1aOu1hB7aouGo6UG+Q0+hgM3vepgKUB544AEcc8wxqKurQ11dHaZPn46XXnop83XGGObPn4+mpiZUVVVh5syZWL9+ve4aiUQC119/PUaOHImamhpceOGF2LFjh5rfJuD09fHnqir5XlAMSTW5tNA6magVDYsdH7XBa1RtA5AHoOUK5qOmh/YwOKFHlLOvhQZ6UdMCKNxW/D64MRWgjB07FnfeeSdWrlyJlStX4qyzzsJFF12UCULuuusu3HPPPbj//vuxYsUKNDY24pxzzkGnRoV58+bhueeew6JFi7B06VJ0dXXh/PPPRyqVUvubBYx0Wh4FLrYwB6LbsESHnCtASaX8v0WzagrpETXbAIoHsFFCaFFaKrMmQHQDWLINPUH2HaYClAsuuABf/OIXMWnSJEyaNAk/+clPMGTIECxfvhyMMdx33324/fbbMXfuXEyePBmPPvooenp68OSTTwIA2tvb8dBDD+Huu+/G2WefjeOPPx5PPPEE1q5di9dee82RXzAoiOAECKYhqUY4GW2wVlMjj00nPaJrGwDpoSVXBwQEZ5SsmkK2EcWi4SC3Fcs1KKlUCosWLUJ3dzemT5+OLVu2oLW1FbNnz858Jh6P44wzzsCyZcsAAKtWrUJ/f7/uM01NTZg8eXLmM7lIJBLo6OjQPcKGMCIgmIakmlxOV5u2jqrTpeCVE+RRoWpydUBAdPUoZBtR3LIhUgHK2rVrMWTIEMTjcVx99dV47rnncNRRR6G1tRUA0NDQoPt8Q0ND5mutra2oqKjAMLHPbo7P5GLBggWor6/PPMaNG2f2tn2PaFT50rRR7ZCznW5U09bCPoLoZJwgyE5XNRSg6MmlR2UlUFbGX0fNlwY5mDcdoBx++OFYs2YNli9fju9///u44oor8MEHH2S+HhM5+EEYYwe8l02xz9x6661ob2/PPLZv3272tn0PORk9uTpkILp6FEtbR61ouJgeUaLYFA+1FZ59jergJpceQdHCdIBSUVGBww47DNOmTcOCBQtw7LHH4uc//zkaGxsB4IBMSFtbWyar0tjYiGQyiX1ZJxRpP5OLeDyeWTkkHmGDnIyeXFMaQHT1yGUfwskMDOinCMMOY4X1iJpt0OBGD/lSPUEO5m3vg8IYQyKRQHNzMxobG7F48eLM15LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZ6IKORk9pIeeXHpo9zWIkh79/TJjRFM8NB2aDfkOPcWmePycfS0z8+HbbrsNc+bMwbhx49DZ2YlFixbhzTffxMsvv4xYLIZ58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpOPvssx35BYMCVeLroVGQnlxOt6SEd0KdnVyPAknIUEEF5XrId+ih6WE9hTIoomhYO9jxE6YClM8//xzf/OY30dLSgvr6ehxzzDF4+eWXcc455wAAbrnlFvT29uKaa67Bvn37cPLJJ+PVV19FrQjlAdx7770oKyvDpZdeit7eXsyaNQuPPPIISsWBKxGFRkF6io2Coup0c3VCIkCJCto9cOJx+Zo6IP37UdeDBjecXPYhTnpOpbgeoQhQHnrooYJfj8VimD9/PubPn5/3M5WVlVi4cCEWLlxo5keHHsoY6MmnBwVs+vfr6oDPPouWHlottLX12WnrIrX5oYECFD2kh558WzbU1gL793M9mpo8ubWi0Fk8PoEalR7SQw9llCTFtBgY0G98GHZocKOn2BRPlNoKEGxfSgGKT6BGpYecrh7SQ5JPi6gWDdP0sJ58UzxR1COV4kXlAAUohA2oUekJctTvBNQJSfJpUVIigxTSg9oK6aEvKA9iETUFKD6hWKPq7ZWRcBSgjIEeKvyT5GsrQDT1oLaih1bxSLQBiragHAiGHhSg+IRiRaGAvyNd1VDNhSToaVrV5GsrQDT1oLaih4J5idCirExu9S8Igh4UoPiEfE6mokK+52dDUg1NaUjy7fsBBMPJqIYyKHqKBSjJZDSLhqmt5A/WgGD4UgpQfEKhUWEUDwyktLVEu+8HOV1jAQq1FSoapraSP1gDgqEHBSg+gUaFesjJSIQW5eV8cyUt1CHribJ9ZLeV0lKgpoa/jqIeQSwKVU3Q+xUKUHwCOV09xTIoPT18v4soUMjJBCFNqxrSQ0/QOyHV5MsaRNk2CvUrfg7YKEDxCeRk9BSrQQGAri737sdLKHjVY8TpRkkPsg8JY5R91UJTPIQSaF5dDxUNSyh41RN0p6sa8h2SZFK+zpd9TSSiUzQcdN9BAYpPEA2mouLAr0U5NZm9dh+Inh5BdzKqKWQbUdaD7CP/QZJANLdsCPp0KAUoPkEEKOR0OWIkRHqQbWQj9KCMAYfsQ6LNjGTrEcWi4aDbBgUoPiHohqSSgQEgneavSY/C2TVt0XAq5d49eYkRPdrb3bsfrynkO8QoOSp6CC3Ky3OfZh1V3xFUP0oBik+gjIGk0CgICEZqUiVGOiAgOlmDQm0linsGGbGPqOhRyDaA6OkRdNugAMUnBN2QVGI0QInKKp5CTjce56NFIHr2QW2FY6R+LSptpZBtANGzDyNtpa/Pv1s2UIDiEwoZktgRMmqNKhY7cGMygJxMNlG1D2orHMooSait6DESvAL+1YMCFJ9Ao0KJ1uHmmkeOmh40KtRjpK1EJWMAkO/QQm1FTyE9Kipk4OJXPShA8QnkdCXkZPQUGgUBZB9atLbBmHv35CUUoEjE4IbaCqdYTY7fM0oUoPgEcjISClD0kB56jKSt02n9nhhhhTGa4tFCbUWPUT38GrBRgOITjDhdalQcv0f9qqGVCXoK6SH2uQCioYd259RcviNqbYUCFD1Gs69+1YMCFJ9AGRQJORk9pIeeQnqUlESrU6YVb3qoregJuh4UoPgEIysTenv9uxxMJVRzoYcySnpID4k2g0KDm+DXXKiGAhTCNqmU3AW02GZcUeiUaUpDT9DTtKoJ+ry6SoQWZWU8e5RNVG2D2gon6L6UAhQfUGwUFI9zBwREy+kGtVGphjpkPdQJSYzahp8341IJtRU9Qc82UoDiA4rNI8di5HS1+L1RqYYCNj1BHxWqxKhtAKQHEC3bAII/XU4Big/QBihi2/JsotSwyMnooQ5ZD9mHpFgHVFERraMQyDb0BF0PClB8gNaIcu2cCvjfkFRiplFFYTMumtLQE3Snq5JiwSvg/1GySiiY1xP0tkIBig8oZkSA/w1JJUY75HSaz62HHZry0kN6SMh36CnmO6JkG0DwAzYKUHxAsUYFRKthFWtUUduMK+ijIJUwRoWQWihA0WPGNij76n/boADFB5CT0VNMj6huxkUdMl+JIjqWoDpdlZDv0GO0rUTlKISgZxspQPEBZpxMFDohI3r4vWGphDIokmJL8oFo6WEk+xolPYxkX0WdXxT0CPrghgIUH2Cm0I0aFSdKehg9oTUKWhRbkg9ESw8jvoOCeUksRnpo8XtboQDFB1CHrIf00EObcUmEFiUlcvPCbMg29Ph9lKwS8h16gj64oQDFB1Cj0mMmbU1OV44IgfDbB03/6SHfoYcWHOihDAphG3IyemjKS08x+4jHo7MZFwWvesh36CE99BgNUBIJoL/fnXsyAwUoPoBGhXrIyeihNL6Eglc9VCSrhzaukzBm/HRnwJ/2QQGKD6AOSA8FbHqKzSMD0emEKHjVQwGbHrIPiZEVbxUV0q/4UQ8KUHwAjYL0kJPRQ3pIzAbzYd+Mi4J5PdRWJNoAJahTohSg+AAaBemhgE0POV2JGS3SaaCnx/l78hLKvuoh3yExsiQf8LceFKD4AApQ9JAeklSKPwBamQAY64Cqq+XrqOhBbYVDvkMibKO0lD/y4Wc9TAUoCxYswIknnoja2lqMGjUKF198MTZs2KD7zJVXXolYLKZ7nHLKKbrPJBIJXH/99Rg5ciRqampw4YUXYseOHfZ/m4BCNQZ6zOgR9lGhkXlkIDr2YcQ2onQUAvkOPbTMWGLENgB/24epAGXJkiW49tprsXz5cixevBgDAwOYPXs2uru7dZ8777zz0NLSknn8+c9/1n193rx5eO6557Bo0SIsXboUXV1dOP/885ESQ8WIYcSQRKOKwmZc5HQlYZhHVomRETJAemiJSlsBaBWPFqNtxc8BW569GHPz8ssv6/7/8MMPY9SoUVi1ahVOP/30zPvxeByNjY05r9He3o6HHnoIjz/+OM4++2wAwBNPPIFx48bhtddew7nnnmv2dwg8ZjpkgBvSsGHO3pOXmAnY/NioVGI2QImKHkZGhS0tpAcQHdsASA8tkcugZNPe3g4AGD58uO79N998E6NGjcKkSZPwne98B21tbZmvrVq1Cv39/Zg9e3bmvaamJkyePBnLli3L+XMSiQQ6Ojp0jzBhxJC0m3FFJfInJyO1KCvjUxf5iJoeQXa6KjETzPt1My6VkO+QmG0rfuxXLAcojDHceOONOPXUUzF58uTM+3PmzMFvf/tbvP7667j77ruxYsUKnHXWWUgMTg62traioqICw7JSAA0NDWhtbc35sxYsWID6+vrMY9y4cVZv25eQ09VDTkZCtqGH9NBjJfsaZsh3SMLQVkxN8Wi57rrr8P7772Pp0qW69y+77LLM68mTJ2PatGkYP348XnzxRcydOzfv9RhjiIlzsLO49dZbceONN2b+39HREaogxYwh7d3rT0NSCc2rS4zaRtSmvEgPjhE9xGZcySQfJWclvEMFBSiSMAQoljIo119/PV544QW88cYbGDt2bMHPjh49GuPHj8fGjRsBAI2NjUgmk9i3b5/uc21tbWhoaMh5jXg8jrq6Ot0jTITBkFRidhVPmDfjItvQQ3roIT0k2q3dqX4tHLZhKkBhjOG6667Ds88+i9dffx3Nzc1Fv2fPnj3Yvn07Ro8eDQCYOnUqysvLsXjx4sxnWlpasG7dOsyYMcPk7YeDMBiSSswEKOk00Nvr/D15RRjmkVVCq3j0kO+QaFc30oq3cGQbTU3xXHvttXjyySfxxz/+EbW1tZmakfr6elRVVaGrqwvz58/HV77yFYwePRpbt27FbbfdhpEjR+LLX/5y5rNXXXUVbrrpJowYMQLDhw/HzTffjClTpmRW9USNMBiSSozokb0Zl/b/YYI6ID2khx7SQ2JlST5jQJ7KgsATBtswFaA88MADAICZM2fq3n/44Ydx5ZVXorS0FGvXrsVjjz2G/fv3Y/To0TjzzDPx9NNPo1ZTqXXvvfeirKwMl156KXp7ezFr1iw88sgjKC203V2IoVGyHjObcXV18YaVZ3Yw8ITByaiE9NBDgxuJ2QBFHIVQU+PsfXlFGPoVUwEKKzLZX1VVhVdeeaXodSorK7Fw4UIsXLjQzI8PLeR0JUbnkQGuhwhQwgrZhh7SQw/pIdEGKGUFerbqaj7ASae5HhSg8Gc/2gadxeMDwmBIqkilZNEr6UEj5GxIDz1hGCWrQqtFoWmbWCwa9hGGfoUCFB8QBkNShdE0LRAtPYxqEfbNuKit6CE9JEa1AKIRoBg5lwjwt21QgOIDyMlIrAQoURkVFkK7GRfpEQ3bAMh3aDEToETBPsKQbaQAxQeEwZBUYXQeGYiWHsVsQ2zGBZAeQDQ6ZID00GJ0CToQLT2M2kYyqfe/foACFB8QhlScKozOIwPR06MYpIckCloANLjRQm1FTxiyrxSg+ABKW0vIyeghPfRQgKKH9JBQW9FjNKNUXi4/4zc9KEDxAeRkJORk9FDhnx6zGQM6CoFDgxs95Dv0+FUPClB8AAUokjA0KpWQHnrMthXGgO5uZ+/JK9Jpub07+Q4K5rMJg++gAMUHUIAiMVqPA9CoMBvSQ1JTI2uYwqqHdjk5+Q5qK9lQgEIogQIUCY2C9ITByajEqB5R2IyL9gzSQ21FTxh8KQUoPsDsvHqYN+MiJ6OH9NBDeki0AUp5eeHP+rUDUgnZhp4wZJQoQPEYK/PIQHgbFjkZPaSHHtJDIqZDS0v5oxBh1wIg28gmDHpQgOIxZuaRtZtx+S3SVUUYGpVKSA89YUhbq8KKbfhxMy5VUFvREwY9KEDxGDPzyIB/DUkVYWhUKqEOWQ/Zh8SKFgANbgBqK9n4ta1QgOIxFKDoCUOjUkkY5pFVQnpIzGjh5824VEErAPWEwZdSgOIxwoiMzCMD/jUkVVgZBYV5M64wOBmVkB4SM1oApIeWsGsBhCOjRAGKx5h1Mn41JFVYOfCLMaCnx7l78hI6AE0PdUIS8h16yDb0hCHbSAGKx9AoSI8ZPbSbcZEe4bcNgPTQQr5Dj9UOmbKv/rUNClA8xqqT8VukqwozekRhMy4r8+ph1QIIR9paFeQ79FjpkMN8FAIFKIRtaBSkh/TQQx2yJJXi+wYBwXa6qqC2oseMHlVVQMlg70d6+Nc2KEDxGHIyekgPPWGYR1aF1RVvYdeD2gqHsq96KEAhbENORo/Vwj/qhKRthPUoBFqSr4d8hx6a8tIThuwrBSgeQ05GD+mhx+pmXGHUQ9TjAMXPngHINrIhPfSQHhK/akEBisfQUkE95GT00GZcEqFFeblcvVUIsg095Dv0kH1IhBb9/f46CoECFI+hRqWH9NBDekhICz1m9sgBaEojm6jYR5CzrxSgeAzNm+ohJ6OHRskS0kIPtRU9ZB96zOhRVgZUVvLXftKDAhSPISejh/TQQwGsxKoW3d1yeXKYoLaih/SQMCYL5YOsBwUoHkONSg+NgvSQfUisahHWoxDINvRQMC/RruILsi+lAMVjyMnoISejh+xDYlaL6upwb8ZFtqGH9JCYXZIP+FMPClA8hjIGesjJ6CE9JGa1CPtmXOQ79FBbkdgJUPw02KMAxWOsNqpk0l/LwVRh5uwZINxOJizzyKow21YA0kOLHzsglVCAIhFaxGJAaamx7/GjHhSgeIzVRgWE09GQk5GEZR5ZFVYCFNJDEua2AlBGSYt2CbqRPYMAf9oHBSgeY7ZRRWUzLnK64UnTqsJOBoX0CH/2lXyHJCzZRgpQPCYshqQKGgVJwlLopgpqK3rsZF9JDwpes/GjL6UAxWPM1lwA5HS1RMHJBH0eWRUUoOgxq4dfN+NSBWVQJGFpKxSgeExYDEkVdgIUxpy5J6/QahHkeWRVUFvRE5ZRsiooQJGEZTqUAhSPISejx85mXN3dztyTV1CHrMfs2TNANPQIeiekCgpQJGHxHRSgeExYDEkVtBmXhIJXPaSHHvIdeuxkX8N2FEJYbIMCFI+hUZAes6PkMG/GRbahh/TQE5ZOSAWpFH8A5gvsAcq+Av60DQpQPCYshqQKGiVLyDb0kB56SA+JlRVvVVUy+xq2ADYsftRUgLJgwQKceOKJqK2txahRo3DxxRdjw4YNus8wxjB//nw0NTWhqqoKM2fOxPr163WfSSQSuP766zFy5EjU1NTgwgsvxI4dO+z/NgGEnIweGiVLqOZCD7UVPaSHxEqAEouFX4+g24apAGXJkiW49tprsXz5cixevBgDAwOYPXs2ujX5sbvuugv33HMP7r//fqxYsQKNjY0455xz0Kn5refNm4fnnnsOixYtwtKlS9HV1YXzzz8fKZGjixBhMSRVWNGjro4/d3Sovx8vsWMbyaRcwh4WyDb02LGPsOmhDVDKy41/X1jtIyxtpczMh19++WXd/x9++GGMGjUKq1atwumnnw7GGO677z7cfvvtmDt3LgDg0UcfRUNDA5588kl873vfQ3t7Ox566CE8/vjjOPvsswEATzzxBMaNG4fXXnsN5557rqJfLRiExZBUYGUeGZB6tLervycvsWMbANdj1Ci19+QldvQIm20A1vSor+fPYfMdQovSUuN7BgFcj+3bw2cfdm2DMeNbGziJrRqU9sG/6vDhwwEAW7ZsQWtrK2bPnp35TDwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPcICOV2JlbNnANmwwqaHFdsoLZVzySFqJgDsOd2w2QZAemixogUQXl9qxzbSaf8UDVsOUBhjuPHGG3Hqqadi8uTJAIDW1lYAQENDg+6zDQ0Nma+1traioqICw4YNy/uZbBYsWID6+vrMY9y4cVZv23eQk5FYmUcGwj8qNOt0w24fZBsc8h0SK/VaQHj1sLJDeXW1zD75RQ/LAcp1112H999/H0899dQBX4tl5YYYYwe8l02hz9x6661ob2/PPLZv3271tn2HlYYV1kZldR457HpQgMKx2yGHeadho5Bt6AlrAGtFj1jMfxklSwHK9ddfjxdeeAFvvPEGxo4dm3m/sbERAA7IhLS1tWWyKo2NjUgmk9i3b1/ez2QTj8dRV1ene4QFcjISoUVZmVz+Z4Sw60Fpa46dtpJKAT096u/JS2h6WELBvJ6w6GEqQGGM4brrrsOzzz6L119/Hc3NzbqvNzc3o7GxEYsXL868l0wmsWTJEsyYMQMAMHXqVJSXl+s+09LSgnXr1mU+EyUobS2hDllPWJyMKqzoUVMjg13Sg2wjG9JDj9/6FlOreK699lo8+eST+OMf/4ja2tpMpqS+vh5VVVWIxWKYN28e7rjjDkycOBETJ07EHXfcgerqalx++eWZz1511VW46aabMGLECAwfPhw333wzpkyZklnVEyVUpK39UG2tAnIyesLiZFRhJ229fz+3j6YmR27NE2hwI6HBjZ6w+FJTAcoDDzwAAJg5c6bu/YcffhhXXnklAOCWW25Bb28vrrnmGuzbtw8nn3wyXn31VdSKBfgA7r33XpSVleHSSy9Fb28vZs2ahUceeQSlZtaHhQQ7Tqa/H+jr4zsihgHqkPWExcmowo4e+/eHyz4YowyKFmoresKih6kAhRmoMovFYpg/fz7mz5+f9zOVlZVYuHAhFi5caObHhxKrWxLHYtxJtbdTgOK3RqUK0kMP6SFJpWTRr5UApbOTLyc1U+vlZ8g29IRFj5CYZ3CxYkglJXJHSL8YkgrC0qhUQXroIT0kdpfkMxaunagp+6onLFNeFKB4jFivbmZZLRBOp0ta6AmLk1EFBSgS7TEGZvSIx2X7CpMeZBt6wqIHBSgeop1Hpg2G7GvR0cHT1mGBAjY9FLBJtBmUMhMT9bFYOLMGZBt6wpJRogDFQ7Rbu1OAIjtks1oIJ8NYuE40VhGwhQkru2MC4Wwr2g7I7Cq+MOpBwbweyqAQtrE6jwyEsxOy2qiqquQoMkx6WA3Y/OZkVGFXD7INThjtw24w39OjHzAGnbD4DgpQPEQ7jxx0Q1KB1UalTVuHSY+wjIJUQXpIrGoBhFMPu9lXgIqGAf/ZBgUoHmL1iHDAf4akAhoV6gnLKEgVpIeE2ooeqxmU8nJ+SB4QLj3sBmx+0YICFA+xOqcO+M+QVECjQj12O+TubmBgQO09eUlYRoUqsBOghNF3kC/VE5bpUApQPIRGQXpIDz12VyYA4Upbh2VUqAIVwbxfOiEVkO/QE5ZgngIUD6GMgR47eoSxE7LqdCsqgMpK/josejAWnlGhCqhD1kO+VI/dtpJM8mNUvIYCFA8hJ6NHhR7UCXHCZh/aqaqgjwpVQLahh3yHHqt61NbKZet+sA8KUDyEon495HT1kH1IaMWbHrINPeQ79Fi1D78do0IBiodQ1K+HnK4ecroSFQFKIqG/TpAh29BD08N6VBRR+6FvoQDFQ8jJ6CE99FhdOgmETw+hRUmJ+SX5YkQIhE8POx2yHzogVZDv0BMWPShA8RCK+vVQBkWPiqWTYemE7Djc0lJ/pa1VEJYOSBWkh56w+FIKUDxERaPq69NvmR9kwpKWVAU5XYmdbBIQPvsg29ATlg5ZFWGxDwpQPERFBgXwhyGpICyNShXkdCV2sklA+PRQZRuMqbsnL6F6Pglj4fEdFKB4iJ1GVVYG1NTw134wJBWEpVGpggI2iR0tANJDi9AileKH5IUBqteSaA89DLoeFKB4iN20tZ8MSQXUIeshPSR2glcgfHrYsY2aGl5sDIRPD6rns7fiDfDXdCgFKB5CaWs9lLbWQ9uZSyiDoseObcRi/uqEVEDBvERbkxj0bDQFKB6iyumSk5FaDAwAvb3q7skr0mm5eyodCEdtJRsK2PTQFI9E2EZpqfkl+YC/9KAAxUMoba3HjtMdMkRu0RyGTshumjZstmG3rVDApids9mEnGy206OzkA4OgEybboADFQ+waUticrqq0dRj0CFOaVgVhcroqoMGNHhXZV8aAri519+QVYbINClA8JEyGpALqhCTaDAoFKGQb2ZAeeuxM8cTjQHk5fx0GPcI0HUoBioeQk9FDAZtEaFFeLqeuzKB1MmFIW5Nt6FGlhx86IRXYmeKJxcJlH2HKzFOA4iEUoOghPSSqtGAM6O5Wc09eQrahJ0ydkArIPiRhCuYpQPEKxkJlSLZgDGCMnIwgnbatRWUl38wPCIcelDHQoMA+wtRWtL40DNMatkillNlGT49+0zcvoADFCx59FBgyBIkNWwFE3MkwBnzrW8DIkUj2pQBEPGDbtQuYNAnJr/8jAOtaxGLA0KH89f79Su7MG/7yF6C2Fon/XQzAflsJtBYAMH8+UFWFZNs+ANbtIxS20d8PzJyJ1CETkOKuw7bvCLQemzYBTU1Izv8JAPtaAN770jJvf3wE2bQJuPJKAEBy9ToAh0S7Q378ceCJJwAAiXg/gFLLnVAonO6NNwKffIIERgCw3iEDXI/duwOsR28vcPbZAIDEa28BOCfatrF6NfDv/w4ASHyyA8CwaOvxi18Ab7+NJCozb1nVY9gw/rxvn4L78oqrrgLa2pBoexeAdS3Kyvi2DV1d3D5GjlR3i2ahDIrb/OEPmZeJHh72R7pRPfxw5qXdNG3g9ejpAZ56CgCQABfBToASeD1eey3zMgkexVsN5oUWvb36FVKB4je/ybxMtPcBiHBbAYAHHwQg2wpg3z4Cq8ennwJvvQVAje/wSwBLAYrbvPtu5qVwupF1MqkUsHIlAIABSDA1nVBg9VizBiJXbbdDBkKgx6BtAPadbl2dXA0VBj2SjK+LjWxbaW8HPv4YgJoAxS8dsmVWrMi8DJPvoADFbUSAMn16pmGpcDKBPH9mwwaeR6yuxsCUE8AGzTGyAZtwMiefLDvkCutrhAOvh+iQtXpYtI2SEtkJBVKP/n4ewAJK9Ah8h/zee/z5kEOQHNEEAKgoT1takg+EqK2cdBJlUAiL7NwJfPYZ95Zz59o2JNGoBgYCupRUdMgnnIDk+ImZtyM7KhRO5otfRKKCrwONw/p8RKA7ZMakfVxyiZJRoV+criXWrwf6+njh2axZyqa8AmkbgGwr06YhMeZQAEBFacry5UKjxyWXyH6ldMDy5fyiBwUobrJ2LX8+/HDgqKNsO5maGrmU1GtDssT77/PnqVMzTgaI8KhQjJCnTkVy5OCoMGX95EPhZAKpR0sLX9FUWgpcdJF0uuURzSgJ2zjhBODQQ5UNbrq6vF9KaonVq/nzCScg0dQMIBwdsmWEfcyahWQlXz1R0W99336/DG4oQHGTTz7hz5MmAePH23YysVjAO6FNm/jzpElINh0CAChBOhN0mSXQTiadlvZx+OFIDKat4wPWU2OB1kPYxvjxvEOOVQEA4gnrS9ZCocfhhwPNzbZ9h3YpaaB9xxFHINl4MAB72cZA28a+fcCePfz1pElIDG8EAMSTnZYv6Zd+hQIUNxGNasIEYPx4mUFJWo90A92wRId82GFINHAnUxFLFviGwgRai5YWvsSktJTbxqCTqUhE3DYmTABKS5GsHgoAqOjYY/mSodHjkEOk7yi3VnxWVgbU1vLXQdcjcdBYAEBFOqLToUKLhga+v1b9KABAvNd6MO8XPShAcRMRoBx2GDekksFR4d4Wy5cMrNPVZgwmTEBi1DgAakZBiQTv6wOF0GL8eKC8HImhg04mYX1ry8DaBqDvkAEkqviQP96xy/IlAz0FqNVj3DiZQbGhh19GyabZtw/Yu5e/PvRQJEaOAQDEUz2WLxlYLYAD2kqyjm9cUtFtveH7RQ8KUNxEG6AASJRUA7AXoPgl0jVNSwsv+isr4xmDg7iTqWAJyxtV1NbyBAQQQD2yO+Qh3MnE+yI6pZHtdCv4cL+iY7flS4ZFD1ZWjsTg5mTxfa2WLxlYPbIyBkkRzKfsT4e2t2dW+gcHTSYaABJV/JexMx3ql36FAhS3SKeBzZv560FDSsYG07SdEUxba2sMysqQiGtWreyxpod2e/fA6iFso2IIAHvTf4HVAjjQ6ZYOZht791u+ZGDbijZjMGECBjS1oJEM2A7Irg0FMFhQbjG6EFoAAdyZ+4BgvgYAUNFnvwbFa9ugAMUtWlp4ZqC0FBjHpzPExmTxzgg6GRGsiUY1MLgHio0ABQhwp5ylR6KcByjxpP0pHq/TtJbI7oREkWyP/bR1YG2jsRGoqdElGO34jsC2lewOOc6za3EkLP8y5eV8VSQQQD2yfUcp/0XsZF/9Mh1KZ/G4xY4d/LmpKbM2OLMbZBQzKEIPEawNOt0KJPkBMhYJbKf86af8efx4AECiTONkGIOVHaiEFj09/BgBO3uIuEpXl8wYDOqRyTZ27bV82cB2yNm2oQ1Q2tssXzawbWXbNv58yCEAgESK+9M4Etx3WDw8ZuhQvp9UYO1D6JHJNlr/RQ47DPjxj4ExY+zenD1MZ1DeeustXHDBBWhqakIsFsPzzz+v+/qVV16JWCyme5xyyim6zyQSCVx//fUYOXIkampqcOGFF2KH6LDCymef8efBvzhjQFI0LAVOJnCNSvy9x/IK/MwR4TYzKIHXYzBgSw46mYp0H9BpLVVbXx/Q7d2FFnV1/AEgwQaLQrvs20bgOuRs2xhc6FaCFEr32i+SDZRtAMD27fw51+Amar4jnT7AlyYHF19UdO+3fNmmJuD22zPn2nqG6QClu7sbxx57LO6///68nznvvPPQ0tKSefz5z3/WfX3evHl47rnnsGjRIixduhRdXV04//zzkQpcdZIJRIAijEizmjaSo6CsgE3ooSqDEignk0rxXYYB6XTTPLuWGRVaoKRE7ncRKD2yOiBAo4eCVSuB0gLI2yHbsQ0gPHpkDhlVpEegfGlbG99pLxbjUQU051b1d/L0aYAxPcUzZ84czJkzp+Bn4vE4Ghsbc36tvb0dDz30EB5//HGcPXiU+hNPPIFx48bhtddew7nnnmv2loKBiHKzOmQAqNgbwUr8rIAt0hmUlhYepJSV8ZUJyNEJHXpogQvkZ+hQ7nADpUeOACWZ5q6qop0ClEgH80De6WHeViK2b5DQYvRoXkgDIJHWTHnt2QNUV3t1d7ZxpEj2zTffxKhRozBp0iR85zvfQVubzBCsWrUK/f39mD17dua9pqYmTJ48GcuWLct5vUQigY6ODt0jcOTpkAGgYt/nli8byEYF5A3Y7I6CAllnIDqgMWMy66R1nVDUAjahx2BbAYDEANcl3rUbumUsJhBadHZavoQ3ZOmhKoMSyLaiLRLJ0kNVwLbXepmT++QK5pN8XteuHn5AeYAyZ84c/Pa3v8Xrr7+Ou+++GytWrMBZZ52FxKAVtba2oqKiAsO067oANDQ0oLU1dyZhwYIFqK+vzzzGaf4YgSFPh1yKAZTusT/FE6hG1dcnG86gHqqczPDh/DlQeuSa0lDUCQVSj6wRMgAk+rnTjSNh+ZcRHTIQsE65YMbAum2MGMGfA2Uboq3U1mbmL1UNbkRbCZRt5ArmFdmHH1AeoFx22WX40pe+hMmTJ+OCCy7ASy+9hI8//hgvvvhiwe9jjCGWZ6XCrbfeivb29sxju/ijBIliUxrM2pbV2g7I4iXcR9RbVFZmfgFVUzyBdroaJ6MqjR9oPRSPCsvKZE1OYPRIpaTvUDzFE8jg1cFgXrQVG+7HfQroQRkUA4wePRrjx4/Hxo0bAQCNjY1IJpPYlxWmtrW1oWFw/j2beDyOuro63SNQMJY3g1KBJHdCFncHEo2qv59nPwOBtkB2MChV7XQD5WRyZQwUZ1ACpQd1QpLWVlmfNFjXd4AWFkcmgdMCKNhWKGDjqMoo+QHHA5Q9e/Zg+/btGD16NABg6tSpKC8vx+LFizOfaWlpwbp16zBjxgynb8cb9u3j0xqArLTOOJlBa7LYKqqr5YmmgXE0WSt4gCyna8NDBDJjUEwPG8sKAqmHyLAN6pFOy5qRCiRt6RG4Tkho0diYqU/S2UYyKX2LSYQW3d2WT5dwnxxtRdch29gGNpABW1ZbAbLsI3Db4uoxvYqnq6sLm8S23AC2bNmCNWvWYPjw4Rg+fDjmz5+Pr3zlKxg9ejS2bt2K2267DSNHjsSXv/xlAEB9fT2uuuoq3HTTTRgxYgSGDx+Om2++GVOmTMms6gkdIuofOZJPa0BjRCX9QBqWDSkW446mpYU73cG9nPxN1rp9IMvJ2CiCDmTGoGXwLKbB4BXIyijZcDKB06O3VwYgg3roluRHrRMSHVA+2wC4HlVVpi9dX8+XoqfT3HcMjiH9TY62osugKGgrgQlegeL2EbUAZeXKlTjzzDMz/7/xxhsBAFdccQUeeOABrF27Fo899hj279+P0aNH48wzz8TTTz+NWnG2N4B7770XZWVluPTSS9Hb24tZs2bhkUceQak46S1sZNWfABojKh2wFaAA3Om2tATI6RbIGNhtVKID2rePO96SIBzmIJyMpofQj4KsD28Dl0ERHVBVldykTbtzqs0AJXCdUCHbKB0AUuB65NnWoRAlJbzIfs+eAAUoBTrkyAWvjMn2ktd3RCxAmTlzJliBOc9XXnml6DUqKyuxcOFCLFy40OyPDyaFUvhlKaAfSrIGgXG6WfU4QJ609WC2yQxCi3Sat82sxWL+Q+tkcowKuZOxlsIHAphB0XZAWfVJAFCO/mh1QoVsoyzNAxQbvmPECK5F4PRwoEPOXnBg4XQJd+nokBuxhTRACcL4Mvjk6JAzGZSyNH8RJadbKKOkTVtbIB6Xh34FImBrb+fTGoDOyahK0wY2g5LD4ZaXDKAELPIZlIxtlA8OFKOoR74pno4O20XDiURANmAVbaWuTjo9hGuKhwIUN8jRIWei3HJ1AUpgnEyhjJI40C4qdRfCyQwdqqsjUD0qDIQWQMEOKF42eBRGlIL5QhmUCvsBSqD0SKf5qiYgZ8AWR4J/psvabrI1NZnNWIPhS3O0FYAyKIRZCk1pCCcTlcLQdLpw5XnlYF7VZtoaCIeTyYwKLSK0aG8PyO6pOTIoKrONgWorQOEMyuDqvcgMbvbs4fspALqaG7ngYNDAbSw4CFTAlqOtABSgEGYpNKVRMdghR2UU1NbGe8qSEp2TyehRNVgoHZVOKI+TOWBVk8W0tbYGJxA7ZBbKoCjMGASiQwYKZ1Di9n1HINvKQQfJVAc0wXz1YEllVKa8crSVVIo/AJriIYxSKIMi6kCj0qiEFg0NOZ1MvNp+gBKoTshImjaVsrwLX+B2Ty1UBKkgQAlUhzwwwAN6ILceVeoGN4GwjTxtJRPMK/QdgbCPAtlGgDIohBF6e+XQNVeRbOXgnyAqjSrH9A6g0UPhKCgQehTJoFSU2K+7CJQehfZ1UFCfFKgO+fPPeeastJRnDQahbGOeKY0hgwOeqAz2CrQVYDCD0t0dkLnd3FCA4jTafR3EUBbaUdDgn4BqLgAA8Rr7AUrQ9WBMo0fdYKFBVPQolEGpVDel0dWld+a+RLuLrGZDH8o25s6gVAwZjGCjMtgr0FYAzYpIG32L11CA4jTaOWTNwvrIjoKKBSgKRkFBdzIDA7LkREWAEhj70GYbc2VQFGQbhw6VzdD3nXKO+hNAG6BQthHQ6FFrP0AJegYlU49TAcTEPlIBnuahAMVpclThA85lDNJpy5dxh2JTGrWDHXJUNq4rlqats+9kAjNKFktI82YbB4P5ri5ZCWgSsXsqEIBOOY/vyLSVGnXBvO9tAyg+uFGYbfS9beTZRVY3HSraEAUoRF6KTmmomzdNpwOQzSumh4JRkHAyvj/Ik7GCW5kDQHzo4N4onZ2Wf0xg9NBqock2yoyBxl1Z3OsCCFAnZDTbqMg2LC4Uc4+ig5tB36HANnzfVjo7ZeF8runQODJHRdixD6+hAMVpijUqkUGx0ajicWDIEP7a9w2r2DyyyKDYaFQjR/Jn32vR0ZFzF1nhZEpKgLK6av6fKOiRZ0pDN8VTNthebOgh6k137bJ8CXcwWhSqwDYSCcsLxdyj6OAmQr5D2EZtrXT+yApQxPsUoBB5KToKGoz6OzttDWFC43QVjIICo4Wwjfp6oLo687YuTSsO2YxCh1xsOjQeU6JHYDoho0WhNrSoqZEbGPvaPvJMaQAa+6gfnA6NUlvJZxta32HDl3oNBShOU6TQrUKMggYG9Ll9kwin6+uGpd3XIV/ApsDJCC26u2WCwpcUK4JUNAoSTtf3HbLLevi6rQCuBPNAQPTIs4ssoOmU69T5jsC0lbzBPJQE815DAYrT5BkV9g0eUFtVVyHfDHsnlGdfB0ATsClwMvX1cg84X+tRrAhS0SgoEMEr4JoegeiQgeKj5DrNlIaN7Gsg7EN0yCNHajbEyVqSrzCD0t7u82XoxTLzFKAQhshjSCJAqawuken9sDvdPPs6AJqAbZh9JxOLBczp5rENVU4mELYBGMugRGWKx0i2UQTzqZQ0GgsEYnCTx4+KpAoAVAy170eHDZOuyddF1MVqGysgs400xUPkpLcX2L+fv86XQalCdDqhPE4GkFMxVcMHJ8RtNqpABCjFsmuKbWPvXsurc90hjx4Z24hSWymQbczoMSwu3wx7hi1Ph6yNy6pG2C8oLymRK3l8rUceX6q6rXgNBShOkmcXWUAaUmUllI4Kfd2o8jgZxjQZpRE1/IXNRhWIUWGejIHOySiouRDL0Bnz+X4XRTJKlZWITg2K0KJAtrGyulRmX8OuR5EOGQDiw+xrAQREjyIBm6p+xWsoQHESrRFp9nUAIup0i8ypA5oApafH1nA/UHoYcTI2Rsjl5XJzMt/q0dcnoycjGRQFGQNfB695bANwLqPkaz0MdMixOjUdciD0cCnb6DUUoDhJgSmNnGl8BTUogWhUBUZBVSNr5H/CnrYuUp+k0sn43j5EB1RZyfej16B6VKgNXn27OZkB3xGp7GueQ0ZVB/NAQPQQ7aWQHlSDQhTEQM2FE07XtxQZBcViQHltJZ93B8IdsGl3kc0TsKlM0/re6Wq1yMo2OpUxSCR87LuNBigKOqFA+A4zGYOwZ187O+XfmzIohGXydMiAs6NC31JsRVMlECtRsxmX7/Vob8+5iyzgzDyy7wM2FzMG1dWD14KP7cNIQXmUpngM+A7tjqqhHtwILerq9L8zqAaFMIPZKZ6wb06WJ2DTOVwgGgGK0GLoUN0uskCeItmwb8blYsYgFgtAJ5SnYBiI4BRPOm2soDweV3IUgu/1cDGY9xoKUJykQAZFl8ZXUCRbVyc3J/Nlw+rvz7uvg65RAUr0CKWTCfNmXC5mDIDgBmyplNz7Q3UGxbebkxXYRVbXVmKxaNTzGW0rVINCFMRsJxTmUWGBfR0OCFAi7mRy2obNoxBCp0eUanI0aPf9UJVR8v3mZEKLUaPkKGyQvL4jzNlXyqAQSnDZkHzdsArs6+DkFI9vNyczOwoCIut0ncyg+DJgM5BtBNT5Dt9vTmbUNoDIZ1/zthXfLlcrDAUoTlFgF9mBAf4A1DpdXzcso8EaoESPESN4Vokxn3ZCBfa50OlRWiq9r4KMkuj3fIfRmgvFNTmff27rMs7Q2sqfy8tl5DCI6IDKywcXuykO2HxpH0ZtA1Cix6hR/Hn3bl7+4jvMDnxtHoXgJRSgOEWBXWTzpmltOpmGBv7sS6drdEUToMTJlJVJ3+5LPcyMChXo4WvbAFzPoIhSBl/qoQ1e8+0iq7CtAAHRw0xbURDMp1I+n/IqpkeNmj2lvIQCFKcwsIssoHaDIV93QlbStBHVw4lOSHRAu3b5cMqru5tXaAKuTYcGwjaK7SILKG8rInnjK1xuK+XlMhvta/sopkepmqMQvIQCFKcw0CFXVAwOkBSPgsjJcII6KnSq8C8W8+moUATzQ4bI31VDzo3rbG7GRbahJ6h6OFGDAvg4YCuwwSPgTPbVSyhAcQoPnIyvR4UuT/EAIXIyCkbJvp7yKqAFkLVnkLZouLvb8o/0rW0AnnRAQdUjcr50/375S7voS72CAhSnMNMhK4r6g5pBccrp+nZUuG+f3HDCRSfjW/soMKXBmFxdXVk5+I84CkFBTY4vp7xcLgoFfNwhA8YLyoHwT5cLLYYN0/zSEqemAL2CAhSncLmwC/BxowLMjYLCnqYVWowYwXe/zEKXMQDC3wkZsA1gUI+YuqMQYjG+SsN3U15W2opN3+HbYD6Vkg3Yg8GN73xHgeAVoAwKYRQrUxr9/bY24/JtIWR/v1z7TKOgolMaupoLIPxO12CAoroQUkx5BUmPyE3xCGdWUiLX/2pwenBDvsNbKEBxCiujIMD2BkNiVOirvT8K7CILRHCKp0DKGnBulBxEpytso7RUs4lohPUoOEK2sRmXb6e8hBYNDfKcHQ2RC9jM1GsBFKAQeTBwDk/GiBQtBysrk/2/rxpWgV1kgQgWyRocBdEUTw7bAMIdwCYScs7JTAZFwVEIvpzyMtghq86++tI2APN6UA0KcQC9vbwQEjDudMOcmrTaqBRpsXu3T0eFLs8jB3GK54AOGQh3ACuC+XicF0JmUTD7aqMT8u2Ul0dTGr70o0BBPRijZcaEEQrsIgsUGRUqivyD6GRUFw1rR4W+mvLyKEDxpdMtsuQ6chkUrRZZGzwCOfTQHoUQRvswO6WheHDT1hacwc3AgNyan2pQiPwU2EUWcGdU6CsnU2C6CyjQIXd32zoMo6xM7ggZ6IAtzLuFdnbK/UyMFFAD4a5BMWsbQHQCthw4FcwHccpL2AZAGRSiEGYbFRDuNL5VJwOEcy65SJrW6SkeX015CS3q6/VnhwwSuSkeD32HL/UosqzWqeyrdsrLN77DYLYR0OxeQDUoxAGYzRgA4a5BKaLHAU6mslIW04ZNj3S6oNPt75dJI9WjIF+u8jK7rwMQ7oyB2bYChLsw1Orgxmb2FfBhwLZnD3cQgPxjadDW42QS91HLoLz11lu44IIL0NTUhFgshueff173dcYY5s+fj6amJlRVVWHmzJlYv3697jOJRALXX389Ro4ciZqaGlx44YXYsWOHrV/EV9hJ0ypyMsLP+QKzTka7GVfY9Nizh08WAzmdjFP7fgD6VV6+0YPaih4rGRTFO1EHSY+806FA+OxDaHHQQfwgtyycDOa9wnSA0t3djWOPPRb3339/zq/fdddduOeee3D//fdjxYoVaGxsxDnnnINOjUDz5s3Dc889h0WLFmHp0qXo6urC+eefj5Rv8s42+ewz/my08hxQPir0TaMCpB5FRoVO6CH+BKJte47Q4qCDNBt7SJxO0wo9xG14ThHbcLJDFlrs2iVPHvAcs6tWgPC2lYEBmc4xah+KjkIAgDFj+LNv9PAwmPeKA3e+KcKcOXMwZ86cnF9jjOG+++7D7bffjrlz5wIAHn30UTQ0NODJJ5/E9773PbS3t+Ohhx7C448/jrPPPhsA8MQTT2DcuHF47bXXcO6559r4dXzC9u38edy4nF/u6eHPuil3RU5GNCrfdEB9fXIXWdIDEJnCsWNzfllo4VSadswYYM0aHzndIno42SGPHMkHoskkD+jHj7d1OTUIPYThZnHAqhUgvG2lpYXXXZSX59zgEchhHyL7un+/7U7Zd3oI2/Agu+YVSmtQtmzZgtbWVsyePTvzXjwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPXxNEacrFi3oOmRFhiQaVUeHT4Jm0borK2XVWRZCD7FXHQDlevjGydgJXm0ehQD4UA8rbUVRhxyL+SyjxFhR+yioh8IO2camtOoQWowZk3ODR8bytBfFGTZf2AZg2DZ0fjRqUzyFaB2sJmoQ1UWDNDQ0ZL7W2tqKiooKDMvahEj7mWwWLFiA+vr6zGNcnj+QL2BMOt0inVBOQ7LpZOrqZPv0RcPSapFjyTVQpFO2qYfvnIzBDjlnsAZQwAYoTVv7yj7275cGYMU+FHXI3d18gOM5RWwjmZSr0ZzolH03xWOwX8kbzPsi6jSHI6t4YlkdEWPsgPeyKfSZW2+9Fe3t7ZnHdmG4fmTXLj7K1Q7PsnA60vVVJyT+VnkcLuCsHlonY7OoXw1WOuSyMpnTD1va2sqoUGHa2ledkNBixIisORyJk9OhNTVyX0lf6VGkrQARmR62k10bGPBRoZVxlAYojYMVmtmZkLa2tkxWpbGxEclkEvvEVvA5PpNNPB5HXV2d7uFbRJTb0JCz0hpw1skAPmtYRRpVf79cOeeEHmKvvIEBnyyttdIhA+FMWycSsgjSg/okIFhtBaDBjRahRXl5Vr254imvlhaf7BtkMGBzKvvqBUoDlObmZjQ2NmLx4sWZ95LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZwINORk9BtOSgDOj5PJyeUq7r/QoUiR7wJ5lYUxbi5swW58U0bYCOD/lFSQ9cnbIgNI9pUpKeHDS1mbrUvbR1ieZqddSeBSCF5hexdPV1YVNmzZl/r9lyxasWbMGw4cPx8EHH4x58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpmVU9gaZIBwQ4W9gF+MzJFGlUQouSEs2yWkB5J/T551yP44+3fTnrGKhPyulkAOUByu7dPIGh09xttLZhpT5JbMaVo4DSKL5sK2YHN2H3HR61lbIyHqS0tPBYOs9KZ3dob7dWnwRwPXp7oxGgrFy5EmeeeWbm/zfeeCMA4IorrsAjjzyCW265Bb29vbjmmmuwb98+nHzyyXj11VdRq9m+/N5770VZWRkuvfRS9Pb2YtasWXjkkUdQKtavBxkDTsbJIlkgWE5Gq4Wuj1Ksx3vv+UCP3bvlWsA8y0gLOhnAth7Dh/OgJJHgTre52dbl7GE32yg+oP2/SXy194eBei2np7x8NQVoZUoDUD64aWnhekydavty1tHWJx3wC3MKZl/b2nyyrNMcpgOUmTNnghWoBo7FYpg/fz7mz5+f9zOVlZVYuHAhFi5caPbH+x8TRaGRmFf3OGMA+EgPbX1SntRFXiejaJQci3E9Nm/mengaoFjNNoqjENJproeNACV7aW2RWn5nKdIhp9Pu1eR4HrAlk7I+ycyUBqBcj5UrfeA7rAbzQKCXGtNZPKoxMY8c+nn13l5ZmVpkisfpURDgAz2srmgCHBkle94JmXC6uk5IexSCoimvnh6eRfeUIr5De1pt6LOvImKMx/Nu0pY3QFG487Jv9LAazAOB3qyNAhTVFOmEGCsyj6xwM67WVo+rz0Wjqq4Gsva9ETi9agXwkZMxMf0XiYyS1elQQFmnXFUlTdNTPQxs0uZ0QTngI9vQdshF6pPcCOY914MyKIRt0mlpyQU2FxL7ceQskgVsO11t9bmnJ5Na3aQNCOdmXAaya07XoAA+7ITMZlCA8AVse/YYrk/SHvYNwBEtWlvlmZaeYHWqHAjnlJeKwU0Aa1AoQFFJWxuPQEpKim7SBmR1QtrNuBRUn4tDAz11utu28WePpzR80QEB1osggXCOkk3o4WSGzRcBrNBi1Cjz9UnaoxBsbsY1ahRfmZpOezy4UZFdU9hWRCztGQameCiDQhRm61b+PGZMzpNqAdmoDthcCFBqSMKOPW1Yn37Knw85JO9H3JjSED5u3z59gOg6wj4K6OGGkxF6iPjRE3p65CGSBU7pc2OUfPDB/NlTPURbMaBF3mANsK1HaanslIOih5M1KFrb8HSneAN6UA0KURgDHVDeqB9QakjCjj11MnY6ZIVa1NfLLbxFO/cEE/bhZIcsbMNTLcQPr68Hhg7N+zE3prx8oYcd2ygrk0fYhsU+7PhSB4LXri4+wPGEdNrQYI8yKERh7HTIgCOdkLglT1DRIYvNuGwibsEzPZJJOZFtx8ko6JDFj9+508PjOQzYRt5jEIDwBWwmfMcBWgBK9fC8rWh/uBU9FGpRVSV3ovbMPlpaeEMoK8tbOgBQDQpRDDsdMuBIJxQUJ5O3Q9Z+yAaed0Lbt/MccVVV3mWTgIG0tQKne9BB/Da0C0dcx0RbAZzNsAW+rQDhyigx5ptso/YWPLMP8YPHjeNBSh4og0IUxs48MhCuUWEqJXs/K06mqkouVQhDJ6R1uAV2A3PD6cZiMnXtmX2Y6IAOOAYBcKStbN/u4bJ8VYObMPiOXbv4pi+xmLUVbyJ4VZR99VwPA7YBuDO4cRsKUFTiIyfjeYe8cydfp1hWVvAQi7xOJhZzpCYnKE7G6VGQ5/ZhMmNwQEyneBl6aSnPore02L6cNexmUMKUURI/uKmp4GFRRYN5IBzZV4O+w62MkptQgKIKk2lJt4pk9+0DOjpsX848QouDD+bePw9uTXmFxskomkcOgh5uBfNlZXKg7oke+/fLbWytrNIAHMugeLJyxW4wH+bsax7SabnTsJP1a25DAYoq2tr4RktF0pLCRpzukGtr+cFwgEdO166TAcKVUbKrh+I0redF1D7KGAAeB2zihx50UB7HwHGrBkW4r54eeVKFqxhYsQIUmNJQeBQC4INgfssW/lxAD+0xCJRBIQ5EWG9TE1BRkfdjwkZynm/mUBrfzwGKW3oIJ9PaKjfsdBUDemiPQdBubQFAapFMKll646lt9PTwgF57Izlwa9WK9jY8CdgMthVDgxsFelRWyllZP/uOgvahcC+UIATz2l9T7PeZgWpQCKONSky31NXl+GIEna74VXPqobBhaU8p92RvGIMZA5FSPyBg074R9Ckvg3ugGGorYZjyErZRYHoHcK+taG/FzwGK24Obffs86ONTKemwCugh7mvIkKxjEADKoBBQ06jClMY3sKIJkJ1QQSejoBOKxTzMGiSTch/1AvYhtCgpyZHGV7wZl7iN7ds9OHPFZx0Q4HFbIT30+GywV1cnD5R03XcY3AOlYPCq8CgEt6EARRUG5gkBg05G0ajQ0zS+Sj2CPio0uAeKVoucK5EVBrCjR/OjFlIpDw5CM2gbBTsgxcF8EKZD3cwoeaaHwcUGQEQCNoN7oBQc6Ck8CsFtKEBRxaZN/Pmwwwp+LBKNKpmUP9RHeng25fXJJ/z50EML7oFSUAvtFxToUVIiiyE906O5ueDHvApeXV+54nM9XOXzz3mNUkmJ3KwnB8kkkEjw1wUD2KAHbCZtI6cWirOvbkIBiipMBihu1qC43qg+/ZSve6uqKrgHCmPujpI9C9g2buTPRWyjoBaAY6Nk1/UQbWXixIIfM9RWFG3GNW4cjx37+lw+xTedNqyHFxklkexyDdFWxo83tNgAyFFQDjjmS13Xw6RtuDG4cRMKUFSQSMhCJoOdkBs1KKJR7drlsl1qg7UCGYO+PrlzpxujwgkT9LfnGiY7ZLecjOd62Gkr4k3G9HviW6SiQg7YXdWjpYWvES0t9dWUhrCNTz5xOaNksq1UVeWZ+YhYWzHsOwK2FwoFKCrYsoWPhIYMARoaCn7UTSdTXy8PuhIDE1cwmDEwPApS1KiEz3NVC0C9k1FkH57okU7LtLWdDIrizbi0t+OqHsI2DjmEFwUVwM36teZmHjP19Lhco2QyeC2abQyybWh/oJ22AlAGJdIYzBgA7joZwGOna7BDzrk0DlDeqMTt7N0L7Nmj5JLGUDXFozjD5olt7NjBM47l5QU3NASKZFAUH4UAeKSHwQ4IcHeLgvJyWfbg58FN3mBecQ2K+PNs2uTieU2Mqck2AoHdC4UCFBUYNCLA4Ly6os24AGDSJP788cdKLmcMn86b1tQAY8bw16453VQK2LyZv1Y1xaPI6Wptw7U0vrCN5uaCqxIAb/VwDYO+Y2BA7hbqxvQwIM3Vz77DrYzB+PE8aEsmXTwBfPdueQTCoYcW/KjhDApN8UQQEwGK28vBgpBBcTPqd12P7dv5/gPxODB2bMGPuh2wiUVFnZ1yY1fHMZExcDtt7WkGxcR0qBvTw4AHejCmLoOiWI/SUlmH4poewo+OG5dje1g9VCRL5Mdgh9zfL5fG5TQkB5aDuT4qHBiQpe52VjQB4ZjyEj/o0EPzzGNJ3O6QKytlYajrTtduMA84NsWzaZOShUHGMFkUWlGR54BfB7KvrreVtjbe1ktKii6r9WJKw3U9VGXmAQpQIo3JjAHgXtra9TTtp5/yICUel/MpeXB7FAR4ELAZ7IAAbzJKnunhQ6fremGoiRoDw20FUD7l5XqHfPDBeaIwiReDG9fbioX6JKpBIfT095velKyyskDBvkOFofv2uVQYKpzMhAlFMwZepCU9y6CoyBiEIaNkImBzWw/XC0NbWng0ZGCJcdGaCweyr+JP9MknLhWGmmgrXgxuQpFBoRqUiLF1K2+9VVUFz0oADDQq7RcVNazqaln64ErkbyFjUHTVSleXspy7NqPkSmGojzMGgMtOV7spWRE90mnpS0Orh9CiyKZkgEHfoXiUfPDB/LYSCZcKQy1M/4XWNrQ/SEX2laZ4IspHH/HnSZOKLjEuOiIEgj93KvRQ2agAJZtxATyxE4vxzs+VHUNFVOjTUaGraesdO/jufGVlBbcxB/gGsYLQ1hkI0VVkk7RfVDRKdr0w1IQeXhbYb9nCE+eOYqJgGPAmYHMDClDs8sEH/Pnoo4t+dN8+/ixOxsxJ0OdOLegxdGieD1RXK9+MKx6XW9477nQTCTkqPOqooh8XKwrd2gcFcLkwVNjGpElFNyUTWmhnLg4g6AGb0OPII4t+tGgHBAQ/a2BCj6JtRfFRCAAvqauq4iV2jh8P0dLCf8nSUqpBIWwgGpWBDshUgBJ0J6NCDwc24wJc7IQ2buTTf/X1Raf/AL6BHAAMH57nAw4Er4ccwn1gby/w2WfKLpsbi7aRNzHpYE2OqwGKCT3y2gbgqO9wXI/+fvlDVPgOxUchAHysJJIZjvvS9ev582GHFS0YTqeB/fv5azd9hxtQgGIXE1G/VwGK6JDF7Itj7N0LtLby16r0cCBAOfxw/vzhh8oumRvhZI46quj0H2MmnK5CLcrLpdN1XA8L2TW3O+QjjuDPmzYpW62bHxN6iODV7bYi9BC36hibNvEgZciQotN/gIG2Ul0t21wQ9TARvLa3y3o6N32HG1CAYod0Wnp1VRkUB5zM5Mn8+cMPHZ47FVqMG1dkspzjVcAm9Fi7Vtklc2PCyfT2yg4xrx4in93RobTCd8oU/uy4HtqArQiGOmStHooYN45fdmAA2LBB2WUPpKNDVp6q8h0O6CFsY906ZZfMjXagVySYBwxkG2MxqYeYD1KAa23FQnaturpArbUDWrgBBSh22L6dz3GWl8tqsgIYcjL19fxZ5OwUMH48j3u0WVRHMNGoAIN6iAIVhXq47mRMZAxKSwvEdkKLZFLue64AVwI2xtRPhwo9xIcVEIu5pIcI5puaChRhSQxllIRYCvUQptvS4vA2BQHxHa4NbkQwryrbKIRSqIUbUIBiBxNFf4DBRuWAIZWUuNSwTDoZQ6NkB5yu0MJxp2sxY5B3ADlkCI9gAKV6uDJK/uwzPrIvLZVzjgXwqkMGXNLDibbiQIc8ZIjcG8ZRPUx0yNqaC7d9h7CNDz5wcG8Yk8G8Kdvo6HDxtEP7UIBih4B0yIBLWQMnRkEO6FFbK/fFcszpJpOykk5VxiAWczSjtH69g75L2MbEiUX3/ABMthXFo0JXgnkTwSvgj4DNL76jo0MuzHHbdxx6KF/Jo12gp5zWVn7PJSWyYK4AprJJQKCyKBSg2CEgHTLgPyfT2yvPJQplJ7RpEy9kqK0tekggYNA2tB9wwOn29fFdQx3ByRR+kDMoBjIGgLe+w/G2oi34MTGlUVVVYAk64Fg2WtyiY/YhbGPChCK/IMdQ8FpeLusbFduHk1CAYgcKUCQdHXwjLsDUCp7S0iJ7OwQ1ja+1DQNFf4acDOCIHqWl0oQd08NECh8wmTHQRrsKEB3y1q0OLnoIoO9wzDY++YRnHKur1azgEQTVlzqRmQccyb46DQUoVtHOExrokAF/OBnHnK4o+hs92kBL0W/SVrD/dniU7JiTMZnCN+xkIuJ0Da9aEcajUI8RI7gZAw51yl1d/FBNwJAe6bTBgM2hDkgboDhyPIRoK0ceWfT8LsDACh6BQ77D8YySxWDeK9/hJBSgWGXLFp41qKgwNE8IWAhQFHoDx53umjX8WbTeInjdqBx3usJ7qXYyQXS66bQ0OoN6GArYSkqCOc0jLtrYaKCX5QMKr2ouALkGQLsyWikmbcNPvsMRRCNUWZ8EUIASKd57jz9PmWKo6C+RkCtDDTmZgQH9gSQKcHSULPSYOtXQx712MpMm8W3UOzqAbduUXpoj9DjhBEMfN+1kHBolO2Ibn3zCha6sVJttBBzPGjjaVkzahuGaC8VtpbxcblDmiB6rVvFng3r4Jdu4aZPS1f6cVEoO9kzaB2VQCMnq1fzZZKMqKZFbneSkulouWVZsSMccw5///nell+WYdLpeO5mKCjlAEX9KZezdyzNsAHD88Ya+xWsnc+yx/HnjRgemAIVtHHMMjwoN4PWoULQV5bYBON9WurqU78go7EPculICFsw3NACjRvGslnJf+vHHfGv+mhpDy/EBCzUoUQ5Q5s+fj1gspns0NjZmvs4Yw/z589HU1ISqqirMnDkT68WcW5Aw2aja2vjzyJFFplljMcecrkhurFih9LLcGb7/Pn9tUo+DDiryQQc3GJo2jT8r10P0aoceamgTLgDYtYs/jxhR5IMO2UZDA99FlTEHOiGTbSWVkk7XKz1OPJE/r1rFk5lKMZkx2L2bPxfVQjvyUdxehB7K20pbGy+uj8WA444z9C1CD6+C11jMQT1EWznuOLnnUREM20cAN2tzJINy9NFHo6WlJfNYq8kL3nXXXbjnnntw//33Y8WKFWhsbMQ555yDziCdEcCYdDIGR8iiQx41ysCHHWpYJ53En9esUbrogRdAJpPcQR56qKFvEXo0NBT5oNBi717lxSJCj3ffVXpZ09NdAPD55/zZlB6KcdzpGtRjzx4+Oo3FeEBfEIf0OPxwvkK8t1fxuSuJhCxeMKiH4bZSViaXxCnWQ9jGu+8qbobCNiZNMnQ8BuCvtqLcd5gMXgET9iEiOkd3p1SLIwFKWVkZGhsbM4+DBofJjDHcd999uP322zF37lxMnjwZjz76KHp6evDkk086cSvOsHMnH/KWlspccBEMNyrAMUNqbuZRdn+/4tSkcDLHH29oSS0g9SgasIlhQTKpvCZHOJmVK5WdyM4xmTEATDgZ0WOLYZNCHHG62mDeoB7CNkaMMDAj5JAeJSUyw6ZUj7VreUpmxAiesjKA4bYCSD0U+47jjuN/i88/l7sJKCHgbcWxYN5EtlFkXw3rEfUAZePGjWhqakJzczO++tWvYvPmzQCALVu2oLW1FbNnz858Nh6P44wzzsCyZcvyXi+RSKCjo0P38BRhREceySvXDGAqgyLmPYTlKSIWk1kDpQ3LSSdTUyMrAxXrMWUKP8l8/37Fu0Ka7JDTaQtOxgGn64htfPopzwSWlxtepWEqmBdtJSh6aNuKyWDekB7CPhS3laoqWRyqNGCz4DsM6yFso6eHPxQiApQNGxSev5dOy+lhJ7KNDtmGkygPUE4++WQ89thjeOWVV/CrX/0Kra2tmDFjBvbs2YPW1lYAQEOWZTU0NGS+losFCxagvr4+8xhncOThGE52yIArTtcRJ+PElIa25SnWo7xc/gmVdUIdHXKLe4P2sWeP3GK+aE2Og7Yh/nxbtyr0YdrVbvG4oW+x1CEHJaPkZIcMOGofjmQNRDDvhO+orZULDhTrcdBB8riMlSsVXdTCajdT2UYHbcMplAcoc+bMwVe+8hVMmTIFZ599Nl588UUAwKOPPpr5TCxr5MAYO+A9Lbfeeiva29szj+2OLMY3gckVPIDFNK0Dka7yAMXCsjjAHxklwIFOSGhx8MEGhjQcrZMpeuakuOb+/cpXatTXy+WkyjohpztkF9rK2rUKl5M62SEDrmTYlLWVvXt5NAwYruUzlW2MxYKVYbOw2s0vtuEUji8zrqmpwZQpU7Bx48bMap7sbElbW9sBWRUt8XgcdXV1uodnMCZDZoONCrCYQXGwQ/7oI0WpyQ0bePq0upofBGeAdNp/GSVlTsZGkZvhAmqxDMyBuWTlAZsFPUwF8w7axtix3D61MbgtLKx2AyxmUBz0HcpqtsRAb8IEw6vdTGUbgWDVoTiZiQb0NSgBOdHY8QAlkUjgww8/xOjRo9Hc3IzGxkYsXrw48/VkMoklS5ZgxowZTt+KGrZt40fHl5VZMiSvMwba1KSShiVqh046yfCyuH375NJNU07GQaf73nuKVjb97W/8WVRYGsCUkyktlUXUDmYNli9XcLF0GnjnHf5aCG0Av4wKtTVb4s9qi9WrebH3sGG8Yt0glrKvDuhx1FF8HNLZqWhlk4W2IoL54cMNZBsBVzJsf/ubopVNNnyHIdsQCw4YC8xeKMoDlJtvvhlLlizBli1b8M477+CSSy5BR0cHrrjiCsRiMcybNw933HEHnnvuOaxbtw5XXnklqqurcfnll6u+FWdYupQ/n3ACL+A0iF8yBgDwhS/w57feUnCxt9/mz6eeavhbhBZDhxosS3BQj4kTeeNOJBRkDRiT9nHaaYa/zVSHDDiqh7jtv/5VwQzSBx9wR1hTY3iPC8BGW3HgzAKhx5IlCi4mbOMLXzB05gxgIdvoYIdcViZ9x5tvKrig0MOE7/BTWznpJO6/Wlpk2ZlltA7IKT3Ky2WmKiDTPMoDlB07duBrX/saDj/8cMydOxcVFRVYvnw5xo8fDwC45ZZbMG/ePFxzzTWYNm0aPvvsM7z66quoNbgG3nMsNCrGTKbxHa62njmTP7/xhoKL2XAyhrQAHNUjFlOox5Yt3FtVVMjhlQFMO10H9ZgyhY9Ou7rk7IxlRPA6fbrhOXXApB5iVNjfzwsMFXPmmfz5rbcUZMWFHiaC17175c/1esoLkG3FdoCSSsnsq5PBvIMZpcpK4JRT+GvbeqxcyYOUUaMMT5UDNgK2gKzkUR6gLFq0CDt37kQymcRnn32GZ555BkdpDj2KxWKYP38+Wlpa0NfXhyVLlmCywQPmfIGFDnnPHm57sRg/H6woWiNyYFQonO4779hcfbdzJ7B5Mx8NTp9u+Ns++4w/i8MLi+JwoxJ62HYyogOaNq3IoSl6REmWIdsAHO2ESkqAM87gr23rYaGtADzGAww63aoqmcl0wD6OO47vfbZ/v829gyxm14RtDBtm6MgvxwshRYCyZInNOpT33+dzRXV1hg8YBaQefumQlQVs2rZicPk5YEGPgBXK0lk8Zti3T+4CKXKdBhAnqzc2mpzSSCSUb04G8M1ex47lg84C288U569/5c/HHCN3sDSAOJxvMKlWHJdGhX/7G9DXZ+NCFjtkYR8HH2zwG1zKsCkL2EzokUjIAMWwHg52QmVlMp6wpceGDdx+KytN1a6JtuIX25g2jdeh7N5tsw5F2MYXvmC4dg3wd1uxNZa0kF0D/GcfqqEAxQyiN580ycT8hAUjqq6WG8CJHJ5CYjGZNbA1rWGxQzath9DaAS0Avq15YyMPTkRNpyUsjJABC05XpFoK7B1kB+F0ly61UYeybRuwfTvvfEQe3ABil9LKSoMF1IAcPjpkH0oCNmEbJ59sMBXCEbZhOJgXttHZ6cjgpqJCUR2KTd9hWg+H2soppyioQ0mn5WDPZOmAZftwSA/VUIBiBm2RmwlMd8ixGNDUxF+L4aRi/BCgGG5UQoudOx2Z8tLWoVh2urt28bXbAGBiRVo6zftxwKIeDjB5Mi/t6O62sQmVxWJybbBmONPtsB7CNmzVoVjIJgEWgtfaWqm3Q77DdlthzLYefmkrSupQ1q/nc4gmi8n37JFT9Ib3LnVYD9VQgGIGsezF6QAFcM3prljBB1um6eiQm0OY1MO00xXFKr29CveV1iP0eO01ixcQHfLRRxs4ZlXS2sqzFKWl8k9eFIdtQ1uHYlkPmylrwx0Q4Lgexx/PN7Frb7dROGwxu2ZaD+3gxmHf8cYbFk963ryZG77JYnLAhu9waHADyMGeZvcMc1gsJhe20dBgouSNApSQsn+/zP/PmmXqW205XVFRqpjmZuCww7iDefVVCxf4y1/48P+ww3hBi0G0aUnDTqaqSp5M6lDDOu88/rxsmcX9z4R3Ej27QYRtjBljwje54GSEHv/7vxYvIPQ4/XRT32baNgDH9SgtBc45h7/+058sXGDzZv4oKzNVTA74U4+TTuLNce9ei/vDCNs46SRTxeTd3bJtGvalIkBJJh3b+2POHP78yiv8x5hGjAJM+g7T2SSAApTQ8tprPL97xBFypzOD+DGDAgAXXcSf//hHC9/88sv8WbROg7S38yWsgIm0JOC4HuPH81rfdBp46SWT38yY/CaTetjqgFpbHdsR8vzz+fO771qYKdi4kZ8rUl4OnHWWqW/1YzAPABdeyJ8tBSjCNr7wBVPF5IA/O6GyMuBLX+KvX3jBwgWEHiIKNoiwjfp6/jBEPC6Xojukx7RpvLSjs9PCfjnJpAxQTOrhR9tQDQUoRhEdskkjAix2QmPG8GcHDUk43RdfNJmqVdAhjxhhqjTBVT1MO92PP+ZnilRUyHyvQSx1yKNG8XkY7S5eihk9Wm7+OniclnGEbZx2Gq+JMIFfne4Xv8gl//vf5T0axmJb6e+Xv5Lf9LjgAv5sOmBLJHj2FXAnmAdcmRIVAb1pPZYt45HNqFGmjj8AbAbzn39ucX7OXShAMQJjlgOU7m65uMBvTmbGDF4usXevyeXGH37IKzvjcdNpyS1b+LMpLQBXR8kvv2xy23vRAZ1+usmoS56VZsrplpbKanw/BmwhDOZHjJClVqY6ob4+4PXX+WuTHfL27dz1VFSYWjToiu8491yeINuwgT8Ms3Qpd4oNDaYKQgH/BiiADNheeMFkqYvwHeeea3h3YYEl33HQQdx/ODi4UQkFKEZYv553jJWVpufUxcKOgw4yVTvpSodcViYjf1PTPKIDmjmTL4k2wYcf8mdxaq5hXHAyU6fyzIHpVK3FETIg7ePww01+o4tOd/FiExv69fbKpWEm9ejr46UaAF/Jbxihxd69NjeyKYylrMFbb3FNmpr4Nr0mELYxcaLJvssF31FfL8cmpvTQTu+Y7JCFHqZsA3ClrZx9Nu8ePv1UbpVlCIvTXYAMDE3p4dLgRhUUoBhB2yGL/UkMIjpkzWa6xnB4aa1AjJKff97Ej7HRqGzr4aDT1aZqn33W4Df19MhoxoIeYrMrP+pxzDF8dNbXJ5tAUZYs4d8wdixf0WSCjz/mA7v6ehO7DAP8fBFRbOlCRumNN3gsZAhtWzGxQyjgb9sApB7PPGPimyzWrgH+1qO6mgcpgAk9duwA1q7ldjF7tqmfl0zy9gLY0ENsOuRjKEAxwvPP82cbjerII01+o1gZ091twhua57zz+KzE5s0GK/L375fLrd10MiKPaboAwByXXsqfn37a4GD8tdf4fNDBB5v+I+/dK/dLMp1REnqIPK8DxGLAZZfx1489ZvCbxLKfOXMsd8hHH23yW2MxOWfooB6HHw4ceyyvDVm0yMA3MCYLeGy0FZNxntRi2zbHiqgB4JJLeFC/fLnsLAuyZQvPRpeUyGVRJli/nj9b1sNB2wBkW3n8cYODvT//mT+fdJLc4dUgmzbxEpLaWlOLKDku6aECClCKsX273OVv7lzT3y4yBqYDlKoqOYwUeW8HqKkB/uEf+OtHHjHwDc8/z8P3o482PS+RTtvIoBx6KH92UAuA17iOHcvjMEOp66ef5s9z51rukA8+2HQtqWt6XHEFf37xRQO7Yw8MAL//PX/95S+b/lmWg1fAdT0efdTAh9es4SuaKit5jYFJLOsxdiyfv9VW2TrA6NFy4P/44wa+4Xe/488zZ5qc7+ar/0QCxLQvdck2vvxlYMgQ/mPEtjcFEVHuxReb/lla2zDpdlzTQwUUoBRDONzTTrMQqtrokAFgwgT+7LAhXXklf376aQO1BqJRffWrpn/O9u38+uXl8lczTHMzf96/37H9DAA+RfvNb/LXRTuhnh5ZvGNBjyB0yEcfzWtzBgaAp54q8uElS3jh3fDhMt9tgiDocfnl3EbefVfWRORFCHb++aYjUMZsZFBKS+VWCC4FbI89ZuDwQBu+Q2jR1MRn9EwhbGPLFpsnHBZGO9gr6jtaWuTWsyH1HSqgAKUYYoQs8ncmSCZ5Kg6wEPUD0pA++cTCNxvntNO4P+vokLNZOdm9W67Zt6CHaFSTJpnaMJFTXS2LuxzWQzjdl18ucmTFiy/yKbhDDjG9IyZg08m4FLwCJrIGogO65BIehZpEpPD97HQbGviSY6CIHum09B0WOqAdO3ixdlkZ3wvRNC7pcdFFvGZo27YiheUffcQzSmVlljLRloM1gG+4VFqqP4nSIURb+d3vigz2fv97HoWecorpfbUARW1FLKn0MRSgFGLLFj5UKinhTtck77/Pp4CHDTOxjbkWlzqhkhLZsH7zmwIffOYZ/gsdfzxfWmCS1av5s4nT1fW45HQPP5z7jVSqSO2FdkRoOs/K99QALDpdkVHat8/RjBIAfO1rPN547z15usEBJJOyOtBCh9zTIw9bs6SHi6NCbdYg72GKy5fzXru2VkY0Jnj/ff48aZKpswUlLulRVSXrth56qMAHRVuZPVtunGYCoYelDrmsTNZdOKyHGOx1dgJ/+EOBDwo9vvY1Sz/Hlh5a23BwAYYKKEAphDCimTPliakmEHuLTJ9uqf9yLYMC8GmekhK+h1LeTshGihbQ62EJFzuh73yHP//iF3m2r25vlwWQFvTo75cnJ5g47FdSUyNt0uGR0MiRctD7s5/l+dArr/BAqbHR9FJ8gI8DUim+pYnY1sQULo4Kzz+f/5o7dxaY9hJfuPhi0yv/AFn2dvLJlm7R1bby3e/y56eflpuH6WDMtu8Iih4lJdJ3/Oxnefr/rVv5ioRYTM4JmWDPHjm9aEmPgw/mN9rX5/tTjSlAyUcqBTz4IH/9jW9YuoTokE0cbqtHZFBcCFAOOUSOhH760xwf+OgjPmdaUmLJyaTTcpWQZT2Ek7F8rrlxvv51XgT42WfAb3+b4wOPP85TxkcdxdfjmmTNGr49xtChFlbwCIQeYh7RQW65hT8vWpSn+P9Xv+LPX/0qT6ebRHRAM2ZYDOZFRmn3bl6n5CDxODBvHn991105yhp6eoAnnuCvLY6QhR4mz+GUuNhWpk3jxeUDA8A99+T4wNtv8007qqrk+Rom6OqyfC6pRPhSF/T4/vd5sezatXmOzfj1r/nzmWeaXE/PEf3KEUdYSkbxdKhYBeiCHnagACUfL7/MPfGwYZbqLQAFHbLoubZv5wUiDvN//y9//t3vcvR5DzzAn88/38JWjnwZ4t693EeZ3EBSIvKZYgLWQeJx4MYb+euf/jSrE2IM+OUv+evvf99Sj6rtkE3uVyVxUY8TTuArQ1Mp4O67s764datcXnz11Zaub7tDrq2Vhzu5oMfVV/Njddavl6tFMzz1FA+SmptN728B8Izdu+/y15b1ELbxwQeOFoYKfvhD/vyrX+U4bPO//os/f+Mbps8iAmR2bexYS66H42JbGTYM+N73+OsDBnuJhAzmv/99S9e33VYAqYepXeXchwKUfIgO6B//0fRuqQAvctu2jQ8mxZkmphk2TOa7XTCk447j2zWk08D/+3+aL3R1yTXI115r6dqiUZ14oqX6SY7YiXPdOlec7ne/ywsAN2zI2u79jTf48qwhQ4BvfcvStcUoyJaTEcU8a9fauIhxRAD70ENZS44feIAHbWefbWFLXH12LSh61NfL/uXOOzVfYAy4/37++pprLGWTVq/m2ffhwy3JyZk4kRevdHc7vncQwIPX44/nySMRjwDg82Bi10ObviMotgEA//RP3M+99RYvR8rwhz/wlW5jxljKJgGK9ND6Uh9DAUouNm+WuTmLI0Kxh8a0abwfs4wwJJca1q238udHHtHMLP32tzyDc9hhlpaPArJcw+TRPXomTuSt3iWnW1cnfeq//qumIFJ0QN/6lqURYX+/XAx12mk2btBl2zjrLG7Pvb3Aj388+GZvr6yOvO46S9d95x2ecBgyhG+EZhmXne4NN/AY4K9/1Ryo+Le/8fmIykrg29+2dN1XXuHPp55qcboL4IWhYumgC/YRi8lpwHvu0Rzz8uCDfO7n1FMt/3GFHkrayubN3H84zJgxsjLg1ls1tSgierv6aksjtX37ZO2aLT1cDtgswwJIe3s7A8Da29ud+QE/+AFjAGPnnGP5ErNm8Uv89Kc27+Wf/5lf6NprbV7IGOk0Y2efzX/knDmMpfsHGDvqKP7GPfdYumZnJ2OVlfwSq1fbvMFjjuEX+uMfbV7IGLt3MzZ8OP+R997LGNu8mbGSEv7GunWWrvnyy/zbR41ibGDAxs21tvILxWKMdXfbuJBxXn2V/8iSEsbWrGGM/epX/I2DD7b8y9x4I7/E175m8+Yee4xf6PTTbV7IOKJ5HnooY729jLF/+Af+xj/+o+VrTp7ML/HwwzZv7hvf4Bf6yU9sXsgYAwOMnXCC5tfv7WWssZG/sWiRpWvu2MG/HWBs+3abNzhqFL/Qu+/avJAxtmyRfu+ppxj/uQBj5eW87Vrg4Yf5JY4+2ubNrV7NLzR0KHf6LmKm/6YAJZudO6VVLV5s6RK7dzNWWsovsWmTzft5/HF+oS98weaFjPPRR7wNAYw9O2+JNOT9+y1d73e/45eYMEFBWxBOd/58mxcyzoMP8h9ZW8vYzktv4P+ZPdvy9a66il/i6qsV3Jxwun/7m4KLGeOSSwZNckaKpQ8ez//zs59ZulY6zWMbgLFnn7V5Y2vW8AvV1zOWStm8mDE6OhgbM4b/2H//fovsTdessXS9Dz+UfdjevTZv7qc/5Rf7yldsXsg4y5ZJCZb94CkZvCYSlq7385/zS8yYoeDmxMjrf/5HwcWM8R//wX9kUxNjHefM5f/51rcsX++LX1Tk/vr6GCsr4xfbssXmxcxBAYoNPr7ix2wdjuItwmJv+tBD/O9+7LEKbmjDBn6xeNxyI7fCbbfxHzuu7DPWiRrGfvxjy9e67DJ+rVtuUXBjCxfyi517roKLGSOVYuykk/iP/SoGne4771i6VjIpMzJ/+YuCm7vgAlvZLSts28ZYdTX/sb/BlXyUbDGDs3w5v86QIYz19Ni8sf5+eWMWs1tWWLSI/8jKkj62ERN4FsUiokObM0fBjS1ZIntHF0fJ3/42/7HHlb3PEihn7Ne/tnytU0/VZC/tcvvt/GJXXqngYsbo7eUDM4Cxf8LdPCiwOGrdt08OHNevV3BzJ57IL/bkkwouZhwKUCzyl0VtbAg62BH4gLU/+5qla6TTMs1po0/XX3DkSNdHyd3djB0ysoMBjF1W8SxLt3dYus6OHYxVVCjMrK5axS9WV+faKJkxxlauZKwklmIAY78+9heWryM6s5EjeX9qmwUL+AUvuUTBxYxz538mGcBYDTrZ+tt/a/k6ojP76lcV3diZZ/ILPvigogsWJ51mbNaJ7bxTxnus570PLV0nmWSsuXkw8PuNghvr7paj5K1bFVzQGG1tjA2r6mEAYz+of4T/YhZYt05mY7ZtU3BjL77ILzZpkoKLGefPL6Yzv8cL595v+Tr33adoekdwww38gtddp+iCxqAAxSK7XlrBxpTuZABjF1yQttT/iTZQU8PYrl2KbuzCC/lF775b0QUN0N7O3j7oy6wMSVsDdNEGTj1V0SCuv5+LCzD2/vsKLmiQv/2N/Ri382RWRYqtXGn+EqmULOf5939XdF9ilDx6tKuj5P75P2Zn4TUGMHb4pBSz0hQ/+UT2n8uWKboxMUq+4gpFFzRAKsW2n3IJOwifZ+ovrPwpfv1rWZukrKRIjJJ/az2INE1LC/tjzdcynbLVAbrIvCqbodqzR0Y8ypyzAV54gV2HX/DZx7qUpQRKTw9v4gBj//3fiu7r6af5BY8/XtEFjUEBig3eWZpk8TiPeK+91twgPZVi7OST+d/85psV3tRdd/GLfvGLCi9ahGuvZQxgC0f8iAG8pub3vzd3ic8+k+U8r76q8N7EXPJ99ym8aAESCcaOPpqlEGMXjH0vkzXfsMHcZUT2ZOhQnq5VQne3TFF98IGiixbhww8Zq6hgn+MgNnZ4FwP4n8RspyqyJ0pn6156aXBucpx7Adv//A9jAPtLfA4rKUlbCkATCcYOOcSBcYioQP72txVetAhf+QpjALut4dcMYKyqirHXTCak163jtd8AY3//u8J7O/poW0W7ptm/n7ExY1gC5Wx601Ye0B/OfaMZRPbERjnPgXz2mSyydzFgowDFJk88IQPt//N/jC9OuOMOlmmQLS0Kb2jt2sFJ7krGuroUXjgPy5ZlvEN68WuZjqSkhGtjhIEBxs46i3/fKaco7ivuuYdfeNYshRctwL//O/95Bx3E9n2yJ+PjGhuNzwXv2MHYQQc5VN977rn8wnfdpfjCOUilZGHAnDnsneXpTEJr5ky+YssIf/qTpphSVfaEMT7UrKqyVahqih07+HTjYKHEvffK3+v2243bvVg4qDR7whiPDADGGhrcmRJ99lkmRjQDK1ez88+Xruvll41doqeHD+oBxubOVXx/t9zCL/yNbyi+cB6uvpr/vMMOYzs29mQKwg87zPi01QcfyKSx8vre447jF37sMcUXzg8FKAp45BG5mnTWrOJL3P70J/n5hx5SfDPptBxePf+84otn0dnJ2JFHskyumvFg4x//UTreG2/kReD5SKUY+6d/klNdygf2H3/ML15WZnllkWH+/ndZmfbUU4wxPscuVjvX1RUP2vbvZ2z6dFk4bbsYNBtROHzaaYovnAOxrKKmJlPXsHQpX+EEcNMptpR87VqeRQIYu/56B+5RTIn+5386cHEN6TTL9MAnn5wZyfzsZ7KtzJ3LV/UVQhTVAw6snk8k5B/HYmG3YXbtkvMQt97KGON+QtRxl5byP0mhAV9/v1yoN3KkotoTLW+9xS8+fLiiIrAC/OUv8g/7xhuMMb5gRrjyUaN4SUAhPv+csSOO4J8/80wHbvlf/oVf3EZht1koQFHE734nB2NDh/IK+2xn097OB9giHfmtbzmUWRZDLGXVhDlIp+Ua0sZGPmc7SCrF2Lx5sr0dcQQPurPr37ZsYeyii+TnHJv6Fq1WeTSoYdcu6U0uuED3h929m6/8Fr/nnDmMvf22/m+fTvP3Jk7kn6mvV7DsPBdbt8pUrZPFkEuWyKKRhQt1X1q+XPZN5eU88Mi+lUSC/7nEaPCUUxxamCb2ZjnySGenecSSm/JyHnVp+OUvZVzb0MCnbTqy6sx375Y1Wpo+XT2XXsp/wA03OPQDGHcEM2eyzBxGb2/mS4mEDDoAxqZO5YmW7ITOhx/yLWxEttbstJAh+vsZGzGC/5Bi0YEdtmyRixu++13dl7ZtY2zKFKnHpZcy9t57+m9PpfhsZVMT/8yYMTxYUY7Ym6WqyvnB3iAUoCjko49knZkYtJ9wAp9mnTVLrmoEGPvOdwpnFmzx3nv8h1RU8CG8E/z4x9Lh/vWvOT/ywgty6w2AD87OPJOxL3+ZdzgiUKuosLW6sDh33il7OSfQOtwJE3IOg/v7eXAq9rwBeCd9wQV8YD1pknz/4IMd3h9KzKf92785c/2tW6XDveyynB3/rl364FQEsl/+MmPnnSf7BZGVdGzae/9+2TCXLnXmZ4ipDCCvoa9cyftq8bGKCm6uc+fyNiMCGIDPPNjatK8Qf/6zzBpoAgelXHMN/xlDhuRc4p1O8wGNSOaIQd/s2TzhJVY+Cp/yhz84c5uMMTnSuvhiZ67f2SlTrMcfn3POrrdXZpm1PuKiixj70pcYGz9evn/kkTx4c4R0Wlbu//KXDv0QPRSgKKa/n1eii3nR7MeRRzL26KMu3Mi0afwHKlm/nIXYjayAwxXs3cvrbRoacusxaxZjK1aov0Udra1yNK+65+/vZ+zyyws6XC0bNvDgNB4/UIuqKr7tguM1aE89JSMk1XNIO3fKjFUehytIp/nI95xzctvG6NF8Y1PHOmOBmJO87DL1137jDRkA/eAHBT/a18cTOtpgVfs47jge9DvKwIDcDc+JUcNPfiIzeEV+mc8/57U5YopP+ygt5YG92eJz06xfL3/g5s1qr93TI2vCRo0qOke1Zg13NdpBjnjU1fEVwEbruiwjCqeOOsqFhmmu/44xxpibW+uroKOjA/X19Whvb0edhbNQrMIYPwDw3XeB1lZg6FBg0iTgpJNsnJlhht/+lh/wUF/Pz5QYPlzNdX/5S3nozI035jiuNjepFD8sdcUKfgJrfT0wfTpwyCFqbqsoV1wBPPYYPx9o8WI11+zvB77+deD3v+fnmTz3HD/B2QA9PcCqVfx4i4oKfhT6rFmWjusxTyLBjXHbNuCuu4B//mc1192xgx/Cs3EjP2Bk2TLDR8ru2sUPSvv0U37OzsEHA6efzmV1nPffl2e/rF5t4wjtLF59lR/y1tcHnHceP3TLwC/EGG+yy5cD7e388OXjjpNHxDjO3XcDN9/M/wgbNvCzguzCGPCjHwH/+Z/8/ybsrr+f/4lWreL/r6sDZs4EGhvt35Yhzj2X/y2/+U3uQ1TQ3Q1ceCHw+uv8gNnFiw0fZd/Zyf3ohx/yP82oUdytVVWpubWCiJO39+/nWnzzm47+OFP9t+PhkgO4nUHxDakUr7IE+PIiuySTsrYF4NWvLp/LYIstW2Se/Omn7V9v5065QqWiwrXzfpTxyCNy6KWiFuXtt2VhyfjxfOOSICGyYNOn268uTKcZ+8UvZNbuS19ybrrECXp6GBs7lt/7v/yL/et1dekLS2wfOuYyK1bIrM9gAastNm6U0zq1tbwYN0iIKfOmpuJV3TahKZ4w8+abstDDztKwtWv5hLhwMPPnBys4EYgq9Pp66xO16TRjzzwjDzarq+MVakFjYEAuFzrlFOvrVfv6eHGN6IyPOoqxTz9Ve69usHWrXAJsZ2OinTsze3swgJ9q6OKxE8oQh2KVlBhf85uL5cvlfiKlpYzdb313VE8Rh2KNGcOXi1shnebb/tbXy2md5cuV3qYrdHfLgqkvfcny7r9GoAAl7IjdMktL+bIIM4HFZ5/xan7R+dTVBS9ToCWZlJ3y6NHM9BavK1bwJTii85k8mS9jDiqbN0tnOXOmueKXgQGeidJWdn7tay5MgjuIqM2xUona3s6PEhBBTlkZn68PYiAvEJsaVVaa37Lgk0/494sBUkMDX9kVVDo7pa1PnMhXRBglneaZF5FxBfj5bWZ3YPMTq1bJQrq5cw9cdqYIClDCTirFKy9Fw7jgAh6153OcXV2M/e//8s5GW8l58cUObDTgAbt2yTPqy8v5aLnQiL+lhRcLijWN4vtuv92BTUo84K9/5cW9AM8KPfBAfmeTTvONav7zP/nuUUKPhgZeGR7kzlhw993y9zrxRL6qJV+gkkjw9Pz3v6+v5DzxxAPXggaRRELu3QIw9vWvFz4yYv9+vqTm4ov1lZxXXOHcakI32bpVLpmpqeGZ5NbW/J/fto0vsRcLFgBeMH3XXY5mHVzjf/9XTps3N/PMsmIfQEWyUSCdBhYs4EVqqRR/b+xYYOpUXmkWiwF79wKbNvFqtIEB+b1f+ALwb/8GzJ7tzb07wb59wFVX8aJWweTJ/DF8OP/9d+7kBYIbN8rPlJbyotjbb+dFpmHh/feByy4DPvqI/z8eB6ZNAw47jFes9vby6tW1a4G2Nvl9Q4cC8+YBN9zAX4eFp54CvvtdoKuL/3/ECODEE3mbKS/nVYqbNwNr1vBqZ8Hhh3PbuPxybithIJkEfvhD4N575XuHHsqrdhsaeLe7axdvJ+vWcV8jOO884F//1XDxZyBoaeE+4I03+P9LSniB9ZFHAsOGcb127OArAj79VH5fPM59zg9/CIwb5829O8Ff/wp89av8dx4xgrcLhf0sFclGiQ8+4MVqYke5fI/x4/matRUrwjEqzkU6zUfHZ5xRWItYjC+XXbAgHBmkfPT18Z1f861xFY/KSr4hxSOPBHs6pxgtLXwPDO2GLLkeI0fyNvXKK64su/SMlSv5JjXaDVlyPQ47jE+PZW1GFypSKT69edJJhbUoLeX1XffdVzjTEnQ6Onh9n/K99SmDEk26u/n65w8+4KOfWIxHvRMm8LWMzc1e36G7tLYC77zDo/99+/goeeRIrse0aeqWaAcBxnjmaOVKPirq6eFrGceM4VmjE07go8GokEzyTMmaNcDnn/MMZHU1byNHHcVHziUlXt+le7S387ayYQOwezfPFNXX87Zy/PHcTqLE9u1cj08/5dqUl/Os9IQJPOtWW+v1HQYaM/03BSgEQRAEQbiCmf7b02HCL3/5SzQ3N6OyshJTp07F22+/7eXtEARBEAThEzwLUJ5++mnMmzcPt99+O1avXo3TTjsNc+bMwbZt27y6JYIgCIIgfIJnUzwnn3wyTjjhBDzwwAOZ94488khcfPHFWLBgQcHvpSkegiAIgggevp/iSSaTWLVqFWZnLXOdPXs2li1b5sUtEQRBEAThI9w4tusAdu/ejVQqhYaGBt37DQ0NaG1tPeDziUQCiUQi8/+Ojg7H75EgCIIgCO/wtEg2lnUEMGPsgPcAYMGCBaivr888xoVpUxyCIAiCIA7AkwBl5MiRKC0tPSBb0tbWdkBWBQBuvfVWtLe3Zx7bt29361YJgiAIgvAATwKUiooKTJ06FYsXL9a9v3jxYszIsYVyPB5HXV2d7kEQBEEQRHjxpAYFAG688UZ885vfxLRp0zB9+nQ8+OCD2LZtG66++mqvbokgCIIgCJ/gWYBy2WWXYc+ePfiP//gPtLS0YPLkyfjzn/+M8ePHe3VLBEEQBEH4BNrqniAIgiAIV/D9PigEQRAEQRCFoACFIAiCIAjf4VkNih3ErBRt2EYQBEEQwUH020aqSwIZoHR2dgIAbdhGEARBEAGks7MT9fX1BT8TyCLZdDqNnTt3ora2NufOs3bo6OjAuHHjsH37dirAdRDS2R1IZ3cgnd2DtHYHp3RmjKGzsxNNTU0oKSlcZRLIDEpJSQnGjh3r6M+gDeHcgXR2B9LZHUhn9yCt3cEJnYtlTgRUJEsQBEEQhO+gAIUgCIIgCN9BAUoW8XgcP/rRjxCPx72+lVBDOrsD6ewOpLN7kNbu4AedA1kkSxAEQRBEuKEMCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoGj45S9/iebmZlRWVmLq1Kl4++23vb6lwPPWW2/hggsuQFNTE2KxGJ5//nnd1xljmD9/PpqamlBVVYWZM2di/fr13txsQFmwYAFOPPFE1NbWYtSoUbj44ouxYcMG3WdIZzU88MADOOaYYzKbV02fPh0vvfRS5uuks3oWLFiAWCyGefPmZd4jndUwf/58xGIx3aOxsTHzda91pgBlkKeffhrz5s3D7bffjtWrV+O0007DnDlzsG3bNq9vLdB0d3fj2GOPxf3335/z63fddRfuuece3H///VixYgUaGxtxzjnnZM5bIoqzZMkSXHvttVi+fDkWL16MgYEBzJ49G93d3ZnPkM5qGDt2LO68806sXLkSK1euxFlnnYWLLroo47RJZ7WsWLECDz74II455hjd+6SzOo4++mi0tLRkHmvXrs18zXOdGcEYY+ykk05iV199te69I444gv3whz/06I7CBwD23HPPZf6fTqdZY2Mju/POOzPv9fX1sfr6evbf//3fHtxhOGhra2MA2JIlSxhjpLPTDBs2jP36178mnRXT2dnJJk6cyBYvXszOOOMMdsMNNzDGyJ5V8qMf/Ygde+yxOb/mB50pgwIgmUxi1apVmD17tu792bNnY9myZR7dVfjZsmULWltbdbrH43GcccYZpLsN2tvbAQDDhw8HQDo7RSqVwqJFi9Dd3Y3p06eTzoq59tpr8aUvfQlnn3227n3SWS0bN25EU1MTmpub8dWvfhWbN28G4A+dA3lYoGp2796NVCqFhoYG3fsNDQ1obW316K7Cj9A2l+6ffvqpF7cUeBhjuPHGG3Hqqadi8uTJAEhn1axduxbTp09HX18fhgwZgueeew5HHXVUxmmTzvZZtGgR3nvvPaxYseKAr5E9q+Pkk0/GY489hkmTJuHzzz/Hj3/8Y8yYMQPr16/3hc4UoGiIxWK6/zPGDniPUA/pro7rrrsO77//PpYuXXrA10hnNRx++OFYs2YN9u/fj2eeeQZXXHEFlixZkvk66WyP7du344YbbsCrr76KysrKvJ8jne0zZ86czOspU6Zg+vTpmDBhAh599FGccsopALzVmaZ4AIwcORKlpaUHZEva2toOiB4JdYhqcdJdDddffz1eeOEFvPHGGxg7dmzmfdJZLRUVFTjssMMwbdo0LFiwAMceeyx+/vOfk86KWLVqFdra2jB16lSUlZWhrKwMS5YswS9+8QuUlZVltCSd1VNTU4MpU6Zg48aNvrBnClDAHc7UqVOxePFi3fuLFy/GjBkzPLqr8NPc3IzGxkad7slkEkuWLCHdTcAYw3XXXYdnn30Wr7/+Opqbm3VfJ52dhTGGRCJBOiti1qxZWLt2LdasWZN5TJs2DV//+texZs0aHHrooaSzQyQSCXz44YcYPXq0P+zZlVLcALBo0SJWXl7OHnroIfbBBx+wefPmsZqaGrZ161avby3QdHZ2stWrV7PVq1czAOyee+5hq1evZp9++iljjLE777yT1dfXs2effZatXbuWfe1rX2OjR49mHR0dHt95cPj+97/P6uvr2ZtvvslaWloyj56ensxnSGc13Hrrreytt95iW7ZsYe+//z677bbbWElJCXv11VcZY6SzU2hX8TBGOqvipptuYm+++SbbvHkzW758OTv//PNZbW1tpt/zWmcKUDT813/9Fxs/fjyrqKhgJ5xwQmaZJmGdN954gwE44HHFFVcwxvhSth/96EessbGRxeNxdvrpp7O1a9d6e9MBI5e+ANjDDz+c+QzprIZvf/vbGR9x0EEHsVmzZmWCE8ZIZ6fIDlBIZzVcdtllbPTo0ay8vJw1NTWxuXPnsvXr12e+7rXOMcYYcydXQxAEQRAEYQyqQSEIgiAIwndQgEIQBEEQhO+gAIUgCIIgCN9BAQpBEARBEL6DAhSCIAiCIHwHBSgEQRAEQfgOClAIgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+4/8DeFXPzROS4iMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACH4ElEQVR4nO2deZyU1ZX3f9Vb9UJ3s0k3DYgtghu4gQvEBUVRErcQRxOz6MQ3iXGJjDq+UWcmzEwixjcuCU6cMTGuUUziEjPGBaOihKCAEAEVQUBAum3W3ruqu+q+f9y+dZ+nqOVZ7rOf7+dTVFFd/fTTvz733HPPPffeGGOMgSAIgiAIwkeUeH0DBEEQBEEQ2VCAQhAEQRCE76AAhSAIgiAI30EBCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoBAEQRAE4TvKvL4BK6TTaezcuRO1tbWIxWJe3w5BEARBEAZgjKGzsxNNTU0oKSmcIwlkgLJz506MGzfO69sgCIIgCMIC27dvx9ixYwt+JpABSm1tLQD+C9bV1Xl8NwRBEARBGKGjowPjxo3L9OOFCGSAIqZ16urqKEAhCIIgiIBhpDyDimQJgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+gwIUgiAIgiB8BwUoBEEQBEH4DgpQCIIgCILwHRSgEARBEAThOyhAIQiCIAjCd1CAQhAEQRCE76AAxYesXg38938D6bTXd+IP/vhH4C9/8fou/MHAAPDrXwM7d3p9J/5g507g4YeB/n6v78QfrFwJvPyy13fhH557DvjgA6/vwh/09AC/+Q3Q0eH1nRgnkKcZh52zzgL27wcSCeCGG7y+G2/ZuRO4+GL5evRoT2/Hcx57DPjOd4ChQ4G9ewEDB4KGmh/8AHjmGeCdd3hQH2XSaeD004HeXuCNN4CZM72+I2957z1g7lz+ursbqK729n685uc/B267DXjgAWDFCq/vxhiUQfEZfX08OAGAX/zC01vxBatXy9cPPujdffgFMTrevx946y1Pb8UXPPMMf/6f/wG6ury9F6/Zto0HJwCwYIG39+IHli+Xr3/1K+/uwy88/jh/XrkSWL/e23sxCgUoPkNrOJs3Ay0t3t2LH3j/ffn6D3/w7j78wq5d8vWf/uTdffgB0RkLli3z5j78wrp18vVf/sKnA6PMhg3y9YsvencffkFbMvDSS97dhxkoQPEZa9bo///pp57chm/QBijbtnl3H36AMWDtWvn/7du9uxc/8NFH+v/v2OHNffgF7eAmlQJaW727Fz+gDdiibht9fcCmTfL/QdGDAhSfke10P/vMm/vwC9oCt44OoLPTu3vxml27gD175P+D4mScIjtNHfWALVuPqNuH1ndEXYuPP+ZBqyAoelCA4jO0KXwgOIbkFNl6RDlgyx4RR902SA89pIcklQI+/1z+v7MzWKtXVJNdKhAU26AAxWfs3cufhwzhz1HukBmTGQOhR1AalhNk28bOnfpRUdQQetTW8uco2wZwoB5Rzii1t3P/Acj2EmU9gmobFKD4DNEhT5nCn6McoPT0AMkkf33MMfw5yp2QcDJHHQWUlPAiyLY2b+/JS4Qexx7Ln6NsG4D0HdRW9B1yczN/TXpI22hpCcbeQRSg+IxsJxPlAEVoUV4OHH44fx1lPYSTGTVK7gcTlJGQE2Q73Sh3QADpoUVoMXw4MG4cf016AEccwf0pY8EooqYAxWfQqFAiApQRI4CxY/nrKOuhdbqkx4Ed8v790d0Lpb9f1liQ78jdViiYB0aOBMaM4a+DYB8UoPgIxqQhaad4xFxq1NA6GdGoopxBEQGb1ulGWQ9hH+PHy7n1qB4BIDZ3BICjj+bPZBt63xFV2wCC60spQPER7e2y6PGoo/hzX190R4XaDMqoUfr3oohwMiNG8JGQ9r0oog3Yoq6H+L3r64HGRv17UUTbIUfdNgC9HiNG6N/zMxSg+AhhMNXVwLBhQDzO/79vn3f35CXaDnn4cP17UUTrZEgP0kOLVothw/jrzs5gFEI6AdmGnqDqQQGKj9BmDGIx6WiCYEhOoB0hB6lROUVQnYwTJJMys0h66G1j6FD5ftQHN2QbnKDqQQGKjxBFbvX1/DlIhuQE7e38eehQfbAW1Zoc0dkMG0a2oa25GDqU9BC/97BhQGmpDFJID7INILh6UIDiI8SIUGwsJAwpqqMgrR5Ci4GB6NbkiG3+a2spuya0GDKE7wkTdT1EmxDFwkHqhJxA2EddHdkGoNcjSLZBAYqP6O7mzzU1/DnqDUvoMWQIUFUla3KirkdNTbCcjBNkt5Wo65FvcBNVPXK1le5uIJHw7p68Ip2WJ38HzXdQgOIjyMnoEXrU1PCanKhnlChAkVCAoof00KPVo76e+w8gmr6jp0e+DprvoADFR1AGRQ85XQlj+oySNliLYk0OBfN6qK3o0dpH1KcAhRaxGM9EB8k2KEDxEVSDooc6IUlvrwxEtKOgVErOL0cJ6pD1UFvRQ/YhEVpUV/NgLUhaUIDiI8jJ6KGMkkRoAXBHU1UFVFby/0dRD+30H0BthTpkPfn0iOJgL58Wvb2yNsWvUIDiI6hD1kMBm0RoUVXFl5EC0dZDO90FRFsLgAKUbMh3SLK1qKuTPsTvARsFKD6Cpnj0kNOVZGsBkB5A7hFyOu3NPXkJdcgSbb0W+Y4DtQjSJqAUoPiIfI0qqufPZDtd0aiiGLBlawEEx8k4QfYUj9AinZYbHkYJyr5K+vr09VpAtPXINbgJii+lAMVHZHdCYjdIsaNqlMg1ChI77FIHxKmr489RLpIVbSUeB8rL+WvSQ7aVKGqh3cixupo/R7mt5BrcBEUPClB8RPaoUOwK2dkZvaWkiYRM1WvnToFoByi5nEyU9dCmraOsR7bviLIWwja09VqkR+7Bjd/1oADFR2R3QsKItNmEqKAdBZHTPbADAkgPgPQQZHdC2sFN1Ahyh+wEQdaDAhQfkZ2KE+vWAf8bkmpEo6qsPHAUFGWnSxkUDumhJ9/gprMzekXDFLzqCXJboQDFR1DaWpLLyYhRYdS0AII9CnICqsmRMJZ/igeI3uGauTrkKGeUghywUYDiI7Q7/gmi6nSpQ9ZTyMlEzTYACmC1aOu1hB7aouGo6UG+Q0+hgM3vepgKUB544AEcc8wxqKurQ11dHaZPn46XXnop83XGGObPn4+mpiZUVVVh5syZWL9+ve4aiUQC119/PUaOHImamhpceOGF2LFjh5rfJuD09fHnqir5XlAMSTW5tNA6magVDYsdH7XBa1RtA5AHoOUK5qOmh/YwOKFHlLOvhQZ6UdMCKNxW/D64MRWgjB07FnfeeSdWrlyJlStX4qyzzsJFF12UCULuuusu3HPPPbj//vuxYsUKNDY24pxzzkGnRoV58+bhueeew6JFi7B06VJ0dXXh/PPPRyqVUvubBYx0Wh4FLrYwB6LbsESHnCtASaX8v0WzagrpETXbAIoHsFFCaFFaKrMmQHQDWLINPUH2HaYClAsuuABf/OIXMWnSJEyaNAk/+clPMGTIECxfvhyMMdx33324/fbbMXfuXEyePBmPPvooenp68OSTTwIA2tvb8dBDD+Huu+/G2WefjeOPPx5PPPEE1q5di9dee82RXzAoiOAECKYhqUY4GW2wVlMjj00nPaJrGwDpoSVXBwQEZ5SsmkK2EcWi4SC3Fcs1KKlUCosWLUJ3dzemT5+OLVu2oLW1FbNnz858Jh6P44wzzsCyZcsAAKtWrUJ/f7/uM01NTZg8eXLmM7lIJBLo6OjQPcKGMCIgmIakmlxOV5u2jqrTpeCVE+RRoWpydUBAdPUoZBtR3LIhUgHK2rVrMWTIEMTjcVx99dV47rnncNRRR6G1tRUA0NDQoPt8Q0ND5mutra2oqKjAMLHPbo7P5GLBggWor6/PPMaNG2f2tn2PaFT50rRR7ZCznW5U09bCPoLoZJwgyE5XNRSg6MmlR2UlUFbGX0fNlwY5mDcdoBx++OFYs2YNli9fju9///u44oor8MEHH2S+HhM5+EEYYwe8l02xz9x6661ob2/PPLZv3272tn0PORk9uTpkILp6FEtbR61ouJgeUaLYFA+1FZ59jergJpceQdHCdIBSUVGBww47DNOmTcOCBQtw7LHH4uc//zkaGxsB4IBMSFtbWyar0tjYiGQyiX1ZJxRpP5OLeDyeWTkkHmGDnIyeXFMaQHT1yGUfwskMDOinCMMOY4X1iJpt0OBGD/lSPUEO5m3vg8IYQyKRQHNzMxobG7F48eLM15LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZ6IKORk9pIeeXHpo9zWIkh79/TJjRFM8NB2aDfkOPcWmePycfS0z8+HbbrsNc+bMwbhx49DZ2YlFixbhzTffxMsvv4xYLIZ58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpOPvssx35BYMCVeLroVGQnlxOt6SEd0KdnVyPAknIUEEF5XrId+ih6WE9hTIoomhYO9jxE6YClM8//xzf/OY30dLSgvr6ehxzzDF4+eWXcc455wAAbrnlFvT29uKaa67Bvn37cPLJJ+PVV19FrQjlAdx7770oKyvDpZdeit7eXsyaNQuPPPIISsWBKxGFRkF6io2Coup0c3VCIkCJCto9cOJx+Zo6IP37UdeDBjecXPYhTnpOpbgeoQhQHnrooYJfj8VimD9/PubPn5/3M5WVlVi4cCEWLlxo5keHHsoY6MmnBwVs+vfr6oDPPouWHlottLX12WnrIrX5oYECFD2kh558WzbU1gL793M9mpo8ubWi0Fk8PoEalR7SQw9llCTFtBgY0G98GHZocKOn2BRPlNoKEGxfSgGKT6BGpYecrh7SQ5JPi6gWDdP0sJ58UzxR1COV4kXlAAUohA2oUekJctTvBNQJSfJpUVIigxTSg9oK6aEvKA9iETUFKD6hWKPq7ZWRcBSgjIEeKvyT5GsrQDT1oLaih1bxSLQBiragHAiGHhSg+IRiRaGAvyNd1VDNhSToaVrV5GsrQDT1oLaih4J5idCirExu9S8Igh4UoPiEfE6mokK+52dDUg1NaUjy7fsBBMPJqIYyKHqKBSjJZDSLhqmt5A/WgGD4UgpQfEKhUWEUDwyktLVEu+8HOV1jAQq1FSoapraSP1gDgqEHBSg+gUaFesjJSIQW5eV8cyUt1CHribJ9ZLeV0lKgpoa/jqIeQSwKVU3Q+xUKUHwCOV09xTIoPT18v4soUMjJBCFNqxrSQ0/QOyHV5MsaRNk2CvUrfg7YKEDxCeRk9BSrQQGAri737sdLKHjVY8TpRkkPsg8JY5R91UJTPIQSaF5dDxUNSyh41RN0p6sa8h2SZFK+zpd9TSSiUzQcdN9BAYpPEA2mouLAr0U5NZm9dh+Inh5BdzKqKWQbUdaD7CP/QZJANLdsCPp0KAUoPkEEKOR0OWIkRHqQbWQj9KCMAYfsQ6LNjGTrEcWi4aDbBgUoPiHohqSSgQEgneavSY/C2TVt0XAq5d49eYkRPdrb3bsfrynkO8QoOSp6CC3Ky3OfZh1V3xFUP0oBik+gjIGk0CgICEZqUiVGOiAgOlmDQm0linsGGbGPqOhRyDaA6OkRdNugAMUnBN2QVGI0QInKKp5CTjce56NFIHr2QW2FY6R+LSptpZBtANGzDyNtpa/Pv1s2UIDiEwoZktgRMmqNKhY7cGMygJxMNlG1D2orHMooSait6DESvAL+1YMCFJ9Ao0KJ1uHmmkeOmh40KtRjpK1EJWMAkO/QQm1FTyE9Kipk4OJXPShA8QnkdCXkZPQUGgUBZB9atLbBmHv35CUUoEjE4IbaCqdYTY7fM0oUoPgEcjISClD0kB56jKSt02n9nhhhhTGa4tFCbUWPUT38GrBRgOITjDhdalQcv0f9qqGVCXoK6SH2uQCioYd259RcviNqbYUCFD1Gs69+1YMCFJ9AGRQJORk9pIeeQnqUlESrU6YVb3qoregJuh4UoPgEIysTenv9uxxMJVRzoYcySnpID4k2g0KDm+DXXKiGAhTCNqmU3AW02GZcUeiUaUpDT9DTtKoJ+ry6SoQWZWU8e5RNVG2D2gon6L6UAhQfUGwUFI9zBwREy+kGtVGphjpkPdQJSYzahp8341IJtRU9Qc82UoDiA4rNI8di5HS1+L1RqYYCNj1BHxWqxKhtAKQHEC3bAII/XU4Big/QBihi2/JsotSwyMnooQ5ZD9mHpFgHVFERraMQyDb0BF0PClB8gNaIcu2cCvjfkFRiplFFYTMumtLQE3Snq5JiwSvg/1GySiiY1xP0tkIBig8oZkSA/w1JJUY75HSaz62HHZry0kN6SMh36CnmO6JkG0DwAzYKUHxAsUYFRKthFWtUUduMK+ijIJUwRoWQWihA0WPGNij76n/boADFB5CT0VNMj6huxkUdMl+JIjqWoDpdlZDv0GO0rUTlKISgZxspQPEBZpxMFDohI3r4vWGphDIokmJL8oFo6WEk+xolPYxkX0WdXxT0CPrghgIUH2Cm0I0aFSdKehg9oTUKWhRbkg9ESw8jvoOCeUksRnpo8XtboQDFB1CHrIf00EObcUmEFiUlcvPCbMg29Ph9lKwS8h16gj64oQDFB1Cj0mMmbU1OV44IgfDbB03/6SHfoYcWHOihDAphG3IyemjKS08x+4jHo7MZFwWvesh36CE99BgNUBIJoL/fnXsyAwUoPoBGhXrIyeihNL6Eglc9VCSrhzaukzBm/HRnwJ/2QQGKD6AOSA8FbHqKzSMD0emEKHjVQwGbHrIPiZEVbxUV0q/4UQ8KUHwAjYL0kJPRQ3pIzAbzYd+Mi4J5PdRWJNoAJahTohSg+AAaBemhgE0POV2JGS3SaaCnx/l78hLKvuoh3yExsiQf8LceFKD4AApQ9JAeklSKPwBamQAY64Cqq+XrqOhBbYVDvkMibKO0lD/y4Wc9TAUoCxYswIknnoja2lqMGjUKF198MTZs2KD7zJVXXolYLKZ7nHLKKbrPJBIJXH/99Rg5ciRqampw4YUXYseOHfZ/m4BCNQZ6zOgR9lGhkXlkIDr2YcQ2onQUAvkOPbTMWGLENgB/24epAGXJkiW49tprsXz5cixevBgDAwOYPXs2uru7dZ8777zz0NLSknn8+c9/1n193rx5eO6557Bo0SIsXboUXV1dOP/885ESQ8WIYcSQRKOKwmZc5HQlYZhHVomRETJAemiJSlsBaBWPFqNtxc8BW569GHPz8ssv6/7/8MMPY9SoUVi1ahVOP/30zPvxeByNjY05r9He3o6HHnoIjz/+OM4++2wAwBNPPIFx48bhtddew7nnnmv2dwg8ZjpkgBvSsGHO3pOXmAnY/NioVGI2QImKHkZGhS0tpAcQHdsASA8tkcugZNPe3g4AGD58uO79N998E6NGjcKkSZPwne98B21tbZmvrVq1Cv39/Zg9e3bmvaamJkyePBnLli3L+XMSiQQ6Ojp0jzBhxJC0m3FFJfInJyO1KCvjUxf5iJoeQXa6KjETzPt1My6VkO+QmG0rfuxXLAcojDHceOONOPXUUzF58uTM+3PmzMFvf/tbvP7667j77ruxYsUKnHXWWUgMTg62traioqICw7JSAA0NDWhtbc35sxYsWID6+vrMY9y4cVZv25eQ09VDTkZCtqGH9NBjJfsaZsh3SMLQVkxN8Wi57rrr8P7772Pp0qW69y+77LLM68mTJ2PatGkYP348XnzxRcydOzfv9RhjiIlzsLO49dZbceONN2b+39HREaogxYwh7d3rT0NSCc2rS4zaRtSmvEgPjhE9xGZcySQfJWclvEMFBSiSMAQoljIo119/PV544QW88cYbGDt2bMHPjh49GuPHj8fGjRsBAI2NjUgmk9i3b5/uc21tbWhoaMh5jXg8jrq6Ot0jTITBkFRidhVPmDfjItvQQ3roIT0k2q3dqX4tHLZhKkBhjOG6667Ds88+i9dffx3Nzc1Fv2fPnj3Yvn07Ro8eDQCYOnUqysvLsXjx4sxnWlpasG7dOsyYMcPk7YeDMBiSSswEKOk00Nvr/D15RRjmkVVCq3j0kO+QaFc30oq3cGQbTU3xXHvttXjyySfxxz/+EbW1tZmakfr6elRVVaGrqwvz58/HV77yFYwePRpbt27FbbfdhpEjR+LLX/5y5rNXXXUVbrrpJowYMQLDhw/HzTffjClTpmRW9USNMBiSSozokb0Zl/b/YYI6ID2khx7SQ2JlST5jQJ7KgsATBtswFaA88MADAICZM2fq3n/44Ydx5ZVXorS0FGvXrsVjjz2G/fv3Y/To0TjzzDPx9NNPo1ZTqXXvvfeirKwMl156KXp7ezFr1iw88sgjKC203V2IoVGyHjObcXV18YaVZ3Yw8ITByaiE9NBDgxuJ2QBFHIVQU+PsfXlFGPoVUwEKKzLZX1VVhVdeeaXodSorK7Fw4UIsXLjQzI8PLeR0JUbnkQGuhwhQwgrZhh7SQw/pIdEGKGUFerbqaj7ASae5HhSg8Gc/2gadxeMDwmBIqkilZNEr6UEj5GxIDz1hGCWrQqtFoWmbWCwa9hGGfoUCFB8QBkNShdE0LRAtPYxqEfbNuKit6CE9JEa1AKIRoBg5lwjwt21QgOIDyMlIrAQoURkVFkK7GRfpEQ3bAMh3aDEToETBPsKQbaQAxQeEwZBUYXQeGYiWHsVsQ2zGBZAeQDQ6ZID00GJ0CToQLT2M2kYyqfe/foACFB8QhlScKozOIwPR06MYpIckCloANLjRQm1FTxiyrxSg+ABKW0vIyeghPfRQgKKH9JBQW9FjNKNUXi4/4zc9KEDxAeRkJORk9FDhnx6zGQM6CoFDgxs95Dv0+FUPClB8AAUokjA0KpWQHnrMthXGgO5uZ+/JK9Jpub07+Q4K5rMJg++gAMUHUIAiMVqPA9CoMBvSQ1JTI2uYwqqHdjk5+Q5qK9lQgEIogQIUCY2C9ITByajEqB5R2IyL9gzSQ21FTxh8KQUoPsDsvHqYN+MiJ6OH9NBDeki0AUp5eeHP+rUDUgnZhp4wZJQoQPEYK/PIQHgbFjkZPaSHHtJDIqZDS0v5oxBh1wIg28gmDHpQgOIxZuaRtZtx+S3SVUUYGpVKSA89YUhbq8KKbfhxMy5VUFvREwY9KEDxGDPzyIB/DUkVYWhUKqEOWQ/Zh8SKFgANbgBqK9n4ta1QgOIxFKDoCUOjUkkY5pFVQnpIzGjh5824VEErAPWEwZdSgOIxwoiMzCMD/jUkVVgZBYV5M64wOBmVkB4SM1oApIeWsGsBhCOjRAGKx5h1Mn41JFVYOfCLMaCnx7l78hI6AE0PdUIS8h16yDb0hCHbSAGKx9AoSI8ZPbSbcZEe4bcNgPTQQr5Dj9UOmbKv/rUNClA8xqqT8VukqwozekRhMy4r8+ph1QIIR9paFeQ79FjpkMN8FAIFKIRtaBSkh/TQQx2yJJXi+wYBwXa6qqC2oseMHlVVQMlg70d6+Nc2KEDxGHIyekgPPWGYR1aF1RVvYdeD2gqHsq96KEAhbENORo/Vwj/qhKRthPUoBFqSr4d8hx6a8tIThuwrBSgeQ05GD+mhx+pmXGHUQ9TjAMXPngHINrIhPfSQHhK/akEBisfQUkE95GT00GZcEqFFeblcvVUIsg095Dv0kH1IhBb9/f46CoECFI+hRqWH9NBDekhICz1m9sgBaEojm6jYR5CzrxSgeAzNm+ohJ6OHRskS0kIPtRU9ZB96zOhRVgZUVvLXftKDAhSPISejh/TQQwGsxKoW3d1yeXKYoLaih/SQMCYL5YOsBwUoHkONSg+NgvSQfUisahHWoxDINvRQMC/RruILsi+lAMVjyMnoISejh+xDYlaL6upwb8ZFtqGH9JCYXZIP+FMPClA8hjIGesjJ6CE9JGa1CPtmXOQ79FBbkdgJUPw02KMAxWOsNqpk0l/LwVRh5uwZINxOJizzyKow21YA0kOLHzsglVCAIhFaxGJAaamx7/GjHhSgeIzVRgWE09GQk5GEZR5ZFVYCFNJDEua2AlBGSYt2CbqRPYMAf9oHBSgeY7ZRRWUzLnK64UnTqsJOBoX0CH/2lXyHJCzZRgpQPCYshqQKGgVJwlLopgpqK3rsZF9JDwpes/GjL6UAxWPM1lwA5HS1RMHJBH0eWRUUoOgxq4dfN+NSBWVQJGFpKxSgeExYDEkVdgIUxpy5J6/QahHkeWRVUFvRE5ZRsiooQJGEZTqUAhSPISejx85mXN3dztyTV1CHrMfs2TNANPQIeiekCgpQJGHxHRSgeExYDEkVtBmXhIJXPaSHHvIdeuxkX8N2FEJYbIMCFI+hUZAes6PkMG/GRbahh/TQE5ZOSAWpFH8A5gvsAcq+Av60DQpQPCYshqQKGiVLyDb0kB56SA+JlRVvVVUy+xq2ADYsftRUgLJgwQKceOKJqK2txahRo3DxxRdjw4YNus8wxjB//nw0NTWhqqoKM2fOxPr163WfSSQSuP766zFy5EjU1NTgwgsvxI4dO+z/NgGEnIweGiVLqOZCD7UVPaSHxEqAEouFX4+g24apAGXJkiW49tprsXz5cixevBgDAwOYPXs2ujX5sbvuugv33HMP7r//fqxYsQKNjY0455xz0Kn5refNm4fnnnsOixYtwtKlS9HV1YXzzz8fKZGjixBhMSRVWNGjro4/d3Sovx8vsWMbyaRcwh4WyDb02LGPsOmhDVDKy41/X1jtIyxtpczMh19++WXd/x9++GGMGjUKq1atwumnnw7GGO677z7cfvvtmDt3LgDg0UcfRUNDA5588kl873vfQ3t7Ox566CE8/vjjOPvsswEATzzxBMaNG4fXXnsN5557rqJfLRiExZBUYGUeGZB6tLervycvsWMbANdj1Ci19+QldvQIm20A1vSor+fPYfMdQovSUuN7BgFcj+3bw2cfdm2DMeNbGziJrRqU9sG/6vDhwwEAW7ZsQWtrK2bPnp35TDwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPcICOV2JlbNnANmwwqaHFdsoLZVzySFqJgDsOd2w2QZAemixogUQXl9qxzbSaf8UDVsOUBhjuPHGG3Hqqadi8uTJAIDW1lYAQENDg+6zDQ0Nma+1traioqICw4YNy/uZbBYsWID6+vrMY9y4cVZv23eQk5FYmUcGwj8qNOt0w24fZBsc8h0SK/VaQHj1sLJDeXW1zD75RQ/LAcp1112H999/H0899dQBX4tl5YYYYwe8l02hz9x6661ob2/PPLZv3271tn2HlYYV1kZldR457HpQgMKx2yGHeadho5Bt6AlrAGtFj1jMfxklSwHK9ddfjxdeeAFvvPEGxo4dm3m/sbERAA7IhLS1tWWyKo2NjUgmk9i3b1/ez2QTj8dRV1ene4QFcjISoUVZmVz+Z4Sw60Fpa46dtpJKAT096u/JS2h6WELBvJ6w6GEqQGGM4brrrsOzzz6L119/Hc3NzbqvNzc3o7GxEYsXL868l0wmsWTJEsyYMQMAMHXqVJSXl+s+09LSgnXr1mU+EyUobS2hDllPWJyMKqzoUVMjg13Sg2wjG9JDj9/6FlOreK699lo8+eST+OMf/4ja2tpMpqS+vh5VVVWIxWKYN28e7rjjDkycOBETJ07EHXfcgerqalx++eWZz1511VW46aabMGLECAwfPhw333wzpkyZklnVEyVUpK39UG2tAnIyesLiZFRhJ229fz+3j6YmR27NE2hwI6HBjZ6w+FJTAcoDDzwAAJg5c6bu/YcffhhXXnklAOCWW25Bb28vrrnmGuzbtw8nn3wyXn31VdSKBfgA7r33XpSVleHSSy9Fb28vZs2ahUceeQSlZtaHhQQ7Tqa/H+jr4zsihgHqkPWExcmowo4e+/eHyz4YowyKFmoresKih6kAhRmoMovFYpg/fz7mz5+f9zOVlZVYuHAhFi5caObHhxKrWxLHYtxJtbdTgOK3RqUK0kMP6SFJpWTRr5UApbOTLyc1U+vlZ8g29IRFj5CYZ3CxYkglJXJHSL8YkgrC0qhUQXroIT0kdpfkMxaunagp+6onLFNeFKB4jFivbmZZLRBOp0ta6AmLk1EFBSgS7TEGZvSIx2X7CpMeZBt6wqIHBSgeop1Hpg2G7GvR0cHT1mGBAjY9FLBJtBmUMhMT9bFYOLMGZBt6wpJRogDFQ7Rbu1OAIjtks1oIJ8NYuE40VhGwhQkru2MC4Wwr2g7I7Cq+MOpBwbweyqAQtrE6jwyEsxOy2qiqquQoMkx6WA3Y/OZkVGFXD7INThjtw24w39OjHzAGnbD4DgpQPEQ7jxx0Q1KB1UalTVuHSY+wjIJUQXpIrGoBhFMPu9lXgIqGAf/ZBgUoHmL1iHDAf4akAhoV6gnLKEgVpIeE2ooeqxmU8nJ+SB4QLj3sBmx+0YICFA+xOqcO+M+QVECjQj12O+TubmBgQO09eUlYRoUqsBOghNF3kC/VE5bpUApQPIRGQXpIDz12VyYA4Upbh2VUqAIVwbxfOiEVkO/QE5ZgngIUD6GMgR47eoSxE7LqdCsqgMpK/josejAWnlGhCqhD1kO+VI/dtpJM8mNUvIYCFA8hJ6NHhR7UCXHCZh/aqaqgjwpVQLahh3yHHqt61NbKZet+sA8KUDyEon495HT1kH1IaMWbHrINPeQ79Fi1D78do0IBiodQ1K+HnK4ecroSFQFKIqG/TpAh29BD08N6VBRR+6FvoQDFQ8jJ6CE99FhdOgmETw+hRUmJ+SX5YkQIhE8POx2yHzogVZDv0BMWPShA8RCK+vVQBkWPiqWTYemE7Djc0lJ/pa1VEJYOSBWkh56w+FIKUDxERaPq69NvmR9kwpKWVAU5XYmdbBIQPvsg29ATlg5ZFWGxDwpQPERFBgXwhyGpICyNShXkdCV2sklA+PRQZRuMqbsnL6F6Pglj4fEdFKB4iJ1GVVYG1NTw134wJBWEpVGpggI2iR0tANJDi9AileKH5IUBqteSaA89DLoeFKB4iN20tZ8MSQXUIeshPSR2glcgfHrYsY2aGl5sDIRPD6rns7fiDfDXdCgFKB5CaWs9lLbWQ9uZSyiDoseObcRi/uqEVEDBvERbkxj0bDQFKB6iyumSk5FaDAwAvb3q7skr0mm5eyodCEdtJRsK2PTQFI9E2EZpqfkl+YC/9KAAxUMoba3HjtMdMkRu0RyGTshumjZstmG3rVDApids9mEnGy206OzkA4OgEybboADFQ+waUticrqq0dRj0CFOaVgVhcroqoMGNHhXZV8aAri519+QVYbINClA8JEyGpALqhCTaDAoFKGQb2ZAeeuxM8cTjQHk5fx0GPcI0HUoBioeQk9FDAZtEaFFeLqeuzKB1MmFIW5Nt6FGlhx86IRXYmeKJxcJlH2HKzFOA4iEUoOghPSSqtGAM6O5Wc09eQrahJ0ydkArIPiRhCuYpQPEKxkJlSLZgDGCMnIwgnbatRWUl38wPCIcelDHQoMA+wtRWtL40DNMatkillNlGT49+0zcvoADFCx59FBgyBIkNWwFE3MkwBnzrW8DIkUj2pQBEPGDbtQuYNAnJr/8jAOtaxGLA0KH89f79Su7MG/7yF6C2Fon/XQzAflsJtBYAMH8+UFWFZNs+ANbtIxS20d8PzJyJ1CETkOKuw7bvCLQemzYBTU1Izv8JAPtaAN770jJvf3wE2bQJuPJKAEBy9ToAh0S7Q378ceCJJwAAiXg/gFLLnVAonO6NNwKffIIERgCw3iEDXI/duwOsR28vcPbZAIDEa28BOCfatrF6NfDv/w4ASHyyA8CwaOvxi18Ab7+NJCozb1nVY9gw/rxvn4L78oqrrgLa2pBoexeAdS3Kyvi2DV1d3D5GjlR3i2ahDIrb/OEPmZeJHh72R7pRPfxw5qXdNG3g9ejpAZ56CgCQABfBToASeD1eey3zMgkexVsN5oUWvb36FVKB4je/ybxMtPcBiHBbAYAHHwQg2wpg3z4Cq8ennwJvvQVAje/wSwBLAYrbvPtu5qVwupF1MqkUsHIlAIABSDA1nVBg9VizBiJXbbdDBkKgx6BtAPadbl2dXA0VBj2SjK+LjWxbaW8HPv4YgJoAxS8dsmVWrMi8DJPvoADFbUSAMn16pmGpcDKBPH9mwwaeR6yuxsCUE8AGzTGyAZtwMiefLDvkCutrhAOvh+iQtXpYtI2SEtkJBVKP/n4ewAJK9Ah8h/zee/z5kEOQHNEEAKgoT1takg+EqK2cdBJlUAiL7NwJfPYZ95Zz59o2JNGoBgYCupRUdMgnnIDk+ImZtyM7KhRO5otfRKKCrwONw/p8RKA7ZMakfVxyiZJRoV+criXWrwf6+njh2axZyqa8AmkbgGwr06YhMeZQAEBFacry5UKjxyWXyH6ldMDy5fyiBwUobrJ2LX8+/HDgqKNsO5maGrmU1GtDssT77/PnqVMzTgaI8KhQjJCnTkVy5OCoMGX95EPhZAKpR0sLX9FUWgpcdJF0uuURzSgJ2zjhBODQQ5UNbrq6vF9KaonVq/nzCScg0dQMIBwdsmWEfcyahWQlXz1R0W99336/DG4oQHGTTz7hz5MmAePH23YysVjAO6FNm/jzpElINh0CAChBOhN0mSXQTiadlvZx+OFIDKat4wPWU2OB1kPYxvjxvEOOVQEA4gnrS9ZCocfhhwPNzbZ9h3YpaaB9xxFHINl4MAB72cZA28a+fcCePfz1pElIDG8EAMSTnZYv6Zd+hQIUNxGNasIEYPx4mUFJWo90A92wRId82GFINHAnUxFLFviGwgRai5YWvsSktJTbxqCTqUhE3DYmTABKS5GsHgoAqOjYY/mSodHjkEOk7yi3VnxWVgbU1vLXQdcjcdBYAEBFOqLToUKLhga+v1b9KABAvNd6MO8XPShAcRMRoBx2GDekksFR4d4Wy5cMrNPVZgwmTEBi1DgAakZBiQTv6wOF0GL8eKC8HImhg04mYX1ry8DaBqDvkAEkqviQP96xy/IlAz0FqNVj3DiZQbGhh19GyabZtw/Yu5e/PvRQJEaOAQDEUz2WLxlYLYAD2kqyjm9cUtFtveH7RQ8KUNxEG6AASJRUA7AXoPgl0jVNSwsv+isr4xmDg7iTqWAJyxtV1NbyBAQQQD2yO+Qh3MnE+yI6pZHtdCv4cL+iY7flS4ZFD1ZWjsTg5mTxfa2WLxlYPbIyBkkRzKfsT4e2t2dW+gcHTSYaABJV/JexMx3ql36FAhS3SKeBzZv560FDSsYG07SdEUxba2sMysqQiGtWreyxpod2e/fA6iFso2IIAHvTf4HVAjjQ6ZYOZht791u+ZGDbijZjMGECBjS1oJEM2A7Irg0FMFhQbjG6EFoAAdyZ+4BgvgYAUNFnvwbFa9ugAMUtWlp4ZqC0FBjHpzPExmTxzgg6GRGsiUY1MLgHio0ABQhwp5ylR6KcByjxpP0pHq/TtJbI7oREkWyP/bR1YG2jsRGoqdElGO34jsC2lewOOc6za3EkLP8y5eV8VSQQQD2yfUcp/0XsZF/9Mh1KZ/G4xY4d/LmpKbM2OLMbZBQzKEIPEawNOt0KJPkBMhYJbKf86af8efx4AECiTONkGIOVHaiEFj09/BgBO3uIuEpXl8wYDOqRyTZ27bV82cB2yNm2oQ1Q2tssXzawbWXbNv58yCEAgESK+9M4Etx3WDw8ZuhQvp9UYO1D6JHJNlr/RQ47DPjxj4ExY+zenD1MZ1DeeustXHDBBWhqakIsFsPzzz+v+/qVV16JWCyme5xyyim6zyQSCVx//fUYOXIkampqcOGFF2KH6LDCymef8efBvzhjQFI0LAVOJnCNSvy9x/IK/MwR4TYzKIHXYzBgSw46mYp0H9BpLVVbXx/Q7d2FFnV1/AEgwQaLQrvs20bgOuRs2xhc6FaCFEr32i+SDZRtAMD27fw51+Amar4jnT7AlyYHF19UdO+3fNmmJuD22zPn2nqG6QClu7sbxx57LO6///68nznvvPPQ0tKSefz5z3/WfX3evHl47rnnsGjRIixduhRdXV04//zzkQpcdZIJRIAijEizmjaSo6CsgE3ooSqDEignk0rxXYYB6XTTPLuWGRVaoKRE7ncRKD2yOiBAo4eCVSuB0gLI2yHbsQ0gPHpkDhlVpEegfGlbG99pLxbjUQU051b1d/L0aYAxPcUzZ84czJkzp+Bn4vE4Ghsbc36tvb0dDz30EB5//HGcPXiU+hNPPIFx48bhtddew7nnnmv2loKBiHKzOmQAqNgbwUr8rIAt0hmUlhYepJSV8ZUJyNEJHXpogQvkZ+hQ7nADpUeOACWZ5q6qop0ClEgH80De6WHeViK2b5DQYvRoXkgDIJHWTHnt2QNUV3t1d7ZxpEj2zTffxKhRozBp0iR85zvfQVubzBCsWrUK/f39mD17dua9pqYmTJ48GcuWLct5vUQigY6ODt0jcOTpkAGgYt/nli8byEYF5A3Y7I6CAllnIDqgMWMy66R1nVDUAjahx2BbAYDEANcl3rUbumUsJhBadHZavoQ3ZOmhKoMSyLaiLRLJ0kNVwLbXepmT++QK5pN8XteuHn5AeYAyZ84c/Pa3v8Xrr7+Ou+++GytWrMBZZ52FxKAVtba2oqKiAsO067oANDQ0oLU1dyZhwYIFqK+vzzzGaf4YgSFPh1yKAZTusT/FE6hG1dcnG86gHqqczPDh/DlQeuSa0lDUCQVSj6wRMgAk+rnTjSNh+ZcRHTIQsE65YMbAum2MGMGfA2Uboq3U1mbmL1UNbkRbCZRt5ArmFdmHH1AeoFx22WX40pe+hMmTJ+OCCy7ASy+9hI8//hgvvvhiwe9jjCGWZ6XCrbfeivb29sxju/ijBIliUxrM2pbV2g7I4iXcR9RbVFZmfgFVUzyBdroaJ6MqjR9oPRSPCsvKZE1OYPRIpaTvUDzFE8jg1cFgXrQVG+7HfQroQRkUA4wePRrjx4/Hxo0bAQCNjY1IJpPYlxWmtrW1oWFw/j2beDyOuro63SNQMJY3g1KBJHdCFncHEo2qv59nPwOBtkB2MChV7XQD5WRyZQwUZ1ACpQd1QpLWVlmfNFjXd4AWFkcmgdMCKNhWKGDjqMoo+QHHA5Q9e/Zg+/btGD16NABg6tSpKC8vx+LFizOfaWlpwbp16zBjxgynb8cb9u3j0xqArLTOOJlBa7LYKqqr5YmmgXE0WSt4gCyna8NDBDJjUEwPG8sKAqmHyLAN6pFOy5qRCiRt6RG4Tkho0diYqU/S2UYyKX2LSYQW3d2WT5dwnxxtRdch29gGNpABW1ZbAbLsI3Db4uoxvYqnq6sLm8S23AC2bNmCNWvWYPjw4Rg+fDjmz5+Pr3zlKxg9ejS2bt2K2267DSNHjsSXv/xlAEB9fT2uuuoq3HTTTRgxYgSGDx+Om2++GVOmTMms6gkdIuofOZJPa0BjRCX9QBqWDSkW446mpYU73cG9nPxN1rp9IMvJ2CiCDmTGoGXwLKbB4BXIyijZcDKB06O3VwYgg3roluRHrRMSHVA+2wC4HlVVpi9dX8+XoqfT3HcMjiH9TY62osugKGgrgQlegeL2EbUAZeXKlTjzzDMz/7/xxhsBAFdccQUeeOABrF27Fo899hj279+P0aNH48wzz8TTTz+NWnG2N4B7770XZWVluPTSS9Hb24tZs2bhkUceQak46S1sZNWfABojKh2wFaAA3Om2tATI6RbIGNhtVKID2rePO96SIBzmIJyMpofQj4KsD28Dl0ERHVBVldykTbtzqs0AJXCdUCHbKB0AUuB65NnWoRAlJbzIfs+eAAUoBTrkyAWvjMn2ktd3RCxAmTlzJliBOc9XXnml6DUqKyuxcOFCLFy40OyPDyaFUvhlKaAfSrIGgXG6WfU4QJ609WC2yQxCi3Sat82sxWL+Q+tkcowKuZOxlsIHAphB0XZAWfVJAFCO/mh1QoVsoyzNAxQbvmPECK5F4PRwoEPOXnBg4XQJd+nokBuxhTRACcL4Mvjk6JAzGZSyNH8RJadbKKOkTVtbIB6Xh34FImBrb+fTGoDOyahK0wY2g5LD4ZaXDKAELPIZlIxtlA8OFKOoR74pno4O20XDiURANmAVbaWuTjo9hGuKhwIUN8jRIWei3HJ1AUpgnEyhjJI40C4qdRfCyQwdqqsjUD0qDIQWQMEOKF42eBRGlIL5QhmUCvsBSqD0SKf5qiYgZ8AWR4J/psvabrI1NZnNWIPhS3O0FYAyKIRZCk1pCCcTlcLQdLpw5XnlYF7VZtoaCIeTyYwKLSK0aG8PyO6pOTIoKrONgWorQOEMyuDqvcgMbvbs4fspALqaG7ngYNDAbSw4CFTAlqOtABSgEGYpNKVRMdghR2UU1NbGe8qSEp2TyehRNVgoHZVOKI+TOWBVk8W0tbYGJxA7ZBbKoCjMGASiQwYKZ1Di9n1HINvKQQfJVAc0wXz1YEllVKa8crSVVIo/AJriIYxSKIMi6kCj0qiEFg0NOZ1MvNp+gBKoTshImjaVsrwLX+B2Ty1UBKkgQAlUhzwwwAN6ILceVeoGN4GwjTxtJRPMK/QdgbCPAtlGgDIohBF6e+XQNVeRbOXgnyAqjSrH9A6g0UPhKCgQehTJoFSU2K+7CJQehfZ1UFCfFKgO+fPPeeastJRnDQahbGOeKY0hgwOeqAz2CrQVYDCD0t0dkLnd3FCA4jTafR3EUBbaUdDgn4BqLgAA8Rr7AUrQ9WBMo0fdYKFBVPQolEGpVDel0dWld+a+RLuLrGZDH8o25s6gVAwZjGCjMtgr0FYAzYpIG32L11CA4jTaOWTNwvrIjoKKBSgKRkFBdzIDA7LkREWAEhj70GYbc2VQFGQbhw6VzdD3nXKO+hNAG6BQthHQ6FFrP0AJegYlU49TAcTEPlIBnuahAMVpclThA85lDNJpy5dxh2JTGrWDHXJUNq4rlqats+9kAjNKFktI82YbB4P5ri5ZCWgSsXsqEIBOOY/vyLSVGnXBvO9tAyg+uFGYbfS9beTZRVY3HSraEAUoRF6KTmmomzdNpwOQzSumh4JRkHAyvj/Ik7GCW5kDQHzo4N4onZ2Wf0xg9NBqock2yoyBxl1Z3OsCCFAnZDTbqMg2LC4Uc4+ig5tB36HANnzfVjo7ZeF8runQODJHRdixD6+hAMVpijUqkUGx0ajicWDIEP7a9w2r2DyyyKDYaFQjR/Jn32vR0ZFzF1nhZEpKgLK6av6fKOiRZ0pDN8VTNthebOgh6k137bJ8CXcwWhSqwDYSCcsLxdyj6OAmQr5D2EZtrXT+yApQxPsUoBB5KToKGoz6OzttDWFC43QVjIICo4Wwjfp6oLo687YuTSsO2YxCh1xsOjQeU6JHYDoho0WhNrSoqZEbGPvaPvJMaQAa+6gfnA6NUlvJZxta32HDl3oNBShOU6TQrUKMggYG9Ll9kwin6+uGpd3XIV/ApsDJCC26u2WCwpcUK4JUNAoSTtf3HbLLevi6rQCuBPNAQPTIs4ssoOmU69T5jsC0lbzBPJQE815DAYrT5BkV9g0eUFtVVyHfDHsnlGdfB0ATsClwMvX1cg84X+tRrAhS0SgoEMEr4JoegeiQgeKj5DrNlIaN7Gsg7EN0yCNHajbEyVqSrzCD0t7u82XoxTLzFKAQhshjSCJAqawuken9sDvdPPs6AJqAbZh9JxOLBczp5rENVU4mELYBGMugRGWKx0i2UQTzqZQ0GgsEYnCTx4+KpAoAVAy170eHDZOuyddF1MVqGysgs400xUPkpLcX2L+fv86XQalCdDqhPE4GkFMxVcMHJ8RtNqpABCjFsmuKbWPvXsurc90hjx4Z24hSWymQbczoMSwu3wx7hi1Ph6yNy6pG2C8oLymRK3l8rUceX6q6rXgNBShOkmcXWUAaUmUllI4Kfd2o8jgZxjQZpRE1/IXNRhWIUWGejIHOySiouRDL0Bnz+X4XRTJKlZWITg2K0KJAtrGyulRmX8OuR5EOGQDiw+xrAQREjyIBm6p+xWsoQHESrRFp9nUAIup0i8ypA5oApafH1nA/UHoYcTI2Rsjl5XJzMt/q0dcnoycjGRQFGQNfB695bANwLqPkaz0MdMixOjUdciD0cCnb6DUUoDhJgSmNnGl8BTUogWhUBUZBVSNr5H/CnrYuUp+k0sn43j5EB1RZyfej16B6VKgNXn27OZkB3xGp7GueQ0ZVB/NAQPQQ7aWQHlSDQhTEQM2FE07XtxQZBcViQHltJZ93B8IdsGl3kc0TsKlM0/re6Wq1yMo2OpUxSCR87LuNBigKOqFA+A4zGYOwZ187O+XfmzIohGXydMiAs6NC31JsRVMlECtRsxmX7/Vob8+5iyzgzDyy7wM2FzMG1dWD14KP7cNIQXmUpngM+A7tjqqhHtwILerq9L8zqAaFMIPZKZ6wb06WJ2DTOVwgGgGK0GLoUN0uskCeItmwb8blYsYgFgtAJ5SnYBiI4BRPOm2soDweV3IUgu/1cDGY9xoKUJykQAZFl8ZXUCRbVyc3J/Nlw+rvz7uvg65RAUr0CKWTCfNmXC5mDIDgBmyplNz7Q3UGxbebkxXYRVbXVmKxaNTzGW0rVINCFMRsJxTmUWGBfR0OCFAi7mRy2obNoxBCp0eUanI0aPf9UJVR8v3mZEKLUaPkKGyQvL4jzNlXyqAQSnDZkHzdsArs6+DkFI9vNyczOwoCIut0ncyg+DJgM5BtBNT5Dt9vTmbUNoDIZ1/zthXfLlcrDAUoTlFgF9mBAf4A1DpdXzcso8EaoESPESN4Vokxn3ZCBfa50OlRWiq9r4KMkuj3fIfRmgvFNTmff27rMs7Q2sqfy8tl5DCI6IDKywcXuykO2HxpH0ZtA1Cix6hR/Hn3bl7+4jvMDnxtHoXgJRSgOEWBXWTzpmltOpmGBv7sS6drdEUToMTJlJVJ3+5LPcyMChXo4WvbAFzPoIhSBl/qoQ1e8+0iq7CtAAHRw0xbURDMp1I+n/IqpkeNmj2lvIQCFKcwsIssoHaDIV93QlbStBHVw4lOSHRAu3b5cMqru5tXaAKuTYcGwjaK7SILKG8rInnjK1xuK+XlMhvta/sopkepmqMQvIQCFKcw0CFXVAwOkBSPgsjJcII6KnSq8C8W8+moUATzQ4bI31VDzo3rbG7GRbahJ6h6OFGDAvg4YCuwwSPgTPbVSyhAcQoPnIyvR4UuT/EAIXIyCkbJvp7yKqAFkLVnkLZouLvb8o/0rW0AnnRAQdUjcr50/375S7voS72CAhSnMNMhK4r6g5pBccrp+nZUuG+f3HDCRSfjW/soMKXBmFxdXVk5+I84CkFBTY4vp7xcLgoFfNwhA8YLyoHwT5cLLYYN0/zSEqemAL2CAhSncLmwC/BxowLMjYLCnqYVWowYwXe/zEKXMQDC3wkZsA1gUI+YuqMQYjG+SsN3U15W2opN3+HbYD6Vkg3Yg8GN73xHgeAVoAwKYRQrUxr9/bY24/JtIWR/v1z7TKOgolMaupoLIPxO12CAoroQUkx5BUmPyE3xCGdWUiLX/2pwenBDvsNbKEBxCiujIMD2BkNiVOirvT8K7CILRHCKp0DKGnBulBxEpytso7RUs4lohPUoOEK2sRmXb6e8hBYNDfKcHQ2RC9jM1GsBFKAQeTBwDk/GiBQtBysrk/2/rxpWgV1kgQgWyRocBdEUTw7bAMIdwCYScs7JTAZFwVEIvpzyMtghq86++tI2APN6UA0KcQC9vbwQEjDudMOcmrTaqBRpsXu3T0eFLs8jB3GK54AOGQh3ACuC+XicF0JmUTD7aqMT8u2Ul0dTGr70o0BBPRijZcaEEQrsIgsUGRUqivyD6GRUFw1rR4W+mvLyKEDxpdMtsuQ6chkUrRZZGzwCOfTQHoUQRvswO6WheHDT1hacwc3AgNyan2pQiPwU2EUWcGdU6CsnU2C6CyjQIXd32zoMo6xM7ggZ6IAtzLuFdnbK/UyMFFAD4a5BMWsbQHQCthw4FcwHccpL2AZAGRSiEGYbFRDuNL5VJwOEcy65SJrW6SkeX015CS3q6/VnhwwSuSkeD32HL/UosqzWqeyrdsrLN77DYLYR0OxeQDUoxAGYzRgA4a5BKaLHAU6mslIW04ZNj3S6oNPt75dJI9WjIF+u8jK7rwMQ7oyB2bYChLsw1Orgxmb2FfBhwLZnD3cQgPxjadDW42QS91HLoLz11lu44IIL0NTUhFgshueff173dcYY5s+fj6amJlRVVWHmzJlYv3697jOJRALXX389Ro4ciZqaGlx44YXYsWOHrV/EV9hJ0ypyMsLP+QKzTka7GVfY9Nizh08WAzmdjFP7fgD6VV6+0YPaih4rGRTFO1EHSY+806FA+OxDaHHQQfwgtyycDOa9wnSA0t3djWOPPRb3339/zq/fdddduOeee3D//fdjxYoVaGxsxDnnnINOjUDz5s3Dc889h0WLFmHp0qXo6urC+eefj5Rv8s42+ewz/my08hxQPir0TaMCpB5FRoVO6CH+BKJte47Q4qCDNBt7SJxO0wo9xG14ThHbcLJDFlrs2iVPHvAcs6tWgPC2lYEBmc4xah+KjkIAgDFj+LNv9PAwmPeKA3e+KcKcOXMwZ86cnF9jjOG+++7D7bffjrlz5wIAHn30UTQ0NODJJ5/E9773PbS3t+Ohhx7C448/jrPPPhsA8MQTT2DcuHF47bXXcO6559r4dXzC9u38edy4nF/u6eHPuil3RU5GNCrfdEB9fXIXWdIDEJnCsWNzfllo4VSadswYYM0aHzndIno42SGPHMkHoskkD+jHj7d1OTUIPYThZnHAqhUgvG2lpYXXXZSX59zgEchhHyL7un+/7U7Zd3oI2/Agu+YVSmtQtmzZgtbWVsyePTvzXjwexxlnnIFly5YBAFatWoX+/n7dZ5qamjB58uTMZ7JJJBLo6OjQPXxNEacrFi3oOmRFhiQaVUeHT4Jm0borK2XVWRZCD7FXHQDlevjGydgJXm0ehQD4UA8rbUVRhxyL+SyjxFhR+yioh8IO2camtOoQWowZk3ODR8bytBfFGTZf2AZg2DZ0fjRqUzyFaB2sJmoQ1UWDNDQ0ZL7W2tqKiooKDMvahEj7mWwWLFiA+vr6zGNcnj+QL2BMOt0inVBOQ7LpZOrqZPv0RcPSapFjyTVQpFO2qYfvnIzBDjlnsAZQwAYoTVv7yj7275cGYMU+FHXI3d18gOM5RWwjmZSr0ZzolH03xWOwX8kbzPsi6jSHI6t4YlkdEWPsgPeyKfSZW2+9Fe3t7ZnHdmG4fmTXLj7K1Q7PsnA60vVVJyT+VnkcLuCsHlonY7OoXw1WOuSyMpnTD1va2sqoUGHa2ledkNBixIisORyJk9OhNTVyX0lf6VGkrQARmR62k10bGPBRoZVxlAYojYMVmtmZkLa2tkxWpbGxEclkEvvEVvA5PpNNPB5HXV2d7uFbRJTb0JCz0hpw1skAPmtYRRpVf79cOeeEHmKvvIEBnyyttdIhA+FMWycSsgjSg/okIFhtBaDBjRahRXl5Vr254imvlhaf7BtkMGBzKvvqBUoDlObmZjQ2NmLx4sWZ95LJJJYsWYIZM2YAAKZOnYry8nLdZ1paWrBu3brMZwINORk9BtOSgDOj5PJyeUq7r/QoUiR7wJ5lYUxbi5swW58U0bYCOD/lFSQ9cnbIgNI9pUpKeHDS1mbrUvbR1ieZqddSeBSCF5hexdPV1YVNmzZl/r9lyxasWbMGw4cPx8EHH4x58+bhjjvuwMSJEzFx4kTccccdqK6uxuWXXw4AqK+vx1VXXYWbbroJI0aMwPDhw3HzzTdjypQpmVU9gaZIBwQ4W9gF+MzJFGlUQouSEs2yWkB5J/T551yP44+3fTnrGKhPyulkAOUByu7dPIGh09xttLZhpT5JbMaVo4DSKL5sK2YHN2H3HR61lbIyHqS0tPBYOs9KZ3dob7dWnwRwPXp7oxGgrFy5EmeeeWbm/zfeeCMA4IorrsAjjzyCW265Bb29vbjmmmuwb98+nHzyyXj11VdRq9m+/N5770VZWRkuvfRS9Pb2YtasWXjkkUdQKtavBxkDTsbJIlkgWE5Gq4Wuj1Ksx3vv+UCP3bvlWsA8y0gLOhnAth7Dh/OgJJHgTre52dbl7GE32yg+oP2/SXy194eBei2np7x8NQVoZUoDUD64aWnhekydavty1tHWJx3wC3MKZl/b2nyyrNMcpgOUmTNnghWoBo7FYpg/fz7mz5+f9zOVlZVYuHAhFi5caPbH+x8TRaGRmFf3OGMA+EgPbX1SntRFXiejaJQci3E9Nm/mengaoFjNNoqjENJproeNACV7aW2RWn5nKdIhp9Pu1eR4HrAlk7I+ycyUBqBcj5UrfeA7rAbzQKCXGtNZPKoxMY8c+nn13l5ZmVpkisfpURDgAz2srmgCHBkle94JmXC6uk5IexSCoimvnh6eRfeUIr5De1pt6LOvImKMx/Nu0pY3QFG487Jv9LAazAOB3qyNAhTVFOmEGCsyj6xwM67WVo+rz0Wjqq4Gsva9ETi9agXwkZMxMf0XiYyS1elQQFmnXFUlTdNTPQxs0uZ0QTngI9vQdshF6pPcCOY914MyKIRt0mlpyQU2FxL7ceQskgVsO11t9bmnJ5Na3aQNCOdmXAaya07XoAA+7ITMZlCA8AVse/YYrk/SHvYNwBEtWlvlmZaeYHWqHAjnlJeKwU0Aa1AoQFFJWxuPQEpKim7SBmR1QtrNuBRUn4tDAz11utu28WePpzR80QEB1osggXCOkk3o4WSGzRcBrNBi1Cjz9UnaoxBsbsY1ahRfmZpOezy4UZFdU9hWRCztGQameCiDQhRm61b+PGZMzpNqAdmoDthcCFBqSMKOPW1Yn37Knw85JO9H3JjSED5u3z59gOg6wj4K6OGGkxF6iPjRE3p65CGSBU7pc2OUfPDB/NlTPURbMaBF3mANsK1HaanslIOih5M1KFrb8HSneAN6UA0KURgDHVDeqB9QakjCjj11MnY6ZIVa1NfLLbxFO/cEE/bhZIcsbMNTLcQPr68Hhg7N+zE3prx8oYcd2ygrk0fYhsU+7PhSB4LXri4+wPGEdNrQYI8yKERh7HTIgCOdkLglT1DRIYvNuGwibsEzPZJJOZFtx8ko6JDFj9+508PjOQzYRt5jEIDwBWwmfMcBWgBK9fC8rWh/uBU9FGpRVSV3ovbMPlpaeEMoK8tbOgBQDQpRDDsdMuBIJxQUJ5O3Q9Z+yAaed0Lbt/MccVVV3mWTgIG0tQKne9BB/Da0C0dcx0RbAZzNsAW+rQDhyigx5ptso/YWPLMP8YPHjeNBSh4og0IUxs48MhCuUWEqJXs/K06mqkouVQhDJ6R1uAV2A3PD6cZiMnXtmX2Y6IAOOAYBcKStbN/u4bJ8VYObMPiOXbv4pi+xmLUVbyJ4VZR99VwPA7YBuDO4cRsKUFTiIyfjeYe8cydfp1hWVvAQi7xOJhZzpCYnKE7G6VGQ5/ZhMmNwQEyneBl6aSnPore02L6cNexmUMKUURI/uKmp4GFRRYN5IBzZV4O+w62MkptQgKIKk2lJt4pk9+0DOjpsX848QouDD+bePw9uTXmFxskomkcOgh5uBfNlZXKg7oke+/fLbWytrNIAHMugeLJyxW4wH+bsax7SabnTsJP1a25DAYoq2tr4RktF0pLCRpzukGtr+cFwgEdO166TAcKVUbKrh+I0redF1D7KGAAeB2zihx50UB7HwHGrBkW4r54eeVKFqxhYsQIUmNJQeBQC4INgfssW/lxAD+0xCJRBIQ5EWG9TE1BRkfdjwkZynm/mUBrfzwGKW3oIJ9PaKjfsdBUDemiPQdBubQFAapFMKll646lt9PTwgF57Izlwa9WK9jY8CdgMthVDgxsFelRWyllZP/uOgvahcC+UIATz2l9T7PeZgWpQCKONSky31NXl+GIEna74VXPqobBhaU8p92RvGIMZA5FSPyBg074R9Ckvg3ugGGorYZjyErZRYHoHcK+taG/FzwGK24Obffs86ONTKemwCugh7mvIkKxjEADKoBBQ06jClMY3sKIJkJ1QQSejoBOKxTzMGiSTch/1AvYhtCgpyZHGV7wZl7iN7ds9OHPFZx0Q4HFbIT30+GywV1cnD5R03XcY3AOlYPCq8CgEt6EARRUG5gkBg05G0ajQ0zS+Sj2CPio0uAeKVoucK5EVBrCjR/OjFlIpDw5CM2gbBTsgxcF8EKZD3cwoeaaHwcUGQEQCNoN7oBQc6Ck8CsFtKEBRxaZN/Pmwwwp+LBKNKpmUP9RHeng25fXJJ/z50EML7oFSUAvtFxToUVIiiyE906O5ueDHvApeXV+54nM9XOXzz3mNUkmJ3KwnB8kkkEjw1wUD2KAHbCZtI6cWirOvbkIBiipMBihu1qC43qg+/ZSve6uqKrgHCmPujpI9C9g2buTPRWyjoBaAY6Nk1/UQbWXixIIfM9RWFG3GNW4cjx37+lw+xTedNqyHFxklkexyDdFWxo83tNgAyFFQDjjmS13Xw6RtuDG4cRMKUFSQSMhCJoOdkBs1KKJR7drlsl1qg7UCGYO+PrlzpxujwgkT9LfnGiY7ZLecjOd62Gkr4k3G9HviW6SiQg7YXdWjpYWvES0t9dWUhrCNTz5xOaNksq1UVeWZ+YhYWzHsOwK2FwoFKCrYsoWPhIYMARoaCn7UTSdTXy8PuhIDE1cwmDEwPApS1KiEz3NVC0C9k1FkH57okU7LtLWdDIrizbi0t+OqHsI2DjmEFwUVwM36teZmHjP19Lhco2QyeC2abQyybWh/oJ22AlAGJdIYzBgA7joZwGOna7BDzrk0DlDeqMTt7N0L7Nmj5JLGUDXFozjD5olt7NjBM47l5QU3NASKZFAUH4UAeKSHwQ4IcHeLgvJyWfbg58FN3mBecQ2K+PNs2uTieU2Mqck2AoHdC4UCFBUYNCLA4Ly6os24AGDSJP788cdKLmcMn86b1tQAY8bw16453VQK2LyZv1Y1xaPI6Wptw7U0vrCN5uaCqxIAb/VwDYO+Y2BA7hbqxvQwIM3Vz77DrYzB+PE8aEsmXTwBfPdueQTCoYcW/KjhDApN8UQQEwGK28vBgpBBcTPqd12P7dv5/gPxODB2bMGPuh2wiUVFnZ1yY1fHMZExcDtt7WkGxcR0qBvTw4AHejCmLoOiWI/SUlmH4poewo+OG5dje1g9VCRL5Mdgh9zfL5fG5TQkB5aDuT4qHBiQpe52VjQB4ZjyEj/o0EPzzGNJ3O6QKytlYajrTtduMA84NsWzaZOShUHGMFkUWlGR54BfB7KvrreVtjbe1ktKii6r9WJKw3U9VGXmAQpQIo3JjAHgXtra9TTtp5/yICUel/MpeXB7FAR4ELAZ7IAAbzJKnunhQ6fremGoiRoDw20FUD7l5XqHfPDBeaIwiReDG9fbioX6JKpBIfT095velKyyskDBvkOFofv2uVQYKpzMhAlFMwZepCU9y6CoyBiEIaNkImBzWw/XC0NbWng0ZGCJcdGaCweyr+JP9MknLhWGmmgrXgxuQpFBoRqUiLF1K2+9VVUFz0oADDQq7RcVNazqaln64ErkbyFjUHTVSleXspy7NqPkSmGojzMGgMtOV7spWRE90mnpS0Orh9CiyKZkgEHfoXiUfPDB/LYSCZcKQy1M/4XWNrQ/SEX2laZ4IspHH/HnSZOKLjEuOiIEgj93KvRQ2agAJZtxATyxE4vxzs+VHUNFVOjTUaGraesdO/jufGVlBbcxB/gGsYLQ1hkI0VVkk7RfVDRKdr0w1IQeXhbYb9nCE+eOYqJgGPAmYHMDClDs8sEH/Pnoo4t+dN8+/ixOxsxJ0OdOLegxdGieD1RXK9+MKx6XW9477nQTCTkqPOqooh8XKwrd2gcFcLkwVNjGpElFNyUTWmhnLg4g6AGb0OPII4t+tGgHBAQ/a2BCj6JtRfFRCAAvqauq4iV2jh8P0dLCf8nSUqpBIWwgGpWBDshUgBJ0J6NCDwc24wJc7IQ2buTTf/X1Raf/AL6BHAAMH57nAw4Er4ccwn1gby/w2WfKLpsbi7aRNzHpYE2OqwGKCT3y2gbgqO9wXI/+fvlDVPgOxUchAHysJJIZjvvS9ev582GHFS0YTqeB/fv5azd9hxtQgGIXE1G/VwGK6JDF7Itj7N0LtLby16r0cCBAOfxw/vzhh8oumRvhZI46quj0H2MmnK5CLcrLpdN1XA8L2TW3O+QjjuDPmzYpW62bHxN6iODV7bYi9BC36hibNvEgZciQotN/gIG2Ul0t21wQ9TARvLa3y3o6N32HG1CAYod0Wnp1VRkUB5zM5Mn8+cMPHZ47FVqMG1dkspzjVcAm9Fi7Vtklc2PCyfT2yg4xrx4in93RobTCd8oU/uy4HtqArQiGOmStHooYN45fdmAA2LBB2WUPpKNDVp6q8h0O6CFsY906ZZfMjXagVySYBwxkG2MxqYeYD1KAa23FQnaturpArbUDWrgBBSh22L6dz3GWl8tqsgIYcjL19fxZ5OwUMH48j3u0WVRHMNGoAIN6iAIVhXq47mRMZAxKSwvEdkKLZFLue64AVwI2xtRPhwo9xIcVEIu5pIcI5puaChRhSQxllIRYCvUQptvS4vA2BQHxHa4NbkQwryrbKIRSqIUbUIBiBxNFf4DBRuWAIZWUuNSwTDoZQ6NkB5yu0MJxp2sxY5B3ADlkCI9gAKV6uDJK/uwzPrIvLZVzjgXwqkMGXNLDibbiQIc8ZIjcG8ZRPUx0yNqaC7d9h7CNDz5wcG8Yk8G8Kdvo6HDxtEP7UIBih4B0yIBLWQMnRkEO6FFbK/fFcszpJpOykk5VxiAWczSjtH69g75L2MbEiUX3/ABMthXFo0JXgnkTwSvgj4DNL76jo0MuzHHbdxx6KF/Jo12gp5zWVn7PJSWyYK4AprJJQKCyKBSg2CEgHTLgPyfT2yvPJQplJ7RpEy9kqK0tekggYNA2tB9wwOn29fFdQx3ByRR+kDMoBjIGgLe+w/G2oi34MTGlUVVVYAk64Fg2WtyiY/YhbGPChCK/IMdQ8FpeLusbFduHk1CAYgcKUCQdHXwjLsDUCp7S0iJ7OwQ1ja+1DQNFf4acDOCIHqWl0oQd08NECh8wmTHQRrsKEB3y1q0OLnoIoO9wzDY++YRnHKur1azgEQTVlzqRmQccyb46DQUoVtHOExrokAF/OBnHnK4o+hs92kBL0W/SVrD/dniU7JiTMZnCN+xkIuJ0Da9aEcajUI8RI7gZAw51yl1d/FBNwJAe6bTBgM2hDkgboDhyPIRoK0ceWfT8LsDACh6BQ77D8YySxWDeK9/hJBSgWGXLFp41qKgwNE8IWAhQFHoDx53umjX8WbTeInjdqBx3usJ7qXYyQXS66bQ0OoN6GArYSkqCOc0jLtrYaKCX5QMKr2ouALkGQLsyWikmbcNPvsMRRCNUWZ8EUIASKd57jz9PmWKo6C+RkCtDDTmZgQH9gSQKcHSULPSYOtXQx712MpMm8W3UOzqAbduUXpoj9DjhBEMfN+1kHBolO2Ibn3zCha6sVJttBBzPGjjaVkzahuGaC8VtpbxcblDmiB6rVvFng3r4Jdu4aZPS1f6cVEoO9kzaB2VQCMnq1fzZZKMqKZFbneSkulouWVZsSMccw5///nell+WYdLpeO5mKCjlAEX9KZezdyzNsAHD88Ya+xWsnc+yx/HnjRgemAIVtHHMMjwoN4PWoULQV5bYBON9WurqU78go7EPculICFsw3NACjRvGslnJf+vHHfGv+mhpDy/EBCzUoUQ5Q5s+fj1gspns0NjZmvs4Yw/z589HU1ISqqirMnDkT68WcW5Aw2aja2vjzyJFFplljMcecrkhurFih9LLcGb7/Pn9tUo+DDiryQQc3GJo2jT8r10P0aoceamgTLgDYtYs/jxhR5IMO2UZDA99FlTEHOiGTbSWVkk7XKz1OPJE/r1rFk5lKMZkx2L2bPxfVQjvyUdxehB7K20pbGy+uj8WA444z9C1CD6+C11jMQT1EWznuOLnnUREM20cAN2tzJINy9NFHo6WlJfNYq8kL3nXXXbjnnntw//33Y8WKFWhsbMQ555yDziCdEcCYdDIGR8iiQx41ysCHHWpYJ53En9esUbrogRdAJpPcQR56qKFvEXo0NBT5oNBi717lxSJCj3ffVXpZ09NdAPD55/zZlB6KcdzpGtRjzx4+Oo3FeEBfEIf0OPxwvkK8t1fxuSuJhCxeMKiH4bZSViaXxCnWQ9jGu+8qbobCNiZNMnQ8BuCvtqLcd5gMXgET9iEiOkd3p1SLIwFKWVkZGhsbM4+DBofJjDHcd999uP322zF37lxMnjwZjz76KHp6evDkk086cSvOsHMnH/KWlspccBEMNyrAMUNqbuZRdn+/4tSkcDLHH29oSS0g9SgasIlhQTKpvCZHOJmVK5WdyM4xmTEATDgZ0WOLYZNCHHG62mDeoB7CNkaMMDAj5JAeJSUyw6ZUj7VreUpmxAiesjKA4bYCSD0U+47jjuN/i88/l7sJKCHgbcWxYN5EtlFkXw3rEfUAZePGjWhqakJzczO++tWvYvPmzQCALVu2oLW1FbNnz858Nh6P44wzzsCyZcvyXi+RSKCjo0P38BRhREceySvXDGAqgyLmPYTlKSIWk1kDpQ3LSSdTUyMrAxXrMWUKP8l8/37Fu0Ka7JDTaQtOxgGn64htfPopzwSWlxtepWEqmBdtJSh6aNuKyWDekB7CPhS3laoqWRyqNGCz4DsM6yFso6eHPxQiApQNGxSev5dOy+lhJ7KNDtmGkygPUE4++WQ89thjeOWVV/CrX/0Kra2tmDFjBvbs2YPW1lYAQEOWZTU0NGS+losFCxagvr4+8xhncOThGE52yIArTtcRJ+PElIa25SnWo7xc/gmVdUIdHXKLe4P2sWeP3GK+aE2Og7Yh/nxbtyr0YdrVbvG4oW+x1CEHJaPkZIcMOGofjmQNRDDvhO+orZULDhTrcdBB8riMlSsVXdTCajdT2UYHbcMplAcoc+bMwVe+8hVMmTIFZ599Nl588UUAwKOPPpr5TCxr5MAYO+A9Lbfeeiva29szj+2OLMY3gckVPIDFNK0Dka7yAMXCsjjAHxklwIFOSGhx8MEGhjQcrZMpeuakuOb+/cpXatTXy+WkyjohpztkF9rK2rUKl5M62SEDrmTYlLWVvXt5NAwYruUzlW2MxYKVYbOw2s0vtuEUji8zrqmpwZQpU7Bx48bMap7sbElbW9sBWRUt8XgcdXV1uodnMCZDZoONCrCYQXGwQ/7oI0WpyQ0bePq0upofBGeAdNp/GSVlTsZGkZvhAmqxDMyBuWTlAZsFPUwF8w7axtix3D61MbgtLKx2AyxmUBz0HcpqtsRAb8IEw6vdTGUbgWDVoTiZiQb0NSgBOdHY8QAlkUjgww8/xOjRo9Hc3IzGxkYsXrw48/VkMoklS5ZgxowZTt+KGrZt40fHl5VZMiSvMwba1KSShiVqh046yfCyuH375NJNU07GQaf73nuKVjb97W/8WVRYGsCUkyktlUXUDmYNli9XcLF0GnjnHf5aCG0Av4wKtTVb4s9qi9WrebH3sGG8Yt0glrKvDuhx1FF8HNLZqWhlk4W2IoL54cMNZBsBVzJsf/ubopVNNnyHIdsQCw4YC8xeKMoDlJtvvhlLlizBli1b8M477+CSSy5BR0cHrrjiCsRiMcybNw933HEHnnvuOaxbtw5XXnklqqurcfnll6u+FWdYupQ/n3ACL+A0iF8yBgDwhS/w57feUnCxt9/mz6eeavhbhBZDhxosS3BQj4kTeeNOJBRkDRiT9nHaaYa/zVSHDDiqh7jtv/5VwQzSBx9wR1hTY3iPC8BGW3HgzAKhx5IlCi4mbOMLXzB05gxgIdvoYIdcViZ9x5tvKrig0MOE7/BTWznpJO6/Wlpk2ZlltA7IKT3Ky2WmKiDTPMoDlB07duBrX/saDj/8cMydOxcVFRVYvnw5xo8fDwC45ZZbMG/ePFxzzTWYNm0aPvvsM7z66quoNbgG3nMsNCrGTKbxHa62njmTP7/xhoKL2XAyhrQAHNUjFlOox5Yt3FtVVMjhlQFMO10H9ZgyhY9Ou7rk7IxlRPA6fbrhOXXApB5iVNjfzwsMFXPmmfz5rbcUZMWFHiaC17175c/1esoLkG3FdoCSSsnsq5PBvIMZpcpK4JRT+GvbeqxcyYOUUaMMT5UDNgK2gKzkUR6gLFq0CDt37kQymcRnn32GZ555BkdpDj2KxWKYP38+Wlpa0NfXhyVLlmCywQPmfIGFDnnPHm57sRg/H6woWiNyYFQonO4779hcfbdzJ7B5Mx8NTp9u+Ns++4w/i8MLi+JwoxJ62HYyogOaNq3IoSl6REmWIdsAHO2ESkqAM87gr23rYaGtADzGAww63aoqmcl0wD6OO47vfbZ/v829gyxm14RtDBtm6MgvxwshRYCyZInNOpT33+dzRXV1hg8YBaQefumQlQVs2rZicPk5YEGPgBXK0lk8Zti3T+4CKXKdBhAnqzc2mpzSSCSUb04G8M1ex47lg84C288U569/5c/HHCN3sDSAOJxvMKlWHJdGhX/7G9DXZ+NCFjtkYR8HH2zwG1zKsCkL2EzokUjIAMWwHg52QmVlMp6wpceGDdx+KytN1a6JtuIX25g2jdeh7N5tsw5F2MYXvmC4dg3wd1uxNZa0kF0D/GcfqqEAxQyiN580ycT8hAUjqq6WG8CJHJ5CYjGZNbA1rWGxQzath9DaAS0Avq15YyMPTkRNpyUsjJABC05XpFoK7B1kB+F0ly61UYeybRuwfTvvfEQe3ABil9LKSoMF1IAcPjpkH0oCNmEbJ59sMBXCEbZhOJgXttHZ6cjgpqJCUR2KTd9hWg+H2soppyioQ0mn5WDPZOmAZftwSA/VUIBiBm2RmwlMd8ixGNDUxF+L4aRi/BCgGG5UQoudOx2Z8tLWoVh2urt28bXbAGBiRVo6zftxwKIeDjB5Mi/t6O62sQmVxWJybbBmONPtsB7CNmzVoVjIJgEWgtfaWqm3Q77DdlthzLYefmkrSupQ1q/nc4gmi8n37JFT9Ib3LnVYD9VQgGIGsezF6QAFcM3prljBB1um6eiQm0OY1MO00xXFKr29CveV1iP0eO01ixcQHfLRRxs4ZlXS2sqzFKWl8k9eFIdtQ1uHYlkPmylrwx0Q4Lgexx/PN7Frb7dROGwxu2ZaD+3gxmHf8cYbFk963ryZG77JYnLAhu9waHADyMGeZvcMc1gsJhe20dBgouSNApSQsn+/zP/PmmXqW205XVFRqpjmZuCww7iDefVVCxf4y1/48P+ww3hBi0G0aUnDTqaqSp5M6lDDOu88/rxsmcX9z4R3Ej27QYRtjBljwje54GSEHv/7vxYvIPQ4/XRT32baNgDH9SgtBc45h7/+058sXGDzZv4oKzNVTA74U4+TTuLNce9ei/vDCNs46SRTxeTd3bJtGvalIkBJJh3b+2POHP78yiv8x5hGjAJM+g7T2SSAApTQ8tprPL97xBFypzOD+DGDAgAXXcSf//hHC9/88sv8WbROg7S38yWsgIm0JOC4HuPH81rfdBp46SWT38yY/CaTetjqgFpbHdsR8vzz+fO771qYKdi4kZ8rUl4OnHWWqW/1YzAPABdeyJ8tBSjCNr7wBVPF5IA/O6GyMuBLX+KvX3jBwgWEHiIKNoiwjfp6/jBEPC6Xojukx7RpvLSjs9PCfjnJpAxQTOrhR9tQDQUoRhEdskkjAix2QmPG8GcHDUk43RdfNJmqVdAhjxhhqjTBVT1MO92PP+ZnilRUyHyvQSx1yKNG8XkY7S5eihk9Wm7+OniclnGEbZx2Gq+JMIFfne4Xv8gl//vf5T0axmJb6e+Xv5Lf9LjgAv5sOmBLJHj2FXAnmAdcmRIVAb1pPZYt45HNqFGmjj8AbAbzn39ucX7OXShAMQJjlgOU7m65uMBvTmbGDF4usXevyeXGH37IKzvjcdNpyS1b+LMpLQBXR8kvv2xy23vRAZ1+usmoS56VZsrplpbKanw/BmwhDOZHjJClVqY6ob4+4PXX+WuTHfL27dz1VFSYWjToiu8491yeINuwgT8Ms3Qpd4oNDaYKQgH/BiiADNheeMFkqYvwHeeea3h3YYEl33HQQdx/ODi4UQkFKEZYv553jJWVpufUxcKOgw4yVTvpSodcViYjf1PTPKIDmjmTL4k2wYcf8mdxaq5hXHAyU6fyzIHpVK3FETIg7ePww01+o4tOd/FiExv69fbKpWEm9ejr46UaAF/Jbxihxd69NjeyKYylrMFbb3FNmpr4Nr0mELYxcaLJvssF31FfL8cmpvTQTu+Y7JCFHqZsA3ClrZx9Nu8ePv1UbpVlCIvTXYAMDE3p4dLgRhUUoBhB2yGL/UkMIjpkzWa6xnB4aa1AjJKff97Ej7HRqGzr4aDT1aZqn33W4Df19MhoxoIeYrMrP+pxzDF8dNbXJ5tAUZYs4d8wdixf0WSCjz/mA7v6ehO7DAP8fBFRbOlCRumNN3gsZAhtWzGxQyjgb9sApB7PPGPimyzWrgH+1qO6mgcpgAk9duwA1q7ldjF7tqmfl0zy9gLY0ENsOuRjKEAxwvPP82cbjerII01+o1gZ091twhua57zz+KzE5s0GK/L375fLrd10MiKPaboAwByXXsqfn37a4GD8tdf4fNDBB5v+I+/dK/dLMp1REnqIPK8DxGLAZZfx1489ZvCbxLKfOXMsd8hHH23yW2MxOWfooB6HHw4ceyyvDVm0yMA3MCYLeGy0FZNxntRi2zbHiqgB4JJLeFC/fLnsLAuyZQvPRpeUyGVRJli/nj9b1sNB2wBkW3n8cYODvT//mT+fdJLc4dUgmzbxEpLaWlOLKDku6aECClCKsX273OVv7lzT3y4yBqYDlKoqOYwUeW8HqKkB/uEf+OtHHjHwDc8/z8P3o482PS+RTtvIoBx6KH92UAuA17iOHcvjMEOp66ef5s9z51rukA8+2HQtqWt6XHEFf37xRQO7Yw8MAL//PX/95S+b/lmWg1fAdT0efdTAh9es4SuaKit5jYFJLOsxdiyfv9VW2TrA6NFy4P/44wa+4Xe/488zZ5qc7+ar/0QCxLQvdck2vvxlYMgQ/mPEtjcFEVHuxReb/lla2zDpdlzTQwUUoBRDONzTTrMQqtrokAFgwgT+7LAhXXklf376aQO1BqJRffWrpn/O9u38+uXl8lczTHMzf96/37H9DAA+RfvNb/LXRTuhnh5ZvGNBjyB0yEcfzWtzBgaAp54q8uElS3jh3fDhMt9tgiDocfnl3EbefVfWRORFCHb++aYjUMZsZFBKS+VWCC4FbI89ZuDwQBu+Q2jR1MRn9EwhbGPLFpsnHBZGO9gr6jtaWuTWsyH1HSqgAKUYYoQs8ncmSCZ5Kg6wEPUD0pA++cTCNxvntNO4P+vokLNZOdm9W67Zt6CHaFSTJpnaMJFTXS2LuxzWQzjdl18ucmTFiy/yKbhDDjG9IyZg08m4FLwCJrIGogO65BIehZpEpPD97HQbGviSY6CIHum09B0WOqAdO3ixdlkZ3wvRNC7pcdFFvGZo27YiheUffcQzSmVlljLRloM1gG+4VFqqP4nSIURb+d3vigz2fv97HoWecorpfbUARW1FLKn0MRSgFGLLFj5UKinhTtck77/Pp4CHDTOxjbkWlzqhkhLZsH7zmwIffOYZ/gsdfzxfWmCS1av5s4nT1fW45HQPP5z7jVSqSO2FdkRoOs/K99QALDpdkVHat8/RjBIAfO1rPN547z15usEBJJOyOtBCh9zTIw9bs6SHi6NCbdYg72GKy5fzXru2VkY0Jnj/ff48aZKpswUlLulRVSXrth56qMAHRVuZPVtunGYCoYelDrmsTNZdOKyHGOx1dgJ/+EOBDwo9vvY1Sz/Hlh5a23BwAYYKKEAphDCimTPliakmEHuLTJ9uqf9yLYMC8GmekhK+h1LeTshGihbQ62EJFzuh73yHP//iF3m2r25vlwWQFvTo75cnJ5g47FdSUyNt0uGR0MiRctD7s5/l+dArr/BAqbHR9FJ8gI8DUim+pYnY1sQULo4Kzz+f/5o7dxaY9hJfuPhi0yv/AFn2dvLJlm7R1bby3e/y56eflpuH6WDMtu8Iih4lJdJ3/Oxnefr/rVv5ioRYTM4JmWDPHjm9aEmPgw/mN9rX5/tTjSlAyUcqBTz4IH/9jW9YuoTokE0cbqtHZFBcCFAOOUSOhH760xwf+OgjPmdaUmLJyaTTcpWQZT2Ek7F8rrlxvv51XgT42WfAb3+b4wOPP85TxkcdxdfjmmTNGr49xtChFlbwCIQeYh7RQW65hT8vWpSn+P9Xv+LPX/0qT6ebRHRAM2ZYDOZFRmn3bl6n5CDxODBvHn991105yhp6eoAnnuCvLY6QhR4mz+GUuNhWpk3jxeUDA8A99+T4wNtv8007qqrk+Rom6OqyfC6pRPhSF/T4/vd5sezatXmOzfj1r/nzmWeaXE/PEf3KEUdYSkbxdKhYBeiCHnagACUfL7/MPfGwYZbqLQAFHbLoubZv5wUiDvN//y9//t3vcvR5DzzAn88/38JWjnwZ4t693EeZ3EBSIvKZYgLWQeJx4MYb+euf/jSrE2IM+OUv+evvf99Sj6rtkE3uVyVxUY8TTuArQ1Mp4O67s764datcXnz11Zaub7tDrq2Vhzu5oMfVV/Njddavl6tFMzz1FA+SmptN728B8Izdu+/y15b1ELbxwQeOFoYKfvhD/vyrX+U4bPO//os/f+Mbps8iAmR2bexYS66H42JbGTYM+N73+OsDBnuJhAzmv/99S9e33VYAqYepXeXchwKUfIgO6B//0fRuqQAvctu2jQ8mxZkmphk2TOa7XTCk447j2zWk08D/+3+aL3R1yTXI115r6dqiUZ14oqX6SY7YiXPdOlec7ne/ywsAN2zI2u79jTf48qwhQ4BvfcvStcUoyJaTEcU8a9fauIhxRAD70ENZS44feIAHbWefbWFLXH12LSh61NfL/uXOOzVfYAy4/37++pprLGWTVq/m2ffhwy3JyZk4kRevdHc7vncQwIPX44/nySMRjwDg82Bi10ObviMotgEA//RP3M+99RYvR8rwhz/wlW5jxljKJgGK9ND6Uh9DAUouNm+WuTmLI0Kxh8a0abwfs4wwJJca1q238udHHtHMLP32tzyDc9hhlpaPArJcw+TRPXomTuSt3iWnW1cnfeq//qumIFJ0QN/6lqURYX+/XAx12mk2btBl2zjrLG7Pvb3Aj388+GZvr6yOvO46S9d95x2ecBgyhG+EZhmXne4NN/AY4K9/1Ryo+Le/8fmIykrg29+2dN1XXuHPp55qcboL4IWhYumgC/YRi8lpwHvu0Rzz8uCDfO7n1FMt/3GFHkrayubN3H84zJgxsjLg1ls1tSgierv6aksjtX37ZO2aLT1cDtgswwJIe3s7A8Da29ud+QE/+AFjAGPnnGP5ErNm8Uv89Kc27+Wf/5lf6NprbV7IGOk0Y2efzX/knDmMpfsHGDvqKP7GPfdYumZnJ2OVlfwSq1fbvMFjjuEX+uMfbV7IGLt3MzZ8OP+R997LGNu8mbGSEv7GunWWrvnyy/zbR41ibGDAxs21tvILxWKMdXfbuJBxXn2V/8iSEsbWrGGM/epX/I2DD7b8y9x4I7/E175m8+Yee4xf6PTTbV7IOKJ5HnooY729jLF/+Af+xj/+o+VrTp7ML/HwwzZv7hvf4Bf6yU9sXsgYAwOMnXCC5tfv7WWssZG/sWiRpWvu2MG/HWBs+3abNzhqFL/Qu+/avJAxtmyRfu+ppxj/uQBj5eW87Vrg4Yf5JY4+2ubNrV7NLzR0KHf6LmKm/6YAJZudO6VVLV5s6RK7dzNWWsovsWmTzft5/HF+oS98weaFjPPRR7wNAYw9O2+JNOT9+y1d73e/45eYMEFBWxBOd/58mxcyzoMP8h9ZW8vYzktv4P+ZPdvy9a66il/i6qsV3Jxwun/7m4KLGeOSSwZNckaKpQ8ez//zs59ZulY6zWMbgLFnn7V5Y2vW8AvV1zOWStm8mDE6OhgbM4b/2H//fovsTdessXS9Dz+UfdjevTZv7qc/5Rf7yldsXsg4y5ZJCZb94CkZvCYSlq7385/zS8yYoeDmxMjrf/5HwcWM8R//wX9kUxNjHefM5f/51rcsX++LX1Tk/vr6GCsr4xfbssXmxcxBAYoNPr7ix2wdjuItwmJv+tBD/O9+7LEKbmjDBn6xeNxyI7fCbbfxHzuu7DPWiRrGfvxjy9e67DJ+rVtuUXBjCxfyi517roKLGSOVYuykk/iP/SoGne4771i6VjIpMzJ/+YuCm7vgAlvZLSts28ZYdTX/sb/BlXyUbDGDs3w5v86QIYz19Ni8sf5+eWMWs1tWWLSI/8jKkj62ERN4FsUiokObM0fBjS1ZIntHF0fJ3/42/7HHlb3PEihn7Ne/tnytU0/VZC/tcvvt/GJXXqngYsbo7eUDM4Cxf8LdPCiwOGrdt08OHNevV3BzJ57IL/bkkwouZhwKUCzyl0VtbAg62BH4gLU/+5qla6TTMs1po0/XX3DkSNdHyd3djB0ysoMBjF1W8SxLt3dYus6OHYxVVCjMrK5axS9WV+faKJkxxlauZKwklmIAY78+9heWryM6s5EjeX9qmwUL+AUvuUTBxYxz538mGcBYDTrZ+tt/a/k6ojP76lcV3diZZ/ILPvigogsWJ51mbNaJ7bxTxnus570PLV0nmWSsuXkw8PuNghvr7paj5K1bFVzQGG1tjA2r6mEAYz+of4T/YhZYt05mY7ZtU3BjL77ILzZpkoKLGefPL6Yzv8cL595v+Tr33adoekdwww38gtddp+iCxqAAxSK7XlrBxpTuZABjF1yQttT/iTZQU8PYrl2KbuzCC/lF775b0QUN0N7O3j7oy6wMSVsDdNEGTj1V0SCuv5+LCzD2/vsKLmiQv/2N/Ri382RWRYqtXGn+EqmULOf5939XdF9ilDx6tKuj5P75P2Zn4TUGMHb4pBSz0hQ/+UT2n8uWKboxMUq+4gpFFzRAKsW2n3IJOwifZ+ovrPwpfv1rWZukrKRIjJJ/az2INE1LC/tjzdcynbLVAbrIvCqbodqzR0Y8ypyzAV54gV2HX/DZx7qUpQRKTw9v4gBj//3fiu7r6af5BY8/XtEFjUEBig3eWZpk8TiPeK+91twgPZVi7OST+d/85psV3tRdd/GLfvGLCi9ahGuvZQxgC0f8iAG8pub3vzd3ic8+k+U8r76q8N7EXPJ99ym8aAESCcaOPpqlEGMXjH0vkzXfsMHcZUT2ZOhQnq5VQne3TFF98IGiixbhww8Zq6hgn+MgNnZ4FwP4n8RspyqyJ0pn6156aXBucpx7Adv//A9jAPtLfA4rKUlbCkATCcYOOcSBcYioQP72txVetAhf+QpjALut4dcMYKyqirHXTCak163jtd8AY3//u8J7O/poW0W7ptm/n7ExY1gC5Wx601Ye0B/OfaMZRPbERjnPgXz2mSyydzFgowDFJk88IQPt//N/jC9OuOMOlmmQLS0Kb2jt2sFJ7krGuroUXjgPy5ZlvEN68WuZjqSkhGtjhIEBxs46i3/fKaco7ivuuYdfeNYshRctwL//O/95Bx3E9n2yJ+PjGhuNzwXv2MHYQQc5VN977rn8wnfdpfjCOUilZGHAnDnsneXpTEJr5ky+YssIf/qTpphSVfaEMT7UrKqyVahqih07+HTjYKHEvffK3+v2243bvVg4qDR7whiPDADGGhrcmRJ99lkmRjQDK1ez88+Xruvll41doqeHD+oBxubOVXx/t9zCL/yNbyi+cB6uvpr/vMMOYzs29mQKwg87zPi01QcfyKSx8vre447jF37sMcUXzg8FKAp45BG5mnTWrOJL3P70J/n5hx5SfDPptBxePf+84otn0dnJ2JFHskyumvFg4x//UTreG2/kReD5SKUY+6d/klNdygf2H3/ML15WZnllkWH+/ndZmfbUU4wxPscuVjvX1RUP2vbvZ2z6dFk4bbsYNBtROHzaaYovnAOxrKKmJlPXsHQpX+EEcNMptpR87VqeRQIYu/56B+5RTIn+5386cHEN6TTL9MAnn5wZyfzsZ7KtzJ3LV/UVQhTVAw6snk8k5B/HYmG3YXbtkvMQt97KGON+QtRxl5byP0mhAV9/v1yoN3KkotoTLW+9xS8+fLiiIrAC/OUv8g/7xhuMMb5gRrjyUaN4SUAhPv+csSOO4J8/80wHbvlf/oVf3EZht1koQFHE734nB2NDh/IK+2xn097OB9giHfmtbzmUWRZDLGXVhDlIp+Ua0sZGPmc7SCrF2Lx5sr0dcQQPurPr37ZsYeyii+TnHJv6Fq1WeTSoYdcu6U0uuED3h929m6/8Fr/nnDmMvf22/m+fTvP3Jk7kn6mvV7DsPBdbt8pUrZPFkEuWyKKRhQt1X1q+XPZN5eU88Mi+lUSC/7nEaPCUUxxamCb2ZjnySGenecSSm/JyHnVp+OUvZVzb0MCnbTqy6sx375Y1Wpo+XT2XXsp/wA03OPQDGHcEM2eyzBxGb2/mS4mEDDoAxqZO5YmW7ITOhx/yLWxEttbstJAh+vsZGzGC/5Bi0YEdtmyRixu++13dl7ZtY2zKFKnHpZcy9t57+m9PpfhsZVMT/8yYMTxYUY7Ym6WqyvnB3iAUoCjko49knZkYtJ9wAp9mnTVLrmoEGPvOdwpnFmzx3nv8h1RU8CG8E/z4x9Lh/vWvOT/ywgty6w2AD87OPJOxL3+ZdzgiUKuosLW6sDh33il7OSfQOtwJE3IOg/v7eXAq9rwBeCd9wQV8YD1pknz/4IMd3h9KzKf92785c/2tW6XDveyynB3/rl364FQEsl/+MmPnnSf7BZGVdGzae/9+2TCXLnXmZ4ipDCCvoa9cyftq8bGKCm6uc+fyNiMCGIDPPNjatK8Qf/6zzBpoAgelXHMN/xlDhuRc4p1O8wGNSOaIQd/s2TzhJVY+Cp/yhz84c5uMMTnSuvhiZ67f2SlTrMcfn3POrrdXZpm1PuKiixj70pcYGz9evn/kkTx4c4R0Wlbu//KXDv0QPRSgKKa/n1eii3nR7MeRRzL26KMu3Mi0afwHKlm/nIXYjayAwxXs3cvrbRoacusxaxZjK1aov0Udra1yNK+65+/vZ+zyyws6XC0bNvDgNB4/UIuqKr7tguM1aE89JSMk1XNIO3fKjFUehytIp/nI95xzctvG6NF8Y1PHOmOBmJO87DL1137jDRkA/eAHBT/a18cTOtpgVfs47jge9DvKwIDcDc+JUcNPfiIzeEV+mc8/57U5YopP+ygt5YG92eJz06xfL3/g5s1qr93TI2vCRo0qOke1Zg13NdpBjnjU1fEVwEbruiwjCqeOOsqFhmmu/44xxpibW+uroKOjA/X19Whvb0edhbNQrMIYPwDw3XeB1lZg6FBg0iTgpJNsnJlhht/+lh/wUF/Pz5QYPlzNdX/5S3nozI035jiuNjepFD8sdcUKfgJrfT0wfTpwyCFqbqsoV1wBPPYYPx9o8WI11+zvB77+deD3v+fnmTz3HD/B2QA9PcCqVfx4i4oKfhT6rFmWjusxTyLBjXHbNuCuu4B//mc1192xgx/Cs3EjP2Bk2TLDR8ru2sUPSvv0U37OzsEHA6efzmV1nPffl2e/rF5t4wjtLF59lR/y1tcHnHceP3TLwC/EGG+yy5cD7e388OXjjpNHxDjO3XcDN9/M/wgbNvCzguzCGPCjHwH/+Z/8/ybsrr+f/4lWreL/r6sDZs4EGhvt35Yhzj2X/y2/+U3uQ1TQ3Q1ceCHw+uv8gNnFiw0fZd/Zyf3ohx/yP82oUdytVVWpubWCiJO39+/nWnzzm47+OFP9t+PhkgO4nUHxDakUr7IE+PIiuySTsrYF4NWvLp/LYIstW2Se/Omn7V9v5065QqWiwrXzfpTxyCNy6KWiFuXtt2VhyfjxfOOSICGyYNOn268uTKcZ+8UvZNbuS19ybrrECXp6GBs7lt/7v/yL/et1dekLS2wfOuYyK1bIrM9gAastNm6U0zq1tbwYN0iIKfOmpuJV3TahKZ4w8+abstDDztKwtWv5hLhwMPPnBys4EYgq9Pp66xO16TRjzzwjDzarq+MVakFjYEAuFzrlFOvrVfv6eHGN6IyPOoqxTz9Ve69usHWrXAJsZ2OinTsze3swgJ9q6OKxE8oQh2KVlBhf85uL5cvlfiKlpYzdb313VE8Rh2KNGcOXi1shnebb/tbXy2md5cuV3qYrdHfLgqkvfcny7r9GoAAl7IjdMktL+bIIM4HFZ5/xan7R+dTVBS9ToCWZlJ3y6NHM9BavK1bwJTii85k8mS9jDiqbN0tnOXOmueKXgQGeidJWdn7tay5MgjuIqM2xUona3s6PEhBBTlkZn68PYiAvEJsaVVaa37Lgk0/494sBUkMDX9kVVDo7pa1PnMhXRBglneaZF5FxBfj5bWZ3YPMTq1bJQrq5cw9cdqYIClDCTirFKy9Fw7jgAh6153OcXV2M/e//8s5GW8l58cUObDTgAbt2yTPqy8v5aLnQiL+lhRcLijWN4vtuv92BTUo84K9/5cW9AM8KPfBAfmeTTvONav7zP/nuUUKPhgZeGR7kzlhw993y9zrxRL6qJV+gkkjw9Pz3v6+v5DzxxAPXggaRRELu3QIw9vWvFz4yYv9+vqTm4ov1lZxXXOHcakI32bpVLpmpqeGZ5NbW/J/fto0vsRcLFgBeMH3XXY5mHVzjf/9XTps3N/PMsmIfQEWyUSCdBhYs4EVqqRR/b+xYYOpUXmkWiwF79wKbNvFqtIEB+b1f+ALwb/8GzJ7tzb07wb59wFVX8aJWweTJ/DF8OP/9d+7kBYIbN8rPlJbyotjbb+dFpmHh/feByy4DPvqI/z8eB6ZNAw47jFes9vby6tW1a4G2Nvl9Q4cC8+YBN9zAX4eFp54CvvtdoKuL/3/ECODEE3mbKS/nVYqbNwNr1vBqZ8Hhh3PbuPxybithIJkEfvhD4N575XuHHsqrdhsaeLe7axdvJ+vWcV8jOO884F//1XDxZyBoaeE+4I03+P9LSniB9ZFHAsOGcb127OArAj79VH5fPM59zg9/CIwb5829O8Ff/wp89av8dx4xgrcLhf0sFclGiQ8+4MVqYke5fI/x4/matRUrwjEqzkU6zUfHZ5xRWItYjC+XXbAgHBmkfPT18Z1f861xFY/KSr4hxSOPBHs6pxgtLXwPDO2GLLkeI0fyNvXKK64su/SMlSv5JjXaDVlyPQ47jE+PZW1GFypSKT69edJJhbUoLeX1XffdVzjTEnQ6Onh9n/K99SmDEk26u/n65w8+4KOfWIxHvRMm8LWMzc1e36G7tLYC77zDo/99+/goeeRIrse0aeqWaAcBxnjmaOVKPirq6eFrGceM4VmjE07go8GokEzyTMmaNcDnn/MMZHU1byNHHcVHziUlXt+le7S387ayYQOwezfPFNXX87Zy/PHcTqLE9u1cj08/5dqUl/Os9IQJPOtWW+v1HQYaM/03BSgEQRAEQbiCmf7b02HCL3/5SzQ3N6OyshJTp07F22+/7eXtEARBEAThEzwLUJ5++mnMmzcPt99+O1avXo3TTjsNc+bMwbZt27y6JYIgCIIgfIJnUzwnn3wyTjjhBDzwwAOZ94488khcfPHFWLBgQcHvpSkegiAIgggevp/iSSaTWLVqFWZnLXOdPXs2li1b5sUtEQRBEAThI9w4tusAdu/ejVQqhYaGBt37DQ0NaG1tPeDziUQCiUQi8/+Ojg7H75EgCIIgCO/wtEg2lnUEMGPsgPcAYMGCBaivr888xoVpUxyCIAiCIA7AkwBl5MiRKC0tPSBb0tbWdkBWBQBuvfVWtLe3Zx7bt29361YJgiAIgvAATwKUiooKTJ06FYsXL9a9v3jxYszIsYVyPB5HXV2d7kEQBEEQRHjxpAYFAG688UZ885vfxLRp0zB9+nQ8+OCD2LZtG66++mqvbokgCIIgCJ/gWYBy2WWXYc+ePfiP//gPtLS0YPLkyfjzn/+M8ePHe3VLBEEQBEH4BNrqniAIgiAIV/D9PigEQRAEQRCFoACFIAiCIAjf4VkNih3ErBRt2EYQBEEQwUH020aqSwIZoHR2dgIAbdhGEARBEAGks7MT9fX1BT8TyCLZdDqNnTt3ora2NufOs3bo6OjAuHHjsH37dirAdRDS2R1IZ3cgnd2DtHYHp3RmjKGzsxNNTU0oKSlcZRLIDEpJSQnGjh3r6M+gDeHcgXR2B9LZHUhn9yCt3cEJnYtlTgRUJEsQBEEQhO+gAIUgCIIgCN9BAUoW8XgcP/rRjxCPx72+lVBDOrsD6ewOpLN7kNbu4AedA1kkSxAEQRBEuKEMCkEQBEEQvoMCFIIgCIIgfAcFKARBEARB+A4KUAiCIAiC8B0UoGj45S9/iebmZlRWVmLq1Kl4++23vb6lwPPWW2/hggsuQFNTE2KxGJ5//nnd1xljmD9/PpqamlBVVYWZM2di/fr13txsQFmwYAFOPPFE1NbWYtSoUbj44ouxYcMG3WdIZzU88MADOOaYYzKbV02fPh0vvfRS5uuks3oWLFiAWCyGefPmZd4jndUwf/58xGIx3aOxsTHzda91pgBlkKeffhrz5s3D7bffjtWrV+O0007DnDlzsG3bNq9vLdB0d3fj2GOPxf3335/z63fddRfuuece3H///VixYgUaGxtxzjnnZM5bIoqzZMkSXHvttVi+fDkWL16MgYEBzJ49G93d3ZnPkM5qGDt2LO68806sXLkSK1euxFlnnYWLLroo47RJZ7WsWLECDz74II455hjd+6SzOo4++mi0tLRkHmvXrs18zXOdGcEYY+ykk05iV199te69I444gv3whz/06I7CBwD23HPPZf6fTqdZY2Mju/POOzPv9fX1sfr6evbf//3fHtxhOGhra2MA2JIlSxhjpLPTDBs2jP36178mnRXT2dnJJk6cyBYvXszOOOMMdsMNNzDGyJ5V8qMf/Ygde+yxOb/mB50pgwIgmUxi1apVmD17tu792bNnY9myZR7dVfjZsmULWltbdbrH43GcccYZpLsN2tvbAQDDhw8HQDo7RSqVwqJFi9Dd3Y3p06eTzoq59tpr8aUvfQlnn3227n3SWS0bN25EU1MTmpub8dWvfhWbN28G4A+dA3lYoGp2796NVCqFhoYG3fsNDQ1obW316K7Cj9A2l+6ffvqpF7cUeBhjuPHGG3Hqqadi8uTJAEhn1axduxbTp09HX18fhgwZgueeew5HHXVUxmmTzvZZtGgR3nvvPaxYseKAr5E9q+Pkk0/GY489hkmTJuHzzz/Hj3/8Y8yYMQPr16/3hc4UoGiIxWK6/zPGDniPUA/pro7rrrsO77//PpYuXXrA10hnNRx++OFYs2YN9u/fj2eeeQZXXHEFlixZkvk66WyP7du344YbbsCrr76KysrKvJ8jne0zZ86czOspU6Zg+vTpmDBhAh599FGccsopALzVmaZ4AIwcORKlpaUHZEva2toOiB4JdYhqcdJdDddffz1eeOEFvPHGGxg7dmzmfdJZLRUVFTjssMMwbdo0LFiwAMceeyx+/vOfk86KWLVqFdra2jB16lSUlZWhrKwMS5YswS9+8QuUlZVltCSd1VNTU4MpU6Zg48aNvrBnClDAHc7UqVOxePFi3fuLFy/GjBkzPLqr8NPc3IzGxkad7slkEkuWLCHdTcAYw3XXXYdnn30Wr7/+Opqbm3VfJ52dhTGGRCJBOiti1qxZWLt2LdasWZN5TJs2DV//+texZs0aHHrooaSzQyQSCXz44YcYPXq0P+zZlVLcALBo0SJWXl7OHnroIfbBBx+wefPmsZqaGrZ161avby3QdHZ2stWrV7PVq1czAOyee+5hq1evZp9++iljjLE777yT1dfXs2effZatXbuWfe1rX2OjR49mHR0dHt95cPj+97/P6uvr2ZtvvslaWloyj56ensxnSGc13Hrrreytt95iW7ZsYe+//z677bbbWElJCXv11VcZY6SzU2hX8TBGOqvipptuYm+++SbbvHkzW758OTv//PNZbW1tpt/zWmcKUDT813/9Fxs/fjyrqKhgJ5xwQmaZJmGdN954gwE44HHFFVcwxvhSth/96EessbGRxeNxdvrpp7O1a9d6e9MBI5e+ANjDDz+c+QzprIZvf/vbGR9x0EEHsVmzZmWCE8ZIZ6fIDlBIZzVcdtllbPTo0ay8vJw1NTWxuXPnsvXr12e+7rXOMcYYcydXQxAEQRAEYQyqQSEIgiAIwndQgEIQBEEQhO+gAIUgCIIgCN9BAQpBEARBEL6DAhSCIAiCIHwHBSgEQRAEQfgOClAIgiAIgvAdFKAQBEEQBOE7KEAhCIIgCMJ3UIBCEARBEITvoACFIAiCIAjfQQEKQRAEQRC+4/8DeFXPzROS4iMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -236,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "id": "b8cf0127", "metadata": {}, "outputs": [ @@ -244,7 +263,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "1.23 ms ± 8.92 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" + "1.25 ms ± 17.2 μs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" ] } ], @@ -262,7 +281,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "id": "640a92e4", "metadata": {}, "outputs": [], @@ -273,7 +292,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 2, "id": "8cb48453", "metadata": {}, "outputs": [ @@ -282,42 +301,42 @@ "output_type": "stream", "text": [ "Content of stdout:\n", - "_cython_magic_c05f02fc39d68cd21f83438d38d1c93adfe0923e.cpp\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\numpy\\core\\include\\numpy\\npy_1_7_deprecated_api.h(14) : Warning Msg: Using deprecated NumPy API, disable it with #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\dense.cpp(119): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(53): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(68): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(98): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(130): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(341): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(184): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(260): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(270): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(276): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(288): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(535): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(50): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(52): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(57): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(75): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(85): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(160): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(226): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(444): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(510): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(574): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(579): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(603): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(621): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(989): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(111): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(265): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(270): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\anaconda3\\envs\\dev311\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(297): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\r\n", - "C:\\Users\\joepr\\.ipython\\cython\\_cython_magic_c05f02fc39d68cd21f83438d38d1c93adfe0923e.cpp(19751): warning C4244: '=': conversion from 'Py_ssize_t' to 'unsigned int', possible loss of data\r\n", - "C:\\Users\\joepr\\.ipython\\cython\\_cython_magic_c05f02fc39d68cd21f83438d38d1c93adfe0923e.cpp(25132): warning C4551: function call missing argument list\r\n", - " Creating library C:\\Users\\joepr\\.ipython\\cython\\Users\\joepr\\.ipython\\cython\\_cython_magic_c05f02fc39d68cd21f83438d38d1c93adfe0923e.cp311-win_amd64.lib and object C:\\Users\\joepr\\.ipython\\cython\\Users\\joepr\\.ipython\\cython\\_cython_magic_c05f02fc39d68cd21f83438d38d1c93adfe0923e.cp311-win_amd64.exp\r\n", - "Generating code\r\n", + "_cython_magic_79cd32f006e4304f97a9db016a885153f9474399.cpp\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\numpy\\core\\include\\numpy\\npy_1_7_deprecated_api.h(14) : Warning Msg: Using deprecated NumPy API, disable it with #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\dense.cpp(119): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(53): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(68): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(98): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(130): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(341): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(184): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(260): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(270): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(276): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(288): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(535): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(50): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(52): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(57): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(75): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(85): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(160): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(226): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(444): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(510): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(574): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(579): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(603): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(621): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(989): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(111): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(265): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(270): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk12b\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(297): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\.ipython\\cython\\_cython_magic_79cd32f006e4304f97a9db016a885153f9474399.cpp(19659): warning C4244: '=': conversion from 'Py_ssize_t' to 'unsigned int', possible loss of data\n", + "C:\\Users\\joepr\\.ipython\\cython\\_cython_magic_79cd32f006e4304f97a9db016a885153f9474399.cpp(25086): warning C4551: function call missing argument list\n", + " Creating library C:\\Users\\joepr\\.ipython\\cython\\Users\\joepr\\.ipython\\cython\\_cython_magic_79cd32f006e4304f97a9db016a885153f9474399.cp312-win_amd64.lib and object C:\\Users\\joepr\\.ipython\\cython\\Users\\joepr\\.ipython\\cython\\_cython_magic_79cd32f006e4304f97a9db016a885153f9474399.cp312-win_amd64.exp\n", + "Generating code\n", "Finished generating code" ] } @@ -410,7 +429,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 3, "id": "50766a13", "metadata": {}, "outputs": [ @@ -425,7 +444,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3iUxdbAf5veO2kQeu9VuqB0rBcVvfZ+1avXelX0fsrVqyiKDbuiIhZsNJVqAaR3AqHXkJBO2m56dr4/Ju++u8lusrvZkF3y/p4nz27eOjmZOXPmzJkzOiGEQENDQ0NDQ0PDQ/Fq7gJoaGhoaGhoaDQGzZjR0NDQ0NDQ8Gg0Y0ZDQ0NDQ0PDo9GMGQ0NDQ0NDQ2PRjNmNDQ0NDQ0NDwazZjR0NDQ0NDQ8Gg0Y0ZDQ0NDQ0PDo9GMGQ0NDQ0NDQ2Pxqe5C3A+MBqNnD17ltDQUHQ6XXMXR0NDQ0NDQ8MOhBAUFxeTmJiIl5dt/0uLMGbOnj1LUlJScxdDQ0NDQ0NDwwnOnDlDmzZtbJ5vEcZMaGgoIIURFhbWzKXR0NDQ0NDQsIeioiKSkpJM/bgtWoQxo0wthYWFacaMhoaGhoaGh9FQiIgWAKyhoaGhoaHh0WjGjIaGhoaGhoZHoxkzGhoaGhoaGh6NZsxoaGhoaGhoeDSaMaOhoaGhoaHh0WjGjIaGhoaGhoZHoxkzGhoaGhoaGh6NZsxoaGhoaGhoeDSaMaOhoaGhoaHh0WjGjIaGhoaGhoZHoxkzGhoaGhoaGh6NZsxoaGhoaGhoeDSaMePhCAGffgp//NHcJXEPiovh1VfhzJnmLol7cOAAfPABVFQ0d0ncg+XL4eefm7sU7kF1tawbBw40d0ncg8xMeOcdKCho7pK4Bzt2wJdfgtHY3CWxD82Y8XA2bIB77oFx42D//uYuTfPz6qvw9NMwaBCUlDR3aZqfW26BBx6AO+9s7pI0P5mZcOWV8uf775u7NM3Pd9/JutGrFxw/3tylaX6efhoefhguvlgz/o1GuOoquO02mDGjuUtjH5ox4+H89JP6/dlnm68c7sLnn8vPnBz47LPmLUtzc+YM7Nolv3/9NRw92rzlaW6WL5feCICnnmresrgDS5ao32fPbrZiuAXV1TB/vvy+b5/mvdu5E86eld9nz4b8/OYtjz1oxoyHY97otm5tvnK4A8ePqw0QYNu25iuLO7B8ueXv27c3TznchV9/Vb+fOgW5uc1WlGanqgpWr1Z/b+l1o/bfv2NH85TDXaitO/bsaZZiOIRmzHgw5eVw4oT6e1aWdKW3VA4etPx9797mKYe7sG+f5e+eoJCaktry2L27ecrhDqSlQWGh+ntKSsueWklOtvy9JdcN8My2ohkzHszp0/IzOBi6dpXfW3IHfuqU/BwyRH4eOCANvpaKUj8GD5afnqCQmgqjEVJT5XelfrRk405pK506QXi4NGRqDwZaErXbyq5dcnFFS0WRh9JWPEF3aMaMB6MopPbtoX9/+V0zZmDUKIiKkq70lrxSQ1FIV18tP3fvbrkKOitLGrZeXnD55fKYJyjopkKpGx06qLpDkwdccQV4e8uYO/Mp65aGokvNdYe7oxkzHoxS4Tp0gL595ffa7sGWhDV5tNQVXkKo8rjsMtDpIC9PKumWiNJZtW4tV7qBZugCtGuntpWWLA+lrXTvDl26yO8t1VNlMKjxZIrhf/iwGjzvrmjGjAdj7pnp1MnyWEvEXB4dOsjvitJuaRQUyJw7IKcgExLk95YqD/POu317y2MtEXN5tPS2Aurf3r69Vj+U6diwMLls38dHerkzMpq3XA2hGTMeTFqa/ExKkkoJ1IrYElES5ZnLo6UrpJgYCArS5KHIo21bVRYFBVBU1GxFalYUebRrp9WNqip1Ssm8frRUeZgbut7eUp+aH3dXNGPGg1FcgbGxagNMT5eNs6VhNMppFLCUh7s3wKZCmU6Kj5efmjzkZ3w8hITImCpoufLIzpafcXFa3Th3TuoPnQ5atdLkYUt3uLvXXzNmPBil0sXEyIrn6yvnNdPTm7dczUFhoTqnGx2tKSTF0I2Olp+aPOSnJg+JYvjHxKiyyMyEsrLmK1NzodSNyEjpiWjpdcNT24pmzHgwSqWLiZGrNDzFHdgUKLIIDQV/f8tpt5a4gse8boDnjK6aCk0eKkJYdljR0TK9A7TMPc1s1Y2WqEfB0tAFz5GHZsx4MLYaYUuMm6ktizZtpNu4rKxlruDxVIXUVGjyUCkpUfMvxcTIdtKSjTtbdSMtzf1X8DQFtT0znhIQrRkzHkpZGej18rumoOsaM35+kJgov7dkeXiaq7ip0OShosjC31/1yGjyUOtGQoKcsjcPDG5JeKrhrxkzHopS4Xx8ZAZPkN4IaJkxM7WNGZA5RcD9lxQ2BbXlociisBBKS5unTM2JLXm0xO0/zDtvnU5+Vwz/liwPpW54e6vBr5o8PKduaMaMh2Ie/KsoJKUBZmU1T5maE2vGjKaQVHmEh8uROLS8+lFdre76q8ijJdeN2iNvaNny0HSHJbU9VYosCgrcO0C8SY2ZDz74gL59+xIWFkZYWBjDhw9nxYoVpvNCCGbOnEliYiKBgYGMHTuWlJQUi2eUl5fz0EMPERMTQ3BwMFdeeSVpSoKVFozWAC2xJo+4OPmpyUMavC21fuTnq0HgypLslioL0HRHbRTjTum8QZMHeN5AqEmNmTZt2vDKK6+wY8cOduzYwaWXXspVV11lMlhmz57NG2+8wbvvvsv27duJj49nwoQJFCupS4FHHnmExYsXs3DhQjZs2IBer+fyyy+nuiVGZpmhjDQjI9VjLbkBnjsnP5XOClq2PBSFpMlD7bzDwmQsBKiyKC6W6dtbElrnbYkmDxUh6srDUwZCTWrMXHHFFUydOpWuXbvStWtXXnrpJUJCQtiyZQtCCN566y2effZZpk2bRu/evZk/fz4lJSV88803ABQWFjJv3jzmzJnD+PHjGTBgAF999RX79u3jt99+a8qiuz1K5lIlXgYsK1xLW45cWCg/bcmjpaHIIyJCPdZS5WFNFqGhEBgov7vzaLMp0OqGJQUF8lOTh5xGqqiQ3z1NHuctZqa6upqFCxdiMBgYPnw4J0+eJDMzk4kTJ5qu8ff3Z8yYMWzatAmAnTt3UllZaXFNYmIivXv3Nl1jjfLycoqKiix+LjQUhRQWph5TplVKStSVTi2Fhoy7loTRqO7LpMnDet3wlNFmU2BNd7RUWYCmO8xRZKHTyUzZCp4gjyY3Zvbt20dISAj+/v7cd999LF68mJ49e5JZI5U4pQeuIS4uznQuMzMTPz8/Is3nUmpdY41Zs2YRHh5u+klSssldQFjzRISEqBXQnStdU6ApaBW9XvXMafKwXjeg5cqjvs7bYGh5AyFNd6gosggNlYlYFTxBHk1uzHTr1o09e/awZcsW7r//fm677TYOmO01r1OW4tQghKhzrDYNXTNjxgwKCwtNP2cuwLSW1hQSeEalawoammZqSdNuSt3w8VGnUqDl1g2trVhirfMOCVFzzrQ0eWieGRVFFp5o+De5MePn50fnzp0ZPHgws2bNol+/frz99tvE10intoclOzvb5K2Jj4+noqKCfCXa1co11vD39zetoFJ+LjSsdd7gGZWuKbDWCJUqUlqqTru0BMw7K3Obv6XWDc0zY4lm3KkIYV13KLLIyGhZAyFP7lfOe54ZIQTl5eV06NCB+Ph41qxZYzpXUVHBunXrGDFiBACDBg3C19fX4pqMjAz2799vuqalYktBKx14Sw1qNG+EwcHSXQru3QhdjdZZWaLJwxLNuFMpKVG3LDCvHy11IOTJnhmfpnz4M888w5QpU0hKSqK4uJiFCxeydu1aVq5ciU6n45FHHuHll1+mS5cudOnShZdffpmgoCBuvPFGAMLDw7nrrrt4/PHHiY6OJioqiieeeII+ffowfvz4piy626MpaJXqanWe35o8ioulPLp2Pf9law7s6ayEsPTaXMh4soJuCjTdoaLIwtsbgoLU48pASNEdF6Bz3yqe7JlpUmMmKyuLW265hYyMDMLDw+nbty8rV65kwoQJADz55JOUlpbywAMPkJ+fz9ChQ1m9ejWhynAaePPNN/Hx8WH69OmUlpYybtw4vvjiC7y9vZuy6G6PJ1c6V2M+crLWYR092rLkYauzUkab5eWy/pgvvbyQ0dqKJZpnRsXWlCy0zIGQPYa/uw6EmtSYmTdvXr3ndTodM2fOZObMmTavCQgIYO7cucydO9fFpfNsNIWkosjC31/NVKnQkuVRu24EBsoOvbBQyqOlGDOaZ8YSzTOjYqtuQMscCNky/JWBUFmZlFnt8+6AtjeTh6IpJJWGFBK0THlYUzgtUR72eGZaSpCn0agZd+bYqhvQMuVhq24oAyFwX3loxoyHornOVTSFZIktzwy0THnYUtDKaLOyUt0e5ELHYLCegwi0ulGbligPT9almjHjgVRWyih7sK2QsrLkKKwloHXelmieGUtsKWh/f3Vvs5YiD0UWtXMQQcusG5oxY4kny0MzZjwQ843xzFNOA8TGys+qKnXzxQsdZSWTJzbApkBRSGZx9CY0eViSkCA/W4o8zDsrawGv0LIGQvV13i2tboBmzGicZ5TO289P/pjj56fudtpScs0o8qht2IH7N8CmQDF26+u8MzLOX3mam/rkYZ4crSVQX1sxHwgpOydf6Cjy0OqGxJPloRkzHkh9CgnUWAB3rXSuRpGHko7dHEUW2dktZ7RZX/0wl0dLQAhNHubUJws/P4iKkt81ebS8ugH261J3RDNmPBB7jZmcnPNTnuamPnm0aiU/q6tbTpCnPaNvd1VIrqaiQnoaQJMHqF4qW7qjpcmjvs7bXBYtZbWbPbrDXT3+mjHjgdTXAMH9K52rqU9B+/mpQZ4tTUF7okJyNeY7QNfXYbU0eTQ0ENLaijoQqqpqOQOh+nSpuxu6mjHjgTSkkNy90rkaTR6WaKNNFUUW/v5yBU9tWmrd0NqKpD55+PurK+A0ebi/oasZMx6INrqyxF4F3VJG3/aMrior1WW6FzJaW7FE8+pa0tC0W0uqHw3Fl7n7QEgzZjwQrfO2ROuwLKlPHgEB6rLLliAPLUbEEq2tWGKvcdcS5FFWpi6SqM+YKStzz53ENWPGA9FcxZZo8lBpaHQFLcvYdUQW7jjadDWacWeJ1lZUzPOXme8gbn5MkZM71g/NmPFAtNGVJZrrXKW8XK7cAq1+gP2dVVmZZbDwhYrWeVuiDYRUFFkEBoK3t/Vr3FkemjHjgWgN0BJNHirmoyvNdd5w3QgOVuWkyaNl1Q3QBobmNCQLcG9jVzNmPBB7FVJJScsYbWpBfCqOjK7cUSG5moa8dtCyOnCt87ZE0R2a4e+YMeOO8tCMGQ/EntGmsomcO1Y6V6O5zlW0ztsSTx9tuhp7p2T1ejkYupDR4sssaWhQCO5t7GrGjAfSUAPU6dy70rkazXWuYk/n3ZLqhqcraFfTUP0IDZX5VeDCl0dDq3egZeoOTx0IacaMB9KQaxRazojCntGV0lkVF0Np6fkpV3Ph6a5iV6PJw5KGjDudruXIw3wK3trqHdAM3dq4c7+iGTMeiKagVcxHV7aMu7AwdXfxC32/Kns8Ee6skFyNpytoV6N57lQciS8rLJS65kLGEd3hjnVDM2Y8EHvcgS1NIYFteZiPNi/0DkszdC3xdNe5q9Hqh4o9nXdEhLoNxoU+EPJ0Q1czZjwQT7egXYkii4AA26MraDnycMTQLSiQu0pfyGiGvyWOGHctxfCvTxYtcdrNUw1/zZjxQJRVBrbmeaHlKCRFFvU1QGg5HZY98mhJo01FHprhL+PL7KkfLaWt2DMohJYnD3uMmbw8ub+bO6EZMx6IUunqM2ZaWgOsTxbQcow7e+Th5QWtWsnvmjxaTt0oL1fjy+yRx4WuO+wZFELLqR/2GLrR0VJ/AOTmNn2ZHEEzZjwQeypdS1NIDXlmNHlYoslDxXy0WVXV9GVqLszzxmjGneMDoQu9rTg6EHI3eWjGjIdRVaXGOWgKyX6FpHmqLGkp8rBn9O3Oo01XotQNX1/5Y4uW0nlrhr8ljsrD3foWzZjxMMxHV9poU1NItfF0heRq7DHuvL0hJkZ+v5DlocWXWeKo4X8h1w3wfE+VZsx4GEqF0+nUTJ3WiImR1wghDZoLFS1mxhJPV0iuRjN2VRytGzk5aozNhYhWNyyxN4bIXY1dzZjxMMwboE5n+zpttGmJppAscVeF5Gq0aTcVe9uKojeMRm0gBC1Hd9izmgncVx6aMeNh2NsAwX0rnStxtPO+0Eebnq6QXInRqG5focnDft3h6wtRUfL7hSwPbSBkiaev7tKMGQ/D3gYILWO0aW/nrYw2q6vh3LmmLVNz4ukKyZWY78OlyUPTHbVxxmt3IQ+EPN2404wZD0PzzFhib+ft5weRkfL7hSwPzTOjYu9SZGhZ8tB0h8TezltZilxVJbNmX6h4+pSsZsx4GI6Mri7U0WZZYRnVFdWA/Z03uG8jbCz6LD3CKADnYmaEaMLCnWeMVUYMObJSmG914dWAprtQ60Z5cTkVepnLwZmB0IWmO8yxt634+0N4uPx+odUPczTPjMZ5obxIKqWW7pkpLyrn/V7vs2DiAkAbbe76dBdz4uew6fVNgOOjzcpKuSPwhcJPf/+JOQlzOLvjrFOG/4VUN8oKyvig9wcsu2sZQogWP81UXlRu8bsjA6ELsX6YI4RzK0PdaSCkGTMewPKHljM7ejb7vtnX4hWSl68XvoG+nF53moLTBU4ppAtptJl/Mh+AbXO3AfYrpIAACAuT3y8UeeSfzOfAjwcQ1QL/cP8W74nY8OoGjNVGIjpGoNPpWvRASBgF8y+dz1eTvzK1GUcGQhdarpmitCI2zt5IZYncYKmyUsYTgv2emfJyKC5uwkI6iE9zF0CjYYJjgzFWGcnck0lJT3mspSpo30BfOozvQJ+b++Dj79PiPTOjnxnNgDsGENEhAnB8GrKoSMqjW7emK+P5IrJDJI+kPsLp9aeJ7hLN/nXyuKMjbyHqT3vgKfiH+RPXN462o9oCLXuKOnNvJhk7M/AJ9MEvxA9o2Z6Z5K+T+f3p30nbksY1315DYT4o5kBDujQoSG7OqddLeSiDouZGM2bcmOrKajJ2ZtDnxj70vakvkR0jefVVea4lNkCFyz+43PTdkdHmheip8gv2I6qzXEdbXS1HS2C/PI4du7DkEZ4UTt+b+gLOTUGWlUklHRraRAU8j4yeMRpmqL+3ZM9MXN84/nnon+SfyCd9azql50opKekHtEx5BMUE0WZYG46tOMZrMa8x8tUrgN4NbnWhEBsr20lWFnTu3OTFtQttmsmNyT2Yy7zh8/hkyCd1Rt6Odt7uNLfpLMlfJbP41sUc/vmw6VhLHm3mHsqlwlBh+t3erS4ULjQFrVB8tpjUjakUpBYB9rWV4GBVZhdK/QCorqjm6ylf80GfDygtlHWlJU5Re3l7EdMthgp9Bd9e8S07P97ZoqeoB941kLs230Wfm/tQoa8g95DMjmhPWwH31B2aZ8aNMWQbCIkPIapLFLoav7czo6vSUnlfSEgTFfQ8cXzVcZK/Sia6azQdLu1AUVoRBn00oGuRo6svxn6BIdvA5R9dTupfqXhHhgHjGtzqQuFCUtB5R/PY9Pom2gxrw9Ffj3Lwp4NE3zwFuMiuzgqkPE6elPXDXUabzlJWWIZfiB/eft6kbkyloriC8vbFQHSLbCsKUZ2iaDOsDXH94ig5Io+1VK8uwMgnRzL0oaGkFkXAXPuNGXeUh2bMuDEdx3fk8YzHqSytZP/C/aRuSKUyrSfQ3i4FHRwsK2dJieywPN2YGXD3AKK7RdNhXAdmhc4CAcZ2TwDBLW60ab4yIyAigOQFyUT2jAfGERRkX8zHhdRhpW9NZ9fHu8g9kEub4W2I6BBBeZUUgiOjTcWY8XRW/mslKd+nMPntyVz1+VX4h/nz5Dty7swRT4ReL/WHvTJ0V9a9sI7ITpH0+FsP7tp8FwCGL+S5lubFFEaBzku2jegu0QAc2yjPOWL4g3vJQzNmPADfQF+OLj9K8oJkxMAwoL1DCvrUKVnpOnVqylI2Pe3HtKf9mPaADIquNFRiNJQAwS1utOkf5s8TmU9QkldCVWkV418dT7FvFDxmv0K6kIy76G7RjJoxishOkQy8ayATZk9gzhxgYcuUR96RPKrKqgiMDqTnNXLVQPFr8pw9bSU0VHr3ysulPNq3b7qyNjXlReWsfX4tAN2KZKS7EC03rcOBnw6w4sEV9Lq+F1PemQI4JgtwT6+uZsx4CN2u7EZYUhhfbkwCHFPQijFzIfHwiYfxDfLllZpkVo6MroqL5dRbYGDTle98ERQttc/IJ0eydWvNMQ9WSM7SekhrWg9pbXHMkSlZuLDkccdfd1CUXkRglFrJHYkv0+mk7khN9XxjprqimoH3DKQ0rxT/UDn/Wlamnm9pMTOFqYUYsg2U5JRQWVLJwUUHOfm7HhiheWY0moZvr/iWgMgAJr4+kZ7X9qTntT2ZM1Wea2kKujS/lIJTBUS0jyAwMhDfIF+HEj2BXEJoPtps165py3y+cSSgEdxTIbkSRzpvuLDk4eXjRUS7CEBmiM7am4V/th+Q5JDuUIwZTyYoJogrPr7C9Psv9/3CkRXH6cpkjtDNrkGN4rUrKpKGUEBAExX2PDDwroG0u7gdPgE+GKuMLL5lMQC+DCYoyM+uZ7ijF1NbzeSmVBgqOPLLEZIXJOPt72063lIV9Km1p/h44Md8Pflr0zFHEj2BHG1eKPLY+s5Wlt61lJN/ngSgJK+E3H0ZBFLi0UF8zlJwuoCq8ipAGr7fX/M9Pl9+BogWKQ9zDi05xFeTvqLj2Q1AyxsI1aYkt4Ti1AIiKCQgALy9G74nIgJ8aob+OTlNWrwmJyAigNZDWhPXJw7/MH+6XNaFwOH98KHK4X7FneqGZsy4KTovHdO+mcaE1ycQEC6HAVVlVVSfk7nnW5qCriqrIjg2mIj2EQCkbkjl53t/ZihybqWlKehjK4+x57M95B+X2Uy/v+Z7Dj7yMZ044bBCKiiAiop6L3VrjNVG5naey0sBL1GUVoRvkC8HFx3EN+MMgZS2OMM/a18Wa55cw75v9wEQ1TmKuH5xFGN/ADBcOLqjurLa4veL/3Mxl35zJ/voY7feMB8IebruqM2Nv9yI//VXU0qQtjRbw/X4BvrS5+99TL8XphbyVru3uETnzQb+49EWtDP0+Xsf+vy9j2lDxZwDOeyfv4sOdGOnz1D87POOumUjdIbB9w+mzfA2tBneBoDQhFC8woLRFRntVkjKaLOqSsqjTZumK29TUpJbgpevF0IIQuJD8PLx4sp5V/L+PH8qN/m2OEP37I6zbHptE50mdqLP3/vQcVxH7ttzH89EAQbPziXiDEtuXcLRFUeZ/NZk+t/en/j+8aRXQykQY6ceBSmPs2c9Xx5b39lKSEIIXS/rim+QzJDn7BT1uXPSQ25Por2mRjNmPISACOmd0QmBD1UEBdn3r7tQFJKCsqSw9UWt6fOvsXz3TqxDy0YvlNFmtyu60e0KdQ+Ca769hox3Yd9D0N1OheTlJTeczMjwbGMmJC6EZwzPUHquFC8f6WwecOcAspZAFS1vSjamewxDHx5KdNdoi+POTlF7unFXmFpIeWE5vsFqj+tocDhcGLqjQl/ByodXAvBUwVP4ImXi6Gqm6GipP4xGyM2FhISmKK1jaMaMm5J3NI8KfYUp4NUv1I8ZxTNo08GXqlxdi1PQtYnvH0/HO+I5+A4kODi6ggtPHuC4QgKpoBVjxpPR6XSmlV0KjspD6azy8qS3ysdDtWPS8CSShidZHHN0qwu4cNrKzatupvBMIaEJcpqtOKOYM6tS6YIfwcFd7H7OhSCPytJKel3fi/LCclP4wuonVuP9/l6GMprg4GF2PUcZCGVlyR93MGa0mBk3ZdNrm/h44Mdse1fuhqzT6fAL8cNQ4lgisAthNAGw6KZFLLp5EYWphaZjzoyuLoTRZoW+guyUbErzSy2OO+oqhgtDQVuj4FQBvpmphFJsd/2IipJKGjw/yNMcY7WRLy6Zz318SABlLS5mxi/Ej1Y9Wpm822d3nOXYyz8ylrUtTncEtwrm2oXXctOKm0zHqsqr8CotIdiBxQPgfrqjSY2ZWbNmMWTIEEJDQ4mNjeXqq6/m8OHDFtcIIZg5cyaJiYkEBgYyduxYUlJSLK4pLy/noYceIiYmhuDgYK688krS0tKasujNjk+gDyHxIYS1VrckNU/05KhnRhlteiJCCA78eIB9X+9D1GwyJYSgKKuUSPId6rwvBAWdtjWND3p/wGcjPzMdO/3Xaaq//4mLWdfiFHTyV8n8+s9fOb7muOnYqkdXMSzlc7px2O764e0NMTHyuyfXj7KCMlNsGch9iTJ3pBNPFoGU2r2s2N06K1cR1iaMgK5tySDBoztvVzHiiRGcvux+NjHco6fdmtSYWbduHf/85z/ZsmULa9asoaqqiokTJ2JQhpDA7NmzeeONN3j33XfZvn078fHxTJgwgeLiYtM1jzzyCIsXL2bhwoVs2LABvV7P5ZdfTnV1tbXXXhBMeXsKj2c8zoA7B5iObXl3B1NZTjwZDs9tCiHnNj0RYRRc8ekVTHhtAiHxck+GsoIytl0zm4d5h+AA++vBhaCQKg2VBEQGEJqobu1cnF6M76H9dORki/PMHF99nB3v7yBjV4bpWFjbMIp9IqnGu8V1WO92f5f/+f+P7P3qHzHyjWks4CZEULBdW12AKoucHDUFgqdRlFbEuhfXkfx1sulYwoAEwh+9g1+4vMUNhKwR0S6CAr9Yygj0aN3RpLPCK1eutPj9888/JzY2lp07d3LxxRcjhOCtt97i2WefZdq0aQDMnz+fuLg4vvnmG/7xj39QWFjIvHnzWLBgAePHjwfgq6++Iikpid9++41JkyY15Z/gVhxcdJCLOEEarQkKsm+SUhltZmfL0Xd8fBMXsgnw8vai3y39LI4FhAeADiqEL+H+ZYB9rfBC8ER0u7IbT517CmO10XQsYVACeYMnsnlHFD2cGF15sjx6XtuTsKQw2o1WsyBOeXsKd/0whYwMx6bd4uJg/37PlYex2khJbgmiWhAUo1aEmFHdOQ60ckAWMTFySbLRKD27StvxJLJTsln73Fpi+8TS96a+puPOxJcpf39mpgsLeJ757enfSF6QzPAnhjP80eGm442ZsncXeZzXmJnCQhnvEBUVBcDJkyfJzMxk4sSJpmv8/f0ZM2YMmzZtAmDnzp1UVlZaXJOYmEjv3r1N19SmvLycoqIii58LgbZTe7Oe0RT4xtqV6ElB6bDcpdK5Ap2XjoT3/sPLPINvhP0aWglUy8723Gk3BS9vtflGd4kmo/1wDtPNIYWkyCMjo/7r3JluV3Zj3EvjSBphGfTqjIL2dHl4eXvxbOmzPHrmUYJj1XbhTDyVr68M8gTPlUdwbDAD7h5A96u7Wxx3dLoePL9ugFzZVXy22GIasjijmIgTu+hLskPySEyUn+4ij/NmzAgheOyxxxg1ahS9e/cGILOmd41Tetsa4uLiTOcyMzPx8/MjMjLS5jW1mTVrFuHh4aafpKQkq9e5K2UFZcy/dD4/3fiTRaVrffkA/uBS9KGOhY4rle7sWVeW8vxRnFFM5p5MSnJLLI6XVkiLzpEG2KqV9FYJ4bmjb1s4o6A9vW7UR0uVh7evN2FtwkxpDAByD+fRmWPE+pxz6FmeLo+EAQlc+cmVXPLCJRbHKz/6nH/xDsFVBXY/S5FFTo7MreKJTH57MvfsuIfeN/Q2Hcs/nk/PYz8zxsF4O3erG+fNmHnwwQdJTk7m22+/rXNOV2sSVwhR51ht6rtmxowZFBYWmn7OnDnjfMGbgeKzxZz68xTHVh6zUEjOuEbB/SxoR0n5LoWPBnzE8geXWxx3ZuTt5aWOsNylETrKmqfWsPSOpWQlq9aYEIKqvELiyCQwwFjP3ZZ4uiyM1UbyT+ZTVWbpZjv5VxrXVX3LZFZ4tIJ2FSe/3MDNfE2H0gMO3efp9cMm+flEkU8QpQ1fW0NMjLpc31O93MGtgkkclGixsCQ0MZT04C6coKNTnip3qRvnxZh56KGHWLZsGX/++SdtzDJzxdcEcNT2sGRnZ5u8NfHx8VRUVJCfn2/zmtr4+/sTFhZm8eNJhCSEMO3raUx8faLFcb1e4EsF4f72N0C4ABS0DoLjgi0CXgFKN+7iCn4mvOC0Q49zt0boKIeXHGbPF3sslmYLo2DE1re4n4/wN9pfP5S6UVAgdxL3NIrSinin4zu8Ev6KaaUbQGFWGd04QntOe7SCdpRTa0+x5sk1HF5muWrUKyaSTOLwCnJsh0RPHwjV3spAIXfMNOZxJ4Ftoq2et8aFMBCyRmTHSFZG3civXOaU4e8udaNJjRkhBA8++CCLFi3ijz/+oEOHDhbnO3ToQHx8PGvWrDEdq6ioYN26dYwYMQKAQYMG4evra3FNRkYG+/fvN11zoREYGUifG/tYrGQCOL1oF88yi1E5Sxx6nqcbM8MeHsYTmU8wcY6lcWc8epxB7CKwyLH5IndrhI4yZuYYLn3pUmK6xZiOeXl7UeYdjIEg/IT9Gy2Fh2PaNdgT5VGaV4q3nzch8SEWntrgjnEs43L+8BrnUKp1T68bp9efZtNrmzjyyxGL44GTLuZD7qOg82CHnufpuuPLS79kVtgsjq44anE8P7w9Z0giJMrOfVBq8OS4maqyKja/sZl93+6zCF8A52KqlLpRWKje35w06Wqmf/7zn3zzzTcsXbqU0NBQkwcmPDycwMBAdDodjzzyCC+//DJdunShS5cuvPzyywQFBXHjjTearr3rrrt4/PHHiY6OJioqiieeeII+ffqYVje1FKp85KgqgHKH7rtQRhO1pxX17Xqx92gsl3ZIdOg5nq6gzffsMmdh0hOcOgXX2J/UFJ1OyuP4cSmPjh1dU8bzRcLABJ4te5bKklpBDKGh7GIQYSHYvRQZLOuGEI7d6w60GdaGYY8OqxMM7Uz8EHh+W9Fn6qkorsAvxNJocWaKGjxbHsUZxax+fDU+AT4WMTPgXAhDaKi8vqREGnedO7uwsE7QpMbMBx98AMDYsWMtjn/++efcfvvtADz55JOUlpbywAMPkJ+fz9ChQ1m9ejWhoeqUwptvvomPjw/Tp0+ntLSUcePG8cUXX+DtyJIeDyL3cC6VhkoiOsitDBS8e3bjZWYwdqhju3p5cgOsj7y4nqwDzLYososLVR7OKuiEBNWY8UR0Oh1+wZadlbPxZYrhX1oqR5wREY0v3/mk08ROdJrYqc7xxtQN8ExPBMA9O+7BkGUgrI1lqIEuK5Oe5OGTHwu0svt5nqw7dF46kxFjPjCsroZbyz4mnELKz94B7WJsPcLyeTUDoWPHWoAxYz6HbQudTsfMmTOZOXOmzWsCAgKYO3cuc+fOdWHp3JcNL29g75d7GffKOEY9Ncp0vKTChwogJNT2vdZQGmBmpswZ4eVhm1j8cN0PePt7M2H2BIu4GUVBh4Q49jxP9lSVF5VTlFZEcFxwnb2InHEVg+dPrVhDXyyIJYe2XuUYq1qbNqBsiMBAacAUFEh5eJoxYwvDwVRu5w9it0cBV9p9nyd33iDzUSl7EJnT6uQ2BrCbir2X4Iwx44ltJaJdBNd8e02d4yUlEIyBYErwrnTM668YM+5QPzysW2sZ+Ib4EpJguZUBgF4vPx3trJREeZWVMvmVJ2GsNnJw0UH2fb0Parn89UVGmZ7dWGL9Zht4skI6/ddp3u/1Pl9N+sriuNEIfUq2MI1FFCWfcuiZntxh7fliD8sfXM6J309YHNcXCx7gA6ae/azOHlYN4cnyKM0vrRMPAVBWVEF7TuOf51ilN28rRvsXybk957xacZq2hCQ4NjL05IGQLQwG+JYb+ID7SBrsWGZEd2orHrov7IXNZe9dxmXvXVbnuCGvjEvZRHxyFTCx7o028PWV2Rqzs2Wla2X/QKTZEUbB1V9ejT5TT3Ct9KWRJ3fxFL+SP7873H+93c90pwboKFVlVQRGBRISZ+mOKimB9pymB4cwnG4LtLf7mZ4sj+OrjrN/4X4iO0XScZwa8GMo9aKAcPz8dVSXO5aLPzERDhzwTHnM7TyXsoIyHkh5gJju6nRBcXA8v3It1011bCQUFyenE6qrZX4VGwtI3ZKC0wXs/XIvUZ2i6HOjZZzZnqDhnGA4917r2DM9ua3YQq+HTBIICQE/D56G1IwZD8JQVM3F/AV7wVg93iIDbEMkJKjGTL9+DV/vLnj7elukITfHUCnjJHRGx1L5KgopO1t6qxxZ7dLc9LymJz2v6Wl1NcJe+pFKW+4d41iSSE8ebfa6vheRnSOtZv99i0eYcDGEtbFxsw08tcMyVhmlF0pgsZUBQLEIIYVe3NHbxs028PGRA6GsLNlheZIxk5OSw9rn1hI/IL6OMeOsl9uTvbprnlxD8lfJjHxyJMMeGWY67ux0PbhXW9GMGQ9CXxVAChcxdJQfolqAA/HPiYmwd697VDpXcdi3FyvpxYa3HQsEj46WSrqqSirpNg52du6AeTJFkMr5EN0JDoaE/o49y5MVdPeru9dJVQ9qZ+WMgnan0aYjePl48Z/y/1CSW0JgVKDFOWc7b5D1IytL6o7+/RtfzvNFSHwIA+8ZSGjrulNJjY23y8mBigrwc2xld7NSnF6MPkNfZyCk10MbztCzOpes5ETi+tpvsbqTMaPFzLgZhhwD8y+dz6KbF9UJoDaUebOCKQRfNQ5vP8c6cHeqdI5QfLaYjN0ZdbYyACg2eGPE22EFfSEmv7pQRleuoqXKw9vXm9CE0DrGrkFvpA1n8Dp53GpMTX14qjwSBiZwxcdXMPb5sRbHjUaIM5zgXj5m64wlDj0zOlr15HpaFuBJb07i3p331lmWbTDAYHYyImcZx1Yec+iZ7lQ3NGPGzShOl1sZnFhzom5elUaMNj119J38dTIfD/yYVY+uqnOuJXZYf/znD5bcvoSzOy0LrteDL5XE+suN5BzBPPlVSV2b0W0RRkHBqYK6OWaQ8hjNelr/tZBTa0859FxPrRv1YSg2cjefkTH7K8qLnctT5Wm6wxalpbKtJJJB4bEch+41Hwh5mjyCY4NJGJhQJ5O6Xg8ZJJAT2YXwduEOPdOdZKEZM25GWFIY076exoTXJtQ5JztvQaBPhc003bbwVE+ETqcjJD6kjqvYaASjoYQJrGbv7LqGTkN4aod15Jcj7J2/t46nymCAgezkmtS3rBp+9aEkvwL3UEr2UpJbwtsd3ubl4JcxVlkutTEYIIk0Ak4d5txxxzZX9NS2cmbTGdY8uYYDP9bdf0lf6kMu0QR1jKO6wvGAaPA8edSuEwp6PaTRhq+5kSs+utzh53qqPGxhMMBWhnJ0yI30vt6xoCpFFkVF6mC7udCMGTcjKDqIPjf2od+tdaN09Xq4nw85dc8sUjekOvRcT22AI54YweMZjzP+Fctsz6Wl4EMVI9nM/nnb7MppZI47jSgcYfQzoxn3yjha9bRckqbXQwX+GHWOJ5JUkl+BZ9WP0vxSvP29CYwOrJNHRq+H7QxGXH45bUe1dei55l5MB6tVs5K2JY1Nr23i0OJDdc7p9fAuDzJywX11VgU2hCfWDYBvLvuGWaGz6hh3BgMYCCYjpAuJgxIcfq4nGrvCKNj85maSv06uY8w2Jp4qNFT1jDe3LtUCgD0IgwEqkRO2FcX2778DnquQbKHXQxmBbGI4Tz/rhzAKdN725573VHn0mt7L6nGDAXbTn5jxA/jvd44/152SX9lLTLcYni21spUBUh5H6UrIGIhxMEO00lmVlcnkeZGRjS/r+SBhYALDHh1GwsC6HXRLnJI1ZBuo0FfgG2y5XLExnTd45pR96blSVj+2GqirQxpTN0C2l6NHpTy6OLCViqvRjBk3I/dQLhWGCiI7RFpdkfA1N7JitTddxzkWRm+eBbi6Gjx9JwjFsNsQNJFLZjp+v6cqaFtIBa1rtIL2NHlY28oAGtdhBQRAVBScOyfl4SnGTPux7Wk/tr3Vc42Rh6d6MW9fdzuGbAMh8Za9tF4PXlTTxeskB36qoMe0HnXiE+vDE9uKsdpI77/3prKkEm9fS+Wv10M3DtNu6WoW3dSaaV9Pc+jZiYnSmGlueWjTTG7GXy//xSeDP2HXp7vqnDMYoJQgImL966xWaAjz5Fe5ua4qbdPzw3U/8NONP9UJam3saMITFVKFoYLs/dlWV3a5YnQFntdh2cJggADK8CvIpuBUgcP3X0jyMBplYPd41vDHrfOdDohWBkKegn+YP1Gdo6xuMulDNeMzvuaHa3+gqtS5PFWepDtC4kK45ptruGHJDXXOGQzSuPMpOkfB6QKHn+0u8tCMGTfDL9SP0NahdSLOwfm9d0BNfgXNX+nsRRgFBxcfZP+3++ucM63sCpKJwpwNiPakzursjrN80OcDPhv5WZ1zej2EoCdh1y/8+sCvDj/bXRSSI+xfuJ9f//krR1ccrXNOr4cB7CLtmQ/44z9/OPxsT5RHWUEZxuq6Qa+lpTL2J4FMzm46RWFqoUPPjY2Vq3iULMCejowv86UoOJ6kEUkOB0R7ou6oD70eTtMecccdXDnP/n27FNylrWjGjJtx2XuX8VjaY/S9uSbrrdEI776LeOpp9HpBR45z8L0/HM4HAO5T6exFGAVXz7+aiW9MJKhVzXKbggJ4/HEMS9YAMO3se8yOmk361nSHnq3IQkl+5QlUlVYRGB1IcJyZNbt3L9x5J4aTWfhQSfCBneydv9fhZyvySHdMjM3KyT9OsuP9HZzdYVahv/8eHngAQ1EVZQTgExaIT6Djs+meKI8P+33I//z+p8qjshJeeAHDS28BsIGR/O3ra2h3cTuHnuvjo2b+9RTdoc/Us+6Fdez5Yo96MD0d/vEPDBv3ADr2jfgHd268k4CIuhtR1ocn1g2r/PUX3HUX+oxiSggipGdbYrrZt2O2Oe4SEK3FzLg7Tz4Jc+ZQRgCCV+jECXa9tQl/7+F0nuzYnuuJibB7t+c0Qi8fL8utDKqr4ZJLYM8e9LqTwASMPr5QIadgHCE6Gvz9obxcNsL27V1a9Cah8+TOPJn7pJr07OhRGDwYqqrQh42jhGsRF49h7JWOpyVt3Vp+ekrdAJn9NyQ+RI0TWbAAbr0VAH3o8xxnIHOXD2TkSMef7WnyEEJgyDEgjILA6JpYu7vuggUL0NMBeISsoI70vdG557duLT0RaWkwcKDLit1k5B3NY+3za4nqEkX/2/tL98OIEZCait4vAHjb6SlZpW7k5UmvV2Bg/de7A2v/u5adH+5kyINDuPjZi2HrVrj4YgAMkTcDlzgdb+cubUUzZtwZvR4++EB+Rba8VJJ4+IEhJI10bP8dgKSaW86ccVkJzy+//w579gBgEFKDpFx0B7+s9HY4I7JOJ7cxOH5cysMTjBkFU7zUhx/KPRkAQ1EVFfgTfPlYRjzu+DPN64YQUj7uTpepXegy1Wz5xOzZpq+GYjnd4myH5WltRafT8XTh05TklhAcGyytjq/kzuoGZC8VEiKos/W8nSQlwY4dniOPwKhABt4zUDXsfvoJUmU6C0OF7Pac7bwjI2VeppISKebmXMFjL8Vni9Fn6tXcO2+/bTqnz6/El0o4cITkr6rVWQE7cZe2ok0zuRFlhWXMv2Q+P97wo5z7XrxYtpgOHTC06gBAqn8XLntvKj3+1sPh57tLpbMXfaaejF0ZGLJrgoUWLJCfI0eajLuAMF98/H0cWo2g4GnysKC6Gr79Vn4fNcokj8aOrsrK5IjT40hOhv375WY5gwc3Wh6eWDeUrQy8vL1g4UJplQ4ejN5HLseK8S4gbWuaw0kEwfPkEdsrlis+voLxs2ryU339tfw0ayuJ25fy8eCPObPZsT9Kp/M8eVz6v0u5d9e9DLhzgBwkL10qT4wahYFg/Ckj+90fWXzrYodzdimySEuTURHNhWbMuBH6TD2n1p7i2IpjUiEtWyZP3Hor+r4jAAj2cSwVuTlta3KHpTqWb6/ZSPk+hY8Hfczyfy6XnffPP8sTr7yCwT8KgJAqx4IZzfE0hbT+f+tZctsSzmw6A9u2Sb9/RAS8+KJp9B1IKUVpRQ4HRPv7q3ERniKP/JP56vTi4sXyc+pUxJSpGAgmknNsfWqRUwHRnlY36qDI4667MHTpD0AfwxbmDZvH5jc2O/w4j5ZHYaH06gK8/TaGGmPGPz+LjJ1mgyUHUHSpp8gjuFUwCQMSCE8KhzVr5CC5Uyd4+GH0hFCBP6G929J5UmebmZNtkZAgDbzKSsjObqI/wA40Y8aNCIkLYdo305j89mQ5qlq/Xp4YPx5D1wHyGqFHCOFwhQPPU0g6Lx0hCTVbGezbJ5VSaCgMG4Y+UWZCiz61gzVPruHE7yccfr4iD08x7o6vOs7eL/fKZepK3Rg7FoYONSno9Kfm8mbSm+Qddty94kn1o7Kkknc6vsOskFmUF5Wr8pg0idIBIxB44U85xxbt49CSuhlxG0KRRW6uZ+xXlbErg9X/Xk3y18kykGP7dnli4kT0nWQ2cSEgon2EwwGv4Fl1A2ptZbBpk3QZdOoEAweij5R/jFev7vz9l7/TZlgbh5/vafKwQGkrEyfC8OEYCKYCP4a+eQM3rbipTh6ahvD1VYOA09JcXFYH0GJm3IiAiAD6/L2P/OXwYWnm+vvDkCEYtsqRd5fyfbzou5E2w9pw54Y7HXq+uTvQE+IiLnrwIi568CL5y9y58nPECPDxwRDbAU5CcMZxNr2WhV+IHx3HdXTo+Z6mkIY9Oowul3chvn88fPGXPHjxxRAYiD6wFZSCj7dA+HhRVeZY7gxQ4yI8wbgrPVeKT4APQgj8AnSwZYs8MXo0Bl+53KSQcMa/MJqgNo5nvYuIkFNUBoNsL127urDwTcDZnWfZ/Ppmul7Rlb6tz8lhcmKinKJulwXAOV00D5982Knne5rh/+MNP3Js5TGmvjeV/odr2sro0QAYopMgH4K9Sul6mXP/WE/THVvf2UpgVCA9pvXA9y8zebRujd4rG4wQknYIGODU85OS5EKKM2fkmoTmQDNm3BXFeh42DPz90cfKjtqvuhSBoNJQN4V7Q7RuLQ2YsjI54mzVquF73AZFHjUR+PpQORTw8RYMe2yYU6MrT3MV95hWEydlNMLGjfK7oqB9wgAYcV0iF39yi1PP9yR5hLUJ45mSZ6gsqUS3e7d0n0RFQY8e6E+rDueRl0XAQMcVtBIXceiQlIe7GzOxvWIZ9tgwWvVoBX/VTKuNHg06HfpI2TaCS53Plql03unpnpFB3JBtoNJQiW+Qr1yCDDBqFAD6AKn4QoqcX37jScZMZWklKx9eCUDXMQn47t4tTyi6Q1cTX5Z9EmeNmTZt5AKp5pSHZsy4EXlH8ygvLCeifQRBO3fKg8OGAWDwlp1VOX48uu5K/Pv3dPj5SlxEZqasdB5lzNSWh18EAMFVBUyaM8mpR3qSQrLg6FGZbycwEPr3B0AvpEIKO3fS6cd6mjxMWxls2yYPDB8OXl5qNmT0cOKE02uJzY0ZdydpRBJJI2r+gVc8Lz9HyDg7Q1BN5115Tk7Vhoc7/PyEBGnAVFVBVpaaa8VdufGXGzFkGwiK9IPbanRHzRp9vbf8+/0yz3B8zXEi2kUQ3TXaoed7Uluprqimz419KMktwf94ihwMJSVBmzYIAYZqOe3414cprJx3lmu/v5b4fvEOvSMpSa4cLCtrir/APrSYGTdiy5tb+GTIJ2ydu1UmQwO1szLIOaEgSgkzZOIf5u/UOzypES6+ZTE//f0n8vemwsmaTrpGHgYvadyFFKQ7nfVOkUVenvvHRVSWVpK9PxtDjgF21Wx10b+/zGgGGKplfQjOOO70OzypbligyKPGv23ahwgDhTuPkXMwx+GAaLiA5FEpO6twClh41UKnAqJ9fFQDxhPkoWxlEJB5WsYQhYSY3GsGnZyyL80q4quJX1km1rMTT6obAeEBTPt6Gjevull6McFUN0pLQdSYAfrccvKO5FGW77hF8tprUFws06I1F5ox40b4BvsS1iaM0PhgudQU1M5b2coAg9qxO4EnrWg6tOQQ+xfux5hyUB5ISpJTCYC+qqbzRo/xxEmnYkTCw9U8JM0ZuGYPOQdy+KDPB3zY70O1s6rxOAgB+nK5M3D6oWJ+/eevnF5/2uF3eJKCPrj4IL8+8KsM7q0lD3PPzNzZZbzf8330mXqH3+FJcSKmrQwyM2Xwgk4H/WTgr2rclXB4XSYn/3BOf3hS/TCh1I0BA+SeDIC+WuaeCa44R2yvGDW7uAMosigshKIil5T0/FCrrejNmsUVSbu4fd3tMibPQXzcYI7HDYqgoTDxtYlMfG2iDP4tKZHTCDUZmZRKF0oxGxemUZmzlrHPj3X4HZ6ioIUQXP7R5RiyDYRl1Ewj1Bh2AIYaT1UVPrzYYyFdpnbhxl8dS2+q00G7dpCSAqdPu3dcRKWhkqCYIEITQmHXcnmwRiGVl4PRKOWRkR/Akfd3ENMtxuG09e1qLk9Lk9MJ7qCgbHF6/Wl2fLADv0BvuqekyIO1FHQwBgJ9KqkKDnPK2FXk4e5tBeCzkZ+ReyiXW2d1oz1A9+6mJDuKcRdAKZdP8yP4lvFOvaNdO7kw6LTjdvJ5pfRcKVvnbiU0MZRBByw7bwBDqQz46coRRn71sIVesZeQEHVn9dRU6N3bFSU/D9gw/IMw0D53JzioM9wJN1ZXLRhliqlPH1Oknbln5re//OGvdYyeMdrhzLdKpttTp1xT1KZCp9PR58aalV13fyo/a0aaoHZYAUiXqKPbGSi0by+NGXeXR7uL2/HvnH8jqo3Q6ml5cIAM1jMfXfVmH/EPXkviEMeDGuLjZc65igoZ6NnOjfVal6ld8A/1p21sqYxIjYkxZf4z98w83mahTPPsBJ7SVgB1K4MzNZtumnXepk1ZMTAoNhOu7u7UOzxFHgWnClg3cx0hCSEM6lLXmDE3djlxwiljBqQ8zp2TjnJ3NmY2vb6JTa9vYuBtfbj0UE2aAiuGP9nZsvE4m2mymdGmmdyRmpT9lp4I+RmMnn7RZxh8/2CrO+Q2hKcoJAvqkUcbzvDvRyq4eeXNTj3a0+ShyzgL+fnSbdKrF2A28taV0Yf9XHJdDEnDHd/uwstLNWDcXR6dJnTikhcuoVNQpjzQr58p14CFgk5Pl/NwTqDUjdOnmzezqT08fvZxHs94nJjMffJAXzUlvcUUdSM20PGUtuIf5s/AewfSa3ovmZ8KrMojBH2jdkfsIJOyu708is8WY8gyUJ2RLStyq1Zy5IKZLHQGMonnwOdbyD3k/Kq35kQzZtyE6opquZXB9T9SuasmXsaKJyKYEq72X8Fl71+Gb6Cvw+/xlAZoyDZwdudZ9GkFMk09WBgzijzCKCao4Cw+Ac45GT1FQZtQZNG1q3SjYDby9qkJ3GuEgvY4eSidVZ8+pkMWnVV5uTT+nKBNG2nglZfLUBR3xsvHi5D4ELwP1NQPM3moukNPzvEi0renq5uVOoCn1I2ozlFc8dEVTH6yr/zfe3vLaTdq4stq5FFIGPNfz2H5g8udeo+nyOPi/1zMP3b/gyF9avSDtbrhW8lWhvLDQxs4tNTxJJPugGbMuAmGHAOn1p7i4KKD+CTXRJxb9cwYpGatdnx1Bqgj79xcy+kJd+PIL0f4ZPAnLL3xO9mbhISolhiuG115ikLa+NpGFt+6mFNLa6YgzfzaprrhV4kRHWXH0ykrdG6NpKfIo+BUARX6CsS+ms7bTB4mBe1fzWaGs/j2pQ7vvwMys6kSY+bu8gBkOzlyRH63Uj+CKOH9A5fw6UWfUl7s+LYoSt04edJpZ9f5RTF0u3SBALmiq6xMLbsXRk6d9uLsDuf0h6e0lcCoQOL7xxORWWOkWKkbIQGVRJNLUtcAQuKd3J21mdGMGTchIDyAaxZew9RXL5ZTCTqdVQs6RFciXYU5OQ5vCAZyBU9kTUJUd2+EoYmhhHrXrJnu18+0GsF8dOVNFev3hrPuxXVOvUOxjxqxQOy8cGLNCZIXJFO4ryYa1VrdCKhmG0N59T96fr3f8eW3YNlhuSvGaiPvdHqHWaGz0CfXbGNhTUGHwAk6kvxzqlPbO4BndFjZ+7NZ/cRq9ry2RkZuh4dLt1IN5osHgjAQlhRGdbnjgyFlJaTB4N6bkZq2Mthv20sF0J5TTOt9mPGvOBcQ7Ql1w4J65BEcJBjFRu6814f+t/U//2VzAZox4yb4hfjR+/reDOpbk9m3Uye5D1ENptF3uA+fcjcvJn3s1PJb8IxGOODOATyW/hhXDsmQB8ym3CoqVMeUL5X8mdWLDS9vcOo9iiwyMpo34VNDXPTQRYx/dTyJ5+p6Ikx1I1jgiwyErixxPEM0eEbdKCsow9vfG3QQnHNKHuypJpE0KehwH/qzh/HTI0gYlODUuzxBHpl7Mtk8ZzPJC2tSGPTubbFXicm48yrj37zGo1uuJzjW8SDPgAB1Dx53lsfSO5fycsjL7PixRj9aaSuB/tVEUkgf9tF+bHun3uMJdQNg+/vb2btgL+XJh+UBG4Y/0Cgvd3OjGTPuRnLdeBkwG33HBGDEC2OVc1sagOd4IwCr8jAfXUVxjgHsZNDd/Z3yVEVFqQ3ZnZfgdruiGyMfH0arkzXL1K1Mq4SEetGfvTw7eh3XL77eqfd4goIOig7i2ZJnmfHrKLwwygptxfAPifSlFymM7Gcgrk+cU+/yBHlEd4tm+OPD6dGmZgf5WktrTPUjuibR5gU+LWvIklsZ+GTWNGhrU5BBNbqiEbJQpuzPnXPfXDPCKFjx0AqW3LqEiswad5o1wz+sZlWsZsxoNJb8E/mkb0/HsK0mZ4aZKxDMRt+tgrie73hkViwdxnXAGTxBIZmoJ8DTz08Q4lfFlfzM5Cd6o3Ni50ydzoPkceKEdB8FBlqPH4rwxptqfDLTnJIFqLJQcs24M37HzTwRZpgUdHTN7tAXeOfdekhrJr4+kSF+NYZ/LXmYdEd8jcF3gctj+k/TeejwA3TLrJl6tmr466jGm7RzQZxcddip94SGQnTNLgjuKo+qsip6/703HQdFEkSJtMDCwkznVcPfj8N04+NfElnxrxXNVNrGoRkzbsKOD3fw6UWfsmFtjbfFhkIKiQ8hnELCy7Lw8W/cCh539swsu2cZP077htyzNfljapYhg5lCCtGpOdZdoKDdVR5V5VVk7ctC/1dNzoxevSx2+jN13pE1I++MDKffFR8v9/CqrnZvTxWgxgDYaiuxQVTiS9GJHEpynduvQrEZT5xwtpDnESsxEebxZSHxIfzOpXz33AHO7mxc0Ks7y8MvxI8or0ICywrk3FinTqZzJsMu1ItSvzDmcTdfTl7o1OoucH/d4Rvky7SvpnHLnT54Y6wzSDbpjih/yvAnQx+mLc3WaBw+gT6EJYURllczz2ur0imjq+xsp9/VUW7A7dYK6egvR0lZfJRKfGyOJoKDkTtnAiIzy2mFpOg6J3OrNTn5x/P5sO+HvPdg3dUIYNZ5R/tTRCi/6Yex9j+/OfUuLy+1frirPI78coRf7vuFlLU1bcCWZ6ZVEBsZyZsrevLH//3h1LuUunH6NFQ6N6vb5JQVlGEsKFJ7VDPDX2aHlt+DE8I4RQcO7S2nMLXQqXd17iw/3bVumFAMu549rRr+ISE6/FpFEEE+rTqGUF3h3OpQd9cdJhoy/FsF0IFT/D1oCeNfdS4gurnRjBk34ZL/XsKjf1zB8Kr1dUYTFqOrxDBO0p5NG4yc2eTcJimKQjp2zH2XWE5+ezKTrgkmkgLbbvNgIDaWt3mYF6btJWtfllPvMpeHO1KhryCoVZCaR8ZW5x3hS6lPGBsZxY6Pdjr9PndX0Gc2nWHnRztJPVnTS9uYkg2JD8GXCnQYEdXOVfTERNkcq6rc11P15bgveTHqTY7RSbrWYmJM58zjy4ITwxnOZi4bq3d4V2QFd28r5cXlrJ25lu3zkhFQr+7wi4/iYd7mgbe7OZ2nyt3lYcKGMWNu+IdRRNeSPST0jDrPhXMN2nYG7oSN0UR5uToqDEsK5y96sWNfAhevOkbSCMczvXboIEfgBgNkZZmSQboVvab3gj/fBcrqdFaFNYPK8HAgNhadVFtOB0S7u0JqfVFr/p39b0T3HnAYm167kFAdIa0CGZqxmcBrbnX6fe4uj44TOuJdqqf1W1/JTMjdulmcLy6Wn8EJoYxgMyPCD6D72LnEeYqn6sABadyZjTHcBkOOAQQEUmqzbvj7g098DD05ALG9oWOkU++q7anydTxvZ5NSlFbEuv+uI8C3miFgOxg6BAioCQpvhJfb3dvKtne3sf7F9fQtjGAi1BNfFijbUlUV5ORYLO33FDTPjDuhBLvWqnBK563TQUjbKFqTRp/QU06v0PDzUyPx3bURAjZHE8rKgbAwIDaW2/mcJ+7Op/VFrZ16jSd4qigvR3esZt8dG/UjPFyOviezijFXhDv9KndX0B0u6cDYiX504ZhFJmQFpX6Et4tEh0BXWCDX8zuJu8vj4ZMP8/g9hcSTZbOtKIY/0KjOOyFBxp9XV7vnhpO+Qb4M+scgeofUTLnZaCuK7gAuaGOmOKMYQ7aB6vIqi0zICqb6EaGjIiaR43Tk6OJ9zVDSxqMZM26AEIIvx33JDx8XUEpAndGVUuFCQ8ErPpb+7GWaz1J6XtvTytPsw50bYUleCWe3p1O8tyaox4Y8FAUdRjHBxZl4+ThXndu1k+28tLRRsbNNy8GDsgeJjFSTfdTQ0hQ0YNPwBzPjrk2ouvV3To7Tr3J3eXh5exFyIhlvqus1dImNpZRAcs+UUpxR7Ny7vFTvjDvKI6JdBJe/PYHLir6VBxow7n7mCr5830B2inPtRakbp083yl5uMkY8MYJ/vNebYWyRhr+/v8V58/pRHJHEV9zKT087P0XdnGjGjBtQXlTOyT9OciAtDB+qGlRIgNxz5AIdbZ78/SSfXPQpPxZPklZGrWkEV3fevr7u7ana8vYWFv/zd47TURp2tZZd11bQAh0VZ5wPiDYP8nTHDRYLThVQvmu/nFysZehWVKjJD8MivMiN7MyvTOXP/653+n3u3FZMWElhALXaSlwc67mY945PYctbW5x+ldvL49AhafjXyoQMdXXpGZI4ecYHQ5bBqVfFx0NQkGwn7uipCowMJN5wgkjy69QNsPRy+8dFEEsWcW08M/pEM2bcAG8/b6796iqm6pbja8WYsZhWiYxU42ku0NGmMApCo30Jo0gaMrVGE7U77yN05a+UKNK3O78jsDvL49Qfp0jepCefSKsKqbaCnsUMZj3v/IqVdu2kQ6OszP1yaAkheK/He7zyXScKiLDptQPZXgxhiezgIlKWOx+96851I/dQLqsfWMKu7DbSyDVbyQR120oAZQRQquwM4hTuLA9jldHSsLNh+CsDoUv5g7/1Okyrnq2cep9O597yAGwaumCpO0KSIrmfD7jjbu8613kCmjHjBvgG+tKrjxdDxDaIiIDWlrEfFp2VlxcHQocymydZeNMvTr/TnRtg7xt689hTvlzDT/VOIyijzf305o/sPqRuuDA7rEH/GMT4bqdJ4kyDoytiY6V3D6gwOOe58/FR82e424qmypJKdF6ygwrGYNMTERws/47IxEAuZh1Dxzmevl/B3FPl5P6uTUZ2SjabP9jLHvrL+Z+gIIvzFrojOpoxuvU8xauMe6Sv0+9057by6z9/5eU7j7GFYXYZ/t05RF/vlEZtrujO8tjx0Q72riugzEr4Atjw+jfCy92caMaMu2AeA1DfaAIgPJxSgijNdc41CmoDPHrUTYNe64mJqD3abMcp+rObVt2inX6duTzcjS5TuzBSv5o4su1SSA8ylxmXbnZ6tAnuKw+/YD+e2X41M3gJv2A/1eqqoXZbCWsbwSX8yZA+zm+8lZQkpyIrKmRmZHciqlMUwy/xoycpDRu63t7qsu1GdFhKzIy71Q2o2cqgUicN+nraiqumqMF924oQglWPrmJJ6iBKCawjj6oqKKnJJakMDAHNmNFwnoLTBaSvTkFPcMMNEOjYQfAA73Htvc4trwS53NTLSyq7LOfSszQtVrKZKljIIzqaQbrdXMVSOg+OcPp1XbvKz0OHnH5E05GfD+k1U2i1phGEqKuggyjFLy/T6S0NQA1Tckt57NuHH5XS0K01X2Jh2IFLOiwfH7UDP+xc5vsmI75/PBM7HGMYWxs2dEGVRyMavVI3Tpxwv0SC076exkPx39GrAeNOMfyLCCM925ei1AKn3+mubcVYZaTn+NZ05Ljci8qG4Q+qPBZyA58sjSX/hHOpDJoTzZhxA/Z8sYdPv/TnTy5p2BMBBLSOphU5hFaec/qdAQFqqnZ3a4TLH/yVH/d2IZP4huXh46NukNKIDqtHD/l55Ih7TSVUV1aTtWQzekIQSW3NeiWJeQ6i8HBcNrpSVnC6W90A6o0BqN1WRGws5fhTfCrP6YBoUOvHwYNOP6LpsDMmAuBsYEeWcDV/vu/8H9KmjczTUlXlflMrfhUGojIPypw79a10CwdateJPxvKp8S72frLV6Xe6a1vx9vXmbzcHcQsL8OvTzabhHxhYky8oNpYMEjhbGEJpfun5L3Aj0YwZN8AnwIdwb70MeLXDM+Mq96i7KuhjPx8ixdiTcr9QNbe+GTbl0YjRZrt20sCrqHCvfVaK0or48M7tvM3D9dYNna4mEVhsLMn04ffM3mTscD4g2m3rxqpj/PxVAfvoY1dbMUbH8gozeOOHtpQVOj/VpMjD3TqssvwSjPsPyF8ammYC9IGx7KU/x3Y4FxwOsq65awdu8ugmJcn4w1pY1A8/P0ICqginAN9q5+uGIoszZywzLrsFdhj+5nr0Mn7hhqhVRDqZVLE50YwZN2DU/X15pPp1xrDeLs9MeXgrdjKIbesaZz0rjdDdOqzx0yOZxApierSqM5qAuvLYVd2XWczgp+f2Ov1Ob2/3nGqqKK4gKKCaEPTo+truvENDa0TVqhX76cMGMZKMTc5vvqXUjZMnZf4ddyF9azq7TrfiFO3t8kR4J8bhRTUgqCxxfk7EXdvKNxO+4MXSJzjk01sN3jCjtjxadQhhPGsYNsD5zhvc05ipKqviz1lb2MYQjL3r1g2oqzvGtTvOI7zFsEkRTr83KkodT7mTPACHvHbExtKVo3Qr3kFgRMD5KZ8L0YwZdyAlRX62bi2XXteitgVdHhzNL1zBqm2Ns57ddfTdMziVYWwleGA3q+drj751oWFU4E95QeN6XXeUR1zfOP498Hf+xTt2Tavg50fXwDNcxBZatXI+ZiY2VlZFIdwrsLH90FjG8CddOWz3aPNpZvFcm88Iax1W53p7cce6AVCSUQToCOwQZ7EFikLt+hHZtRUj2UifVpmNeq87yqM4o5j1K0pYw0R0VupGebn8gabzcruTMbPr01289nN3ljPFPt3RqmbBQGWlqmQ9CM2YcQdspO1XqG1B+7eLpxuH6BlxFmO181nN3LEBAvXKQ4i6jbDHAH8e4h2unljSqNe6pTyEgP375f5T9kxBAoOTspjCSpJaO183zKcS3KnDahdeyFjW0S2+yGJDRQVro01fqtDlZDdq2Z4S5JmdDeecD1VzOQ/cW8ETvGZzK4+mmqJ2R8+Mt583g+LP0Jdkq17M2jmIAJdMUYN7tpXi03mUGAOpwsc+3REYSG5QO07QgcK9bjTXbieaMeMGfPPSKb5nOvoO9btGlUrn3z6BG1jINSGr8PJ2/l+oNMC0NHVzvuamrKCM9O3pFBFqtQGWlKgBuoo8AtrGEsU5gvSuUdDupJA4c0ZWACsbKoKV0RVc0KPN+tzmUM9os7y8UZU8NFRNJutO8vBK2U8wBnz6W5dHbePOGN2KIkLJS21ccId53XCX1A5hiaFcXvojV/BzvZ13SIjqxDpZ2ZrvuJ61PzifgBTcs60MHRPIfXzAqJjD9hn+wB+6S1nAbRxe6kZ/iJ00qTGzfv16rrjiChITE9HpdCxZssTivBCCmTNnkpiYSGBgIGPHjiVFmXKpoby8nIceeoiYmBiCg4O58sorSXO3ZA+NoKq8iqOn/ThIT7x697B6Tb2jq0ZokshIdfGLuzTC1N+P8mnqZBby93rjh7y8ZGI0oEkCot1FQW9/9XcW8zeOtB5bZ0NFsK6Q5JYGUH22cVMJ7mjcFWxMoRw/m8ZMnbYSFMQ2v9GsYApZfzVuXbU7dliOGnelAZG8yeO8u3dMo7y6nTtL+7q42I2yRKelyQrg41NnQ0Ww7sXU+0RyiB6kHm/cGnN3bCsBpw4RRxZRA9pZPW9tIBQRLmhFNv5VjfNyNwdNaswYDAb69evHu+++a/X87NmzeeONN3j33XfZvn078fHxTJgwgWKzEdQjjzzC4sWLWbhwIRs2bECv13P55ZdT7U7rZxuBDrg2dAWTWUHgUOtZOevEAbhotAmqgj5woFGPcRnGU6mEUUi4b6nc+KQW5gpJSaNSEhDFVi5ie7J/nesdoWtXaSQVFEBm4+wAl3HqrzSS6ce56C5Wz1tT0BvSO/ACz7N8fm6j3q3UjVrji2blw69DeYVnyImqP57KXEHv1/VhG0PJ23OmUe92N3mcS8lg5eH27GSQVWOmTg4iwK9tPDqM+FNOVWmV0+/29VXjjd1FHtW798r9urp1s2r4W+u8W/eN5jJ+YUQ751f+gVo3jh51ow0nGzB0remOiRcV8ADv06+nmyUQsoMm3VFqypQpTJkyxeo5IQRvvfUWzz77LNOmTQNg/vz5xMXF8c033/CPf/yDwsJC5s2bx4IFCxg/fjwAX331FUlJSfz2229MmjSpKYt/XvDOzaJX8Vbp96yVEE0hvyZ/UVRUzYGgIOZ53cs5Yzi3rDtM/BVDnH5/796wdq1a75ub7pFZdOdNGDm2TiZkkIYGWK661HuFsZKpBKWW4bwk5NLsLl1kYrTk5DqbUzcLA6NOkcgh2o+YavW8tc7bOzwE0FFZ1LiA6L41tvWhQ9Ju9m+crdhoqsoqEVXSmxA60rrhb00efRNzaHfyENHB1g1Ce1H6hOTkRj3GZWSv3MVWMYxE7ywGWamspaUyFwyo8vBpm8D/8QI6AN2zQN1O31769JF1IzkZJk50+jEuY+XLu9nDs1zim88IK+etdd5RvROJYgfoGle5lZXgBQXSO9OvX6Me5xJ2rMzBl35069QLa2uTbHl1AY/MAtxsMTMnT54kMzOTiWatwN/fnzFjxrBp0yYAdu7cSWVlpcU1iYmJ9O7d23SNNcrLyykqKrL4cVt27ZKfPXvK7EW1qKxUnS8mYwYo8Q6hhGDKzzSu0imNbq/zq5pdy+7d8nPgQKunleDLaLOdC4I6J9CTFHp4Nd7/727y6JSxgZFsIv7ywVbPK/IwrxsDJ8bwOK9zRc/GZTRTFHRVlXtMrfhknWUGLzPD+1X8h/W3ek0dwx8Y3LeCcfxBXGDjvJhK3XAXYyay6DQj2EjvTiVWDX9FFj4+NTmIAF1oKLqAmq6tkR2Wu7UV/Zl8qvDFp30bq+ettRVXdd46nWr8u0X9MBpZfaQDS/gbJW3rTrmB9bbiqoDo5qDZjJnMGj9+nBK0UUNcXJzpXGZmJn5+fkTWWq5sfo01Zs2aRXh4uOknKSnJxaV3Hfl/7CKNNui7W++slAqn01la0NN7JHM/75MYXd6o9ysNcO9eN4kTUYy7BowZ8wYY0rMd1/EDl1ctAYPz+1WBmymk4mKZkhhgwACrl1iTh3+7eELQ43uucQrJXEG7RYdVUzf8+nRTO+Ra5OXJz6bosHr1ktOQ2dnuMQ0Zl7OfCaxh+NVxVs+by8Jk6+h0LpOHW7UVYJr/r/yLt+l9i/1tpToimlxiyMxwPn5IwZ3aSvWR4/TkAB11JwkZad1NZK2tHMyI4EtuZd1ad+gMHKPZVzPV3j9GCNHgnjINXTNjxgwKCwtNP2fONG6uvCnZszyDedzN2nTrLnClAUZEWKaRiOsQTCzZ+BY0Lgpf2d4mJ8cNjPHqan7ZFssPXEdWUAerl1gdXYWGqnMgOY2ThzuNNqt37CaDePQJXdQOqBZNOdoEN/NGNGDoCmFdHqJVLBX4UZHeOHkEBclpSPAMeVitG8DaqlEs5Spydzm/yzyodePgQTeIEykowPfkESLJJ2jsRVYvsebVLawM5D0e5HP9dChrXCJBd2or3vv2cDVLuGVQCn6R1neMt1Y/9CKYk3QkK9v5HFXNRbMZM/E1wZ21PSzZ2dkmb018fDwVFRXkK+4JK9dYw9/fn7CwMIsfd8UnK51wCojo7YBrFFzWYZkr6GbvwI8e5VhVew7Qi8pY63kzrMpDp3PZnkS140Sak/zfdvIx9zE35wab11hV0FXBbGAU2840PujHnUabR1Ye52euIAXrsWUGg7pPlbk81mwOYRbPsG5t48vgNvKoqqJ0z2Gq8XJoShbgYHEb9jCAwqONayvKNGRlpRus4tmzR362b29FWUqseSL8EmMIoJRAShEu0h3NXjegQUMXrNePjmOSmMZPDA92hz/CMZrNmOnQoQPx8fGsWbPGdKyiooJ169YxYoQM3xo0aBC+vr4W12RkZLB//37TNR5Nbi6jC3/hEd5i1GtXWb3EljGTWh7HLgaSdSCv0cVwG2/Erl1MYhWT2h8kqnsrq5fYksfcrOm8wtPkJzfOC2ceJ9LcCrpi70GC0RMWYbuZWlPQheX+/M54tpT2a/SQ2bxuNPc05JmDJexiEKcLI6yeV+qGv79l+JlvpAwYqShuvHXqNqPvQ4dYUD6d//F/HDtq/R9jdcoNuKhPKeP4jSjvxmV5dac4kfJNO/mDS9kePgFho6JanaKOD+WpxAU8wlvoGunV7d1byiQ7u/m93GJnw8aMtfoRPbgDfdhHUnFzW6eO06TGjF6vZ8+ePeypsZpPnjzJnj17SE1NRafT8cgjj/Dyyy+zePFi9u/fz+23305QUBA33ngjAOHh4dx11108/vjj/P777+zevZubb76ZPn36mFY3eTRKsGuXLpYh9mbY6rx3HgjiZ67k+IHG+3fdxpjZvZseHGTY1GiCooOsXmJLQZcLf8oJoCLNdYF8zS2PxNQtPMHrPPCJ9RgAsF4/wrol0l+3l17sd1mcSLNPQ2Zk0MmwhzGspctN1tesWY0RAUbd1Y0ZvMTU8I2NLoa71A127aKEIEBHUGyI1Uts6Y5Bo4MYxQYiKxs/Deku8ijclMJfXMwfR1rbDEGw5alqCi93sxp3QrB1UzWzeZLVG+ouKgHpTVPWxVidoj53TnVzeghNujR7x44dXHLJJabfH3vsMQBuu+02vvjiC5588klKS0t54IEHyM/PZ+jQoaxevZrQ0FDTPW+++SY+Pj5Mnz6d0tJSxo0bxxdffIG3lX1IPI4dO+SnjeBOsK2QEnqEU7ZjAxFVzueKUHAbY0aRhx2u0dryuHVKNt5LFxHu/Viji9GvH6xf38zyKC01Jf/RDbIuD6PRujwiOkZxVcJWmc0sO1tNXesEioI+fFh68idPdvpRjWPXLtpzmvbdA+Fv1vNm2Kobvu0SgUrIbrw1Zh4n0qzL1Xfu5GHmUnLPwwT0tT7l3tSdN6jyUGZ5mgu/g8kMJguv8ZfbvMbWQMhVU9Qg5XHkiJTHhAmNfpxzpKVRbPCilCCMEbX/+RIlxQVYbgdY4R9Cjq4NQgja5Oa6R34KO2lSz8zYsWMRQtT5+eKLLwAZ/Dtz5kwyMjIoKytj3bp19K6V9TUgIIC5c+eSl5dHSUkJP//8s1uvTrJFeVU5+aX5Fi5QsWUrn3MHPxzqS3mRdRe4LQU97Pbu/J1v6UnjM1YpttTBg41eDGQXRmEkozgDfYVZSvXqagzbU0inNcU2tnUA2/KI7RZJNHn4nGucqxhUW0qxrZqa1MJUsvRZVFSbedl27ZL7NsTH2zRGioulQQNNF1MFMGiQ/Dwf8sgrySOtKM2ybgBs3So/L7Ie3Al2dN55eWriFSdJSpKZ4auqmt7YrTJWkVaURrbByv9w61Z0CILHDsHbz/rAzlbnXRkeg54Qys42fopaqRs7d6p1sakoqSwhtTAVo6j1ooICIk7s5DKWM2XetTbvt6U7lp/qyfdMp+Bw45eoKfLYvr3Rj6oXIQTnSs9hqLCisLduZTTrua/bHwx7fKTV+5W6UXthSe6Rc3wq7uZ7rm/+uTIHafbVTBcaRmFk5bGVPLj8QfJKVGWx6vgqomZHMejjmtouBIbNyaTSjgP7qvAN8rX6PJsBwC4cTSQmyg27jUaplFxJcXkxX+z5guQs1e+aY8gh8Y1EQmeFkqmvUSAHDnDMkMCn3MOSl20nNTkfo02lv9y5s9F9Xx1OF5xmS9oWi2MDPxpI/Jx4fj78s3pwyxY2MIpFPtM5ufaU1WcpCikoSCb8s6BmSwPhAoWkyEOxJ1yFEILUQssVNQ8sf4CkN5OYs2mOxXHj1i2cI4ryvkNsxkTY6rxzs438zji2chHkNi4rsk6nymPbtkY9qg6V1ZZu/c93f07Sm0lM+26axfHsc2cQu2tiIoYOtfk8W7pjxY8G5vAE2w6F173JQXr3lnWvoACONS6tUb2kFqYS/HIw7d5qR1mVuurodMFpjv+1VP7SsaOaHd0KtnTHkbOhHKQnhtTG7yDaVHWjNoM+HkT07GjWnFDjSdOL0pmzaQ4FW9cRQDlxl/Qkon2E1ftt1Y2A8ADCfQ2EUeRxifM0Y8bFCCG475f7eG/7e/x56k/T8dJKmY21U1QneeDMGfxy0rjK50cunzsJLx/r/4oGVzO5YLQJTddh3bnsTu5Yegff7PvGdKysqgwdOpLCkogPqdmyYMsWzoTqCPUvI6ydbSVrSx7Hs0LYxhByTjR+x8zu3WUIU0mJa1O1f5X8FR3e7sDTvz1tcbxbjEzNP7SN2jGt2b+MP8M7si8tiqI060kfbcnCWG1k1p/DeJHnKD3VeIWk9JfbtrkuCPhw7mEGfDSAvh/0tRhddorshJ+3H/4+6vxNZtFZunb/g7k8xCtP5GHItu4+tCWP/NNFbGA0e+nvUmPXVW3FKIy8sO4Fkt5MYnu6OqRvH9EeHy8fgv3UpbVCCMZ+djFTJ0fzQ+hV7FlvOyGorc7bLyoEEFTrG5chGuS2Boon01XyOH7uOLcvuZ33tr1nOpYYmoi3zhtfL1/8vdW68eL6F+my6w7+O9obMXSYzWeWl6te59r1Y8wkf6byK+HlrvFi6nRw+rTrHBu/n/idF9a9YHGsVbA02gJ91JiYDakbeGLNE/Tw/QiDL3YZurXrRlTnKB65eBd386lmzLRENp/ZbPru7eXN48Mf575B99EpspPp+PW9r6fkmRLemfyOPLB1K2mRlVz++GHSxtmu9bYU9P41GbzDv1gmLm/0aBPUet9YhVRttNwz67Z+t9E1uisdIzuajrWLaEf1c9UcelD1wORsX8s/7tnLB099RJ/XrU8zGY02slYC2/8qZwWXkXqm8fkRvLxgSE2MqSuNuzHtxuCl8yLAJ8DCu7Dxzo0YnzPSJkxOJwkhmO27lQWXbaZw2hnaDHVs2b6XtxfVRh0CLyrONr5u9O8vs8hmZ0Nq41KTmOgY2ZHSqlLKq8vZcVadv3rp0pco/085T418ynTss99eI9MvgErfCnTeOoJb1Z83o7aCjuwUyUVRR+lDsksUtLlx5wq8dF7sy95HliGLBckLTMcv7XAp5f8pZ9XNq0zHDuUe4pQhneLKeA4UD2D/d7atbVv1Y+Irl/Ic/+WS0uUumRtytTx+OvgT8/fO5+2tb5umlHy8fMh9Mpfy/5Tj7SXnRYQQ5Jfl422EuJ1X8/KPXdn5iXXXsiILL69a6fuBAZclMoTthBRnNLrsYWEymTu4Rh57M/cyfsF4Xlj3AmlF6gbL86+ej+EZA5M6q1v6JIQm0CumJ7N+g+TKYezJjKPCYH2BiM34IfDYLQ00Y6YRVBuruXPpnYz4bARrT601HX9o6EN8cPkHDEiwDOwN9A0kIbQmoGrLFt4ZCumBlfzfn/9XxwhQUOpT7R3cqyqM5BNFMWEuVdCN6bxP5J9gxGcj+Dr5a9OxqV2mcuifh7h30L0W1+p0OoJ81RVLmSnb8DGCX2AIXjrbXirFBqiVFJo2FyXQgwOEl7hmC19XuItXHVvFu9vUTVaTwpM48+gZVt68ss6KC4vfz55l+s5yIoOP8ujcx4nuaj2Irz6F9MBj/jzGHMJKGz88DAhQAz2drR9GYbSYRvP19mXJ9UtIfyydMe3HmI4rcjCXx6OFPbntgIHrxq1gRtEMdF7WDVZb8ojpFsOU/hkMZ4tL2opi6B45ohrXjlJQVkCVUfWozh4/m2+v+ZY5E9XpNW8v7zptoUerHqScmMy/9+QwYhT0uKaHzXfYkodXfKzcm8k8grwRuHpq5eGhD3N7/9v58m9fokP9X0cERFjUC51Ox0/X/cjx+eEElIRSVQl+Idb3mlJkERkpDRoLXNx5u1Ie/eL7cW3Pa3lgyAMWHqn4kHgL/QlwcbuLSR42n5u2G1nNZJbO2EZ5qfVYTM2Y0bDA28sbf29/dOg4kOPgttNbtzJjZQz/yb+B5ZctN402aqO4KmvnCOw8pTN3dvyTKaxwSaUbPFg28rQ0uQjGGd7f/j7b0rfxzB/PmIJZvXReDWZ0priYPpuPs/VT2PT3NbSPaG/1MkUWUVF1N8Ud9dRIpvM9nYt2u8Voc92pdUz+ejKPrHyEbenqQ0zGbD3otm3jnl2wZUtvkhJtd1a26gZAVI94QinGK9c1Cqkx8qgyVjHtu2lcufBKvtz7pel4j1Y9iAq0nuDMnMBtu3hvOfTrNc5mbBmo8rCaLNmFCjo6Wt0x2plAz5P5Jxn88WCe//N507EOkR24ofcN+Hrb/vtM125I4aqMdCY8N4JB9wyitLLUMngc2QSUP7WOPHx91V7MhTFVe/Y4l2hy2eFl3LToJpO30t/Hn8+v+pxhbYY1rDtOnKDt6QJu8v2efx28j8gxkXyV/FWdy+qrGyV+EeQRTWlm4/LuKDRmYCiE4PPdn1vET3137Xe8M+Ud09RSfXht2041PvRLyKbtxLZMXDKRHw/8WOc6pW5Y0x0//B7NAm7BcLrxXt3ziWbMNJI5k+aw4c4NPDDkAftvKi+HnTvZzlB83u7O0U+PWr3MXCHVrnQhcSEktfcminMuUdAhIeqm3c524LMnzOa/Y//L+tvX4+ftwG68W7eCEPxlvI01T+4j/6T14W59nbfJdVVd7dLRZkoK6PX1X2uNi9tdzH2D7uOegffQJ9b26iyrbNlCBX5kdBptig85du6YRUA5qPsDWZWHCwPEoXGjTR8vH/rE9iHAx/p+Sg2ypSZguqaX2JC6gYdXPFwnEFipHzXJxS0QsXFU4uMW8lh7ai3H84+zMGWh9dUo9ZGdDSdOyO9DhvDz4Z/p/l533t7ytsVl586poXS1O/CzO86yQkxmK0NdIo8OHWTzq6hwfIXX2eKzTP9hOt/s+4ZFBxc5/vLNcorfd2AfqpK86LOgD7cuvpXdGbstLqtPdyx/+yjv8hDJWXEuCQpT6sb27Y6Pqx5f/Th3LruTmxffbKrftjzVVtmyhQDKufqeGLL+L4st6Vt4+ren63j+69Mdx48LTtCJ0owCxwrfzGjGTCMJ8g1iRJKD2Yi3b4eyMvyDfAhvF054TcDrpjObOJF/wnRZfr5thWRx0EUKWhlRbNlS/3XmmC8b9dJ58dyY52gX0c6xF69fjwAOl7Uj5fsUjMLIJzs/YdyX4yxc8fUaM35+6tyTC+SRkCCX4RqNzo2+dTod71/2Ph9c/gGBvtYTV9lk3ToySOCTJXF8NvIz3tv2Hj3f68lzfz5ncVl98khJrmYjI8lLa3yQJ6h1Y8cO53JpvXDJCyTfl8yt/W517Mb8fNi7l730Y9kSIzsW7WD8l+N5Z9s7LDu8zOJSWwq69FwpL8yN5GX+gzHTtcaMI21F4Y4BdzDvynlsuGODRXCvXaxfD4C+2yCqg0M5V3qO1MJU5u+db9Fh1efFzDuax7b8rhyiu0vaivkKL0flkRiayCdXfMItfW/hqu7Ws6DXS408GDmSVsGtmNplKv3j+9dZvl2foesfG44/ZWCshsLGe2d695YZqAsK1H1i7WVCxwkE+AQwoeOEhr1S1jCTx7+G/ovb+t3GLzf+UsfzX5/umPKPtlzNIkKKXDNlf77QjJnmYN06ACZM9eWRU48w8K6BvLbxNUZ+NpJXNrxiukypcJGRdRVSWWEZ+wvbsJ9eLjNmhg+Xn3/9Zd/1J/JP0OO9Hjyx+gmbMT92sW4dAh3T7olm0luTIAZm/D6DP07+wdJDS02X1dcAd3y4gzeK72EFk10mj5E1KRoU/dAQ36d8z8y1M02K1CllpNfDjh1U4ktIbCDhbcPp2aonlcZKUnJSLJR0fQp6+5J0fmMCmbm+Lhltdu0qR9+lpfblmxFCsOzwMgtZdIm2vplqvWzYAEJwMrQvu785ROnhUp4b8xwPDnmQ7jHdTZfV58X0DfKFGhG4IiAaYNQo+fnXX9IZ2BCllaUW/7s7B9xp15RjHWp0x0dnpvI///8xQUzgg8s+YNs92yw6rPraSlyfOEZ1z6Yfe13WVhR51BTPIW7pdwvzr56Pj5cTOVzXraOQMH4/04U98/fwwWUfsP2e7QxKHGRxWX2eiCvmXc3TYe8zlG0ukYevr2r8OyqPKV2mcPxfx7l74N2Ov/j0aTh1CuHlDSNGEOQbxBdXf2HRThTqqx/9buhBP5IJyEt3vAzNiGbMNAdK7zhGDXwc0noIPl4+VBrVYW99Fa74bDE/rQjhVy532RpAJVnztm32Ta2sOraKc6XnWH96vUW5HaKsDLZuxQtBz8cmM+zhYUSHRfPiJS/y7pR3GddxnOnS+uRRVV5FcVUQBkJcpqAVefz5Z/3XgXSX377kdv677r8WcSEOs2kTVFfTuV0lj2c9yS1rbuGSDpdw8J8HWXv7WguXc33y6DSlK/3YQ1h1npq3vBF4eanV1R55vL/9fa5aeBXTf5huMy+MXdT0Br1HhDH2v2NpP7Y9z4x+hrlT55qWtEP9Xkxvf28e/6I3T/My/ucav2IF5Aqv8HAp2t2767/WKIzcuOhGrvn+GorLG5k6YN06jHhRVukDAsISw7hv8H11gkHrqxuxvWMZdyn0Z4/L2srYsfJz7dqGp1ZyDDnc/8v9FJWr9dIpwz8jA44cIYdYNvyQxZY3thDmH2Y1/rBery643MvtiO7YnbHbQhaJoYnOvbSmrayOvZnZ7d9n05xNNi+td4raXBbNvSGbAzTpdgYaVqishI01e8SYGTNj2o0h/bF0YoNVTVxfAwyMDKRdVz8CjxwEG3k3HKVDB2jXThr4GzfCpEn1X3//kPuJC4ljaOuhzsdDbN0qY4ji4tSNTWqeXZv65NH7+t60/fk9gn9fDdlj6l7gBIqC3rxZeiQC65ktSgxN5IPLPmDxocXc0vcW51+qDOVq6oaycsfa6Ko+hTT6+UthztUyTXB2dt31qE4wdiz89JNU0M88U/+1IX4h+Hn7MbT1UOc6KoUaeXS+ZTidb7L9f61vWkWn0xHSrTVQATmu6ay8veHii+Hnn6U8Bg+2fe3mM5v5+fDPeHt5cyTvSB2vgd3k5cG+fXgBz6T+gxKvEIJirO9hVm9nZX7CRZ334MEQHCxjdfbtU1e/WePWJbey8thKMg2ZLL5+sfMvrRkUhnZLZMiEIQTHqlN2ldWVLDu8jPEdxxMeEF6vFxOQHfixYy4bGJobd0JY7hVmTrYhm4lfTSQmKIbVN68mKbwR2e1r2kpxeBKlh0tNucuyDdm8veVtThSc4NtrvrXwYlqTR0GZPyUkElFWQJBeD2bbC7kzmmfmfLN7NxgMFIa3Zd4/trH4VtmYdTqdhSED9XfeIfEh3P5aL67nO5cuoXNkRAEwrcc0Woe1dv6FNQopf9B40ralY8ixbZg1JI/EbmGEuzBzZZcuMjtyRYUpzrBebut/G4uvX2xzZZpd1DJmaiOEoKK6ot5pFRNNNNrcuLHhzbhv638b++7fxxMjnnD+hUVFclsHqCMPIQT7svYxd+tchBANd95NsNxUkcfatfVfN7LtSHbeu5Nvr/nWeUMG1PnfHj3QxccRHBtsMnbXnVrHxAUT+eev/wQaCIYWgorwVnKjShfJw9cXRo+W3xuSx9Mjn6ZvXF9euvSlxr20pq3ETR7A1LlTGfN/ah0Zv2A81/5wLauOyxw99dWPk3+cZGnaIJkh2oXxhwEB8v9wyHZCc04VnMLP2w9fL19igmJsX2gPNfK4/IUh3Jd8H72vl1sDlVWV8fKGl/lu/3fkluRy7pw6NWotFvOXR/7gE+7lKF08anm2Zsycb2oqXEGfUaRtTuPMpjN1LimrKqOyuvK8u0ZBVdB//GH9fHF5MU+ueZLCMtcsY1TksUf0Y96weax9fq3pVEllCUsOLTGt1LBbHi4aXel0DXdYqYWpFssoG+WFKCkxLY/55fcAFt20iOwU9X/71pa3aPNmG97d9m7DweHmJ1xUP3r2lNniS0vtW8XTNbpr4+SxcSMYjVR36ExOsT/lxeq637KqMi769CL+tfJfpOSkNFg3dv6SyR9cQn6Jn8s2IFNG33/91XAS7n7x/ZjWY1r9FzVEPYZueXU5a06sYcnhJQgh6pVHwakCZj2SzZs86tL9dxR5NDQQGtN+DHv+sYeerXo27oX1yGNI4hASQxNNq8Xqk0fe0Tz2pEZzig4uayv+/mrMXX3yuKj1RRx44ACLrl/k+EIBc9LS4Phx8PIiYPJY4vrEERIvd1NvG96Wp0c+zdfTvibIN8hk2EVFSSO0NiHxIYR5G/DCqBkzGvWwejUArSYPZvpP0xn/yniL03ctvYuoV6P44+QfzTra3LnTemD/C+te4LVNr3HFt1c0/mUlJTLAE/Du0pHwturKLpCjlr999zee/v1pSitL65WHIcfA3pOhLg2IhvoVtFEYuWrhVQz6eBCHcw83/mUbNshpyDZtOLIuk33f7KOyxDIW6WzxWX4/+btJFhER1nduXv/Sel7ZPp41jHeZPHS6+uVxquAUk76axNE866kGHOa33wDI63cp7/d8n7favmU6FegbyNQuU5nSeQoV1RUNGjPbP0vmL8ZwjmiXyaNfPxmcX1xsfU+zbenbyDE0fuNTE7//DsCRsMGsfGQlh39W69zF7S5mzsQ5/HaLlFl9bcUvWM7DVeGDyHK97li3znpQtPkigUYZuSDjZQ4cAJ2OigFD68RlvXjJi6Q9msYdA+5o0IvZZlgbxl1aTT8XxhCB5VRTfYQHhNM5qnPjXqaMPgcOlGmIazFr/Cz+3ufvBPkGNdhWrp5/NY8OXk8f9mnGjIYN9HrTtErQtVPpMa0HPa+1HJ3odDpKq0r5K/UvztQ4bdq2tf64z2+W+9W4crSZlCQTghmN1lc1XdLhEnrH9rZIN+80a9fKeJmkJC5+axqPnH6EUU+NMp3uEdODse3HcveAu8k36MnIUMtYm/zj+SyZX8zvLuy8QVXQW7fWDYo+nHuYUwWnSC1MJTrIepZeh1ixQn5OmsSkNyYx4bUJRHVWk8pN7zWd1Tev5qfpP5FWk9ncxobaGKuMlFd5U07AefPc/Xfdf1l9fDUPr3zYNS+rkUfZgOH4h/sT1sZSSf943Y8sv2k5AxMGNiiPntf1ZEjoQUIpdpk8zIOia8ujvKqc6T9Mp+M7HdmYurHxL0tLk8EoXl6c0sew9e2tnF532nQ6wCeAx4Y/Ro9WPdDpdCZ5tLYyAxwUE8SMXdfyHC+gc1EMEch+NDRULknes8fy3N7MvXSZ24X5e+a75mUrV8rPwYOZd+VSXg56mdPrVXkE+gaaDKasLGlceXlZ78Dj+8Uz6upWdOdwk03Z1w6K/iHlB9adcmLply2WLweg9OJJ/PXyXyR/nWzzUqVuJNYXZ+yBWYA1Y+Z88uefMtigQwe51tUK/x7xb/bdv48XL3nRtA+Otc4b4NypQs4RLTssF7qLx9c4i5S+1ZypXaay9769TO0ytfEvUl4wZYrVCDmdTseft/3J3KlzqSxshdEogzutTasEtQqi4+BI2nPKpbLo2FH+uyorTY4CEz1a9eDEv06w+PrFjZ/vBpNCYupUek3vxYgnRhAYqbqeE0MTmdBJ5qFQ6oYtQ3fI/UP45/1VXMrv6jDdBUyYID83bJCdljlPjXyKa3tey8yxMxv/olOn4OBB8Pam7UNX8XTB09yz4x6LS8xH96dr+jFb8rj42YuZ2uMksWQ3iTx+/dXyeIY+g5igGML8wxiYMLDxL1LaytChdLyyFyOfGknH8R1tXl5f/dB56fDr0BodQrqVSkoaXz7k/l3jahYf1pbHG1ve4GTBSZYfW+6Sd5m3leL0YqrKqgiMtj5Nc/q09Nq0bm19WgVQrRwX1o2LLpJOktxcy2nZovIi7v/1fsbOH8vyoy6QR1WVyeOf33Mkfzz7B7899Vudy07mn+S7/d+Rclr+je3qSwemKFkXyqOp0YyZ84lZ531mSxpnNp+hrLDM4pJuMd3oHdsb0DXYYV373bXckbhSZgFOd11OgCtqZpCWLbO+Ms+uLQoaQghVIU2Z0uDl5oZdnb1VgKhOUdyy8DKuYqmUhYuWFOp0cOWV8vuyZXXPRwZGckmHSxr/ouPHZYYtHx/VmqyHhupGcGwwMX1bE0SpOhRzAZ07Q48eUn8qg2OF7jHd+eG6H7io9UWNf5HSVoYPNyVD9PG3vviysrqSU2myHdmSB6C6KVwoD6WtbNoEOWYzSu0j2rP9nu1svHNj42IhFMx0R+dJnRn/yng6T7acmiivKmfZ4WU8t+Zliopk/bc1ECI8XC4/giaRR+228uFlHzJ7/GxevOTFxr+kshLWrJHfp0zhsbOP8a8T/yK6i6V3dOmhpfT5oA8ztt4F2K4bxiojxf4xFBDuUln4+qqqzVweVcYqpveaTu/Y3kzsNLHxL9q6VeYmiIrCd+hA+t/Rn+5/q7v68aZFN3HDTzewPVdOV9qSx8FFB/l+Uxu2MQTT9IAHoBkz5wshLBTS6sdX89mIzzjx2wmrl+fmyhQsYN1VDNBudDvadg3AjwqXVrpLL4WgINmuFXfx65te59t931oEuzaKo0dlWnZfXyqGjmbeiHn8MP0HqivrTrYLIdh9Ig0Q9XdWyhxDWZlLdhJXUIyZX36R7upqYzXHzx132fMBtW6MGkWxXsfZnWcpya07Yj5VcIrZG2ezqvAtoIHOW+nJXKyQFHn8/HP91zUKRR5T6/cA/vPXfxI6K5Qj/t8A9ctDtElCoHOpPJKSZM4Zc9tcQafT2dxnzCEqKiw6b1tUi2qmfTeNFzc9C2HpREXJbUqsseHVjaz0u5Iiwlwqj8sukwOAnTstx1eBvoH8e+S/6Rpt3SPtEJs3y4C+mBgYPBgffx8iO0Ti7We5itDHy4f92fs5UCjTEtuqG9n7s3nj6r+Yx92y0C7Y201BMe7M20pUYBTvX/Y+u+7d5VyiwNoobWXiRFr1juOqz65i6ty67WZU21EMSRzCuVwZZGdLHnlH8zh4UMdZWmvGjIYVjhyRrnM/P7jkEkITQ+VWBm3r5v/46/Rf/HvVU9D1Z+LjrQd4mlA6LGWo7gICAtQcM8uWQV5JHv/35/9x46Ib2ZreiG21zTHrvIsKBWmb0zi++jjevpYKySiMdHynIw+fSoLIE7ZHmiAFpbiLXdgIR4+WA9mcHOku/vnIz3SZ24U7lt7hsneYG7opP6TwyeBP+PWBX+tcduzcMZ767Sn2Bc0FbLuKC1ML2b65kn30dmndAFVBL18uB8n/98f/8fyfz5Old9H0XlmZKdiVKVP48/k/WXbPMjJ21U14F+wXTHl1OUWBclMgWwp6xcMrePG9KNZzscvlYe65U3YHN9+Go9Fs3CgDtmJjEf0HUHC6wKrRH+QbxLQe0xgffTt4VdZr2O38aCdb87u53JiJi1Oz3/7yC3W2FXAJitU4ebJM+GODkW1HsuT6JVx+Tk652JKHb7Av6JDTbpWVLp2mnjJFFnH/fjh5stZ77dhU1C7MptzqY/aE2Wy7ZxsVu68FbOuOThM7MfXBDjKpombMaNRhyRL5OWYMBAcz/cfpPHLqEVoPqet2WXV8FfOPz4Yei+tVSOnb0zlgaMc5Ipts9L1smdwdfMaoGUztMpWRSSNd8wLF7zplCqGJoUz/aTqT35pc5zIvnRetglqB0EHsfpvyEELwXs/3eDP/dgwEuVQetd3F29O3IxAkhDiRjt4aer26PGjKFHReOkISQghLqrsqYXDiYK7pcQ1BB/4BOqNNeeQczGH5S3vZyCiZbM1FcREAw4bJQXFBAaxcm88bW97ghfUvOL5zvC3WrpXlTUiAfv04vOQwuz/djT6rblrqBy96kN+uPAIr3yIwUO5obQ0vby+EESrwbbK2smoVLElZzpULr2TIJ0Mal/nYnF9+kZ+TJ2PILeXt9m/zUuBLVg2a76/7nmnen0NBh3pjIgbeO5CRfQsJRu9yeZh7Ix5b9RhTv57KjrN27IFhL4o8pkwhdWMqvz/zu8XKLoWIgAiu6n4V507LSFdbbSWqcxTPVT/HY22+lwdcKI+oKHWrh6XLjLy64VVSC11oTKelqSmoJ02yWifMEaLhKeqEAQkMeWCIjD/UjBmNOnxf01CuvbbBSyd1msRo/3/C0Sn1eiI2zNrAD4t8OEEnl482FXfxrl1QlB3Bc2Oe49cbf218rAzIkY+yXvGaa/AP86fHtB70v72/1csXX7+YyTsNcPgqmw1Qp9NReLqQoopAKvBrsg5ryRL436Uvceifh3h4qItW7fzyi0ze0rkz9O7N0IeG8vjZx5n4et359IiACL6/9kf0q54E4WVTHmGtw+j+t+509K2RgwtjAby9Zf0AWPVzKJ9f9Tm397+dse3HuuYF330nP6++GnQ6Rs0YxZiZY4jrU3cpStvwtngVdAF0tG1rO9Pq6GdH8+iS0YxhncvrxsCBcmWIwQAbduYRHRjN+A7jXdNWjEZVd/ztb+gz9Xj7exMSH1LHi6nQUGcFMHrGaMZPCyeSgiYzZtasLeXz3Z+z4tgK8kvzXfPwlBT54+sLU6dy6s9TbJi1gUNLbGema0geOp1O/q+awMsNqjw+X7eGp39/mv4f9qe8qrz+m+zlhx/k58iREBvLl5d+yeyY2Rxbeczq5efOKeMaYXPlH6DKoqjIJduhnA80Y+Z8cOyYtAq8vWFaw4mzRrcbTb/0d+HAdXS0vWCBVr1a0bZXCEEYXK6QWrWS6doBvvnGpY+WOfGNRhgyhHr/wBpah7Xm5FEZRNmhg+3rbl59M3dfX0Qo+iYx7gICZDbPXbtkoHZciK0EQA6ycKH8vP56i97YVmeYni7DKHx8bC+vjO0dy/WLrmdi55qYLBfL47rr5OcP3/kwrdt0Pr/qc9d03uXlsLgmxf0NNwDQ+4bejH1+bJ2l2Qonav7E+jwRQdFBhA3sgh+VUoD27A5pJzqdOkbJWHkbZx49w7MXP+uah2/eLA3RsDCYPJn4/vE8W/Is9+29z+YtJ04Avob6V6tAk8VU9e4N3btDhSGQGdE7efGSFxnfseGgdrtQDN3JkyEigsQhiQx5cAidJnSyevmxvOMcDPoEui9pNnlcc438TN7tz6jE8dze/3b8feqLHXAARR41baXgdAGleaUERFjfXubupffCY62JvGgFATZ2oKksrSTvbDm5oTXK1kO8M5oxcz5QRlbjxkFMDAd+OsCnwz5l/Uu2t2M+XOM17dbN5iVc+uKl3LFwEj05KONxXLwp2C23AAPm8fEv2zEaXfhspQFefz0AaVvTSNuSRnmR9dFKZaVc7AP1y6PtyLa0HtoGH6qkPFxIWBhccVUVeJezYIELH1xYqMbL1MijIQ4fBnxLaNcrE5+G4gcVDe5ieUycKA3e7GzTqlDXsHq1lEliouqfb4BlR3+CiU8Q1bOBHR8TE+WIvqrKpav/oKatID13laWBRAREuObBiqF71VUovY/OS0dQtPU9mXIMOSzq0BqejqRTV9vB+kIIKuPbUIV33WCORqLTwc03y++rF3bmPxf/xzWGrhB1dEfnSZ2ZOncqvW/obfWWZfv+pHT8vTD4QzrXk5du9ROrWXqwq5yidrE82revGRieGsvl59YwZ+Ic1zz45Em5ksnLy2RN37/vfu7bex9xfa0PtM6eK4Cws0R2te3JSt+Wzrvd3mVhxTT1PR6AZsycDxRjZvp0AHIO5JC+NZ2CkwU2bzl0WEBIBq07NbBtgOLZKCyUPkQXMv7yfLjsAU5OuIgf1qW45qFnz6rZ+GqG92ueWMO84fM4usJ65tj9RwxUjfwv3tfdQkJiAwGFnWpGaMddvNoI6Hr5L/BEAp8ce77B9PV2s3SpdLP06AG9e1NZUsnnoz9n0c2LqK6w7j34Ys8X8Gwwhkvvbfj5igY/Zt3t7Cy+vtDztveh7wI++8qOLdbtRemsrrsOvLzQZ+nJTsmmQm97M6it5QtgxByq29hOTpdzMIeNc7aQHDVWHnCxPAYOFHQYeIKyMli0yEUPra5WpxFqRt4NERkQTZV3AXhXEtrmtM3rFt20iJcv28wOBsvOyoWeKoCbbpKfa9e6cGC/d69cSBEQoM77NkCIvj8cnUxk0eh6N4rd8/ke9uzzkftVNYHuUIxdORBygWEHar8yZoxpE66A8ADi+sbhG2Q9uLhPwTPwyRbGhNxj9TyAf6g//uH++AfVTGM2gTyaAs2YaWoOHZKN0McH/vY3APre3JfpP01n4D3Wk2mVlMCZ4dPgiUQO6L6v//lBQerabRcraF1AMe0M10LaUDYvtT7ycZgffpAjrOHDTZPYSrBrZIdIq7ecOuYPF79Eda+vSC+2rRlPrz9N8iFfmS/i2DGXe6rSQ36GwHxKKkpc540wH2nqdBSmFpK6IZUjPx/By9d689Sfle5wXYjtVRflxeW82fZNZn/WSo6+XayQKqor2B35fzDtVpbt3uyaafXSUmncgWnkvX/hfj7o/QFLbl9i8zZx8CrY8i9GdLC9VXP2vmx+e+o3dlX0kQdcLI+t6Vs4eWUnuGUCXy5wUb1bt07Gl0VGmnIPrf/felY8vIKsfdb/92lnvGDeZnzn5DOmj21XhE+gdOlVegVIY9qFMVUAP2fNpfWdjyKiD7lumlrxUl12GYSGIowCQ7ah3kBrXcZg+HoFQyvqn/Yb+dRILr2zHYGUulyPAkQNWY1fcCkpKXWzIztNrSkmeyg41B/Sh9K3m+2dsBMGJsgklffWGF1NII+mQDNmmppPPpGfkyfL0HYgskMkPab1oM1Q6xFYx44Bhe3A6EWJznY66eSvk/lo4Ef85jXR7EbX0Ta8Le+P/xrmbeLrr9W8N04jBMybJ7/feKPp8HXfX8ejqY/S+iLrCXWOHfGBjf+mX9Zsgnytu9cB1s5cy+KntnGGtjJozYW5ZgA+vfJjripaAzvuM/0ZjSItTS6BAZNCCokP4drvrmXiGxNtuuaL9o+EV3P5X3vby+R9AnwoOlNEaYmgEj+X143yqnIeG/EwgdkXU3n4Ur791gUP/eEHubKrXTu5ZAqorqgmICKAiPYRVm+pqIC83+6AlW9z3dDRNh8d1TmKfrf2o3P3phlt7ji7Ay+dF+gTWPunzjXi/uwz+XnNNTKlA9K42/bONvQZ1r1hhw8DWX3pkhRR7xTk5Dcn83Th04zsVJPh1YXyEELwzrZ3SG/7FiRuZ948F6RuqayEL7+U32vaij5Tz+txr/NK+CsYq62/QNmxunvdHHIWjHxyJKOfu4QQDC73VB0/d5xrlkxCPJYIfno+/dQFD92zR65i8vExxWGmbkxl/f/Wc+J367nLQJVHfdP1JprQy90kiBZAYWGhAERhYeH5fXFpqRBRUUKAEL/8Yvdt330nBAH5Ysjwsnqv2zp3q5jJTPF9+yflO/7738aWuA6VlUK0bSsfP29eIx+2caN8UGCgEPn5dt92113ytueeq/+6VU+sEvPHzRfHYobKGzZvblx5rbB/v3y0l5cQJ0828mHPPy8fNmaMQ7clJcnbNm6s/7q0bWkie9lmUY2XEKGhQhiNThfVFm++KcvSs6cLHj9smHzY//5X51R1ZbXVWw4ckLeEhNj5fqXA11zTuLJaIaM4Q4y5+oQAIR5+uJEPy84Wws9PlnXbNtPhXfN2idVPrhaFadZ12VtvyVumTbPzPVOmyBs+/riRBVapqq4SP6b8KG758U4RFlMsQIhff23kQ3/6SZYzLk6I8nIhhKzfM3UzxZvt3rR522WXydvef98oKqsrGyh4lSrzRjdulTXH14i2b7YVA98aJ0CI4GCH1J917r1XlnP6dNOhP5//U8xkplh2zzKrt1RVCeHrVy3o+YN45pc5orSytP53/P67fEfXro0sbOOwt//WjJmmZMECWRnatpU1SQhhrDaKfQv3iTObz4jqKusK+umn5W133VX/4/NP5osjy4+IzIdfkjfccovLin4076jIMeQIIYR47TX5+D59Gtlh3XyzfNCddzp026BB8rbvv7fzhrFj5Q0LFjheRjsYP14+/vHHG/GQigohEhPlg7791u7b8vLkLSDEuXN23FBaKoROJ2/IynK+vDYoKJCGBAixenUjHrR7t3yIj48QGRl23/btt/K2IRdVi4ziDGFsqIL+/LO8oX//RhTWNitXyseHhgrRKHXz6qvyQYMGOXTbnXcKQdQRccn/zRLvb3u/4Rseeki+58knnSxo/Tz2mHz8xImNfJDS6J55xuJwVXmVKEovsnlbmzZCMOVBEfBCkHh367s2r6swVIjizGJR3qWnfM+aNY0ssCVGo1GcK8kXvXvLx7/+eiMeVlgoLSIQ4s8/TYcPLjkoltyxRCR/nWz1Nmn4GwXPBAtmIg7nHrZ6XXVltVh822Lx/dTPRTl+Qvj6ylFtM2Fv/61NMzUlH34oP++915SpUp+p56cbfuKzUZ+BjaneHTX5pYYMqf/xEe0j6DKlC3Gja3yGh2xHqDvKY6seI+71OD7f/Tl33SW3cdm3z/puyXaRm6sGM96nLis98OMB5g2fx1+zrGzRjVypm5wMIOjcJ8++hFNdushPF8mjorqCCQsm8OqGVymrKuORR+TxTz+tu5O23fz8swyGjo21WK6fvi2dszvP2gx4VepG3PhvmLHxPv442cA/JCBAXdF08KCThbXkRP4JdpzdgVEYCQ+HO2oSIb/1ViMeqrSVadNMwYz2sH074FXFrinBJMxJIKckp/4blA1eDx92edAryFVe3bvL/Ru/+MLJhxiN8NFH8vv99zt067ZtQPRR/vSewUc7P7J53dkdZ/nzuT9JLqypGwdclPCwFg8+KBfbrF7diFccPSp3edXppC41w9vPm9BE6/EfmZk1oUDCmzJjSb264/trv2dO/BxSgmv2FXNRW1HQ6XREBkbwcE1qqnffbUT1W7BAJjXq0UPdth3oflV3rvrsKvrc2MfqbXKzSx2tzl3J9b2ul9Oi1srqrSN5QTIHlp+mPCDccjmpG6MZM03Fzp0yDbmPD9x5p+lwZUklbUe3pfVFrfHyqSt+IWo6LK9KNoc8zY0/3UhZVQPBKr1rgnNTUlyioIUQ5JTkYBRGBiUOIjISbr9dnnv1VScf+umn0jIZOBAGDzYdzk7JJm1LGvknrCfVSk6WbSlk2HcM/C6GWxff2vC7+tQ05n37nCysJetOreO3E7/x1ta38PP2Y8oUaS8VFqp9jsO8+678vOsuUzwEwMpHVvLJ4E9sJr3avl1+BvVZw0c7P2JL2habrzj882F2fLSDok4D5AEXyeP97e8z5JMhPLT8IQAeekj2M8uXy1h3h8nPh6++kt/NOu8KfQULJi7g53t/xlhlPSZi+3bA6EOoTxReOi/OFp+1el1RehGvRr7KK0MWQWCgDDZ2kYIe+8VYblp0E6cKTqHTYeqw5syRVd5hVq6UyWLCwy2CO0tySyg4VWBTFgZDjcGQ251ru9zKDb1tB4Zm7M5g/YvrSTlWk+/ERXUjS5/Fp7s+JVMvY3E6dJCrygFeecXJh773nvy87LIGtnq2RGkrXXMf5+hDR/nvJf+1ea1fsGyDVfE1uWZcJI/auvumm2SW6lOn1HhmhzAa4f335ff777edJdIKijxuCfqGhdcupHOU9QBxnU7HhNcmMGXuFPx61MTNuEgeTcr5cRQ1L80yzXT11dINePPNDt127Ji8zdfPKIJeChLMRBzNO2r12tKCUnF05VFxbMURIQIC5I1Hjrii9EIIIU4XnDa57Y8flzMAtTyb9qHXCxETI2+eP9/i1LkT50TKjynizJYzVm997z1529Dr/hLMRAz+eLDN12x7b5t4r9d7Yu0dX8ib2rd3sKDWydJnife3vS/mbp1rOjZvnnxFdLQT0wkbNtT8k32FOH3a4tS3V34rXk94XaRvT7d661VXyVvveHWxeP7P58WG0xtsvubDAR+KmcwUR6Y/K2+6914HC2qdx1Y+JkJeDhE/pPxgOnb99fIVl13mxAOV2KG+fS3mMbP2ZYmZzBSvRL5i9baqKtXbvnZHhqioqrD5CkOuQcxkppjJTFE9sGbe8scfnSisJafyTwlmIrz/6y3ySvKEEEKUlKgziO+84+ADjUY1dqjWPOamOZvETGaKH67/weqt69fL2xITG37Nmc1nxC8P/CJ2vLFOnbd0gX78aMdHgpmIoZ8MNR3bvl0+XqeTMWcOkZkpY+xAiFWrLE799cpf4rcZv4mcQzlWb/3Pf+Rtt9/e8GuqyquEsdooxMKF8qZhwxwsqHWu/f5a0f3d7mLVMbXsL9VEBXTqJGebHeLHH+XNYWFyjrcGY7VRlOvL6731ooscntUW4o477AtYbEK0mBkzzrsxs3ev2noPHnTo1q+/rokBGCLEi+teFK9tfE1k6a3HOqRtSxMzmSneSHpDiMGD5Y0//eSKv8AqDzygtnOHYmfmzFFbr4Nzr7fdJm+d8Z8KUVJRUu+1615cJ2YyUyy9+XuXKmhrVFYK0b27k+180iR54z33OHSb0ShEQoK89a+/Gr5+5aMrxbdXfSvSXvxM3jR8uIMFtU1ZZZkor1KV5+HDQnh7y9dssG1f1SU/X4jwcHnjD5adtCHHIHZ/vltse3+b1VuTk4UpoLImJM0m1VXVIudgjihILRDG226XNz7/vAMFtU5VdZXYcHpDnfiUDz+Ur4iNFaK42IEHrl4tbwwIqBM7tPa/a8WLfi+KNU9Zj+d4/XV561VXOfhHKJZXQxHldvDd/u/EkI+HiJfWv2RxfNo0+Yq//c3BBz7xRM1oZmgdpTO321wxk5nixO8nrN6qNLP37QgdMpGSokaUV1uPabSXyupKET4rXDATsS1NrcN6vawXIMQHHzjwwOpqafCDEP/3fxanCk4XiJnMFHMS51iNGysrU2Objx2TxxqMLxNCiDfecPIf5zo0Y8aM827MXHddnUhze7n9dvuDS/OO5okP+n0gvprylWpBu0BB2+LsWSGCguRrFi2y86aSErkCwYnlUEajqmdXrmz4+nPHz4njvx0XuUdyXaqgbfHDD6resztmdcsWeZO3txAnrCthWyh61t9fCIPBgRuVJVihoY1W0PVx993yNSNHOvCaF15Ql0M5WDZFz44f72BBFePa7iU/jlNRIW13EGLmTDtvMhql8OpZDmWsNorKUusDgsmT5a2vvip/L60sbXAAIIRQe/0PP7SzoA1Tu6NMSZErAEGITZvsfEhWlqpwrCyH2vLOFvHrg79aDQAuLVVv3b6rQny04yPx7O/P1uu9E0LIf5zS6x8/bmdBbZNXkieWHloqqo2Wdfudd+QrEhKEKLIdv2zJ4sVqO87LsziVujFVzGSmeLvj21ZvVRYmxcUJsfzICpH0RpKYuMB2VLY+Wy/yjuaJsqUr5I2dO9tZSNejGTNmnFdjZutW1SuQXDeq/PtrvxefDvtUnP7rdJ1zRqMQ8fHy1t9+c/C9yppMp/z8KifzT4q2b7YVdy+926rl/mzNjEWbNnY6PRSfart2dXyqVeVVIvnrZJG2LU26eGuhOLgCA6VycoipU+XNb1tv3PayKXWTWHZomSgoLahzzmiUHjQQ4tpr7XiY0aiutLrjDofLoqwqmzRJdhZFZUXiWN6xhm+sqFCnIR30FNamqtq2C+TMGbUDsWulb1aW6pVxyPctmTBB3jpnjhA7z+4U/179b/HetvcavvGPP+SNSUkOv9MRlBkLf38hDh2y44ZfflFvSLc+zWiLkhL1X7xvnxA3/HiDYCbi052f2rzHaDSKqooq+5dPNhJlvNW7t2l1df3861/yhsGDHV5GuWqVOuVWVV0tfF7wEcxEpBakWr3+xO8nxIqHV4i9C/YKMXCgvPm77xx6pyOUlQnRsaN8zUMP2XFDRYUwLYWqtaLL9MzCMjmQs8Ljj8tbb7tNiN9P/C6Yiej+bnebr/t0+KdiJjPFgS/M+rNaBtT5QlvN1BwYjTJ8H+DWW9VAVDPSt6WTtiUNnVfdwK3kZBmBHxQkt6WpMlaRqc+0GdRowYgR8nPTpkZlqPrz5J+kFqaSkpNiNWnbM8/IHRTS0uDppxt42Jkz8NJL8vtLL8kc+Gbkn8xn0U2LmH/JfKsZvleulJ+XXCIX5by37T1uX3J7vUGvJoYPl58bbae4t4d3tr3DlQuv5M0tb9Y5p9PBxx/LhWo//qjuj2iT77+X+d0DAuC55+qc3vPFHj4b9Rnb3t1m9XZlC6cpU6CgrICwV8LoPLdzwwHivr5wUc0qjUbIwyiMtHurHWO+GEN6Ud29jdq0gRdflN///W+5WKteZsyQUdQDBqg7V5qRvi2dnIM5Vrd1MBhkglyQ8jiSd4TXNr3G9ym2M2bvXbCXTXM2oW/XS/7TzpxpVK79Q7mHeGXDK+zK2GX1/PTpMGmSDAK+554GmmVZGfzrX/L7v/5lewdRG6xdKx/Rpg306gWBPjJ3f5bBeqbg7P3ZvOj7Im+2eVPVHY1sK3kleRiF7T9y9myIiYH9++1YSJCcrAbJz5rlUKArWLYVby8vbu17K/cNug8fL+uZBDN2ZbD17a0cX3XcZfKoD39/dfHAu+/K/UTr5b33pOCio+Hxx60/M8yf6C7RVs8p8pg6FYYkDmH7Pdv57ZbfbJcvzB+/ED+MQcHq6tAGC9nMnCfjqlk5b56ZTz9V3YA25h0y9mSIlB9SRFlh3YR4//2vpXPlnS3vCGYirvv+uobfXVGhDotTUpz+E/TlerHy6Eqx8qjteR1lYAvSfWmT6dPlRaNGWR1ZZe7NFJ+N/kx8OeFLq7ePGmUZRHnZ15cJZiI+3mF92K/P1otDSw+JY6uPyShlZWjWiOQ4z/z2jOjyThex9uRam9fMmKG6jLOzbVxUXCxE69byQhvJDZf/a7mYyUyx+t91E7bk58t4YZAx3kajUfi+4CuCXwoW6UXWR/FrX1gr3mz3ptgwe4NaSCc8Qgr7svYJZiKCXwq26a6vqlK9VZdfXs/M0ebNaiWyMe+gxEQcX1PX3a943Nu3l//elOwU8ejKR+v1RLzd6W0xk5kidWOqmrzICY+QwmsbXxPMRFz+zeU2rzl1Sg1SrtdJqEy3JSZanXcoSi8S31z+jVj9pPVkPvffbxnjna3PFnkleTbjIvKO5YmZzBQvBb8kRG6u+r/ItT6yt4cJX04QUa9GiV8O204Q+s038jV+fkLs2WPjIqNRbfw2XJ76LL0oziy2+vcZjeoUn70x3qf/Oi3WPL1GpPyQoiYvcjDHjzmllaXi5kU3i493fFxvsj4lrKB793piqzIyZMCv3S5PS44fl7d6edmZm8pWIWfMcOLmxqNNM5lxXoyZtDQ12++cOQ7fXl0tFTOoC34W7lsodDN14spvr7R53/xL54uPBn0k9Fl6IS65xOVz37b4xz/kq2JibCTLXLZMbUE2tZZtDh1Sb09Lk8e+3fetmPXXLLEnw/rzjq0+JmYyU7zf530ZVKIsv3JBNs/6guVKS9Vg4DFjbKxQUJKTdexoc84s93Cu2PftPnF259k65959V3XRKxgq6g+cWfXEKjGTmWLV46vUKYwuXeq9pz6MRqM4knuk3s5KCDm7qoQdWLXbSkvVQEYbS02MRqP4dNin4uWQl0X+qfw656+4Qt7+2GP2l3/FIyvETzf9JLIPZKtTGP/8p/0PqMWyQ8vE1QuvFh/t+Kje6+bOla/y8RFi3TorFxw4oM4RffON1Wec+P2EmMlM8U6XusujSkqEiIiQt9da8GOT6spqUZhWKErza+qiUoGXLrXvAbWfZ6wWca/FCWYi9mXts3md0aj+79q3FyLH2kKkTz6RFwQFCZFqfVpozVNrxExmipWP1h10rVunBobbHY9izunTalybQ9HbKn+e/FMwE5HwekK9uiMvTw0tuPZaK+Muo1GeADlKsDE6+OO5P8T6l9aLorN1/2AlNMDh2DIFZZA+erSTD2gcmjFjRpMbM1VVqiExcKAT6+1kwkmQIQRKcGdFVUWDKbhfDn1ZzGSmyDuaJyMNoUlStdfGYFCnlvv2lRH6JtLT5ZplcDpNrrKI4XLbg946ZOzOEJ9c9In46aaaFV3Dh5834y4lRc2EW6d/VAw7EGLFCoefbTTK7MvmXip7OHfinDiz5YxMfZ+fry43cjDw2Bk++0z9k5csqXVSMexatZJLb+vBaDTW6QzOnFGDSZ0OAVq0SA1sbIJtHswxGoX4+9/VP9liNb65YTdhgs2yFJ4pFNve3yZ2fLyjzrn581XjwOn4bmV08sADTj5A6qvNZzY3uEomL0/1nFx6aa0FjgcOqEuxX3vN5jOW3btMzNTNFJvfqrtlyU03ydvvvtvyuNFox5YGCh062Ki89nH83HHx/J/Pi/+tq7s1R202blS9rnV28lAMOx8fIXbU/d8LIf+ul0NkP5Bz0NI6rKhQV0CaZ1BfdmiZeHPzmzZjiCw4elQtg9ly8POFZsyY0eTGzKxZ6kjisPUU0ULI3A77vt0n8o5ZBlIZjbJRO6NLDiw6II78ekTmGNixQx2SOBwxK8TqY6vFW5vfEkdy7ctVk5qqLlSaPFmOEEVVlRDjxsmDAwbISDcHyc1VR5pODhQlL7/cqKDo/NJ8h65fulTtwE1KKS1NNewefdSpcigp8gMCnHQTKyjBx40MirYXxWYJ+v/2zjsqiqsN48/Se+8dUVAEsSt2jb1HY+zRaIw1saRY0jBqNMYee4k1xt47NrCAAoJ0EJDee996vz/mWxDZhV3Y3aHM7xzOkZl77z5eZmfeufctWh9sR344SQ0s2CNMkT9gQM3jPD6PZJVm1QgZF0tJSfXyUSOdoiWhrIyqoCDcUqjy7122rNrKSa+9IlcfPF61LbTpg2jo9OJ0stFnI9ngs0GygYQrd7a2cjfuCKGclIXbbzNm/N+g+diwq8cy41Zwa+VWef9eZEkrsuXZFqK5UZN8e+fbOscrz/t/9Jfw4pWzU7SQw4ervxaHhAt9ERHVhp0wRE0EPA6PPP39Kbky+wrhVtY01k6coLqbmdV0uu56qCuBF8SussbcjCHX5l0jISf/vwru4iJ3p2hxMMbMB8jTmGFfvF5d++ao+P16Qgi5uegm8YIXefRTTUcT4Yu7unojd0Q+jGWWorClkC+vfUngBbLuoWhveVG8eFHtqjNwoIAUf7Wy+glWTwjHkZ5HyFHPoyQ3puY+vfD+7uFRM38IX8An2aXZJCFfwpWFsLDqiW3A395quxVx2u0ksXFHCCFbt1bflNZ+V0kEXbpKZNiV5ZSR8AvhJDO05koFh0NIhw6ibaGrUVfJ1ze+rpG8rk6EIcmDBkn8/xESlxdHVt1bRa5FSf6myuFUhwtraBByZ2885U/WCMMuJqZ69/DOnZrn7Hba1crpUSfCkOQ//pBaR3pxer3bfB+TmPj/WkGgViYSN51ptGF36BDV3cCg5pZNRHYEgReI4RZDsX1f73tNHv/6mJRklFBvIsIHZ1BQg7RIy40b1X/LSZ8KCHvStGrDTor6XB8i3JH55JOaNtlOv50EXiBTL04V2S8tII14wYvstNtJHRDm+zEzU1hdopUrqy+HXRuKqpevJDDsRFFcXL0qs+WjvJOrvVeTzy9+TvxSRBfj9dn4/5xd8///NvnDD9RA06dLraOxMMbMB8jLmHl1PILYsFLIXYygPO/qeaN58dcLcqzvMRJ+oToNZkFB9TW7Zk3tPmu815CZl2eSzJK6l+OrEL5RSBQrXJNDgYfImH/HkAdx0lUMfPas2j+tM96QWLSrtyokj80j65XWEy941djnffWqejfk8eOafR4nPK43pLAGAkG1L8Chuv0aPiajJKMqs2spu7T+Dh8gTF4GEDILp0iJiUN1pioxxN6Jpfx93Gpm+BIu+hkb1660u8Z7DYEXyDd3RMd2FqcXk7D/wkj09f8ble/fVxveUubQ+OfNPwReIAOPD5SqX2UlIePHUx+pCjbZjW+IYMDAelfsfDf5klPDTpHIy5FVx3i86nqDo0bV7tPtUDfC8mKRu+9Eb+V5r/Emfxr9SXz/8KUOCJfwnZ2lXo2YenEqUV6vXK+/zMe8f1+9g2GFVOKD/hJlXUx+kUwKEgtqpDBIS6Oe+wCVmeFDCisKybxr88i6h+vEbvvstN9JvOBFUl/93ylN6LAvpR+RQCAgk89PJr8+/pUUVUp3j715kxB1dQHlkgEfkqpiX/uLLyG3b1PylZRqZ8XIKcshcXlxYr/LuTG5VLZpg/8/9dns6sm9IboKtTgySzJJUHpQ/TltPkIgqLYZAEK+xS5S6eBS71asOJYvrzacpV0gT36RTHz/8CXv7v4/+/zr1zJaHpYexpj5AHkZMxMs/KsuvG+W8qXeTmSzq3dkxOVtsd5uTeAFEpAWIHKMnKgcEvcgrtpJUpgWVUWlQcvWDUIgIIGLjxITZBOAEB11Njl8uO6srHwen6S/SSfhF8KrbraJidXbVlNEBHAJ3zbb7hGdwEkgEJBjfY+R/W77SWn2/29aQsuia1epH1gFFQXkZbKkGb4+oLSUHOj4N1ECj3pW2pXXmxU37n4cOdr7KLk2r3rl4+rVattDVBDDo4RHxOuJl1jjM+4+5RB9oNMHaUaFyVlEWc514JfiR5bcWlKjpIOkcMJjyAztq1XflfGjOOL8Oqs4O/Ys8YIXCThAXfcCQfWKnYaG6J2h/PL8On0i7n/3f4fo7//vJVtcXL3XIeUD1POoJ4EXiHe89NWVUw/dIq6sCOrBy+KTX34W1JkEUcAXkA3qG4gXvEh+PPUgKSmhFvsAyim8AW56xHuNN7m15Bblb0dI9WqEvr5Ujq/v8t4ReIGob1CXbIvvQ/h84j1pP9FFEWW061SSc+fq/qqmBaaRi1MvEv/d/lXH3r6tXvSTKG/LxzJ4fFJRWFEz35XQcU/Kbep9r/fVG+UmDkFOLllve6Tqu9LNrYIEB9fdpySzhLBLas67MAM1QBmMjUYgqN4C/NhyljOMMfMB8jJmyvPKyTfdXlRdNCYm1N9Zko9JTiakTx+qn46O+ICfHS93kK3Pt5KUItG1i85PPk+84EVe/f2q+mA9WURlCo9X9ZRJhRUZaJdQNR+dOlH+c/WlmieEiqQWevV7eIiOQuAL+PW+7QgdoquSR+XkVC+fN3ApXyqys6uKoPiqfUJsTMqr5uOzzwh586b+Ifh8akdIuAS/aFHD3BiywrLIiUEnyI2vP3izFDq+6uo2KgxXYvz9CTE2JgKA/G3iRdTUBFUGybp14u3ttMA08ubYG5Ibm0uKiqodaFmshpdUKkotItkR2dV+EYRQkwtQDvxSklKUQiq4Uvqm/f03ISwWKYE2mWP3uOrasLGhdqlFGTVlOWXkb5e/ySbtTYTP5ZOoqGqHcFNTmSSqpeDzKYdogFoSlJCcshyy7/U+4vXES7rPq6ysWg16ByfS1Taraj769KFsK1G7K4GHA4kXvMiZkWcIIdQlLfSxGzRIwoR8khATU+1pLsb5VhRbn28lBlsMyK+PpaxzkphYtZJ8U3sqMdLjVl3zX34p3rXrwpQLVYY/l0tFLwlfgsRkgWgY+/dTg1pbN8gns6EwxswHyNsB+N696t0MgHrZmzWLijKIiKAifSoqBCQ7mwpmWbiwOhJTT0/ycEpReK/2Jvvd91c7ahFSHRqlpiaxc2NmSSap5Eq5FpmYSIXrCb9xu3cTHo9KMy+8uQCUT+HKldQbQkICdbMpL6e6nztX7VcBENKxIxWt0lBib8eS+IfxNR0DhWu3HTs2yCFZYh49qs4lY2REyIsXJDeXKsEkvCcC/6+7tYHansvIoN6qS0upt8u//672kRFuUct0y57Pr/ZEbURYskSfs317tTdmjx6EZGWRkBDKcVf4/1NRoUJ19+2jDL2CAur6yM+nQmzXrav2n1ZWlrKWjSQkJVVrbJS3eT0UFlI3BeF/fPFiQng8cuEClRxbeNjAgIrCOX+ecjkrL6eeGxkZhNy4LiCzZ1cbuWZm1LZsXbB5bOlWS06frhYiz5XdiIjq61BVlZB//yWVlVRAptAHD6AyCaxeTRk2SUnUdyUpIItcX/2C7FsSVnX7AajyTeJ2QCq5leTvV38TrydetUoL1Mns2dTgAwZI5bciEAgkKyUh5PLl6tQeNjaEhIeTlBRCpk2r/v8JZfz5J5WaKTubmo+j/Y4TL3iRzV/GVG1hAlT2AXEvQdejrxPLbZZk3NlxIs/zeXxSml1KCpM+2G6orKRu5oCIsCv5wRgzH6CIPDNcLrW096FR8+GPM6LJ9/iLjMe1qmOenvW6UjQMgYByKgCoVOASWNET/ptA1DaokdNvT9c/PpdLPVWEqeh1dGr5yOTmEvLjj9UPoo9/nPCOdEQ40fv/8rKSEnUTL5XOPUUycnOr978lcDzl8Xnki6tfkJ1+OyW7IeXnV+ctEd6BPzIiQ0OpG5MwBLO+H11d6kWorhUZgUBACioKSGJBYv0aP0Ro7AK1vWhFkF2aTRILEiUrTEcI9aAShucBVOXDD7YtBAJqC024gCjJj5NT/WW2Xia/JN/f/5788+YfyXQK+fFH6kPMzWX/ABcIKJ8LocWipEStenwwlxUV1G7ohw+i+n5Gjqxf6sgzIwm8QM6FnatDnqDm1gqPV51zYcQIyZZVpaGyknoaC9/mjI1r1W5JTaUWe4XbRvX9qKhQf8K6ttrYPDaBFwi8QPLLRVs8z7c+J3dX3KVSGQhJSKi2rrZulcUM1CQ9vdpgAqi5/+htzs+P8jv78IXo4x8NlBMVcKqm9Jz4PzkhhJBbMbcIvEC6HRKdGDA9KJ0qXGn9Uc60M2eqDdDXEjraNxLGmPkARdZmEgioN+41a6jdBuHzvi+eES94kbk6l8gXX1DbKpI8G9g8NkkvTifZpeJSy4ohNZUQQ0Pqw8eN+3/ctHjc9rsReIE8S6qjHDOXS70yduxY/S3q3btOi6yigtoW+PprytBTV6e6fYGTxAteZKL9G/Ldd5IbdVuebSFzr80l4Vnh9Tf+EGHKWIC6mdYx+R9muq2rFhEpKKDGEr5RAdS2RR0WWVYWZQdOmkSInR11g1IGl6zEDjJf+TgZNqCSbN8uWTqHhPwEAi8QzY2a9Tf+GGHKWG1tQnx962y64+UOAi+Q2Vdm1z1mbCz1hxZ6cGtqUhZ+XXMdRr3kDRpEbdMChBgijzgjmrQzLySffkoV9JTkmXow4CCBF8iE/yaIPF+UUkQCDweS0H8/8g6tqKi+pt3d642k+ebON2ThzYUkMjtSfCOBgPLDEeafAqiEiXVUWeTzKTtz1SrKH0aYtwigFj47dKBW+QJEu8/VYtL5SQReEFuv6v5398nvqr+TJ15Pap4ID6/+os6dW6eVwOaxyZ3YOyS3rJ4ty8pKKvnQhxbbiBF1WmQlJdSz84svqN2vD18E1NWpW89PP1Un1ayPmZdnkoU3F5K8ctE1hnY57qIyRL/8yKHrwIHqP8KJE5J9WH1kZVGVr4U+WywW9dCoY48sKYlyYxgzpjpoVfhjaEhN58GDkhWhLagoIG/S34h1XxBmiN5mua3mCYGAqqANUC+IIuoPyhrGmPkAhVfNrvX5hOSkc0iSf3qt0Nv6+OXxLwReIEtuNSCZ1dOn1W9AHh6U/4IYBAIBicuLq73VJBBQqwy//lpzPdzIiMpXIuUeCJ9PJc26tfwBOdLrqMhst3XR60gvAi+IDRHOCssiMTdjqhwla7BhQ7X+adPEFvNLKUohG302krUPRaTv5nKpeV2woObTxs2NWguXEjabkGjfTGqZWG+z5KsfhIpYgReI1iYtsVuEh7oeIrscdlHhtx9SWVkdGqSqSoUni1nBW+29mqj8rkL+8BURwlxSQr0GjhlTvVEPUDe8d+8k/r8IKS0l5NGGF8QLXuTCZ3VHxH3M69TX5Lv734ldXYx/GE+84EX2dRTxcI+Pr3basrKijF+RqfIFxHCLoXin/NRUap/Vw6Pmk3fNGqnT0QoElL186Yvr5Oz4cyQtQLrik9ml2SS/PF/stsqDHx+IzaJLrlypXgro14+yOkUQkBZA4AVi9KdR7WtXIKCcAX/8sdqzXzi/x49L7QjG4xGSlcEjUfeTSEmOFFs4EuKz0Yd4r/aufe8QCKgt2Q9fWMQUXdzxcgfpe6yv6GuQzaZ8EmbPrjYWhS+EEpcSr6aigpJRWir71EACgYDweWK21YqKqlfvtLWp9OQN8UCXEMaY+QC6jZnGsNNvJ1Far0TmXxedvCn+YTw5MfgEubtcTGbZp0+rt1gAatN1927qbfzjXOI8HvVW+vw5ZeLPn1977dvEhDJsFByeJ+Ro0FGy+dlmEp0jOofNxakXiRdEZwYlAgG1ni+8SaupUUbNyZOUw8bHrzSVldQy8/371BLzpEk1nYGERszx441ybOFWcklaYBqJuSU+4aIoBAJBvQ6oWwy3EC94USn8P6a0tDoxh/BNa/ly6kEeE1Pj/1TOLiOFuanUW/uVK9Qr8eDBtffNxoyhliYbQeChQHLA40B1CLWMyInKIWfHnRX/XYmNremw5OZGLRt5e1OG7/8zyJ4LO0fWeq8h7Kx0aqn91CkqhEYY7SH80dSksmAmJjZK93br7aJXDBpJaXYpKUwuJJwyMQ+ia9dqGuwjRlCrFC9fVuUJeBD3gLTb046MPDWCMuSePqUebrNnV/uPCX+sramVzEbsJWeFZxEveJE/dP+QyvBvNHx+dXVxgNp6mjuXKj8RGlrliydcDdv2dDNlzN+5Q2UzHDu25lwC1NL9pUuNskTCz4eT6/Ovk5ib0t07Gk1eXvXLEEA5cH3/vYTl4aWDMWY+oDkbMxwep06HtYhLEcQLXuRY32PiB8nIoL54wuX/jzec1dWpL+eHb9Yf/qiqUj44//4r2RomjTz+9TE53P0wCTkVIr7R69fiHTZUVKjVLGEElKgfQ0NC5s2jthEUeUNtAIk+iSTFP4VwysU8sAQC6mEsdOz78IfFogw+La2ab5If/zg5UcaNHG5kCqe0lCqo96EXqvBHSYmaB21t0d8l4Zx5elIPdBlEiwkEAhL/MJ747fIjlcVydF4XR0ICVR5F1P9VWbnq3sFjibk2NDWpVbpLl2QSZpTok0h22O4gR3vXnaC0LhplBD16VHPV7aN7R7SVGjnTTZXEGIuZDzMzapXHz08m947r868TL3iRx79Kn5vn9NvTZJffLlLCblj9KcLjUdf5h6tucoiglfT5zSKEEMXU524c+/fvx19//YWMjAx07NgRu3btQv/+/SXqW1xcDH19fRQVFUFPT0/OSkV8floxgv8JhmUXSziPdZbt2KnFSHqWBD0bPdj3t6+7cWoqcO4c8PgxEBkJJCUBANYPBPK0gAVBgHsOC7CzA5ydge7dgT59gEGDAB0dmWkW8ARQUlGS2XgNJjAQuHiRKm0fGQnk5YEAeGMJuOYAmjwAamqAkxPg6gr06AH07w/07AmoqNCtXrbweMCdO8CNG0BwMBAVBVRU1G6npwe0awd4eFDzMGQI0LYtwGIpXrMIeAIeCisLYaxpDFZjNBUWUtfGvXtAeDgQHw/w+bXbWVpS89G1K9CrFzB0KGBi0vDPlSGROZG4HHkZFjoWWNBtQeMGi4sDzp8HfHyo70paWu02SkqAgwPQvj31Xenbl/q+aGg07rNFwOfwoaymLFWfRbcW4dTbU/hz6J/4ptc3Itvw2DwQAYGqpqr4gQgBnj0DrlwBAgKAiAigqKh2Ow0N6rvRsSP1XRk8mPreKMnu3vf+8Xsk+iSi7Yi2sO1jK1Vfgy0GKGIXIXppNFxMXGqdf+r1FMWpxRjwywAY2BuIH4jLpe4dx44BmzYB7u5S/i/qRuLnt8zNKDlw7tw5oqqqSo4cOUIiIyPJ8uXLiba2NkmqUbFNPHSvzERdjSJe8CIHu8i/4KFUlJYSkppKnHe0IfACeRBwXiGpu28tvkX+Mv+LBB6SPHeDEC6fS7JKsyTPiCwNeXnkfZQf5VS7QYNwc7MbUblPcvz3+JOoq1G16sxIwsGAg+TrG18T/xTx/lANgs8nJDOTnPfZTyYeG07OPNoln815GVLKLq2KWGnw26Y4KisJSU8nvq8vkvCgu4SbnCjfMH8ZcDnyMoEXSJ9jfUSeL0wuJC+3v6xKTCgVxcXU1ltSEuVvlJ2tsLT/DWXRzUUEXiC/PflN5Pk7394RWW6mXgQCass+NZVK8ZyQQHnwN+HvCiGEzL4ym0y9OJXE54tOVLSn3R7iBS+S6NO4bdLGIunzuwm8HtfPjh07MH/+fHz11Vfo0KEDdu3aBVtbWxw4cIBuaRKhba4Njy884DxO+lWZ/Ip8rLi3AgtvLpSDMG3A2ho/D/HCyt4r0cV1iEJWHHIiclCWVQYVTek/60DAAZhvM8e3976VvTAjI6Rp8WGiZQJnExeoGJvK9C1KFNxyLu4tv4fzn54Ht4wrdf9b727h8JvDCMsOE3k+IzgD4efCkR2RLd3ASkqAuTl8SyNwLeUB3vLTqOtFziswsbdisbvNbtxbcU/qvlqqWlBTVgNAfW9EcdDjILYab0XB+wLpBldXBywtMc9/LdxujsJT7jvqmJxJ8k1C4tNEVBZVSt3XxdgFC7ouwOQOk0WeL0oqwoPvHsBvu5/0wnR1kajFQYebIzAndD2IiUmTX638ZeAvSPg2AT/2/VHkeXU96u9ZUSBiRbIuWCzAxAQBSMfFsgAkGykD+vpNZrVSHKc+PYVzn51DG8M2Is/3XNYTQzYNgb6dvoKVNYymffUB4HA4CAoKwpo1a2ocHz58OF6+fCmyD5vNBpvNrvq9uLhYrhrrw9bTFrae0i0BCuEJeNj9ajcAYP+Y/VBWqrm0SgQEGW8yUJFfAcchjg3avpntMRuzPWY3SF9DmHF7BnIic2DgaCB1X0NNQwAAm8cWeT7JNwmP1j2CcTtjTDg+Qerx+9r1Rfb32SjhlEjdtyFwyjjoNKsTStJKoG2mLXX/aR2noYdVD3S17Cry/Ou/XyPkeAiG/DEEZh3NpB5/Xpd5aGvUFj2te0rdtyFkhWWh8H0hynPKpe7LYrGQtioNBhoGUFESfWsrzytHRX4FKvIrYOhoKNX4fAEfFjoWyCzNRCfzTlLrawhPvZ4i8UkiJpyYgM5zOkvVt6NZRxwed1jseT1bPbhNd2vww+pt5ltE50ZDQ0WjcVt6EsKt4OJ4/+MwdTXFuMPjoKIh3ePLSteqzvN9f+iLPt/3gbpuw4zUEyEnsD9wP37o8wO2DtvaoDGkoTitGOW55TBpbwIVddk/ynt920vmY8qTJm/M5Obmgs/nw9zcvMZxc3NzZGZmiuyzefNmrF+/XhHy5I6hhiHW9F0DI00j8AkfyvjImCEER3ocAQB8n/V9gx6IikZNRw3WPa0b1Hdqx6mY7ja9llEnhFvBRcqLFHBKOQ3Wx2KxoKeuGN8qbVNtfHrq0wb3n9lpZp3nzdzN4DDYAXrWDfv/dLXsKtZQkgfdF3WHbR9bqOmoNai/iVbd/irTb0yHioYKDNtIZ8gAgLKSMp59+QwCIoASSzGL2gb2BjBsYwgzN+kNUUnGnnxW9KqNJAx0GIh7M++BJ+DJUJV4cqNzkRGUgcL3hVBWl85fRhKEKzMNxcHAAT2seqCHVQ8ZKaqb0DOheLTmEdymuWHyfw3/O7YUmrwDcHp6OqytrfHy5Ut4enpWHd+0aRNOnz6N6OjoWn1ErczY2trS4gAs4AvAKeVAQ1/2TnBC9rvth5KyEqbfnC71W1ZIZgh01HTQxrCNwm7Q8qQsuwxJz5Kga6Xb4NUwBoaWBJfPhYqSikJWT+RJZVElEp9QW27SrlIBQEpRCq5GX4WOmg7mdZkne4EKxmeDD/x3+MPze08M+GmA1P03+m7E/oD9WNJjCX4e8HOt8wKeABUFFWApsaBlrCULyQ1CUgfgJr8yY2JiAmVl5VqrMNnZ2bVWa4Soq6tDXQH72ZKQH5ePfe33waS9CZZELpHLDWVJ+JIG911+bzl8k3xx+tPTmNVplgxViSbufhzSA9PRZmgb2PSykfn42mbacJ3s2qC+FdwKDD09FJ3MOmH3qN1V/hfyhFfJk3q5/EP4Aj6K2cXgE369qxLSkliYiMTCRHQ07QhTbVOZji0vzoefR0B6ACa2n4h+dv3olkM7woiV5BXJsNUXbdwL32eburGjoa+B9hPbN7h/fEE8lt9bjg4mHUQaMyUZJQg6HASWEgsDfxnYGKkKYeAvAzHg5wEQ8AQN6l/OLUdGaQZyynJEnvf53Qe+G3zRfUl3jNk3pjFSFUKTfxVXU1NDt27d4O3tXeO4t7c3+vTpQ5MqycmLzQNALWE29GZRwa1AZmkmyrnS+xHUh5qyGjRUNNDBpIPMxxZFxIUIPPn5CWJvxjaofxmnDCvvrcT86/Mh60XFmLwYvEx5iQuRF6CqVEdopgz52/lv7LTbiexwKR10/8+Z0DMw2mqEWVdkb4heiLiAwScHY/m95TIfWxTFqcXw3+WPRJ/EBo9xI/YGtvttR0BagMjz6UHpeHP0DVL9U6Uee/rl6Rhycgj8U/0brE8aZHF9C32Hitmi/QYPdTmEjeobkfEmQ6px2Tw2Dgcdhm+SLwSkYQ9TRWOjZ4PPO36Occ7jRJ6vLKiEj5cPXu16JfXYdG1wsFgsKKs2bMttUfdFePP1G6zrv07keU0jTQAAr1wx24iNpcmvzADAqlWrMHv2bHTv3h2enp44fPgwkpOTsWjRIrql1YvLOBesLliNsuyyBo8x/MxwPE9+jktTLmGyq2z3Rr1ne4Mv4CvsrcxxiCP4lXw4DHZoUH8Wi4Vdr3YBAHaP2g0dtdr5b1JepqA8rxyOQxyhpi356oqtni3+nfQvSjmlCpmPivwKFKdSD5mGOmEKfXsqeKIjMNID03HjqxvQtdTFzLt1+9d8jJqyGtoYtkFH044N0iYtiT6JuL/yPmw8bTD/5fwGjTG67WhY6ViJ9fMJ/y8cftv94Pm9J2x6S7cy6Jvki/SSdLCgmO/Kjfk3kB6YjsG/D27wikTwwmBoq2nDQMNA5HkBXwABV4CKfOkieOLy47Dw1kLoqeuhcHVhg7RJAyEEb0++hbmHOcw7mUNJWfr38LZGbXH+s/Niz+tY6KDbwm7QMpF+S2WX/y789fIvfN3ta3gN8pK6Px3Y6dvBTt9O7PkeS3qg57KeTSMnmAQ0C2Nm6tSpyMvLw++//46MjAy4ubnhzp07sLevJ0lcE0HDQAMaBg33mdFT1wMLLLErM/67/BF7MxZd5neB+wzpExaJc6aVB51mdkKnmQ2PBNFU0cSavmugp64n1sfn7NizqCyoxJKIJTB1lXx7xFjLGDPcZzRYm7RoGmlidcFq5ETkNNj5cKzzWLB/Zte5JZb1NkvqhxUArOi9Ait6r1DYW6eOuQ46TOoAiy4WDR5jZqeZdTpFm3uYw3msM0zaS78ld3XqVUTlRKGjmWKMu1T/VORG5TbqYSJua0nI1KtToaymDB1z6ZJi8gkfo9qOUlgkU0laCa5/eR0sZRbWFq+FkpbsH7CaRpoYe3Bsg/pG50YjozQDfIGIxIpyIOxsGAIPBMJthht6LJaPw7G0SQnppsk7AMsCujMAN5ZKXiXUlNXEPrxvL72NwP2BGPDrAAxeP1jB6poepz45BXYJGxOOT2hQOHJLgl3CRsrLFGiZaMGqW92hqQxNi5L0EqQHpsOuvx00DTXplkMrOZE5uPvtXQi4Asz1mUu3nFoUs4sRnRsNEy0TsXlbZMntJbcReCAQfX7og2FbhzVojMzSTDyIfwB1ZXVMdZsqY4WyQ9LnN2PMyJGChAI8+eUJbPvZys16BoDUV6koiC+ARWcLqVYi/nz+J3ySfPB1t68xsf1EuekTUpJeAlVtVblGdjWG+3H3Ya1njfYm7cXmKWFo+vAEPLB5bGirNf00BfLmVuwtBGcEY7jTcPSyaV55Q+RBm91tkFWWhYglEXAwcBDZhlfJA0u54b4oiiA/Ph8pL1Jg5mYGy66WDRrDN8kXA08MhLOxM2KWxdQ6X55Xjuebn4NXycPovaMbK7nBSPr8bh6bYc2UVP9UhJ0NQ+jpULl+jk0vG7jPcJfKkAEAnyQf3I27i8xS0fl6ZM2jtY/wp8Gf8N/dOAfKSl4lssuyZeoQzRfwMf7ceLgfcEdKUYrMxhUHIQQ3F96E3w4/sEtEJwCUhHJuOVZ7r8biW4tl6oj5LOkZPA56YOW9lTIbsy44ZRxwy6XPgPwxZ8POQnWDKiaen9h4UR/gk+iDa9HXkFEinaMs3VyIuIBfn/6KZ8nPRJ5PC0iD3w4/xN2Lk2rc5voOXMYtQzm3XKxD9JGeR7BJcxMSnyQqVpiUGDkZweMLjwYbMgBgqWOJ4U7DMch+kMjzAq4Aftv9ELA/AETQ9P/ezOunHLHobIHBGwZDx6JxRRp9En1wJeoKOlt0xpddvpSROsBrkBcmuEzAEMchMhuzLkoyqKy6Rm2NGjXOiDMj4JvkiwufXcCUjlNkIQ0FlQXoYtEFiYWJdTrFyYqStBK8OfwGLGUWui/q3uBxlFhK2PqSyja6ZegW6GvUdiROepaEouQiOA13grapZKsVYdlhCM0KVchcAEDE+Qjc/PomPOZ4YMIx6TM3CxE6hBdViij8Byrx2tmxZ6GiroIlEZKnNNjpvxPXY65jz8g9YosUypKgI0EAAOexztC11G3wOIMcBkFDRQNuZm4izyc8TMDjdY/hMccDbUe2lWhMARHAYpsFrPWscXfmXVjoNNzHSRIIISAC0iCn3495MucJNFQ0YKMn2vlbGDBQnif5i1JMbgyuRl9Fd6vuGNpmaKM1Kop2xu1wf9Z9sec1jTTRe1VvaJtpQ8ATNHkfGsaYkSOmrqZSr5aIIjQrFHte78EU1ykijRluORc5UTngVfBg10/yh09P654KS1MPALMfzEZZTlmDs7sKEUbwlHFFR4gF/xOM4H+C0WFSB3iu8hTZ5mNMtEzg/5U/CCEKcWhUUlXC4I2DUZZdBlWthoeBa6ho4HvP76GjpiPWkfvWwlvIjcrFF4+/gONgR4nGndxhMuz17UVGi8mDnMgcED6pCgdtKMOdhiP3h1yxGZzVdNRQEF8AJRUlqf7WLsYu6GrZFe7msq0ILI4Xf75AQXwBZj2Y1ShjZl6XeXUmiLPobAG36W5SVVxOLU5FTnlOVXVyeVP4vhAHOh2AractZj2Y1ajvp6tp3TmoJv83GSqaKlI55D9Lfoa1j9ZihNMIhRgzqf6pKE4thm0fW+haNfzaqA9lNWWM2D5CbuPLGsaYaQb0tO6Jtf3WwsPcQ+T57IhsHO15FHo2eliZophtgYYi6cpAXVz47ALUlNXEPrxLM0uR8iIFxi7S32gVFaKuY67ToKydovhr+F91nrfpbQNdS12p6reY65hjjLPiEmUN+2sYeq/s3ehxNFQ0oKEi3idLx0IHc33mQttcuuvwz2F/NlaaxBABgetnrkgPSJe703a7Ue3QblQ7qfpY61ojdlkskouSoaos/3xM6YHp4JZxUVlUKffvZ0NW0e307TDDfQa6WzZ8hVUago4EIeSfEPT/qT+GbFTMqnpzgHEAlhOlmaUoSCiAVXcruS/PFaUU4VjvY9C308d8P8nycyQUJCAuPw4dTDrUG77Z3MiJzEFOZA5M2pvIpaYNA0NzQ5H1pGSNgC9AXkwe2MVsqXMDfczTxKcIzQpFX9u+6GbVTUYKFcuzP54h6koUBq0fBOcxzo0aq8eRHkgvScfzL5/D0bD2qq2AL0BFXgVUNKRbrZIljAMwzURejsQ/ff/B+U/FJ2mSFfq2+liVtkpiQwYArkRdwYgzI/Djwx/lqKyaO8vu4Pq86w3OdCsNpq6mcP3MVSpD5ourX2DIySF4mSK6ErssEfAESPJNAo8tm8yafAEfhZWFqORVymQ8Lp+LEyEn8Dz5ebPJ7iqEzWNjo+9G/Oj9o8IKIDZlrkRdgfYf2hh2uu7wXSIgTdapV0lZCaaupo02ZADg5NuTWH5vObwTvEWez4nKgc/vPgg8GNjoz5IX/df1x9eBXzfakAGA9JJ0pJeko7CyUOT5y9MvY5v5NoScDGn0Z8kbxpiRE3w2H1omWrDxbPwXkBCCCm6F2BoaDUFLVQuupq4Kye5KBARhZ8MQcjxEJhErz5OfY+W9lTgefFwG6qrHfJL4RCFJrzKCM3Bi4AnsdtwtkwfIsNPDYPinIa5FX2u8OABJRUn48vqXGH56uEKy3b45+gY3F95E8vPkRo+lxFLCL09+wV8v/xIbsZL0LAlBh4OQEynZ9+lg4EE47HLAr09+bbQ+SciLzYOALxsjUl1ZHeXccrEO0XwOH9stt2OD2gawiySLqjsTegbHg48jrThNJhoVSS/rXvi84+dwMXYReT7/XT6e/vYUwf8ESzSe8N7cXLny+RUEfR0EFxPR86Ftpg2wAHZxwyMuFQXjMyMnPFd5ovfK3uCzG/9wjC+IR7u/20FXTRfFa0XfoKVlSY8lWNKj4QUqpYEQgkn/TkLys+RGhRIKCc0Kxa5XuzC5w2SRDtECngBpAWkoyy6Dy3gXifbZz04+i3d57xTi4FmaWQptc21YdbeSiQ+A0Nm1hF0i8vy7O+/waN0jWHaxxITj9UcKcfgcDGszTGGVliMuRCDBOwHm7uZSObCLQlVZFYu7L4aWqhaUWaK3d1/tfoWoy1EY9fcoiRz0Y/NikVSUJJfaaB/Dq+ThQKcDUNFQwdKopY1y/gWAgQ4DEf9tPAw1DEWeV1ZTBqeMA8InKM0qlShT+ZbnWxCRE4F7M+/BWs+6UfrqI/VVKiIuRMB5jDMch0jmvF4Xi7ovwqLu4svgGLsYo+uCrhJniM4ozYD1Dms4GDgg/tt4uW/lVRRUQMNAdlmX68s9NPTPoRi5a2SzKGnAGDNyhMViNaoispAPo3fE7X0/9XqKxKeJ6Le2H9qOkCzEUlEoKSs1yNFQHN2tumN139ViHaL5XD7+6fMPAGB14WqJkvT1tumN3jaNd0CVBJdxLnDOcJbZ287pT09DTVkN6iqi97T5XD6y3mZJ7ADsauqKB7MfyESbJHiu8oSZuxmchjvJZLz9Y/bXed6mtw34HD70bCTzn/up/0/4zPUzhUTu5MflQ0VdBapaqo1O6QBQoer1RaTN95sPDQMNiT9vhNOIquSS8ibmRgz8d/ijIrdCJsZMfZi4mGDcYdGFKEURnx8PgFoRVIRP0pnhZ1CcVowpF6Y02vCXBGlq29EN4wAsB2Qd3isgApRySqGjpiP2C3PhswtVb5s9lyku3LqpcsD9AFS1VTH1ylS5hi82B8qyy5DxJgN6NnqMQ3QzQMAXoDilGAYOBnRLoZ1473hEXoxE21Ft0eHTDnTLqQUhBPkV+cgpz5G7ccet4OIvk7/ALediZcpKiY3xuniV+gqxebHoYtlFbC4iumHKGXyAoo2Za3OvIScyB4M3DFbYKsn7J+9RmlkK657WMHKqOyldbF4sJpybgM4WnfHf5P/kqosQgqBDQbDtYwszNzOwlBQT+iwNwRnBSClOgYe5B+wNmkfxUoa6Efo+KbKIalOEzWPjYOBBlHJKsbrf6lZfpuNmzE18fetr9LDqgRvTb4htxynjQFlNucmVNOBWcJHxJgN2fWWzKvPl9S9xIuQEtnyyBav7ra51viS9BH47/UAEhLacM0w0E40kPklEekC6QvcZHQc7wn26e72GDEAZM9G50YjOjZa7rtzoXNxefBtHex0Fnysb51pCCCp5lSioKJDJeMdDjmPCuQnYH1D39oQsePX3Kxzudhhvjr2R2ZjPk59jtfdq/Bv6r0zG63W0F7od7obw7HCZjFcXsbdjkRudK9NImmGnh0FlgwquRF1p9Fi55bnY6bcTd9/dlYEyelhxfwV+fvIzyjiik0ymB6Xj5faXeHf3Xb1jcficJhv1JAkEBJmlmcguEx9VeaDTAWzW2Yy0V03PwVlVU1VmhgwAdDLrhOFOw8Vm+uaWc+G3zQ9BB4Oa/N+9dZvpcmK+/3zE3Y2TSSihkO0vtyO1OBXf9vpWZD4Aaehj2wfes70VcnHyOXw4jXCCkrKSVEnb6iI6Nxqu+11hqGGI/NX5jR7PUscS3Sy7KcT5N8E7ARlvMlCeKztn0qD0IGx9uRXT3KZhZqeZItskv0hGQXwB2o5sS0UoiEFABAjJDAGHz5F79l8+h4/L0y6DU8rBwuCFsOgsm7T4qkpUIrdSTqnI87kxuTg3/hyIgOCbd3WXJgjLCsOqB6vQzqgdRrUbJRN94kh+noxH6x6h/cT2Emeurg81ZTVMd5sOLVUtsVvfcffi8OTnJ+j8Zed6/dp+e/Ib9gXsw9p+a7G2/1qZaBRHWkAadC11ZbKdImSA/QAELwwW6xANoKpCeUm6aIf6D9nyfAtUlFQw030mLHUbH9ygaFZ6rsRKT/GJVvVs9NBreS/o2+mD8AlYKk1vZV0IY8zIAV1LXXSZ10WmYx4LPoao3ChMaD9BpDHDY/OQE5GDivwKtBladwl6I00jhdUQsfCwwKx7s2RqOAkfsuLKGQBA6L+hCNwfiLaj29abaXdtf/nfmIVM+GcC3t19J1X6+ProZtUNK3uvRDdL8UnA7iy5g6zQLMy8O7PeGjxBXwchsTBRbP0aWVGWXQab3jbIi82DeSdzmY17cuJJsFgs6KvXrlMFABr6GsiLzQNYlHN0XVsJuuq6mOI6Re71hwAg+lo0kp8ly9RXhsVi4ezks3W2sepuJXFJg8SiRJRwSqCmLH/H0Jtf3URWaBamXpuK9hNk449ioGGAzhad62wz+b/JUNNVg7pu/Uni/nr5F/Ir8jGy7Ui5GjMlGSW4OvsqXMa7oOc3PRWWqVxFQwUjd41UyGc1FsaYaSZ82flL5FXkwVpXdChk4ftCHO52GOp66lhTtEbB6upHll8+az1rFK0pgraq+BWGirwKpLxMaXLOv1omWvCYLToKq6H0s+uHfnb96mxj08cGWqZa9UbXKbGU4GbmphBnQD0bPcz2ng0+ly9TXypT7brDrbXNtPHF4y+gb6dfb/HC7lbdcWHKBZlpqwvPVZ4wdjaWST03aWg7oq3Evn3/jP8Hvw38rc6VDVnAreBCTUcNSqpKCona+RBJ7xkCIsCibouQWJQIe335+tq9u/0O7x+9B6eEg17f1h1O3VphHIBlSGVhJe6vvI92Y9qhw+QOCrOeAcph7e+2f0PfTh9zfebW+dC6HHkZeup68LT1lOtWQmlWKdT11KGqKf/6LR+TH5ePzJBMmHQwgVlHJoKHgaE5UllUKVFqBUkp55bjQsQFVHArsLjHYpmNK2+KkosQeTkS2mba6DSzk8zGvRZ9DeserUNf2744Mv6IyDZEQFCWXQaWMksmtfWkhXEApoG4+3EIORGCp789VaghA1D5AL7L+A5fvfqq3rfvr25+heFnhiOpMEmumh6te4StxlsRdCRIrp8jCqO2RlRJg3oMmaD0ILTZ3QbTLk2Tqx5CCG4vuY2w/8LAq5R9mn2+gC/WwVManiU9w6m3pxCTGyMDVeJhl7DlMg8A5RC90XcjbsfebvRYza2cgyiGnR4GnT90cD/ufp3t+Fy+zDIPywpZGjIAZcx8ef1LLLmzRGy27+LUYvj87gOf331k+tmNQd9OH54rPWVqyADUfETlRuF94Xuxbe5/dx/bLbfDb7ufTD9b1jDGjAwx62gGz+880XVBV5mPLUyb3dj6Oxw+B31t+8LV1FXuYcjZYdngVfBg2Eb2S9Jbnm/Bd/e/Q2ZpZqPGiS+Ix/vC90gtTpWRMtFkvc1C4IFA3PzqpszHDkgLgMoGFXTc3/jSFCffnsSca3NwPkK+NcUC9gdgq8lW+G70lfnYTxOf4pcnv+B6zHWxbTJDMhF4MBCJPol1jtXu73Zw3O2IyJxIGausycttLxF9LVom5T4+ppJXiTJuGUo44h1aD3c7jE0am5D1Nktsm7TiNPz65FecDavbB6exCHgCCHjyMap01HQwsu1IfOb6GbgC0XNdUVCBp789xas9r+ocq5hdDDav6af5r4shjkPwZM4T7Bm1R2wbPWu9ZlHSgPGZkSFmbmYYvm24XMZecHMBjgUfwx9D/miUs6qashpuzbglQ2Xi+erVV8gOy5Y4Nbg07H29F2klaZjZaaZY58z0oHQUvi+E4yeOVREKHzPcaTiefflM5vo+RsNQA33X9AWfzZdJVugP0VLVAiA+egcAsiOycXXWVSipKGFBwAKx7VxNXfGJ4yfoZC7bN8CPyQzOBLeMC00j0X+XxtDNshu+6vIV+tv1F9sm8lIknm16hu6Lu8NhoIPINlw+F4mFiRAQAYw060950FAqCirwaO0jCHgCfPPuGxi1le1nnZp4CgIiqNNBlaXMAhEQFCUXiS05EpYdhg2+G+Bu5o4Z7jNkqvFDYm7G4OZXN9Hlqy4Y9mfdBTKlRUNFA3dn1h1mb2BvgC7zu1ARPAIi1p/L66kXdvnvwm8Df8Nvg36Tqc4PibgQAQ1DDdgPsJdZRKgQCx2Lep3beyztgV7LezW5nDsfwxgzzQThA6uuCJ63p94i+Fgw2o1th74/9FWUNLGwWCyZRql8yIKuC1DOLYeJlnhD6cqMK8iLzcMXj74QmwrdQMOgXudZWWBgb4Chm+UTQeZi4oKcH3LqdIhW01FDZkgmlFSVIOALxDq+rvJchVWeq+Si80Mm/zcZvVf2hqGj7FftRrUbVW8YtUVnCziPdYZlN/EPeBUlFSSvSMb7wvcw05af35WAK0DPb3siOzRb5oYMAIlSOUz+bzLUdNTq9Ikw1zbHwm4L5R7ZFXcvDhX5FXJbnakPdT11jD86vt52aSVpICAw1pJfmQs+h4/bi2+jIr8CM+/NpKVUDR0+jw2BcQCWEWH/hcGyi6VcViEAqoggAYG2qrbYrKav9rzCveX30P7T9ph6ZapcdEgCERCAJdsIpoZw9YurKEgowJCNQ+AwyIFWLXQj4AsQezMWxi7GMHExaZKZmBkYAOr+keSbBH07fblsUcsKQghyynOgpqwGAw0DuXxGRX4FHv30CMm+yVj0dpHME7GWckrxKOERuAIuPnP9TKZjywqmnMEHyNuYqSyqxDbzbeCz+VgSsUThoZVC8t7lIT0gHeYe5mIdX9c9WocbMTewynMV5nWZJxcdMTdjcH/lffT6tleTDyM8/fY0DDQMMMhhEHTV5RPGHXU1CoZtDGHhIf9cJU0d4e1GEYaurGukNVf8U/0RkBYADwsPDLCvO+dSa2DEmRGIyI7Apc8v1Vlcll3MBreCCx1z+SaPlAR5XcvvC96jzZ420FTRRPlP4hN5vtj6AukB6Rj0+yCYdlDs842JZlIgFXkVcBrmBHMPc5h0kM/KjCQYtzOG+wz3OiN4onOjEZETgXKu7DLQfkzEuQgUxBegMLFQbp8BUM7MHD6nwf0JIVh8ezHGnxvfaEdicfA5fNz6+hYOdT6ExKeJcvkMgHKIXvtwLQorCxs8hl+KH4y3GmPs2bGyE/YRaa/TsNdlL15ueym3z/BN8oX2H9rwOFh/Ph8BXyC2zMaD+AfY7b8bwRnBspZYxfsn75EbnSu38QHgatRVfHvvW1yLvia2TWVhJfx3+ePhmodi28jznqFIssuykVaShqLKIrFtXvz1Alv0t+DR2kcKVCYeeRnl+hr66G3TG33t+taZ2DTmRgwiL0UiK1S8gzjdMMaMDDBsY4jpN6djQcACuV10oVmh+PXJr/gn+J9GjbNjxA54z/bGOGfJy9xLy9hDY/Hp6U/R7WvxGWkby/TL06G+UR2Hgw43eAwOn4PhTsPR3aq73LLdVhRUwH6gPfTt9eWa/Gvz883Y8mILcspyxLYpTCrE21NvEXNDdNh1clEy8ivyUcwulpdMhJ0NQ/47KgeQvFBXVkc5t7zO6B0AuDTtEv7Q/gPvbouuSXQ+/DxW3F+B2+8aH+ItCkIIbi+6jX0d9iH6uvzqpHW26IzPO34OD3Pxxh0RENxfeR8v/nwBTpnoFwTnv52ht1kPoVmhctFZkFCAgx4H8XL7S7mWWjk+4TiCvg5CH9s+Ytvo21LZo8uyRfsoJhcl45s732Dv671y0QgAGW8y5P5CaKRpBL/5fvCe7V3ns6vb190wfMdwWHZpuiUbGAdgGSJPb++I7Ahs8N2AwQ6D69weynuXh6zQLJh3Modxu9qOaQ4GDnAwcJCbToByNu00S77RMBoqVP6JunKrcEo5+HfUv8iPy8fy98trRRGpq6jjytTGFyOsCx1zHXx+6XPwuXy5Fh5d0HUBeAJenUkQE58m4vrc63AY7ACX8S61zo9zGYfQRaHgE9kUBBXFJ5s+gVV3K7n5lgGAh4UH4r+Nh65a3duGSspK4LP5yI8TXd+rp3VPFHOK6ywT0Rg4pRyYuZmhJKMEbT6puwRJY5juPh3T3afX2UbTSBMeczyga60LPocPfOQHzBPwkFGaAQERwFRLPtsMwceDkRWahfh78ejznXhDo7HUV84AAFzGu2B14WqxeW6icqKwN2Av3MzcsKznMhkrpAzdG/NvIDMkE5+e+VTm+WWkxeOLulc5OXwOVJVUad3WZXxmGknCowRY97CGul79dTwaQ3BGMI6+OYoOph3q/PJcmnYJEecj8MmWT9BvtfyjdD5EkT4Kwu0UHTUdqCiJtskJIdhqvBWVBZX4OuhrsSGnrYXMkEzc/fYuHAY7YPD6wXTLoZ3c6FwoqynDwNGA1ptwZWElNAxkmxxOHpRxypBanIp2xu2gxJK9Yc4p4yDkRAhMO5iKjT5sKkTlROF06GkYaRrh+z7fy3z8yqJKXJ5+GUm+SViRtAJaxloy/wxZMv/6fFyOuoy9o/diVqdZMh2bcQD+AHkZMxX5FdhhswNKykpY9HZRk/C899/tj7AzYej6dVd0W1DzjTKvPA9Xo6+ijWEbDHEcIvPPjrgYgcD9gei3th+chjvJfPyG8O7OO+ha6cK0o6nC8yTE3oqFjadNk78RKQLGGZehqRCYHojInEh0Mu8k0SoNnZTllMm9hMDYs2ORWJiIi1MuooNpB7HtKgoqkBmcCds+tiJzZXH5XPAJv2rVXFYwDsAKoDi1GIaOhjB0MoSBowHdcgAAvZf3xoKABbUMGYBKerXg5gIsvi2fmiSv97xG4tNEJL9Ilsv4DaHd6Haw6Gwh0pDxeuoFpz1O2O2/W+afW5pVigufXcBO250oeF8g8/FFISACsSnaJeHYm2M4GXISueWyd0iNuhyFk4NPIt47XuZjfwxfwMeeV3uw+dnmBmfMbuxc1kfc/ThUFjYum7ekeMd7w2q7FYadrj8BHZ/DpyqKt2COBx/HnGtzcDXqap3t4r3jcW3ONQQdVnw5FiGKqIUUkxeDiJwIFFTWfZ/a33E/Tn1ySqy/m6qyqswNGWlgjJlGYN7JHIvDFmPG7RkKe+vk8hue7lxDRQOj2o7CQPuBMlRUzaSzk9Dnxz7osaSHXMb/kKD0IHg99WpUavW4/DgkFCSAzZd9mm52ERtmHc1g3skcBg4GMh//Yyaemwjl35VxJvRMvW0JIagsqv0gXfd4HeZenyuX0g4B+wIoQ/eZ/A1dJZYSVt5fiXWP19Ub3RV1NQr3VtxD5tuaN+iwrDBobNJAt8Oy95cpTi3GuQnnsNN2JwqT6tYnC1gsFjJKM5BVWnckSsH7Avyh8wcOdTlUq0bT3Xd38duT3/A08anM9YX9F4Z/R/1bb2kJWeFm5obhTsPrTSaYE5mDt6fe4t2d2g7imaWZcitlEHUlCuwSxZUOODruKB598QgdTesuh2LZxRIGjgaoKKhQkDLpYByAGwlLiUXVrpAzyUXJcNrjBBUlFVT8VP/FRAQEvEoeVLWqszf2tumNOzPvyE2jvq2+zNOPiyMoIwjrfdZjvMv4OlOrEwFB3P04JD5JxKD1g2pks/xr2F9Y1H2RXCKZjJ2NsSBgAUoyShRi6Ar9hurKEA0A0dejcW3ONVh1t8IXD7+oOk4Iwdh2Y5FcnAw7fdlHXU3+bzJ8N/qi57KeMh/7Y1gsFmZ3mg1llrJYfyohb0++Rcz1GOha6dbIA5RclAyeQD6FMMtzy2HczhgahhrQt9OXy2d8SE/rngheGFxvYjd9O32oqKtARVMFJWklNbTdeXcHewP2gsPnYJDDIJlpI4TA93df5EbnwravrdjSErJkcY/FElXMdhjkgP4/9UfbUbWz7g48MRCxebHwneuL/vbiy2ZIS2ZIJi58dgE65jpYErlEbBkWWTLQQbKX26nXpopc4U4vScf3D75HW6O2+H3w77KWJzGMMdNM0FLVAk/AA0/AA1/AF5sFGAACDwbiya9P0PnLzgoxLrgVXIWnvHYzc8Oibovq3/NmATcX3ERJWgmcRjjViBqx1LWss15NY1GUoQsAB8YcwL7R++p9YBm3Mwa7iI3ssOwaZQ1YLBaOTTgmN306FjoYvXe03Mb/mBMTT0jUruPnHaFvpw+7/jUNuNHtRiNlZYpMKpF/jEVnCywMXojyvHKFGLp66noS+YYoKSthcfhi6Nvp19I1wH4AOHyOzEt/sFgszHowCy+2voDnKk+Zjt1YLDwsRCa6JIQgr5zaipP1/YNdzIaRkxGsulspxJCRBnE+hwkFCfgv/D+0MWxDqzHDOAA3EwREgIySDGiraUNfvfbN5kNCz4Ti6uyrsO1ri3nP5ZPlVwi3gov9rvvhNMIJQ7cMbZJRGQ/XPER5bjl6LusJi87yzcKb8SYDmW8z4fGFh9j6R3RCCEHa6zRYdrVUiEM0u5gt90g/BgZFQwhBbnkujDSN6nyxbAh8Dh+cUo5cirCKIiwrDImFiWhv0h7tjNtJ1OdDh/7komRcjLgINWU1fNPrG5nrYxyAWxhKLCVY61nDQKP+MNJ2o9thru9czHk8p8bxwScHw3WfK16l1l3aXhoSHiagMLEQcXfjoKzeNKuqDt0yFOOPjq9hyJSwS7A/YD+uR1+X2ecIeALcWnQLN+bdwNPfnspsXFnCYrFg08umliEjj3eagoQC7LLfhdtLboNb3nBfr5ZC1NUohP0XJteEcKJg89g4GXIS+17vg4BIXrxR3jrF5feRN3fe3UGHfR0w60r9IcREQJARnIGoK1E1jrNYLJhqm8rckAEAZTVlhRkyAPDXy78w/tx4XI+p/174as8r7HXZi4D9AVXH7PTt8F2f7+RiyEgDY8y0QDSNNGHf3x7KajW/aJE5kYjKjYK6iuzelF3GuWDWg1kYc3AMLdVVGxpxklCQgKV3luLrW1/LTAtLmYXOX3aGrpUuui/uLrNxJeF12mtsfra5wcbZtpfbYLzVGGserpGZppibMagsrER2eLbIUE55MuHcBOhu1q03YkVIflw+4h9UR1odCTqC3f67kVSYJBM9xWnFuD73Oq7MuILgY/IrjyAKPuFj7vW5WHZ3mUTbZq/3vcZ+t/1VmZEFRIBidrFMjZuICxHY234vfDf6ymxMSWHz2IjOjUZCQUK9bbPDs3G462FcnnEZ7GL5OeU++OEBoq5G1d9QDjgbO6OXdS+JkiHy2DzkxeYh9kasApRJB+Mz04w4GHgQmaWZWNB1Aaz1rKXu/3TOU6SXpMPZ2FmmupyGKT6nTGROJLoc6gJ9dX1k/5AtUZ+ilCKUZpbCuoc1VJVV8Wn7T+vMmCstLBYLPRb3QJcvuyj84f0s6RnWPV6HWZ1mYUL7CfW2f73vNd6eeItxR8fBwsMC6SXpyK/Il+kDq/fy3jBqawSzjmYKr9JdyatEKae03pIGAJDok4iTg05Cx0IHK1NXQklZCbte7UJkTiTczNxgb2DfaD06Fjrot64f4u7GofPczo0eTxo0VTQxsu1IaKtqS7Qykxebh5yIHERciIDzWGdklGTAZqcNDDQMkPdjnkwS5iX6JILwqSAFRdPPrh+ezHki0cPbzN0M5h5URGJFfgXU9dTx5P0TXIm6gv72/fF5x88brSfufhz8tvnBj+WHpVFLYeKi2Pp+Pw/4GT8P+Fmitp1mdoKBgwGcx1Q/QxILE6GhogFTLfmsVEkMaQUUFRURAKSoqIhuKY2i7Z62BF4gz5Ke1dtWIBAQv51+5EivI6QwuVCmOvhcPnm49iEpzyuX6bjSkJCfQOAForVJS6L2kVciiRe8yL6O+4hAIJCpluL0YsIuYct0TGnxjvcm867NI0eCjkjU/vyk88QLXuTBjw8IIYQUVhSSsKwwklSYJE+ZCuN9wXsSlxdHStml9bblsXnkT+M/ydlxZ0l5PnVN//zoZzL14lSSkJ8gU10CvmyvPXmQFZZF3vzzpmouAtICCLxAbHbYyPRzom9EEx6HJ9Mx5QGfx6/x+0afjQReIPOuzZPJ+Dw2j3iv8SYP1z6UyXiKZsDxAQReIOfCzsllfEmf34wDcDPi58c/I688Dyt6r4CLSe3aOh9zcshJJD5JRJ8f+8g0quneint4tfsVLLtaUsU1FfzWDVC1YtJL0qGtqg1jrdo1qD6msrASO213wraPLSafmyyzSIHKwkoc738cKpoqmHF7hkKSXMmC90/eIzM4E10XdIW6ruy2HdMC0vBy60tMOD4BajpqMhtX3pTnlkPLRPaZmuMfxMNhsIPCs0/LmlJOKQoqCmCrb9vgMQR8AVhKrGafCdon0Qf34++jm2U3THadLLNxSTPMkk0IQd9/+uJV2is8nfNUpmHqQphyBh/QUowZaUn0SURGUAa6LuiKRHYinic/h6upKzxtGxcCmR2ejbNjz2LUnlEiCxY2VUqzSqFjLrttJQDIfJuJU5+cgrKaMub7zYeBvYFMx29OEAHB/o77kRudi94re2PEjhF0S6KVkBMhuD7vOtqOaIup16ZCRb357eoTAQGfy2+0dj6XjxvzbkBJRQljD4+l1bir4Fbgfvx9VPIqMc1tmuT9CioQ/yAeblPdGq2hOK0YkRcj0Wt5L9oNmFuxt7Dp2Sb0tu6NnSN3StQn3jsePl4+6PRFJ3Rf2B08AQ8ssOSyzcREMzHAYaADPFd5Ql1XHY/fP8ZXN7/C1pdbGzTWhzavmZsZlkUva1aGDIAahsz0y9PRZncbiR1ExWHhYYH5L+dj1r1ZTcKQaci7iUAgwOYHm3Ei5AQquA3P7slSYmH8P+Nh198Og9YPavA4siAwPRB7X+/Fk/dPpOrHLmHDd7MveNzG+3IYtjGEspoyjNoZ1XLGVzQTz02EzQ4bqeYjOyIbx/sfx6O1jxr9+ZkhmQg/F463p98i1V/2GaaloZhdjE/Pf4rpl6dLHN1VnluO3Y67cXnaZcTdi2vU5/MqeTgx4ATur7yPh2seNmosWVBQUQD/VH9E5ERI3CcnIgcpL1Pgt90PAr4AKkoq9PrLgDFmmiUNeWBZaFlgCqagl3UvqfvmROXgaK+jSA9KrzqmaAdXUex7vQ8bfDZIXUuIx+ZBa48WSmNLG/QFjLoShcSniVW/Gzsbw7yTudTjyJLA9EDobdaD817pnLsLEwtxcvhJJM5NxNcXvwaBdNcWn8tHbnT1/Nt62mKuz1yZbl01hNuxt/HN3W9wIeKCxH0IITje/zierHuCsYPHYtL5SVJ/LhFUz5/9AHssCFiAkbtH0v72nVOeg7SStHrLO3xIcUoxUl6mIOB0AH679RveZLxp8Odb97DGxFMTMe36NNj3b7xDdWPQVddFb5veGNpmqMTlYbRMtNBlfhcYOxuDbc5uVCkDFQ0V9P+pP4xdjNF9kWKjHkUxyGEQrk29hk1DNkncp8fSHuj/U3/MezGvyeTTahoqGCRi8a3FUN+ojm0vt0nVj1fJA/snNtw3umNMyhipP/f13tdID0jHvW/vKTxHRl1s8N2AX5/+ivSS9Pobf8CjtY9g52uHHx/+CE8r6bbcIi5G4MLkC7gy6woq8ptOjRJ1ZXWUcEpQzC6Wum92SDYsiiwwyXQStFQl9xspTi3G4W6HcWLgCZRmlVYdp/vBDQDu5u6Y4joFXS27StyHxWJhwC8DwDJhIcw1DKrKkqcaEPAFVA6O9ntRnFr9NzB3N28S83FwzEEEfR2EIY5DJO7TdmRbDPljCIJ+DsLvQb8jOEPykPKynDLc+eYOssOrIw3dp7vXiIKhCy1VLfjN94P3bG+p0lQMXj8YX/p9ic63OkNjk4ZUNcwy32YiIzij6vcu87pgUcgiGDoaSqVdHtjq22JC+wnoYS15TT1lVWUM2TgEMbwYzLwyE9tebqthyNMB/a/XDBLDYrHA4XPqrb/zMcrqytDQpzLz6ljU7TNCBATpQenQNtWuKpA46LdBKM8ux8g99L9hfsh0t+ko55ZDT106P6j+P/XH+0fvMWzbMJjq1h2eya3gojSjFIZtqJuO8xhnGDgYoOPUjk3KwdXZ2Bnvvnkndai5gYMBpl+fDl4lr6rUg4AvgIAnEOknwS3nVtX70rHUAUj16oys/ZEaw6QOkzCpg/QrK66TXfH98O8xn8yv2oLICM6ARWeLOq99lhILkZcikf8uH76bfDH2wNgGa5cH7ubuDerXf21/RAdFwyLDAp0tOuPdnXcw6WBS70P4qddTBO4PREFcAWbendmgz25qqOmoobSitCo0PeN8BpKLk9H1q65V91dRhP4biquzrsKqhxW+8v+qKmCiKaxuN5bInEicDTsL7lMuznidwewHs2nTwjgANyOyy7JRyauEkaaR1A8toZFi3aM6P829FfdQllWG/j/1h5mbGQDg4dqHeLHlBbp81QXjj4yXqf6mxId1iQCqntXbk2/Rd3VftJ/YHgCQ/DwZp4efpvxi/OZXtf3wgd4SibkRg6uzr6LPD30w4OcBAKg37VNDTqEspwzfpX9XdUPOjsiGrqWuQjOWKpLMt5k41PkQzD3MsShkUdXxC59dQMabDCwIWAAtY2o1Kz0oHemB6eg6vyuUVFreondBQgH2d9wPPoePH3J/qIoI9N/tj+ir0Rj460A4DqEqUWeFZeH6l9cx7K9hcBxcd3Xq5gYhBOlJ6TjtcRrsYjam3ZgGl3GU/2DU1ShEXYpCu7Ht4D6dMiBLs0qxy34X2k9sj3FHxtG+Bfsx5dxyvE57DQ6fg+FOw6XqG5UThdvht8GezcakPZPQYVIHmeuT9Pnd/E3DVoSZtlmD+zrvc4aqkiputb2FNoZtQAQEoWdCUZFXgd4re1e1cxziiIB9AeCz+c0yVFAS0orTcC36GpyMnDCy7UgQQvD679fIicxBWU71qpeOpQ54FTyUZJSAV8mrepNqaYbMx3/niAsRYBezUZ5XXnVM00gTee/ywGfzkR2RDXN3ykfIrGPDr8nmQFZoFlQ0VapWKYXkxeah8H0h4h/EVz20rLpZwaqbFQ0q6yckMwRhWWHoYNoB3a0a5qfBLmbDfoA9itOKa6Q2SHmegiSfJGSGZFYZM+bu5lTahiZ6/5h8YTKic6Nx+tPTUm1FAtQKuaWtJYZvH47IS5FoN7q6nlFmcCbCzoZBVUe16rrQMdfBqtRVcgn9lwUZJRkYfHIwdNR0ULK2/iSTH9LBtAM6DO4AdhSbdiONWZlpBXD4HKhvpC60nB9yYKJlAgFfgHe33yE/Ph+d53SuerMW8AQgAkJ79IU8ufPuDsacHYMuFl3wZiHl1FjwvgCpfqmw7mkNo7ZGAKjVm7zYPJi0N2myN+UP2R+wHyXsEizpsQS66roS91txbwVOh57GT/1/wirPVRDwBch6mwUlFaUajs2JPokwdjaGrqXkY9PF8+Tn+Pzi53A0dMSLeS+k6vvXi7+goqSCmZ1mwkzbDJwyDiryK6Bvq1/VJv5BPJTVlGHVwwpq2k1nu1EcPzz4Adv8tuF7z+/x1/C/JO7H5XOrtnKF34GPVyZjbsSgsqgSdn3tqrZjmzoeBz0QmhUK79neGNpmqMzGTfJNQqp/Kmx628B+AL2OzpKSU5aDgScGQlddF/7z/ZvcvY5ZmWmBROZE4l7cPdjo2UiVRltFSQVRS6OQXpIOI03qQa2krCQytLo5LY/PuTYHFyIuYNeIXVjYfaHE/Qw0DPBp+0/RxrBN1TFDR8NafgBKykow7VB/yvOmwo/eP6KMW4YpHadIZcwISxmoKFG3AyVlJVh2tazVzmGgg6ykyh0llhIySjOgqSr99temZ5tQxC7CqHajYKZtBjVttVoGi9NwxZfwaAyupq4Y4TRC4qrIQt5kvEHvY73hYuyC6GXRAGqvTDa3FA0AsG/0PnD4HHS26CxVv0uRl+CT6INR7UZhdLvRtc7bD7BvNkaMEFNtU0QujWxQ39i8WOiq6cJM24z20GzGmGlGBKUH4bsH32FYm2FSGTNKLCW0N2mP9ibt5ahO8QiIAJW8Sonq73xIH9s+uDL1ipxU0cd0t+ngER7UlaVb7j0y7gh+G/gbTLQUWxNGnniYeyB4YTB01aRbRRIQAeZ1mYf0knRY60pf/6yp8mWXL/Flly+l7pddRkUj6Wvo19OyedHPrl+D+j1+/xgHAg/AUNNQpDHT2hj972jEF8TDd66vXLL/SoNct5k2bdqE27dvIyQkBGpqaigsLKzVJjk5GUuXLsXjx4+hqamJGTNmYNu2bVBTq34TCgsLw7Jly/D69WsYGRlh4cKF+OWXXyReDmsp20z+qf7Y+3ovOpl3wo99f6RbDu1klGSAzWfDRMtEpgUjGRgYqinnlqOEXQJzHXpzKTUF7r67i+fJzzG0zVAMdhxMtxzaabunLd4Xvkfsslg4GclntbJJbDNxOBxMmTIFnp6eOHbsWK3zfD4fY8aMgampKZ4/f468vDzMmTMHhBD8/fffAKj/yLBhwzB48GAEBAQgNjYWc+fOhba2Nr777jt5ym9y9Lbpjd42vetv+BEBaQF4m/UWXS27Su3s1pSx1K29FcLAwCBbtFS1pMo/1BwIzw5HQkECXIxdJKpzJ2RUu1EY1W6UHJXRw5SLU5Beko5TE09JZZTEfRsHnoAnk0rqjUWuCtavX4+VK1fC3V10joMHDx4gMjISZ86cQZcuXTB06FBs374dR44cQXExlXjq33//RWVlJU6cOAE3NzdMmjQJ69atw44dO5pUAremzLXoa1hwcwGOBx+nW0qToP/x/mizuw2eJT2jWwrtlHJK8cezP3Ai5ESL+j5x+VycDDmJAwEHJM7yClDO8nwBX47K6OFhwkN02NcBUy9NpVtKk2CX/y5MODcBlyIv0S2lSfAq9RVeprxEQWWB1H1VlFRavjFTH35+fnBzc4OVVXU444gRI8BmsxEUFFTVZuDAgVBXV6/RJj09HYmJiYqW3Cxpa9QWo9uNblGrMgAVbrrLfxduxd6Sql9CQQLeF75vkHNoU+azC5/BYIsBLkZclLhPclEyfnr8E1bdX9Xkohgay9zrc7HkzhKUckrrb/x/9gfsh/pGdSy+tViOyhQPm8dGdG40EgoSpOq32383fn3yK6Jzo+WkjB7aGbVDT+ueUm2dCYgAiYWJqORVylEZPewdvReXP79cIyiiuUGrA3BmZibMzWteTIaGhlBTU0NmZmZVGwcHhxpthH0yMzPh6Fg7IRObzQabXV07Q7jK09yJy49D76O9oa6ijrRVaRL3a6jzX1PHN8kXK++vxNSOUzHWWfKMqy/mvUB6STo6mMg+wROdVPAqUMQukurhra6sji87f1kVydRSUFVWxZh2Y6RKVw9QkV18wm9xhm5vm954OudpVTSjpBwPOY63WW/Rx7ZPiwogWN1vNVb3Wy1Vn9zyXDjudoQSSwnsn9kt6jsz3kX6BKne8d44HnIcA+0HShVNKi+k/mt4eXlh/fr1dbYJCAhA9+6SJWYS9Tb4cRKvj9sIl8PFvUlu3ry5Xo3NETVlNeRV5EkdrdJS6WDSAdPdpsPTRrr6Sg4GDnAwcJCPKBrZO2ovuCO4sNSR3JfIycgJ/0z4R46q6OPWDOlW7ADgj0/+wPJey1vUgwoAjLWMMdBhoNT95naei9i8WDgb019TiW5yynKgrqwOAw2DFnd9NITgzGD8F/4fVJRUmqcxs2zZMkybNq3ONh+vpIjDwsICr169qnGsoKAAXC63avXFwsKiapVGSHY2FS748aqOkLVr12LVqlVVvxcXF8PW1lYiTU0ZSx1LhC8Oh7aaNt1SmgTDnIZhmNMwumU0GRwNW1baeDpQUVKBtV7LCcluLCt6r6BbQpOho1lHVPxUIXUqiOZAbF4sMksz4WToJPH1P7TNUGwfvh0uxk0jz5DUxoyJiQlMTGSTj8LT0xObNm1CRkYGLC2pt8kHDx5AXV0d3bp1q2qzbt06cDicqnDtBw8ewMrKSqzRpK6uXsPHpqWgqqyKjmYdperDF/Bhts0MJlom8J/vD0PN5pGhU168y3uHB/EP4GLiItPMn82VllqygqEmFdwK3I+/j0peJaa51f0y2hq4FXsLm55tQm/r3tg5cqfE/VgsltSFbZsDax+txZWoK9g/ej8W95DMX6ypRcfK1QE4OTkZISEhSE5OBp/PR0hICEJCQlBaSu3pDx8+HK6urpg9ezaCg4Px6NEjfP/991iwYEFVPPmMGTOgrq6OuXPnIjw8HFevXsUff/yBVatansOiPMgtz0V+RT7e5b2TKitsS8U/1R/L7i7D1hdb6ZYicwLTA7E/YD98En0k7vPFtS9g9KcRjr45Kkdl9DDx3ETY7rTF08SnEvdZ/3Q9dvjtQGFlodx00UExuxifnv8UMy7PkDhqjc1jo6iyqEVFuQkpqCiAf6o/InMblvm2pWGrZwsXY5dmveov142/X3/9FSdPnqz6vUuXLgCAJ0+eYNCgQVBWVsbt27exZMkS9O3bt0bSPCH6+vrw9vbG0qVL0b17dxgaGmLVqlU1tpFaEydDTqKwshBfeHwh0SqLsZYxIpdEIq8ir8Xt8walB2HUv6NgoWOB0MWhEvWx1LXEpA6T0Nm8s3zF0cDNmJv43fd3LO6+WGL/iKzSLBRUFkBNuenXF5KWrLIspBanSmyY8AV8rPdZDwKCGe4z5CtOweio6cDTxhNaqlrgCrgS/b19knww4swIdLfqjoAFAQpQqTgGOQzCtanXYKUreWHQ029P41XaK0xwmdDitrd3jdwldZ+onCjoqevBQseC9lIGgJyNmRMnTuDEiRN1trGzs8OtW3U76rm7u8PX11eGypovP3j/gJzyHAxxHCKRMaOipIIOpi0rakeIipIKcspzpDLShrYZ2mK3l9zN3SlDTYp6M+c+O4fM0kxY6FjITxhNHB57GBw+B22N2krUnsPnYHmv5cguz25RpR0AQFtNGy/nv5SqT255LgCqlllLw1bfFrb60vlReid443Toadjr27c4Y6YhDDo5CNll2QhZGAIPCw+65TC1mZobE1wmoIxb1qyXA2WFs7EzQheFMttn/+cz18/wmetnUvUx0jSSOly3ueBuLjpZpzg0VTWl8p9o6cxwn4GJ7SeinFtOt5QmweQOk2Gvb4++dn3plkI7hBCoKqlCmaUMM20zuuUAkHNtpqZCS6nN1BBep73G20yqlEE3q250y2FgYGCgnTJOGV6nvQaf8FvsSq00XIm6giNvjmCQ/SCp8u8IiAAssOTqvyrp85v+HMQMcuVa9DV8fetrnHp7im4pTYJ+//SDwy4HPE9+TrcU2ilhl+CPZ3/g2JtjLdLJ803GG5wJPYPgjGCJ2nP4HAiIQM6q6GP8f+PRcX9HhGWF0S2FdpKLkjHk1BCmvMP/SSlKwb24ewjJCpGqnxJLqckE4jDGTAvH2dgZY53HSuVH0VwghODYm2PY82oPKrgVEvVJKkpCUlFSi0w8+OT9E9jutMWw05Lt56cWp+Knxz/hB+8fmswNSZacCDmB2Vdn43LUZYna7w/YD7UNavj65tdyVkYPsXmxiMyJlLj+zp5Xe/Dz458RmdPyIn701PXgauoqcRZwQggSCxNb7JbbMKdhODHhBJb1WEa3lAbD+Mw0M+Zdn4fb725j+/DtmNVpVr3t53aei7md58pfGE0svLUQfMLH5A6TYa1af7KnZ18+Q1ZpFlxNXRWgTrEQEKQWp0qcB0NDRQNfdv4SqkqqclZGD66mrhjWZpjE9Wayy7LBJ3xoqGjIWRk9HB53GDwBD53MO0nU/tTbUwjKCEJvm94t7vtirWeNiCURErcvqCyA424qKWXlT5VSl8lo6riaukr1N37y/gmOvDmCvrZ9sbTnUjkqkxzGmGlmlHJKkV2W3eLyYDQEFouFSR0mgcViSRzR1FJLGQBAd6vuCFwQCH0NfYnaOxo6tthSBgCwqPsiLOq+SOL26wetxzc9v2kSYabyYID9AKnaf+HxBXrb9G4yGV7pJL8iH+rK6tBU1WxxhkxDCM0KxX/h/4FP+E3GmGEcgJsZ8fnxKOeWw0bPptVn82VgYGBQFIQQlHHLoKOmQ7cUmVPGKUNsXiwAoItll3rbh2SG4PH7x3AydMKE9hPkqk3S5zezMtPMcDJykrgtIQRWO6ygq6aLp3OfSpUgqiWSWJiIW7G34GTohFHtRtEth3aYUgati9CsUCQWJsLV1FXi3DstmQnnJiC3PBfnPzsPGz2betuzWKwWacgAlHHS73g/OBk6Ie7buHrbd7bo3OT8MBkH4BZMGbcMmaWZeJf/rkXWE5GWNxlv8M3db7Dx2Ua6pcgFNo+N029P41DgIYmikxbdWgTDPw2x59UeBahTPLdjb8N1nyu+uPqFRO03P9uM7S+3I6csR87K6GHri62YcG4Crkdfr7cth89BYWVhi4xyE+KX4oeXKS+ZLXtQDtGWOpYw1xFdvLk5wKzMNDPCs8PxOu012hi2wSCHQXW21VTRRNTSKGSXZbfYN4opF6fgefJzHBt/DKPbja6zramWKSZ3mNxifQA4fA6+uEY9uGd7zIaWqlad7bPLKd+rluoAXMmrRFRuFIy1jCVqv/HZRpRzyzGx/USYapvKWZ3icTZ2Ri/rXhL93wLSAtDveD90MOmAyKUtL5oJAA6NPQSAqktUHxciLsAn0Qej243GGOcx8pamcNzN3ZH+XbrE7WNyY6Ctpg0LHYsmUyanaahgkJg77+5g9cPVmOMxp15jRllJGe1N2qO9SXvFiKOB/Ip8ZJZmSvR21d++P/rb95e/KJrQUtXCsDbDoK2mDb6AX2/7f8b/gz+G/NHiUvcL6W/fH0/mPJHo/8cX8LGw20Jkl2W3yNIOAPDrwF/x68BfJWrbkksZCPm0w6cSt33y/gkOBh2EqbZpizRmpGXUv6PwvvA9Xsx7gT62feiWA4AxZpodzsbOGNNuDDzM6a+F0RTYN3of2Dw27A3s6ZZCO8pKyngw+4HE7Q01DVu0E7mZtpnEqdaVlZSxY8QOOStqPkxoPwFl68pQximjW0qTYLzLeJhqm9b7AtlaUFFSaVKlDAAmmqlFE5wRjID0AHiYe6CXTS+65TAwMDA0GWJyY5BZmglnY2dY6lrSLYdW+AI+pl+ejjJuGc5NPidRvTtFlDIAmHIGDABuv7uNhbcW4sibI3RLaRIMPz0c9rvs4R3vTbcU2mHz2NjkuwlH3xyVaEuqOVLGKcO16Gu4GHGx3rZcPrfFzoOQK1FX0Ptob6z2lrz2Tktm1YNVGHRyEO7F3aNbCu0osZRwJeoK7ry7g2J2scR9mlI0JGPMtGDaGLbBOOdx6GbZcgtMBmcE40TICbxKfVVv2+SiZCQXJUNNWU0ByuhhzNkxsN9lD/9U/zrbZZVl4ecnP2PpnaVQYrXM20BueS4+Pf9plVN0XZwIOQG1jWqYeWWmApTRQ155Hl6lvUJ0XnS9bQ8FHsJPj37C28y3ClBGD3Z6dnAxdqnXUR6g0jq05C03FouFfaP34dj4Y8028pXxmWlmvE57jRmXZ8BW3xZP5jyps+0M9xmY4T5DQcro4XzEefz54k+s7L2y3q20B7MfIKMkAx1MJavH0hzJKMlAclFyvQ7RyixlzOs8DzzCa1JvV7JEV10XvW16Q1tVu96cOtll2RAQATSUW2YpA4Cqv3Nt6jXY6tcfvXM2/Cx8k3zRybwTPCxapn/egbEHJGpXyausKmWQ/2N+i/UzW9h9oUTt/FL8sOf1HvSw6oFVnqvkrEpyGGOmmUEIQXxBPPikZS+JS4qrqStGtR0lUbi1nb4d7PTtFKCKPo6NPwaegAdnY+c621nrWePYhGMKUkUPRppG8JvvJ1Hb1f1WY37X+XJWRC/SlPKY7jYdncw6oaNZR/mKagYISxkIiKBFR3dJSkROBM6Fn0MJu6RJGTOMA3Azo4RdgtCsUOhr6MPNzI1uOQwMDAwtnpZcykBIclEyCioKYG9gX6fRFp4dDu94b9jq2+Iz18/krkvS5zdjzLRgnPY4QYmlhPuz7ktcObilklachitRV+Bg4IBxLuPolkM7TCmD1kcJuwSB6YEAgMGOg2lWQz/nws/hRMgJjHAagZWeK+mWQzuexzzhn+qPa1Ovyb3ekjQw0UytHJ6Ah/cF7xGXH9ei3yYkJTw7HN/e+xa/PPmFbilyJTA9EGfDziIsK6zOdt89+A4GWwzw5/M/FaSMHkaeGQm3/W5VRfTEse3lNmx7uQ0ZJRkKUqZ44vLjMOTUEMy6OqvOdjwBr8WXMgCApMIk3I+/j9DsULqlNAlMtUxhrm3ebF9yGJ+ZZgZfwMflqMso55ZjpvtMqCqLTkWvxFKqKmVgrClZOvfmyMOEh1hyewnczNxwZeoVse0MNAzwmetnsNNr2T4zh4MO48ibI9gweAPczd3Ftssuy0YRuwjKSsoKVKd4onOjkVSUVK9D9NYXW5FTnoPhTsNbbM4RfQ19uJq6wly77vo74dnh6HKoC+z07ZC0IklB6hTP6HajYalrWa9/2fXo67gffx/D2gyTKmtwc+PG9BsStXuX9w4aKhqw0LEQ+/yhA8aYaWYQEEy9NBUAMM55nNi6M0osJbiYuMDFpGXWIRLC5XPxLv9dvUmeetn0wsUp9ecbae50NO2ITxw/qdfRed/offh5wM8w1GiZkRlCjk84DgER1OsgPsdjDjLLMmGta60gZYqnjWEbRCyJqLddayhlAFD1iOoy+IU8S36GA4EHoK2q3aKNGUmZdGESwrPD8WDWAwxzGka3nCoYY6aZoaKkgk8cP4GashoIWvYysCT0sukF37m+MNI0oltKk2B57+VY3nt5WhLq4QAAI3VJREFUve30NfShr6GvAEX0IqlvyF/D/5KzkubD0DZDUb6uHCWcErqlNAlGth0JLVUt9LPrR7eUJoEySxkqSipNqpQBwDgAt1jCs8PxIvkF3Mzc0NeuL91yGBgYGJoUpZxSvMt7ByWWUovNpSMN/4b+i5uxNzHOeRxmdqo7eSQhBAREIQk3GQfgVo53vDcW3V6EvQF76ZbSJJh4biLsdtrhRoxk+8ItGQERYJPvJhwJOgI2j023HLkSkhmCmzE38b7gvdg2raGUgZBR/45C33/6Irssm24ptPMq9RW6Hu7aorM+S0NoVijOR5zHm4w39bZlsVhNLnN401LDIDPsDewx3mU8elr1pFuKXKngVuBy5GX8G/pvne1SilOQUpwCFaWWvbN6Lfoa3A+4Y+FN8dk8CyoK8POTn/H1ra+bbeSCpGz03Yjx58bjzrs7YttcjLwI1Q2q+PR8y/eHeJH8Ai9TXqKoskhsm+PBx7Hu0bqqMO6Wir6GPqx0rerdLkkqTEIpp1RBquhjnMs47B65G5M6TKJbSoNo2Xf2Fsr0y9MRlB6Ew+MOiy1JP6nDpGZ7UUpDGbcMn12kEjdNc5smNjrn2tRryCjNqDdyoblTzi1HeHZ4nRErAiLA/C7zUcopbdF1qgDAxdgFPa17inWUB6jILgICdWV1BSqjh2Pjj0FFSQUWOhZi21yMvIi7cXfR1qgtult1V6A6xdLdqjvSVqXV2UZABGj7d1vwBDykrEyBjZ6NgtQpnn52/er1CwrOCMafL/6Eh7kH1vZfqyBlksEYM82Q1OJUvMt/h7zyPLql0I6Omg762fWDjpoOOHwONJU0Rbaz1beVqCZNc2eww2A8nP0Q5jrijRlTbVMcHX9UgaroY9Mnm7AJm+pss6znMkx3mw4BEShIFX1M6Til3jaTO0xGW6O28DBn/EiK2cVQUVIBT8CDqZYp3XJoJzo3GucjziOrLKvJGTOMA3AzJDA9EBXcCriautb5xsnAwMDA0DhaQykDgCqomVmaCUIIHA0dRbaJyY3B3bi7MNc2x3T36QrRJenzm1mZaYZIsvTrfsAdFdwKXJ92vdUXi8spy8F/4f/BTt8OE9tPpFsO7TClDFovMbkxyCrLgrOxc51bTa0BLp+LmVdmopRTigtTLog1VlgsVos3ZADgftx9TDw/Eb2se8H/K3+RbZpy7jLGAbgFQghBfH484gvioaWqRbcc2onJi8Hye8vxg/cPdEuRO2WcMtyKvYUrUeKzIf/65Ffob9HHb09+U6AyergSdQV9jvXBmodrxLbZ82oP/nrxF5KLkhWojB5W3F+BgScG4n7cfZHn+QI+CioKWnwpA4DK2XU56jLuxt1FCZvJqaOjpgMtVS2oqzRP3zFmZaYZEpUThcicSLQxbIMull1EtglZFILssmxY67XcjKZCJl+YjIjsCJyceBK9bHrVOq+jpoMprlOaXJIneZBbnotx/42DhooGKn6qENkmuywbxeziJhdaKQ/yyvPgl+oHU23x/g47/XcisTAR/ez61Zs5ubljr28PF2MXaKqK9i1LKEiA815nGGsaI/fHXAWrUywsFgv7Ru+DhoqG2Azi9+Lu4Xr0dQxyGISpblMVrFCxfNLmE5StK6uzTVx+HNSU1WChY9HkggcYY6YZcurtKWx5sQUreq0QacywWCw4Gzu3+MgdIYmFiYjJi0F+Rb7I850tOuPClAsKVkUPeup66GHVAzpqOhAQgUiD5a/hf2GV5yroqTd//7H6GOY0DFenXoWtnnjn75nuM5FclAx7A3sFKqOHg2MP1nk+pzwHQMsvZSBkUfdFdZ73S/HDwaCDYLFYLd6YkYRZV2bhVdorXJ16tclt2TPGTDOkrVFb9LPr1ypuvpKwd9RecAVcuJm50S2Fdgw1DfF6wes62+ip67UKQwYAHAwc4GDgUGebjUM2KkZMM6CPbR9U/FSBYnYx3VKaBEMchwAAelj3oFlJ00CJpQRVJdUmucrNRDO1QKJzo+GT6IP2Ju0x0GEg3XIYGBgYmiQpRSnIr8iHnb4dDDVbdtHV+ijnlmPFvRUo5ZTi1KenxCYYVWQpA4ApZ9Cq8U3yxaLbi7DdbzvdUpoEM6/MhO1OW5wPP0+3lCbBludbcDjoMMo4de+PtwTKOGV4mvgUjxIeiTzPE/DAE/AUrIo+Lkdexqh/R2Hri610S2kSzLwyE50Pdcaj96Kvj9aEEksJR94cwX/h/6GcWy62XVMsZQAw20wtEmtda4x3GQ9PG0+6pSiEiOwIxObFop1xO5FbTSlFKUgtTm2SX0B58On5T5FQkIB/J/1baz4quBVY+4hKdjW1Y8v3AUgqSsLgk4PFOrTejr2NT89/iqFthuLB7Ac0KFQsKcUpuBd3D4Yaolch/g39F+HZ4RjnMg59bPsoWJ3iMdM2qzNEPbkoGYYahtBR02nx6QzUldWxYfAGaKtqN8uyL81PMQP8Uvzwzd1v4GDggEufX6p1fozzGIxxHkODMno4HHQYe17vwbp+67Dpk9rZXv+b/B/SS9LRxrANDeoUT1ROlFiHaK6Ai6+6fIXcitxW4Tejr66P9ibtYaRpJPJ8VSmDZhqOKi3DnYbj5MSTaGvUVuT5azHXcCnyEqx0rVqFMSPq/vkh7gfcUcwuRvTS6CabX0VWsFgs/DzgZ7HnI3Misd5nPTqYdIDXIC/FCZMQxphphnD4HARlBKGM2/K3CSShrVFb9LHtI7ZuirWedasIURdyYMwB8AQ8uJu51zqnp66HI+OP0KCKHqz1rBG1NErs+Xld5mFC+wng8rkKVEUfrqaucDV1FXt+vPN4WOlYteiaTJLC4XOqtiCbosOroonLj8OFiAvoYdWjSRozjANwMyS/Ih/+qf4w1jQWmVeFgYGBgUE2lHHKoKWq1eK3mQCgoKIAxeximGqb1kq4Gp8fj1uxt2CgYYA5necoTJOkz2/GmGmB9DraC7nluTj/2flW/4ZVWFmIkyEnYaVrJVGRvZaOuNwzDK2Dcm45YnJjICACdLPqRrcc2rkceRkXIy/iE8dPsKDbArrl0E63w93wJuMN7sy4g1HtRtEtBwATzdSqicuPQ0JBAlPKANTbxIr7K7Di/gq6pSiMyJxI3I69jXd572qd+/P5n9DbrIfV3qtpUEYPUy5OQb9/+uF9wfta5/YH7MfWF1tFnmuJRGRHoOvhrph0YVKtcwIiQF55XqsoZSBEWAX6dVrduZlaC9qq2tBQ0QCHz6FbitQwPjPNEL6Aj8fvH6OUU4pxLuNqeZ6/+uoVMkszW43D65P3T7D64Wq4mrrixMQTNc5pqmri846fQ1dNdLrylsj2l9vxT8g/2DRkE9b1X1fjXGZpJko4Ja1qdcY/1R+pxanIq8irVQ147+u9iMqNQg+rHmIrBbck9NT1YKFjITKCJ604DXa77KCtqo2StSWtYltluNNw6KrrivQve5jwEBcjLmKA/QDM7DSTBnWK5+ncp2LvDfH58VBVVm2SpQwAxphplhAQDD8zHACQ+0MujLWMa5xva9RWbLRCS6SCV4GA9ACR+UJcTV1x/rPWlV+mrVFbdLPsBlOt2vWINn2yCUt7LoW2qjYNyuhhz8g9ACDSuJ/acSriC+JbjeHvYuKCjO8yRJ7LLssGQGWRbg2GDEBl9hWX3fdV6iscfnMYPAGv1Rgzdb3kzLsxD75Jvjg3+VyTLO3A+Mw0U3oe6Qk1ZTVc+vxSnXkSWgPZZdl4lfoK5jrm6Gndk245DAzNFjaPjcLKQpjrmNMthXaeJz/Ho4RH6GzRGRPaT6BbDu0MOjEIL1Newnu2t0IzyzMOwB/QEo0ZccTkxuBJ4hN0MOnAlDJgYGBgqAMOn4P0knRw+JxWU5i3Lm7H3saNmBvob98fszrNqnVe0aUMAMYBuNXim+SLxbcXY5vfNrqlNAlmXpkJmx02+C/sP7qlNAk2P9vcakoZCEksTIRvkm8tJ18un9tq8st8yFc3vsKof0chqTCJbim08zbzLRx3O2LY6WF0S2kSBGcG4/Cbw/BJ9BF5vqmWMgAYY6bFYa1njYntJ6KPTcvP3ilEQAR4/P4xrkZdrfVwSi5KRlpJWrNMz91Qnic/R79/+uHL61/WOF7BrcC6x+uw8NbCVlWPaJPvJgw8MRBnw87WOH437i7UN6pjxJkRNCmjB+8Eb9yLu4essqwax8+EnsHah2vxMuUlTcoUj566HjRVNKGpolnrXGJhIkrYJa0qumuQwyCsH7QeE9tPpFuK1LSeO3wLY7X3ajxOfIxfBvyC8S7jq46Pbjcao9uNplEZPXxy6hMAQNb3WTWydV747ALSStLgaNDyI1WElHPL8SLlBUo5pTWOc/gcLOi6ALnlraOUgRBbfVs4GztDV71mRFtGSQYICDRUNGhSRg+bhmwCT8CDg4FDjeNXo6/iStQV2OjZtIpSBgDlEF3+k+iiiu4H3FHKKUXsMqruW2ugn10/9LPrV+t4eHY41vush5upG34b9BsNyupHbisziYmJmD9/PhwdHaGpqQknJyf89ttv4HBqxq8nJydj3Lhx0NbWhomJCb799ttabcLCwjBw4EBoamrC2toav//+e6uylkURXxCPwPRApBSl0C2FdpRYSuhp3ROeNp61VhwsdS3R3ap7rYivlkxni864NOUS9o7eW+O4voY+Do87jCtTr7SaaBUA+HXgr4hZFoNve31b4/iCbguQ/X029o/eT5MyepjVaRbmdp5bK0X/p+0/xfJey1t9ok2AWsUU0toDLADgXd47XIq8hHvx9+iWIha5rcxER0dDIBDg0KFDaNu2LcLDw7FgwQKUlZVh2zbKn4PP52PMmDEwNTXF8+fPkZeXhzlz5oAQgr///hsA5fwzbNgwDB48GAEBAYiNjcXcuXOhra2N7777Tl7ymzzf9/keczvPRSfzTnRLaRK8+uoV3RKaDGbaZpjsOpluGU0eJZYSTLVrh6+3VmZ1miXS6bM1oqmqiZK1JSjllLaqNAYCIkBRZREqeBWw0rWqOu5u7o49I/fAUFN0tfUmAVEgW7duJY6OjlW/37lzhygpKZG0tLSqY//99x9RV1cnRUVFhBBC9u/fT/T19UllZWVVm82bNxMrKysiEAgk+tyioiICoGrMlkynA51Im91tyNvMt3RLoZ2cshyy028nuRRxiW4pTQK+gE+3BIYmQFZpFgnJCCFpxWn1N24FfHf/OzLt0jSSVJhEtxTaCUwLJPACsdlhQ7eUKiR9fivUAbioqAhGRkZVv/v5+cHNzQ1WVtUW4IgRI8BmsxEUFFTVZuDAgVBXV6/RJj09HYmJiSI/h81mo7i4uMZPayE+Px4JBQmt6m1CHDG5MVh5fyV+fPgj3VIUioAI8Dz5OW7H3q7hEP27z+/Q3ayLXx7/QqM6xfM67TVG/TsKi28trnF8l/8u/Pn8TyQXJdOkjB5+efwLOh/qjKNvjlYd4wv4yC3PbZXb95ejLuNc+Dmkl6TTLYV2hL50bB6bZiXSozAH4Pj4ePz999/Yvn171bHMzEyYm9dMzmRoaAg1NTVkZmZWtXFwcKjRRtgnMzMTjo61HTs3b96M9evXy/h/0LTILM1EeHY49NX1qzJYEkLwdtFbZJZmwlbflmaFiuWnRz/h4fuHWNtvbZUnvq66LqZ2nAoTLRN6xSkYFlgYeGIgBESA9FXpsNS1BEA5vJZySltVZBcAFLOLcS/uXq2U9btf7UZiYSIG2A+Anb4dTeoUj5m2Wa2U9AkFCXDe6wxDDUPkr86nUZ3iWdN3DSp5lbDVq75n3nl3B9ejr2OI45Amme1WXjgZOaHyp0qoq6jXOB6bFwt1ZXVY6lo2yVIGQAOMGS8vr3oNhYCAAHTvXu1Elp6ejpEjR2LKlCn46quvarQV5YhICKlx/OM2wrcHcU6Ma9euxapVq6p+Ly4uhq1ty3q43469ja9ufoUx7cbg1oxbAKj5cDJygpORE83qFE9cQRxep72u8ZbdybwTzn12jkZV9MBisdDZojNYYNVwiN4+Yju+7/M9dNR0aFSneNzM3HB8wvFajpyzO81GUlES7A3saVJGDxuGbMCGIRtqHMspzwGAVuUoL2Rh94W1jvml+OHwm8NQUVJpVcaMEkupliEDALOvzsbrtNe4NvVak82GLLUxs2zZMkybNq3ONh+upKSnp2Pw4MHw9PTE4cOHa7SzsLDAq1c1HTcLCgrA5XKrVl8sLCyqVmmEZGdTNUQ+XtURoq6uXmNbqiVipWsFNzO3VvVGWRcre6/ETPeZjEP0/wn6OqjWMR01nVYTYvohFjoWmNt5bq3jvw/+XfFimih9bPuA/TMbRZVFdEtpEgxtMxQqSipi6za1NlSUVKCmrFa1ytsUkWs5g7S0NAwePBjdunXDmTNnoKysXOP83bt3MXbsWKSmpsLSkpqk8+fPY86cOcjOzoaenh4OHDiAdevWISsrC2pq1PLWn3/+iT179iA1NVWiENPWUs4gIjsCvkm+6GjWEQPsB9Ath4GBgaHJU84tR3ZZNjRUNJgwbABbX2xFfH48fuz7Y41VfkJDKQOgCZQzSE9Px6BBg2Bra4tt27YhJycHmZmZNVZZhg8fDldXV8yePRvBwcF49OgRvv/+eyxYsKBK9IwZM6Curo65c+ciPDwcV69exR9//IFVq1a1qlwZkvAk8QmW3FmCPa/20C2lSTDp/CRY77DG5cjLdEuhHUIIfvf5HYcCD9XIodFaiMiOwNPEp1X/dw6fAw6fU0+vlkl0bjSmX56OhTdrb6+0Rn598iscdzti+8vt9TduBZwJPYPDbw4joSChxvGmXMoAkKMD8IMHDxAXF4e4uDjY2NjUOCdcDFJWVsbt27exZMkS9O3bF5qampgxY0ZVHhoA0NfXh7e3N5YuXYru3bvD0NAQq1atquETw0Bhp2+Hie0nwtPGk24pCie/Ih+hWaFQZimjv31/AEBKcQrSS9KbrMOaPNnhtwNXoq5gQdcFmNN5DgorC/HbUypz55zOc2hWp3gGnhiIvIo8hC8OR0ezjrgadRXTLk/DWOexuDn9Jt3yFEo5txznws/VyCPyT/A/iM2LxaQOk1pd5XkTLRNoqGjU8C9LKEiAqZYpdNR0Wt1L84KuC1BQWVArQ3RTR27GzNy5czF37tx629nZ2eHWrVt1tnF3d4evr6+MlLUM+AI+Rp8djdzyXDz64hEMNAww3mV8jdIGrYmXKS8x7r9x6G7VHQELAgAAN6bdQHpJOtoYtqFZneJ5X/AeL1JeYKA9VTldQARY1G0RcityW136fgBoZ9wOJhUmVasxGaUZANAqUxg4Gjhi54idMNeu9jm8EHEB9+Pvw9nYudUZMz/2/RFr+q2p+p0v4MNlrwt4Ah5SVqbARs+mjt4tj296fVPj99dpr7Hl+Rb0tumNH/s23TQXrStGswWhrKQMvxQ/lHBKkFOWAwMNA7ol0YqljiXam7SvUYPJUteySTusyZM5nedgoMPAqnBkYy1jHBh7gGZV9OE336/G78t7LcdM95mtcqvJUNMQK3qvqHFsutt0OBs7o5tlN3pE0cjHWye55bnQUdNBKacUljqt8/7xIWFZYbgafRUVvIombczI1QG4qdBSHYAvR16Gpqom+tv1h666bq2QdgYGBgaGhlHCLqlVnLQ1QAhBEbsIPAEPJlomiM6NxsOEh7DUsaSlTIqkz2/GmGkh8AV8GPxpAHNtc/jN92v1NWdicmNwM/YmOpl3wnCn4XTLoZ1KXiXUldUZY5cBAJBeko7ssmy0MWzTqiqoiyK3PBe/PP4FlfxKHJ9wnG45tLPbfzdW3F+BaW7T8N/k/+iWQ380E4NiySzNRCmnFImFiTDSNKq/QwvnRcoL/OD9A7b7tc4IhTJOGV6mvMTj948BAHOvzYXuZl2cCDlBrzCaOB9+HqP/HY3d/rsBAN/d/w5bX2xFMbv1lDr5kNH/jkaXQ13gl+KHMk4ZMkszW2UpA4BaiTgYdBAnQ07WcAJurQgTJ5awS2hWIh2Mz0wzJqMkAxE5ETDTNkNH0454v/w9MkoyoKykXH/nFsisK7MQkxeDExNOwE7fDtPdpqOLRRe6ZdFCfEE8+v7TF8aaxsj9MRdJRUko45ZBV631LZsDVGTb3bi7MNAwQDG7GDv8dwAAFndfXE/PlomFjgVyynPAE/BwL+4ePrv4GQbYD4DPXB+6pSkcI00jrOm7BvYG9hAQAfa82oOwrDDM9pjdKvN1TXGdgs9cP6sKFHiV+gqWupaw0bNpnaHZDPJn7+u9+OP5H1jaYyn2jt4LBwOHZhdOJ0ti8mIQmB6IuPw4TGg/AUPbDKVbEm3Y6dvBRs8GDgYO4PK5ePzFY6QUp9SIYGlNjGw7EgYaBvAw9wBfwMe6fuuQXZbdKn0iAODOzDtVD6aDgQfBAqvVOrsqKylj89DNVb/feXcH9+Pvw9PWs1UaMx+WM+AJeOh3vB94Ah5SV6bCWs+aRmV1wxgzzRgXExd0MOnQ6gopimPD4A0QEEGrCy0VhYGGAVJWplT9rqqsCmdjZxoV0YubmRvczNyqft/0ySYa1dDPh2/Yi7ovwrwu81DOLadRUdNhUfdF8LTxRC/rXnRLoZ2iyiK0M2qH94Xvm3xkKOMA3EI4HHQYPAEP413Gt7q8CB9DCEEJp6TVOzYyMDBIBofPQUpRClSVVZl6d6CSboZlh2Fdv3VoZ9wOlbxK2vJTMQ7ArYxtL7dh6Z2liMqJolsK7SQXJUN/iz467OsAARHQLYd27sXdw9qHa+GT2Pr8IT4kLj8OD+IfIDgjGJW8Srrl0EpiYSJmXpmJzy9+TreUJsHvPr+j7d9tseX5FrqlNAnOhZ/DiZATiMyJBIBmkWiT2WZqAQiIAJM7TEZodig6W3SmWw5tlHHKEJgeiP/CqXBCDRWNJu2wJm9OhpzEoaBD8EulEsYJiAADHQbSrIo+xp4di5i8GACAMksZz758Bk/b1lf6AwBYYOFs2FkA1Lz0s+tXIwtua8Ne3x4aKhqIyIlAaFYoOph0gKqyKt2yaGN+l/mY4DIBLiYudEuRmNZ7p28hbPLdBNudtuhh3QO3Z9xu1fllcspzMOjkIBx9cxTvvnmHs5PO0i2JVrgCbpUhs7DbQgxzGkazInrxsPBAO6N2AAA+4TerG7WssdGzwY99fsSq3qtw+91tXIq8RLckWvmyy5coX1eOtoZt4XHQA+t91tMtiVYWdl+Inwb8hK9vfo0pF6cgpSil/k40w6zMNHPyK/KRXpKOm7E3ManDJLrl0IqDgQN62/SGta41lFnKaGvalm5JtDLOeRyOjT+G0e1Gw0LHgm45tHP609NQU1YDIQTpJemtOh+TspIy/hz2J/gCPpyNnau2E1orKkrUo7C/fX+cCj2F7lbdaVZEP3H5cVUvQ0fHHaVZTf0wDsDNnJjcGMQXxOMTx09qhNS1VpiSDgwM0sMX8FttfqqPCUoPgoeFR5WB05p5kfwCQRlB+LbXt7RpYMoZfEBLNmYYGBgYGBhaKkw0EwMDAwMDA0OrgDFmGBgYGBgYGJo1jDHDwMDAwMDA0KxhjBkGBgYGBgaGZg1jzDAwMDAwMDA0axhjhoGBgYGBgaFZwxgzDAwMDAwMDM0axphhYGBgYGBgaNYwxgwDAwMDAwNDs4YxZhgYGBgYGBiaNYwxw8DAwMDAwNCsYYwZBgYGBgYGhmYNY8wwMDAwMDAwNGsYY4aBgYGBgYGhWaNCtwBFQAgBQJUSZ2BgYGBgYGgeCJ/bwue4OFqFMVNSUgIAsLW1pVkJAwMDAwMDg7SUlJRAX19f7HkWqc/caQEIBAKkp6dDV1cXLBZLpmMXFxfD1tYWKSkp0NPTk+nYDNUw86wYmHlWDMw8KwZmnhWDPOeZEIKSkhJYWVlBSUm8Z0yrWJlRUlKCjY2NXD9DT0+P+bIoAGaeFQMzz4qBmWfFwMyzYpDXPNe1IiOEcQBmYGBgYGBgaNYwxgwDAwMDAwNDs4YxZhqJuro6fvvtN6irq9MtpUXDzLNiYOZZMTDzrBiYeVYMTWGeW4UDMAMDAwMDA0PLhVmZYWBgYGBgYGjWMMYMAwMDAwMDQ7OGMWYYGBgYGBgYmjWMMcPAwMDAwMDQrGGMmUawf/9+ODo6QkNDA926dcOzZ8/oltSs8fX1xbhx42BlZQUWi4Vr167VOE8IgZeXF6ysrKCpqYlBgwYhIiKCHrHNmM2bN6NHjx7Q1dWFmZkZJk6ciJiYmBptmLluPAcOHECnTp2qEol5enri7t27VeeZOZYPmzdvBovFwooVK6qOMXMtG7y8vMBisWr8WFhYVJ2nc54ZY6aBnD9/HitWrMBPP/2E4OBg9O/fH6NGjUJycjLd0potZWVl8PDwwN69e0We37p1K3bs2IG9e/ciICAAFhYWGDZsWFXtLQbJ8PHxwdKlS+Hv7w9vb2/weDwMHz4cZWVlVW2YuW48NjY22LJlCwIDAxEYGIghQ4ZgwoQJVTd3Zo5lT0BAAA4fPoxOnTrVOM7Mtezo2LEjMjIyqn7CwsKqztE6z4ShQfTs2ZMsWrSoxrH27duTNWvW0KSoZQGAXL16tep3gUBALCwsyJYtW6qOVVZWEn19fXLw4EEaFLYcsrOzCQDi4+NDCGHmWp4YGhqSo0ePMnMsB0pKSki7du2It7c3GThwIFm+fDkhhLmeZclvv/1GPDw8RJ6je56ZlZkGwOFwEBQUhOHDh9c4Pnz4cLx8+ZImVS2b9+/fIzMzs8acq6urY+DAgcycN5KioiIAgJGREQBmruUBn8/HuXPnUFZWBk9PT2aO5cDSpUsxZswYDB06tMZxZq5ly7t372BlZQVHR0dMmzYNCQkJAOif51ZRaFLW5Obmgs/nw9zcvMZxc3NzZGZm0qSqZSOcV1FznpSURIekFgEhBKtWrUK/fv3g5uYGgJlrWRIWFgZPT09UVlZCR0cHV69ehaura9XNnZlj2XDu3Dm8efMGAQEBtc4x17Ps6NWrF06dOgVnZ2dkZWVh48aN6NOnDyIiImifZ8aYaQQsFqvG74SQWscYZAsz57Jl2bJlCA0NxfPnz2udY+a68bi4uCAkJASFhYW4fPky5syZAx8fn6rzzBw3npSUFCxfvhwPHjyAhoaG2HbMXDeeUaNGVf3b3d0dnp6ecHJywsmTJ9G7d28A9M0zs83UAExMTKCsrFxrFSY7O7uWVcogG4Qe88ycy45vvvkGN27cwJMnT2BjY1N1nJlr2aGmpoa2bduie/fu2Lx5Mzw8PLB7925mjmVIUFAQsrOz0a1bN6ioqEBFRQU+Pj7Ys2cPVFRUquaTmWvZo62tDXd3d7x79472a5oxZhqAmpoaunXrBm9v7xrHvb290adPH5pUtWwcHR1hYWFRY845HA58fHyYOZcSQgiWLVuGK1eu4PHjx3B0dKxxnplr+UEIAZvNZuZYhnzyyScICwtDSEhI1U/37t0xc+ZMhISEoE2bNsxcywk2m42oqChYWlrSf03L3cW4hXLu3DmiqqpKjh07RiIjI8mKFSuItrY2SUxMpFtas6WkpIQEBweT4OBgAoDs2LGDBAcHk6SkJEIIIVu2bCH6+vrkypUrJCwsjEyfPp1YWlqS4uJimpU3LxYvXkz09fXJ06dPSUZGRtVPeXl5VRtmrhvP2rVria+vL3n//j0JDQ0l69atI0pKSuTBgweEEGaO5cmH0UyEMHMtK7777jvy9OlTkpCQQPz9/cnYsWOJrq5u1XOPznlmjJlGsG/fPmJvb0/U1NRI165dq0JbGRrGkydPCIBaP3PmzCGEUKF/v/32G7GwsCDq6upkwIABJCwsjF7RzRBRcwyAHD9+vKoNM9eNZ968eVX3B1NTU/LJJ59UGTKEMHMsTz42Zpi5lg1Tp04llpaWRFVVlVhZWZFJkyaRiIiIqvN0zjOLEELkv/7DwMDAwMDAwCAfGJ8ZBgYGBgYGhmYNY8wwMDAwMDAwNGsYY4aBgYGBgYGhWcMYMwwMDAwMDAzNGsaYYWBgYGBgYGjWMMYMAwMDAwMDQ7OGMWYYGBgYGBgYmjWMMcPAwMDAwMDQrGGMGQYGBgYGBoZmDWPMMDAwMDAwMDRrGGOGgYGBgYGBoVnDGDMMDAwMDAwMzZr/Abet+oyl/97oAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3iUxdbAf5veO2kQeu9VuqB0rBcVvfZ+1avXelX0fsrVqyiKDbuiIhZsNJVqAaR3AqHXkJBO2m56dr4/Ju++u8lusrvZkF3y/p4nz27eOjmZOXPmzJkzOiGEQENDQ0NDQ0PDQ/Fq7gJoaGhoaGhoaDQGzZjR0NDQ0NDQ8Gg0Y0ZDQ0NDQ0PDo9GMGQ0NDQ0NDQ2PRjNmNDQ0NDQ0NDwazZjR0NDQ0NDQ8Gg0Y0ZDQ0NDQ0PDo9GMGQ0NDQ0NDQ2Pxqe5C3A+MBqNnD17ltDQUHQ6XXMXR0NDQ0NDQ8MOhBAUFxeTmJiIl5dt/0uLMGbOnj1LUlJScxdDQ0NDQ0NDwwnOnDlDmzZtbJ5vEcZMaGgoIIURFhbWzKXR0NDQ0NDQsIeioiKSkpJM/bgtWoQxo0wthYWFacaMhoaGhoaGh9FQiIgWAKyhoaGhoaHh0WjGjIaGhoaGhoZHoxkzGhoaGhoaGh6NZsxoaGhoaGhoeDSaMaOhoaGhoaHh0WjGjIaGhoaGhoZHoxkzGhoaGhoaGh6NZsxoaGhoaGhoeDSaMaOhoaGhoaHh0WjGjIaGhoaGhoZHoxkzGhoaGhoaGh6NZsxoaGhoaGhoeDSaMePhCAGffgp//NHcJXEPiovh1VfhzJnmLol7cOAAfPABVFQ0d0ncg+XL4eefm7sU7kF1tawbBw40d0ncg8xMeOcdKCho7pK4Bzt2wJdfgtHY3CWxD82Y8XA2bIB77oFx42D//uYuTfPz6qvw9NMwaBCUlDR3aZqfW26BBx6AO+9s7pI0P5mZcOWV8uf775u7NM3Pd9/JutGrFxw/3tylaX6efhoefhguvlgz/o1GuOoquO02mDGjuUtjH5ox4+H89JP6/dlnm68c7sLnn8vPnBz47LPmLUtzc+YM7Nolv3/9NRw92rzlaW6WL5feCICnnmresrgDS5ao32fPbrZiuAXV1TB/vvy+b5/mvdu5E86eld9nz4b8/OYtjz1oxoyHY97otm5tvnK4A8ePqw0QYNu25iuLO7B8ueXv27c3TznchV9/Vb+fOgW5uc1WlGanqgpWr1Z/b+l1o/bfv2NH85TDXaitO/bsaZZiOIRmzHgw5eVw4oT6e1aWdKW3VA4etPx9797mKYe7sG+f5e+eoJCaktry2L27ecrhDqSlQWGh+ntKSsueWklOtvy9JdcN8My2ohkzHszp0/IzOBi6dpXfW3IHfuqU/BwyRH4eOCANvpaKUj8GD5afnqCQmgqjEVJT5XelfrRk405pK506QXi4NGRqDwZaErXbyq5dcnFFS0WRh9JWPEF3aMaMB6MopPbtoX9/+V0zZmDUKIiKkq70lrxSQ1FIV18tP3fvbrkKOitLGrZeXnD55fKYJyjopkKpGx06qLpDkwdccQV4e8uYO/Mp65aGokvNdYe7oxkzHoxS4Tp0gL595ffa7sGWhDV5tNQVXkKo8rjsMtDpIC9PKumWiNJZtW4tV7qBZugCtGuntpWWLA+lrXTvDl26yO8t1VNlMKjxZIrhf/iwGjzvrmjGjAdj7pnp1MnyWEvEXB4dOsjvitJuaRQUyJw7IKcgExLk95YqD/POu317y2MtEXN5tPS2Aurf3r69Vj+U6diwMLls38dHerkzMpq3XA2hGTMeTFqa/ExKkkoJ1IrYElES5ZnLo6UrpJgYCArS5KHIo21bVRYFBVBU1GxFalYUebRrp9WNqip1Ssm8frRUeZgbut7eUp+aH3dXNGPGg1FcgbGxagNMT5eNs6VhNMppFLCUh7s3wKZCmU6Kj5efmjzkZ3w8hITImCpoufLIzpafcXFa3Th3TuoPnQ5atdLkYUt3uLvXXzNmPBil0sXEyIrn6yvnNdPTm7dczUFhoTqnGx2tKSTF0I2Olp+aPOSnJg+JYvjHxKiyyMyEsrLmK1NzodSNyEjpiWjpdcNT24pmzHgwSqWLiZGrNDzFHdgUKLIIDQV/f8tpt5a4gse8boDnjK6aCk0eKkJYdljR0TK9A7TMPc1s1Y2WqEfB0tAFz5GHZsx4MLYaYUuMm6ktizZtpNu4rKxlruDxVIXUVGjyUCkpUfMvxcTIdtKSjTtbdSMtzf1X8DQFtT0znhIQrRkzHkpZGej18rumoOsaM35+kJgov7dkeXiaq7ip0OShosjC31/1yGjyUOtGQoKcsjcPDG5JeKrhrxkzHopS4Xx8ZAZPkN4IaJkxM7WNGZA5RcD9lxQ2BbXlociisBBKS5unTM2JLXm0xO0/zDtvnU5+Vwz/liwPpW54e6vBr5o8PKduaMaMh2Ie/KsoJKUBZmU1T5maE2vGjKaQVHmEh8uROLS8+lFdre76q8ijJdeN2iNvaNny0HSHJbU9VYosCgrcO0C8SY2ZDz74gL59+xIWFkZYWBjDhw9nxYoVpvNCCGbOnEliYiKBgYGMHTuWlJQUi2eUl5fz0EMPERMTQ3BwMFdeeSVpSoKVFozWAC2xJo+4OPmpyUMavC21fuTnq0HgypLslioL0HRHbRTjTum8QZMHeN5AqEmNmTZt2vDKK6+wY8cOduzYwaWXXspVV11lMlhmz57NG2+8wbvvvsv27duJj49nwoQJFCupS4FHHnmExYsXs3DhQjZs2IBer+fyyy+nuiVGZpmhjDQjI9VjLbkBnjsnP5XOClq2PBSFpMlD7bzDwmQsBKiyKC6W6dtbElrnbYkmDxUh6srDUwZCTWrMXHHFFUydOpWuXbvStWtXXnrpJUJCQtiyZQtCCN566y2effZZpk2bRu/evZk/fz4lJSV88803ABQWFjJv3jzmzJnD+PHjGTBgAF999RX79u3jt99+a8qiuz1K5lIlXgYsK1xLW45cWCg/bcmjpaHIIyJCPdZS5WFNFqGhEBgov7vzaLMp0OqGJQUF8lOTh5xGqqiQ3z1NHuctZqa6upqFCxdiMBgYPnw4J0+eJDMzk4kTJ5qu8ff3Z8yYMWzatAmAnTt3UllZaXFNYmIivXv3Nl1jjfLycoqKiix+LjQUhRQWph5TplVKStSVTi2Fhoy7loTRqO7LpMnDet3wlNFmU2BNd7RUWYCmO8xRZKHTyUzZCp4gjyY3Zvbt20dISAj+/v7cd999LF68mJ49e5JZI5U4pQeuIS4uznQuMzMTPz8/Is3nUmpdY41Zs2YRHh5u+klSssldQFjzRISEqBXQnStdU6ApaBW9XvXMafKwXjeg5cqjvs7bYGh5AyFNd6gosggNlYlYFTxBHk1uzHTr1o09e/awZcsW7r//fm677TYOmO01r1OW4tQghKhzrDYNXTNjxgwKCwtNP2cuwLSW1hQSeEalawoammZqSdNuSt3w8VGnUqDl1g2trVhirfMOCVFzzrQ0eWieGRVFFp5o+De5MePn50fnzp0ZPHgws2bNol+/frz99tvE10intoclOzvb5K2Jj4+noqKCfCXa1co11vD39zetoFJ+LjSsdd7gGZWuKbDWCJUqUlqqTru0BMw7K3Obv6XWDc0zY4lm3KkIYV13KLLIyGhZAyFP7lfOe54ZIQTl5eV06NCB+Ph41qxZYzpXUVHBunXrGDFiBACDBg3C19fX4pqMjAz2799vuqalYktBKx14Sw1qNG+EwcHSXQru3QhdjdZZWaLJwxLNuFMpKVG3LDCvHy11IOTJnhmfpnz4M888w5QpU0hKSqK4uJiFCxeydu1aVq5ciU6n45FHHuHll1+mS5cudOnShZdffpmgoCBuvPFGAMLDw7nrrrt4/PHHiY6OJioqiieeeII+ffowfvz4piy626MpaJXqanWe35o8ioulPLp2Pf9law7s6ayEsPTaXMh4soJuCjTdoaLIwtsbgoLU48pASNEdF6Bz3yqe7JlpUmMmKyuLW265hYyMDMLDw+nbty8rV65kwoQJADz55JOUlpbywAMPkJ+fz9ChQ1m9ejWhynAaePPNN/Hx8WH69OmUlpYybtw4vvjiC7y9vZuy6G6PJ1c6V2M+crLWYR092rLkYauzUkab5eWy/pgvvbyQ0dqKJZpnRsXWlCy0zIGQPYa/uw6EmtSYmTdvXr3ndTodM2fOZObMmTavCQgIYO7cucydO9fFpfNsNIWkosjC31/NVKnQkuVRu24EBsoOvbBQyqOlGDOaZ8YSzTOjYqtuQMscCNky/JWBUFmZlFnt8+6AtjeTh6IpJJWGFBK0THlYUzgtUR72eGZaSpCn0agZd+bYqhvQMuVhq24oAyFwX3loxoyHornOVTSFZIktzwy0THnYUtDKaLOyUt0e5ELHYLCegwi0ulGbligPT9almjHjgVRWyih7sK2QsrLkKKwloHXelmieGUtsKWh/f3Vvs5YiD0UWtXMQQcusG5oxY4kny0MzZjwQ843xzFNOA8TGys+qKnXzxQsdZSWTJzbApkBRSGZx9CY0eViSkCA/W4o8zDsrawGv0LIGQvV13i2tboBmzGicZ5TO289P/pjj56fudtpScs0o8qht2IH7N8CmQDF26+u8MzLOX3mam/rkYZ4crSVQX1sxHwgpOydf6Cjy0OqGxJPloRkzHkh9CgnUWAB3rXSuRpGHko7dHEUW2dktZ7RZX/0wl0dLQAhNHubUJws/P4iKkt81ebS8ugH261J3RDNmPBB7jZmcnPNTnuamPnm0aiU/q6tbTpCnPaNvd1VIrqaiQnoaQJMHqF4qW7qjpcmjvs7bXBYtZbWbPbrDXT3+mjHjgdTXAMH9K52rqU9B+/mpQZ4tTUF7okJyNeY7QNfXYbU0eTQ0ENLaijoQqqpqOQOh+nSpuxu6mjHjgTSkkNy90rkaTR6WaKNNFUUW/v5yBU9tWmrd0NqKpD55+PurK+A0ebi/oasZMx6INrqyxF4F3VJG3/aMrior1WW6FzJaW7FE8+pa0tC0W0uqHw3Fl7n7QEgzZjwQrfO2ROuwLKlPHgEB6rLLliAPLUbEEq2tWGKvcdcS5FFWpi6SqM+YKStzz53ENWPGA9FcxZZo8lBpaHQFLcvYdUQW7jjadDWacWeJ1lZUzPOXme8gbn5MkZM71g/NmPFAtNGVJZrrXKW8XK7cAq1+gP2dVVmZZbDwhYrWeVuiDYRUFFkEBoK3t/Vr3FkemjHjgWgN0BJNHirmoyvNdd5w3QgOVuWkyaNl1Q3QBobmNCQLcG9jVzNmPBB7FVJJScsYbWpBfCqOjK7cUSG5moa8dtCyOnCt87ZE0R2a4e+YMeOO8tCMGQ/EntGmsomcO1Y6V6O5zlW0ztsSTx9tuhp7p2T1ejkYupDR4sssaWhQCO5t7GrGjAfSUAPU6dy70rkazXWuYk/n3ZLqhqcraFfTUP0IDZX5VeDCl0dDq3egZeoOTx0IacaMB9KQaxRazojCntGV0lkVF0Np6fkpV3Ph6a5iV6PJw5KGjDudruXIw3wK3trqHdAM3dq4c7+iGTMeiKagVcxHV7aMu7AwdXfxC32/Kns8Ee6skFyNpytoV6N57lQciS8rLJS65kLGEd3hjnVDM2Y8EHvcgS1NIYFteZiPNi/0DkszdC3xdNe5q9Hqh4o9nXdEhLoNxoU+EPJ0Q1czZjwQT7egXYkii4AA26MraDnycMTQLSiQu0pfyGiGvyWOGHctxfCvTxYtcdrNUw1/zZjxQJRVBrbmeaHlKCRFFvU1QGg5HZY98mhJo01FHprhL+PL7KkfLaWt2DMohJYnD3uMmbw8ub+bO6EZMx6IUunqM2ZaWgOsTxbQcow7e+Th5QWtWsnvmjxaTt0oL1fjy+yRx4WuO+wZFELLqR/2GLrR0VJ/AOTmNn2ZHEEzZjwQeypdS1NIDXlmNHlYoslDxXy0WVXV9GVqLszzxmjGneMDoQu9rTg6EHI3eWjGjIdRVaXGOWgKyX6FpHmqLGkp8rBn9O3Oo01XotQNX1/5Y4uW0nlrhr8ljsrD3foWzZjxMMxHV9poU1NItfF0heRq7DHuvL0hJkZ+v5DlocWXWeKo4X8h1w3wfE+VZsx4GEqF0+nUTJ3WiImR1wghDZoLFS1mxhJPV0iuRjN2VRytGzk5aozNhYhWNyyxN4bIXY1dzZjxMMwboE5n+zpttGmJppAscVeF5Gq0aTcVe9uKojeMRm0gBC1Hd9izmgncVx6aMeNh2NsAwX0rnStxtPO+0Eebnq6QXInRqG5focnDft3h6wtRUfL7hSwPbSBkiaev7tKMGQ/D3gYILWO0aW/nrYw2q6vh3LmmLVNz4ukKyZWY78OlyUPTHbVxxmt3IQ+EPN2404wZD0PzzFhib+ft5weRkfL7hSwPzTOjYu9SZGhZ8tB0h8TezltZilxVJbNmX6h4+pSsZsx4GI6Mri7U0WZZYRnVFdWA/Z03uG8jbCz6LD3CKADnYmaEaMLCnWeMVUYMObJSmG914dWAprtQ60Z5cTkVepnLwZmB0IWmO8yxt634+0N4uPx+odUPczTPjMZ5obxIKqWW7pkpLyrn/V7vs2DiAkAbbe76dBdz4uew6fVNgOOjzcpKuSPwhcJPf/+JOQlzOLvjrFOG/4VUN8oKyvig9wcsu2sZQogWP81UXlRu8bsjA6ELsX6YI4RzK0PdaSCkGTMewPKHljM7ejb7vtnX4hWSl68XvoG+nF53moLTBU4ppAtptJl/Mh+AbXO3AfYrpIAACAuT3y8UeeSfzOfAjwcQ1QL/cP8W74nY8OoGjNVGIjpGoNPpWvRASBgF8y+dz1eTvzK1GUcGQhdarpmitCI2zt5IZYncYKmyUsYTgv2emfJyKC5uwkI6iE9zF0CjYYJjgzFWGcnck0lJT3mspSpo30BfOozvQJ+b++Dj79PiPTOjnxnNgDsGENEhAnB8GrKoSMqjW7emK+P5IrJDJI+kPsLp9aeJ7hLN/nXyuKMjbyHqT3vgKfiH+RPXN462o9oCLXuKOnNvJhk7M/AJ9MEvxA9o2Z6Z5K+T+f3p30nbksY1315DYT4o5kBDujQoSG7OqddLeSiDouZGM2bcmOrKajJ2ZtDnxj70vakvkR0jefVVea4lNkCFyz+43PTdkdHmheip8gv2I6qzXEdbXS1HS2C/PI4du7DkEZ4UTt+b+gLOTUGWlUklHRraRAU8j4yeMRpmqL+3ZM9MXN84/nnon+SfyCd9azql50opKekHtEx5BMUE0WZYG46tOMZrMa8x8tUrgN4NbnWhEBsr20lWFnTu3OTFtQttmsmNyT2Yy7zh8/hkyCd1Rt6Odt7uNLfpLMlfJbP41sUc/vmw6VhLHm3mHsqlwlBh+t3erS4ULjQFrVB8tpjUjakUpBYB9rWV4GBVZhdK/QCorqjm6ylf80GfDygtlHWlJU5Re3l7EdMthgp9Bd9e8S07P97ZoqeoB941kLs230Wfm/tQoa8g95DMjmhPWwH31B2aZ8aNMWQbCIkPIapLFLoav7czo6vSUnlfSEgTFfQ8cXzVcZK/Sia6azQdLu1AUVoRBn00oGuRo6svxn6BIdvA5R9dTupfqXhHhgHjGtzqQuFCUtB5R/PY9Pom2gxrw9Ffj3Lwp4NE3zwFuMiuzgqkPE6elPXDXUabzlJWWIZfiB/eft6kbkyloriC8vbFQHSLbCsKUZ2iaDOsDXH94ig5Io+1VK8uwMgnRzL0oaGkFkXAXPuNGXeUh2bMuDEdx3fk8YzHqSytZP/C/aRuSKUyrSfQ3i4FHRwsK2dJieywPN2YGXD3AKK7RdNhXAdmhc4CAcZ2TwDBLW60ab4yIyAigOQFyUT2jAfGERRkX8zHhdRhpW9NZ9fHu8g9kEub4W2I6BBBeZUUgiOjTcWY8XRW/mslKd+nMPntyVz1+VX4h/nz5Dty7swRT4ReL/WHvTJ0V9a9sI7ITpH0+FsP7tp8FwCGL+S5lubFFEaBzku2jegu0QAc2yjPOWL4g3vJQzNmPADfQF+OLj9K8oJkxMAwoL1DCvrUKVnpOnVqylI2Pe3HtKf9mPaADIquNFRiNJQAwS1utOkf5s8TmU9QkldCVWkV418dT7FvFDxmv0K6kIy76G7RjJoxishOkQy8ayATZk9gzhxgYcuUR96RPKrKqgiMDqTnNXLVQPFr8pw9bSU0VHr3ysulPNq3b7qyNjXlReWsfX4tAN2KZKS7EC03rcOBnw6w4sEV9Lq+F1PemQI4JgtwT6+uZsx4CN2u7EZYUhhfbkwCHFPQijFzIfHwiYfxDfLllZpkVo6MroqL5dRbYGDTle98ERQttc/IJ0eydWvNMQ9WSM7SekhrWg9pbXHMkSlZuLDkccdfd1CUXkRglFrJHYkv0+mk7khN9XxjprqimoH3DKQ0rxT/UDn/Wlamnm9pMTOFqYUYsg2U5JRQWVLJwUUHOfm7HhiheWY0moZvr/iWgMgAJr4+kZ7X9qTntT2ZM1Wea2kKujS/lIJTBUS0jyAwMhDfIF+HEj2BXEJoPtps165py3y+cSSgEdxTIbkSRzpvuLDk4eXjRUS7CEBmiM7am4V/th+Q5JDuUIwZTyYoJogrPr7C9Psv9/3CkRXH6cpkjtDNrkGN4rUrKpKGUEBAExX2PDDwroG0u7gdPgE+GKuMLL5lMQC+DCYoyM+uZ7ijF1NbzeSmVBgqOPLLEZIXJOPt72063lIV9Km1p/h44Md8Pflr0zFHEj2BHG1eKPLY+s5Wlt61lJN/ngSgJK+E3H0ZBFLi0UF8zlJwuoCq8ipAGr7fX/M9Pl9+BogWKQ9zDi05xFeTvqLj2Q1AyxsI1aYkt4Ti1AIiKCQgALy9G74nIgJ8aob+OTlNWrwmJyAigNZDWhPXJw7/MH+6XNaFwOH98KHK4X7FneqGZsy4KTovHdO+mcaE1ycQEC6HAVVlVVSfk7nnW5qCriqrIjg2mIj2EQCkbkjl53t/ZihybqWlKehjK4+x57M95B+X2Uy/v+Z7Dj7yMZ044bBCKiiAiop6L3VrjNVG5naey0sBL1GUVoRvkC8HFx3EN+MMgZS2OMM/a18Wa55cw75v9wEQ1TmKuH5xFGN/ADBcOLqjurLa4veL/3Mxl35zJ/voY7feMB8IebruqM2Nv9yI//VXU0qQtjRbw/X4BvrS5+99TL8XphbyVru3uETnzQb+49EWtDP0+Xsf+vy9j2lDxZwDOeyfv4sOdGOnz1D87POOumUjdIbB9w+mzfA2tBneBoDQhFC8woLRFRntVkjKaLOqSsqjTZumK29TUpJbgpevF0IIQuJD8PLx4sp5V/L+PH8qN/m2OEP37I6zbHptE50mdqLP3/vQcVxH7ttzH89EAQbPziXiDEtuXcLRFUeZ/NZk+t/en/j+8aRXQykQY6ceBSmPs2c9Xx5b39lKSEIIXS/rim+QzJDn7BT1uXPSQ25Por2mRjNmPISACOmd0QmBD1UEBdn3r7tQFJKCsqSw9UWt6fOvsXz3TqxDy0YvlNFmtyu60e0KdQ+Ca769hox3Yd9D0N1OheTlJTeczMjwbGMmJC6EZwzPUHquFC8f6WwecOcAspZAFS1vSjamewxDHx5KdNdoi+POTlF7unFXmFpIeWE5vsFqj+tocDhcGLqjQl/ByodXAvBUwVP4ImXi6Gqm6GipP4xGyM2FhISmKK1jaMaMm5J3NI8KfYUp4NUv1I8ZxTNo08GXqlxdi1PQtYnvH0/HO+I5+A4kODi6ggtPHuC4QgKpoBVjxpPR6XSmlV0KjspD6azy8qS3ysdDtWPS8CSShidZHHN0qwu4cNrKzatupvBMIaEJcpqtOKOYM6tS6YIfwcFd7H7OhSCPytJKel3fi/LCclP4wuonVuP9/l6GMprg4GF2PUcZCGVlyR93MGa0mBk3ZdNrm/h44Mdse1fuhqzT6fAL8cNQ4lgisAthNAGw6KZFLLp5EYWphaZjzoyuLoTRZoW+guyUbErzSy2OO+oqhgtDQVuj4FQBvpmphFJsd/2IipJKGjw/yNMcY7WRLy6Zz318SABlLS5mxi/Ej1Y9Wpm822d3nOXYyz8ylrUtTncEtwrm2oXXctOKm0zHqsqr8CotIdiBxQPgfrqjSY2ZWbNmMWTIEEJDQ4mNjeXqq6/m8OHDFtcIIZg5cyaJiYkEBgYyduxYUlJSLK4pLy/noYceIiYmhuDgYK688krS0tKasujNjk+gDyHxIYS1VrckNU/05KhnRhlteiJCCA78eIB9X+9D1GwyJYSgKKuUSPId6rwvBAWdtjWND3p/wGcjPzMdO/3Xaaq//4mLWdfiFHTyV8n8+s9fOb7muOnYqkdXMSzlc7px2O764e0NMTHyuyfXj7KCMlNsGch9iTJ3pBNPFoGU2r2s2N06K1cR1iaMgK5tySDBoztvVzHiiRGcvux+NjHco6fdmtSYWbduHf/85z/ZsmULa9asoaqqiokTJ2JQhpDA7NmzeeONN3j33XfZvn078fHxTJgwgeLiYtM1jzzyCIsXL2bhwoVs2LABvV7P5ZdfTnV1tbXXXhBMeXsKj2c8zoA7B5iObXl3B1NZTjwZDs9tCiHnNj0RYRRc8ekVTHhtAiHxck+GsoIytl0zm4d5h+AA++vBhaCQKg2VBEQGEJqobu1cnF6M76H9dORki/PMHF99nB3v7yBjV4bpWFjbMIp9IqnGu8V1WO92f5f/+f+P7P3qHzHyjWks4CZEULBdW12AKoucHDUFgqdRlFbEuhfXkfx1sulYwoAEwh+9g1+4vMUNhKwR0S6CAr9Yygj0aN3RpLPCK1eutPj9888/JzY2lp07d3LxxRcjhOCtt97i2WefZdq0aQDMnz+fuLg4vvnmG/7xj39QWFjIvHnzWLBgAePHjwfgq6++Iikpid9++41JkyY15Z/gVhxcdJCLOEEarQkKsm+SUhltZmfL0Xd8fBMXsgnw8vai3y39LI4FhAeADiqEL+H+ZYB9rfBC8ER0u7IbT517CmO10XQsYVACeYMnsnlHFD2cGF15sjx6XtuTsKQw2o1WsyBOeXsKd/0whYwMx6bd4uJg/37PlYex2khJbgmiWhAUo1aEmFHdOQ60ckAWMTFySbLRKD27StvxJLJTsln73Fpi+8TS96a+puPOxJcpf39mpgsLeJ757enfSF6QzPAnhjP80eGm442ZsncXeZzXmJnCQhnvEBUVBcDJkyfJzMxk4sSJpmv8/f0ZM2YMmzZtAmDnzp1UVlZaXJOYmEjv3r1N19SmvLycoqIii58LgbZTe7Oe0RT4xtqV6ElB6bDcpdK5Ap2XjoT3/sPLPINvhP0aWglUy8723Gk3BS9vtflGd4kmo/1wDtPNIYWkyCMjo/7r3JluV3Zj3EvjSBphGfTqjIL2dHl4eXvxbOmzPHrmUYJj1XbhTDyVr68M8gTPlUdwbDAD7h5A96u7Wxx3dLoePL9ugFzZVXy22GIasjijmIgTu+hLskPySEyUn+4ij/NmzAgheOyxxxg1ahS9e/cGILOmd41Tetsa4uLiTOcyMzPx8/MjMjLS5jW1mTVrFuHh4aafpKQkq9e5K2UFZcy/dD4/3fiTRaVrffkA/uBS9KGOhY4rle7sWVeW8vxRnFFM5p5MSnJLLI6XVkiLzpEG2KqV9FYJ4bmjb1s4o6A9vW7UR0uVh7evN2FtwkxpDAByD+fRmWPE+pxz6FmeLo+EAQlc+cmVXPLCJRbHKz/6nH/xDsFVBXY/S5FFTo7MreKJTH57MvfsuIfeN/Q2Hcs/nk/PYz8zxsF4O3erG+fNmHnwwQdJTk7m22+/rXNOV2sSVwhR51ht6rtmxowZFBYWmn7OnDnjfMGbgeKzxZz68xTHVh6zUEjOuEbB/SxoR0n5LoWPBnzE8geXWxx3ZuTt5aWOsNylETrKmqfWsPSOpWQlq9aYEIKqvELiyCQwwFjP3ZZ4uiyM1UbyT+ZTVWbpZjv5VxrXVX3LZFZ4tIJ2FSe/3MDNfE2H0gMO3efp9cMm+flEkU8QpQ1fW0NMjLpc31O93MGtgkkclGixsCQ0MZT04C6coKNTnip3qRvnxZh56KGHWLZsGX/++SdtzDJzxdcEcNT2sGRnZ5u8NfHx8VRUVJCfn2/zmtr4+/sTFhZm8eNJhCSEMO3raUx8faLFcb1e4EsF4f72N0C4ABS0DoLjgi0CXgFKN+7iCn4mvOC0Q49zt0boKIeXHGbPF3sslmYLo2DE1re4n4/wN9pfP5S6UVAgdxL3NIrSinin4zu8Ev6KaaUbQGFWGd04QntOe7SCdpRTa0+x5sk1HF5muWrUKyaSTOLwCnJsh0RPHwjV3spAIXfMNOZxJ4Ftoq2et8aFMBCyRmTHSFZG3civXOaU4e8udaNJjRkhBA8++CCLFi3ijz/+oEOHDhbnO3ToQHx8PGvWrDEdq6ioYN26dYwYMQKAQYMG4evra3FNRkYG+/fvN11zoREYGUifG/tYrGQCOL1oF88yi1E5Sxx6nqcbM8MeHsYTmU8wcY6lcWc8epxB7CKwyLH5IndrhI4yZuYYLn3pUmK6xZiOeXl7UeYdjIEg/IT9Gy2Fh2PaNdgT5VGaV4q3nzch8SEWntrgjnEs43L+8BrnUKp1T68bp9efZtNrmzjyyxGL44GTLuZD7qOg82CHnufpuuPLS79kVtgsjq44anE8P7w9Z0giJMrOfVBq8OS4maqyKja/sZl93+6zCF8A52KqlLpRWKje35w06Wqmf/7zn3zzzTcsXbqU0NBQkwcmPDycwMBAdDodjzzyCC+//DJdunShS5cuvPzyywQFBXHjjTearr3rrrt4/PHHiY6OJioqiieeeII+ffqYVje1FKp85KgqgHKH7rtQRhO1pxX17Xqx92gsl3ZIdOg5nq6gzffsMmdh0hOcOgXX2J/UFJ1OyuP4cSmPjh1dU8bzRcLABJ4te5bKklpBDKGh7GIQYSHYvRQZLOuGEI7d6w60GdaGYY8OqxMM7Uz8EHh+W9Fn6qkorsAvxNJocWaKGjxbHsUZxax+fDU+AT4WMTPgXAhDaKi8vqREGnedO7uwsE7QpMbMBx98AMDYsWMtjn/++efcfvvtADz55JOUlpbywAMPkJ+fz9ChQ1m9ejWhoeqUwptvvomPjw/Tp0+ntLSUcePG8cUXX+DtyJIeDyL3cC6VhkoiOsitDBS8e3bjZWYwdqhju3p5cgOsj7y4nqwDzLYososLVR7OKuiEBNWY8UR0Oh1+wZadlbPxZYrhX1oqR5wREY0v3/mk08ROdJrYqc7xxtQN8ExPBMA9O+7BkGUgrI1lqIEuK5Oe5OGTHwu0svt5nqw7dF46kxFjPjCsroZbyz4mnELKz94B7WJsPcLyeTUDoWPHWoAxYz6HbQudTsfMmTOZOXOmzWsCAgKYO3cuc+fOdWHp3JcNL29g75d7GffKOEY9Ncp0vKTChwogJNT2vdZQGmBmpswZ4eVhm1j8cN0PePt7M2H2BIu4GUVBh4Q49jxP9lSVF5VTlFZEcFxwnb2InHEVg+dPrVhDXyyIJYe2XuUYq1qbNqBsiMBAacAUFEh5eJoxYwvDwVRu5w9it0cBV9p9nyd33iDzUSl7EJnT6uQ2BrCbir2X4Iwx44ltJaJdBNd8e02d4yUlEIyBYErwrnTM668YM+5QPzysW2sZ+Ib4EpJguZUBgF4vPx3trJREeZWVMvmVJ2GsNnJw0UH2fb0Parn89UVGmZ7dWGL9Zht4skI6/ddp3u/1Pl9N+sriuNEIfUq2MI1FFCWfcuiZntxh7fliD8sfXM6J309YHNcXCx7gA6ae/azOHlYN4cnyKM0vrRMPAVBWVEF7TuOf51ilN28rRvsXybk957xacZq2hCQ4NjL05IGQLQwG+JYb+ID7SBrsWGZEd2orHrov7IXNZe9dxmXvXVbnuCGvjEvZRHxyFTCx7o028PWV2Rqzs2Wla2X/QKTZEUbB1V9ejT5TT3Ct9KWRJ3fxFL+SP7873H+93c90pwboKFVlVQRGBRISZ+mOKimB9pymB4cwnG4LtLf7mZ4sj+OrjrN/4X4iO0XScZwa8GMo9aKAcPz8dVSXO5aLPzERDhzwTHnM7TyXsoIyHkh5gJju6nRBcXA8v3It1011bCQUFyenE6qrZX4VGwtI3ZKC0wXs/XIvUZ2i6HOjZZzZnqDhnGA4917r2DM9ua3YQq+HTBIICQE/D56G1IwZD8JQVM3F/AV7wVg93iIDbEMkJKjGTL9+DV/vLnj7elukITfHUCnjJHRGx1L5KgopO1t6qxxZ7dLc9LymJz2v6Wl1NcJe+pFKW+4d41iSSE8ebfa6vheRnSOtZv99i0eYcDGEtbFxsw08tcMyVhmlF0pgsZUBQLEIIYVe3NHbxs028PGRA6GsLNlheZIxk5OSw9rn1hI/IL6OMeOsl9uTvbprnlxD8lfJjHxyJMMeGWY67ux0PbhXW9GMGQ9CXxVAChcxdJQfolqAA/HPiYmwd697VDpXcdi3FyvpxYa3HQsEj46WSrqqSirpNg52du6AeTJFkMr5EN0JDoaE/o49y5MVdPeru9dJVQ9qZ+WMgnan0aYjePl48Z/y/1CSW0JgVKDFOWc7b5D1IytL6o7+/RtfzvNFSHwIA+8ZSGjrulNJjY23y8mBigrwc2xld7NSnF6MPkNfZyCk10MbztCzOpes5ETi+tpvsbqTMaPFzLgZhhwD8y+dz6KbF9UJoDaUebOCKQRfNQ5vP8c6cHeqdI5QfLaYjN0ZdbYyACg2eGPE22EFfSEmv7pQRleuoqXKw9vXm9CE0DrGrkFvpA1n8Dp53GpMTX14qjwSBiZwxcdXMPb5sRbHjUaIM5zgXj5m64wlDj0zOlr15HpaFuBJb07i3p331lmWbTDAYHYyImcZx1Yec+iZ7lQ3NGPGzShOl1sZnFhzom5elUaMNj119J38dTIfD/yYVY+uqnOuJXZYf/znD5bcvoSzOy0LrteDL5XE+suN5BzBPPlVSV2b0W0RRkHBqYK6OWaQ8hjNelr/tZBTa0859FxPrRv1YSg2cjefkTH7K8qLnctT5Wm6wxalpbKtJJJB4bEch+41Hwh5mjyCY4NJGJhQJ5O6Xg8ZJJAT2YXwduEOPdOdZKEZM25GWFIY076exoTXJtQ5JztvQaBPhc003bbwVE+ETqcjJD6kjqvYaASjoYQJrGbv7LqGTkN4aod15Jcj7J2/t46nymCAgezkmtS3rBp+9aEkvwL3UEr2UpJbwtsd3ubl4JcxVlkutTEYIIk0Ak4d5txxxzZX9NS2cmbTGdY8uYYDP9bdf0lf6kMu0QR1jKO6wvGAaPA8edSuEwp6PaTRhq+5kSs+utzh53qqPGxhMMBWhnJ0yI30vt6xoCpFFkVF6mC7udCMGTcjKDqIPjf2od+tdaN09Xq4nw85dc8sUjekOvRcT22AI54YweMZjzP+Fctsz6Wl4EMVI9nM/nnb7MppZI47jSgcYfQzoxn3yjha9bRckqbXQwX+GHWOJ5JUkl+BZ9WP0vxSvP29CYwOrJNHRq+H7QxGXH45bUe1dei55l5MB6tVs5K2JY1Nr23i0OJDdc7p9fAuDzJywX11VgU2hCfWDYBvLvuGWaGz6hh3BgMYCCYjpAuJgxIcfq4nGrvCKNj85maSv06uY8w2Jp4qNFT1jDe3LtUCgD0IgwEqkRO2FcX2778DnquQbKHXQxmBbGI4Tz/rhzAKdN725573VHn0mt7L6nGDAXbTn5jxA/jvd44/152SX9lLTLcYni21spUBUh5H6UrIGIhxMEO00lmVlcnkeZGRjS/r+SBhYALDHh1GwsC6HXRLnJI1ZBuo0FfgG2y5XLExnTd45pR96blSVj+2GqirQxpTN0C2l6NHpTy6OLCViqvRjBk3I/dQLhWGCiI7RFpdkfA1N7JitTddxzkWRm+eBbi6Gjx9JwjFsNsQNJFLZjp+v6cqaFtIBa1rtIL2NHlY28oAGtdhBQRAVBScOyfl4SnGTPux7Wk/tr3Vc42Rh6d6MW9fdzuGbAMh8Za9tF4PXlTTxeskB36qoMe0HnXiE+vDE9uKsdpI77/3prKkEm9fS+Wv10M3DtNu6WoW3dSaaV9Pc+jZiYnSmGlueWjTTG7GXy//xSeDP2HXp7vqnDMYoJQgImL966xWaAjz5Fe5ua4qbdPzw3U/8NONP9UJam3saMITFVKFoYLs/dlWV3a5YnQFntdh2cJggADK8CvIpuBUgcP3X0jyMBplYPd41vDHrfOdDohWBkKegn+YP1Gdo6xuMulDNeMzvuaHa3+gqtS5PFWepDtC4kK45ptruGHJDXXOGQzSuPMpOkfB6QKHn+0u8tCMGTfDL9SP0NahdSLOwfm9d0BNfgXNX+nsRRgFBxcfZP+3++ucM63sCpKJwpwNiPakzursjrN80OcDPhv5WZ1zej2EoCdh1y/8+sCvDj/bXRSSI+xfuJ9f//krR1ccrXNOr4cB7CLtmQ/44z9/OPxsT5RHWUEZxuq6Qa+lpTL2J4FMzm46RWFqoUPPjY2Vq3iULMCejowv86UoOJ6kEUkOB0R7ou6oD70eTtMecccdXDnP/n27FNylrWjGjJtx2XuX8VjaY/S9uSbrrdEI776LeOpp9HpBR45z8L0/HM4HAO5T6exFGAVXz7+aiW9MJKhVzXKbggJ4/HEMS9YAMO3se8yOmk361nSHnq3IQkl+5QlUlVYRGB1IcJyZNbt3L9x5J4aTWfhQSfCBneydv9fhZyvySHdMjM3KyT9OsuP9HZzdYVahv/8eHngAQ1EVZQTgExaIT6Djs+meKI8P+33I//z+p8qjshJeeAHDS28BsIGR/O3ra2h3cTuHnuvjo2b+9RTdoc/Us+6Fdez5Yo96MD0d/vEPDBv3ADr2jfgHd268k4CIuhtR1ocn1g2r/PUX3HUX+oxiSggipGdbYrrZt2O2Oe4SEK3FzLg7Tz4Jc+ZQRgCCV+jECXa9tQl/7+F0nuzYnuuJibB7t+c0Qi8fL8utDKqr4ZJLYM8e9LqTwASMPr5QIadgHCE6Gvz9obxcNsL27V1a9Cah8+TOPJn7pJr07OhRGDwYqqrQh42jhGsRF49h7JWOpyVt3Vp+ekrdAJn9NyQ+RI0TWbAAbr0VAH3o8xxnIHOXD2TkSMef7WnyEEJgyDEgjILA6JpYu7vuggUL0NMBeISsoI70vdG557duLT0RaWkwcKDLit1k5B3NY+3za4nqEkX/2/tL98OIEZCait4vAHjb6SlZpW7k5UmvV2Bg/de7A2v/u5adH+5kyINDuPjZi2HrVrj4YgAMkTcDlzgdb+cubUUzZtwZvR4++EB+Rba8VJJ4+IEhJI10bP8dgKSaW86ccVkJzy+//w579gBgEFKDpFx0B7+s9HY4I7JOJ7cxOH5cysMTjBkFU7zUhx/KPRkAQ1EVFfgTfPlYRjzu+DPN64YQUj7uTpepXegy1Wz5xOzZpq+GYjnd4myH5WltRafT8XTh05TklhAcGyytjq/kzuoGZC8VEiKos/W8nSQlwY4dniOPwKhABt4zUDXsfvoJUmU6C0OF7Pac7bwjI2VeppISKebmXMFjL8Vni9Fn6tXcO2+/bTqnz6/El0o4cITkr6rVWQE7cZe2ok0zuRFlhWXMv2Q+P97wo5z7XrxYtpgOHTC06gBAqn8XLntvKj3+1sPh57tLpbMXfaaejF0ZGLJrgoUWLJCfI0eajLuAMF98/H0cWo2g4GnysKC6Gr79Vn4fNcokj8aOrsrK5IjT40hOhv375WY5gwc3Wh6eWDeUrQy8vL1g4UJplQ4ejN5HLseK8S4gbWuaw0kEwfPkEdsrlis+voLxs2ryU339tfw0ayuJ25fy8eCPObPZsT9Kp/M8eVz6v0u5d9e9DLhzgBwkL10qT4wahYFg/Ckj+90fWXzrYodzdimySEuTURHNhWbMuBH6TD2n1p7i2IpjUiEtWyZP3Hor+r4jAAj2cSwVuTlta3KHpTqWb6/ZSPk+hY8Hfczyfy6XnffPP8sTr7yCwT8KgJAqx4IZzfE0hbT+f+tZctsSzmw6A9u2Sb9/RAS8+KJp9B1IKUVpRQ4HRPv7q3ERniKP/JP56vTi4sXyc+pUxJSpGAgmknNsfWqRUwHRnlY36qDI4667MHTpD0AfwxbmDZvH5jc2O/w4j5ZHYaH06gK8/TaGGmPGPz+LjJ1mgyUHUHSpp8gjuFUwCQMSCE8KhzVr5CC5Uyd4+GH0hFCBP6G929J5UmebmZNtkZAgDbzKSsjObqI/wA40Y8aNCIkLYdo305j89mQ5qlq/Xp4YPx5D1wHyGqFHCOFwhQPPU0g6Lx0hCTVbGezbJ5VSaCgMG4Y+UWZCiz61gzVPruHE7yccfr4iD08x7o6vOs7eL/fKZepK3Rg7FoYONSno9Kfm8mbSm+Qddty94kn1o7Kkknc6vsOskFmUF5Wr8pg0idIBIxB44U85xxbt49CSuhlxG0KRRW6uZ+xXlbErg9X/Xk3y18kykGP7dnli4kT0nWQ2cSEgon2EwwGv4Fl1A2ptZbBpk3QZdOoEAweij5R/jFev7vz9l7/TZlgbh5/vafKwQGkrEyfC8OEYCKYCP4a+eQM3rbipTh6ahvD1VYOA09JcXFYH0GJm3IiAiAD6/L2P/OXwYWnm+vvDkCEYtsqRd5fyfbzou5E2w9pw54Y7HXq+uTvQE+IiLnrwIi568CL5y9y58nPECPDxwRDbAU5CcMZxNr2WhV+IHx3HdXTo+Z6mkIY9Oowul3chvn88fPGXPHjxxRAYiD6wFZSCj7dA+HhRVeZY7gxQ4yI8wbgrPVeKT4APQgj8AnSwZYs8MXo0Bl+53KSQcMa/MJqgNo5nvYuIkFNUBoNsL127urDwTcDZnWfZ/Ppmul7Rlb6tz8lhcmKinKJulwXAOV00D5982Knne5rh/+MNP3Js5TGmvjeV/odr2sro0QAYopMgH4K9Sul6mXP/WE/THVvf2UpgVCA9pvXA9y8zebRujd4rG4wQknYIGODU85OS5EKKM2fkmoTmQDNm3BXFeh42DPz90cfKjtqvuhSBoNJQN4V7Q7RuLQ2YsjI54mzVquF73AZFHjUR+PpQORTw8RYMe2yYU6MrT3MV95hWEydlNMLGjfK7oqB9wgAYcV0iF39yi1PP9yR5hLUJ45mSZ6gsqUS3e7d0n0RFQY8e6E+rDueRl0XAQMcVtBIXceiQlIe7GzOxvWIZ9tgwWvVoBX/VTKuNHg06HfpI2TaCS53Plql03unpnpFB3JBtoNJQiW+Qr1yCDDBqFAD6AKn4QoqcX37jScZMZWklKx9eCUDXMQn47t4tTyi6Q1cTX5Z9EmeNmTZt5AKp5pSHZsy4EXlH8ygvLCeifQRBO3fKg8OGAWDwlp1VOX48uu5K/Pv3dPj5SlxEZqasdB5lzNSWh18EAMFVBUyaM8mpR3qSQrLg6FGZbycwEPr3B0AvpEIKO3fS6cd6mjxMWxls2yYPDB8OXl5qNmT0cOKE02uJzY0ZdydpRBJJI2r+gVc8Lz9HyDg7Q1BN5115Tk7Vhoc7/PyEBGnAVFVBVpaaa8VdufGXGzFkGwiK9IPbanRHzRp9vbf8+/0yz3B8zXEi2kUQ3TXaoed7Uluprqimz419KMktwf94ihwMJSVBmzYIAYZqOe3414cprJx3lmu/v5b4fvEOvSMpSa4cLCtrir/APrSYGTdiy5tb+GTIJ2ydu1UmQwO1szLIOaEgSgkzZOIf5u/UOzypES6+ZTE//f0n8vemwsmaTrpGHgYvadyFFKQ7nfVOkUVenvvHRVSWVpK9PxtDjgF21Wx10b+/zGgGGKplfQjOOO70OzypbligyKPGv23ahwgDhTuPkXMwx+GAaLiA5FEpO6twClh41UKnAqJ9fFQDxhPkoWxlEJB5WsYQhYSY3GsGnZyyL80q4quJX1km1rMTT6obAeEBTPt6Gjevull6McFUN0pLQdSYAfrccvKO5FGW77hF8tprUFws06I1F5ox40b4BvsS1iaM0PhgudQU1M5b2coAg9qxO4EnrWg6tOQQ+xfux5hyUB5ISpJTCYC+qqbzRo/xxEmnYkTCw9U8JM0ZuGYPOQdy+KDPB3zY70O1s6rxOAgB+nK5M3D6oWJ+/eevnF5/2uF3eJKCPrj4IL8+8KsM7q0lD3PPzNzZZbzf8330mXqH3+FJcSKmrQwyM2Xwgk4H/WTgr2rclXB4XSYn/3BOf3hS/TCh1I0BA+SeDIC+WuaeCa44R2yvGDW7uAMosigshKIil5T0/FCrrejNmsUVSbu4fd3tMibPQXzcYI7HDYqgoTDxtYlMfG2iDP4tKZHTCDUZmZRKF0oxGxemUZmzlrHPj3X4HZ6ioIUQXP7R5RiyDYRl1Ewj1Bh2AIYaT1UVPrzYYyFdpnbhxl8dS2+q00G7dpCSAqdPu3dcRKWhkqCYIEITQmHXcnmwRiGVl4PRKOWRkR/Akfd3ENMtxuG09e1qLk9Lk9MJ7qCgbHF6/Wl2fLADv0BvuqekyIO1FHQwBgJ9KqkKDnPK2FXk4e5tBeCzkZ+ReyiXW2d1oz1A9+6mJDuKcRdAKZdP8yP4lvFOvaNdO7kw6LTjdvJ5pfRcKVvnbiU0MZRBByw7bwBDqQz46coRRn71sIVesZeQEHVn9dRU6N3bFSU/D9gw/IMw0D53JzioM9wJN1ZXLRhliqlPH1Oknbln5re//OGvdYyeMdrhzLdKpttTp1xT1KZCp9PR58aalV13fyo/a0aaoHZYAUiXqKPbGSi0by+NGXeXR7uL2/HvnH8jqo3Q6ml5cIAM1jMfXfVmH/EPXkviEMeDGuLjZc65igoZ6NnOjfVal6ld8A/1p21sqYxIjYkxZf4z98w83mahTPPsBJ7SVgB1K4MzNZtumnXepk1ZMTAoNhOu7u7UOzxFHgWnClg3cx0hCSEM6lLXmDE3djlxwiljBqQ8zp2TjnJ3NmY2vb6JTa9vYuBtfbj0UE2aAiuGP9nZsvE4m2mymdGmmdyRmpT9lp4I+RmMnn7RZxh8/2CrO+Q2hKcoJAvqkUcbzvDvRyq4eeXNTj3a0+ShyzgL+fnSbdKrF2A28taV0Yf9XHJdDEnDHd/uwstLNWDcXR6dJnTikhcuoVNQpjzQr58p14CFgk5Pl/NwTqDUjdOnmzezqT08fvZxHs94nJjMffJAXzUlvcUUdSM20PGUtuIf5s/AewfSa3ovmZ8KrMojBH2jdkfsIJOyu708is8WY8gyUJ2RLStyq1Zy5IKZLHQGMonnwOdbyD3k/Kq35kQzZtyE6opquZXB9T9SuasmXsaKJyKYEq72X8Fl71+Gb6Cvw+/xlAZoyDZwdudZ9GkFMk09WBgzijzCKCao4Cw+Ac45GT1FQZtQZNG1q3SjYDby9qkJ3GuEgvY4eSidVZ8+pkMWnVV5uTT+nKBNG2nglZfLUBR3xsvHi5D4ELwP1NQPM3moukNPzvEi0renq5uVOoCn1I2ozlFc8dEVTH6yr/zfe3vLaTdq4stq5FFIGPNfz2H5g8udeo+nyOPi/1zMP3b/gyF9avSDtbrhW8lWhvLDQxs4tNTxJJPugGbMuAmGHAOn1p7i4KKD+CTXRJxb9cwYpGatdnx1Bqgj79xcy+kJd+PIL0f4ZPAnLL3xO9mbhISolhiuG115ikLa+NpGFt+6mFNLa6YgzfzaprrhV4kRHWXH0ykrdG6NpKfIo+BUARX6CsS+ms7bTB4mBe1fzWaGs/j2pQ7vvwMys6kSY+bu8gBkOzlyRH63Uj+CKOH9A5fw6UWfUl7s+LYoSt04edJpZ9f5RTF0u3SBALmiq6xMLbsXRk6d9uLsDuf0h6e0lcCoQOL7xxORWWOkWKkbIQGVRJNLUtcAQuKd3J21mdGMGTchIDyAaxZew9RXL5ZTCTqdVQs6RFciXYU5OQ5vCAZyBU9kTUJUd2+EoYmhhHrXrJnu18+0GsF8dOVNFev3hrPuxXVOvUOxjxqxQOy8cGLNCZIXJFO4ryYa1VrdCKhmG0N59T96fr3f8eW3YNlhuSvGaiPvdHqHWaGz0CfXbGNhTUGHwAk6kvxzqlPbO4BndFjZ+7NZ/cRq9ry2RkZuh4dLt1IN5osHgjAQlhRGdbnjgyFlJaTB4N6bkZq2Mthv20sF0J5TTOt9mPGvOBcQ7Ql1w4J65BEcJBjFRu6814f+t/U//2VzAZox4yb4hfjR+/reDOpbk9m3Uye5D1ENptF3uA+fcjcvJn3s1PJb8IxGOODOATyW/hhXDsmQB8ym3CoqVMeUL5X8mdWLDS9vcOo9iiwyMpo34VNDXPTQRYx/dTyJ5+p6Ikx1I1jgiwyErixxPEM0eEbdKCsow9vfG3QQnHNKHuypJpE0KehwH/qzh/HTI0gYlODUuzxBHpl7Mtk8ZzPJC2tSGPTubbFXicm48yrj37zGo1uuJzjW8SDPgAB1Dx53lsfSO5fycsjL7PixRj9aaSuB/tVEUkgf9tF+bHun3uMJdQNg+/vb2btgL+XJh+UBG4Y/0Cgvd3OjGTPuRnLdeBkwG33HBGDEC2OVc1sagOd4IwCr8jAfXUVxjgHsZNDd/Z3yVEVFqQ3ZnZfgdruiGyMfH0arkzXL1K1Mq4SEetGfvTw7eh3XL77eqfd4goIOig7i2ZJnmfHrKLwwygptxfAPifSlFymM7Gcgrk+cU+/yBHlEd4tm+OPD6dGmZgf5WktrTPUjuibR5gU+LWvIklsZ+GTWNGhrU5BBNbqiEbJQpuzPnXPfXDPCKFjx0AqW3LqEiswad5o1wz+sZlWsZsxoNJb8E/mkb0/HsK0mZ4aZKxDMRt+tgrie73hkViwdxnXAGTxBIZmoJ8DTz08Q4lfFlfzM5Cd6o3Ni50ydzoPkceKEdB8FBlqPH4rwxptqfDLTnJIFqLJQcs24M37HzTwRZpgUdHTN7tAXeOfdekhrJr4+kSF+NYZ/LXmYdEd8jcF3gctj+k/TeejwA3TLrJl6tmr466jGm7RzQZxcddip94SGQnTNLgjuKo+qsip6/703HQdFEkSJtMDCwkznVcPfj8N04+NfElnxrxXNVNrGoRkzbsKOD3fw6UWfsmFtjbfFhkIKiQ8hnELCy7Lw8W/cCh539swsu2cZP077htyzNfljapYhg5lCCtGpOdZdoKDdVR5V5VVk7ctC/1dNzoxevSx2+jN13pE1I++MDKffFR8v9/CqrnZvTxWgxgDYaiuxQVTiS9GJHEpynduvQrEZT5xwtpDnESsxEebxZSHxIfzOpXz33AHO7mxc0Ks7y8MvxI8or0ICywrk3FinTqZzJsMu1ItSvzDmcTdfTl7o1OoucH/d4Rvky7SvpnHLnT54Y6wzSDbpjih/yvAnQx+mLc3WaBw+gT6EJYURllczz2ur0imjq+xsp9/VUW7A7dYK6egvR0lZfJRKfGyOJoKDkTtnAiIzy2mFpOg6J3OrNTn5x/P5sO+HvPdg3dUIYNZ5R/tTRCi/6Yex9j+/OfUuLy+1frirPI78coRf7vuFlLU1bcCWZ6ZVEBsZyZsrevLH//3h1LuUunH6NFQ6N6vb5JQVlGEsKFJ7VDPDX2aHlt+DE8I4RQcO7S2nMLXQqXd17iw/3bVumFAMu549rRr+ISE6/FpFEEE+rTqGUF3h3OpQd9cdJhoy/FsF0IFT/D1oCeNfdS4gurnRjBk34ZL/XsKjf1zB8Kr1dUYTFqOrxDBO0p5NG4yc2eTcJimKQjp2zH2XWE5+ezKTrgkmkgLbbvNgIDaWt3mYF6btJWtfllPvMpeHO1KhryCoVZCaR8ZW5x3hS6lPGBsZxY6Pdjr9PndX0Gc2nWHnRztJPVnTS9uYkg2JD8GXCnQYEdXOVfTERNkcq6rc11P15bgveTHqTY7RSbrWYmJM58zjy4ITwxnOZi4bq3d4V2QFd28r5cXlrJ25lu3zkhFQr+7wi4/iYd7mgbe7OZ2nyt3lYcKGMWNu+IdRRNeSPST0jDrPhXMN2nYG7oSN0UR5uToqDEsK5y96sWNfAhevOkbSCMczvXboIEfgBgNkZZmSQboVvab3gj/fBcrqdFaFNYPK8HAgNhadVFtOB0S7u0JqfVFr/p39b0T3HnAYm167kFAdIa0CGZqxmcBrbnX6fe4uj44TOuJdqqf1W1/JTMjdulmcLy6Wn8EJoYxgMyPCD6D72LnEeYqn6sABadyZjTHcBkOOAQQEUmqzbvj7g098DD05ALG9oWOkU++q7anydTxvZ5NSlFbEuv+uI8C3miFgOxg6BAioCQpvhJfb3dvKtne3sf7F9fQtjGAi1BNfFijbUlUV5ORYLO33FDTPjDuhBLvWqnBK563TQUjbKFqTRp/QU06v0PDzUyPx3bURAjZHE8rKgbAwIDaW2/mcJ+7Op/VFrZ16jSd4qigvR3esZt8dG/UjPFyOviezijFXhDv9KndX0B0u6cDYiX504ZhFJmQFpX6Et4tEh0BXWCDX8zuJu8vj4ZMP8/g9hcSTZbOtKIY/0KjOOyFBxp9XV7vnhpO+Qb4M+scgeofUTLnZaCuK7gAuaGOmOKMYQ7aB6vIqi0zICqb6EaGjIiaR43Tk6OJ9zVDSxqMZM26AEIIvx33JDx8XUEpAndGVUuFCQ8ErPpb+7GWaz1J6XtvTytPsw50bYUleCWe3p1O8tyaox4Y8FAUdRjHBxZl4+ThXndu1k+28tLRRsbNNy8GDsgeJjFSTfdTQ0hQ0YNPwBzPjrk2ouvV3To7Tr3J3eXh5exFyIhlvqus1dImNpZRAcs+UUpxR7Ny7vFTvjDvKI6JdBJe/PYHLir6VBxow7n7mCr5830B2inPtRakbp083yl5uMkY8MYJ/vNebYWyRhr+/v8V58/pRHJHEV9zKT087P0XdnGjGjBtQXlTOyT9OciAtDB+qGlRIgNxz5AIdbZ78/SSfXPQpPxZPklZGrWkEV3fevr7u7ana8vYWFv/zd47TURp2tZZd11bQAh0VZ5wPiDYP8nTHDRYLThVQvmu/nFysZehWVKjJD8MivMiN7MyvTOXP/653+n3u3FZMWElhALXaSlwc67mY945PYctbW5x+ldvL49AhafjXyoQMdXXpGZI4ecYHQ5bBqVfFx0NQkGwn7uipCowMJN5wgkjy69QNsPRy+8dFEEsWcW08M/pEM2bcAG8/b6796iqm6pbja8WYsZhWiYxU42ku0NGmMApCo30Jo0gaMrVGE7U77yN05a+UKNK3O78jsDvL49Qfp0jepCefSKsKqbaCnsUMZj3v/IqVdu2kQ6OszP1yaAkheK/He7zyXScKiLDptQPZXgxhiezgIlKWOx+96851I/dQLqsfWMKu7DbSyDVbyQR120oAZQRQquwM4hTuLA9jldHSsLNh+CsDoUv5g7/1Okyrnq2cep9O597yAGwaumCpO0KSIrmfD7jjbu8613kCmjHjBvgG+tKrjxdDxDaIiIDWlrEfFp2VlxcHQocymydZeNMvTr/TnRtg7xt689hTvlzDT/VOIyijzf305o/sPqRuuDA7rEH/GMT4bqdJ4kyDoytiY6V3D6gwOOe58/FR82e424qmypJKdF6ygwrGYNMTERws/47IxEAuZh1Dxzmevl/B3FPl5P6uTUZ2SjabP9jLHvrL+Z+gIIvzFrojOpoxuvU8xauMe6Sv0+9057by6z9/5eU7j7GFYXYZ/t05RF/vlEZtrujO8tjx0Q72riugzEr4Atjw+jfCy92caMaMu2AeA1DfaAIgPJxSgijNdc41CmoDPHrUTYNe64mJqD3abMcp+rObVt2inX6duTzcjS5TuzBSv5o4su1SSA8ylxmXbnZ6tAnuKw+/YD+e2X41M3gJv2A/1eqqoXZbCWsbwSX8yZA+zm+8lZQkpyIrKmRmZHciqlMUwy/xoycpDRu63t7qsu1GdFhKzIy71Q2o2cqgUicN+nraiqumqMF924oQglWPrmJJ6iBKCawjj6oqKKnJJakMDAHNmNFwnoLTBaSvTkFPcMMNEOjYQfAA73Htvc4trwS53NTLSyq7LOfSszQtVrKZKljIIzqaQbrdXMVSOg+OcPp1XbvKz0OHnH5E05GfD+k1U2i1phGEqKuggyjFLy/T6S0NQA1Tckt57NuHH5XS0K01X2Jh2IFLOiwfH7UDP+xc5vsmI75/PBM7HGMYWxs2dEGVRyMavVI3Tpxwv0SC076exkPx39GrAeNOMfyLCCM925ei1AKn3+mubcVYZaTn+NZ05Ljci8qG4Q+qPBZyA58sjSX/hHOpDJoTzZhxA/Z8sYdPv/TnTy5p2BMBBLSOphU5hFaec/qdAQFqqnZ3a4TLH/yVH/d2IZP4huXh46NukNKIDqtHD/l55Ih7TSVUV1aTtWQzekIQSW3NeiWJeQ6i8HBcNrpSVnC6W90A6o0BqN1WRGws5fhTfCrP6YBoUOvHwYNOP6LpsDMmAuBsYEeWcDV/vu/8H9KmjczTUlXlflMrfhUGojIPypw79a10CwdateJPxvKp8S72frLV6Xe6a1vx9vXmbzcHcQsL8OvTzabhHxhYky8oNpYMEjhbGEJpfun5L3Aj0YwZN8AnwIdwb70MeLXDM+Mq96i7KuhjPx8ixdiTcr9QNbe+GTbl0YjRZrt20sCrqHCvfVaK0or48M7tvM3D9dYNna4mEVhsLMn04ffM3mTscD4g2m3rxqpj/PxVAfvoY1dbMUbH8gozeOOHtpQVOj/VpMjD3TqssvwSjPsPyF8ammYC9IGx7KU/x3Y4FxwOsq65awdu8ugmJcn4w1pY1A8/P0ICqginAN9q5+uGIoszZywzLrsFdhj+5nr0Mn7hhqhVRDqZVLE50YwZN2DU/X15pPp1xrDeLs9MeXgrdjKIbesaZz0rjdDdOqzx0yOZxApierSqM5qAuvLYVd2XWczgp+f2Ov1Ob2/3nGqqKK4gKKCaEPTo+truvENDa0TVqhX76cMGMZKMTc5vvqXUjZMnZf4ddyF9azq7TrfiFO3t8kR4J8bhRTUgqCxxfk7EXdvKNxO+4MXSJzjk01sN3jCjtjxadQhhPGsYNsD5zhvc05ipKqviz1lb2MYQjL3r1g2oqzvGtTvOI7zFsEkRTr83KkodT7mTPACHvHbExtKVo3Qr3kFgRMD5KZ8L0YwZdyAlRX62bi2XXteitgVdHhzNL1zBqm2Ns57ddfTdMziVYWwleGA3q+drj751oWFU4E95QeN6XXeUR1zfOP498Hf+xTt2Tavg50fXwDNcxBZatXI+ZiY2VlZFIdwrsLH90FjG8CddOWz3aPNpZvFcm88Iax1W53p7cce6AVCSUQToCOwQZ7EFikLt+hHZtRUj2UifVpmNeq87yqM4o5j1K0pYw0R0VupGebn8gabzcruTMbPr01289nN3ljPFPt3RqmbBQGWlqmQ9CM2YcQdspO1XqG1B+7eLpxuH6BlxFmO181nN3LEBAvXKQ4i6jbDHAH8e4h2unljSqNe6pTyEgP375f5T9kxBAoOTspjCSpJaO183zKcS3KnDahdeyFjW0S2+yGJDRQVro01fqtDlZDdq2Z4S5JmdDeecD1VzOQ/cW8ETvGZzK4+mmqJ2R8+Mt583g+LP0Jdkq17M2jmIAJdMUYN7tpXi03mUGAOpwsc+3REYSG5QO07QgcK9bjTXbieaMeMGfPPSKb5nOvoO9btGlUrn3z6BG1jINSGr8PJ2/l+oNMC0NHVzvuamrKCM9O3pFBFqtQGWlKgBuoo8AtrGEsU5gvSuUdDupJA4c0ZWACsbKoKV0RVc0KPN+tzmUM9os7y8UZU8NFRNJutO8vBK2U8wBnz6W5dHbePOGN2KIkLJS21ccId53XCX1A5hiaFcXvojV/BzvZ13SIjqxDpZ2ZrvuJ61PzifgBTcs60MHRPIfXzAqJjD9hn+wB+6S1nAbRxe6kZ/iJ00qTGzfv16rrjiChITE9HpdCxZssTivBCCmTNnkpiYSGBgIGPHjiVFmXKpoby8nIceeoiYmBiCg4O58sorSXO3ZA+NoKq8iqOn/ThIT7x697B6Tb2jq0ZokshIdfGLuzTC1N+P8mnqZBby93rjh7y8ZGI0oEkCot1FQW9/9XcW8zeOtB5bZ0NFsK6Q5JYGUH22cVMJ7mjcFWxMoRw/m8ZMnbYSFMQ2v9GsYApZfzVuXbU7dliOGnelAZG8yeO8u3dMo7y6nTtL+7q42I2yRKelyQrg41NnQ0Ww7sXU+0RyiB6kHm/cGnN3bCsBpw4RRxZRA9pZPW9tIBQRLmhFNv5VjfNyNwdNaswYDAb69evHu+++a/X87NmzeeONN3j33XfZvn078fHxTJgwgWKzEdQjjzzC4sWLWbhwIRs2bECv13P55ZdT7U7rZxuBDrg2dAWTWUHgUOtZOevEAbhotAmqgj5woFGPcRnGU6mEUUi4b6nc+KQW5gpJSaNSEhDFVi5ie7J/nesdoWtXaSQVFEBm4+wAl3HqrzSS6ce56C5Wz1tT0BvSO/ACz7N8fm6j3q3UjVrji2blw69DeYVnyImqP57KXEHv1/VhG0PJ23OmUe92N3mcS8lg5eH27GSQVWOmTg4iwK9tPDqM+FNOVWmV0+/29VXjjd1FHtW798r9urp1s2r4W+u8W/eN5jJ+YUQ751f+gVo3jh51ow0nGzB0remOiRcV8ADv06+nmyUQsoMm3VFqypQpTJkyxeo5IQRvvfUWzz77LNOmTQNg/vz5xMXF8c033/CPf/yDwsJC5s2bx4IFCxg/fjwAX331FUlJSfz2229MmjSpKYt/XvDOzaJX8Vbp96yVEE0hvyZ/UVRUzYGgIOZ53cs5Yzi3rDtM/BVDnH5/796wdq1a75ub7pFZdOdNGDm2TiZkkIYGWK661HuFsZKpBKWW4bwk5NLsLl1kYrTk5DqbUzcLA6NOkcgh2o+YavW8tc7bOzwE0FFZ1LiA6L41tvWhQ9Ju9m+crdhoqsoqEVXSmxA60rrhb00efRNzaHfyENHB1g1Ce1H6hOTkRj3GZWSv3MVWMYxE7ywGWamspaUyFwyo8vBpm8D/8QI6AN2zQN1O31769JF1IzkZJk50+jEuY+XLu9nDs1zim88IK+etdd5RvROJYgfoGle5lZXgBQXSO9OvX6Me5xJ2rMzBl35069QLa2uTbHl1AY/MAtxsMTMnT54kMzOTiWatwN/fnzFjxrBp0yYAdu7cSWVlpcU1iYmJ9O7d23SNNcrLyykqKrL4cVt27ZKfPXvK7EW1qKxUnS8mYwYo8Q6hhGDKzzSu0imNbq/zq5pdy+7d8nPgQKunleDLaLOdC4I6J9CTFHp4Nd7/727y6JSxgZFsIv7ywVbPK/IwrxsDJ8bwOK9zRc/GZTRTFHRVlXtMrfhknWUGLzPD+1X8h/W3ek0dwx8Y3LeCcfxBXGDjvJhK3XAXYyay6DQj2EjvTiVWDX9FFj4+NTmIAF1oKLqAmq6tkR2Wu7UV/Zl8qvDFp30bq+ettRVXdd46nWr8u0X9MBpZfaQDS/gbJW3rTrmB9bbiqoDo5qDZjJnMGj9+nBK0UUNcXJzpXGZmJn5+fkTWWq5sfo01Zs2aRXh4uOknKSnJxaV3Hfl/7CKNNui7W++slAqn01la0NN7JHM/75MYXd6o9ysNcO9eN4kTUYy7BowZ8wYY0rMd1/EDl1ctAYPz+1WBmymk4mKZkhhgwACrl1iTh3+7eELQ43uucQrJXEG7RYdVUzf8+nRTO+Ra5OXJz6bosHr1ktOQ2dnuMQ0Zl7OfCaxh+NVxVs+by8Jk6+h0LpOHW7UVYJr/r/yLt+l9i/1tpToimlxiyMxwPn5IwZ3aSvWR4/TkAB11JwkZad1NZK2tHMyI4EtuZd1ad+gMHKPZVzPV3j9GCNHgnjINXTNjxgwKCwtNP2fONG6uvCnZszyDedzN2nTrLnClAUZEWKaRiOsQTCzZ+BY0Lgpf2d4mJ8cNjPHqan7ZFssPXEdWUAerl1gdXYWGqnMgOY2ThzuNNqt37CaDePQJXdQOqBZNOdoEN/NGNGDoCmFdHqJVLBX4UZHeOHkEBclpSPAMeVitG8DaqlEs5Spydzm/yzyodePgQTeIEykowPfkESLJJ2jsRVYvsebVLawM5D0e5HP9dChrXCJBd2or3vv2cDVLuGVQCn6R1neMt1Y/9CKYk3QkK9v5HFXNRbMZM/E1wZ21PSzZ2dkmb018fDwVFRXkK+4JK9dYw9/fn7CwMIsfd8UnK51wCojo7YBrFFzWYZkr6GbvwI8e5VhVew7Qi8pY63kzrMpDp3PZnkS140Sak/zfdvIx9zE35wab11hV0FXBbGAU2840PujHnUabR1Ye52euIAXrsWUGg7pPlbk81mwOYRbPsG5t48vgNvKoqqJ0z2Gq8XJoShbgYHEb9jCAwqONayvKNGRlpRus4tmzR362b29FWUqseSL8EmMIoJRAShEu0h3NXjegQUMXrNePjmOSmMZPDA92hz/CMZrNmOnQoQPx8fGsWbPGdKyiooJ169YxYoQM3xo0aBC+vr4W12RkZLB//37TNR5Nbi6jC3/hEd5i1GtXWb3EljGTWh7HLgaSdSCv0cVwG2/Erl1MYhWT2h8kqnsrq5fYksfcrOm8wtPkJzfOC2ceJ9LcCrpi70GC0RMWYbuZWlPQheX+/M54tpT2a/SQ2bxuNPc05JmDJexiEKcLI6yeV+qGv79l+JlvpAwYqShuvHXqNqPvQ4dYUD6d//F/HDtq/R9jdcoNuKhPKeP4jSjvxmV5dac4kfJNO/mDS9kePgFho6JanaKOD+WpxAU8wlvoGunV7d1byiQ7u/m93GJnw8aMtfoRPbgDfdhHUnFzW6eO06TGjF6vZ8+ePeypsZpPnjzJnj17SE1NRafT8cgjj/Dyyy+zePFi9u/fz+23305QUBA33ngjAOHh4dx11108/vjj/P777+zevZubb76ZPn36mFY3eTRKsGuXLpYh9mbY6rx3HgjiZ67k+IHG+3fdxpjZvZseHGTY1GiCooOsXmJLQZcLf8oJoCLNdYF8zS2PxNQtPMHrPPCJ9RgAsF4/wrol0l+3l17sd1mcSLNPQ2Zk0MmwhzGspctN1tesWY0RAUbd1Y0ZvMTU8I2NLoa71A127aKEIEBHUGyI1Uts6Y5Bo4MYxQYiKxs/Deku8ijclMJfXMwfR1rbDEGw5alqCi93sxp3QrB1UzWzeZLVG+ouKgHpTVPWxVidoj53TnVzeghNujR7x44dXHLJJabfH3vsMQBuu+02vvjiC5588klKS0t54IEHyM/PZ+jQoaxevZrQ0FDTPW+++SY+Pj5Mnz6d0tJSxo0bxxdffIG3lX1IPI4dO+SnjeBOsK2QEnqEU7ZjAxFVzueKUHAbY0aRhx2u0dryuHVKNt5LFxHu/Viji9GvH6xf38zyKC01Jf/RDbIuD6PRujwiOkZxVcJWmc0sO1tNXesEioI+fFh68idPdvpRjWPXLtpzmvbdA+Fv1vNm2Kobvu0SgUrIbrw1Zh4n0qzL1Xfu5GHmUnLPwwT0tT7l3tSdN6jyUGZ5mgu/g8kMJguv8ZfbvMbWQMhVU9Qg5XHkiJTHhAmNfpxzpKVRbPCilCCMEbX/+RIlxQVYbgdY4R9Cjq4NQgja5Oa6R34KO2lSz8zYsWMRQtT5+eKLLwAZ/Dtz5kwyMjIoKytj3bp19K6V9TUgIIC5c+eSl5dHSUkJP//8s1uvTrJFeVU5+aX5Fi5QsWUrn3MHPxzqS3mRdRe4LQU97Pbu/J1v6UnjM1YpttTBg41eDGQXRmEkozgDfYVZSvXqagzbU0inNcU2tnUA2/KI7RZJNHn4nGucqxhUW0qxrZqa1MJUsvRZVFSbedl27ZL7NsTH2zRGioulQQNNF1MFMGiQ/Dwf8sgrySOtKM2ybgBs3So/L7Ie3Al2dN55eWriFSdJSpKZ4auqmt7YrTJWkVaURrbByv9w61Z0CILHDsHbz/rAzlbnXRkeg54Qys42fopaqRs7d6p1sakoqSwhtTAVo6j1ooICIk7s5DKWM2XetTbvt6U7lp/qyfdMp+Bw45eoKfLYvr3Rj6oXIQTnSs9hqLCisLduZTTrua/bHwx7fKTV+5W6UXthSe6Rc3wq7uZ7rm/+uTIHafbVTBcaRmFk5bGVPLj8QfJKVGWx6vgqomZHMejjmtouBIbNyaTSjgP7qvAN8rX6PJsBwC4cTSQmyg27jUaplFxJcXkxX+z5guQs1e+aY8gh8Y1EQmeFkqmvUSAHDnDMkMCn3MOSl20nNTkfo02lv9y5s9F9Xx1OF5xmS9oWi2MDPxpI/Jx4fj78s3pwyxY2MIpFPtM5ufaU1WcpCikoSCb8s6BmSwPhAoWkyEOxJ1yFEILUQssVNQ8sf4CkN5OYs2mOxXHj1i2cI4ryvkNsxkTY6rxzs438zji2chHkNi4rsk6nymPbtkY9qg6V1ZZu/c93f07Sm0lM+26axfHsc2cQu2tiIoYOtfk8W7pjxY8G5vAE2w6F173JQXr3lnWvoACONS6tUb2kFqYS/HIw7d5qR1mVuurodMFpjv+1VP7SsaOaHd0KtnTHkbOhHKQnhtTG7yDaVHWjNoM+HkT07GjWnFDjSdOL0pmzaQ4FW9cRQDlxl/Qkon2E1ftt1Y2A8ADCfQ2EUeRxifM0Y8bFCCG475f7eG/7e/x56k/T8dJKmY21U1QneeDMGfxy0rjK50cunzsJLx/r/4oGVzO5YLQJTddh3bnsTu5Yegff7PvGdKysqgwdOpLCkogPqdmyYMsWzoTqCPUvI6ydbSVrSx7Hs0LYxhByTjR+x8zu3WUIU0mJa1O1f5X8FR3e7sDTvz1tcbxbjEzNP7SN2jGt2b+MP8M7si8tiqI060kfbcnCWG1k1p/DeJHnKD3VeIWk9JfbtrkuCPhw7mEGfDSAvh/0tRhddorshJ+3H/4+6vxNZtFZunb/g7k8xCtP5GHItu4+tCWP/NNFbGA0e+nvUmPXVW3FKIy8sO4Fkt5MYnu6OqRvH9EeHy8fgv3UpbVCCMZ+djFTJ0fzQ+hV7FlvOyGorc7bLyoEEFTrG5chGuS2Boon01XyOH7uOLcvuZ33tr1nOpYYmoi3zhtfL1/8vdW68eL6F+my6w7+O9obMXSYzWeWl6te59r1Y8wkf6byK+HlrvFi6nRw+rTrHBu/n/idF9a9YHGsVbA02gJ91JiYDakbeGLNE/Tw/QiDL3YZurXrRlTnKB65eBd386lmzLRENp/ZbPru7eXN48Mf575B99EpspPp+PW9r6fkmRLemfyOPLB1K2mRlVz++GHSxtmu9bYU9P41GbzDv1gmLm/0aBPUet9YhVRttNwz67Z+t9E1uisdIzuajrWLaEf1c9UcelD1wORsX8s/7tnLB099RJ/XrU8zGY02slYC2/8qZwWXkXqm8fkRvLxgSE2MqSuNuzHtxuCl8yLAJ8DCu7Dxzo0YnzPSJkxOJwkhmO27lQWXbaZw2hnaDHVs2b6XtxfVRh0CLyrONr5u9O8vs8hmZ0Nq41KTmOgY2ZHSqlLKq8vZcVadv3rp0pco/085T418ynTss99eI9MvgErfCnTeOoJb1Z83o7aCjuwUyUVRR+lDsksUtLlx5wq8dF7sy95HliGLBckLTMcv7XAp5f8pZ9XNq0zHDuUe4pQhneLKeA4UD2D/d7atbVv1Y+Irl/Ic/+WS0uUumRtytTx+OvgT8/fO5+2tb5umlHy8fMh9Mpfy/5Tj7SXnRYQQ5Jfl422EuJ1X8/KPXdn5iXXXsiILL69a6fuBAZclMoTthBRnNLrsYWEymTu4Rh57M/cyfsF4Xlj3AmlF6gbL86+ej+EZA5M6q1v6JIQm0CumJ7N+g+TKYezJjKPCYH2BiM34IfDYLQ00Y6YRVBuruXPpnYz4bARrT601HX9o6EN8cPkHDEiwDOwN9A0kIbQmoGrLFt4ZCumBlfzfn/9XxwhQUOpT7R3cqyqM5BNFMWEuVdCN6bxP5J9gxGcj+Dr5a9OxqV2mcuifh7h30L0W1+p0OoJ81RVLmSnb8DGCX2AIXjrbXirFBqiVFJo2FyXQgwOEl7hmC19XuItXHVvFu9vUTVaTwpM48+gZVt68ss6KC4vfz55l+s5yIoOP8ujcx4nuaj2Irz6F9MBj/jzGHMJKGz88DAhQAz2drR9GYbSYRvP19mXJ9UtIfyydMe3HmI4rcjCXx6OFPbntgIHrxq1gRtEMdF7WDVZb8ojpFsOU/hkMZ4tL2opi6B45ohrXjlJQVkCVUfWozh4/m2+v+ZY5E9XpNW8v7zptoUerHqScmMy/9+QwYhT0uKaHzXfYkodXfKzcm8k8grwRuHpq5eGhD3N7/9v58m9fokP9X0cERFjUC51Ox0/X/cjx+eEElIRSVQl+Idb3mlJkERkpDRoLXNx5u1Ie/eL7cW3Pa3lgyAMWHqn4kHgL/QlwcbuLSR42n5u2G1nNZJbO2EZ5qfVYTM2Y0bDA28sbf29/dOg4kOPgttNbtzJjZQz/yb+B5ZctN402aqO4KmvnCOw8pTN3dvyTKaxwSaUbPFg28rQ0uQjGGd7f/j7b0rfxzB/PmIJZvXReDWZ0priYPpuPs/VT2PT3NbSPaG/1MkUWUVF1N8Ud9dRIpvM9nYt2u8Voc92pdUz+ejKPrHyEbenqQ0zGbD3otm3jnl2wZUtvkhJtd1a26gZAVI94QinGK9c1Cqkx8qgyVjHtu2lcufBKvtz7pel4j1Y9iAq0nuDMnMBtu3hvOfTrNc5mbBmo8rCaLNmFCjo6Wt0x2plAz5P5Jxn88WCe//N507EOkR24ofcN+Hrb/vtM125I4aqMdCY8N4JB9wyitLLUMngc2QSUP7WOPHx91V7MhTFVe/Y4l2hy2eFl3LToJpO30t/Hn8+v+pxhbYY1rDtOnKDt6QJu8v2efx28j8gxkXyV/FWdy+qrGyV+EeQRTWlm4/LuKDRmYCiE4PPdn1vET3137Xe8M+Ud09RSfXht2041PvRLyKbtxLZMXDKRHw/8WOc6pW5Y0x0//B7NAm7BcLrxXt3ziWbMNJI5k+aw4c4NPDDkAftvKi+HnTvZzlB83u7O0U+PWr3MXCHVrnQhcSEktfcminMuUdAhIeqm3c524LMnzOa/Y//L+tvX4+ftwG68W7eCEPxlvI01T+4j/6T14W59nbfJdVVd7dLRZkoK6PX1X2uNi9tdzH2D7uOegffQJ9b26iyrbNlCBX5kdBptig85du6YRUA5qPsDWZWHCwPEoXGjTR8vH/rE9iHAx/p+Sg2ypSZguqaX2JC6gYdXPFwnEFipHzXJxS0QsXFU4uMW8lh7ai3H84+zMGWh9dUo9ZGdDSdOyO9DhvDz4Z/p/l533t7ytsVl586poXS1O/CzO86yQkxmK0NdIo8OHWTzq6hwfIXX2eKzTP9hOt/s+4ZFBxc5/vLNcorfd2AfqpK86LOgD7cuvpXdGbstLqtPdyx/+yjv8hDJWXEuCQpT6sb27Y6Pqx5f/Th3LruTmxffbKrftjzVVtmyhQDKufqeGLL+L4st6Vt4+ren63j+69Mdx48LTtCJ0owCxwrfzGjGTCMJ8g1iRJKD2Yi3b4eyMvyDfAhvF054TcDrpjObOJF/wnRZfr5thWRx0EUKWhlRbNlS/3XmmC8b9dJ58dyY52gX0c6xF69fjwAOl7Uj5fsUjMLIJzs/YdyX4yxc8fUaM35+6tyTC+SRkCCX4RqNzo2+dTod71/2Ph9c/gGBvtYTV9lk3ToySOCTJXF8NvIz3tv2Hj3f68lzfz5ncVl98khJrmYjI8lLa3yQJ6h1Y8cO53JpvXDJCyTfl8yt/W517Mb8fNi7l730Y9kSIzsW7WD8l+N5Z9s7LDu8zOJSWwq69FwpL8yN5GX+gzHTtcaMI21F4Y4BdzDvynlsuGODRXCvXaxfD4C+2yCqg0M5V3qO1MJU5u+db9Fh1efFzDuax7b8rhyiu0vaivkKL0flkRiayCdXfMItfW/hqu7Ws6DXS408GDmSVsGtmNplKv3j+9dZvl2foesfG44/ZWCshsLGe2d695YZqAsK1H1i7WVCxwkE+AQwoeOEhr1S1jCTx7+G/ovb+t3GLzf+UsfzX5/umPKPtlzNIkKKXDNlf77QjJnmYN06ACZM9eWRU48w8K6BvLbxNUZ+NpJXNrxiukypcJGRdRVSWWEZ+wvbsJ9eLjNmhg+Xn3/9Zd/1J/JP0OO9Hjyx+gmbMT92sW4dAh3T7olm0luTIAZm/D6DP07+wdJDS02X1dcAd3y4gzeK72EFk10mj5E1KRoU/dAQ36d8z8y1M02K1CllpNfDjh1U4ktIbCDhbcPp2aonlcZKUnJSLJR0fQp6+5J0fmMCmbm+Lhltdu0qR9+lpfblmxFCsOzwMgtZdIm2vplqvWzYAEJwMrQvu785ROnhUp4b8xwPDnmQ7jHdTZfV58X0DfKFGhG4IiAaYNQo+fnXX9IZ2BCllaUW/7s7B9xp15RjHWp0x0dnpvI///8xQUzgg8s+YNs92yw6rPraSlyfOEZ1z6Yfe13WVhR51BTPIW7pdwvzr56Pj5cTOVzXraOQMH4/04U98/fwwWUfsP2e7QxKHGRxWX2eiCvmXc3TYe8zlG0ukYevr2r8OyqPKV2mcPxfx7l74N2Ov/j0aTh1CuHlDSNGEOQbxBdXf2HRThTqqx/9buhBP5IJyEt3vAzNiGbMNAdK7zhGDXwc0noIPl4+VBrVYW99Fa74bDE/rQjhVy532RpAJVnztm32Ta2sOraKc6XnWH96vUW5HaKsDLZuxQtBz8cmM+zhYUSHRfPiJS/y7pR3GddxnOnS+uRRVV5FcVUQBkJcpqAVefz5Z/3XgXSX377kdv677r8WcSEOs2kTVFfTuV0lj2c9yS1rbuGSDpdw8J8HWXv7WguXc33y6DSlK/3YQ1h1npq3vBF4eanV1R55vL/9fa5aeBXTf5huMy+MXdT0Br1HhDH2v2NpP7Y9z4x+hrlT55qWtEP9Xkxvf28e/6I3T/My/ucav2IF5Aqv8HAp2t2767/WKIzcuOhGrvn+GorLG5k6YN06jHhRVukDAsISw7hv8H11gkHrqxuxvWMZdyn0Z4/L2srYsfJz7dqGp1ZyDDnc/8v9FJWr9dIpwz8jA44cIYdYNvyQxZY3thDmH2Y1/rBery643MvtiO7YnbHbQhaJoYnOvbSmrayOvZnZ7d9n05xNNi+td4raXBbNvSGbAzTpdgYaVqishI01e8SYGTNj2o0h/bF0YoNVTVxfAwyMDKRdVz8CjxwEG3k3HKVDB2jXThr4GzfCpEn1X3//kPuJC4ljaOuhzsdDbN0qY4ji4tSNTWqeXZv65NH7+t60/fk9gn9fDdlj6l7gBIqC3rxZeiQC65ktSgxN5IPLPmDxocXc0vcW51+qDOVq6oaycsfa6Ko+hTT6+UthztUyTXB2dt31qE4wdiz89JNU0M88U/+1IX4h+Hn7MbT1UOc6KoUaeXS+ZTidb7L9f61vWkWn0xHSrTVQATmu6ay8veHii+Hnn6U8Bg+2fe3mM5v5+fDPeHt5cyTvSB2vgd3k5cG+fXgBz6T+gxKvEIJirO9hVm9nZX7CRZ334MEQHCxjdfbtU1e/WePWJbey8thKMg2ZLL5+sfMvrRkUhnZLZMiEIQTHqlN2ldWVLDu8jPEdxxMeEF6vFxOQHfixYy4bGJobd0JY7hVmTrYhm4lfTSQmKIbVN68mKbwR2e1r2kpxeBKlh0tNucuyDdm8veVtThSc4NtrvrXwYlqTR0GZPyUkElFWQJBeD2bbC7kzmmfmfLN7NxgMFIa3Zd4/trH4VtmYdTqdhSED9XfeIfEh3P5aL67nO5cuoXNkRAEwrcc0Woe1dv6FNQopf9B40ralY8ixbZg1JI/EbmGEuzBzZZcuMjtyRYUpzrBebut/G4uvX2xzZZpd1DJmaiOEoKK6ot5pFRNNNNrcuLHhzbhv638b++7fxxMjnnD+hUVFclsHqCMPIQT7svYxd+tchBANd95NsNxUkcfatfVfN7LtSHbeu5Nvr/nWeUMG1PnfHj3QxccRHBtsMnbXnVrHxAUT+eev/wQaCIYWgorwVnKjShfJw9cXRo+W3xuSx9Mjn6ZvXF9euvSlxr20pq3ETR7A1LlTGfN/ah0Zv2A81/5wLauOyxw99dWPk3+cZGnaIJkh2oXxhwEB8v9wyHZCc04VnMLP2w9fL19igmJsX2gPNfK4/IUh3Jd8H72vl1sDlVWV8fKGl/lu/3fkluRy7pw6NWotFvOXR/7gE+7lKF08anm2Zsycb2oqXEGfUaRtTuPMpjN1LimrKqOyuvK8u0ZBVdB//GH9fHF5MU+ueZLCMtcsY1TksUf0Y96weax9fq3pVEllCUsOLTGt1LBbHi4aXel0DXdYqYWpFssoG+WFKCkxLY/55fcAFt20iOwU9X/71pa3aPNmG97d9m7DweHmJ1xUP3r2lNniS0vtW8XTNbpr4+SxcSMYjVR36ExOsT/lxeq637KqMi769CL+tfJfpOSkNFg3dv6SyR9cQn6Jn8s2IFNG33/91XAS7n7x/ZjWY1r9FzVEPYZueXU5a06sYcnhJQgh6pVHwakCZj2SzZs86tL9dxR5NDQQGtN+DHv+sYeerXo27oX1yGNI4hASQxNNq8Xqk0fe0Tz2pEZzig4uayv+/mrMXX3yuKj1RRx44ACLrl/k+EIBc9LS4Phx8PIiYPJY4vrEERIvd1NvG96Wp0c+zdfTvibIN8hk2EVFSSO0NiHxIYR5G/DCqBkzGvWwejUArSYPZvpP0xn/yniL03ctvYuoV6P44+QfzTra3LnTemD/C+te4LVNr3HFt1c0/mUlJTLAE/Du0pHwturKLpCjlr999zee/v1pSitL65WHIcfA3pOhLg2IhvoVtFEYuWrhVQz6eBCHcw83/mUbNshpyDZtOLIuk33f7KOyxDIW6WzxWX4/+btJFhER1nduXv/Sel7ZPp41jHeZPHS6+uVxquAUk76axNE866kGHOa33wDI63cp7/d8n7favmU6FegbyNQuU5nSeQoV1RUNGjPbP0vmL8ZwjmiXyaNfPxmcX1xsfU+zbenbyDE0fuNTE7//DsCRsMGsfGQlh39W69zF7S5mzsQ5/HaLlFl9bcUvWM7DVeGDyHK97li3znpQtPkigUYZuSDjZQ4cAJ2OigFD68RlvXjJi6Q9msYdA+5o0IvZZlgbxl1aTT8XxhCB5VRTfYQHhNM5qnPjXqaMPgcOlGmIazFr/Cz+3ufvBPkGNdhWrp5/NY8OXk8f9mnGjIYN9HrTtErQtVPpMa0HPa+1HJ3odDpKq0r5K/UvztQ4bdq2tf64z2+W+9W4crSZlCQTghmN1lc1XdLhEnrH9rZIN+80a9fKeJmkJC5+axqPnH6EUU+NMp3uEdODse3HcveAu8k36MnIUMtYm/zj+SyZX8zvLuy8QVXQW7fWDYo+nHuYUwWnSC1MJTrIepZeh1ixQn5OmsSkNyYx4bUJRHVWk8pN7zWd1Tev5qfpP5FWk9ncxobaGKuMlFd5U07AefPc/Xfdf1l9fDUPr3zYNS+rkUfZgOH4h/sT1sZSSf943Y8sv2k5AxMGNiiPntf1ZEjoQUIpdpk8zIOia8ujvKqc6T9Mp+M7HdmYurHxL0tLk8EoXl6c0sew9e2tnF532nQ6wCeAx4Y/Ro9WPdDpdCZ5tLYyAxwUE8SMXdfyHC+gc1EMEch+NDRULknes8fy3N7MvXSZ24X5e+a75mUrV8rPwYOZd+VSXg56mdPrVXkE+gaaDKasLGlceXlZ78Dj+8Uz6upWdOdwk03Z1w6K/iHlB9adcmLply2WLweg9OJJ/PXyXyR/nWzzUqVuJNYXZ+yBWYA1Y+Z88uefMtigQwe51tUK/x7xb/bdv48XL3nRtA+Otc4b4NypQs4RLTssF7qLx9c4i5S+1ZypXaay9769TO0ytfEvUl4wZYrVCDmdTseft/3J3KlzqSxshdEogzutTasEtQqi4+BI2nPKpbLo2FH+uyorTY4CEz1a9eDEv06w+PrFjZ/vBpNCYupUek3vxYgnRhAYqbqeE0MTmdBJ5qFQ6oYtQ3fI/UP45/1VXMrv6jDdBUyYID83bJCdljlPjXyKa3tey8yxMxv/olOn4OBB8Pam7UNX8XTB09yz4x6LS8xH96dr+jFb8rj42YuZ2uMksWQ3iTx+/dXyeIY+g5igGML8wxiYMLDxL1LaytChdLyyFyOfGknH8R1tXl5f/dB56fDr0BodQrqVSkoaXz7k/l3jahYf1pbHG1ve4GTBSZYfW+6Sd5m3leL0YqrKqgiMtj5Nc/q09Nq0bm19WgVQrRwX1o2LLpJOktxcy2nZovIi7v/1fsbOH8vyoy6QR1WVyeOf33Mkfzz7B7899Vudy07mn+S7/d+Rclr+je3qSwemKFkXyqOp0YyZ84lZ531mSxpnNp+hrLDM4pJuMd3oHdsb0DXYYV373bXckbhSZgFOd11OgCtqZpCWLbO+Ms+uLQoaQghVIU2Z0uDl5oZdnb1VgKhOUdyy8DKuYqmUhYuWFOp0cOWV8vuyZXXPRwZGckmHSxr/ouPHZYYtHx/VmqyHhupGcGwwMX1bE0SpOhRzAZ07Q48eUn8qg2OF7jHd+eG6H7io9UWNf5HSVoYPNyVD9PG3vviysrqSU2myHdmSB6C6KVwoD6WtbNoEOWYzSu0j2rP9nu1svHNj42IhFMx0R+dJnRn/yng6T7acmiivKmfZ4WU8t+Zliopk/bc1ECI8XC4/giaRR+228uFlHzJ7/GxevOTFxr+kshLWrJHfp0zhsbOP8a8T/yK6i6V3dOmhpfT5oA8ztt4F2K4bxiojxf4xFBDuUln4+qqqzVweVcYqpveaTu/Y3kzsNLHxL9q6VeYmiIrCd+hA+t/Rn+5/q7v68aZFN3HDTzewPVdOV9qSx8FFB/l+Uxu2MQTT9IAHoBkz5wshLBTS6sdX89mIzzjx2wmrl+fmyhQsYN1VDNBudDvadg3AjwqXVrpLL4WgINmuFXfx65te59t931oEuzaKo0dlWnZfXyqGjmbeiHn8MP0HqivrTrYLIdh9Ig0Q9XdWyhxDWZlLdhJXUIyZX36R7upqYzXHzx132fMBtW6MGkWxXsfZnWcpya07Yj5VcIrZG2ezqvAtoIHOW+nJXKyQFHn8/HP91zUKRR5T6/cA/vPXfxI6K5Qj/t8A9ctDtElCoHOpPJKSZM4Zc9tcQafT2dxnzCEqKiw6b1tUi2qmfTeNFzc9C2HpREXJbUqsseHVjaz0u5Iiwlwqj8sukwOAnTstx1eBvoH8e+S/6Rpt3SPtEJs3y4C+mBgYPBgffx8iO0Ti7We5itDHy4f92fs5UCjTEtuqG9n7s3nj6r+Yx92y0C7Y201BMe7M20pUYBTvX/Y+u+7d5VyiwNoobWXiRFr1juOqz65i6ty67WZU21EMSRzCuVwZZGdLHnlH8zh4UMdZWmvGjIYVjhyRrnM/P7jkEkITQ+VWBm3r5v/46/Rf/HvVU9D1Z+LjrQd4mlA6LGWo7gICAtQcM8uWQV5JHv/35/9x46Ib2ZreiG21zTHrvIsKBWmb0zi++jjevpYKySiMdHynIw+fSoLIE7ZHmiAFpbiLXdgIR4+WA9mcHOku/vnIz3SZ24U7lt7hsneYG7opP6TwyeBP+PWBX+tcduzcMZ767Sn2Bc0FbLuKC1ML2b65kn30dmndAFVBL18uB8n/98f/8fyfz5Old9H0XlmZKdiVKVP48/k/WXbPMjJ21U14F+wXTHl1OUWBclMgWwp6xcMrePG9KNZzscvlYe65U3YHN9+Go9Fs3CgDtmJjEf0HUHC6wKrRH+QbxLQe0xgffTt4VdZr2O38aCdb87u53JiJi1Oz3/7yC3W2FXAJitU4ebJM+GODkW1HsuT6JVx+Tk652JKHb7Av6JDTbpWVLp2mnjJFFnH/fjh5stZ77dhU1C7MptzqY/aE2Wy7ZxsVu68FbOuOThM7MfXBDjKpombMaNRhyRL5OWYMBAcz/cfpPHLqEVoPqet2WXV8FfOPz4Yei+tVSOnb0zlgaMc5Ipts9L1smdwdfMaoGUztMpWRSSNd8wLF7zplCqGJoUz/aTqT35pc5zIvnRetglqB0EHsfpvyEELwXs/3eDP/dgwEuVQetd3F29O3IxAkhDiRjt4aer26PGjKFHReOkISQghLqrsqYXDiYK7pcQ1BB/4BOqNNeeQczGH5S3vZyCiZbM1FcREAw4bJQXFBAaxcm88bW97ghfUvOL5zvC3WrpXlTUiAfv04vOQwuz/djT6rblrqBy96kN+uPAIr3yIwUO5obQ0vby+EESrwbbK2smoVLElZzpULr2TIJ0Mal/nYnF9+kZ+TJ2PILeXt9m/zUuBLVg2a76/7nmnen0NBh3pjIgbeO5CRfQsJRu9yeZh7Ix5b9RhTv57KjrN27IFhL4o8pkwhdWMqvz/zu8XKLoWIgAiu6n4V507LSFdbbSWqcxTPVT/HY22+lwdcKI+oKHWrh6XLjLy64VVSC11oTKelqSmoJ02yWifMEaLhKeqEAQkMeWCIjD/UjBmNOnxf01CuvbbBSyd1msRo/3/C0Sn1eiI2zNrAD4t8OEEnl482FXfxrl1QlB3Bc2Oe49cbf218rAzIkY+yXvGaa/AP86fHtB70v72/1csXX7+YyTsNcPgqmw1Qp9NReLqQoopAKvBrsg5ryRL436Uvceifh3h4qItW7fzyi0ze0rkz9O7N0IeG8vjZx5n4et359IiACL6/9kf0q54E4WVTHmGtw+j+t+509K2RgwtjAby9Zf0AWPVzKJ9f9Tm397+dse3HuuYF330nP6++GnQ6Rs0YxZiZY4jrU3cpStvwtngVdAF0tG1rO9Pq6GdH8+iS0YxhncvrxsCBcmWIwQAbduYRHRjN+A7jXdNWjEZVd/ztb+gz9Xj7exMSH1LHi6nQUGcFMHrGaMZPCyeSgiYzZtasLeXz3Z+z4tgK8kvzXfPwlBT54+sLU6dy6s9TbJi1gUNLbGema0geOp1O/q+awMsNqjw+X7eGp39/mv4f9qe8qrz+m+zlhx/k58iREBvLl5d+yeyY2Rxbeczq5efOKeMaYXPlH6DKoqjIJduhnA80Y+Z8cOyYtAq8vWFaw4mzRrcbTb/0d+HAdXS0vWCBVr1a0bZXCEEYXK6QWrWS6doBvvnGpY+WOfGNRhgyhHr/wBpah7Xm5FEZRNmhg+3rbl59M3dfX0Qo+iYx7gICZDbPXbtkoHZciK0EQA6ycKH8vP56i97YVmeYni7DKHx8bC+vjO0dy/WLrmdi55qYLBfL47rr5OcP3/kwrdt0Pr/qc9d03uXlsLgmxf0NNwDQ+4bejH1+bJ2l2Qonav7E+jwRQdFBhA3sgh+VUoD27A5pJzqdOkbJWHkbZx49w7MXP+uah2/eLA3RsDCYPJn4/vE8W/Is9+29z+YtJ04Avob6V6tAk8VU9e4N3btDhSGQGdE7efGSFxnfseGgdrtQDN3JkyEigsQhiQx5cAidJnSyevmxvOMcDPoEui9pNnlcc438TN7tz6jE8dze/3b8feqLHXAARR41baXgdAGleaUERFjfXubupffCY62JvGgFATZ2oKksrSTvbDm5oTXK1kO8M5oxcz5QRlbjxkFMDAd+OsCnwz5l/Uu2t2M+XOM17dbN5iVc+uKl3LFwEj05KONxXLwp2C23AAPm8fEv2zEaXfhspQFefz0AaVvTSNuSRnmR9dFKZaVc7AP1y6PtyLa0HtoGH6qkPFxIWBhccVUVeJezYIELH1xYqMbL1MijIQ4fBnxLaNcrE5+G4gcVDe5ieUycKA3e7GzTqlDXsHq1lEliouqfb4BlR3+CiU8Q1bOBHR8TE+WIvqrKpav/oKatID13laWBRAREuObBiqF71VUovY/OS0dQtPU9mXIMOSzq0BqejqRTV9vB+kIIKuPbUIV33WCORqLTwc03y++rF3bmPxf/xzWGrhB1dEfnSZ2ZOncqvW/obfWWZfv+pHT8vTD4QzrXk5du9ROrWXqwq5yidrE82revGRieGsvl59YwZ+Ic1zz45Em5ksnLy2RN37/vfu7bex9xfa0PtM6eK4Cws0R2te3JSt+Wzrvd3mVhxTT1PR6AZsycDxRjZvp0AHIO5JC+NZ2CkwU2bzl0WEBIBq07NbBtgOLZKCyUPkQXMv7yfLjsAU5OuIgf1qW45qFnz6rZ+GqG92ueWMO84fM4usJ65tj9RwxUjfwv3tfdQkJiAwGFnWpGaMddvNoI6Hr5L/BEAp8ce77B9PV2s3SpdLP06AG9e1NZUsnnoz9n0c2LqK6w7j34Ys8X8Gwwhkvvbfj5igY/Zt3t7Cy+vtDztveh7wI++8qOLdbtRemsrrsOvLzQZ+nJTsmmQm97M6it5QtgxByq29hOTpdzMIeNc7aQHDVWHnCxPAYOFHQYeIKyMli0yEUPra5WpxFqRt4NERkQTZV3AXhXEtrmtM3rFt20iJcv28wOBsvOyoWeKoCbbpKfa9e6cGC/d69cSBEQoM77NkCIvj8cnUxk0eh6N4rd8/ke9uzzkftVNYHuUIxdORBygWEHar8yZoxpE66A8ADi+sbhG2Q9uLhPwTPwyRbGhNxj9TyAf6g//uH++AfVTGM2gTyaAs2YaWoOHZKN0McH/vY3APre3JfpP01n4D3Wk2mVlMCZ4dPgiUQO6L6v//lBQerabRcraF1AMe0M10LaUDYvtT7ycZgffpAjrOHDTZPYSrBrZIdIq7ecOuYPF79Eda+vSC+2rRlPrz9N8iFfmS/i2DGXe6rSQ36GwHxKKkpc540wH2nqdBSmFpK6IZUjPx/By9d689Sfle5wXYjtVRflxeW82fZNZn/WSo6+XayQKqor2B35fzDtVpbt3uyaafXSUmncgWnkvX/hfj7o/QFLbl9i8zZx8CrY8i9GdLC9VXP2vmx+e+o3dlX0kQdcLI+t6Vs4eWUnuGUCXy5wUb1bt07Gl0VGmnIPrf/felY8vIKsfdb/92lnvGDeZnzn5DOmj21XhE+gdOlVegVIY9qFMVUAP2fNpfWdjyKiD7lumlrxUl12GYSGIowCQ7ah3kBrXcZg+HoFQyvqn/Yb+dRILr2zHYGUulyPAkQNWY1fcCkpKXWzIztNrSkmeyg41B/Sh9K3m+2dsBMGJsgklffWGF1NII+mQDNmmppPPpGfkyfL0HYgskMkPab1oM1Q6xFYx44Bhe3A6EWJznY66eSvk/lo4Ef85jXR7EbX0Ta8Le+P/xrmbeLrr9W8N04jBMybJ7/feKPp8HXfX8ejqY/S+iLrCXWOHfGBjf+mX9Zsgnytu9cB1s5cy+KntnGGtjJozYW5ZgA+vfJjripaAzvuM/0ZjSItTS6BAZNCCokP4drvrmXiGxNtuuaL9o+EV3P5X3vby+R9AnwoOlNEaYmgEj+X143yqnIeG/EwgdkXU3n4Ur791gUP/eEHubKrXTu5ZAqorqgmICKAiPYRVm+pqIC83+6AlW9z3dDRNh8d1TmKfrf2o3P3phlt7ji7Ay+dF+gTWPunzjXi/uwz+XnNNTKlA9K42/bONvQZ1r1hhw8DWX3pkhRR7xTk5Dcn83Th04zsVJPh1YXyEELwzrZ3SG/7FiRuZ948F6RuqayEL7+U32vaij5Tz+txr/NK+CsYq62/QNmxunvdHHIWjHxyJKOfu4QQDC73VB0/d5xrlkxCPJYIfno+/dQFD92zR65i8vExxWGmbkxl/f/Wc+J367nLQJVHfdP1JprQy90kiBZAYWGhAERhYeH5fXFpqRBRUUKAEL/8Yvdt330nBAH5Ysjwsnqv2zp3q5jJTPF9+yflO/7738aWuA6VlUK0bSsfP29eIx+2caN8UGCgEPn5dt92113ytueeq/+6VU+sEvPHzRfHYobKGzZvblx5rbB/v3y0l5cQJ0828mHPPy8fNmaMQ7clJcnbNm6s/7q0bWkie9lmUY2XEKGhQhiNThfVFm++KcvSs6cLHj9smHzY//5X51R1ZbXVWw4ckLeEhNj5fqXA11zTuLJaIaM4Q4y5+oQAIR5+uJEPy84Wws9PlnXbNtPhXfN2idVPrhaFadZ12VtvyVumTbPzPVOmyBs+/riRBVapqq4SP6b8KG758U4RFlMsQIhff23kQ3/6SZYzLk6I8nIhhKzfM3UzxZvt3rR522WXydvef98oKqsrGyh4lSrzRjdulTXH14i2b7YVA98aJ0CI4GCH1J917r1XlnP6dNOhP5//U8xkplh2zzKrt1RVCeHrVy3o+YN45pc5orSytP53/P67fEfXro0sbOOwt//WjJmmZMECWRnatpU1SQhhrDaKfQv3iTObz4jqKusK+umn5W133VX/4/NP5osjy4+IzIdfkjfccovLin4076jIMeQIIYR47TX5+D59Gtlh3XyzfNCddzp026BB8rbvv7fzhrFj5Q0LFjheRjsYP14+/vHHG/GQigohEhPlg7791u7b8vLkLSDEuXN23FBaKoROJ2/IynK+vDYoKJCGBAixenUjHrR7t3yIj48QGRl23/btt/K2IRdVi4ziDGFsqIL+/LO8oX//RhTWNitXyseHhgrRKHXz6qvyQYMGOXTbnXcKQdQRccn/zRLvb3u/4Rseeki+58knnSxo/Tz2mHz8xImNfJDS6J55xuJwVXmVKEovsnlbmzZCMOVBEfBCkHh367s2r6swVIjizGJR3qWnfM+aNY0ssCVGo1GcK8kXvXvLx7/+eiMeVlgoLSIQ4s8/TYcPLjkoltyxRCR/nWz1Nmn4GwXPBAtmIg7nHrZ6XXVltVh822Lx/dTPRTl+Qvj6ylFtM2Fv/61NMzUlH34oP++915SpUp+p56cbfuKzUZ+BjaneHTX5pYYMqf/xEe0j6DKlC3Gja3yGh2xHqDvKY6seI+71OD7f/Tl33SW3cdm3z/puyXaRm6sGM96nLis98OMB5g2fx1+zrGzRjVypm5wMIOjcJ8++hFNdushPF8mjorqCCQsm8OqGVymrKuORR+TxTz+tu5O23fz8swyGjo21WK6fvi2dszvP2gx4VepG3PhvmLHxPv442cA/JCBAXdF08KCThbXkRP4JdpzdgVEYCQ+HO2oSIb/1ViMeqrSVadNMwYz2sH074FXFrinBJMxJIKckp/4blA1eDx92edAryFVe3bvL/Ru/+MLJhxiN8NFH8vv99zt067ZtQPRR/vSewUc7P7J53dkdZ/nzuT9JLqypGwdclPCwFg8+KBfbrF7diFccPSp3edXppC41w9vPm9BE6/EfmZk1oUDCmzJjSb264/trv2dO/BxSgmv2FXNRW1HQ6XREBkbwcE1qqnffbUT1W7BAJjXq0UPdth3oflV3rvrsKvrc2MfqbXKzSx2tzl3J9b2ul9Oi1srqrSN5QTIHlp+mPCDccjmpG6MZM03Fzp0yDbmPD9x5p+lwZUklbUe3pfVFrfHyqSt+IWo6LK9KNoc8zY0/3UhZVQPBKr1rgnNTUlyioIUQ5JTkYBRGBiUOIjISbr9dnnv1VScf+umn0jIZOBAGDzYdzk7JJm1LGvknrCfVSk6WbSlk2HcM/C6GWxff2vC7+tQ05n37nCysJetOreO3E7/x1ta38PP2Y8oUaS8VFqp9jsO8+678vOsuUzwEwMpHVvLJ4E9sJr3avl1+BvVZw0c7P2JL2habrzj882F2fLSDok4D5AEXyeP97e8z5JMhPLT8IQAeekj2M8uXy1h3h8nPh6++kt/NOu8KfQULJi7g53t/xlhlPSZi+3bA6EOoTxReOi/OFp+1el1RehGvRr7KK0MWQWCgDDZ2kYIe+8VYblp0E6cKTqHTYeqw5syRVd5hVq6UyWLCwy2CO0tySyg4VWBTFgZDjcGQ251ru9zKDb1tB4Zm7M5g/YvrSTlWk+/ERXUjS5/Fp7s+JVMvY3E6dJCrygFeecXJh773nvy87LIGtnq2RGkrXXMf5+hDR/nvJf+1ea1fsGyDVfE1uWZcJI/auvumm2SW6lOn1HhmhzAa4f335ff777edJdIKijxuCfqGhdcupHOU9QBxnU7HhNcmMGXuFPx61MTNuEgeTcr5cRQ1L80yzXT11dINePPNDt127Ji8zdfPKIJeChLMRBzNO2r12tKCUnF05VFxbMURIQIC5I1Hjrii9EIIIU4XnDa57Y8flzMAtTyb9qHXCxETI2+eP9/i1LkT50TKjynizJYzVm997z1529Dr/hLMRAz+eLDN12x7b5t4r9d7Yu0dX8ib2rd3sKDWydJnife3vS/mbp1rOjZvnnxFdLQT0wkbNtT8k32FOH3a4tS3V34rXk94XaRvT7d661VXyVvveHWxeP7P58WG0xtsvubDAR+KmcwUR6Y/K2+6914HC2qdx1Y+JkJeDhE/pPxgOnb99fIVl13mxAOV2KG+fS3mMbP2ZYmZzBSvRL5i9baqKtXbvnZHhqioqrD5CkOuQcxkppjJTFE9sGbe8scfnSisJafyTwlmIrz/6y3ySvKEEEKUlKgziO+84+ADjUY1dqjWPOamOZvETGaKH67/weqt69fL2xITG37Nmc1nxC8P/CJ2vLFOnbd0gX78aMdHgpmIoZ8MNR3bvl0+XqeTMWcOkZkpY+xAiFWrLE799cpf4rcZv4mcQzlWb/3Pf+Rtt9/e8GuqyquEsdooxMKF8qZhwxwsqHWu/f5a0f3d7mLVMbXsL9VEBXTqJGebHeLHH+XNYWFyjrcGY7VRlOvL6731ooscntUW4o477AtYbEK0mBkzzrsxs3ev2noPHnTo1q+/rokBGCLEi+teFK9tfE1k6a3HOqRtSxMzmSneSHpDiMGD5Y0//eSKv8AqDzygtnOHYmfmzFFbr4Nzr7fdJm+d8Z8KUVJRUu+1615cJ2YyUyy9+XuXKmhrVFYK0b27k+180iR54z33OHSb0ShEQoK89a+/Gr5+5aMrxbdXfSvSXvxM3jR8uIMFtU1ZZZkor1KV5+HDQnh7y9dssG1f1SU/X4jwcHnjD5adtCHHIHZ/vltse3+b1VuTk4UpoLImJM0m1VXVIudgjihILRDG226XNz7/vAMFtU5VdZXYcHpDnfiUDz+Ur4iNFaK42IEHrl4tbwwIqBM7tPa/a8WLfi+KNU9Zj+d4/XV561VXOfhHKJZXQxHldvDd/u/EkI+HiJfWv2RxfNo0+Yq//c3BBz7xRM1oZmgdpTO321wxk5nixO8nrN6qNLP37QgdMpGSokaUV1uPabSXyupKET4rXDATsS1NrcN6vawXIMQHHzjwwOpqafCDEP/3fxanCk4XiJnMFHMS51iNGysrU2Objx2TxxqMLxNCiDfecPIf5zo0Y8aM827MXHddnUhze7n9dvuDS/OO5okP+n0gvprylWpBu0BB2+LsWSGCguRrFi2y86aSErkCwYnlUEajqmdXrmz4+nPHz4njvx0XuUdyXaqgbfHDD6resztmdcsWeZO3txAnrCthWyh61t9fCIPBgRuVJVihoY1W0PVx993yNSNHOvCaF15Ql0M5WDZFz44f72BBFePa7iU/jlNRIW13EGLmTDtvMhql8OpZDmWsNorKUusDgsmT5a2vvip/L60sbXAAIIRQe/0PP7SzoA1Tu6NMSZErAEGITZvsfEhWlqpwrCyH2vLOFvHrg79aDQAuLVVv3b6rQny04yPx7O/P1uu9E0LIf5zS6x8/bmdBbZNXkieWHloqqo2Wdfudd+QrEhKEKLIdv2zJ4sVqO87LsziVujFVzGSmeLvj21ZvVRYmxcUJsfzICpH0RpKYuMB2VLY+Wy/yjuaJsqUr5I2dO9tZSNejGTNmnFdjZutW1SuQXDeq/PtrvxefDvtUnP7rdJ1zRqMQ8fHy1t9+c/C9yppMp/z8KifzT4q2b7YVdy+926rl/mzNjEWbNnY6PRSfart2dXyqVeVVIvnrZJG2LU26eGuhOLgCA6VycoipU+XNb1tv3PayKXWTWHZomSgoLahzzmiUHjQQ4tpr7XiY0aiutLrjDofLoqwqmzRJdhZFZUXiWN6xhm+sqFCnIR30FNamqtq2C+TMGbUDsWulb1aW6pVxyPctmTBB3jpnjhA7z+4U/179b/HetvcavvGPP+SNSUkOv9MRlBkLf38hDh2y44ZfflFvSLc+zWiLkhL1X7xvnxA3/HiDYCbi052f2rzHaDSKqooq+5dPNhJlvNW7t2l1df3861/yhsGDHV5GuWqVOuVWVV0tfF7wEcxEpBakWr3+xO8nxIqHV4i9C/YKMXCgvPm77xx6pyOUlQnRsaN8zUMP2XFDRYUwLYWqtaLL9MzCMjmQs8Ljj8tbb7tNiN9P/C6Yiej+bnebr/t0+KdiJjPFgS/M+rNaBtT5QlvN1BwYjTJ8H+DWW9VAVDPSt6WTtiUNnVfdwK3kZBmBHxQkt6WpMlaRqc+0GdRowYgR8nPTpkZlqPrz5J+kFqaSkpNiNWnbM8/IHRTS0uDppxt42Jkz8NJL8vtLL8kc+Gbkn8xn0U2LmH/JfKsZvleulJ+XXCIX5by37T1uX3J7vUGvJoYPl58bbae4t4d3tr3DlQuv5M0tb9Y5p9PBxx/LhWo//qjuj2iT77+X+d0DAuC55+qc3vPFHj4b9Rnb3t1m9XZlC6cpU6CgrICwV8LoPLdzwwHivr5wUc0qjUbIwyiMtHurHWO+GEN6Ud29jdq0gRdflN///W+5WKteZsyQUdQDBqg7V5qRvi2dnIM5Vrd1MBhkglyQ8jiSd4TXNr3G9ym2M2bvXbCXTXM2oW/XS/7TzpxpVK79Q7mHeGXDK+zK2GX1/PTpMGmSDAK+554GmmVZGfzrX/L7v/5lewdRG6xdKx/Rpg306gWBPjJ3f5bBeqbg7P3ZvOj7Im+2eVPVHY1sK3kleRiF7T9y9myIiYH9++1YSJCcrAbJz5rlUKArWLYVby8vbu17K/cNug8fL+uZBDN2ZbD17a0cX3XcZfKoD39/dfHAu+/K/UTr5b33pOCio+Hxx60/M8yf6C7RVs8p8pg6FYYkDmH7Pdv57ZbfbJcvzB+/ED+MQcHq6tAGC9nMnCfjqlk5b56ZTz9V3YA25h0y9mSIlB9SRFlh3YR4//2vpXPlnS3vCGYirvv+uobfXVGhDotTUpz+E/TlerHy6Eqx8qjteR1lYAvSfWmT6dPlRaNGWR1ZZe7NFJ+N/kx8OeFLq7ePGmUZRHnZ15cJZiI+3mF92K/P1otDSw+JY6uPyShlZWjWiOQ4z/z2jOjyThex9uRam9fMmKG6jLOzbVxUXCxE69byQhvJDZf/a7mYyUyx+t91E7bk58t4YZAx3kajUfi+4CuCXwoW6UXWR/FrX1gr3mz3ptgwe4NaSCc8Qgr7svYJZiKCXwq26a6vqlK9VZdfXs/M0ebNaiWyMe+gxEQcX1PX3a943Nu3l//elOwU8ejKR+v1RLzd6W0xk5kidWOqmrzICY+QwmsbXxPMRFz+zeU2rzl1Sg1SrtdJqEy3JSZanXcoSi8S31z+jVj9pPVkPvffbxnjna3PFnkleTbjIvKO5YmZzBQvBb8kRG6u+r/ItT6yt4cJX04QUa9GiV8O204Q+s038jV+fkLs2WPjIqNRbfw2XJ76LL0oziy2+vcZjeoUn70x3qf/Oi3WPL1GpPyQoiYvcjDHjzmllaXi5kU3i493fFxvsj4lrKB793piqzIyZMCv3S5PS44fl7d6edmZm8pWIWfMcOLmxqNNM5lxXoyZtDQ12++cOQ7fXl0tFTOoC34W7lsodDN14spvr7R53/xL54uPBn0k9Fl6IS65xOVz37b4xz/kq2JibCTLXLZMbUE2tZZtDh1Sb09Lk8e+3fetmPXXLLEnw/rzjq0+JmYyU7zf530ZVKIsv3JBNs/6guVKS9Vg4DFjbKxQUJKTdexoc84s93Cu2PftPnF259k65959V3XRKxgq6g+cWfXEKjGTmWLV46vUKYwuXeq9pz6MRqM4knuk3s5KCDm7qoQdWLXbSkvVQEYbS02MRqP4dNin4uWQl0X+qfw656+4Qt7+2GP2l3/FIyvETzf9JLIPZKtTGP/8p/0PqMWyQ8vE1QuvFh/t+Kje6+bOla/y8RFi3TorFxw4oM4RffON1Wec+P2EmMlM8U6XusujSkqEiIiQt9da8GOT6spqUZhWKErza+qiUoGXLrXvAbWfZ6wWca/FCWYi9mXts3md0aj+79q3FyLH2kKkTz6RFwQFCZFqfVpozVNrxExmipWP1h10rVunBobbHY9izunTalybQ9HbKn+e/FMwE5HwekK9uiMvTw0tuPZaK+Muo1GeADlKsDE6+OO5P8T6l9aLorN1/2AlNMDh2DIFZZA+erSTD2gcmjFjRpMbM1VVqiExcKAT6+1kwkmQIQRKcGdFVUWDKbhfDn1ZzGSmyDuaJyMNoUlStdfGYFCnlvv2lRH6JtLT5ZplcDpNrrKI4XLbg946ZOzOEJ9c9In46aaaFV3Dh5834y4lRc2EW6d/VAw7EGLFCoefbTTK7MvmXip7OHfinDiz5YxMfZ+fry43cjDw2Bk++0z9k5csqXVSMexatZJLb+vBaDTW6QzOnFGDSZ0OAVq0SA1sbIJtHswxGoX4+9/VP9liNb65YTdhgs2yFJ4pFNve3yZ2fLyjzrn581XjwOn4bmV08sADTj5A6qvNZzY3uEomL0/1nFx6aa0FjgcOqEuxX3vN5jOW3btMzNTNFJvfqrtlyU03ydvvvtvyuNFox5YGCh062Ki89nH83HHx/J/Pi/+tq7s1R202blS9rnV28lAMOx8fIXbU/d8LIf+ul0NkP5Bz0NI6rKhQV0CaZ1BfdmiZeHPzmzZjiCw4elQtg9ly8POFZsyY0eTGzKxZ6kjisPUU0ULI3A77vt0n8o5ZBlIZjbJRO6NLDiw6II78ekTmGNixQx2SOBwxK8TqY6vFW5vfEkdy7ctVk5qqLlSaPFmOEEVVlRDjxsmDAwbISDcHyc1VR5pODhQlL7/cqKDo/NJ8h65fulTtwE1KKS1NNewefdSpcigp8gMCnHQTKyjBx40MirYXxWYJ+v/2zjsqiqsN48/Se+8dUVAEsSt2jb1HY+zRaIw1saRY0jBqNMYee4k1xt47NrCAAoJ0EJDee996vz/mWxDZhV3Y3aHM7xzOkZl77z5eZmfeufctWh9sR344SQ0s2CNMkT9gQM3jPD6PZJVm1QgZF0tJSfXyUSOdoiWhrIyqoCDcUqjy7122rNrKSa+9IlcfPF61LbTpg2jo9OJ0stFnI9ngs0GygYQrd7a2cjfuCKGclIXbbzNm/N+g+diwq8cy41Zwa+VWef9eZEkrsuXZFqK5UZN8e+fbOscrz/t/9Jfw4pWzU7SQw4ervxaHhAt9ERHVhp0wRE0EPA6PPP39Kbky+wrhVtY01k6coLqbmdV0uu56qCuBF8SussbcjCHX5l0jISf/vwru4iJ3p2hxMMbMB8jTmGFfvF5d++ao+P16Qgi5uegm8YIXefRTTUcT4Yu7unojd0Q+jGWWorClkC+vfUngBbLuoWhveVG8eFHtqjNwoIAUf7Wy+glWTwjHkZ5HyFHPoyQ3puY+vfD+7uFRM38IX8An2aXZJCFfwpWFsLDqiW3A395quxVx2u0ksXFHCCFbt1bflNZ+V0kEXbpKZNiV5ZSR8AvhJDO05koFh0NIhw6ibaGrUVfJ1ze+rpG8rk6EIcmDBkn8/xESlxdHVt1bRa5FSf6myuFUhwtraBByZ2885U/WCMMuJqZ69/DOnZrn7Hba1crpUSfCkOQ//pBaR3pxer3bfB+TmPj/WkGgViYSN51ptGF36BDV3cCg5pZNRHYEgReI4RZDsX1f73tNHv/6mJRklFBvIsIHZ1BQg7RIy40b1X/LSZ8KCHvStGrDTor6XB8i3JH55JOaNtlOv50EXiBTL04V2S8tII14wYvstNtJHRDm+zEzU1hdopUrqy+HXRuKqpevJDDsRFFcXL0qs+WjvJOrvVeTzy9+TvxSRBfj9dn4/5xd8///NvnDD9RA06dLraOxMMbMB8jLmHl1PILYsFLIXYygPO/qeaN58dcLcqzvMRJ+oToNZkFB9TW7Zk3tPmu815CZl2eSzJK6l+OrEL5RSBQrXJNDgYfImH/HkAdx0lUMfPas2j+tM96QWLSrtyokj80j65XWEy941djnffWqejfk8eOafR4nPK43pLAGAkG1L8Chuv0aPiajJKMqs2spu7T+Dh8gTF4GEDILp0iJiUN1pioxxN6Jpfx93Gpm+BIu+hkb1660u8Z7DYEXyDd3RMd2FqcXk7D/wkj09f8ble/fVxveUubQ+OfNPwReIAOPD5SqX2UlIePHUx+pCjbZjW+IYMDAelfsfDf5klPDTpHIy5FVx3i86nqDo0bV7tPtUDfC8mKRu+9Eb+V5r/Emfxr9SXz/8KUOCJfwnZ2lXo2YenEqUV6vXK+/zMe8f1+9g2GFVOKD/hJlXUx+kUwKEgtqpDBIS6Oe+wCVmeFDCisKybxr88i6h+vEbvvstN9JvOBFUl/93ylN6LAvpR+RQCAgk89PJr8+/pUUVUp3j715kxB1dQHlkgEfkqpiX/uLLyG3b1PylZRqZ8XIKcshcXlxYr/LuTG5VLZpg/8/9dns6sm9IboKtTgySzJJUHpQ/TltPkIgqLYZAEK+xS5S6eBS71asOJYvrzacpV0gT36RTHz/8CXv7v4/+/zr1zJaHpYexpj5AHkZMxMs/KsuvG+W8qXeTmSzq3dkxOVtsd5uTeAFEpAWIHKMnKgcEvcgrtpJUpgWVUWlQcvWDUIgIIGLjxITZBOAEB11Njl8uO6srHwen6S/SSfhF8KrbraJidXbVlNEBHAJ3zbb7hGdwEkgEJBjfY+R/W77SWn2/29aQsuia1epH1gFFQXkZbKkGb4+oLSUHOj4N1ECj3pW2pXXmxU37n4cOdr7KLk2r3rl4+rVattDVBDDo4RHxOuJl1jjM+4+5RB9oNMHaUaFyVlEWc514JfiR5bcWlKjpIOkcMJjyAztq1XflfGjOOL8Oqs4O/Ys8YIXCThAXfcCQfWKnYaG6J2h/PL8On0i7n/3f4fo7//vJVtcXL3XIeUD1POoJ4EXiHe89NWVUw/dIq6sCOrBy+KTX34W1JkEUcAXkA3qG4gXvEh+PPUgKSmhFvsAyim8AW56xHuNN7m15Bblb0dI9WqEvr5Ujq/v8t4ReIGob1CXbIvvQ/h84j1pP9FFEWW061SSc+fq/qqmBaaRi1MvEv/d/lXH3r6tXvSTKG/LxzJ4fFJRWFEz35XQcU/Kbep9r/fVG+UmDkFOLllve6Tqu9LNrYIEB9fdpySzhLBLas67MAM1QBmMjUYgqN4C/NhyljOMMfMB8jJmyvPKyTfdXlRdNCYm1N9Zko9JTiakTx+qn46O+ICfHS93kK3Pt5KUItG1i85PPk+84EVe/f2q+mA9WURlCo9X9ZRJhRUZaJdQNR+dOlH+c/WlmieEiqQWevV7eIiOQuAL+PW+7QgdoquSR+XkVC+fN3ApXyqys6uKoPiqfUJsTMqr5uOzzwh586b+Ifh8akdIuAS/aFHD3BiywrLIiUEnyI2vP3izFDq+6uo2KgxXYvz9CTE2JgKA/G3iRdTUBFUGybp14u3ttMA08ubYG5Ibm0uKiqodaFmshpdUKkotItkR2dV+EYRQkwtQDvxSklKUQiq4Uvqm/f03ISwWKYE2mWP3uOrasLGhdqlFGTVlOWXkb5e/ySbtTYTP5ZOoqGqHcFNTmSSqpeDzKYdogFoSlJCcshyy7/U+4vXES7rPq6ysWg16ByfS1Taraj769KFsK1G7K4GHA4kXvMiZkWcIIdQlLfSxGzRIwoR8khATU+1pLsb5VhRbn28lBlsMyK+PpaxzkphYtZJ8U3sqMdLjVl3zX34p3rXrwpQLVYY/l0tFLwlfgsRkgWgY+/dTg1pbN8gns6EwxswHyNsB+N696t0MgHrZmzWLijKIiKAifSoqBCQ7mwpmWbiwOhJTT0/ycEpReK/2Jvvd91c7ahFSHRqlpiaxc2NmSSap5Eq5FpmYSIXrCb9xu3cTHo9KMy+8uQCUT+HKldQbQkICdbMpL6e6nztX7VcBENKxIxWt0lBib8eS+IfxNR0DhWu3HTs2yCFZYh49qs4lY2REyIsXJDeXKsEkvCcC/6+7tYHansvIoN6qS0upt8u//672kRFuUct0y57Pr/ZEbURYskSfs317tTdmjx6EZGWRkBDKcVf4/1NRoUJ19+2jDL2CAur6yM+nQmzXrav2n1ZWlrKWjSQkJVVrbJS3eT0UFlI3BeF/fPFiQng8cuEClRxbeNjAgIrCOX+ecjkrL6eeGxkZhNy4LiCzZ1cbuWZm1LZsXbB5bOlWS06frhYiz5XdiIjq61BVlZB//yWVlVRAptAHD6AyCaxeTRk2SUnUdyUpIItcX/2C7FsSVnX7AajyTeJ2QCq5leTvV38TrydetUoL1Mns2dTgAwZI5bciEAgkKyUh5PLl6tQeNjaEhIeTlBRCpk2r/v8JZfz5J5WaKTubmo+j/Y4TL3iRzV/GVG1hAlT2AXEvQdejrxPLbZZk3NlxIs/zeXxSml1KCpM+2G6orKRu5oCIsCv5wRgzH6CIPDNcLrW096FR8+GPM6LJ9/iLjMe1qmOenvW6UjQMgYByKgCoVOASWNET/ptA1DaokdNvT9c/PpdLPVWEqeh1dGr5yOTmEvLjj9UPoo9/nPCOdEQ40fv/8rKSEnUTL5XOPUUycnOr978lcDzl8Xnki6tfkJ1+OyW7IeXnV+ctEd6BPzIiQ0OpG5MwBLO+H11d6kWorhUZgUBACioKSGJBYv0aP0Ro7AK1vWhFkF2aTRILEiUrTEcI9aAShucBVOXDD7YtBAJqC024gCjJj5NT/WW2Xia/JN/f/5788+YfyXQK+fFH6kPMzWX/ABcIKJ8LocWipEStenwwlxUV1G7ohw+i+n5Gjqxf6sgzIwm8QM6FnatDnqDm1gqPV51zYcQIyZZVpaGyknoaC9/mjI1r1W5JTaUWe4XbRvX9qKhQf8K6ttrYPDaBFwi8QPLLRVs8z7c+J3dX3KVSGQhJSKi2rrZulcUM1CQ9vdpgAqi5/+htzs+P8jv78IXo4x8NlBMVcKqm9Jz4PzkhhJBbMbcIvEC6HRKdGDA9KJ0qXGn9Uc60M2eqDdDXEjraNxLGmPkARdZmEgioN+41a6jdBuHzvi+eES94kbk6l8gXX1DbKpI8G9g8NkkvTifZpeJSy4ohNZUQQ0Pqw8eN+3/ctHjc9rsReIE8S6qjHDOXS70yduxY/S3q3btOi6yigtoW+PprytBTV6e6fYGTxAteZKL9G/Ldd5IbdVuebSFzr80l4Vnh9Tf+EGHKWIC6mdYx+R9muq2rFhEpKKDGEr5RAdS2RR0WWVYWZQdOmkSInR11g1IGl6zEDjJf+TgZNqCSbN8uWTqHhPwEAi8QzY2a9Tf+GGHKWG1tQnx962y64+UOAi+Q2Vdm1z1mbCz1hxZ6cGtqUhZ+XXMdRr3kDRpEbdMChBgijzgjmrQzLySffkoV9JTkmXow4CCBF8iE/yaIPF+UUkQCDweS0H8/8g6tqKi+pt3d642k+ebON2ThzYUkMjtSfCOBgPLDEeafAqiEiXVUWeTzKTtz1SrKH0aYtwigFj47dKBW+QJEu8/VYtL5SQReEFuv6v5398nvqr+TJ15Pap4ID6/+os6dW6eVwOaxyZ3YOyS3rJ4ty8pKKvnQhxbbiBF1WmQlJdSz84svqN2vD18E1NWpW89PP1Un1ayPmZdnkoU3F5K8ctE1hnY57qIyRL/8yKHrwIHqP8KJE5J9WH1kZVGVr4U+WywW9dCoY48sKYlyYxgzpjpoVfhjaEhN58GDkhWhLagoIG/S34h1XxBmiN5mua3mCYGAqqANUC+IIuoPyhrGmPkAhVfNrvX5hOSkc0iSf3qt0Nv6+OXxLwReIEtuNSCZ1dOn1W9AHh6U/4IYBAIBicuLq73VJBBQqwy//lpzPdzIiMpXIuUeCJ9PJc26tfwBOdLrqMhst3XR60gvAi+IDRHOCssiMTdjqhwla7BhQ7X+adPEFvNLKUohG302krUPRaTv5nKpeV2woObTxs2NWguXEjabkGjfTGqZWG+z5KsfhIpYgReI1iYtsVuEh7oeIrscdlHhtx9SWVkdGqSqSoUni1nBW+29mqj8rkL+8BURwlxSQr0GjhlTvVEPUDe8d+8k/r8IKS0l5NGGF8QLXuTCZ3VHxH3M69TX5Lv734ldXYx/GE+84EX2dRTxcI+Pr3basrKijF+RqfIFxHCLoXin/NRUap/Vw6Pmk3fNGqnT0QoElL186Yvr5Oz4cyQtQLrik9ml2SS/PF/stsqDHx+IzaJLrlypXgro14+yOkUQkBZA4AVi9KdR7WtXIKCcAX/8sdqzXzi/x49L7QjG4xGSlcEjUfeTSEmOFFs4EuKz0Yd4r/aufe8QCKgt2Q9fWMQUXdzxcgfpe6yv6GuQzaZ8EmbPrjYWhS+EEpcSr6aigpJRWir71EACgYDweWK21YqKqlfvtLWp9OQN8UCXEMaY+QC6jZnGsNNvJ1Far0TmXxedvCn+YTw5MfgEubtcTGbZp0+rt1gAatN1927qbfzjXOI8HvVW+vw5ZeLPn1977dvEhDJsFByeJ+Ro0FGy+dlmEp0jOofNxakXiRdEZwYlAgG1ni+8SaupUUbNyZOUw8bHrzSVldQy8/371BLzpEk1nYGERszx441ybOFWcklaYBqJuSU+4aIoBAJBvQ6oWwy3EC94USn8P6a0tDoxh/BNa/ly6kEeE1Pj/1TOLiOFuanUW/uVK9Qr8eDBtffNxoyhliYbQeChQHLA40B1CLWMyInKIWfHnRX/XYmNremw5OZGLRt5e1OG7/8zyJ4LO0fWeq8h7Kx0aqn91CkqhEYY7SH80dSksmAmJjZK93br7aJXDBpJaXYpKUwuJJwyMQ+ia9dqGuwjRlCrFC9fVuUJeBD3gLTb046MPDWCMuSePqUebrNnV/uPCX+sramVzEbsJWeFZxEveJE/dP+QyvBvNHx+dXVxgNp6mjuXKj8RGlrliydcDdv2dDNlzN+5Q2UzHDu25lwC1NL9pUuNskTCz4eT6/Ovk5ib0t07Gk1eXvXLEEA5cH3/vYTl4aWDMWY+oDkbMxwep06HtYhLEcQLXuRY32PiB8nIoL54wuX/jzec1dWpL+eHb9Yf/qiqUj44//4r2RomjTz+9TE53P0wCTkVIr7R69fiHTZUVKjVLGEElKgfQ0NC5s2jthEUeUNtAIk+iSTFP4VwysU8sAQC6mEsdOz78IfFogw+La2ab5If/zg5UcaNHG5kCqe0lCqo96EXqvBHSYmaB21t0d8l4Zx5elIPdBlEiwkEAhL/MJ747fIjlcVydF4XR0ICVR5F1P9VWbnq3sFjibk2NDWpVbpLl2QSZpTok0h22O4gR3vXnaC0LhplBD16VHPV7aN7R7SVGjnTTZXEGIuZDzMzapXHz08m947r868TL3iRx79Kn5vn9NvTZJffLlLCblj9KcLjUdf5h6tucoiglfT5zSKEEMXU524c+/fvx19//YWMjAx07NgRu3btQv/+/SXqW1xcDH19fRQVFUFPT0/OSkV8floxgv8JhmUXSziPdZbt2KnFSHqWBD0bPdj3t6+7cWoqcO4c8PgxEBkJJCUBANYPBPK0gAVBgHsOC7CzA5ydge7dgT59gEGDAB0dmWkW8ARQUlGS2XgNJjAQuHiRKm0fGQnk5YEAeGMJuOYAmjwAamqAkxPg6gr06AH07w/07AmoqNCtXrbweMCdO8CNG0BwMBAVBVRU1G6npwe0awd4eFDzMGQI0LYtwGIpXrMIeAIeCisLYaxpDFZjNBUWUtfGvXtAeDgQHw/w+bXbWVpS89G1K9CrFzB0KGBi0vDPlSGROZG4HHkZFjoWWNBtQeMGi4sDzp8HfHyo70paWu02SkqAgwPQvj31Xenbl/q+aGg07rNFwOfwoaymLFWfRbcW4dTbU/hz6J/4ptc3Itvw2DwQAYGqpqr4gQgBnj0DrlwBAgKAiAigqKh2Ow0N6rvRsSP1XRk8mPreKMnu3vf+8Xsk+iSi7Yi2sO1jK1Vfgy0GKGIXIXppNFxMXGqdf+r1FMWpxRjwywAY2BuIH4jLpe4dx44BmzYB7u5S/i/qRuLnt8zNKDlw7tw5oqqqSo4cOUIiIyPJ8uXLiba2NkmqUbFNPHSvzERdjSJe8CIHu8i/4KFUlJYSkppKnHe0IfACeRBwXiGpu28tvkX+Mv+LBB6SPHeDEC6fS7JKsyTPiCwNeXnkfZQf5VS7QYNwc7MbUblPcvz3+JOoq1G16sxIwsGAg+TrG18T/xTx/lANgs8nJDOTnPfZTyYeG07OPNoln815GVLKLq2KWGnw26Y4KisJSU8nvq8vkvCgu4SbnCjfMH8ZcDnyMoEXSJ9jfUSeL0wuJC+3v6xKTCgVxcXU1ltSEuVvlJ2tsLT/DWXRzUUEXiC/PflN5Pk7394RWW6mXgQCass+NZVK8ZyQQHnwN+HvCiGEzL4ym0y9OJXE54tOVLSn3R7iBS+S6NO4bdLGIunzuwm8HtfPjh07MH/+fHz11Vfo0KEDdu3aBVtbWxw4cIBuaRKhba4Njy884DxO+lWZ/Ip8rLi3AgtvLpSDMG3A2ho/D/HCyt4r0cV1iEJWHHIiclCWVQYVTek/60DAAZhvM8e3976VvTAjI6Rp8WGiZQJnExeoGJvK9C1KFNxyLu4tv4fzn54Ht4wrdf9b727h8JvDCMsOE3k+IzgD4efCkR2RLd3ASkqAuTl8SyNwLeUB3vLTqOtFziswsbdisbvNbtxbcU/qvlqqWlBTVgNAfW9EcdDjILYab0XB+wLpBldXBywtMc9/LdxujsJT7jvqmJxJ8k1C4tNEVBZVSt3XxdgFC7ouwOQOk0WeL0oqwoPvHsBvu5/0wnR1kajFQYebIzAndD2IiUmTX638ZeAvSPg2AT/2/VHkeXU96u9ZUSBiRbIuWCzAxAQBSMfFsgAkGykD+vpNZrVSHKc+PYVzn51DG8M2Is/3XNYTQzYNgb6dvoKVNYymffUB4HA4CAoKwpo1a2ocHz58OF6+fCmyD5vNBpvNrvq9uLhYrhrrw9bTFrae0i0BCuEJeNj9ajcAYP+Y/VBWqrm0SgQEGW8yUJFfAcchjg3avpntMRuzPWY3SF9DmHF7BnIic2DgaCB1X0NNQwAAm8cWeT7JNwmP1j2CcTtjTDg+Qerx+9r1Rfb32SjhlEjdtyFwyjjoNKsTStJKoG2mLXX/aR2noYdVD3S17Cry/Ou/XyPkeAiG/DEEZh3NpB5/Xpd5aGvUFj2te0rdtyFkhWWh8H0hynPKpe7LYrGQtioNBhoGUFESfWsrzytHRX4FKvIrYOhoKNX4fAEfFjoWyCzNRCfzTlLrawhPvZ4i8UkiJpyYgM5zOkvVt6NZRxwed1jseT1bPbhNd2vww+pt5ltE50ZDQ0WjcVt6EsKt4OJ4/+MwdTXFuMPjoKIh3ePLSteqzvN9f+iLPt/3gbpuw4zUEyEnsD9wP37o8wO2DtvaoDGkoTitGOW55TBpbwIVddk/ynt920vmY8qTJm/M5Obmgs/nw9zcvMZxc3NzZGZmiuyzefNmrF+/XhHy5I6hhiHW9F0DI00j8AkfyvjImCEER3ocAQB8n/V9gx6IikZNRw3WPa0b1Hdqx6mY7ja9llEnhFvBRcqLFHBKOQ3Wx2KxoKeuGN8qbVNtfHrq0wb3n9lpZp3nzdzN4DDYAXrWDfv/dLXsKtZQkgfdF3WHbR9bqOmoNai/iVbd/irTb0yHioYKDNtIZ8gAgLKSMp59+QwCIoASSzGL2gb2BjBsYwgzN+kNUUnGnnxW9KqNJAx0GIh7M++BJ+DJUJV4cqNzkRGUgcL3hVBWl85fRhKEKzMNxcHAAT2seqCHVQ8ZKaqb0DOheLTmEdymuWHyfw3/O7YUmrwDcHp6OqytrfHy5Ut4enpWHd+0aRNOnz6N6OjoWn1ErczY2trS4gAs4AvAKeVAQ1/2TnBC9rvth5KyEqbfnC71W1ZIZgh01HTQxrCNwm7Q8qQsuwxJz5Kga6Xb4NUwBoaWBJfPhYqSikJWT+RJZVElEp9QW27SrlIBQEpRCq5GX4WOmg7mdZkne4EKxmeDD/x3+MPze08M+GmA1P03+m7E/oD9WNJjCX4e8HOt8wKeABUFFWApsaBlrCULyQ1CUgfgJr8yY2JiAmVl5VqrMNnZ2bVWa4Soq6tDXQH72ZKQH5ePfe33waS9CZZELpHLDWVJ+JIG911+bzl8k3xx+tPTmNVplgxViSbufhzSA9PRZmgb2PSykfn42mbacJ3s2qC+FdwKDD09FJ3MOmH3qN1V/hfyhFfJk3q5/EP4Aj6K2cXgE369qxLSkliYiMTCRHQ07QhTbVOZji0vzoefR0B6ACa2n4h+dv3olkM7woiV5BXJsNUXbdwL32eburGjoa+B9hPbN7h/fEE8lt9bjg4mHUQaMyUZJQg6HASWEgsDfxnYGKkKYeAvAzHg5wEQ8AQN6l/OLUdGaQZyynJEnvf53Qe+G3zRfUl3jNk3pjFSFUKTfxVXU1NDt27d4O3tXeO4t7c3+vTpQ5MqycmLzQNALWE29GZRwa1AZmkmyrnS+xHUh5qyGjRUNNDBpIPMxxZFxIUIPPn5CWJvxjaofxmnDCvvrcT86/Mh60XFmLwYvEx5iQuRF6CqVEdopgz52/lv7LTbiexwKR10/8+Z0DMw2mqEWVdkb4heiLiAwScHY/m95TIfWxTFqcXw3+WPRJ/EBo9xI/YGtvttR0BagMjz6UHpeHP0DVL9U6Uee/rl6Rhycgj8U/0brE8aZHF9C32Hitmi/QYPdTmEjeobkfEmQ6px2Tw2Dgcdhm+SLwSkYQ9TRWOjZ4PPO36Occ7jRJ6vLKiEj5cPXu16JfXYdG1wsFgsKKs2bMttUfdFePP1G6zrv07keU0jTQAAr1wx24iNpcmvzADAqlWrMHv2bHTv3h2enp44fPgwkpOTsWjRIrql1YvLOBesLliNsuyyBo8x/MxwPE9+jktTLmGyq2z3Rr1ne4Mv4CvsrcxxiCP4lXw4DHZoUH8Wi4Vdr3YBAHaP2g0dtdr5b1JepqA8rxyOQxyhpi356oqtni3+nfQvSjmlCpmPivwKFKdSD5mGOmEKfXsqeKIjMNID03HjqxvQtdTFzLt1+9d8jJqyGtoYtkFH044N0iYtiT6JuL/yPmw8bTD/5fwGjTG67WhY6ViJ9fMJ/y8cftv94Pm9J2x6S7cy6Jvki/SSdLCgmO/Kjfk3kB6YjsG/D27wikTwwmBoq2nDQMNA5HkBXwABV4CKfOkieOLy47Dw1kLoqeuhcHVhg7RJAyEEb0++hbmHOcw7mUNJWfr38LZGbXH+s/Niz+tY6KDbwm7QMpF+S2WX/y789fIvfN3ta3gN8pK6Px3Y6dvBTt9O7PkeS3qg57KeTSMnmAQ0C2Nm6tSpyMvLw++//46MjAy4ubnhzp07sLevJ0lcE0HDQAMaBg33mdFT1wMLLLErM/67/BF7MxZd5neB+wzpExaJc6aVB51mdkKnmQ2PBNFU0cSavmugp64n1sfn7NizqCyoxJKIJTB1lXx7xFjLGDPcZzRYm7RoGmlidcFq5ETkNNj5cKzzWLB/Zte5JZb1NkvqhxUArOi9Ait6r1DYW6eOuQ46TOoAiy4WDR5jZqeZdTpFm3uYw3msM0zaS78ld3XqVUTlRKGjmWKMu1T/VORG5TbqYSJua0nI1KtToaymDB1z6ZJi8gkfo9qOUlgkU0laCa5/eR0sZRbWFq+FkpbsH7CaRpoYe3Bsg/pG50YjozQDfIGIxIpyIOxsGAIPBMJthht6LJaPw7G0SQnppsk7AMsCujMAN5ZKXiXUlNXEPrxvL72NwP2BGPDrAAxeP1jB6poepz45BXYJGxOOT2hQOHJLgl3CRsrLFGiZaMGqW92hqQxNi5L0EqQHpsOuvx00DTXplkMrOZE5uPvtXQi4Asz1mUu3nFoUs4sRnRsNEy0TsXlbZMntJbcReCAQfX7og2FbhzVojMzSTDyIfwB1ZXVMdZsqY4WyQ9LnN2PMyJGChAI8+eUJbPvZys16BoDUV6koiC+ARWcLqVYi/nz+J3ySfPB1t68xsf1EuekTUpJeAlVtVblGdjWG+3H3Ya1njfYm7cXmKWFo+vAEPLB5bGirNf00BfLmVuwtBGcEY7jTcPSyaV55Q+RBm91tkFWWhYglEXAwcBDZhlfJA0u54b4oiiA/Ph8pL1Jg5mYGy66WDRrDN8kXA08MhLOxM2KWxdQ6X55Xjuebn4NXycPovaMbK7nBSPr8bh6bYc2UVP9UhJ0NQ+jpULl+jk0vG7jPcJfKkAEAnyQf3I27i8xS0fl6ZM2jtY/wp8Gf8N/dOAfKSl4lssuyZeoQzRfwMf7ceLgfcEdKUYrMxhUHIQQ3F96E3w4/sEtEJwCUhHJuOVZ7r8biW4tl6oj5LOkZPA56YOW9lTIbsy44ZRxwy6XPgPwxZ8POQnWDKiaen9h4UR/gk+iDa9HXkFEinaMs3VyIuIBfn/6KZ8nPRJ5PC0iD3w4/xN2Lk2rc5voOXMYtQzm3XKxD9JGeR7BJcxMSnyQqVpiUGDkZweMLjwYbMgBgqWOJ4U7DMch+kMjzAq4Aftv9ELA/AETQ9P/ezOunHLHobIHBGwZDx6JxRRp9En1wJeoKOlt0xpddvpSROsBrkBcmuEzAEMchMhuzLkoyqKy6Rm2NGjXOiDMj4JvkiwufXcCUjlNkIQ0FlQXoYtEFiYWJdTrFyYqStBK8OfwGLGUWui/q3uBxlFhK2PqSyja6ZegW6GvUdiROepaEouQiOA13grapZKsVYdlhCM0KVchcAEDE+Qjc/PomPOZ4YMIx6TM3CxE6hBdViij8Byrx2tmxZ6GiroIlEZKnNNjpvxPXY65jz8g9YosUypKgI0EAAOexztC11G3wOIMcBkFDRQNuZm4izyc8TMDjdY/hMccDbUe2lWhMARHAYpsFrPWscXfmXVjoNNzHSRIIISAC0iCn3495MucJNFQ0YKMn2vlbGDBQnif5i1JMbgyuRl9Fd6vuGNpmaKM1Kop2xu1wf9Z9sec1jTTRe1VvaJtpQ8ATNHkfGsaYkSOmrqZSr5aIIjQrFHte78EU1ykijRluORc5UTngVfBg10/yh09P654KS1MPALMfzEZZTlmDs7sKEUbwlHFFR4gF/xOM4H+C0WFSB3iu8hTZ5mNMtEzg/5U/CCEKcWhUUlXC4I2DUZZdBlWthoeBa6ho4HvP76GjpiPWkfvWwlvIjcrFF4+/gONgR4nGndxhMuz17UVGi8mDnMgcED6pCgdtKMOdhiP3h1yxGZzVdNRQEF8AJRUlqf7WLsYu6GrZFe7msq0ILI4Xf75AQXwBZj2Y1ShjZl6XeXUmiLPobAG36W5SVVxOLU5FTnlOVXVyeVP4vhAHOh2AractZj2Y1ajvp6tp3TmoJv83GSqaKlI55D9Lfoa1j9ZihNMIhRgzqf6pKE4thm0fW+haNfzaqA9lNWWM2D5CbuPLGsaYaQb0tO6Jtf3WwsPcQ+T57IhsHO15FHo2eliZophtgYYi6cpAXVz47ALUlNXEPrxLM0uR8iIFxi7S32gVFaKuY67ToKydovhr+F91nrfpbQNdS12p6reY65hjjLPiEmUN+2sYeq/s3ehxNFQ0oKEi3idLx0IHc33mQttcuuvwz2F/NlaaxBABgetnrkgPSJe703a7Ue3QblQ7qfpY61ojdlkskouSoaos/3xM6YHp4JZxUVlUKffvZ0NW0e307TDDfQa6WzZ8hVUago4EIeSfEPT/qT+GbFTMqnpzgHEAlhOlmaUoSCiAVXcruS/PFaUU4VjvY9C308d8P8nycyQUJCAuPw4dTDrUG77Z3MiJzEFOZA5M2pvIpaYNA0NzQ5H1pGSNgC9AXkwe2MVsqXMDfczTxKcIzQpFX9u+6GbVTUYKFcuzP54h6koUBq0fBOcxzo0aq8eRHkgvScfzL5/D0bD2qq2AL0BFXgVUNKRbrZIljAMwzURejsQ/ff/B+U/FJ2mSFfq2+liVtkpiQwYArkRdwYgzI/Djwx/lqKyaO8vu4Pq86w3OdCsNpq6mcP3MVSpD5ourX2DIySF4mSK6ErssEfAESPJNAo8tm8yafAEfhZWFqORVymQ8Lp+LEyEn8Dz5ebPJ7iqEzWNjo+9G/Oj9o8IKIDZlrkRdgfYf2hh2uu7wXSIgTdapV0lZCaaupo02ZADg5NuTWH5vObwTvEWez4nKgc/vPgg8GNjoz5IX/df1x9eBXzfakAGA9JJ0pJeko7CyUOT5y9MvY5v5NoScDGn0Z8kbxpiRE3w2H1omWrDxbPwXkBCCCm6F2BoaDUFLVQuupq4Kye5KBARhZ8MQcjxEJhErz5OfY+W9lTgefFwG6qrHfJL4RCFJrzKCM3Bi4AnsdtwtkwfIsNPDYPinIa5FX2u8OABJRUn48vqXGH56uEKy3b45+gY3F95E8vPkRo+lxFLCL09+wV8v/xIbsZL0LAlBh4OQEynZ9+lg4EE47HLAr09+bbQ+SciLzYOALxsjUl1ZHeXccrEO0XwOH9stt2OD2gawiySLqjsTegbHg48jrThNJhoVSS/rXvi84+dwMXYReT7/XT6e/vYUwf8ESzSe8N7cXLny+RUEfR0EFxPR86Ftpg2wAHZxwyMuFQXjMyMnPFd5ovfK3uCzG/9wjC+IR7u/20FXTRfFa0XfoKVlSY8lWNKj4QUqpYEQgkn/TkLys+RGhRIKCc0Kxa5XuzC5w2SRDtECngBpAWkoyy6Dy3gXifbZz04+i3d57xTi4FmaWQptc21YdbeSiQ+A0Nm1hF0i8vy7O+/waN0jWHaxxITj9UcKcfgcDGszTGGVliMuRCDBOwHm7uZSObCLQlVZFYu7L4aWqhaUWaK3d1/tfoWoy1EY9fcoiRz0Y/NikVSUJJfaaB/Dq+ThQKcDUNFQwdKopY1y/gWAgQ4DEf9tPAw1DEWeV1ZTBqeMA8InKM0qlShT+ZbnWxCRE4F7M+/BWs+6UfrqI/VVKiIuRMB5jDMch0jmvF4Xi7ovwqLu4svgGLsYo+uCrhJniM4ozYD1Dms4GDgg/tt4uW/lVRRUQMNAdlmX68s9NPTPoRi5a2SzKGnAGDNyhMViNaoispAPo3fE7X0/9XqKxKeJ6Le2H9qOkCzEUlEoKSs1yNFQHN2tumN139ViHaL5XD7+6fMPAGB14WqJkvT1tumN3jaNd0CVBJdxLnDOcJbZ287pT09DTVkN6iqi97T5XD6y3mZJ7ADsauqKB7MfyESbJHiu8oSZuxmchjvJZLz9Y/bXed6mtw34HD70bCTzn/up/0/4zPUzhUTu5MflQ0VdBapaqo1O6QBQoer1RaTN95sPDQMNiT9vhNOIquSS8ibmRgz8d/ijIrdCJsZMfZi4mGDcYdGFKEURnx8PgFoRVIRP0pnhZ1CcVowpF6Y02vCXBGlq29EN4wAsB2Qd3isgApRySqGjpiP2C3PhswtVb5s9lyku3LqpcsD9AFS1VTH1ylS5hi82B8qyy5DxJgN6NnqMQ3QzQMAXoDilGAYOBnRLoZ1473hEXoxE21Ft0eHTDnTLqQUhBPkV+cgpz5G7ccet4OIvk7/ALediZcpKiY3xuniV+gqxebHoYtlFbC4iumHKGXyAoo2Za3OvIScyB4M3DFbYKsn7J+9RmlkK657WMHKqOyldbF4sJpybgM4WnfHf5P/kqosQgqBDQbDtYwszNzOwlBQT+iwNwRnBSClOgYe5B+wNmkfxUoa6Efo+KbKIalOEzWPjYOBBlHJKsbrf6lZfpuNmzE18fetr9LDqgRvTb4htxynjQFlNucmVNOBWcJHxJgN2fWWzKvPl9S9xIuQEtnyyBav7ra51viS9BH47/UAEhLacM0w0E40kPklEekC6QvcZHQc7wn26e72GDEAZM9G50YjOjZa7rtzoXNxefBtHex0Fnysb51pCCCp5lSioKJDJeMdDjmPCuQnYH1D39oQsePX3Kxzudhhvjr2R2ZjPk59jtfdq/Bv6r0zG63W0F7od7obw7HCZjFcXsbdjkRudK9NImmGnh0FlgwquRF1p9Fi55bnY6bcTd9/dlYEyelhxfwV+fvIzyjiik0ymB6Xj5faXeHf3Xb1jcficJhv1JAkEBJmlmcguEx9VeaDTAWzW2Yy0V03PwVlVU1VmhgwAdDLrhOFOw8Vm+uaWc+G3zQ9BB4Oa/N+9dZvpcmK+/3zE3Y2TSSihkO0vtyO1OBXf9vpWZD4Aaehj2wfes70VcnHyOXw4jXCCkrKSVEnb6iI6Nxqu+11hqGGI/NX5jR7PUscS3Sy7KcT5N8E7ARlvMlCeKztn0qD0IGx9uRXT3KZhZqeZItskv0hGQXwB2o5sS0UoiEFABAjJDAGHz5F79l8+h4/L0y6DU8rBwuCFsOgsm7T4qkpUIrdSTqnI87kxuTg3/hyIgOCbd3WXJgjLCsOqB6vQzqgdRrUbJRN94kh+noxH6x6h/cT2Emeurg81ZTVMd5sOLVUtsVvfcffi8OTnJ+j8Zed6/dp+e/Ib9gXsw9p+a7G2/1qZaBRHWkAadC11ZbKdImSA/QAELwwW6xANoKpCeUm6aIf6D9nyfAtUlFQw030mLHUbH9ygaFZ6rsRKT/GJVvVs9NBreS/o2+mD8AlYKk1vZV0IY8zIAV1LXXSZ10WmYx4LPoao3ChMaD9BpDHDY/OQE5GDivwKtBladwl6I00jhdUQsfCwwKx7s2RqOAkfsuLKGQBA6L+hCNwfiLaj29abaXdtf/nfmIVM+GcC3t19J1X6+ProZtUNK3uvRDdL8UnA7iy5g6zQLMy8O7PeGjxBXwchsTBRbP0aWVGWXQab3jbIi82DeSdzmY17cuJJsFgs6KvXrlMFABr6GsiLzQNYlHN0XVsJuuq6mOI6Re71hwAg+lo0kp8ly9RXhsVi4ezks3W2sepuJXFJg8SiRJRwSqCmLH/H0Jtf3URWaBamXpuK9hNk449ioGGAzhad62wz+b/JUNNVg7pu/Uni/nr5F/Ir8jGy7Ui5GjMlGSW4OvsqXMa7oOc3PRWWqVxFQwUjd41UyGc1FsaYaSZ82flL5FXkwVpXdChk4ftCHO52GOp66lhTtEbB6upHll8+az1rFK0pgraq+BWGirwKpLxMaXLOv1omWvCYLToKq6H0s+uHfnb96mxj08cGWqZa9UbXKbGU4GbmphBnQD0bPcz2ng0+ly9TXypT7brDrbXNtPHF4y+gb6dfb/HC7lbdcWHKBZlpqwvPVZ4wdjaWST03aWg7oq3Evn3/jP8Hvw38rc6VDVnAreBCTUcNSqpKCona+RBJ7xkCIsCibouQWJQIe335+tq9u/0O7x+9B6eEg17f1h1O3VphHIBlSGVhJe6vvI92Y9qhw+QOCrOeAcph7e+2f0PfTh9zfebW+dC6HHkZeup68LT1lOtWQmlWKdT11KGqKf/6LR+TH5ePzJBMmHQwgVlHJoKHgaE5UllUKVFqBUkp55bjQsQFVHArsLjHYpmNK2+KkosQeTkS2mba6DSzk8zGvRZ9DeserUNf2744Mv6IyDZEQFCWXQaWMksmtfWkhXEApoG4+3EIORGCp789VaghA1D5AL7L+A5fvfqq3rfvr25+heFnhiOpMEmumh6te4StxlsRdCRIrp8jCqO2RlRJg3oMmaD0ILTZ3QbTLk2Tqx5CCG4vuY2w/8LAq5R9mn2+gC/WwVManiU9w6m3pxCTGyMDVeJhl7DlMg8A5RC90XcjbsfebvRYza2cgyiGnR4GnT90cD/ufp3t+Fy+zDIPywpZGjIAZcx8ef1LLLmzRGy27+LUYvj87gOf331k+tmNQd9OH54rPWVqyADUfETlRuF94Xuxbe5/dx/bLbfDb7ufTD9b1jDGjAwx62gGz+880XVBV5mPLUyb3dj6Oxw+B31t+8LV1FXuYcjZYdngVfBg2Eb2S9Jbnm/Bd/e/Q2ZpZqPGiS+Ix/vC90gtTpWRMtFkvc1C4IFA3PzqpszHDkgLgMoGFXTc3/jSFCffnsSca3NwPkK+NcUC9gdgq8lW+G70lfnYTxOf4pcnv+B6zHWxbTJDMhF4MBCJPol1jtXu73Zw3O2IyJxIGausycttLxF9LVom5T4+ppJXiTJuGUo44h1aD3c7jE0am5D1Nktsm7TiNPz65FecDavbB6exCHgCCHjyMap01HQwsu1IfOb6GbgC0XNdUVCBp789xas9r+ocq5hdDDav6af5r4shjkPwZM4T7Bm1R2wbPWu9ZlHSgPGZkSFmbmYYvm24XMZecHMBjgUfwx9D/miUs6qashpuzbglQ2Xi+erVV8gOy5Y4Nbg07H29F2klaZjZaaZY58z0oHQUvi+E4yeOVREKHzPcaTiefflM5vo+RsNQA33X9AWfzZdJVugP0VLVAiA+egcAsiOycXXWVSipKGFBwAKx7VxNXfGJ4yfoZC7bN8CPyQzOBLeMC00j0X+XxtDNshu+6vIV+tv1F9sm8lIknm16hu6Lu8NhoIPINlw+F4mFiRAQAYw060950FAqCirwaO0jCHgCfPPuGxi1le1nnZp4CgIiqNNBlaXMAhEQFCUXiS05EpYdhg2+G+Bu5o4Z7jNkqvFDYm7G4OZXN9Hlqy4Y9mfdBTKlRUNFA3dn1h1mb2BvgC7zu1ARPAIi1p/L66kXdvnvwm8Df8Nvg36Tqc4PibgQAQ1DDdgPsJdZRKgQCx2Lep3beyztgV7LezW5nDsfwxgzzQThA6uuCJ63p94i+Fgw2o1th74/9FWUNLGwWCyZRql8yIKuC1DOLYeJlnhD6cqMK8iLzcMXj74QmwrdQMOgXudZWWBgb4Chm+UTQeZi4oKcH3LqdIhW01FDZkgmlFSVIOALxDq+rvJchVWeq+Si80Mm/zcZvVf2hqGj7FftRrUbVW8YtUVnCziPdYZlN/EPeBUlFSSvSMb7wvcw05af35WAK0DPb3siOzRb5oYMAIlSOUz+bzLUdNTq9Ikw1zbHwm4L5R7ZFXcvDhX5FXJbnakPdT11jD86vt52aSVpICAw1pJfmQs+h4/bi2+jIr8CM+/NpKVUDR0+jw2BcQCWEWH/hcGyi6VcViEAqoggAYG2qrbYrKav9rzCveX30P7T9ph6ZapcdEgCERCAJdsIpoZw9YurKEgowJCNQ+AwyIFWLXQj4AsQezMWxi7GMHExaZKZmBkYAOr+keSbBH07fblsUcsKQghyynOgpqwGAw0DuXxGRX4FHv30CMm+yVj0dpHME7GWckrxKOERuAIuPnP9TKZjywqmnMEHyNuYqSyqxDbzbeCz+VgSsUThoZVC8t7lIT0gHeYe5mIdX9c9WocbMTewynMV5nWZJxcdMTdjcH/lffT6tleTDyM8/fY0DDQMMMhhEHTV5RPGHXU1CoZtDGHhIf9cJU0d4e1GEYaurGukNVf8U/0RkBYADwsPDLCvO+dSa2DEmRGIyI7Apc8v1Vlcll3MBreCCx1z+SaPlAR5XcvvC96jzZ420FTRRPlP4hN5vtj6AukB6Rj0+yCYdlDs842JZlIgFXkVcBrmBHMPc5h0kM/KjCQYtzOG+wz3OiN4onOjEZETgXKu7DLQfkzEuQgUxBegMLFQbp8BUM7MHD6nwf0JIVh8ezHGnxvfaEdicfA5fNz6+hYOdT6ExKeJcvkMgHKIXvtwLQorCxs8hl+KH4y3GmPs2bGyE/YRaa/TsNdlL15ueym3z/BN8oX2H9rwOFh/Ph8BXyC2zMaD+AfY7b8bwRnBspZYxfsn75EbnSu38QHgatRVfHvvW1yLvia2TWVhJfx3+ePhmodi28jznqFIssuykVaShqLKIrFtXvz1Alv0t+DR2kcKVCYeeRnl+hr66G3TG33t+taZ2DTmRgwiL0UiK1S8gzjdMMaMDDBsY4jpN6djQcACuV10oVmh+PXJr/gn+J9GjbNjxA54z/bGOGfJy9xLy9hDY/Hp6U/R7WvxGWkby/TL06G+UR2Hgw43eAwOn4PhTsPR3aq73LLdVhRUwH6gPfTt9eWa/Gvz883Y8mILcspyxLYpTCrE21NvEXNDdNh1clEy8ivyUcwulpdMhJ0NQ/47KgeQvFBXVkc5t7zO6B0AuDTtEv7Q/gPvbouuSXQ+/DxW3F+B2+8aH+ItCkIIbi+6jX0d9iH6uvzqpHW26IzPO34OD3Pxxh0RENxfeR8v/nwBTpnoFwTnv52ht1kPoVmhctFZkFCAgx4H8XL7S7mWWjk+4TiCvg5CH9s+Ytvo21LZo8uyRfsoJhcl45s732Dv671y0QgAGW8y5P5CaKRpBL/5fvCe7V3ns6vb190wfMdwWHZpuiUbGAdgGSJPb++I7Ahs8N2AwQ6D69weynuXh6zQLJh3Modxu9qOaQ4GDnAwcJCbToByNu00S77RMBoqVP6JunKrcEo5+HfUv8iPy8fy98trRRGpq6jjytTGFyOsCx1zHXx+6XPwuXy5Fh5d0HUBeAJenUkQE58m4vrc63AY7ACX8S61zo9zGYfQRaHgE9kUBBXFJ5s+gVV3K7n5lgGAh4UH4r+Nh65a3duGSspK4LP5yI8TXd+rp3VPFHOK6ywT0Rg4pRyYuZmhJKMEbT6puwRJY5juPh3T3afX2UbTSBMeczyga60LPocPfOQHzBPwkFGaAQERwFRLPtsMwceDkRWahfh78ejznXhDo7HUV84AAFzGu2B14WqxeW6icqKwN2Av3MzcsKznMhkrpAzdG/NvIDMkE5+e+VTm+WWkxeOLulc5OXwOVJVUad3WZXxmGknCowRY97CGul79dTwaQ3BGMI6+OYoOph3q/PJcmnYJEecj8MmWT9BvtfyjdD5EkT4Kwu0UHTUdqCiJtskJIdhqvBWVBZX4OuhrsSGnrYXMkEzc/fYuHAY7YPD6wXTLoZ3c6FwoqynDwNGA1ptwZWElNAxkmxxOHpRxypBanIp2xu2gxJK9Yc4p4yDkRAhMO5iKjT5sKkTlROF06GkYaRrh+z7fy3z8yqJKXJ5+GUm+SViRtAJaxloy/wxZMv/6fFyOuoy9o/diVqdZMh2bcQD+AHkZMxX5FdhhswNKykpY9HZRk/C899/tj7AzYej6dVd0W1DzjTKvPA9Xo6+ijWEbDHEcIvPPjrgYgcD9gei3th+chjvJfPyG8O7OO+ha6cK0o6nC8yTE3oqFjadNk78RKQLGGZehqRCYHojInEh0Mu8k0SoNnZTllMm9hMDYs2ORWJiIi1MuooNpB7HtKgoqkBmcCds+tiJzZXH5XPAJv2rVXFYwDsAKoDi1GIaOhjB0MoSBowHdcgAAvZf3xoKABbUMGYBKerXg5gIsvi2fmiSv97xG4tNEJL9Ilsv4DaHd6Haw6Gwh0pDxeuoFpz1O2O2/W+afW5pVigufXcBO250oeF8g8/FFISACsSnaJeHYm2M4GXISueWyd0iNuhyFk4NPIt47XuZjfwxfwMeeV3uw+dnmBmfMbuxc1kfc/ThUFjYum7ekeMd7w2q7FYadrj8BHZ/DpyqKt2COBx/HnGtzcDXqap3t4r3jcW3ONQQdVnw5FiGKqIUUkxeDiJwIFFTWfZ/a33E/Tn1ySqy/m6qyqswNGWlgjJlGYN7JHIvDFmPG7RkKe+vk8hue7lxDRQOj2o7CQPuBMlRUzaSzk9Dnxz7osaSHXMb/kKD0IHg99WpUavW4/DgkFCSAzZd9mm52ERtmHc1g3skcBg4GMh//Yyaemwjl35VxJvRMvW0JIagsqv0gXfd4HeZenyuX0g4B+wIoQ/eZ/A1dJZYSVt5fiXWP19Ub3RV1NQr3VtxD5tuaN+iwrDBobNJAt8Oy95cpTi3GuQnnsNN2JwqT6tYnC1gsFjJKM5BVWnckSsH7Avyh8wcOdTlUq0bT3Xd38duT3/A08anM9YX9F4Z/R/1bb2kJWeFm5obhTsPrTSaYE5mDt6fe4t2d2g7imaWZcitlEHUlCuwSxZUOODruKB598QgdTesuh2LZxRIGjgaoKKhQkDLpYByAGwlLiUXVrpAzyUXJcNrjBBUlFVT8VP/FRAQEvEoeVLWqszf2tumNOzPvyE2jvq2+zNOPiyMoIwjrfdZjvMv4OlOrEwFB3P04JD5JxKD1g2pks/xr2F9Y1H2RXCKZjJ2NsSBgAUoyShRi6Ar9hurKEA0A0dejcW3ONVh1t8IXD7+oOk4Iwdh2Y5FcnAw7fdlHXU3+bzJ8N/qi57KeMh/7Y1gsFmZ3mg1llrJYfyohb0++Rcz1GOha6dbIA5RclAyeQD6FMMtzy2HczhgahhrQt9OXy2d8SE/rngheGFxvYjd9O32oqKtARVMFJWklNbTdeXcHewP2gsPnYJDDIJlpI4TA93df5EbnwravrdjSErJkcY/FElXMdhjkgP4/9UfbUbWz7g48MRCxebHwneuL/vbiy2ZIS2ZIJi58dgE65jpYErlEbBkWWTLQQbKX26nXpopc4U4vScf3D75HW6O2+H3w77KWJzGMMdNM0FLVAk/AA0/AA1/AF5sFGAACDwbiya9P0PnLzgoxLrgVXIWnvHYzc8Oibovq3/NmATcX3ERJWgmcRjjViBqx1LWss15NY1GUoQsAB8YcwL7R++p9YBm3Mwa7iI3ssOwaZQ1YLBaOTTgmN306FjoYvXe03Mb/mBMTT0jUruPnHaFvpw+7/jUNuNHtRiNlZYpMKpF/jEVnCywMXojyvHKFGLp66noS+YYoKSthcfhi6Nvp19I1wH4AOHyOzEt/sFgszHowCy+2voDnKk+Zjt1YLDwsRCa6JIQgr5zaipP1/YNdzIaRkxGsulspxJCRBnE+hwkFCfgv/D+0MWxDqzHDOAA3EwREgIySDGiraUNfvfbN5kNCz4Ti6uyrsO1ri3nP5ZPlVwi3gov9rvvhNMIJQ7cMbZJRGQ/XPER5bjl6LusJi87yzcKb8SYDmW8z4fGFh9j6R3RCCEHa6zRYdrVUiEM0u5gt90g/BgZFQwhBbnkujDSN6nyxbAh8Dh+cUo5cirCKIiwrDImFiWhv0h7tjNtJ1OdDh/7komRcjLgINWU1fNPrG5nrYxyAWxhKLCVY61nDQKP+MNJ2o9thru9czHk8p8bxwScHw3WfK16l1l3aXhoSHiagMLEQcXfjoKzeNKuqDt0yFOOPjq9hyJSwS7A/YD+uR1+X2ecIeALcWnQLN+bdwNPfnspsXFnCYrFg08umliEjj3eagoQC7LLfhdtLboNb3nBfr5ZC1NUohP0XJteEcKJg89g4GXIS+17vg4BIXrxR3jrF5feRN3fe3UGHfR0w60r9IcREQJARnIGoK1E1jrNYLJhqm8rckAEAZTVlhRkyAPDXy78w/tx4XI+p/174as8r7HXZi4D9AVXH7PTt8F2f7+RiyEgDY8y0QDSNNGHf3x7KajW/aJE5kYjKjYK6iuzelF3GuWDWg1kYc3AMLdVVGxpxklCQgKV3luLrW1/LTAtLmYXOX3aGrpUuui/uLrNxJeF12mtsfra5wcbZtpfbYLzVGGserpGZppibMagsrER2eLbIUE55MuHcBOhu1q03YkVIflw+4h9UR1odCTqC3f67kVSYJBM9xWnFuD73Oq7MuILgY/IrjyAKPuFj7vW5WHZ3mUTbZq/3vcZ+t/1VmZEFRIBidrFMjZuICxHY234vfDf6ymxMSWHz2IjOjUZCQUK9bbPDs3G462FcnnEZ7GL5OeU++OEBoq5G1d9QDjgbO6OXdS+JkiHy2DzkxeYh9kasApRJB+Mz04w4GHgQmaWZWNB1Aaz1rKXu/3TOU6SXpMPZ2FmmupyGKT6nTGROJLoc6gJ9dX1k/5AtUZ+ilCKUZpbCuoc1VJVV8Wn7T+vMmCstLBYLPRb3QJcvuyj84f0s6RnWPV6HWZ1mYUL7CfW2f73vNd6eeItxR8fBwsMC6SXpyK/Il+kDq/fy3jBqawSzjmYKr9JdyatEKae03pIGAJDok4iTg05Cx0IHK1NXQklZCbte7UJkTiTczNxgb2DfaD06Fjrot64f4u7GofPczo0eTxo0VTQxsu1IaKtqS7Qykxebh5yIHERciIDzWGdklGTAZqcNDDQMkPdjnkwS5iX6JILwqSAFRdPPrh+ezHki0cPbzN0M5h5URGJFfgXU9dTx5P0TXIm6gv72/fF5x88brSfufhz8tvnBj+WHpVFLYeKi2Pp+Pw/4GT8P+Fmitp1mdoKBgwGcx1Q/QxILE6GhogFTLfmsVEkMaQUUFRURAKSoqIhuKY2i7Z62BF4gz5Ke1dtWIBAQv51+5EivI6QwuVCmOvhcPnm49iEpzyuX6bjSkJCfQOAForVJS6L2kVciiRe8yL6O+4hAIJCpluL0YsIuYct0TGnxjvcm867NI0eCjkjU/vyk88QLXuTBjw8IIYQUVhSSsKwwklSYJE+ZCuN9wXsSlxdHStml9bblsXnkT+M/ydlxZ0l5PnVN//zoZzL14lSSkJ8gU10CvmyvPXmQFZZF3vzzpmouAtICCLxAbHbYyPRzom9EEx6HJ9Mx5QGfx6/x+0afjQReIPOuzZPJ+Dw2j3iv8SYP1z6UyXiKZsDxAQReIOfCzsllfEmf34wDcDPi58c/I688Dyt6r4CLSe3aOh9zcshJJD5JRJ8f+8g0quneint4tfsVLLtaUsU1FfzWDVC1YtJL0qGtqg1jrdo1qD6msrASO213wraPLSafmyyzSIHKwkoc738cKpoqmHF7hkKSXMmC90/eIzM4E10XdIW6ruy2HdMC0vBy60tMOD4BajpqMhtX3pTnlkPLRPaZmuMfxMNhsIPCs0/LmlJOKQoqCmCrb9vgMQR8AVhKrGafCdon0Qf34++jm2U3THadLLNxSTPMkk0IQd9/+uJV2is8nfNUpmHqQphyBh/QUowZaUn0SURGUAa6LuiKRHYinic/h6upKzxtGxcCmR2ejbNjz2LUnlEiCxY2VUqzSqFjLrttJQDIfJuJU5+cgrKaMub7zYeBvYFMx29OEAHB/o77kRudi94re2PEjhF0S6KVkBMhuD7vOtqOaIup16ZCRb357eoTAQGfy2+0dj6XjxvzbkBJRQljD4+l1bir4Fbgfvx9VPIqMc1tmuT9CioQ/yAeblPdGq2hOK0YkRcj0Wt5L9oNmFuxt7Dp2Sb0tu6NnSN3StQn3jsePl4+6PRFJ3Rf2B08AQ8ssOSyzcREMzHAYaADPFd5Ql1XHY/fP8ZXN7/C1pdbGzTWhzavmZsZlkUva1aGDIAahsz0y9PRZncbiR1ExWHhYYH5L+dj1r1ZTcKQaci7iUAgwOYHm3Ei5AQquA3P7slSYmH8P+Nh198Og9YPavA4siAwPRB7X+/Fk/dPpOrHLmHDd7MveNzG+3IYtjGEspoyjNoZ1XLGVzQTz02EzQ4bqeYjOyIbx/sfx6O1jxr9+ZkhmQg/F463p98i1V/2GaaloZhdjE/Pf4rpl6dLHN1VnluO3Y67cXnaZcTdi2vU5/MqeTgx4ATur7yPh2seNmosWVBQUQD/VH9E5ERI3CcnIgcpL1Pgt90PAr4AKkoq9PrLgDFmmiUNeWBZaFlgCqagl3UvqfvmROXgaK+jSA9KrzqmaAdXUex7vQ8bfDZIXUuIx+ZBa48WSmNLG/QFjLoShcSniVW/Gzsbw7yTudTjyJLA9EDobdaD817pnLsLEwtxcvhJJM5NxNcXvwaBdNcWn8tHbnT1/Nt62mKuz1yZbl01hNuxt/HN3W9wIeKCxH0IITje/zierHuCsYPHYtL5SVJ/LhFUz5/9AHssCFiAkbtH0v72nVOeg7SStHrLO3xIcUoxUl6mIOB0AH679RveZLxp8Odb97DGxFMTMe36NNj3b7xDdWPQVddFb5veGNpmqMTlYbRMtNBlfhcYOxuDbc5uVCkDFQ0V9P+pP4xdjNF9kWKjHkUxyGEQrk29hk1DNkncp8fSHuj/U3/MezGvyeTTahoqGCRi8a3FUN+ojm0vt0nVj1fJA/snNtw3umNMyhipP/f13tdID0jHvW/vKTxHRl1s8N2AX5/+ivSS9Pobf8CjtY9g52uHHx/+CE8r6bbcIi5G4MLkC7gy6woq8ptOjRJ1ZXWUcEpQzC6Wum92SDYsiiwwyXQStFQl9xspTi3G4W6HcWLgCZRmlVYdp/vBDQDu5u6Y4joFXS27StyHxWJhwC8DwDJhIcw1DKrKkqcaEPAFVA6O9ntRnFr9NzB3N28S83FwzEEEfR2EIY5DJO7TdmRbDPljCIJ+DsLvQb8jOEPykPKynDLc+eYOssOrIw3dp7vXiIKhCy1VLfjN94P3bG+p0lQMXj8YX/p9ic63OkNjk4ZUNcwy32YiIzij6vcu87pgUcgiGDoaSqVdHtjq22JC+wnoYS15TT1lVWUM2TgEMbwYzLwyE9tebqthyNMB/a/XDBLDYrHA4XPqrb/zMcrqytDQpzLz6ljU7TNCBATpQenQNtWuKpA46LdBKM8ux8g99L9hfsh0t+ko55ZDT106P6j+P/XH+0fvMWzbMJjq1h2eya3gojSjFIZtqJuO8xhnGDgYoOPUjk3KwdXZ2Bnvvnkndai5gYMBpl+fDl4lr6rUg4AvgIAnEOknwS3nVtX70rHUAUj16oys/ZEaw6QOkzCpg/QrK66TXfH98O8xn8yv2oLICM6ARWeLOq99lhILkZcikf8uH76bfDH2wNgGa5cH7ubuDerXf21/RAdFwyLDAp0tOuPdnXcw6WBS70P4qddTBO4PREFcAWbendmgz25qqOmoobSitCo0PeN8BpKLk9H1q65V91dRhP4biquzrsKqhxW+8v+qKmCiKaxuN5bInEicDTsL7lMuznidwewHs2nTwjgANyOyy7JRyauEkaaR1A8toZFi3aM6P829FfdQllWG/j/1h5mbGQDg4dqHeLHlBbp81QXjj4yXqf6mxId1iQCqntXbk2/Rd3VftJ/YHgCQ/DwZp4efpvxi/OZXtf3wgd4SibkRg6uzr6LPD30w4OcBAKg37VNDTqEspwzfpX9XdUPOjsiGrqWuQjOWKpLMt5k41PkQzD3MsShkUdXxC59dQMabDCwIWAAtY2o1Kz0oHemB6eg6vyuUVFreondBQgH2d9wPPoePH3J/qIoI9N/tj+ir0Rj460A4DqEqUWeFZeH6l9cx7K9hcBxcd3Xq5gYhBOlJ6TjtcRrsYjam3ZgGl3GU/2DU1ShEXYpCu7Ht4D6dMiBLs0qxy34X2k9sj3FHxtG+Bfsx5dxyvE57DQ6fg+FOw6XqG5UThdvht8GezcakPZPQYVIHmeuT9Pnd/E3DVoSZtlmD+zrvc4aqkiputb2FNoZtQAQEoWdCUZFXgd4re1e1cxziiIB9AeCz+c0yVFAS0orTcC36GpyMnDCy7UgQQvD679fIicxBWU71qpeOpQ54FTyUZJSAV8mrepNqaYbMx3/niAsRYBezUZ5XXnVM00gTee/ywGfzkR2RDXN3ykfIrGPDr8nmQFZoFlQ0VapWKYXkxeah8H0h4h/EVz20rLpZwaqbFQ0q6yckMwRhWWHoYNoB3a0a5qfBLmbDfoA9itOKa6Q2SHmegiSfJGSGZFYZM+bu5lTahiZ6/5h8YTKic6Nx+tPTUm1FAtQKuaWtJYZvH47IS5FoN7q6nlFmcCbCzoZBVUe16rrQMdfBqtRVcgn9lwUZJRkYfHIwdNR0ULK2/iSTH9LBtAM6DO4AdhSbdiONWZlpBXD4HKhvpC60nB9yYKJlAgFfgHe33yE/Ph+d53SuerMW8AQgAkJ79IU8ufPuDsacHYMuFl3wZiHl1FjwvgCpfqmw7mkNo7ZGAKjVm7zYPJi0N2myN+UP2R+wHyXsEizpsQS66roS91txbwVOh57GT/1/wirPVRDwBch6mwUlFaUajs2JPokwdjaGrqXkY9PF8+Tn+Pzi53A0dMSLeS+k6vvXi7+goqSCmZ1mwkzbDJwyDiryK6Bvq1/VJv5BPJTVlGHVwwpq2k1nu1EcPzz4Adv8tuF7z+/x1/C/JO7H5XOrtnKF34GPVyZjbsSgsqgSdn3tqrZjmzoeBz0QmhUK79neGNpmqMzGTfJNQqp/Kmx628B+AL2OzpKSU5aDgScGQlddF/7z/ZvcvY5ZmWmBROZE4l7cPdjo2UiVRltFSQVRS6OQXpIOI03qQa2krCQytLo5LY/PuTYHFyIuYNeIXVjYfaHE/Qw0DPBp+0/RxrBN1TFDR8NafgBKykow7VB/yvOmwo/eP6KMW4YpHadIZcwISxmoKFG3AyVlJVh2tazVzmGgg6ykyh0llhIySjOgqSr99temZ5tQxC7CqHajYKZtBjVttVoGi9NwxZfwaAyupq4Y4TRC4qrIQt5kvEHvY73hYuyC6GXRAGqvTDa3FA0AsG/0PnD4HHS26CxVv0uRl+CT6INR7UZhdLvRtc7bD7BvNkaMEFNtU0QujWxQ39i8WOiq6cJM24z20GzGmGlGBKUH4bsH32FYm2FSGTNKLCW0N2mP9ibt5ahO8QiIAJW8Sonq73xIH9s+uDL1ipxU0cd0t+ngER7UlaVb7j0y7gh+G/gbTLQUWxNGnniYeyB4YTB01aRbRRIQAeZ1mYf0knRY60pf/6yp8mWXL/Flly+l7pddRkUj6Wvo19OyedHPrl+D+j1+/xgHAg/AUNNQpDHT2hj972jEF8TDd66vXLL/SoNct5k2bdqE27dvIyQkBGpqaigsLKzVJjk5GUuXLsXjx4+hqamJGTNmYNu2bVBTq34TCgsLw7Jly/D69WsYGRlh4cKF+OWXXyReDmsp20z+qf7Y+3ovOpl3wo99f6RbDu1klGSAzWfDRMtEpgUjGRgYqinnlqOEXQJzHXpzKTUF7r67i+fJzzG0zVAMdhxMtxzaabunLd4Xvkfsslg4GclntbJJbDNxOBxMmTIFnp6eOHbsWK3zfD4fY8aMgampKZ4/f468vDzMmTMHhBD8/fffAKj/yLBhwzB48GAEBAQgNjYWc+fOhba2Nr777jt5ym9y9Lbpjd42vetv+BEBaQF4m/UWXS27Su3s1pSx1K29FcLAwCBbtFS1pMo/1BwIzw5HQkECXIxdJKpzJ2RUu1EY1W6UHJXRw5SLU5Beko5TE09JZZTEfRsHnoAnk0rqjUWuCtavX4+VK1fC3V10joMHDx4gMjISZ86cQZcuXTB06FBs374dR44cQXExlXjq33//RWVlJU6cOAE3NzdMmjQJ69atw44dO5pUAremzLXoa1hwcwGOBx+nW0qToP/x/mizuw2eJT2jWwrtlHJK8cezP3Ai5ESL+j5x+VycDDmJAwEHJM7yClDO8nwBX47K6OFhwkN02NcBUy9NpVtKk2CX/y5MODcBlyIv0S2lSfAq9RVeprxEQWWB1H1VlFRavjFTH35+fnBzc4OVVXU444gRI8BmsxEUFFTVZuDAgVBXV6/RJj09HYmJiYqW3Cxpa9QWo9uNblGrMgAVbrrLfxduxd6Sql9CQQLeF75vkHNoU+azC5/BYIsBLkZclLhPclEyfnr8E1bdX9Xkohgay9zrc7HkzhKUckrrb/x/9gfsh/pGdSy+tViOyhQPm8dGdG40EgoSpOq32383fn3yK6Jzo+WkjB7aGbVDT+ueUm2dCYgAiYWJqORVylEZPewdvReXP79cIyiiuUGrA3BmZibMzWteTIaGhlBTU0NmZmZVGwcHhxpthH0yMzPh6Fg7IRObzQabXV07Q7jK09yJy49D76O9oa6ijrRVaRL3a6jzX1PHN8kXK++vxNSOUzHWWfKMqy/mvUB6STo6mMg+wROdVPAqUMQukurhra6sji87f1kVydRSUFVWxZh2Y6RKVw9QkV18wm9xhm5vm954OudpVTSjpBwPOY63WW/Rx7ZPiwogWN1vNVb3Wy1Vn9zyXDjudoQSSwnsn9kt6jsz3kX6BKne8d44HnIcA+0HShVNKi+k/mt4eXlh/fr1dbYJCAhA9+6SJWYS9Tb4cRKvj9sIl8PFvUlu3ry5Xo3NETVlNeRV5EkdrdJS6WDSAdPdpsPTRrr6Sg4GDnAwcJCPKBrZO2ovuCO4sNSR3JfIycgJ/0z4R46q6OPWDOlW7ADgj0/+wPJey1vUgwoAjLWMMdBhoNT95naei9i8WDgb019TiW5yynKgrqwOAw2DFnd9NITgzGD8F/4fVJRUmqcxs2zZMkybNq3ONh+vpIjDwsICr169qnGsoKAAXC63avXFwsKiapVGSHY2FS748aqOkLVr12LVqlVVvxcXF8PW1lYiTU0ZSx1LhC8Oh7aaNt1SmgTDnIZhmNMwumU0GRwNW1baeDpQUVKBtV7LCcluLCt6r6BbQpOho1lHVPxUIXUqiOZAbF4sMksz4WToJPH1P7TNUGwfvh0uxk0jz5DUxoyJiQlMTGSTj8LT0xObNm1CRkYGLC2pt8kHDx5AXV0d3bp1q2qzbt06cDicqnDtBw8ewMrKSqzRpK6uXsPHpqWgqqyKjmYdperDF/Bhts0MJlom8J/vD0PN5pGhU168y3uHB/EP4GLiItPMn82VllqygqEmFdwK3I+/j0peJaa51f0y2hq4FXsLm55tQm/r3tg5cqfE/VgsltSFbZsDax+txZWoK9g/ej8W95DMX6ypRcfK1QE4OTkZISEhSE5OBp/PR0hICEJCQlBaSu3pDx8+HK6urpg9ezaCg4Px6NEjfP/991iwYEFVPPmMGTOgrq6OuXPnIjw8HFevXsUff/yBVatansOiPMgtz0V+RT7e5b2TKitsS8U/1R/L7i7D1hdb6ZYicwLTA7E/YD98En0k7vPFtS9g9KcRjr45Kkdl9DDx3ETY7rTF08SnEvdZ/3Q9dvjtQGFlodx00UExuxifnv8UMy7PkDhqjc1jo6iyqEVFuQkpqCiAf6o/InMblvm2pWGrZwsXY5dmveov142/X3/9FSdPnqz6vUuXLgCAJ0+eYNCgQVBWVsbt27exZMkS9O3bt0bSPCH6+vrw9vbG0qVL0b17dxgaGmLVqlU1tpFaEydDTqKwshBfeHwh0SqLsZYxIpdEIq8ir8Xt8walB2HUv6NgoWOB0MWhEvWx1LXEpA6T0Nm8s3zF0cDNmJv43fd3LO6+WGL/iKzSLBRUFkBNuenXF5KWrLIspBanSmyY8AV8rPdZDwKCGe4z5CtOweio6cDTxhNaqlrgCrgS/b19knww4swIdLfqjoAFAQpQqTgGOQzCtanXYKUreWHQ029P41XaK0xwmdDitrd3jdwldZ+onCjoqevBQseC9lIGgJyNmRMnTuDEiRN1trGzs8OtW3U76rm7u8PX11eGypovP3j/gJzyHAxxHCKRMaOipIIOpi0rakeIipIKcspzpDLShrYZ2mK3l9zN3SlDTYp6M+c+O4fM0kxY6FjITxhNHB57GBw+B22N2krUnsPnYHmv5cguz25RpR0AQFtNGy/nv5SqT255LgCqlllLw1bfFrb60vlReid443Toadjr27c4Y6YhDDo5CNll2QhZGAIPCw+65TC1mZobE1wmoIxb1qyXA2WFs7EzQheFMttn/+cz18/wmetnUvUx0jSSOly3ueBuLjpZpzg0VTWl8p9o6cxwn4GJ7SeinFtOt5QmweQOk2Gvb4++dn3plkI7hBCoKqlCmaUMM20zuuUAkHNtpqZCS6nN1BBep73G20yqlEE3q250y2FgYGCgnTJOGV6nvQaf8FvsSq00XIm6giNvjmCQ/SCp8u8IiAAssOTqvyrp85v+HMQMcuVa9DV8fetrnHp7im4pTYJ+//SDwy4HPE9+TrcU2ilhl+CPZ3/g2JtjLdLJ803GG5wJPYPgjGCJ2nP4HAiIQM6q6GP8f+PRcX9HhGWF0S2FdpKLkjHk1BCmvMP/SSlKwb24ewjJCpGqnxJLqckE4jDGTAvH2dgZY53HSuVH0VwghODYm2PY82oPKrgVEvVJKkpCUlFSi0w8+OT9E9jutMWw05Lt56cWp+Knxz/hB+8fmswNSZacCDmB2Vdn43LUZYna7w/YD7UNavj65tdyVkYPsXmxiMyJlLj+zp5Xe/Dz458RmdPyIn701PXgauoqcRZwQggSCxNb7JbbMKdhODHhBJb1WEa3lAbD+Mw0M+Zdn4fb725j+/DtmNVpVr3t53aei7md58pfGE0svLUQfMLH5A6TYa1af7KnZ18+Q1ZpFlxNXRWgTrEQEKQWp0qcB0NDRQNfdv4SqkqqclZGD66mrhjWZpjE9Wayy7LBJ3xoqGjIWRk9HB53GDwBD53MO0nU/tTbUwjKCEJvm94t7vtirWeNiCURErcvqCyA424qKWXlT5VSl8lo6riaukr1N37y/gmOvDmCvrZ9sbTnUjkqkxzGmGlmlHJKkV2W3eLyYDQEFouFSR0mgcViSRzR1FJLGQBAd6vuCFwQCH0NfYnaOxo6tthSBgCwqPsiLOq+SOL26wetxzc9v2kSYabyYID9AKnaf+HxBXrb9G4yGV7pJL8iH+rK6tBU1WxxhkxDCM0KxX/h/4FP+E3GmGEcgJsZ8fnxKOeWw0bPptVn82VgYGBQFIQQlHHLoKOmQ7cUmVPGKUNsXiwAoItll3rbh2SG4PH7x3AydMKE9hPkqk3S5zezMtPMcDJykrgtIQRWO6ygq6aLp3OfSpUgqiWSWJiIW7G34GTohFHtRtEth3aYUgati9CsUCQWJsLV1FXi3DstmQnnJiC3PBfnPzsPGz2betuzWKwWacgAlHHS73g/OBk6Ie7buHrbd7bo3OT8MBkH4BZMGbcMmaWZeJf/rkXWE5GWNxlv8M3db7Dx2Ua6pcgFNo+N029P41DgIYmikxbdWgTDPw2x59UeBahTPLdjb8N1nyu+uPqFRO03P9uM7S+3I6csR87K6GHri62YcG4Crkdfr7cth89BYWVhi4xyE+KX4oeXKS+ZLXtQDtGWOpYw1xFdvLk5wKzMNDPCs8PxOu012hi2wSCHQXW21VTRRNTSKGSXZbfYN4opF6fgefJzHBt/DKPbja6zramWKSZ3mNxifQA4fA6+uEY9uGd7zIaWqlad7bPLKd+rluoAXMmrRFRuFIy1jCVqv/HZRpRzyzGx/USYapvKWZ3icTZ2Ri/rXhL93wLSAtDveD90MOmAyKUtL5oJAA6NPQSAqktUHxciLsAn0Qej243GGOcx8pamcNzN3ZH+XbrE7WNyY6Ctpg0LHYsmUyanaahgkJg77+5g9cPVmOMxp15jRllJGe1N2qO9SXvFiKOB/Ip8ZJZmSvR21d++P/rb95e/KJrQUtXCsDbDoK2mDb6AX2/7f8b/gz+G/NHiUvcL6W/fH0/mPJHo/8cX8LGw20Jkl2W3yNIOAPDrwF/x68BfJWrbkksZCPm0w6cSt33y/gkOBh2EqbZpizRmpGXUv6PwvvA9Xsx7gT62feiWA4AxZpodzsbOGNNuDDzM6a+F0RTYN3of2Dw27A3s6ZZCO8pKyngw+4HE7Q01DVu0E7mZtpnEqdaVlZSxY8QOOStqPkxoPwFl68pQximjW0qTYLzLeJhqm9b7AtlaUFFSaVKlDAAmmqlFE5wRjID0AHiYe6CXTS+65TAwMDA0GWJyY5BZmglnY2dY6lrSLYdW+AI+pl+ejjJuGc5NPidRvTtFlDIAmHIGDABuv7uNhbcW4sibI3RLaRIMPz0c9rvs4R3vTbcU2mHz2NjkuwlH3xyVaEuqOVLGKcO16Gu4GHGx3rZcPrfFzoOQK1FX0Ptob6z2lrz2Tktm1YNVGHRyEO7F3aNbCu0osZRwJeoK7ry7g2J2scR9mlI0JGPMtGDaGLbBOOdx6GbZcgtMBmcE40TICbxKfVVv2+SiZCQXJUNNWU0ByuhhzNkxsN9lD/9U/zrbZZVl4ecnP2PpnaVQYrXM20BueS4+Pf9plVN0XZwIOQG1jWqYeWWmApTRQ155Hl6lvUJ0XnS9bQ8FHsJPj37C28y3ClBGD3Z6dnAxdqnXUR6g0jq05C03FouFfaP34dj4Y8028pXxmWlmvE57jRmXZ8BW3xZP5jyps+0M9xmY4T5DQcro4XzEefz54k+s7L2y3q20B7MfIKMkAx1MJavH0hzJKMlAclFyvQ7RyixlzOs8DzzCa1JvV7JEV10XvW16Q1tVu96cOtll2RAQATSUW2YpA4Cqv3Nt6jXY6tcfvXM2/Cx8k3zRybwTPCxapn/egbEHJGpXyausKmWQ/2N+i/UzW9h9oUTt/FL8sOf1HvSw6oFVnqvkrEpyGGOmmUEIQXxBPPikZS+JS4qrqStGtR0lUbi1nb4d7PTtFKCKPo6NPwaegAdnY+c621nrWePYhGMKUkUPRppG8JvvJ1Hb1f1WY37X+XJWRC/SlPKY7jYdncw6oaNZR/mKagYISxkIiKBFR3dJSkROBM6Fn0MJu6RJGTOMA3Azo4RdgtCsUOhr6MPNzI1uOQwMDAwtnpZcykBIclEyCioKYG9gX6fRFp4dDu94b9jq2+Iz18/krkvS5zdjzLRgnPY4QYmlhPuz7ktcObilklachitRV+Bg4IBxLuPolkM7TCmD1kcJuwSB6YEAgMGOg2lWQz/nws/hRMgJjHAagZWeK+mWQzuexzzhn+qPa1Ovyb3ekjQw0UytHJ6Ah/cF7xGXH9ei3yYkJTw7HN/e+xa/PPmFbilyJTA9EGfDziIsK6zOdt89+A4GWwzw5/M/FaSMHkaeGQm3/W5VRfTEse3lNmx7uQ0ZJRkKUqZ44vLjMOTUEMy6OqvOdjwBr8WXMgCApMIk3I+/j9DsULqlNAlMtUxhrm3ebF9yGJ+ZZgZfwMflqMso55ZjpvtMqCqLTkWvxFKqKmVgrClZOvfmyMOEh1hyewnczNxwZeoVse0MNAzwmetnsNNr2T4zh4MO48ibI9gweAPczd3Ftssuy0YRuwjKSsoKVKd4onOjkVSUVK9D9NYXW5FTnoPhTsNbbM4RfQ19uJq6wly77vo74dnh6HKoC+z07ZC0IklB6hTP6HajYalrWa9/2fXo67gffx/D2gyTKmtwc+PG9BsStXuX9w4aKhqw0LEQ+/yhA8aYaWYQEEy9NBUAMM55nNi6M0osJbiYuMDFpGXWIRLC5XPxLv9dvUmeetn0wsUp9ecbae50NO2ITxw/qdfRed/offh5wM8w1GiZkRlCjk84DgER1OsgPsdjDjLLMmGta60gZYqnjWEbRCyJqLddayhlAFD1iOoy+IU8S36GA4EHoK2q3aKNGUmZdGESwrPD8WDWAwxzGka3nCoYY6aZoaKkgk8cP4GashoIWvYysCT0sukF37m+MNI0oltKk2B57+VY3nt5WhLq4QAAI3VJREFUve30NfShr6GvAEX0IqlvyF/D/5KzkubD0DZDUb6uHCWcErqlNAlGth0JLVUt9LPrR7eUJoEySxkqSipNqpQBwDgAt1jCs8PxIvkF3Mzc0NeuL91yGBgYGJoUpZxSvMt7ByWWUovNpSMN/4b+i5uxNzHOeRxmdqo7eSQhBAREIQk3GQfgVo53vDcW3V6EvQF76ZbSJJh4biLsdtrhRoxk+8ItGQERYJPvJhwJOgI2j023HLkSkhmCmzE38b7gvdg2raGUgZBR/45C33/6Irssm24ptPMq9RW6Hu7aorM+S0NoVijOR5zHm4w39bZlsVhNLnN401LDIDPsDewx3mU8elr1pFuKXKngVuBy5GX8G/pvne1SilOQUpwCFaWWvbN6Lfoa3A+4Y+FN8dk8CyoK8POTn/H1ra+bbeSCpGz03Yjx58bjzrs7YttcjLwI1Q2q+PR8y/eHeJH8Ai9TXqKoskhsm+PBx7Hu0bqqMO6Wir6GPqx0rerdLkkqTEIpp1RBquhjnMs47B65G5M6TKJbSoNo2Xf2Fsr0y9MRlB6Ew+MOiy1JP6nDpGZ7UUpDGbcMn12kEjdNc5smNjrn2tRryCjNqDdyoblTzi1HeHZ4nRErAiLA/C7zUcopbdF1qgDAxdgFPa17inWUB6jILgICdWV1BSqjh2Pjj0FFSQUWOhZi21yMvIi7cXfR1qgtult1V6A6xdLdqjvSVqXV2UZABGj7d1vwBDykrEyBjZ6NgtQpnn52/er1CwrOCMafL/6Eh7kH1vZfqyBlksEYM82Q1OJUvMt/h7zyPLql0I6Omg762fWDjpoOOHwONJU0Rbaz1beVqCZNc2eww2A8nP0Q5jrijRlTbVMcHX9UgaroY9Mnm7AJm+pss6znMkx3mw4BEShIFX1M6Til3jaTO0xGW6O28DBn/EiK2cVQUVIBT8CDqZYp3XJoJzo3GucjziOrLKvJGTOMA3AzJDA9EBXcCriautb5xsnAwMDA0DhaQykDgCqomVmaCUIIHA0dRbaJyY3B3bi7MNc2x3T36QrRJenzm1mZaYZIsvTrfsAdFdwKXJ92vdUXi8spy8F/4f/BTt8OE9tPpFsO7TClDFovMbkxyCrLgrOxc51bTa0BLp+LmVdmopRTigtTLog1VlgsVos3ZADgftx9TDw/Eb2se8H/K3+RbZpy7jLGAbgFQghBfH484gvioaWqRbcc2onJi8Hye8vxg/cPdEuRO2WcMtyKvYUrUeKzIf/65Ffob9HHb09+U6AyergSdQV9jvXBmodrxLbZ82oP/nrxF5KLkhWojB5W3F+BgScG4n7cfZHn+QI+CioKWnwpA4DK2XU56jLuxt1FCZvJqaOjpgMtVS2oqzRP3zFmZaYZEpUThcicSLQxbIMull1EtglZFILssmxY67XcjKZCJl+YjIjsCJyceBK9bHrVOq+jpoMprlOaXJIneZBbnotx/42DhooGKn6qENkmuywbxeziJhdaKQ/yyvPgl+oHU23x/g47/XcisTAR/ez61Zs5ubljr28PF2MXaKqK9i1LKEiA815nGGsaI/fHXAWrUywsFgv7Ru+DhoqG2Azi9+Lu4Xr0dQxyGISpblMVrFCxfNLmE5StK6uzTVx+HNSU1WChY9HkggcYY6YZcurtKWx5sQUreq0QacywWCw4Gzu3+MgdIYmFiYjJi0F+Rb7I850tOuPClAsKVkUPeup66GHVAzpqOhAQgUiD5a/hf2GV5yroqTd//7H6GOY0DFenXoWtnnjn75nuM5FclAx7A3sFKqOHg2MP1nk+pzwHQMsvZSBkUfdFdZ73S/HDwaCDYLFYLd6YkYRZV2bhVdorXJ16tclt2TPGTDOkrVFb9LPr1ypuvpKwd9RecAVcuJm50S2Fdgw1DfF6wes62+ip67UKQwYAHAwc4GDgUGebjUM2KkZMM6CPbR9U/FSBYnYx3VKaBEMchwAAelj3oFlJ00CJpQRVJdUmucrNRDO1QKJzo+GT6IP2Ju0x0GEg3XIYGBgYmiQpRSnIr8iHnb4dDDVbdtHV+ijnlmPFvRUo5ZTi1KenxCYYVWQpA4ApZ9Cq8U3yxaLbi7DdbzvdUpoEM6/MhO1OW5wPP0+3lCbBludbcDjoMMo4de+PtwTKOGV4mvgUjxIeiTzPE/DAE/AUrIo+Lkdexqh/R2Hri610S2kSzLwyE50Pdcaj96Kvj9aEEksJR94cwX/h/6GcWy62XVMsZQAw20wtEmtda4x3GQ9PG0+6pSiEiOwIxObFop1xO5FbTSlFKUgtTm2SX0B58On5T5FQkIB/J/1baz4quBVY+4hKdjW1Y8v3AUgqSsLgk4PFOrTejr2NT89/iqFthuLB7Ac0KFQsKcUpuBd3D4Yaolch/g39F+HZ4RjnMg59bPsoWJ3iMdM2qzNEPbkoGYYahtBR02nx6QzUldWxYfAGaKtqN8uyL81PMQP8Uvzwzd1v4GDggEufX6p1fozzGIxxHkODMno4HHQYe17vwbp+67Dpk9rZXv+b/B/SS9LRxrANDeoUT1ROlFiHaK6Ai6+6fIXcitxW4Tejr66P9ibtYaRpJPJ8VSmDZhqOKi3DnYbj5MSTaGvUVuT5azHXcCnyEqx0rVqFMSPq/vkh7gfcUcwuRvTS6CabX0VWsFgs/DzgZ7HnI3Misd5nPTqYdIDXIC/FCZMQxphphnD4HARlBKGM2/K3CSShrVFb9LHtI7ZuirWedasIURdyYMwB8AQ8uJu51zqnp66HI+OP0KCKHqz1rBG1NErs+Xld5mFC+wng8rkKVEUfrqaucDV1FXt+vPN4WOlYteiaTJLC4XOqtiCbosOroonLj8OFiAvoYdWjSRozjANwMyS/Ih/+qf4w1jQWmVeFgYGBgUE2lHHKoKWq1eK3mQCgoKIAxeximGqb1kq4Gp8fj1uxt2CgYYA5necoTJOkz2/GmGmB9DraC7nluTj/2flW/4ZVWFmIkyEnYaVrJVGRvZaOuNwzDK2Dcm45YnJjICACdLPqRrcc2rkceRkXIy/iE8dPsKDbArrl0E63w93wJuMN7sy4g1HtRtEtBwATzdSqicuPQ0JBAlPKANTbxIr7K7Di/gq6pSiMyJxI3I69jXd572qd+/P5n9DbrIfV3qtpUEYPUy5OQb9/+uF9wfta5/YH7MfWF1tFnmuJRGRHoOvhrph0YVKtcwIiQF55XqsoZSBEWAX6dVrduZlaC9qq2tBQ0QCHz6FbitQwPjPNEL6Aj8fvH6OUU4pxLuNqeZ6/+uoVMkszW43D65P3T7D64Wq4mrrixMQTNc5pqmri846fQ1dNdLrylsj2l9vxT8g/2DRkE9b1X1fjXGZpJko4Ja1qdcY/1R+pxanIq8irVQ147+u9iMqNQg+rHmIrBbck9NT1YKFjITKCJ604DXa77KCtqo2StSWtYltluNNw6KrrivQve5jwEBcjLmKA/QDM7DSTBnWK5+ncp2LvDfH58VBVVm2SpQwAxphplhAQDD8zHACQ+0MujLWMa5xva9RWbLRCS6SCV4GA9ACR+UJcTV1x/rPWlV+mrVFbdLPsBlOt2vWINn2yCUt7LoW2qjYNyuhhz8g9ACDSuJ/acSriC+JbjeHvYuKCjO8yRJ7LLssGQGWRbg2GDEBl9hWX3fdV6iscfnMYPAGv1Rgzdb3kzLsxD75Jvjg3+VyTLO3A+Mw0U3oe6Qk1ZTVc+vxSnXkSWgPZZdl4lfoK5jrm6Gndk245DAzNFjaPjcLKQpjrmNMthXaeJz/Ho4RH6GzRGRPaT6BbDu0MOjEIL1Newnu2t0IzyzMOwB/QEo0ZccTkxuBJ4hN0MOnAlDJgYGBgqAMOn4P0knRw+JxWU5i3Lm7H3saNmBvob98fszrNqnVe0aUMAMYBuNXim+SLxbcXY5vfNrqlNAlmXpkJmx02+C/sP7qlNAk2P9vcakoZCEksTIRvkm8tJ18un9tq8st8yFc3vsKof0chqTCJbim08zbzLRx3O2LY6WF0S2kSBGcG4/Cbw/BJ9BF5vqmWMgAYY6bFYa1njYntJ6KPTcvP3ilEQAR4/P4xrkZdrfVwSi5KRlpJWrNMz91Qnic/R79/+uHL61/WOF7BrcC6x+uw8NbCVlWPaJPvJgw8MRBnw87WOH437i7UN6pjxJkRNCmjB+8Eb9yLu4essqwax8+EnsHah2vxMuUlTcoUj566HjRVNKGpolnrXGJhIkrYJa0qumuQwyCsH7QeE9tPpFuK1LSeO3wLY7X3ajxOfIxfBvyC8S7jq46Pbjcao9uNplEZPXxy6hMAQNb3WTWydV747ALSStLgaNDyI1WElHPL8SLlBUo5pTWOc/gcLOi6ALnlraOUgRBbfVs4GztDV71mRFtGSQYICDRUNGhSRg+bhmwCT8CDg4FDjeNXo6/iStQV2OjZtIpSBgDlEF3+k+iiiu4H3FHKKUXsMqruW2ugn10/9LPrV+t4eHY41vush5upG34b9BsNyupHbisziYmJmD9/PhwdHaGpqQknJyf89ttv4HBqxq8nJydj3Lhx0NbWhomJCb799ttabcLCwjBw4EBoamrC2toav//+e6uylkURXxCPwPRApBSl0C2FdpRYSuhp3ROeNp61VhwsdS3R3ap7rYivlkxni864NOUS9o7eW+O4voY+Do87jCtTr7SaaBUA+HXgr4hZFoNve31b4/iCbguQ/X029o/eT5MyepjVaRbmdp5bK0X/p+0/xfJey1t9ok2AWsUU0toDLADgXd47XIq8hHvx9+iWIha5rcxER0dDIBDg0KFDaNu2LcLDw7FgwQKUlZVh2zbKn4PP52PMmDEwNTXF8+fPkZeXhzlz5oAQgr///hsA5fwzbNgwDB48GAEBAYiNjcXcuXOhra2N7777Tl7ymzzf9/keczvPRSfzTnRLaRK8+uoV3RKaDGbaZpjsOpluGU0eJZYSTLVrh6+3VmZ1miXS6bM1oqmqiZK1JSjllLaqNAYCIkBRZREqeBWw0rWqOu5u7o49I/fAUFN0tfUmAVEgW7duJY6OjlW/37lzhygpKZG0tLSqY//99x9RV1cnRUVFhBBC9u/fT/T19UllZWVVm82bNxMrKysiEAgk+tyioiICoGrMlkynA51Im91tyNvMt3RLoZ2cshyy028nuRRxiW4pTQK+gE+3BIYmQFZpFgnJCCFpxWn1N24FfHf/OzLt0jSSVJhEtxTaCUwLJPACsdlhQ7eUKiR9fivUAbioqAhGRkZVv/v5+cHNzQ1WVtUW4IgRI8BmsxEUFFTVZuDAgVBXV6/RJj09HYmJiSI/h81mo7i4uMZPayE+Px4JBQmt6m1CHDG5MVh5fyV+fPgj3VIUioAI8Dz5OW7H3q7hEP27z+/Q3ayLXx7/QqM6xfM67TVG/TsKi28trnF8l/8u/Pn8TyQXJdOkjB5+efwLOh/qjKNvjlYd4wv4yC3PbZXb95ejLuNc+Dmkl6TTLYV2hL50bB6bZiXSozAH4Pj4ePz999/Yvn171bHMzEyYm9dMzmRoaAg1NTVkZmZWtXFwcKjRRtgnMzMTjo61HTs3b96M9evXy/h/0LTILM1EeHY49NX1qzJYEkLwdtFbZJZmwlbflmaFiuWnRz/h4fuHWNtvbZUnvq66LqZ2nAoTLRN6xSkYFlgYeGIgBESA9FXpsNS1BEA5vJZySltVZBcAFLOLcS/uXq2U9btf7UZiYSIG2A+Anb4dTeoUj5m2Wa2U9AkFCXDe6wxDDUPkr86nUZ3iWdN3DSp5lbDVq75n3nl3B9ejr2OI45Amme1WXjgZOaHyp0qoq6jXOB6bFwt1ZXVY6lo2yVIGQAOMGS8vr3oNhYCAAHTvXu1Elp6ejpEjR2LKlCn46quvarQV5YhICKlx/OM2wrcHcU6Ma9euxapVq6p+Ly4uhq1ty3q43469ja9ufoUx7cbg1oxbAKj5cDJygpORE83qFE9cQRxep72u8ZbdybwTzn12jkZV9MBisdDZojNYYNVwiN4+Yju+7/M9dNR0aFSneNzM3HB8wvFajpyzO81GUlES7A3saVJGDxuGbMCGIRtqHMspzwGAVuUoL2Rh94W1jvml+OHwm8NQUVJpVcaMEkupliEDALOvzsbrtNe4NvVak82GLLUxs2zZMkybNq3ONh+upKSnp2Pw4MHw9PTE4cOHa7SzsLDAq1c1HTcLCgrA5XKrVl8sLCyqVmmEZGdTNUQ+XtURoq6uXmNbqiVipWsFNzO3VvVGWRcre6/ETPeZjEP0/wn6OqjWMR01nVYTYvohFjoWmNt5bq3jvw/+XfFimih9bPuA/TMbRZVFdEtpEgxtMxQqSipi6za1NlSUVKCmrFa1ytsUkWs5g7S0NAwePBjdunXDmTNnoKysXOP83bt3MXbsWKSmpsLSkpqk8+fPY86cOcjOzoaenh4OHDiAdevWISsrC2pq1PLWn3/+iT179iA1NVWiENPWUs4gIjsCvkm+6GjWEQPsB9Ath4GBgaHJU84tR3ZZNjRUNJgwbABbX2xFfH48fuz7Y41VfkJDKQOgCZQzSE9Px6BBg2Bra4tt27YhJycHmZmZNVZZhg8fDldXV8yePRvBwcF49OgRvv/+eyxYsKBK9IwZM6Curo65c+ciPDwcV69exR9//IFVq1a1qlwZkvAk8QmW3FmCPa/20C2lSTDp/CRY77DG5cjLdEuhHUIIfvf5HYcCD9XIodFaiMiOwNPEp1X/dw6fAw6fU0+vlkl0bjSmX56OhTdrb6+0Rn598iscdzti+8vt9TduBZwJPYPDbw4joSChxvGmXMoAkKMD8IMHDxAXF4e4uDjY2NjUOCdcDFJWVsbt27exZMkS9O3bF5qampgxY0ZVHhoA0NfXh7e3N5YuXYru3bvD0NAQq1atquETw0Bhp2+Hie0nwtPGk24pCie/Ih+hWaFQZimjv31/AEBKcQrSS9KbrMOaPNnhtwNXoq5gQdcFmNN5DgorC/HbUypz55zOc2hWp3gGnhiIvIo8hC8OR0ezjrgadRXTLk/DWOexuDn9Jt3yFEo5txznws/VyCPyT/A/iM2LxaQOk1pd5XkTLRNoqGjU8C9LKEiAqZYpdNR0Wt1L84KuC1BQWVArQ3RTR27GzNy5czF37tx629nZ2eHWrVt1tnF3d4evr6+MlLUM+AI+Rp8djdzyXDz64hEMNAww3mV8jdIGrYmXKS8x7r9x6G7VHQELAgAAN6bdQHpJOtoYtqFZneJ5X/AeL1JeYKA9VTldQARY1G0RcityW136fgBoZ9wOJhUmVasxGaUZANAqUxg4Gjhi54idMNeu9jm8EHEB9+Pvw9nYudUZMz/2/RFr+q2p+p0v4MNlrwt4Ah5SVqbARs+mjt4tj296fVPj99dpr7Hl+Rb0tumNH/s23TQXrStGswWhrKQMvxQ/lHBKkFOWAwMNA7ol0YqljiXam7SvUYPJUteySTusyZM5nedgoMPAqnBkYy1jHBh7gGZV9OE336/G78t7LcdM95mtcqvJUNMQK3qvqHFsutt0OBs7o5tlN3pE0cjHWye55bnQUdNBKacUljqt8/7xIWFZYbgafRUVvIombczI1QG4qdBSHYAvR16Gpqom+tv1h666bq2QdgYGBgaGhlHCLqlVnLQ1QAhBEbsIPAEPJlomiM6NxsOEh7DUsaSlTIqkz2/GmGkh8AV8GPxpAHNtc/jN92v1NWdicmNwM/YmOpl3wnCn4XTLoZ1KXiXUldUZY5cBAJBeko7ssmy0MWzTqiqoiyK3PBe/PP4FlfxKHJ9wnG45tLPbfzdW3F+BaW7T8N/k/+iWQ380E4NiySzNRCmnFImFiTDSNKq/QwvnRcoL/OD9A7b7tc4IhTJOGV6mvMTj948BAHOvzYXuZl2cCDlBrzCaOB9+HqP/HY3d/rsBAN/d/w5bX2xFMbv1lDr5kNH/jkaXQ13gl+KHMk4ZMkszW2UpA4BaiTgYdBAnQ07WcAJurQgTJ5awS2hWIh2Mz0wzJqMkAxE5ETDTNkNH0454v/w9MkoyoKykXH/nFsisK7MQkxeDExNOwE7fDtPdpqOLRRe6ZdFCfEE8+v7TF8aaxsj9MRdJRUko45ZBV631LZsDVGTb3bi7MNAwQDG7GDv8dwAAFndfXE/PlomFjgVyynPAE/BwL+4ePrv4GQbYD4DPXB+6pSkcI00jrOm7BvYG9hAQAfa82oOwrDDM9pjdKvN1TXGdgs9cP6sKFHiV+gqWupaw0bNpnaHZDPJn7+u9+OP5H1jaYyn2jt4LBwOHZhdOJ0ti8mIQmB6IuPw4TGg/AUPbDKVbEm3Y6dvBRs8GDgYO4PK5ePzFY6QUp9SIYGlNjGw7EgYaBvAw9wBfwMe6fuuQXZbdKn0iAODOzDtVD6aDgQfBAqvVOrsqKylj89DNVb/feXcH9+Pvw9PWs1UaMx+WM+AJeOh3vB94Ah5SV6bCWs+aRmV1wxgzzRgXExd0MOnQ6gopimPD4A0QEEGrCy0VhYGGAVJWplT9rqqsCmdjZxoV0YubmRvczNyqft/0ySYa1dDPh2/Yi7ovwrwu81DOLadRUdNhUfdF8LTxRC/rXnRLoZ2iyiK0M2qH94Xvm3xkKOMA3EI4HHQYPAEP413Gt7q8CB9DCEEJp6TVOzYyMDBIBofPQUpRClSVVZl6d6CSboZlh2Fdv3VoZ9wOlbxK2vJTMQ7ArYxtL7dh6Z2liMqJolsK7SQXJUN/iz467OsAARHQLYd27sXdw9qHa+GT2Pr8IT4kLj8OD+IfIDgjGJW8Srrl0EpiYSJmXpmJzy9+TreUJsHvPr+j7d9tseX5FrqlNAnOhZ/DiZATiMyJBIBmkWiT2WZqAQiIAJM7TEZodig6W3SmWw5tlHHKEJgeiP/CqXBCDRWNJu2wJm9OhpzEoaBD8EulEsYJiAADHQbSrIo+xp4di5i8GACAMksZz758Bk/b1lf6AwBYYOFs2FkA1Lz0s+tXIwtua8Ne3x4aKhqIyIlAaFYoOph0gKqyKt2yaGN+l/mY4DIBLiYudEuRmNZ7p28hbPLdBNudtuhh3QO3Z9xu1fllcspzMOjkIBx9cxTvvnmHs5PO0i2JVrgCbpUhs7DbQgxzGkazInrxsPBAO6N2AAA+4TerG7WssdGzwY99fsSq3qtw+91tXIq8RLckWvmyy5coX1eOtoZt4XHQA+t91tMtiVYWdl+Inwb8hK9vfo0pF6cgpSil/k40w6zMNHPyK/KRXpKOm7E3ManDJLrl0IqDgQN62/SGta41lFnKaGvalm5JtDLOeRyOjT+G0e1Gw0LHgm45tHP609NQU1YDIQTpJemtOh+TspIy/hz2J/gCPpyNnau2E1orKkrUo7C/fX+cCj2F7lbdaVZEP3H5cVUvQ0fHHaVZTf0wDsDNnJjcGMQXxOMTx09qhNS1VpiSDgwM0sMX8FttfqqPCUoPgoeFR5WB05p5kfwCQRlB+LbXt7RpYMoZfEBLNmYYGBgYGBhaKkw0EwMDAwMDA0OrgDFmGBgYGBgYGJo1jDHDwMDAwMDA0KxhjBkGBgYGBgaGZg1jzDAwMDAwMDA0axhjhoGBgYGBgaFZwxgzDAwMDAwMDM0axphhYGBgYGBgaNYwxgwDAwMDAwNDs4YxZhgYGBgYGBiaNYwxw8DAwMDAwNCsYYwZBgYGBgYGhmYNY8wwMDAwMDAwNGsYY4aBgYGBgYGhWaNCtwBFQAgBQJUSZ2BgYGBgYGgeCJ/bwue4OFqFMVNSUgIAsLW1pVkJAwMDAwMDg7SUlJRAX19f7HkWqc/caQEIBAKkp6dDV1cXLBZLpmMXFxfD1tYWKSkp0NPTk+nYDNUw86wYmHlWDMw8KwZmnhWDPOeZEIKSkhJYWVlBSUm8Z0yrWJlRUlKCjY2NXD9DT0+P+bIoAGaeFQMzz4qBmWfFwMyzYpDXPNe1IiOEcQBmYGBgYGBgaNYwxgwDAwMDAwNDs4YxZhqJuro6fvvtN6irq9MtpUXDzLNiYOZZMTDzrBiYeVYMTWGeW4UDMAMDAwMDA0PLhVmZYWBgYGBgYGjWMMYMAwMDAwMDQ7OGMWYYGBgYGBgYmjWMMcPAwMDAwMDQrGGMmUawf/9+ODo6QkNDA926dcOzZ8/oltSs8fX1xbhx42BlZQUWi4Vr167VOE8IgZeXF6ysrKCpqYlBgwYhIiKCHrHNmM2bN6NHjx7Q1dWFmZkZJk6ciJiYmBptmLluPAcOHECnTp2qEol5enri7t27VeeZOZYPmzdvBovFwooVK6qOMXMtG7y8vMBisWr8WFhYVJ2nc54ZY6aBnD9/HitWrMBPP/2E4OBg9O/fH6NGjUJycjLd0potZWVl8PDwwN69e0We37p1K3bs2IG9e/ciICAAFhYWGDZsWFXtLQbJ8PHxwdKlS+Hv7w9vb2/weDwMHz4cZWVlVW2YuW48NjY22LJlCwIDAxEYGIghQ4ZgwoQJVTd3Zo5lT0BAAA4fPoxOnTrVOM7Mtezo2LEjMjIyqn7CwsKqztE6z4ShQfTs2ZMsWrSoxrH27duTNWvW0KSoZQGAXL16tep3gUBALCwsyJYtW6qOVVZWEn19fXLw4EEaFLYcsrOzCQDi4+NDCGHmWp4YGhqSo0ePMnMsB0pKSki7du2It7c3GThwIFm+fDkhhLmeZclvv/1GPDw8RJ6je56ZlZkGwOFwEBQUhOHDh9c4Pnz4cLx8+ZImVS2b9+/fIzMzs8acq6urY+DAgcycN5KioiIAgJGREQBmruUBn8/HuXPnUFZWBk9PT2aO5cDSpUsxZswYDB06tMZxZq5ly7t372BlZQVHR0dMmzYNCQkJAOif51ZRaFLW5Obmgs/nw9zcvMZxc3NzZGZm0qSqZSOcV1FznpSURIekFgEhBKtWrUK/fv3g5uYGgJlrWRIWFgZPT09UVlZCR0cHV69ehaura9XNnZlj2XDu3Dm8efMGAQEBtc4x17Ps6NWrF06dOgVnZ2dkZWVh48aN6NOnDyIiImifZ8aYaQQsFqvG74SQWscYZAsz57Jl2bJlCA0NxfPnz2udY+a68bi4uCAkJASFhYW4fPky5syZAx8fn6rzzBw3npSUFCxfvhwPHjyAhoaG2HbMXDeeUaNGVf3b3d0dnp6ecHJywsmTJ9G7d28A9M0zs83UAExMTKCsrFxrFSY7O7uWVcogG4Qe88ycy45vvvkGN27cwJMnT2BjY1N1nJlr2aGmpoa2bduie/fu2Lx5Mzw8PLB7925mjmVIUFAQsrOz0a1bN6ioqEBFRQU+Pj7Ys2cPVFRUquaTmWvZo62tDXd3d7x79472a5oxZhqAmpoaunXrBm9v7xrHvb290adPH5pUtWwcHR1hYWFRY845HA58fHyYOZcSQgiWLVuGK1eu4PHjx3B0dKxxnplr+UEIAZvNZuZYhnzyyScICwtDSEhI1U/37t0xc+ZMhISEoE2bNsxcywk2m42oqChYWlrSf03L3cW4hXLu3DmiqqpKjh07RiIjI8mKFSuItrY2SUxMpFtas6WkpIQEBweT4OBgAoDs2LGDBAcHk6SkJEIIIVu2bCH6+vrkypUrJCwsjEyfPp1YWlqS4uJimpU3LxYvXkz09fXJ06dPSUZGRtVPeXl5VRtmrhvP2rVria+vL3n//j0JDQ0l69atI0pKSuTBgweEEGaO5cmH0UyEMHMtK7777jvy9OlTkpCQQPz9/cnYsWOJrq5u1XOPznlmjJlGsG/fPmJvb0/U1NRI165dq0JbGRrGkydPCIBaP3PmzCGEUKF/v/32G7GwsCDq6upkwIABJCwsjF7RzRBRcwyAHD9+vKoNM9eNZ968eVX3B1NTU/LJJ59UGTKEMHMsTz42Zpi5lg1Tp04llpaWRFVVlVhZWZFJkyaRiIiIqvN0zjOLEELkv/7DwMDAwMDAwCAfGJ8ZBgYGBgYGhmYNY8wwMDAwMDAwNGsYY4aBgYGBgYGhWcMYMwwMDAwMDAzNGsaYYWBgYGBgYGjWMMYMAwMDAwMDQ7OGMWYYGBgYGBgYmjWMMcPAwMDAwMDQrGGMGQYGBgYGBoZmDWPMMDAwMDAwMDRrGGOGgYGBgYGBoVnDGDMMDAwMDAwMzZr/Abet+oyl/97oAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -460,7 +479,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "id": "10fc3a1c", "metadata": {}, "outputs": [ @@ -468,7 +487,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "106 µs ± 1.85 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n" + "107 μs ± 870 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)\n" ] } ], @@ -487,7 +506,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "id": "506b853f", "metadata": {}, "outputs": [ @@ -502,7 +521,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAF0CAYAAAANVYfFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADgdElEQVR4nOxdeZgUxfl+Z2f2vtiDZXcRATlEDgmiUfEAEVAU8Ip4RCNGE+OVECUmXhEThajxxHjEKGgQMf4Ub1AQJSJiAEHuSwE5drnZZe+dmf79UVPTPT3dPd0z3VU9M/U+zz49O9vbX1d3dfX31vt9X3kkSZIgICAgICAgICAgICCQ4sjgfQICAgICAgICAgICAgIsIMiPgICAgICAgICAgEBaQJAfAQEBAQEBAQEBAYG0gCA/AgICAgICAgICAgJpAUF+BAQEBAQEBAQEBATSAoL8CAgICAgICAgICAikBQT5ERAQEBAQEBAQEBBICwjyIyAgICAgICAgICCQFhDkR0BAQEBAQEBAQEAgLSDIj0AEZsyYAY/Hg5ycHOzYsSPq78OGDUP//v05nFnimDBhArp168b7NAQE0g5LlizB5MmTceTIEd6nYhoejweTJ0/mfRoCAq4A9Q3oT05ODiorK3HOOedg6tSp2LdvH+9TtBXz5s3DhRdeiI4dOyI7OxtdunTBddddh/Xr18d9zKamJkyePBlffPGFfSdqgPXr12Py5MnYvn07E3vJBEF+BDTR2tqK++67j/dpCAgIpACWLFmCBx98MKnIj4CAQDSmT5+Or7/+GvPnz8c//vEP/OQnP8EjjzyCE044AQsWLOB9erbgrrvuwujRoxEMBvHcc89h/vz5eOCBB7Bs2TKcdNJJeOedd+I6blNTEx588EGm5OfBBx8U5EcDgvwIaOL888/HrFmz8N133zlmo7m52bFjCwgICAgICNiL/v3747TTTsNZZ52Fyy67DE8++SRWr16N/Px8XHrppdi7dy/vU0wIb7zxBh577DHcfPPNmDt3Li6//HKcffbZuPHGG7Fs2TL0798f1157LX744QfepyqQAAT5EdDEXXfdhbKyMvzxj3803K+lpQV33303unfvjqysLHTu3Bm33npr1Axvt27dMGbMGLzzzjsYNGgQcnJywjMgHo8Hs2bNwh//+EdUVVWhoKAAY8eOxd69e3H06FH8+te/Rnl5OcrLy3H99dejoaEh4tj/+Mc/cPbZZ6OiogL5+fkYMGAAHn30UbS3t9t9WQQEBCxi8uTJ+MMf/gAA6N69ezhsxuzs55YtW3D11VejoqIC2dnZOOGEE/CPf/wj/Pf9+/cjKysL999/f9T/bty4ER6PB88880x431tuuQV9+/ZFQUEBKioqMHz4cHz55ZeJN1RAIE1x7LHH4vHHH8fRo0fx4osvRvxt+fLlGDduHEpLS5GTk4NBgwbhP//5T8Q+NKTu888/x80334zy8nKUlZXh0ksvxZ49eyL2XbhwIYYNG4aysjLk5ubi2GOPxWWXXYampqbwPm1tbXjooYfQp08fZGdno2PHjrj++uuxf//+mG15+OGHUVJSgr///e9Rf8vPz8e0adPQ1NSEJ598Mvz9sGHDMGzYsKj9laH227dvR8eOHQEADz74YHgcnDBhAgAyTno8HqxcuRKXXnopioqKUFxcjGuuuSbqvPVCcrt16xY+3owZM3D55ZcDAM4555ywvRkzZsS8BukAH+8TEHAnCgsLcd999+F3v/sdFi5ciOHDh0ftI0kSLr74Ynz22We4++67cdZZZ2H16tV44IEH8PXXX+Prr79GdnZ2eP9vv/0WGzZswH333Yfu3bsjPz8fjY2NAIB77rkH55xzDmbMmIHt27dj0qRJuOqqq+Dz+TBw4EC88cYbWLlyJe655x4UFhaGnRkA+P7773H11VeHCdh3332Hhx9+GBs3bsQrr7zi/MUSEBDQxY033ohDhw5h2rRpeOedd1BVVQUA6Nu3b8z/Xb9+PYYMGRJ2riorK/HJJ5/gt7/9LQ4cOIAHHngAHTt2xJgxY/Dqq6/iwQcfREaGPKc3ffp0ZGVl4ec//zkA4NChQwCABx54AJWVlWhoaMCcOXMwbNgwfPbZZ5oOjICAQGxccMEF8Hq9+O9//xv+7vPPP8f555+PU089FS+88AKKi4sxe/ZsXHHFFWhqago76hQ33ngjLrzwQsyaNQs7d+7EH/7wB1xzzTVYuHAhAEIgLrzwQpx11ll45ZVX0KFDB+zevRvz5s1DW1sb8vLyEAwGcdFFF+HLL7/EXXfdhSFDhmDHjh144IEHMGzYMCxfvhy5ubmabaipqcG6detwxRVXIC8vT3Of008/HRUVFZg/f76l61NVVYV58+bh/PPPxw033IAbb7wRAMKEiOKSSy7B+PHj8Zvf/Abr1q3D/fffj/Xr1+Obb75BZmamaXsXXnghpkyZgnvuuQf/+Mc/cNJJJwEAevToYem8UxaSgIAC06dPlwBIy5Ytk1pbW6XjjjtOOvnkk6VgMChJkiQNHTpU6tevnyRJkjRv3jwJgPToo49GHOPNN9+UAEj//Oc/w9917dpV8nq90qZNmyL2/fzzzyUA0tixYyO+nzhxogRA+u1vfxvx/cUXXyyVlpbqnn8gEJDa29ul1157TfJ6vdKhQ4fCf7vuuuukrl27mr8YAgICtuCxxx6TAEjbtm2z9H/nnXeedMwxx0h1dXUR3992221STk5O+Pl+//33JQDSp59+Gt7H7/dL1dXV0mWXXaZ7fL/fL7W3t0vnnnuudMkll0T8DYD0wAMPWDpfAYFUhdI30EOnTp2kE044Ifx7nz59pEGDBknt7e0R+40ZM0aqqqqSAoFAxLFvueWWiP0effRRCYBUU1MjSZIk/d///Z8EQFq1apXuObzxxhsSAOntt9+O+H7ZsmUSAOm5557T/d+lS5dKAKQ//elPuvtIkiSdeuqpUm5ubvj3oUOHSkOHDo3aT+1z7N+/X3dceeCBByQA0u9///uI719//XUJgDRz5szwd3rH6Nq1q3TdddeFf3/rrbckANLnn39u2J50hAh7E9BFVlYWHnroISxfvjxKpgYQno1Rz95cfvnlyM/Px2effRbx/YknnojevXtr2hozZkzE7yeccAIAMnuh/v7QoUMRoW8rV67EuHHjUFZWBq/Xi8zMTPziF79AIBDA5s2bzTVWQEDAVWhpacFnn32GSy65BHl5efD7/eGfCy64AC0tLVi6dCkAYPTo0aisrMT06dPD///JJ59gz549+OUvfxlx3BdeeAEnnXQScnJy4PP5kJmZic8++wwbNmxg2j4BgVSDJEnhz1u3bsXGjRvDqqv6+a2pqcGmTZsi/n/cuHERv5944okAEK48+5Of/ARZWVn49a9/jVdffVUz7+bDDz9Ehw4dMHbs2AibP/nJT1BZWWlLsQFJkuDxeBI+jhbo9aIYP348fD4fPv/8c0fspSsE+REwxJVXXomTTjoJ9957b1QOzcGDB+Hz+aJkW4/Hg8rKShw8eDDiexruooXS0tKI37Oysgy/b2lpAQD8+OOPOOuss7B79248/fTT+PLLL7Fs2bJwToAoqiAgkJw4ePAg/H4/pk2bhszMzIifCy64AABw4MABAIDP58O1116LOXPmhPMNZ8yYgaqqKpx33nnhYz7xxBO4+eabceqpp+Ltt9/G0qVLsWzZMpx//vlirBAQSACNjY04ePAgqqurASBc+GDSpElRz+8tt9wCQH5+KcrKyiJ+p2Hz9Nns0aMHFixYgIqKCtx6663o0aMHevTogaeffjr8P3v37sWRI0eQlZUVZbe2tjbKphLHHnssAGDbtm2Gbd2xYwe6dOkS85rEg8rKyojffT4fysrKovwpgcQgcn4EDOHxePDII49g5MiR+Oc//xnxt7KyMvj9fuzfvz+CAEmShNraWpxyyilRx7Ib7777LhobG/HOO++ga9eu4e9XrVpluy0BAQF2KCkpgdfrxbXXXotbb71Vc5/u3buHP19//fV47LHHwjkF77//PiZOnAiv1xveZ+bMmRg2bBief/75iOMcPXrUmUYICKQJPvroIwQCgXDeXHl5OQDg7rvvxqWXXqr5P8cff7xlO2eddRbOOussBAIBLF++HNOmTcPEiRPRqVMnXHnlleFiCfPmzdP8/8LCQt1jV1VVoV+/fvj000/R1NSkmffz9ddfY+/eveFiAgCQk5ODurq6qH2NiJYeamtr0blz5/Dvfr8fBw8ejCCG2dnZaG1tjfpfQZDMQ5AfgZgYMWIERo4cib/85S8Rsx3nnnsuHn30UcycORO///3vw9+//fbbaGxsxLnnnuv4uVFCpSysIEkSXnrpJcdtCwgImIN6BtcM8vLycM4552DlypU48cQTw6qvHk444QSceuqpmD59OgKBAFpbW3H99ddH7OPxeCLGCgBYvXo1vv76a8dmcgUEUh0//vgjJk2ahOLiYtx0000ACLHp1asXvvvuO0yZMsV2m16vF6eeeir69OmD119/Hd9++y2uvPJKjBkzBrNnz0YgEMCpp55q+bj33nsvrr76akyaNAnPPfdcxN8aGxvx29/+Fnl5eRE+T7du3fDWW2+htbU1PL4cPHgQS5YsQVFRUXg/M+Pg66+/jsGDB4d//89//gO/3x9RjKVbt25YvXp1xP8tXLgwqhJuPONuukCQHwFTeOSRRzB48GDs27cP/fr1AwCMHDkS5513Hv74xz+ivr4eZ5xxRrja26BBg3Dttdc6fl4jR45EVlYWrrrqKtx1111oaWnB888/j8OHDztuW0BAwBwGDBgAAHj66adx3XXXITMzE8cff7zhLCzd/8wzz8RZZ52Fm2++Gd26dcPRo0exdetWfPDBB+G8Q4pf/vKXuOmmm7Bnzx4MGTIkamZ5zJgx+Otf/4oHHngAQ4cOxaZNm/CXv/wF3bt3h9/vt7fRAgIpiLVr14bzaPbt24cvv/wS06dPh9frxZw5cyKiQF588UWMHj0a5513HiZMmIDOnTvj0KFD2LBhA7799lu89dZblmy/8MILWLhwIS688EIce+yxaGlpCVd0HTFiBAASqv/666/jggsuwO9+9zv89Kc/RWZmJnbt2oXPP/8cF110ES655BJdG1dddRW+/fZb/P3vf8f27dvxy1/+Ep06dcKmTZvw5JNP4vvvv8esWbNw3HHHhf/n2muvxYsvvohrrrkGv/rVr3Dw4EE8+uijEcQHIKpT165d8d577+Hcc89FaWkpysvLw+WwAeCdd96Bz+fDyJEjw9XeBg4ciPHjx0fYu//++/HnP/8ZQ4cOxfr16/Hss8+iuLg4wl7//v0BAP/85z9RWFiInJwcdO/ePSq8MC3Bt96CgNtgVNHl6quvlgCEq71JkiQ1NzdLf/zjH6WuXbtKmZmZUlVVlXTzzTdLhw8fjvjfrl27ShdeeGHUMWm1t7feesvUedCKKPv37w9/98EHH0gDBw6UcnJypM6dO0t/+MMfpLlz50ZVORHV3gQE+OHuu++WqqurpYyMDEsViLZt2yb98pe/lDp37ixlZmZKHTt2lIYMGSI99NBDUfvW1dVJubm5EgDppZdeivp7a2urNGnSJKlz585STk6OdNJJJ0nvvvuu5tgAUe1NQCAM+k6mP1lZWVJFRYU0dOhQacqUKdK+ffs0/++7776Txo8fL1VUVEiZmZlSZWWlNHz4cOmFF16IOrb6fU/9AzpWfP3119Ill1wide3aVcrOzpbKysqkoUOHSu+//37E/7W3t0t///vfw35BQUGB1KdPH+mmm26StmzZYqq9H3/8sXTBBRdIZWVlUmZmptS5c2fp2muvldatW6e5/6uvviqdcMIJUk5OjtS3b1/pzTff1BxXFixYIA0aNEjKzs6WAISrs1HfZsWKFdLYsWOlgoICqbCwULrqqqukvXv3RhyjtbVVuuuuu6QuXbpIubm50tChQ6VVq1ZFVXuTJEl66qmnpO7du0ter1cCIE2fPt1U+1MdHklSlOcQEBAQEBAQEBAQEGCGyZMn48EHH8T+/fvD+VICzkFUexMQEBAQEBAQEBAQSAuInB8BAQEBAaYIBoMIBoOG+/h84vUkICAgIGA/RNibgICAgABT0BAPI2zbti0iEVhAQEBAQMAOiLA3AQEBpnj++edx4oknoqioCEVFRTj99NMxd+7c8N8nTJgAj8cT8XPaaadFHKO1tRW33347ysvLkZ+fj3HjxmHXrl2smyIQJ379619j2bJlhj90sUQBAQEBAQE7IZQfAQEBpvjggw/g9XrRs2dPAMCrr76Kxx57DCtXrkS/fv0wYcIE7N27F9OnTw//T1ZWFkpLS8O/33zzzfjggw8wY8YMlJWV4c4778ShQ4ewYsWKiEUtBQQEBAQEBASUEORHQECAO0pLS/HYY4/hhhtuwIQJE3DkyBG8++67mvvW1dWhY8eO+Pe//40rrrgCALBnzx506dIFH3/8Mc477zyGZy4gICAgICCQTEjKjNJgMIg9e/agsLAQHo+H9+kICKQ1JEnC0aNHUV1djYwMa5G0gUAAb731FhobG3H66aeHv//iiy9QUVGBDh06YOjQoXj44YdRUVEBAFixYgXa29sxatSo8P7V1dXo378/lixZYpr8iHFEQMA9SGQc4QUxhggIuAdWxpCkJD90lldAQMA92LlzJ4455hhT+65Zswann346WlpaUFBQgDlz5qBv374AgNGjR+Pyyy9H165dsW3bNtx///0YPnw4VqxYgezsbNTW1iIrKwslJSURx+zUqRNqa2t1bba2tqK1tTX8++7du8M2BQQE3AEr4whvCF9EQMB9MDOGJCX5KSwsBEAaWFRUxPlsBATSG/X19ejSpUv4uTSD448/HqtWrcKRI0fw9ttv47rrrsOiRYvQt2/fcCgbAPTv3x8nn3wyunbtio8++giXXnqp7jElSTKcfZ06dapmhTExjggI8Ec84whvCF9EQMA9sDKGJCX5oQ4OrRYlICDAH1bCPrKyssIFD04++WQsW7YMTz/9NF588cWofauqqtC1a1ds2bIFAFBZWYm2tjYcPnw4Qv3Zt28fhgwZomvz7rvvxh133BH+nQ6UYhwREHAPkil8TPgiAgLug5kxJDkCawUEBFIakiRFhKQpcfDgQezcuRNVVVUAgMGDByMzMxPz588P71NTU4O1a9cakp/s7OywkyKcFQEBAQEBgfREUio/AgICyYt77rkHo0ePRpcuXXD06FHMnj0bX3zxBebNm4eGhgZMnjwZl112GaqqqrB9+3bcc889KC8vxyWXXAIAKC4uxg033IA777wTZWVlKC0txaRJkzBgwACMGDGCc+sEBAQEBAQE3AxBfgQEBJhi7969uPbaa1FTU4Pi4mKceOKJmDdvHkaOHInm5masWbMGr732Go4cOYKqqiqcc845ePPNNyPieJ988kn4fD6MHz8ezc3NOPfcczFjxgyxxo+AgICAgICAIZJynZ/6+noUFxejrq5OhK4ICHBGsj6PyXreAgKpiGR8HpPxnAUEUhVWnkeR8yMgICAgICAgICAgkBYQ5EdAQEBAQEBAQEBAIC0gyI+AgICAgICAgICAQFpAkB8BAQEBAQEBAQEBgbSAID8CAgICAgICAgICAmkBQX4EBAQEBAQEBAQEBNICgvwICITQ2gpcdx0wezbvMxEQSH7wXEShvh44dIiP7e3bgYUL+dheuxZ46CGguZm97VWrgJ/9DNi4kb3tVEdLC/DUU8Af/gBs3cr7bAQEYuPHH4ErrwRGjwYWL+Z9NtEQ5Mel2LEDuPlmYNMm9rbXrweOPx6YOZO9bQBYvRo4eJC93a+/Bl57jTgPPLBtG7n2AqmD/fuBiROBNWvY2z5yBBgxAvjXv9jbbmoiY8jPfsbedjAI9OoFHHMMOQ/W6NEDOPdc4Jtv2NseNAi4/35g6lT2ti+8EHj7beDii9nbTmVIEjBhAvD73wN//ztwyinA5s28z0pAQB+NjcB55wFvvgnMmweMGgWsXMn7rCIhyI8ODh4EhgwBnnuOj/0ZM4AXXgCef5697QULyOD6f//H3vb33wMDB/Jxmhobybahgb1tADjzTPJi42VfwH5MmgQ8/TS5r6zx1FPAZ58Bv/oVe9uffw5s2UKc4bY2trb37gX27SPqB+vJo2CQ/ADkGrCG30+2Cxawt71nD9nymLBLZXzyCXEiASA/n0xq/Pa3XE9JQMAQM2YQBbikhExENTcT1dJNEORHB199RZSAf/6Tj/2jRyO3LEFDJniETmzfTrY//MDedksL2fJod3s7cR6amoADB9jbF3AGS5eSbWsre9vKfhQIsLWtHLd+/JGt7R075M87d7K1vW+f/Jk16VOGGbK2LeAcXniBbH/3OxJamJVFCNGyZVxPS0BAE5IEPPMM+fzXvwKffkr67GefEZ/aLRDkRwft7WRbV8fHPk8CwtM2DVOhRIQlqIPK85rzsi/gDAoK5M+sCYgSu3eztackPNu2sbVNJ1B42Fa2mzXxOnxY/syzrwnYh/37gQ8/JJ9vugno2RO4/HLy+0sv8TsvAQE9rFlDIodyc0kOdbduJPcHAF59leupRUCQHx3wJj88VQhqkwcBoeSHR7tpe3nkCSjby+O6CzgDn0/+zDoBv6ZG/sya/NAQKPVnFti7V/6sVGJYQKm2sb7fyjxJ1kqjurgFDf0TSAwLFhAiO3AgcMIJ5Dsaxjp7Nh9FWUDACHPnku3w4fLk3y9+QbZu6rOC/OiAxk7X1fGpWuQG8pNutuk1DwRk8ssKSsLFo+2BACk0IZwWe6F0SFmHsB45ws82zZ/jYVv5LAnbbKB2aETeoj2guVsjRsjfnXUWUFVF7vEXX3A5LQEBXcybR7bnny9/d845QKdOxJ/+8ks+56WGID86oM5vMMhnIE9XAkJf4H6/TEBZQfkCZ63+8A57mzaNzC7S+HIBe6DsR/X1bG0r+1E6OeI82y1sE7Du66mKzz4jWyX5ycgAxo4ln99/n/05CQjoob1dznNV99kLLiCfP/6Y/XlpQZAfHSgdbx6hb1SF4BEC5QbVSXkerKC0x7rtvMPe6NocYg0Je+EWh1TYZgM3kT6WEQvq8ZJHoZ5Uw969pHiHxwOccUbk38aNI1s6yy4g4AasW0f8l6IioHfvyL9deCHZ0rA43hDkRwfKsCdl+AgruIGA8FR+eNhXKj+sbfMOe6MztW6Jx00VKO9lOik/goDwtR0MslWvBfmxHytWkO3xxwOFhZF/O/tswOslVVFZV1MUENADrUB48slE7VFi+HCy3biRFPLgDUF+dKAkPzyVn3QjP25RftIt7I06K6LYgn0IBiPJZDqRAEFA+F5z1vZF2Jv9+PZbsh08OPpvhYXy2mE81pMSENACJT8//Wn030pKgL59yeclS9idkx4E+dEB77A3NxCQlhb2xR7SVfnhHfZGnRVBfuyD+lryVH6E6sQGatKXLqFnQvmxH1T5Oekk7b+fcw7ZLlrE5nwEBGJh9WqyHTRI++80fPOrr9icjxEE+dGBCHsjYB0GpXQe0kn54R32Rp0VEfZmH3jPhgsCwrfdfj/b58lN5EdZ7U8gPqxZQ7Y/+Yn234cMIdv//Y/J6QgIGEKSgPXryed+/bT3oeRn8WI252QEQX50wFv5cQv54amAsLbtloIHPHN+hPJjH9T3kSWhlqRI+6wrVirbytq2st2snXCe91xtm+WzzNN2KqKlRV6gl67vowYNe1u/XihtAvyxezfph14v0KuX9j5nnkm2K1bwHyME+dGBW3J+eISe8XTE3RL2xjPnh8egIHJ+7AdPh7C9PXLNJtb3lWd/5mlbPW7wJCAsx0+etlMRW7eS57e4GKis1N6nUyega1fiH9AQOQEBXqCqT69eQFaW9j7HHUf6bVsbsHw5u3PTgiA/OlAqPzzC3ujLQ5JIR+FhW/2Zte10KnXNO+xNKD/2Q30tWd5Xnk642j5P2zzHL9b23US8xDiSGOjSA336kFLXeqCJ5SL0TYA3NmwgW1rUQAvKsu28834E+dGBW5QfIL1CsNyi/KQT6Wtvl22KnB/74KYwpHTqz0p7gQDbxZJ53nO1LZ62hfKTGJTkxwiU/HzzjbPnIyAQC5s2kW2sPnvqqWTLW60U5EcHPAseSJJ7HPF0sp2upa6V8eJixtY+8CQgPB1htVrNuj+rlXKWbXeT7XTpb6kI6kgef7zxfkL5EXALvv+ebHv0MN6PVoJbtcrR04kJQX50wLPgAc9ZNHWiNE/lh/ULNF0XORXkxxnwdAh5OsJqpYV1n+LZduWkGWvbPImXut1iHEkMP/xAtrEcyZNOIotJ7toF7Nnj/HkJCOjBbJ+l1Qu3bOFbqEOQHx3wDHvj6TSpE6XTiQS4Rflh7TgoSzALp8U+uMkJTydHmKd9NxGQdCF9qQha6e2444z3KyiQcyx4hxEJpC/8fmD7dvI5Vp/t2BHo3Jl8pusC8YAgPzrgWfCAp/LDO3zBLbkC6RTup5x9ETk/9iFdnXAt2ywrVrqJgPC+7ulgO9XQ3AzU1JDP3bvH3p/OpPN0JAXSGzt3Ep85K0smNkagfXblSkdPyxCC/OjATcpPOpUsTdeCBzzbLZQfZ5CuM/Fq2wBbUu2m0LN0VfuE8hM/6Ax6URFQWhp7/xNPJFtBfgR4geb7dO9OwjBjwQ15P4L86IBnwYN0Xq9BFDxgT0BEzo8zcJMzylMF4G2fx3WnDgAP2z4f2fIgXnR9DzGOxA+aO9G9u3GZawpBfgR4gxJ2M0olICs/gvy4EMqwt8ZGtuVS01X5CQQiHZd0KnjAk/QplR91zpdA/KB9OSeHbHkoEHl57G1TRzgnRyYBPOwXFpItDwJSVMTeNr3nPGzzbHeqgeb7mHUkKfnZvFkobgJ8sHs32XbpYm5/qvysWaMdKcAClsjP888/jxNPPBFFRUUoKirC6aefjrlz54b/LkkSJk+ejOrqauTm5mLYsGFYt25dxDFaW1tx++23o7y8HPn5+Rg3bhx27dplT2tshPqGKB1Ep5Gu5Ie36sRT+XFLtTdA5P3YBZ4OoZZtVnk31AnPypKJH6u2B4NkEgWQ286DdPKw7SbiJZzw+LFzJ9kee6y5/SsrSRJ5MAisX+/ceQkI6IG68MccY27/7t3JWNHWJq9pxRqWyM8xxxyDv/3tb1i+fDmWL1+O4cOH46KLLgoTnEcffRRPPPEEnn32WSxbtgyVlZUYOXIkjiq8q4kTJ2LOnDmYPXs2Fi9ejIaGBowZMwYB+sZyCdRKD8vQt3RdHFFNONIp58ct1d542E9VqBUIno5wMMhuhk0ZApWbSz6zaruyjW4hnaxtu6G/Od3uVJ6IpbPoZhLHARIaJ0LfBHiCPjZW+mz//uSz6rFkBkvkZ+zYsbjgggvQu3dv9O7dGw8//DAKCgqwdOlSSJKEp556Cvfeey8uvfRS9O/fH6+++iqampowa9YsAEBdXR1efvllPP744xgxYgQGDRqEmTNnYs2aNViwYIEjDYwXakeBZdEDofwQsHQcgkG+CzO6SfkRjos94BmGpLbN0j4dOzMz2Ss/ymfYDcpPuoW9sSJeqTwRa5X8ADL5+e47+89HQCAWaJ81q/wAQL9+ZMtLrYw75ycQCGD27NlobGzE6aefjm3btqG2thajRo0K75OdnY2hQ4diyZIlAIAVK1agvb09Yp/q6mr0798/vI9boFZ+0pX8sHyB8lR+1KFePAse8Mz5AZy/56nsuCihng3nMROfny9/x5qA8Ah7c4vy4wb1JZVJXypPxCZCfoTyI8ADVpUfQF6fKimUHwBYs2YNCgoKkJ2djd/85jeYM2cO+vbti9raWgBAp06dIvbv1KlT+G+1tbXIyspCSUmJ7j5aaG1tRX19fcSP01ArPyzD3txEfniGvbF0WtTkJ53C3ljn/KSy46KEG/JusrPZF1xQKj+sw95ouz0emfilm/riBttsC+Wwm4h12heRJEF+BJILTU3A4cPksxXlh5KfpFF+jj/+eKxatQpLly7FzTffjOuuuw7rFWfvUdVmlCQp6js1Yu0zdepUFBcXh3+6mC0pkQB4hr25KfQsXWyrHQWeBQ9aW9lWXOOZ85NKjosabsi7URKQdFJ+eBAvpf10UF+U4FFhj8dErNO+SF2d/C6wQn769CGE/+BBYP9+W09JQMAQlKzn5wPFxeb/j4a9bdmivTyC07BMfrKystCzZ0+cfPLJmDp1KgYOHIinn34alZWVABA1cOzbty88CFVWVqKtrQ2HKU3U2EcLd999N+rq6sI/O2k5FAdBw97o7KFQfpyHm8LeWNoOBqPts3RcWOf8AKnpuKjhtrwbHsoPr5wfHsRLaZ9nmW03hNyxaDePiVinfRHqSHboIJepN4O8PKBbN/JZVHwTYAllyJuZdakoqqvJeBEIkDLtrJHwOj+SJKG1tRXdu3dHZWUl5s+fH/5bW1sbFi1ahCFDhgAABg8ejMzMzIh9ampqsHbt2vA+WsjOzg4nR9Mfp0EH8/JysuWZ85Mu1d545hvxJJxa7WTZdrUAwqLUdSo6Lmpo5d2wDv/iQQKUtnlVe+OheAUCclijG0LPUr3UNY+JWKd9kXhC3ihOOIFsN2yw73wEBGIhnmIHACFKPIseWCI/99xzD7788kts374da9aswb333osvvvgCP//5z+HxeDBx4kRMmTIFc+bMwdq1azFhwgTk5eXh6quvBgAUFxfjhhtuwJ133onPPvsMK1euxDXXXIMBAwZgxIgRjjQwXlDlxw3kh4cjnpnJ3jZVfugq4elS8EBpi8eikDyUn1R0XNRQlnxOp/Avtyk/rAknkL5hb9R2IMB2YXCAzUSs0xDkRyDZYHWNHyV4Fj3wWdl57969uPbaa1FTU4Pi4mKceOKJmDdvHkaOHAkAuOuuu9Dc3IxbbrkFhw8fxqmnnopPP/0UhVSHB/Dkk0/C5/Nh/PjxaG5uxrnnnosZM2bA6/Xa27IEoVZ+eK7zw0N9KS0F9u7lY7usDKip4aP8FBQADQ3k/vv9gM/SExIfaLuzsshPQwMf5Sc/H2hs5LPOj5bjMii0DDR1XB555BEAkY7L+PHjAciOy6OPPsr+5HWgVkBaWtgTEN7EKx1tA+kb9qZ41aO5OfJ3O3HPPfdg9OjR6NKlC44ePYrZs2fjiy++wLx58yImYnv16oVevXphypQpuhOxZWVlKC0txaRJk7hPxAryI5BsSKTP8ix6YMm1e/nllw3/7vF4MHnyZEyePFl3n5ycHEybNg3Tpk2zYpo53BD2VlREHFOe5IdHqevSUkJ+eCheJSWEfADOvryVoO3MzZXJDw/lp6IC2LbN+Xueqo6LGm5QQHgXPOBV7U1pm+caQ+lWaU45Xra0ODd+pupErCA/AsmGRJQfnmFvDOa1kxNuCHsrLeVLfpS/s4CS/LC2TcPeOnQAaCoIK/JD252byz7csL1d7m8dOxLy43TOT6o6Lmq4LfQsHcLe3NBuj4coyCxtK+3zDLnLziY/ra3O2k/Vidh48ycAmfzs2kX8Bgap0QICtig/mzeTMYSmPLCAID86oC8SWlBKnRfhJOhLo6QE2L6dT8EDHgREbZuui2Klgki8oNc4N5c4TSxDlKidvDw5zI7VPVf2a0r0nbadqo6LGm4pOuAGAsLats+XXraV9nmG3NF73trKJ3w22ZGII1lSAlRWArW1wMaNwE9/au+5CQhoIRHl55hjyHh19CiwdatMhlgg4WpvqQqq/NAZPBYVsCiUIVhA+ik/ZWVky3JdFHp/s7PlWXpWRQ+UYW+sFQKa75OTw8dpSmXwVH7o+OXzpZftQIBseVV7A/iRH/U7y+9nV3RAec9ZK26phETIDyBC3wTYwu8nZBuIr896PPzyfgT50YG6TG26kR83EC+W9uk1z8mR11dgZVsZ9sbacaDKT1ERH4ctlaHlELK6tjydUS0SwJp4eb38bPMgfYB83Sn5Afj2N5bvzFRAezuwbx/5LMiPQDJg/34SnZORQcLm4wGvim+C/OhAKD/sbVMS0KGDHOrG6uXtBuUnL4/9bDVVfgoLSdsB4bTYBaVDyPraKgkIa9taBCQd2s3TtiQRpRyIXByT9T3n0fZUQW0tuY+ZmXIIslUI8iPAEpSsl5eT8T4e0KIHgvy4BDyVHzepL62t8kuVle28PPaztjyVH55hb0L5cQ5aDiHrmfh0IyBa7eZxzVnfb3rNAWKbOiKs77my7YL8WMPevWRbUSGv92YVlPzwqJ4lkH6g5KeiIv5j9OlDtps2JX4+ViDIjw4o+Ul35Qdg13aqtCjJDyvnQUl+WBMQnmFvSuVHkB97oRX+lW4EJJ3UF573W5nbw/Oe88p3SgXY4UjSEKIffhDXX8B5UMJusLZ4TBx/PNlu2cJuoh0Q5EcTwaB8E3iSH2XVM1ZQq07K75yGkgSwJiDpGvYmlB/nwJMEuEEB4Znr5Bblp62NhDI5DaXyw+O68ySdqQI7yE9lJVBcTPyXLVvsOS8BAT3Y0We7dSOhns3N8jIjLCDIjwaUs2huKXjA4gVKbQFECaBll3mUfGZNftwS9sZT+RFOi73gWf3LDQqIUH7Y2Ve+s3iTbTGOxAc7HEmPR+T9CLCDHcqPzwf07Ek+b96c+DmZhSA/GlC+SKjyw2oGD4hWXyQpcvVwJ6Fc74ZX+BePsDeeyg9PxUsoP87BLcoPzxCodGy30jYr+2rlxw3ET4wj1mAH+QEE+RFgB7v6LA19Y5n3I8iPBpRry1DlB2BPQHiEnvFMvudp2w3KD+9qb8JpsRduUyHSYb0bt9hWrlTOWvnJyHBHyJ9QfqzBLkeSVwK5QPrBrj7buzfZCvLDGUryo1wzgdVgTl9YRUVyyed0CMFSKj9uyPlJh2sulB/n4Lb8k3RVX3jY9njYVnxThhoqbadDuGGqIJln0QXSE3aEvQFC+XEN6EvM45EdYYDdYK6lgLB4gUqSe5QfntXeqPLDM+yNdcGDggLhtNgNN1Rc46068Sr5rG43y6IDNFeS5XVXEi/WttX2xSRKfHCC/LAK1RdITyQzYRfkRwNU+cnMJCEE9GXG4kUSDMrhdazLLivbx8MR56n80DbyVH54tJs6LVlZwmmxG24o+cxbdeJV8llpW5Ii1XwWtgG291xNvNKpwEaqYP9+sk3UkezRg9yHxkZg9+7Ez0tAQAuSZD/5+fFHdpPOgvxoQDlrCrB9gSttsCY/ShvppvzQ66685qxLXfMIexPrczgHN5R8dovyw1PxYmWfJwFxk/IjyI912OlIZmYCxx1HPm/cmNixBAT0UF8vP+OJ9tnycnlpF1Yl2gX50YBS+QHYDubKFyVrAkJtULWLpe32dvkFylv5YV3wQEvx4rkmi3Ba7IHbSj6nw1o7WtccSP3QM54hd5Ikqr0livp6OeKjY8fEjyeKHgg4DUrWCwpknykRUPWHVblrQX40oFZ+WL5IqMPt9Ua+SFiSn9zcyHwnFraVKgvPgges1TalHR5qm9aMrXBa7IGWCpEOoWduUX7oGAqwLTrghpwflgREuSq7UH7iA3UkCwsj84zjBXUkhfIj4BRosYNEVR8K1hXffGzMJBfcoPzQlxcP5Yfa5GHb4+GTf8Kz4IHyumdkRH7nNETYm3PQyrtJJwKiJtSSJFevdApaBMTvT30CwpN48V5jKBVgV8gbhVB+BJwG7bOJVnqjYF30QCg/GnAD+VETEBYvUDX5Yak6KZ1w1qoTEFnq2g0lvtNhXZRUh1sW+3TDWjuSFLkWjVNIVwKiF3LHMt+I2hfjiHXYTX5EuWsBp5HsfVaQHw24Iewt3ZQfvSITPBY5Ze2oKm3zCnsTOT/2wy0LbrpB+WFl3w0ERG2bB/Fi+SwL5SdxOKX8/PgjqfomIGA37Frjh4J1iXZBfjTgBuWHB/mhCZd0dXKWttUvb9YKiLLgAS9nMTOTb7U3kfNjL9yy4KYbii0AqV/1TE91SvViC2rlR5Af67Cb/JSVkR+AXfUsgfSC3X22Z08S9l9fLxMrJyHIjwZ4Kj9q8sPSGaZOCyV9LAmI+uXNs+ABz7VJeFV7U4artLVFJjELxAee6gtP1UnZp5RFB1K93HS6q06ACHuLF3Y7koAoeiDgLOzus9nZQLdu5DOL0DdBfjTgBuWHZ+gZDwLCe5E+Nyg/rMuLq23Taw6IWVs7wDPvRk/5YRFOwHPyyA0KCM98I56qk8dDZm6F8mMdTpAfUfRAwEkcOEC25eX2HZNluWtBfjRAyY+bcn54zFymC/ECIpUfN8zSC/KT/HCL8qMMPaOhrSxsu6HoAI/cFzcpP6ne7lSBUH4Ekg0HD5ItDa+0AyzLXQvyowFlDgbAN+yN58ylG3J+eCxyynNNFtruQIBNdSzldaeV9gARsmIHeK6hpKU6AanviLuh6hnPRU55EE6eileqYP9+srVzFl0oPwJOwgnyw7LimyA/GnBT2Fu6xazzmi2m9nnk/Civu3KBOx4lxoXjYh94VtJT9ilawISVfb1xJNXHMJ6hu0L5SW4cOkS2TjmSIodTwG7QPltaat8xBfnhDDcVPHDDrCmP2WKWyo+yfTxzftSlgXmEGwryYw94r3qvvK8ZGTIB4qkEpPokipuUn3R5b6QCJEmeRbfTkTzuOPI+bWoCdu+277gCAk1N8pjqBGH/4QfnQ7QF+dEAT+VHnfPDI2zDDZWSWOa+KNunzvlhkSCubLvSUU31EKVUhjJkUan8+P2R1bGctp9uSkC62uY5dvO0nQpobJQdPTsdycxMoEcP8lmEvgnYCUrWfT6gsNC+41ZXAwUFZCz94Qf7jqsFQX404Cblh0fCrhtmD1m2m9rweKITxCkRdgrBoKwSuEFxE46LPVCX/+W12KcbnuV0ybvhHbqrtJ0uqlMqgDqSWVlAfr69xxZFDwScgDLfh+YJ2wGPh13RA0F+NMBT+aE2qE1RMch520rC6fGwXZhRvTo6PQ8WtpX2BfmxF2rlhzX5caOKm27tTpexW6jHiUGZ72OnIwmIogcCzsCJfB8KSn6cLnctyI8G9MgPz8TVVHeEec7Y6hFOFva1yI8blB/huCQGtfJDQxqB9HHE002FcFO73bDGkJhAMQcn8n0ohPIj4AScqPRGwarogSA/GnCTAsIzWdgN7WbxAqVkl+baZGTIxNfptisVAp5J2jzIdipDrfwoFcVUDz3jWe3NjWN3qrdbz3YgwCa/LdnhpCMplB8BJ5B25Gfq1Kk45ZRTUFhYiIqKClx88cXYpDrDCRMmwOPxRPycdtppEfu0trbi9ttvR3l5OfLz8zFu3Djs2rUr8dbYBJ5hb256ebshVp9FgrjattJ+uig/YtbWXijvK1V83KDipnr+XroSEDfm/LCyn+xg4Uju3EkKKwgI2IG0Iz+LFi3CrbfeiqVLl2L+/Pnw+/0YNWoUGlVP1fnnn4+amprwz8cffxzx94kTJ2LOnDmYPXs2Fi9ejIaGBowZMwYBl0wTuWEWzQ3Jwm6I1WdhX20bYHfdtZQfN4S9CfKTGLT6VLqquG6YROFJAlK94prR2O2U/VSaiHVijR+KsjJ54VSncygE0gcscn727wcOH7b/+BSWyM+8efMwYcIE9OvXDwMHDsT06dPx448/YsWKFRH7ZWdno7KyMvxTqrhCdXV1ePnll/H4449jxIgRGDRoEGbOnIk1a9ZgwYIF9rQqQfBUftwwY+sm1YmFfSPywzLsjSoEqZ6cnkqOix7U1xVwxziS6pMobho/ebabJ+lT5rc5ZT+VJmKdzPkBRN6PgP1wUvkpKAA6dyafnVR/Esr5qaurA4AIcgMAX3zxBSoqKtC7d2/86le/wr59+8J/W7FiBdrb2zFq1Kjwd9XV1ejfvz+WLFmSyOnYhnQPe3PDAoEsE8S1HFVWjovSNq3044b+5uQ1TyXHRQ9aoZSsnidJclf59HRRztO12AKPyaNUmoh10pEERN6PgP1wus+yqPjmi72LNiRJwh133IEzzzwT/fv3D38/evRoXH755ejatSu2bduG+++/H8OHD8eKFSuQnZ2N2tpaZGVloaSkJOJ4nTp1Qm1traat1tZWtCpG0fr6+nhP2xTS9eWt1+72duJMZThYHkNNQGiCeHNzeig/PJzkYFBexJWlQjBv3ryI36dPn46KigqsWLECZ599dvh76rhogTou//73vzFixAgAwMyZM9GlSxcsWLAA5513nnMNMAGeyg/vPDKe4V9uqHLntkqdkmR/CWUt2+oxrLmZXfhsrInYDh06YOjQoXj44YdRUVEBIPZErNYY4oQv4rQjySqHQiB9wKLPfv65S5Wf2267DatXr8Ybb7wR8f0VV1yBCy+8EP3798fYsWMxd+5cbN68GR999JHh8SRJgkdnhJ46dSqKi4vDP126dIn3tE3BTcqPG0InAHkFaqdgRAJSmfzwdJJ5V5qjYKUgt7a2or6+PuLHKfAsosH7vvIcw9y00KgbcrwkKbI/OGmbV4in0UTs66+/joULF+Lxxx/HsmXLMHz48DB5iWci1glfxMmcH0CEvQnYD1Z91nXk5/bbb8f777+Pzz//HMccc4zhvlVVVejatSu2bNkCAKisrERbWxsOqzKZ9u3bh06dOmke4+6770ZdXV34Z+fOnfGctmm4IfTMDaoTi8RVCiMSwKroAE/bWk4yy2ILvNb5SXbHRQ9GBQ94LJybLmOYG8ZPN7WbhX0t5Ydl21lOxDrhizid80PD3jZvlsNhBQQSAas8NdeQH0mScNttt+Gdd97BwoUL0b1795j/c/DgQezcuRNVVVUAgMGDByMzMxPz588P71NTU4O1a9diyJAhmsfIzs5GUVFRxI+TcJPywzN0grYf4BP+xXqmnEfOD0/bRk4yK+Un2R0XPfB0CN1SQdANFSvdMHnEs90s7PMk+qwnYp3wRZwOIerendybpibAJfVgBJIYwSA75WfLFueWOrFEfm699VbMnDkTs2bNQmFhIWpra1FbW4vm5mYAQENDAyZNmoSvv/4a27dvxxdffIGxY8eivLwcl1xyCQCguLgYN9xwA+6880589tlnWLlyJa655hoMGDAgHLvPG27K+VE6wjQ/g5Vtlgsz8nyBirA3PlXBUsFx0YMb1ESl/VSvIBjLdrrlG3m98udUVH54TcTajWBQLufrlCOZmQn07Ek+i7wfgURRVycriE712a5dyaLzra1kjSonYIn8PP/886irq8OwYcNQVVUV/nnzzTcBAF6vF2vWrMFFF12E3r1747rrrkPv3r3x9ddfo7CwMHycJ598EhdffDHGjx+PM844A3l5efjggw/gVY6eHOGmUtfKGTx6Xk7BDaE6blF+0qHgAa/ckFRxXIyglwQOsFX01AusCuUnNW0bjZ+pOHmUKhOxR47Ik5pOhRABIu9HwD5Q1Sc/P9I/tRNer/OE3VK1NymG9JCbm4tPPvkk5nFycnIwbdo0TJs2zYp5ZnBj2BtAXmJZWc7ZdhsBEcqPs7ZpuzMy5GpQLBz0W2+9FbNmzcJ7770XdlwA4ozk5uaioaEBkydPxmWXXYaqqips374d99xzj67jUlZWhtLSUkyaNMk1CrJbCLW6fHq6Kj88bbOolqk3fjY28lF+nB67n3/+eQDAsGHDIr6fPn06JkyYEJ6Ife2113DkyBFUVVXhnHPOwZtvvhk1Eevz+TB+/Hg0Nzfj3HPPxYwZM5hNxNKQt4ICZ9/tffoA770nlB+BxOF0vg/F8ccD69eTPutE8da4S12nMtwU9uaWxT55FjxI5Xa7QflhTThTxXExAs+ZeJ7rVgHuVF945920tgK5uc7ZdtvEFYuwNyMky0Ss0/k+FEL5EbALrPusK5SfdIGblJ+MDHIe7e18Z/B4hn+lQ9GBdCJ9qeK4GMENRTR4Vd/SC91N9bybWBXXnCQ/bpi44tXfkhlOJ45TiLV+BOxCqpAfB4X45IWbSpYq7adr+Fcqt5tnqWsjhYDlOj+pCJ4OIc/7qlw41w3r3fC0nZkphx3yICBumDwS44gxWDuSu3YBDQ3O2hJIbbAi7L17k+3mzc4cX5AfDegpP8EgnwXj3KBC8FzvJpVnyt2gEAinxX64IYeNJ/EC+Cg/bloqgHe1TNb3XCg/1sEqf6KsDCgvJ5+dciYF0gMsc34AUu2tsdH+4wvyowE98gOkhyOebrOHbggZcYvqJMiPPeB5X93QpwB3VD2jttva2C0V4LbQs1RWzpMdrJQfQF7sVIS+CSQCVn22rEy2EVrhwlYI8qMBo4pr6aC+pNvsodvC3txQ8EA4LYnBrZMYrJxwgE/FNXWfprZZ2Hdr6FkqVntLFbAKIQJE0QMBe8CSsDuZ9yPIjwbUyo/PJ8dui5eYM3DDGkNuCzVMZbUt1eG2/uwG5YdnwQMgtSdR0nXyKNkhlB+BZAMPwi7IDyOoB3OPJz0qNbnh5e0WEpBOs/Q8VMZUhxucUZ4hUED6LRXgttCzdFigOtnBKn8CEMqPgD1g2WedLHogyI8G1MoP4A5HPJVfYm7LN3LD/RbKT/LCDc8xTyUTkBf15LnQqMcjLx6ZymGkbhi7xThiHSxn0anys3kzKd4kIBAPRNhbCoMO5jzID0/HxQ2zh27LdUqHECURq28/3JD/4RZHWGmbVdEBnpXu3HjdnYRQfuIHS0eye3fi0zQ3kwpaAgLxgBf5sfvdIciPBqjy45bZ+HQKPXOL8uOGxV1TOVQm1eG259gN+XMAqbrGy346TB65ZRwR5MccWDqSPh/Qowf5LPJ+BOJBeztw9Cj5zKLP9uhBIgiOHgVqa+09tiA/GnBD2BvPuHG3LLjpBuUnHQinlrPW3i5CIxKBG5xRt4SvKvNu0mEME8qPmEQxg7Y2ecFRFvkTgCh6IJAYaJimxwN06OC8vexsolgC9vdZQX404IYXidtmLtM5VIeFbbcUPGBZGjiV4YY+5Zbxi+bcOG0/GJRDI9L1uqfb+JnMoI5kRgYbRxIQRQ8EEgNVKjt0iBxrnIRTRQ8E+dGAG5Qf8QJNj7ANt9oGxKxtIuD5LPEMe9Mi8xkZMgFysu3KYgs8wmfdoPa5JeROkJ/YoI5kSYlcHMRpCOVHIBGwDNOkcKrogSA/GnCDQ+qWcqluCHtLhwp7bgn38/nkF7EgP/HDDWReawxxOpxRqz8r7TvZdq0FVlnZBtz73kjliatkBk9HUig/AvFAkJ8Uh9uUHzfMXIqCB87a1mp3IBDp0LGwrVzTSjgu8cNtyg+r9W60+pTSPgvbavvpELrrhskjofxYA8v1UiioI7l7t5y4LiBgFjRUk0efFeSHAdxW6toNCgjPdqfyjK0bHFX1LL0gP4mDp5poRKgBNqFnen2KVdibW1RcnmqfG5YpEORHHyzX+KEoLQU6diSfnVg4UiC1wVP52bbN3mqhgvxowK2lrtP15Z3KpC+Wo8oiTIiHo5rq4Nmfte6rciKHp/LjZH/WU37SQQFxw6SZqPZmDTwcScDZhSMFUhs8+mxVFXDSScCFFwL19fYd1xd7l/SDG8LeRNhG+pb4pnk3waBQfpIVsZxRSSIhhk7AKJyxpSV1CbWS/CgTyHmSznRXr8UEij54kZ8+fYDFi0Xej4B18OizHg+wYoX9xxXKjwbS9UXiVgUkHa65eqacBQHRIz+sHLZUhlEeWTAY6ajbjVhFB1JV+VHmWSmJJU8C4oZ8zVReVyqZwSN/AhDKj0D84BGq6RQE+VEhGJSrIbFWfmKtU5Guq4TzdFpYFR1wk6MqlJ/EYVTwAEjdogNuIF48bAPuWyogHUqrJzN4Kj+AID8C1sGjSIdTEORHBeWMLGvy45ZqRW55gbrBcXDaPs/SwCLszTm4sU+xVBP1CHWqFlsA3JGvyXOJBKH8WAPvnJ/Nm50tey+QeuDVZ52AID8q0HwfgL0jriQ/6brIqdtIn9P23ewsCvITP7SeJa9XvtY8CIgb1Bee7XbStiS5Y6kAniF3IufHGng5kt27k4nd5mZg5062tgWSG4L8pDCU5Ie18sO7VKsbVgnXazcNB3QCeot90rwBHgniPB1VUe0tcfAMwXLDQqNuajeL/qycQU/XiSu9sGEn89uSGbxyfnw+oGdP8lkUPRAwC0kSOT8pDZ7qi55tnkmzblB+gEhS6pRt5TX3eFI/70aEvTkHrWcJ4KuAsKy45ibbrCeu0i1nkmd+W7JCkvjOoou8HwGraGqSn2WR85OCoE52RkZkuVSeOT9uyH3hqfw4bZ+nAuLGggei2lviSNc+5WbVidUaQ25RftIhbDhZ0dgoL9jIg/zQvB+h/AiYBSXrmZlAQQHfc7EDgvyowHM2nL7AMjIiS7XynD10wxpDTttPV2dRKD/OIZbyw6JP8VQTeeYb8cyfU9t3w8QVD+Ll88m/i3EkGtSRzM4G8vLY2xflrgWsQqlUOrVGHUsI8qOC1gKngDxANTU5Z1uUao0OPcvKIp95rneTqg6bID/OwQ2J/24i8ywnj9yk/LDOmeRZ7Y3XeysZocz34eFI0rA3ofwImEUq5fsAgvxEgQ7kPMkPj1lTpX2t2UO/39n1btyY+O+GUJ1UdVRTHW5QIdxE5lPdthuVH2Vfc7JgDE+VM1nBu2oWVX727AGOHuVzDgLJhVRa4wcQ5CcKVPlROw75+WTb2Oicbd4z8UZx40D6KiDpWvBAOC3xw40EhKf64obS7SyuucfDPlcUiF10gHXBGEBMohiBN/kpKQEqKsjnzZv5nINAcoF3n7UbgvyowDPsjafDJElyuVY3LcyY6mFCbrDNw0lOdbiRgLhBfUnVdX545lkBxsqP0/aF8mMdvMpcKyGKHghYgSA/KQ49Z5Sn8sMzbMPnk2cyU708b7qFnvEM90t1uJmApGrInRuUHzfla9J8Saft8257MsINjqQody1gBSLnJ8XhhoIHRgTAqdhtvYRdVuvduFn5SfXqWCJcxX6kO6FOt0pzPMcvQLu/ZWTI77FUrS6YrHAD+RHKj4AVpHXOz9SpU3HKKaegsLAQFRUVuPjii7FJNW0gSRImT56M6upq5ObmYtiwYVi3bl3EPq2trbj99ttRXl6O/Px8jBs3Drt27Uq8NTYgVsEDJ5WfWC9QQF4bwG7okR+l/VTN+XFDWWI3FVsQTkviSNdy025QvNw0icFzqQCl/VQLG052X8RN5EcoPwJm4IY+aycskZ9Fixbh1ltvxdKlSzF//nz4/X6MGjUKjQpG8Oijj+KJJ57As88+i2XLlqGyshIjR47EUUVJkYkTJ2LOnDmYPXs2Fi9ejIaGBowZMwYBJ8uJmUSsggc8S10Dzr1E9cLeAHe8QFM18d+N4X5O3+9kd1zMwI3KT6ormbEIJ0/iFQhETjDZCZqraWQ/1SaPkt0XcUPODw1727w5sg8JCGghrcnPvHnzMGHCBPTr1w8DBw7E9OnT8eOPP2LFihUAiMPy1FNP4d5778Wll16K/v3749VXX0VTUxNmzZoFAKirq8PLL7+Mxx9/HCNGjMCgQYMwc+ZMrFmzBgsWLLC/hRahR36o8tPW5txLLJbjADjnuPBWftzsuKTbTLnT1zzZHRcziOUQpqoKwTOU0g3PsdHY7ZR95didLuGzye6LuMGR7NaNRLi0tAA//sjvPASSAyLnR4G6ujoAQGlo+mLbtm2ora3FqFGjwvtkZ2dj6NChWLJkCQBgxYoVaG9vj9inuroa/fv3D++jRmtrK+rr6yN+nAIlP8pkUUBWfgDn1B+9l4hysU8Wyk+Gqle4Ie8mVcmPG8JVWNtOdsfFDHiqiW4oOuDGkDue6jHAZuzmubgsz2pvyeaLuIH8+HxAr17k8/r1/M5DIDmQ1jk/SkiShDvuuANnnnkm+vfvDwCora0FAHTq1Cli306dOoX/Vltbi6ysLJSUlOjuo8bUqVNRXFwc/unSpUu8px0TegUPsrPllZidIj96L29qH3B+9tDrjV5x2g0OW7qF3LmB9LHK+Uk2x8UMeDqEbiDU6RZCqne/ldUy0035YUV+ktEXcQP5AYDQ5YIqolhAIALBIHD4MPnMu8/ahbjJz2233YbVq1fjjTfeiPqbR+U9S5IU9Z0aRvvcfffdqKurC//s3Lkz3tOOCT3y4/E4X+5a7yUCOO+46L28AXc4bKn68uZZdMANBQ+S0XExA57hX25QftxUwIPnJAbAbuzWsu+GkGWnx5Fk80WUjiTvWXRKftau5XseAu7GkSNyXlhak5/bb78d77//Pj7//HMcc8wx4e8rKysBIMr52LdvX9iRqaysRFtbGw7Tp19jHzWys7NRVFQU8eMU9MgP4Hy5az0CALBTfoxUJ6deYnoLrLKwDbhztjpVY/XVSDbHxSzcqPykq23an/1+5xK7eU4eGSk/qZ5rlYy+yJEj8pIVvMnPgAFku2YN3/MQcDdovk9BQXRKSLLCEvmRJAm33XYb3nnnHSxcuBDdu3eP+Hv37t1RWVmJ+fPnh79ra2vDokWLMGTIEADA4MGDkZmZGbFPTU0N1q5dG96HJ2gpaa0b7HS5a7eEvanhNAkwU2ku3ZQfN5A+p8lPMjouZuHGcMZUVxPNLBXAc/KIZ75mquV5JbMvQkPeCgv5O5JU+Vm/PrIfCQgokWr5PoBF8nPrrbdi5syZmDVrFgoLC1FbW4va2lo0NzcDIDO1EydOxJQpUzBnzhysXbsWEyZMQF5eHq6++moAQHFxMW644Qbceeed+Oyzz7By5Upcc801GDBgAEaMGGF/Cy3CSPlxuty1G0IneL+83UQC3DBbnYq2k9lxMQueeTduqCDoJuWHRbVMI+XH6XtulK+ZqmQ7mX0RN1XN6t4dyM0l/WPrVt5nI+BWuCVHzU5ouLr6eP755wEAw4YNi/h++vTpmDBhAgDgrrvuQnNzM2655RYcPnwYp556Kj799FMUFhaG93/yySfh8/kwfvx4NDc349xzz8WMGTPg1XpzMIYIe9O3zaLMNmtHPBh0Z8hdqjotAHFcZs2ahffeey/suADEGcnNzY1wXHr16oVevXphypQpuo5LWVkZSktLMWnSJNdMoriZgKQq8dKznZlJSIEkpbbyw2PSTGmfJeFNZl/ETbPoXi/Qrx+wfDnJ+6ELnwoIKJH25EeigaoG8Hg8mDx5MiZPnqy7T05ODqZNm4Zp06ZZMc8EZpQfHgUPWL1AeYS98VxjyEyZ2HQreOC0k5zMjotZuJGAuEFN5FG63eMh172lhc/4yTNkOVWrvSWzL+I2R7J/f0J+1qwBLruM99kIuBFuUivtgiXykw4wk/PDo9Q1q9AJt4W9sWq3lm03zNLzVH7oqvRafSIRJLPjYhZuJCBuyGGjRQfUuSlO2qb2W1r4jJ9uCFnmofywLJySTHAb+aFFD0TFNwE9uK3P2gEHXkHJDaH8RP+NJQFhnbDLm/y4ueCB0/ZTGW4kIDzVF5ZFB3gWbXFbyLLz+Xt8Qx2TEW6bRRflrgViwU2hmnZBkB8VRM4Pe9tKx0EvYZen8sPDWXSDQgAI8hMv3ExAeBIvIDWLtvDMmeRJvIwqdQryow23OZJU+dmyBQjVixAQiIBQftIAPJUfN4S9Gb1AedjmWWY7VePlY9n2euX+L8hPfHBz+XQehFo5nvJUfngQL1Y5kzyJl5Z9EfamDbc5kpWVhIgFg8DGjbzPRsCNcFuftQOC/KjAM+fHDeoLj5c3z5h1es09nuiQu9xcsnVyNswNCgGPe57qcOMipzyLaHg8qZ23yFO1d0uxGqH8mIPbHEmPRyx2KmAM2mfLy/meh50Q5EcFM2FvTuf8pFvYG0/lx6jdTit9SvtGjoOJ+gBxgXeJ3FSGGxcapX2KFrJwAm4lAawUEJ4TOG4rViPIjzbcRn4AkfcjYIwDB8jWTX02UQjyo0K6L3LKM+zNbbH6LMiPmRwJqkbaDZ7hMqkONyo/LIsOuO1ZZjWJ4tZiCzzXaBNjSCTcOIsuyI+AEdzYZxOFID8q8Cx44NaEXZ5hbzxDZdyg/ACpmSOR6oiV88NznR8gNZ9lnuNnuo/dgAh7Mws3zqKLsDcBPTQ3yz6vm/psohDkRwWjnJ90LXWdyvHyRte8oIBsWZAftX1l/0vFtUlSHW6s4ufzyXltqfwsu7VoC89iNU5fc62cSUF+oqF0JN00i96vH9nu2gUcOcL1VARcBqr6+HxAURHfc7ETgvyo4NZS125IFuZZKYmn8uP3Oxd6pkc6MzJkAsRzxliQn/hgpuKaU7lcbgifdZv64oaKa6lYMEbkDVqD0pEsLOR7Lkp06AB06UI+i9A3ASWUSqV6KZJkhiA/Kri11HU6FB1wm/JD7zcANDSwt5/KzmKqw0w4I2tCrbSfiqGUbi+2IMZuAepIlpe7z5EUeT8CWkjFfB9AkJ8oUIeEp/LjNkfYDbZ5KD+ZmXI/SOW1ncSsrb0IBmVVh0fejRhHov+Wys+SW6+5ID/RcLMjSfN+Vq/mex4C7oIbc9TsgCA/KlDlx2idHx6lrumaM6lYac4NM5da7QacVfskyR0zxqLam70wSgJXjiupTAKE8sPOtluvuZhAiYabHcmBA8n2u+/4noeAu+Bmwp4IBPlRwa2lrlmF3Gm9xFJZ8eJJfoJB+TNP1Us4LvbCaO0TZS5XKpOAdFMhhNrG3nYyQhn25jb85Cdk+913ke8mgfSGmwl7IhDkRwW3lrp2uvKYmapnTuW9mJmp9vsjnUq7wJP8GK2RAfBVvQT5iR+x7qsbHNJUJF48ybzR5FEqK15mbAeDzi2qm2xw8yx6796krzY2At9/z/tsBNwCN/fZRCDIjwpGOT9KR9iJSk1uICBaLzHabqeT/o1eoIAzL/BY5MdJ0ql0CESlptSBkfIDuIMEpGLInVB+ov/G85or89vEOELg5ll0nw848UTyedUqrqci4CK4uc8mAkF+VDCT8yNJzjriPAlILNXJCdJnxmkBnHmBGtkGnFV+YjnJNM+rudl+28GgHNogqr3Zi1ikNh1IgFtVCB7KT7qqbU6P3ckIN4e9AXLo28qVXE9DwEUQyk+awEzYG+CsM8wz7E3rJUZtS5IzjriRbZ9PJqJOhBuaDXtzgnTGCo9y8p7HIl5C+YkfymurXvgRSO0kdLerEDxDSNNN+fF65e/FOELgdkeSkh+h/AhQ0D4rlJ8UhxH54emI88y7UZI+J+zHUl+cbDvPnB+jqmAAm3br2RbV3uKHknxoreXBM3fQSTURMFexMhVti2uu/Xen7Scb3B5CJMiPgBpuVyvjhSA/Khjl/ABsEuCNHOGWFmcT/7VsZ2Q4W+Y71guUBQnQs83ifmdkaDvJrMiPUH7sRaw+xap6otsqN7qBgKTiNTczceX3yxN7rGwDgvyo4XZH8sQTybuopgbYu5f32Qi4AUL5SRMY5fwAzr7I/C3kDWpU6hpgH3IH8FVfUlX54dluEfbmHHg6hMq1o4ycYacdcZ7Ey8h2uik/StXeyWgFofyYg9sdyfx8UvUNEOv9CBAx4OhR8tmthD1eCPKjglHYG+CgAvLOOwi89Q4A/URl+oJxhATs2K1rG3DYET94BABf5YdHtbfAytUh29pVJBxt91+mhD+LdX7shX8TqRPLQ/kJbtwc/sw8DGrdOvgbyIGZk4ANG+DftlPXtqPE64cf4P9yCQAOpG/vXgReex2AdruzsmRV2fbr3tCAwF+n6NoGBPlRorlZfo+42ZEURQ/SEEePAnfcAfTtC4waBSwh4xkl6xkZQHExx/NzAIL8qBCL/Di20OlXX8EP8ubUepF4PA46w3V1CLw8A0Ds8C9HHPGH/gYA8EE7LsOxdi9bBv8f7ia2eSg/Dz8CAPBK2otgONbu/fvhf/IZAEBGhmSYlC+qvVnEjz8iMO4SAPqk1jGHsKkJ/tPODP/KnAT89KcI7DvIx/aIEQhs+V7XtqNO+NVXI/DdWl3bjrb7T3+Cf9m3ALTHbo/HQfuvvAL/osXEtkd7VUx63cUkiuxI+nxAURHfczGCyPtJMxw5AgwZAjz5JLBhAzB/PjBsGDB/fkSOmpafkMxIseYkjlg5P469SA4dgh/kzcmcgPz4I/w0bCNDO6HIMQWkpQWBfeQJ8/m135COkYD33oO/Zh+xzaHaW4DaztB2HBxr94EDMfuaUH7ixKJF8LeT++kNapN5x8aQ775DoF7uLEbKj+22d+8m5MugXznW7vZ2YM8ePrYB4JtvDG3Ta97e7sBin6tWIUAnzSTt/uYY8du6Vbbdpn1hhfIjQxnyppXj6RYMGkS2gvykASQJ+PnPgbVrgcpK4LXXgHHjyGD1i1/g4HYS8+bWMM1EIMiPCrFyfhxTAg4dkl8krEOw9u+XX96sVYh9+xS2jYmX7bYPHw7b5qL8HKoHoD9r6li7FUTb59VWJ0S1tzixZo38HEP7WXLMEV+5MnxfAWMVwnZnNBQjYzSGOeYIb9kS07Zj1zz0gIRtazxPyrwb29t+8KA8frZpH9yxtm/cKNsOtGnuIsiPDLcXO6Cgys+mTc4trSHgErz+OvDxx+SFP3cucO21wBtvkMSv2loc+PdcAO7vs/FAkB8VzOb8OKn8MM+72bcv5uwhE9s6ziITEsCa/LS2wt9IHCefC8mPUH7ixK5dMScSHHMId+4MP0sAYxKwZw8A8FFfTNh27JrX1kbabo9+YOizBNjcdkkCamvl8bOdMfmpqZFtBwX5iYVkIT+dOgHV1aR7CfUnhdHcDPzpT+Tzn/8ss968POCvfwUAHPzwawBC+Ul5SJL5nB8nlB9uYW9K9SWgTX4ca3eE8sOY/PBUfvbvlx2HGKGGTpAfo5lqQJCfuHHgAD/lp7Y2QvlhSgJqagBwUl9CBMSM+uK47Zboh9Xjcei6Hz4MtLcrlB/GoWd798q2/drJgYL8hOD34+BSolAmgyN58slku3w53/MQcBAvvUTClbt0IcUOlLjsMuC443CgmQycbifs8UCQHwUCAUKAAHcrP4464qyVn717+dnmqfwoQw3BMdxPJ99IkJ84ocyn0sn5cVKFoM9SBgJsF1hVKyA81Zfm6AeGttv2vBu17aajmrs5ct1Vtn2t2gd3xLbfH0n0A9oDhSA/IbzyCg489W8AyeFICvKT4ggEgKefJp/vuSdSngbIAH7ddTgIwtSTgbBbhSA/CigXgWOa8yNJlnJ+nFR+9MIX2OT8MCY/JpQfJoSTY7ifXr6RqPYWJ5QOoc6zxEL50SPUzBQQT7R9ZrYbjkTtQp1wwGZHXE1AmrXJjyMkQN1ulsrP/v2AJAnlxywuvBAHQFhPWbYD1XNshiA/KY6PPgJ++AEoKQF+8Qvtfa65Jtxny/McWpyNIwT5UUBJfpgqP01NQFtbzLA3J0sf0xeoXuIqi5A7n85MeUoqP0rSx1r5UbY7BvkRyo9FKJUfnTBOx0iACULtmDMaSmgIt11DhXCs2ILadkv0w+pY3k2ohFd4/GSZd3P4MADEJCCO2Fa1W2/sPv54YOhQElmT1ujcGQfLyOqh5TVrOJ9MbAweTLabNgH19XzPRcABUNXnV7+KrMiixHHH4WBBNwBA2e7VbM6LIQT5UYAb+VG9xHg64rGUHydscwl7CwaBI0cMZ6oBB0mfS5QfvXaLam9xoKkJaG6OSeYdIyB1dfyUn0OHIAEI0j7dGj1QKMtsS9qpZvEhNH4aJf47tt7NoUMAFGM3S/Jz5AgARbsDDMlPXR0ABfHSmTT7/e+BL74Arr/eRttJigMlIfKzdSnnM4mNigrg2GPJc/rtt7zPRsBWbNgALFxIZtlvvdVw1wOF3QEA5RsXszgzphDkRwG6xo/HE7vogK0kIPQC5Zb7osw/0XmBOpnzI+dIMAy5q68HgsGYpE95v2112CLKixsrP+3tct+0BYcPK0ifNvESyk8cCCkQ8nPMMOzN7wcaGiIJdSC6Xzm2zo8ibBfQVl9ouwOByIkmO2wDxqoT4BDpVI/dGtXeHLOtJiAsbYeIlzx+ivjYWDjg6wQAKNu0xIEFn+zHKaeQrQh9SzH8m+SeYfRownANcDAjFKq55gubHSD+sEx+/vvf/2Ls2LGorq6Gx+PBu+++G/H3CRMmwOPxRPycdtppEfu0trbi9ttvR3l5OfLz8zFu3Djs2rUroYbYgVhr/AB8Zw+ZlJvWmcFLOdtqtU2H9FHyEwjYTECUahuMK+wBNrddqfzoKARFRcAVVwBXXmmj3RBSdgxRh1/FUH5sHUNCsSkRyo+GAUdCzyQpglAD2lXPHFvvRk1ANFQnpX1HQ89YrrWjVn50Fol2UvkJh/v57RwczSHZxpGDtHJW849JIaeIvJ8URDAIzJxJPuvl+ihwoIHMgpYf2QJs3OjkmTGHZfLT2NiIgQMH4tlnn9Xd5/zzz0dNTU345+OPP474+8SJEzFnzhzMnj0bixcvRkNDA8aMGYOAxkwlS8Qqcw04q/zEeoE6EoLV1gYcORIzbpxJ7ksM8nNUO5c4PqgJZwzyA9jcdmXYm46TnJkph585R360ZyBLSoDZs4Hp0220G0LKjiFU+cktBKBP5h0hINQRziYd1ge/Zod1xBFubibrVinLbGsoP1lZ8sr2jkweZZBZq1jKjxO2A9nkwuoVHXA09CybDJCxlB9HbBeUANCv9uYkkm0cOXCAdP5yHAA+/9z249sNQX5SEIsWATt3AsXFwNixhrv6/UBdHemzZThI4ldTCDrZJfoYPXo0Ro8ebbhPdnY2KisrNf9WV1eHl19+Gf/+978xYsQIAMDMmTPRpUsXLFiwAOedd57VU7IHH36I9o0AMMaQ/DBRfnReoI7k3ahDdXRmDx3Lu1EqPzqhEyyUHz3Sl5lJnLa2NnLdS0ttsr9/P/zoSGzrhDkCpO2trfa33Y/uIdvswy9Sdgyhyk9FFbAjdF/9/qgkPkcd4cISoDWk/DREsytlCJQkQbMctmXQZ8mbAyokapWbpnk3jY02Er9QpUwgRH6C2sQLcIh0UttZeeS6s6y4RglvfhHQGjvfyBHbxaVAg/746SSSaRxpaZHf22U4CPzvf7Yd2ynQogfff0+6uW3vPgF+eO01sh0/Prq8tQqhoQ0ej4QS6TCweDFw880OnyA7OJLz88UXX6CiogK9e/fGr371K+zbty/8txUrVqC9vR2jRo0Kf1ddXY3+/ftjyZIlmsdrbW1FfX19xI+tCAaBK65A2x/uAcBP+YlVstQREhC6N7FIgGMEJBBQ2GYY9qYmnH59z8CRe25C+QEcaHswGFniWyfkjjfsHkOYgFbAKiex/Xrqi6M5GAUdZNsanUYZemZbPhe1XSwvBpHZYlzy2Tbi19oajkf1e8jAndnGMOyNks5M0rBMliF31HZIadRTfhy1XUQ8Yh8H8mMGbvFFQkMDvBkSilEHLFsWf6MYoaQE6NGDfF6xgu+5CNiA9naAhoZec03M3UNzeSgpaIcXwZTrBLaTn9GjR+P111/HwoUL8fjjj2PZsmUYPnw4WkMLhtTW1iIrKwslJSUR/9epUyfUhtYtUGPq1KkoLi4O/3Sxu27m0aNAUxPaQV6evHN+9MI2HAl7278fQGzlxxHbKuKlF3pGCUBTk2YOd3xQ5/zoOA6Ac22PlRsCOEB+QoUeYhXX4AknxhCAwSSKUn1BSH1hFXpGbecXAwAy0W5IvGy1Hw6B6gAA8CCoqfwADrQ9ZBseT/h5ymzVtu1o0QEfmUWNtdaOM+SHDBJ6pM/JdgcKOwAITZoFtcvm84KbfBHqSJaVSfBkZJDQI4Oxyi2goW9JwNUEYuHLL8lEVceOwBlnxNw95BqiojJEE1Ks7rnt5OeKK67AhRdeiP79+2Ps2LGYO3cuNm/ejI8++sjw/yRJgkcnBuPuu+9GXV1d+Gfnzp32nnRoIKfkJ9Or72HTl7eTOT8+nZeYI2FvagKio4A4aTvWKuHUNmCj82CyyATggPLT2grU18esNAc4QH7U7TYgXrzgxBgCMJhEoUUHckLOKNo1b5wjjnBIfWnP7wAgpPxoJMn5fLKybZszTMfPwlLZts7DYnsIFn0ZFxaiPRgaR3QWGrWdeAUC4WvcnkGS87QKPShtO6H2tYdyfpjmG6n6WybaXFca0k2+CFV+yjtmACecQH5JAkZBK74lQZSeQCy89x7ZjhmjX85YASqSVlT5gK5dyS8ppP44Xuq6qqoKXbt2xZYtWwAAlZWVaGtrw+HQzDvFvn370KlTJ81jZGdno6ioKOLHVtCBnJKfxiO6u1JH2JGkWUoCdGLWHQn/CtF7udiCMQFpbLRxgm/v3kjb7drKT04OkBHqqba1Xa386DgOgAPkR51nZVAm1vZ7rm63AfFyC+wYQwAGkyghR7w9K+SMwq/pEDpS8lml/OjZVtq3bQyjpC+k/GSiXffgthM/qvwUFcEvkecps42R6qR4KGmxhcx2DgUPMsnBM3UmrhxVnZREv9WdoW8UPH0Rn4+oKAMGAPjpT8mXScAoaHG8r79OuUrH6QVJksnPRReZ+pcw+alAStY9d5z8HDx4EDt37kRVVRUAYPDgwcjMzMT8+fPD+9TU1GDt2rUYMmSI06ejjdBA3obQC6zugG58FZOCBzpx407m/BgtEKi0DdjYdmo7FKuvF3Ln8QCFJKzdOQWEpfJDCacnVJ0q0Kb7ZnFa+dFbW8lNsGsMcXwShZKArJAzinZD8gPY+CzRCZzcIkPbgHMEJEJ10nGEnQp7k4qKEQiS1xmztXYo8crKQrtElXP2a+20+3INbTuiOtF7rqwu6HLyw9MXOftsIvTMng3ZkUwC5WfwYKIU79sHbN/O+2wE4saaNcCOHWQmeeRIU/8SQX5SsPSf5WpvDQ0N2Lp1a/j3bdu2YdWqVSgtLUVpaSkmT56Myy67DFVVVdi+fTvuuecelJeX45JLLgEAFBcX44YbbsCdd96JsrIylJaWYtKkSRgwYEC44gpz0IG8ay9gB5DV3gh8+KEmQ6aOcGsr4Ucm1MPYoA6pJxOQAK9O6IQjifc07C07n1QrMnAcPB7iozc0RJKhhG3nF4cqBumHTRQUkNtkuwKSUwC06BNOwIHrTklfSTlwSDFLr0zICMEx8hOqzKVXjtlJpOQYAsjjSIj86KkvtOSzJBGHtLjYPtv+vEJD24ADzrAq58eIeDkV9kYT7wGGBQ9oyF1xMfwh4sXMtiQp8o1IyF2mn33Ym58SL4P+5hSSdhxRKj+2lVx0Bjk5wKBB5FS//hro3p33GQnEBar6jBwZOftmgFQnP5aVn+XLl2PQoEEYNGgQAOCOO+7AoEGD8Oc//xlerxdr1qzBRRddhN69e+O6665D79698fXXX6OQTt0DePLJJ3HxxRdj/PjxOOOMM5CXl4cPPvgAXluYRBygM2gdSOnhTLQDL72kuasjs7bUEacKiE6yMHWEW1ttDJehBQ+ow6YT/uXxOEgCCshstZH64hgJyAvZNgh7sz3fiSo/pRUA9BekVNq2u92BUtLX9YpMOImUHEMAbeVHYzaclnwG7Fd+/DmFhrYB50gAVZ2MVADHVKdCmfzEKvnsRMhde8BYOXck5C4UfxzON2pv0VSQnS30ECJeBoTXKSTtODJgAJkBOXwY2LbNOTs2gYa+LV3K9zwEEoDFkDdARX5OOon88sMPcg3sJIdl5WfYsGGQDII/P/nkk5jHyMnJwbRp0zBt2jSr5p0BfYEqQ0Z27NDcNSdHnrVtbJTDsRJCVM6PMfkBiO0OHWywTdWXkMOmt8Aqtd/QYKMjTnN+QtddL9+I2gYcUH6ow6ZzzQEHw96KFAniTU1AWVnUro61u7QC2M9nccKUHEMAmQT4jJUfgDikjY0OkICc2MqPU+FfVvKNbLddKFfs0lNxHQt7Ky6G/zCZvdcjP47Z9vnkEt9oI7NiqnKlTuYbtWeEqtxxCHtL2nEkKwvo2xdYtQpYuxY47jh2tuPA6acDzzxDlB+BJMSuXaRQgcdDih2YRAT5oXXPv/8e+PZbgGeEhU1wPOcnKRCaNW3LUZAfnYHc9lnbtrawZxvOw2jSrlaUlSWvl2ibM0yVn0zjUq2AAyWfKfEKrVPBRfkJlYk1Q35sv+b5CkeVsfLjL1EoPy4rUZu0oMpPqOwx0/CvsPITOwHdKQWEhtyZabftxRby5dhBZkUHaNhbURH7sDdKfjp0CNvWIyC2q21+eQ0pv5ef8pPU6N+fbNeu5XseJkCVn1WrbFYPBdjggw/I9rTTAIOCQGpQ8tOxY+iLAQPIdt06+86NIwT5AaJmTbPQZjiLZasSQCvNeDzwxyjVCjgQgkUJSHidCv0DO2U7QAkIS/ITuu6BnFDCrs7aIIBz4X7+POKw8Qh7owtSGtkWsAg6jnhjz4Y75QxHJKAzJiDtORzD3gpk5SejhXGlueJitPtDyg+rdX5CZBfFxWgPKMiPQYEN28uLA2gPFW1JhoIHrkISkZ+uXYHKSsJ5U6jScfogjpA3QKX8AEC/fmQryE8KIew4mCvbaavzEHJGgx0UMetN+gtJ2eoMt7SE16mgM3jeVoYEhIa9hRw2b3uzrgphq22l2pYVchZ18qwA58LeAsrkdJ2DO0Z+QmFCPvhtLh+YppAkS8qP7WFQVPkJ9WemttWLbbJUvKIWd22Dp82YcNoeelZUBH+AkJ9Yyo/ttjt0gD9EvPTeW8r3lS3liqntvDxZ8RLKjzUkEfnxeEjoGyBC35IO9fXAwoXkswXy09Ymz6+EyQ/ts4L8pBBUi8XxID80DAkwJj+2hmDRJXx9PgQyQsUWDKqe2eqINzeHiVcgO3aOhK22Fes6+DND1YoM1DbHcn5CIUpMlR9llTsI8mMbmpvD5fFpEjhT9SVcaS526WHnVCdFn2Kl/FDVKY/f+kYRyo/O+OlUgQsUF4eL3+i1XVlE0hZ+YsG2gA6oI7lxo43Vi5yDKHqQpPjkE9K/evcG+vQx/W8K11DOLVcqPymw6JMgP4C8zk+mYtaUVdgbJT8dysNf6eX8ADaHntEeXlEBv0S6gldngVXAIeKVlSWrTqxIACU/HTrA7wmtz9F8NOZaO7YrP7kKZ5F1tbcchZMsyE/ioI6wx4N2ul6YwThiKwmQJFn5CZF5puv8UMUrh7/ywyPkDsXF8PvJR1+wFeFfWNju0CFsTq+/KcmPLdfdgm0BHRx7LBnc29uB0KKrboZS+UkBvzd9QEPexo2z9G/KfB+6wDx69yZru9TVAXv22HeOnCDIDyDPXIZWyg7n/Og85Y4rP411urvb6gwrenh4gcDWBjYkQBFQGgiGZk1ZkQBaqrG0VC4yIbXrHtyxnB8eyg/tb8q1aAT5SRyU/BQWhkOgmFU9a24OO9x0DDOj/NhNQNqzYis/jqlOJhZ3dSr3JVhQBEkyF3pmd5ijGfUlM5P8ADZdd2Wuk1B+4oPHI8+kJ0Ho2+DBRAWoqRGLnSYN2tuBjz4inxPN9wGA7GygVy/yOQVC3wT5AeSwN+X6HMGg5gwe4IzyE+gglzk2Ij+2qi+KHu4PERAvAmxCz0L5PqioCF9m5spPSUlkpaR67XBDW+93W5s8W60M92Md9pZFpoO9CAjyYwcsOoS2kgDqCGdkwJ+hUJ1YV1yLsbgr4LzqxCXUML9D+Cs94udY3o1CdTKjNNpCvhTEK8K2ID/WkER5P3l5hAABwJdf8j0XAZNYvJg8q+XlsnRnEprkB0ipogeC/ADyS8ynCBkB2MxeqqpvAYC3IbbyY2vYW8eOptQXR4hXp05yyAgP5cevaHed9nW3td0HDpCt14sAzTdi1e7m5rD3488Uyo+tUJY9NuGM0jHEludYK/eEFQFpbQ23kRYu4bHAakSZbcb5Rv6CDuGv9EgAtS1JNkWHKe55xPgZg/jZ3t+URF+EvVlDEpEfADj7bLIV5CdJQEPexowh4WoWoEt+kqzPGkGQH0DO+ckwR34cyfkJLXiZgQA8jfrOqCNhbxUVkSQghiNue9gbyRMnKoTO1KRjyo/ScWCh/FDCWVYWDo/yIsCm2httt9cbVggE+bEJCvJjRvmx9VnSIF5GzqitfUpZ9tinIPM67bY9hJQWPMiOvbir7bl7qmILYfsa15222zb7Gv3NiPg53d+E8hMH6Cz6+vV8z8MkKPn573/5noeACUhS3CWuAaH8pAfa28POPl2fI4ul8kPXmykm5McHf0TlKDVsdVwUyg/z0LMI4kU+miFeR/VrQZhHhPKjsB1D+XGK9Jlpt0GXMA/a7pKSSKVPkJ/EYdEhtLU/a4TcmbFtK/nJzzdV9riw0EbbwaBcql8Z9ub3az4stoeQaiywqke+fD4gJ8dG+3qEl+U9F8pPYjj+eLL9/nvdEHs34YwzSKrS5s1AbS3vsxEwxNq1JDkrJwcYOdLyv+uSn759yXbDhqSvfCHIj8Lhbc8IrVbtC91UFiErWuuuGBzcqZwfK4643cSLuW095YcF+YmTcNpin7ZbTfoE+Ukcejk/OmOIrSTAovLjlG0z7bb1OW6Qi7O0K9c3AjTtU9ttbeQnYdDcvTxSbCEDAWRAP67N1rZb7G+OkG2h/CSGY44h8ZB+f1JUESgpAQYMIJ8XL+Z7LgIxQFWfkSMjZWeT0CU/PXsSBlxfL++UpBDkhyZvFhSEV8rO9IUW2owR9mZrzk+I/HgRYgI6b0jHSl2bcMRtJV4a6gsz1UlP+dEJe1Ne84QnOzTIjxHpy86Ww3UTbrteuwX5SRxxKj9OkR9mtvUS71m22+eLDOMEDMkPYG/4V3uOIuQOYKP2uay/iWpvcSAjQ66etXkz33MxCRH6liSIs8Q1hS75yc4GunUjn5Okz+pBkB/Fy5vOBmZ6Qx4ui6pBauXHY4782Kq+lJdbUl9scRwU6kuyKD+BgA0zxgr1xUy7PR4b264Ie4sgnIL8JI44c34cVV942o6hOtlKABSFHsLKj07J5+xsm+y3tYVt+HNDxRY8+sQLYKS4sQg3tJhvJGCA3r3JdtMmvudhEmedRbaC/LgYu3cDy5cT52Hs2LgOQcMaO3XS+CPts0mwPpURBPnRCB/IyjSn/Nha6jqfhE7EIj+2qi8aYVDMy00ngfKjVI0Ttk+VRsUCgUbtVtoXyo+LYbHaGxP1hUUIVJwKhC2hZxrhVz6P8dht23VXXDwache2zVJx49HfhPJjH6gjmSSz6JT8rF4tv8oEXIYPPiDb007TYS/GCAZl8lNVpbFDkvVZPQjyo3BGw7NYvtDfnC54EAjIK7OHyqV66Qs0RvWvhIlXICC/QN2kvpiwnXDomZ7qpKP8+HxAFomqSfy6K/pbhG2DA9t23fVUJ0F+EofFdX6cIiDcVAB1uwMBzSRuW6ueaTnhGYwICL3feXnwezJDtkMPldMERJLkBVYLi8PjITO1T6/AhlB+rCPJHMmqKpL2IUnAV1/xPhsBTSQY8nbgABm6PZ4Yyk+S9Fk9CPKjNZCHVsN2XPmpqwt78jRpNvzydjrsTWE7WFwSfoGayflJuN2SFFl5zEKpa0myYaE+i9XeABvbHofyY3vYm1B+7IfLcjDMqgAJTyRoqS8GeTdZWfJEQsJt1wq/YkVAtK45te30PW9tBW1we25R+Gueap9QfuIErfiWJGFvgJz3s2gR3/MQ0MDRo8DCheRzHCWuAaCmhmzLyxW+sBJJlqemB0F+tHJ+YpAf25Qf6owWFCCQQWcPQ96I02FvVAXIzw8nCwOMlJ/mZjnmxaTyQ695wvYlyfI6P4Cz5Meo3YCzOT+C/NiEOHNfHK38FcMJ9/ttCD3TI16A83k/Wgt9es0pP7bZVt5vkyF3ttmGXOIb4JvnJaq9xQk6i757d9KMw8OGkS31sQVchE8+IYN6r15Anz5xHYKSH82QN0Dus1u32rD+Bj8I8qMR9kZnJh1XfrRm4r3mlB/byh4rlBeA0Zoz1LbPR4ifiZC7jAybiF9jY3jWlLfyY6bdgLPKjyh4YBPcqPzEWGgUcIoEMFJAFKqTrPwYExDbSKfWNfcat9s227TdhYXhCqWAsfJjm21FyJ3Z0uoCBigtBcrKyOetW/mei0mcey7Zfvut/EoRcAmUC5t6PHEdgpKf6mqdHY49ljjJra3Azp1x2XADBPmJI+zNduVH6YyGyho7HvamoQIA5sLegARJgIJ4weNhG/5FbWdmknh9k+THNtKZQNibWOfHxYhz0cnGRpJgapftKNVJI67N1gU3NdSXWNUynQw987GyraW2xSBetrdbcc0BRspPc7Ocy2VyUV2BGKChb0kSRlRdDZxwAhlaPv+c99kIhNHeDnz0EfkcZ74PAOzZQ7a6yo/XSxK/gKTps1oQ5Ie+xJQFD7JCjNnpUteayk/ob06TnziUn5wcosAACTriCuIFgK0CorjmSuLFI+yNm/KjLvQgyE/isJgEbmsOm1HomU5cm+0qhJJ4xVgk2gkSwM12hPLDqNiChm2PR2KzwCq17fGQkGmh/CSOJCt3DQAjRpDtZ5/xPQ8BBb76ivh15eXAkCFxHyZm2BuQEkUPBPmhzqgy54eSH6fD3rSqjvnM5fy0tycYr6+hAgDGKoRta84olR+Aj/JTQoo8RBRbMBH2lpDtYFB2HtRr7bCo9iYKHjgDo1AgHUc4N1eOSkg49Ewv5wfgQwJotcwY4V92htzxVJ3C19zLnnhFFXpgmOsEj8dUjplADCShI0lD3xYs4HseAgrQkLcxYxQhRNYhyE+6QGudn2xj8qNUfhKqlqQV9uYz9oicCD1TKj8ZCLIjIKWlABA5U25g25bZasU1j1K8DKbgbSG89fVyhykujlZ+dDqTLddcWdpci/wkXPYrjaFMgjOZBG5bDhugT7wAdiSAh/qiVWkuhm0niVeskDvbbGu1mwPxAhCpNAryEx+S0JEcNoyMYVu2JHXaR+pAkhIucU0hyE+6QCvsLTt0WWIoP8Fggkq/VtWxGLOmtpWKVYRAhRUvbwAewPkFNxXtVl7DXDQbEhC7lR+z8fKATeSHqoy5uUB2dqTyEwzqSnm2tFtR2jxKdQoERMhKIqBjiFYoUEuLLrG0hcyrVKeotcoYKgHyGGYcNuyoAuJjrPwoc504hNyF2x0j5M72MMfiYgAQYW92QFnuOkkmoYqLgVNOIZ9F6JsLsGYNsG0byU0YNSqhQwnyky5QhL2ZJT/KsssJ5f1ohb1RtdKEI26X+kLbkJcVepM5nXyvIF7KZuaimWnOTxT5aWvTzT63lfx06AAA0bP0TpYYV5RVR2ZmtG0R+hY/FDPxyMiIVH4kSXOxT8Cm+6pU7ZQEJNNYvXZSfQkXjOFAQGJNHjlZaS7W2O1ouzkoP8qwYbHIaQLo0YNMnNTVAfv38z4b0xChby7Cu++S7ahRkeFBFiFJcsED3WpvgEx+tm9P2udekB+tdX5ikB+fT1Zf7CIBstMS+psB+bGFgCiIFxVbcrODMQ9st/qiFHqYkB8j5QeI6TzYSX7kKlEhx4UF+QmFGobJdpbXhoOnORTqMaBBap10SKkz6vMBubnRBIRhyWc57M2cbUfKbMew7WyuE0flx4LthMQFjXYDQvlJCLm5pHwwkLRFD5JEsEpdzJlDthdfnNBhDh+WA1AqKw12rKggk32SBHz/fUI2eSG9yY8kaa/zkxO6LAYExJaKbxpFB7xe45ARwGZnuKREVn5yQuSHVdibQnXK9AXhZZFvZKT8AM4WuaDtDjnJlPjFuu5O5FmFHfQcnw0HT3OoQoEilB/A2UUv9RLQWSg/ra3ym1IZ/hWDeDFRnVxM+hzJdaKqk4nqggm9szTaDQjlJ2HQmfQtW/iehwWcfjrhbbW1wNq1vM8mjbF9O7BqFUnCGjs2oUPRkLeSEnk5BE14PGQhVSCpCLsS6U1+9NYsyAm9SQwGc1udYYvKj90EJKz85BgrEICDqpMF23YrPx6PhAy6HliMhSETsq1SfsJtzw21Xeei2k12AQX5yc204eBpDt08iJC8xkL5USegmyQgthCv0AGZEi+l/QgCYs62M7lO4GY7M9NY+VGGatvV34TyYyOoI5lE5CcnBxg+nHz++GO+55LWoIUOzjqLlLlOAKbyfSiSkLArkd7khzotGRkRL28z5MdW5UeZ8xPDcQCcIyB51AlnqDpF2TZBfhJyHrTKPfs88jRHDPJjZ9ibrLiF2q5T7MGJsLew0phrR/WMNIee8hOjZL5thSw0bPuyjEN3bbVdUAB4vbIjHqPdtiggwaA8EChVp1B3ZqY6xal42RJ6FlFhz9h26BUXth83NKqjAiHlp73dhhV70xRJmkB+wQVkK8gPR9CQt0suSfhQlshPEhJ2JdKb/CiKHcDjkXN+ckNvEqfJj0bOj9cXO+TOqbC3XCpzOm1bS/nJVYT76bxA7bYtr60ELuQnSvVyMlFah/z48oTykzCU4wgU1zbbeBLFFhKgp/ywICAKJxywTrwSmsRQnjiPQg9aqpNJ235/gmu0aZb4hqFtpX0nlJ8MhMbshBqWxkhSR3L0aLL96it5GBRgiAMHgC+/JJ8vuijhw9FiB4L8pDp0Zk2z8mKTn4Sd4dZW2ftVqhBZDHJ+2tvlf1aGvdHQCB4hd4qwDEdLPmsqPwCys8kvTub86Co/DFaG18v5EcpP4tBTfmIUTnEi7C2KgDjZp3SIFxPVidrOzASysxUExNi2Ezk/ZpUfZREmu657uK/FsA3Yf89l2xJo1LAIfYsTVPnZujWp1LPu3YETTiAFdObP5302aYgPPiD9ZdAgoFu3hA+3ezfZdu5sYmdBfpIYqipN4cGchfJDnVGPBygqUoS9xVZ+EiYgyimaDh1kJzzPPPGKmwRIkmbYW26eR96HBQlQr63EWPmRJGXODwxt2xIuo8r5Cfe3PDvKFqY5FOOIsrJ1LOXH9oIHUCg/JomXnba5hft5PKYVL1tst7XJz6oF5SdUkC9x+1r5RhbCpe2651GqUwz7Agbo1o1cyOZm2QNNEojQN46gJa4TrPJG8eOPZEuLDxqCkp89e5LSf0hv8qMKV7FCfhJ2hpWVvzIy4lJ+4rZNHeGiIsDrlZ3wfAYhdw0NsuetDLnL85DAdAP7CdsOBOR7rlZ+YpAfu0tdK83kxVDcqO1gMIFF1HXD3oTykzAUjrhy0paJ8qOX88PStkXlx4lwP1nxMkd+2toSiNBSFnpQkgALY7ddBERWXxhVCdXI+cnM9MjSkyA/8cHnIzIKkHQz6ZT8zJ2bVKJV8qOxEfj0U/LZJvKzcyfZduliYufS0rA/ga1bbbHPEpbJz3//+1+MHTsW1dXV8Hg8eJcyzxAkScLkyZNRXV2N3NxcDBs2DOvWrYvYp7W1FbfffjvKy8uRn5+PcePGYdeuXQk1JC4oBnJJ0iA/Tpa6VigQgCIB3YTyk/BLTGU7rPwUhGy3t8sERYWEVSdqOysLyM2NzPkxSUDitk3vN8Bd+YlY3ygG6bSlUpNewYOcTEPbTiClxhBANwncrPLjSM4PS9uqXCceqpOs/JibQAESaDu1nZcH+HzRtp0MPZMkzWILZpQfu0mnlbBhJ5By40iSFj0480zSr/fuBVau5H02aYS5c8k4d9xxwIABthzSkvIDJHXom2Xy09jYiIEDB+LZZ5/V/Pujjz6KJ554As8++yyWLVuGyspKjBw5EkcVb7qJEydizpw5mD17NhYvXoyGhgaMGTMGAR2H2zEowlWUyZtZ+bFnsRJ2hvVKD9NFJ50Me1Plf4QJSIGiOzi12KeSeHk8kaFflIA4VfWMXvOCAiAzU5v8xIjXt6vUdXh9o0yF+qJzz71emQDZdc+jSl3rXHMnkFJjCKDpjAKxq0ZSZ1QpJFiGngJi0rYTYW9Wwv3iDuOMletkEHpGH/W42x6n6gTYQPxaWuSHV5lvRG0bVFxzTnUCF/KTcuNIkjqSWVnygqcffcT3XNIK//kP2f7sZyR9IkE0N5P6CUB6kB9f7F0iMXr0aIymJT5UkCQJTz31FO69915ceumlAIBXX30VnTp1wqxZs3DTTTehrq4OL7/8Mv79739jROiJmTlzJrp06YIFCxbgvPPOS6A5FqEIe4so25kXm/zYpvyEnNFwDka2eeXHFgIChfJTqOgOLS2RkoPKtl0KRLjUdR6cV3501LaImUsTyo8kxTnWaCg/Ee02ICAFBeQ+JXzd1W2ni5wyJD8pNYYAcSs/oVTDCEEyEduAMt/IOHQ3tLs9ti3mG1Hbfj953MI5b/HYtlhhj55uS0sCpDOW6mRgm7Y9YdtA5NpKWYoBqa1Nc4VCW+65UvkJDRk+HwAve/KTcuNIEjuSY8aQ9JN33wX+/GfeZ5MGaGwEPvyQfB4/3pZD0pC3/Hz53RQTSdxnbc352bZtG2prazFq1Kjwd9nZ2Rg6dCiWLFkCAFixYgXa29sj9qmurkb//v3D+6jR2tqK+vr6iB9boLdmQX4WNaz7r86FvYVe3m1tzpV8VjnCETk/NHuVEQHRVH6cSvzXC/3yxrZNyU8wmMD7nZIfZa6TiXYDCV53ZZEJNdmmqhND8mMEp8YQR6GYRIlY+DGHAQHRKzoQQ/mx1XZUvpGxel1QIKf3xW0/zkIPitO1zbZZxctW24WFEbmi4XYb2E/Ytk7IHS/lxwhJ54sASRv2BgDjxpFneuVKYPt23meTBvjwQ/LO7tEDOOkkWw5Jyc+xx1qY3BXkh6C2thYA0KlTp4jvO3XqFP5bbW0tsrKyUBJyfrX2UWPq1KkoLi4O/3QxlY1lAoqZeGXyqxnyY1vBA/VMPH2BGth3KuzNjPpim+0EyE/c62QYKT8m2w3Eec8DAdlxiaiwF9s2kCD5aW6WL5he2BvDnB8jODWGAAwmUTp0CDvCXi/gyTF2COnsWkLrY+gVHTCpOjU3J+Cv6ik/MYiXxyM74nG3nf6jxXA/wIbrrruuU2zilbBt1TWPKvFtYD9h283N8qxJYWHkAqsuIz9J54sAsiP5ww+ImEVJAnTsSHJ/ALkAmYCDoCFv48fbEvIGyPk+lrq0ID+R8KhuhiRJUd+pYbTP3Xffjbq6uvDPTkpRE4WG8uP1Ahm5sQfyhJUflfpCTWXnK8iPU5XHdMLerBAQu2xHkB8a/2KCgMRFAvQqnpkgPz6f/H6Pq+1KR7u42BLpAxIkP7TdPl/4IkZVe3OJ8kNh9xgCOOS4JDAbbgv5UT1PZitWhnxnAAkoATq2mRIQ1URGrEIPttjWmUThadtnouKabba9XqCgwNXKD0XS+CIA8Tqzs8mDRD3RJMIll5DtnDl8zyPlcfSoXFf8iitsO6xS+TENSn727k0weZU9bCU/lZWVABA1a7Jv377wDExlZSXa2tpwmA6kGvuokZ2djaKioogfW6AxYxsxkJsoOpAwCQg54tSpLSjMcL7ks07YG5O8GxUBsUK8lMnKcdk3k/PjlNpHbeflAVlZbJUf5TUPvdTDIX+57iI/To0hgEOOS1OTPBuumEQx06eo+qEU5ixD0aeDQTkcNFbIndcrEyDbHfEY+UaA/SRAJl4cbXMgPxHvrRhFW2y17fG4WvlJOl8EIO/9nj3J5yQMfaPVlhcvBvbv53oqqY0PPiC+Qu/ewIkn2nZYy5XeAPIS69iRfE6ycte2kp/u3bujsrIS8xVL/ba1tWHRokUYMmQIAGDw4MHIzMyM2KempgZr164N78MMGgUPzM5i2Z3zI5MfBiWfVcQrHuWntTVOZT6BsDelfdbKD5BgyJ8ixBLg225A0fb8UF93CflxcgxxxHGhEyheL5Cfb2k2PGH1RZI0F+0FzK1V5pgjbqJgjGMKCEcCErYdCOguFeBYu00QkIQLbOgpXi5UfpLOF6FI4jCibt2AQYNIXuz77/M+mxTGm2+S7RVX2BbyBsQZ9gYkbZ+1XO2toaEBWxUMb9u2bVi1ahVKS0tx7LHHYuLEiZgyZQp69eqFXr16YcqUKcjLy8PVV18NACguLsYNN9yAO++8E2VlZSgtLcWkSZMwYMCAcMUVZlCEq9CZV7MDud05P2HyUwDiDDc1uTLvRp37QmevE7VtperZgQMOKD8WyE9c91xFfpgqPyqyK0lyLQ1fPnvlJyXHkKIiy7PhPh/JWz96lHQPOoFmGk1Nsuetyls0k8vVoQN54dnlDFP7WbnmE//tIgHUdnYeP/ITtk3ta1TLdFT5Mak02k76OCk/KTWOUNCiB0nmSFJccgkpejBnDnDDDbzPJgVRVwfMm0c+21TljSKusDeAkJ8lS5Kuz1omP8uXL8c555wT/v2OO+4AAFx33XWYMWMG7rrrLjQ3N+OWW27B4cOHceqpp+LTTz9FIV1YAsCTTz4Jn8+H8ePHo7m5Geeeey5mzJgBr9cbZc9RKMPeQr5fVhYiB3KdusZ25/xQhzo/H5bybuIqu6yybcURz8oiLzu/nzjidpGfZFJ+7CA/VnKdAJvaHbrmyklpX37sdtuNlBxDVBXPzE6idOggkx/LUOVgtCmid8yQgIScYZXqBCjITx571YmaMmPbbhIQZZt+qUF+HCN92XA+x0yH/ES9MxkhpcYRCjqLnoRhbwAhP3/+MzB/PkkBsTMqUADAe++Rh75vX6B/f9sOK0lC+YmJYcOGQTKoM+zxeDB58mRMnjxZd5+cnBxMmzYN06ZNs2rePgSDEaVa20MfI2KnATLCZ2VF/btjOT9U+QFMVz2j7514bVshIB4PsX/kiD0EhCn5Ub28w+WeWeT8mFF+YihegL2kD+AT9pYyYwgQMYECWHNGAeIM79wZp/qiysGgtjMyFIUsnCIgStVJTX5MLBJtdwhWPMQrbtuqYgth2zkZZICUJGahZ2HiZYKAKO93XJNmetecE/lJqXGEIkkdSYp+/YDjjwc2bSJV337xC95nlGJ44w2ytVn1OXxY9kmOOcbiPydpn3Wk2ltSQLm8uF7OD6A7mDuW82OC/CRc9cxM6JlTuS9C+QHgjnYDgDfPXTk/SQdV2eMIZzRGAjqQIAFJ0Bm1xXYo10lpPzufvfITtl1gLtzPEds5Hubqi5V7Tm23t8cp9CZAvARMgoa9bd+eQBUUfvB4gKuuIp+pny5gE2pqgE8/JZ9//nNbD71jB9lWVMSx6LQgP0kGOvWWnQ3k5Gjn/ADOkB/l4hpxkJ+Eyi63tMiObhylrsPnGI9twLjMttPhXwnm/CTUbhfl/EQoPwWxVScBA6iIpaYz6pQjnqAzapttjycix9+K8hOXbY3xM0r5aW/XXSTaNgKiUvvM3HPHiJcJpVG5uCwPsi1gApWV5EYFg2S9nyQEJT/z54uqb7bijTdIvzj9dLkqoE34/nuyPe64OP6ZnsuBAwmu28AW6Ut+VDO2EfHLGRkhjxgx1ZeECIDXSzKeYS3nB0jAGaa2MzLCAblWlZ+4bQeDUSEjblBA0kb5URHOjAxBfhKGDvkxG/aWUBiUXvgVR9UJYEB+lGNY6MGICrlTn5RdtpX2Ewg9q6/XLQhnDNU9t2I74cVldUif2b4uYAIej+xMJtlMOkXv3sDgwaR/v/UW77NJIbz2Gtk6EEtIyU+PHnH8c2EhIe1AUvXZ9CU/RonKQMzBnCo/ra1xvMSow9ShQzjw2oryAyQQeqZ8gWVkQJJ0HHEn8k/q6+XZ2ASqvQEkatESNBQvnqWuua3zA2DPHvJrVRWQkR9bbRMwAL22ZWUArKsvtjijcagAgDPECwCyCkL5RgZ9yjYnPCRlhK87ta38UoWEyE97uzz7EYcCoiwQE9eagG4IdRRhb84iySu+ASL0zXasXg189x152GzO9wHkJXriFpSSMPQtfcmPyhm1Sn6UeTeWQ980Sg9rkh+DF0ncIViqF5jSP3E854fazs0N27GqgNBCPXYoXkwXOXWD8qMiP9XVkEMNm5vlHDgB8zAT9ubSnB8niBegICCM2q20H875MbCvbLflLq9cEDMOBSQrS37k7FRfrPa3hAtsxGFbwCSSvOIbIC9Bs3ixXEVMIAH8+99kO2ZMxHp9diEh5QcQ5CepoFJ+InJ+gJgEJCdHLgJH/R/T0CAg9CXseNibTggUwCDnR8NpYUYCNGaL4835saw6Ae7I+Qld9927ya+dOytsA8JxiQc8w97ckvODyPHTk8NWdVLaz8rJkAfmGMqP35/AxFVREQlbBkMCohE27IZ7LsLebEYKKD/HHAOcdRb5PHs233NJegQCwOuvk88Olc8T5CedoCpRG5HzA5iKn66qIp/pTLpp6FR6Axg4wzplrjMzrZOAuG3zID8qJxWwTn46dSLb2lqLtgFj8sNqnR8j5QcQeT/x4OBBsg1dWzeEvblGdWpr05VWnFJ+zLQ9Pz/MW6wTEA3bzCr81dfL19OIgDgdbijC3pxFCig/gFyQ7NVXRVBBQpg3j1R6KysDRo+2/fCtrfICp3GTH0rYN22y5ZxYIH3Jj07BA7Nhb0Bo5hzyTLppqNQX6tDm5YVeyiZeYgmHnmkVHACcDXtTOeGBgHx5Ha/2puG0UPLj9cJUu2n9+127LNoGzIW9OZFn5ffLyQWh6x6h/GRmyiWgBPmxDheGvVlVnWx3hJVqYoyiA8rCbfHaDgTkVEKzif9xtz1B4gXYYDsnJ3yN3dDfBPmxGZT87NqVwFoa/HHFFeT9tn498L//8T6bJMZLL5HtL36hueZkoti+nZDTggJS6jounHAC2W7alDRMN33Jj9mCBwbOcNzkx2iBU8DZ0DOdsDcr5MeJfCPuyo+Jlzdd+Tgu8qNT4ttxpU/p5YQ8nwjlx+MxRToFdKAqeOAaAuKG/A8D+0VF8iKbiaovShOOX3ejfCMLC9vabdvxe25QXlyEvdmMsjL5HtN4pCREcTHws5+Rz6+8wvdckhY1NcCHH5LPv/qVIyZosYMePeJY+JiiRw8yi3z0aByhUHwgyI8qcZSJ8qN6iUWUuQZMOcN0bLRcR18n7I1WrzNjO1QvICL315JtleoEMMz5UTgO1G8tLjZnmyo/Bw5Y5Al+v3zCRspPIBC5CI8CtN1tbRbXvqONLCoKl2+PUH4AU8qTgAYkKYpUu46AmFhjqKFBt9tZtp2djcjZSZ22Z2TIxUsSJQERxRacDjeMFfbGmHgxs03/QXHjRNibQ/B4Uib07Ze/JNs33khqEYsfpk8nfsEZZ8jqis1ION8HIIMALRW3YUPC58QC6Ut+jNb5AZiSn3iUn2OPJVsaqxmv7XiUH6qAJGqb+tpZWarQMyfCvzSUH3r+XbrAVLs7dJBJoqV7rvRsQ/1NU/kxsK+sLmip7RrtjiI/yopvAubR2CgPHAmGvVmeSFD+U4LV3oAEHHGtqmMZGfIsEgMSoCQ/EYtUO3HdjYotsCIgNqhOcU9cKQrGiLA3B5GEORRaOPtssnDm0aPA22/zPpskQzAI/Otf5LNDqg9gE/kBgD59yHbjxgQPxAbpS34SXOcHkJ1HyyqfTs5PPOTHchlJle14lJ+EbatUJyvEi6pOiVbYA6yTH48nzrwf6rTk54c7WETblWFCOvazsuSZ8n37LNjWuOb0UlRXQ3ESEOTHKmixg+zs8DW06oyGouVw9GjiuS+attvb5YQYFXw++56nCBUgfBIwbBTl43Hb1lDtPR6YUr2o7UTVa6V9syQg4XYnYJv2Nztti7A3B0Bn+ZNkFl0PGRnA9deTzy+/zPdckg4LFwLbtpFBmsYPOgBKfuJe44dCkJ8kgU61N7OlrgHZeeSp/FgmIKqwt3iUH6XqpONXGdtOoNgCVZ1qa+MM/1IoIPTadekC0y/vhMgPnfKFSvnxeuWOZ9D2rl3JdscOC7ZV95sS9bw8xcy/ID/xQdmnQsHS8YQh0cpjlEuZQlNTVA6Gpm3A8EEpLydby+Gzqip3EU44YKrtCdvWyrNiZVsxjlglAXbattrf4ratmjSLx7aABfTtS7br1/M9Dxtw3XVkeFy0KGn8YnfgxRfJ9uc/jwz9sBm0OnXCyk+SEfb0JT+qsLdEc34sFbhQOaTx5PxQArJrFwkJtWw7AeWnuprM6LS1WVQhYoXcmUi8r6ggpyhJFsPuVLb9fpJLCISuJW13W5sho7OL/MRD/OIiPyqnRVnsIJzcKAoexAdVsQPA+kx8Rob875YcUrqzQhK0WnQAADp2jMN2MCg74qHyQPGQn7hsK/8hdIB4VCe7bAcC8vhrNuTOLtuA9f7G07aABVDys2GDxRlG96FLF2DsWPL5uef4nkvSYOdOYM4c8vk3v3HMTGurrPwknFIklJ8kQYLr/AAy+WlqspiwbIPyU1VFZozb24G9ey3YtqHaW2amrHol4ojHQwA8ngRJgEIBCQZJWyoqEJl3Y3DP7SA/waDcRCuk0452R+X7KG0L5ccaNNTEeBxC6k8eOGDBNp116NgxSnWKUCBi2I/L9uHDsscfkhJotw0/RiZCz+KyDUQ54rq27W63hm2liYgQVgbtVtrPzoapaAWlbUsTdoL8sMVxx5Fr2txMahEnOW67jWxnzIhzkfB0wwsvkDF22DDgxBMdM7NpEzHToYO8bmXcoORnz544K/iwRfqSH7Pr/Bi8xHJz5SgA06FvkmQL+fH5ZAfWdOib0nYC1d4A2RG3FHanY9sK+VHatvROUF1zqhodc0wof9dE0QG6v/L/TUFFfqJKfCs/MCI/4XwfpW1BfqxBg/xEOOImnFEgzlAkDWeU2s7NBSFEdCbH7jAounNxcdhGPAQkLtvt7fLzlAD5iTv8S4d4hc0ytK20H0G8TNhubbVYOMXAdk6OOdsCFuDzAccfTz6nQOjbueeS5hw9Cvz737zPxuVoaQH++U/y+fbbHTVFu1bfvgmUuaYoLpYZVBIU6khP8tPWJjt6CRQ8AOKo+KasEJUA+QHiyPtpaoqyHS8BiSvnyIaQOwDo1o1sEyEBEcUOAPKyoYt92r3QqYr8KEt+Rl13AwJiB+mjYW8Ryo8gP/FBIwdDs5CF328YuhJXKBLdWbEqXSIKiF3Ey3HbVC7JyAhf9yjbFhQQu8iPz2d+vTCl7UTVF6sEJD9fftxtveeC/NiPFMr7ycgAbr2VfH722aRZB5MPZs8m41yXLsC4cY6aWreObPv1s+mAVP1Jgj6bnuSHMpWsrITW+QHiqPhGndHMzHCSTzw5P0AcBITa9vnCxiIS7520HQjIUmgs4hUIyCRNA5YVEA21LYr8eDym7rkd5CeqxDfAN+xNkJ/4EEv5cTL0zGYCknS2y8rCkxXMbLe0yDNVNqhO7e1Afb0F+zYRkITCLBVkW3OtMkF+7EMKkR+AFD4oKCBpTAsX8j4bl0KSgGeeIZ9vvTW8Np9TUCo/tqB/f7Jdu9amAzqH9CQ/27aRbffu4RdoVM6PycHccsU3pRMe0hmZKT8a1amYKT/KRS1ikZ8Y9i2TgKNH5RyFkKMaUemNwsJCp3v3Wqg2p6P8hAmnSdu03Xv2GHLDSGjkOgGqsDeT91xABeqMUm8W8ZEfu8Le6PPkePiXGfJjYvx0zLaFdh84YCGfnNrOzAxHDMRzzfPy5Gc/EdKpnCOyQn4cue5C+bEf1COl0/NJjqIi4Be/IJ+feILvubgW//0vsHIleahuvNFxc7Rr2UZ+Bgwg2zVrbDqgcxDkJwRmYW8a6yUwIz8atuMpeJCQ7YKC8EXWtR3DPg17Mx3+RQmAYj0WqvzQdkTYN7BdXi4TZNNqHw2PUpGfcLtN2u7UiTQhGLSgPKnyrITyYyNopZFOncJfRRD68GAC14ee2aX8hPu0y0PuKAEIBCwsNqoku6HJo3hIHxBH25ua5IFDI98oHuVHkB+Xg8YipUDFN4qJE8mj8/HHSeEfs8cjj5DthAkRVUSdQGsrsHUr+Wxb2BslP6tX23RA55Ce5OeHH8j2uOPCXzEjPxrrJfAkP/Hm3dhpO+wwKUPPTCggpst8qwgAoBH2Bji30Cmtex9aRSzqmpu0nZEhX3fTqpeiv0mSjvIjyE980CA/EQ6hyVBKpQphGjaTAJ7E6/BhkhbF0nZ2trzAq+nrbpNtII7rrlHaPFHyYyvhFeTHfvToQRySxkaLsc7uRa9ewGWXkc+PPsr3XFyH1auBuXPJi37SJMfNbd5M/KeiIpU/kAgoi6qtjaOcJVukJ/nRUH50c35ikIC4lR+FI84s50eDeOmqL36/oUdCbR84IJ+/IcyQH6X9GGW+fT5yeqbUF412a5IfJxY69fvlwNpQycp4w94AiyF/khQR9nb4sHx4QX5sQCzyA7hDATFRdpkH+VFE35pf4NUNBMQG25avu9K2SnWyUmwBiKPdjY3y2KAXZkltB4MWmKyAITIz5Xik777jey424o9/JNs33kgZTmcPHnuMbH/2MxtWHI0N6pb062dDpTeKwkJZVHC5tJee5MdA+bGyzg/gjrC3gwctEhCN6lRRyg8Qc2V6OnNqquyzBgGJVwHxeuW2mwp9U7W7pUV+8VtVfgCL5GfzZsKs8/PD8Xrxkj7AIvlpaJAdkdLScB8tK4tMRxGLnMaBYFBOAtcLewOcW/dFuc4PIk3EQ7yUUVUxYRMJ8HrloSjpCIhNtk3fc42CA8zbnZ2teEnFl98mYBE/+QnZphD5OflkUvo6EAAef5z32bgEO3YQNggAd93FxCTlJrbl+1AkSd5PepIfB3J+9u41OeFlI/kpLrZIQMyoL8qXmJ3KkwHx0iQBMVQISyRARbwoacnLi7gUzpAfOgAMGBAursFM+aHXPCsLyM3VLnOttC2UH/M4dEiOuUzQIU0o+T7BvJvCQnnM4xH+ZZkE2KR4OW47CVSnuIhXaIo4GJSjJQT5cRCU/KxaxfMsbAdVf/71L4uLtKcq/v538j4591xg8GAmJlesINuTTrL5wEmS95N+5KehQR7MjXJ+LCSu+nwkwqi21oR9Kzk/ra0xC+JbIiAGYW9hRzwcQwFnyI8NYW9AnCRAo9JbhNzrBPmhAwAdEKDTbpOhZ3GRvlB8kWaxAwu2BRSgb+zS0ojCBvFUT7ScfK9Rcllpwooz7PHwVUB4kgA3EBBHbMcYv+xsNxDq6ybXSROwiBQlPyNGAKecQsbLv/2N99lwxq5d8qKmd9/NxKQkyeTn5JNtPrhQflwKGidVUhIuVwrEv85PRoa8qK2p0DcNEhCV86OcRYtRT5mGbTmivjhMfuKtegZYrPimIn2a+T6AaechLuUnlO8DMFR+zJS5BgT5iQca+T6AhkNKb7LBtbWcfE+dUZ8vXEFQ07bJ+2pJCZAkc2W2TaqJjpAAk8+So7btvOZmbZsMX7Wz3RH2TfR1AYsYOJBst2+3UJbQ/fB4gIceIp+ff95C2kAqYsoU4uedfTYwfDgTkzt3ksfa54twTewBPeData6uUph+5Ecj5A0wyPkxMYtlKe9nyxayDXnewaBMfqKUHxP27SIg8TjiiapOhgqIg8qPZplrwLTa54jyY5H8/PijiXHFzAKnyhMRTot5WCU/MZLyaOScKfVYo+QyoEFA6GxKjGQe6tOaCj+pr5cHSw1nODxvQ9tt0jYV42PCDAlIItumQ37MhDlS221thjHYtK/ZYdvrVazDSPubqQRUAVMoKZFfVCmU9wMAI0cCZ55JXrcPP8z7bDhhxw4S+wcAf/mLjZUHjLF8Odn27x/pbtqCnj3JoNTUJPu7LkT6kR+NYgeARtgbZSI0vMQApslPW5usBITiOpXvyDD5CTMw8CEgTio/NqlOieT86Co/Jm3T/6upiZHnVVcnn6CC/CRCODt3JmpjW5sJR1lFdmMqPyJcxTw0yE/UopOAaQJiaQJFI/kd0HieTBKvuGwXFEQ8uFF92ol2+/1yWThF22nzHLUNaF73eNtNn0HTa4UZ2I7qazHsU9sNDWT9Z9O2jZQ+wDTxE7CIFCx6AESqP//6l4V1+1IJU6aQl8bw4cDQoczMOhbyBpDZkEGDyGfKslyI9CM/MZSfMPmhIXF1dTEPafolum4d8VpLSsJxW5RbeTyq9W4YERBmyo+ZNYYs2KZhbzt2mFBAdJSfeMlPRQV5voPBGARk7Vqy7dzZNtKXmSkrTzGJn1nlRxQ8sA4N8qPkGGE/1AkCosNio8JnnSABOrapiSjbdrZ7714Sduf1RjjiTGzrLJKlS7xi2KbPcG2tyUI5Graj2p2dLefdGNgvKJDDLE21vaZG13bE2C2UH2eQonk/APH3R4wg/tf99/M+G8bYuhV45RXy+cEHmZqmnMQR8qM88LJlDhlIHOlHfnSUn6icnzjIT8xZPGV5jZC8qXRY4km+d0PRgZ07LRAQm2wfcwx5z7e2mghbUSk/yoIHETBpOyNDvueGoW8a+T5AYoQTsKB66ZAfkfNjAwzIj3LugiUBidcRd4R4OUn6qqpkJx8a7Y7Ddoy6MiTcj95DmuQJDQKitG1w0IoKwuFiTqBQUAKisB11zT0ey203FbprQPqUYpNQfhwCJT/ffsv1NJzC1KlkO3Mm8L//8T0XpvjTn8jMx+jRJP6PERwtdkBBDyyUHxfBbM4PJT9Hj8olbXVA3wkxX+C0xylKGUZVeqOwSH5iEpD29igFRJISKzpQXS2HYMWMH7cachfDEc/MlK97TBJgVvmxsEo5nbk1LDGuLHOtQCKkD4iP/Pj98j0SOT82gF5MjTCkiIkMRspPICB32yhHPIYzSvuyZQKiQLyqk6X8Oauqk0nC2dRkYo6L2u7QIWLWQpdwKmMgNeD1WiiUo3x4jVQnpX2HybYm+RHKjzP46U/Jds2alLy2J58M/OIX5PMdd5iYiEgFLF4MvP02caAefZSp6e3bSfRwZibJ+XEElPysXOnaRY/Ti/xIkvmcH0UluFiB0aZfJHTmRlFYPVHy07kzcbTa2mIoIOvXE3ZUXAxUVgKI9PHjUSF8PrnthspTU5N8cai3g8SIF2Ch4puCeNXXk0lcIH7lBzDptGkUOwAYKj8Kta22lnR/ny8iYohAkB/rMFB+HHdGNcKQNEPuLCo/dhCQeFWnQ4dMdD8N9UNpwmq7c3PlaNSYbbeqeJmwb/qemw33U9o3GXZnK/kRyo8z6NyZ/ASDrp5JTwRTppDu89VXwFtv8T4bhyFJwJ13ks833OAgA9HGf/9LtoMHqxY7txO9exOntqkJ2LjRISOJwXbyM3nyZHg8noifypCzDQCSJGHy5Mmorq5Gbm4uhg0bhnXr1tl9GtrYv5/cDI8nqtSX5iKntGfEmBY09RJrb5cTFm1UfpQKiCEBURKv0LS00tmIl4CYCrv77jsycHfqFOG4JFLtDTBJAtrbZfJaWhpWakpK4r/mgAnyI0kxw97iUbyA+JQfnYihSNsuKXjg6jGEQiOG0NAhNOmMxktAaJ+KCLmzqDqZWqjZ5rC3Dh3k5yBm2LBZ4mXBCTdNQMyqTllZcvkzu+55jHA/TfXFLrJ99Kg8fhqF+wGm7zkrJMU4YhannUa233zD9zwcQufOwF13kc933ZXi/PnNN0l8X34+qfDGGIsWka2j9RW8XtnPdSlhd0T56devH2pqasI/axSLHT366KN44okn8Oyzz2LZsmWorKzEyJEjcdRU2ZkEQUPeOneOorxROT+AnBVqkvw0NMiqQhTWrydSS3Ex0KNH+GvNFxhgPwHRWM6XDjA+n6rddtumxGvwYM3SvI6GfynXRujQQT/kzaLtmI7Lzp2k3/h8QJ8+EX/SLPRgN+kD5MpYJSX6xQ6UtpubXRNz4NoxBIiM81R0JDuc0T17TOTPxUi8Dz9iJm2bLuChYzsYjD/0zONJnIAYhtzFuJimbcdQnRxV+8zmeCl/sUt1ou0uLCQ/RrZNtpslXD2OWMGpp5Lt0qV8z8NB/OEPZDjdsYN5/j87HD0KTJpEPt91VzgKhyWYkB/A9Xk/jpAfn8+HysrK8E/HkFQvSRKeeuop3Hvvvbj00kvRv39/vPrqq2hqasKsWbOcOJVI6IS8ARo5P4Ac+qbLaAjy8+VddV8mlHwMGhRBABJVfoA4CEgImuTDCdsaxEtpP97wL1Nhb9RxKCkBfD5j8hNHzo8u+aEv2T59VJ0q8XA/JfnR5Srt7cCmTeRzjx76Za6VJyJJMRfVZQXXjiEAcQglidzX8vLw14koP5WVZFjw+2MsPhkMGoa9xWPb0kLNGh1J2WWthr0BFkKwrJIfIKaSmqjtRBQQ20mf8hdGxMvNyg/g8nHECqjys3Spayao7EZeHvCPf5DPjz+ecpW9CR58kDx0xx1H2B5j7NpF3OCMDOCMMxw2dsopZPv11w4big+OkJ8tW7aguroa3bt3x5VXXokfQqRj27ZtqK2txahRo8L7ZmdnY+jQoViyZInu8VpbW1FfXx/xExd0ih0AGmFvgL3lrjXIB8CI/AQCcplMDeUngnzYbRvQbHsgIPvZjio/1HZopWzdSm8WbcckPzr5PkDipI9e84YGObItCuvWyUpjz57mlB/lyXGG3WMIYOM4Qhk0XXQphESc0cxMOX3I0CHdt488PB6PZr5RPLYBkyRAkgzD/YDEQs9ihn/plCuMGseU/dkkCYjXtqECYlfeDd1BpTppEi+787zMFrhQ/uIi5ce1vohVDB5MQolqakzGxiYnxo4FLruMDHG//nXMWlPJhTVrgKeeIp+ffVZj1tl5UNXnpJPkwCbHQCvYrVoVU0DgAdvJz6mnnorXXnsNn3zyCV566SXU1tZiyJAhOHjwIGpDMRWdVKuid+rUKfw3LUydOhXFxcXhny6anqsJmFB+4iU/MRet06j0BjAiPxs3Eqe2oADo1Sv8tR3KDyUgurZbWogjDkQQL+WhHVVAqOQauu52h73t2aMzQOvk+wCJFzzIzZWLjOkSP2V/83j0y1wDRMGgaqQLyI8TYwhg4zhCnQ/V/yeaB2FqNp4+aJ07y7klNto29KsOHpT7h0bhkpwcBRdUOuExZqpNqxC07Yp8TUnScMQzMuRBxS71hT5oqlxRJuqLRruVthMJe9u717Aone5sUTIoP672RawiL09+l6Rw6BsAPPMMibD83/8IR0gJBIPALbcQZ+HSS0l5aw5gFvIGkEHmuONI22NMTPKA7eRn9OjRuOyyyzBgwACMGDECH330EQDg1VdfDe/jiVjQhkjQ6u+UuPvuu1FXVxf+2WlYX9gAOsqPMtrHEeXH75c1XFXoF5OcH6p+DBoUMVOtq/xYyD+htnWd8DVrSPvLyyNeoEq/IN7Ef1MKiGo1L7vIT2UluZR+v06VPRPKT7ykDzCheqnaTUm5pvJjYVFdFnBiDAFsHEfo/ykIACBPZMQ7G26KgOg44TRNIVHbho44td2pk6Kqgmw7YiZRWfI5RiilKdv19XL+nqLtra1ykQZFSor9axzRwZU+eCHQex5hO461dgz5Ib3uOrYjJs4s5nlJUow8Lx3byZDz42pfJB6cfjrZLl7MziYHVFcDjzxCPv/pT8CGDXzPxxY8/zy5b3l5svrDGJIELFxIPjMhPwBw1llk++WXjAyah+OlrvPz8zFgwABs2bIlXGlFPbOyb9++qBkYJbKzs1FUVBTxExd0lJ+DB+XZe8UyNPaRnw0biMdbWBihvACMlB+NEtuACeXHAgE5eFDnXa+xsKvy0FlZqupjFohXbq4c+aNJApQV9lTkR+U7EtCcHxO2fT45EiTKWW1rk/NtHFB+ADnfySz5MQx7A1xd7tqOMQSwcRyhN1xFfqiyH3FYC7PhpnLYdJxRaltZod+KbXo4Q9s6BIAOj5rtBmI6w/RZNNXu0tKIwVIZTRExhpoMuzNlu6VFLnChGjg077mFsDePhzxyhnleOtc9kXuekSFPAPHobzzgKl8kHpxzDtlSDzaF8ZvfAKNGkUfv2mtjqJNuxw8/yKXs/vY3nZlX57FxI/D998Tnol3JcVDyQ+truwiOk5/W1lZs2LABVVVV6N69OyorKzF//vzw39va2rBo0SIMGTLE2RNpb5c9X5Xys3Ur2R5zjMohtYv86CgvgL3kZ/9+Hd/VSsEBi7aLi+UXv+YkmE6ukx0hd0AMBUSZ99KjByTJpPJjouABYJD3s3EjmY4uLo5ykAEGyk9bm6w8ha67YcED5cm4kPy4Zgyh0AkFosNEhENoYTa8Z0+ypeORJmI4o/E44Y7YzsyUZfQY9qntLVsMFJAYBKCwUDW0mmw7nQc7csRAPaa28/PlhYFAztXwuse45zk58vDw/fc6OwUC8gBjhXjx7G8uUX7UcN04YhXDhpHt2rUmVhVPbng8wCuvkMnoFSu4VIS2B8Eg8Mtfkmdi6FDg1lu5ncoHH5Dt8OEa/qZTOPtssv3f/1wRVaKE7eRn0qRJWLRoEbZt24ZvvvkGP/vZz1BfX4/rrrsOHo8HEydOxJQpUzBnzhysXbsWEyZMQF5eHq6++mq7TyUSO3eSF0lOTlR5wS1byFYlysgju4lkLUPyo5PvA9hDfkpK5PdOFAEJBskquxr2NauOWbQNxFCeYhCvRG0bzpYr1Q+PBwcPyofVVECobZMvb13yQ4nHiSdGqF0UMZUfE9V8DMnP2rWEAJWUAN27o7FRdsyTQflx7RhCQcNnVQpyosqPHc6o5kx8e3vMqVNafX/r1vgJSNQkuEUCUldnQEB0wv0StZ2XJz8T9D0QBWW7Fc9zY6NcSduxe75nD5lIUUrNIdjV33SJlyQltfLj+nHEKsrLw4V78MUXXE+FBTp3Bl54gXyeMgX47DO+5xMXnn2WJNrk5xM2F7XIHju8/z7Zjh3L0GjPniQ8p62NECAXwfY7sWvXLlx11VU4/vjjcemllyIrKwtLly5F19Dgedddd2HixIm45ZZbcPLJJ2P37t349NNPURgRNO0AqMPSrVtUB6QvHvoyCMMu5UeHAAD25Pwo12yNIj9btxKGlZsLHH98xJ/sUH4AA/LT1iYn/usoP4naNiQBqtAven6dOumsbExndXU9sEjokh/aZo18n5hV7gBTypPpdiuKHRQUqHITlLAQ6ug0XDuGAMQh1Amf1XQILagvlIB8/70JAmJFBQBiEvrjjiPjSH09cOCAzk5WVADAdOiZkoDokgCHbAMmCEgM4uX1xlftzZLtLl2IIQU0ww3ttH3okHwcHZXTzcqPq8eReDF8ONmmQegbAIwfD1x/PZlkuOoqE7l5bsKqVXI560cf1Sy0xQoHDsgVp8eMYWjY45ETjFzGXn2xd7GG2bNnG/7d4/Fg8uTJmDx5st2mjWFQ5lpX+Ymj2lttLXFww+8pZZlph5QfgLyXN2zQICCUeA0cGFEdCjBQfugXJl9iuuRn7Voy41xSIks0ITAJe7NS7AAAQmtA4MAB4n3GSKA3pfyooOQWmoucAqTtSjKkAVPtVoW86ao+SvsukKZdO4YAJLmNZvir+rRh7ouJZ4nOyzQ2kqiWqPXvJEmWOM3k3WRnkwPSVUgjWFkkaAjWzp3EGaaPQgR0bCeqvgDEEd+9m9im6zmytL1okQEJMGE7Yqiwk3hR2yriFQzGKDRhJ+mrqIgaqBNVnVjA1eNIvBg+HHjySeDzz3mfCTM8+yxxY1avBq64gjQ9ojCVG9HQQE62rQ0YNw64+Waup/PRR2TMGDhQJ9/ZSZx/PvCf/wAff+yq1Wv5aXCsYVDm2g7lp1MnQniCQVU47qZN5EWUnw/07h31f7rkh84+mbANGBAQnZwbwICAlJWRre4UcCR0y10rCy2oiETMkDuTxEs37K21VSYhZskPXbDS7zd13eNRfpTkJ4LfZGbK18hE2+k11yw0QQmvqtiBbr4P4KqwN1eDjiPV1VEE1VD5aW2NuWhFVpZ8XzUd0gMH5H5pJuTO47EvBEuS5Fki1UCpSbwAex1xHdsxyY8J23TSy3bbdqgvOi8n+t4A4g89U9rWVBp1X4wx+rpLlJ+UxNlnE0djy5YYC9ylDvLygLffJs/ZV18BEye6fJ1XSSK5PZs3EyfhlVdiTqQ6Dbpu78UXczB+/vlku3y5TmlcPkgf8mNQ5toO5cfrlWdqI6RZ6oj+5CdRYQuAAfmhC7mY7CwxyY9GyJ1uqWta7cZkUqVuuWuDcD+7iVeU7TVriOpUVhbeybDSG0CcWXojTNjXJD+HDskdoH//qP/RXBMFIIOjhbYXF8vdM6LtLS0y+TJT5ppCkB9zMJhEocOEZtljIHFnmH7ZpUvUg+M4Adm/n0gNHk9U23Vtx+GIa+bdSJJ8UqpB2k7bMcmPWdt2kp8YtjMzVSG8Fu43DXWsqyOTKGZtK+27WflJSRQVAbQgA03iSAP07Am89hrpr889B0ybxvuMDPD88+RkMzII66DvdU7YvRtYsIB8vvZaDidQVUX8XwD45BMOJ6CN9CE/BmWu6fIRNOY+DAvkB9DJ+zEodgAY5PxQ8mORgESQH0kyJD+6BMRu4mVFdaIM8vBhS7kvhw+r6lKo8l4AE8oPIKs/hrVnCZTkhyY+h4lHt26aSyjrKl6AZdKpWZ5YSfpCNyZmmWvlCQnyYwwD8kNTxRQFwch1pTEaJsYRQ2dYR4EAZOc1wjZgSUE2ZfvYY6MS5mi7o97xdCKBxmfFa3vfPl3iRdtth22rxEv3mlPbSnlGB/Sdc+iQTqqhDgFR9rWISWVq20SRHmW1OSv9rb1dbpru0hCunppPclx0Edm+9x7f82CMiy6S1//5/e+BDz/kez6aWLQI+N3vyOepU+VSzxzx+uvEPznjDA0flxUuuIBs587ldALRSB/yo6P8KMtcRzmkdpAfAwIAGCg/1BFOhIBs20aYXVYW0K9f1P/oFh2g5OfIkZgLFCpt79ypIAHKNXasEK+SEtlZNNH2wkLZ+YhQQFT5PvT8gBjkhyY7mCA/1dXE8WhrU4g1BoubAgbXHIib/ES0WxnyFvKKYpa5Bly1yKmrsXEj2aqKh0iSjiPu8cgeoolCGvTlpOmIG8zE6xIQ+nAcPhzTNvVxN2+2ZluXBFiwTQ9r2G4N4qVLfug1N2GbXvODBzV237+fEAkN4qV7zS3Yzs+Xn0tDtc8s8bJwzYEYxE/HNm23xwN06KD4A213e7sIfXMSlPwsWiTP3KYJJk0CfvUr4mdccQWwZAnvM1Jgxw7gZz8jYfNXXSUXO+AISQLomr7XXcfxREaPJttPPpFXpeaM9CA/DQ2yM6siPwbv9MhS1yZmsqLIj7LMtAYBoKcGxAh7M2FbSX7Cu1PideKJmhmCuipESYkcomeSBGRkkHde2G/fsIEoN0VFmtMNuiTA47GsemmSAA3yo7M8SySo8mMi9CwrS+Yr4dA3qvxoFDsA7FV+NBc61Wi3UH5sBCU/ffpEfN3QIFeTToSA0DkK2o0ioOOMAvaQgBNOINv16zXSkwxUp5gkwATp69WLjCGHDpGiMREwaLem2qb8wkS7CwrkMWHdOtUfabu7dInK8dK95harRtKutHat6g9KNqYaQ2Peb5O26T2Psg3ovhypbeVrAgBhcrSojkn7AnGgZ0+gb1/iRH78Me+zYQqPB/jHP0gaSVMTERSoi8UVhw6RkzlwgPh6//oX9zwfgFR4W7+ezBldfjnHEzntNDJYHTrkmmId6UF+qOpTWhpV8cggp1PeNxg0FcdMZ/DoTDs2b5bLTKucJYA4GHSiXZf8tLSYCt3o3Jk8ay0tCr/dIOcGMCAgGRmWCIjPJzvWYeWJ2tZY2FVp287wrzAJaG6W3+YhEhAIyCTALuUH0Mj7MSh2QE8N0FF+aMifzaRPFDywCZKkS36oQ5idrXFvLTikNDSa1kmJALWtckaDQdlHTsQR792bdIOmJg0VYtMmeScV7CABeXnyoWlxzDBoux2yDcjXPcq2iXZHES8LhNOU7ajVt00ofUo2Ho/tI0dk5V3V3+j7Jcq2x2NZeRKIE1T9efddrqfBA5mZpADCWWeRoJxRozQmLViipYXcj/XriSP07rs6L3j2ePxxsr3mGpVKyxo+H1HFAOCNNzieiIz0Ij8acfqGyk9enjy1Fc9aP8piB6oy00Akn4rK+cnPl780Ef6VnS37zmECEiPkzlCFSDTvJxHbFklAVMW3774jbKdTp/BNUZYgV60VGAkLyg+gIj/BoGnlxzDsLWrqWxuapI++BULXXZJMFjygKmeahVFYwp49ZCLC642aLVE64VETfhYcwspK8ugFg6rZeL+fqKlAVCGNI0fkcFNdR9wECfB6Zc4e5QzTk9Eo4mGH+gIYOOIGtu1SQOKxHZOAOGhbt91KD8fEdae2V65UBRhQ28ceG7U4mC7pAyxfd4E4cdllZPvBB6bD8lMJeXmk6YMHk1f1sGGyy8EUfj/w858DixeTyfK5c2PMrrLD1q3AnDnk8x138D0XACQUEADeecdUPrfTSA/yQ5OUDdb40VR+PB5LeT+0z69dG7q3JvN9vF6dRTcTISAxih0AMVQIi7ajyl2bVJ0MlZ94SYBBsYPOnTWL7slIRPnZvp0w2uxsHTbtsOK1ejUZjCsqwid24IA8ARy1bowSlBlFrZIrEAYlHz16kJhHBXRnwwF7lIDvvyeDSm5u1DhGu2phocY4YgcBaWmRB0qVI97eLvu5UWsDWXSEBw3SsA0YkgDadjpnEQYDAkKHRl3bSlZq0nbE7vG02+uV31km2t6/PxHm9+9XDbcmiFeUbUAoP6xw0kkkRralhayhkoYoLiYpJCefTMbf4cMZ5wAFAiSR5p13yPvg3Xd1Iz544IkniBt44YUkSpI7zjqL+Bl1dcC8ebzPJk3ITzxlrikskJ/TTiOqQm0t8NJLiEkAlPk+muGhcZac/vFHECf2wAGiOGm8wACT+SfxEK8YC7sCDpOAeIsdAJELnZpABPmhxQ769tVU+gCTyo/FdtfUhOpSaJA+qvpUVET565GgF0aQH33Q+6vxPNXUkK2mqmiHCkGd0X79osJIDW3HSQJorRIAJOwsGCTHUjFo2lV9PocUkPp6+cFWFW2RJIO2x0n66LrMYRiQAEoWomzT+y1Jpt4bffqQZ/PoUVXlRgPbpu65ibbn5sq1OyKuu0H4LrWtOZlikegLxAmPB5gwgXyeMYPnmXBFWRnw2WfAmWeSR23ECEaRgIEAuf6zZpHB7z//IfKTS/DDDyTtCCBFIlyBjAxSpQIAZs7key5IF/JjUOaavpt0SwBaID+5ucB995HPDz8soWlFaKbYaqU3ikSUH6r69O8flahLYUr5iWetn40bycHz83VZJW2SZtvjTPwPOw6JkB8Lpa4BmfysWQNIq43zfQB7SV/HjuQ4khRqn0ZZdVPFDgBBfsyAeodUolDALmcUiEF+DJxwO5zRmLZVszS03Z06aaT2WWz3wIFku3mzIiR4/Xqyra6OirOqq5NzJqPariScJtQXWpm+tVVOtcGhQ3IDNaZOde95VpYcsmyC+GVmyrc1fN0lyRT5MbzndpDteImXCHtzHj//OXnolizRKdGYHigqIkLC+eeT9+ull8qqhyNoayML5sycSZTWN9+Uc7BcgnvvJZM4I0e6ipMBv/gF2b77riI5ng/Sg/zEU+aawmK56xtvJC/S2loPnm24jhAPHc1Rd40fCjvIj47qJEmyf69p3w7bgwZpxpgFAmS2BpDXa4tAnIn/+/YBzfsb5PAkBQkwVekNsKz8DBtGyOOqVcCMD0Ivfp18H0AujBCxPgYFJT/795ty2DweFenUIH2mylwD8oXZt88V8biuBC0rRL1FBUwpP3EQkLAKoazcaMW2RWd0wADSr2pqFO8maluD1OuqH4BlJ7xTJ3IcSVJUcDJhu7hYp2IlQJ4jEwVjMjJk8kXnEMK2u3ePynvx++XxU5OAxKl6hW3v3k0MeL1ySTYFnCDbdPhAMChLfwbKjx19XSABVFURjx8gC2umMfLzSQ7Qb35Dxo877yTCjO3r7TY2EqLzxhtE8XnjDcK2XIT//Q+YPZuM4489xvtsVBg4kMh0fj/w4otcTyX1yY8k6RY8iBnyBkSWuzaBrCzggQfI50fwR9T3O103BCqm8hOnAvLNN0Dr//TX2AEIP9i1i+QIaExkWw57owRkyxagbsk6Q9tLl5J3Y0kJCRXUtW0y56ekRL6GP87fRF7e1dURb2enlJ/OnYEHHySfJ337c+xHuaHys3gx2Wq2mxLOQEBnyfVohEP+NrfKxQ6slrkGSLupQhguXScQRkuLTKo1yA8lCnYQkOOPJ326uVmRxLtsGdmecoqjtgsKZBLw5ZexbdP+FdMJNzkNe/rpZEufk7ht5+bKjMhk263Yrq0lTfJ6dXJfLJIAOgkUtk2ZSL9+UdK8Ybif0rbJdittSxJCg3id7sSdnbYFEsTtt5PtSy+lPeH0+YDnniOqT0YG8NprwE9/Kg/bCWPvXhJXN2+eXHGBa/3oaLS1kQl4gIgsdCx3FW67jWxffNHUOpJOIfXJz759JNFCOU0egmGxAwqLyg9AygoeX7oPh1CGJz36ZTbsDns791zi8+/cCTz9VcgB1iEg779PtsOH26P8nHACiV1vaAAe+iD0xOmE+9GlCc47T4cXWiR9Ho8s6i35IEQaFAQAiCPn5+hR0wrI734HDBwQxKFgB9yBJwzLXP/vf+Tz2Wdr7JCZKTuMJttOwzXnvXWUkL7KygiZx1SZa4BcRBH6po9Vqwgp7dhRk0nSkEtKRiNg0RHOyJAXBv/ySxB2U1ND/qAxU0Ft08mPRGwDct/88kuQGTrKwDRIAE3HMbQdCJhSX5S2//vf0BeUBFi1DVhWQKzYptf82GN1CqhYJJ30fn/zTWjYMSBehw7J7w7N8cyi7VNOIZNg+/aF3onU9qBBmuvDKduuazvNHXFmOO888r5pbAReeIH32XCHxwP8/vfAwoXkVbh+PXEFpk9PMAxuxQpyoKVLybi2YIGsurkIf/0rCcHv2NGFqg/FJZeQmZO9e7mWvU598kPzfbp0icr4Nlg7T0Yc5MfnA/5SRWTox9eO0p3Et5v85OcDU6eSzw81/A57PZW61P+DD8h27NgYtk064V4vmXEBgKd3X4at6KFLvCj5ueACnYNR8nP4sOmZAVpF8c/vD0YTcuMnP8XFsjdjMvQtMxP4552b4EEQM3Et5q/RLqv2v/+R5lRWGuSYWVS9brqJDPj/WViOr3FaVLtNlbmmEORHH7SM0Omna1Yn0YmsJYgjD4I6w4sWQXZG+/XTnKmgzqih7cOHTYVSRtnesIFMHhUUyJnxCtB2axKQ3FxZTbRIAhYvBvx1jXLOjwEB0SU/FlWIM84gt3bz5pC6Qa+76pkyZdsiCejVizz6ra2hCRID8kNtV1bqhGtbJLzZ2cCpp5LP//2vse2mJvmVoNnfhPLDFh6PnNH+zDNinbYQhg4l81Xnnkv67C9/SfyNcDVaK3jjDRKqtWsXmeFdulSWiV2EL76Q/b/nntOovukWZGUBv/0t+fyXv5haj8wJpD75MfBKnFJ+IEn42c6nMBCrcLQlC48+qr0bfa/rdlKLCghAVKdTeh3BURThvuJpmtUM9u8nK/8CJsjPvn2mp0xGjwbOP6sB7cjCpIwnNRd23b2bDEoej8HESUmJLAmZJH4TJ5KZyF1NZXgCd0Q4LG1t8iXUnK1UIiPD8lo/APBT6RvchmcBADff4tF8B9EworPPNlj82WK+08CBZGAHgN/jSQRPinTUTCs/gCA/RqDkRyNJrb5e9vU0HUL6HNfUmH6Whg8n288/B1oXLSW/UA9VBUMCQhceCgZNh1IOHUr+Ze1aYPdHq8iXp5yiKXFQ25qKFyA/Sxb6c0kJEYqWTl9PzrtLF80YKzqvFdO2yTGkQwd5vubTNw6S58Dr1VSwY7ablr4zadvjAc45h3z+ZG6QOFgAidvRsa1LvCxec0Bh+xPIfV3DNiVeRUU6eYsWJ80EbMCVV5IXW20t8NRTvM/GNejUifTnqVMJwZ83j8wf/eMfRIyOieZmEqJ19dUk7PnCC8lzqbHgMW9s307WEA0EiA9I1xN1LW6/nYwVP/zArVph2pIfU2WugfjIzw8/IKP+CB7ykWSQadPkOGml/bfeIp/HjNE5jkXlByC++1NnvwMAePnIpXLisAIffUTsDxokVyvTtd3ebqntT4z9Al748V5wLD5bFB3TRsu7//SnBqQvI8OyApKbC/ztAVJH+m/4E/Z0lmctd+8m7c3J0YnPV8Ni3g8AYPVqPIT70LngCL7/nsjPatBwGjq7rYk4CO9DDwH5niZ8g9MwuzGSzQrlxwZIEvDVV+TzGWdE/XnjRrKtrIzKiyegD1lzs2kCMmgQ8fcbG4FFH4Uk4qFDo/bbv58c0uPRmcTJytJY/dgYHTvKPOujt0Pl1DRKBkmS3HaNeQ6CqNWPjeH1ypMiH70Vqguv0W7AhG3any1M91I1+qM3Q2F6gwdr3lRqW0MMI4ioRGLR9tvNhP116KBZ4ILa1vXBLF5zpe1PPpHQtiJUtVLjutNKeD176kzgxGFbIEFkZQEPP0w+T5kiiKcCXi/wpz+RCdchQ0i0zW23kfF1/nyDf1y9mkyg/uMf5Pc//Ql47z3ZH3QR9u0jz+/Bg2Ty5p//5H1GJpCfD9xzD/n8l784UJkiNlKf/NC4bdVbylSZayA+8hMq2XPhwF047TTi80yZEn1aO3YQYUY3/IsSkEOHLEmDQ/a/hyvxBiRk4Pe/j55sjhnyBhCmQIs9WCBfJ+z9ArfgOQAk9lY9w/LRR2Sr22aKOEjAlcctw2n4Go0owP1PyyyHvoePOcZAcVHCYsU3AMCaNSjCUTx7Helvjz0mV4sFSOoEnVDVzPehiKPdlQUNuBukg/3pjYHhtYTa2uRbJ8hPAli/npDwnBzNEChaZ0K1DI2M7GzLBMTjkZ+R9zeHvHsNZ5Ta7t5dp2Q9oLEQVmxceGHI9upuurZ37yaql89nMIEUh206GfT+qmMhAZrEKxiUE5k1iqElbPuTlRVoRZZunViq2usuHhgH+Rk9mtz3VZvz8SO6kIFCQ22LaTtqxenYOPlk8ro5etSDRdJZhN1ozIzF7Ou03UeOmC4SJGADrr6a3MSGBlLnWCACffqQycdnniFzCmvWAKNGkXEuYoK4vZ28vE85hTxolZWyfGS4Ojof7NtHQvs2bCDv+HffNahc7DbcdBMZq3btkquEMURqk5/2dhxcsBJ7UEV6iAJU9TEscw3I5OfIEfN2Q+THM/ik8ITMiy9GvgeVqo+u01JWJi+eYUWF+PZbPII/IicrgEWLyALEFC0todAGAOPGxThOPCEMK1bgATyIkrxWrFkjL7QFEGeczrY4QX48K5aTkDeQBEe6boXpfB8KSn4sKj8AcPF1xbj4YkJ2brpJTrNYuZJMbnTooLvmLEEc7caqVbhDehzHendh5x4vnnySfE1Fs6wsjQUotSDIjyaC8z7FEpxOCIDGmlm0n+k6hEBcM+KXXUa2/8HlaO/eW7MDU9uGfSoO27R66ydtw7A/q7NmyB213bu3wQK6cRCQCy4AsrIkrG/qju8wUJOAbNlCYvlzcgwmr+KwffLJwDHHSKhvz8OHGKNJ+lpbZQKie93jICDl5fLEyCxcrUu8aBXqmLb37DGdM5mRAVx8cWzbdJ1f3b5eUCDnOwn1hx0yMhAe+F9+WX7JC4Th9ZJoq61bSZEin4/kH590EhlzvnpxLRkA7rqLPDdjx5IOP2oU71PXxLp1ZFheu5ZECXz+uQUfxw3IySHJSQDpu+HSpmyQ0uTn5fu3o0vDetyf/WhU8r2pYgeA/CLZuNF8uRB6EwcPxvDhJH6/vZ2oe0BkyJthpcSMDNkRN6u+7NsH7NqFYz278IeJfgDAH/4gLwb4xRfECa+u1q1HIMNiuWsEg8C336IMhzD5NqKa3HefLJotXkwmpjp1smDbCglYvhynYymuPHE9JAm44w7FAqCwMDBYzfnZu5dcI48H6NcP06aRSJklS2QJmub7nHmmxmKQSsTZ7ly04G8DZwMgk1Q1NZH5PqYUL0F+otDaCpw4+RKcgSVYM+BqzX2++YZsNVIkZMRBQEaOBDrl1mE/KjC3r3bVSFO24yABffsCJ1XXwI9MzO55nybps9RuC7Y7dADGnUQ672sdfqfJbmjVxJNO0l1JIK52Z2QAPx9JJj1ey5igSQK++474RuXlOjleSts//mi60AQAXHs5Gahfwy8gnT866u/19bLipVGPgKBjR6I2SpI8CJixfQ15v/0ffobGc7RjsZ3q6wI24Mwz5dLXN9wgKu7poKyMpEatW0fXiZUwdy5w5m/644zVz2FmwW/Q8uKrJMzNhVUDJIlM7p52Gsn16dGD+HUxfVk34oILgCuuIGPktdfKVcAYIKXJT19pHZqRh5ntV6B2f6RkaarYAUAycL1e4oyaWf9EkuSV6kKJsg89RH599VVSSWjFCtJpDUPeKKzm/VDi1bs3/vjnbFRXk7QnmgdJQ97GjDHhEFu1/cMP5O2cnY2bH6hAnz6EP9D8F1rlbfToGAQAkMOETOb8AAiHOE6ddBDZ2WQm5IMPGCg/a0Ix8j17Anl5OOYYOQT7T38iRITm+xiGvAHxkZ9Qf7vyomacdhoht/fdZ7HYASBfoMOHucTguhHZWRL6+sjq6U9sjY4Tra+XH3fNBXsp4iABvowgrvW8DgB4end0BqskhSqyIUbxoTid0euzZgEAph24UjNB+IsvTNiOQwEBgOvz3gQAvNJ8pWaVbEu2d+ywVOf2ukIilX8YvABb90TL8vSan3aawRjauTMZ5JTVVkzgZ4WfIA+N2IC+WLAzOqHoyy9JU447Th6eo5CREVd/O6NsI3piCxpQiBm10dVotm8nt9Hr1Yz+lCHIDz/87W/EC969m4TC+f28z8i16F3dgJm9HsSmnJ/gRryETLRhCc7AtQ3P45h7foE77vRg+fIES2TbjC1biCD1y18SnjBsGJmQcGENBvN45hkiXa1fT8JlGF3wlCY/pz9yMU47xY+2YCYGDSKhnDQM2bTyk5cnxxfQEqBG2L6dOI+ZmeH/O/10ElsaCJDQRqr6XHihQcgbhVVnmJKfk05Cfj4ZCwHijNfUmMz3oYiXeJ14IjLzMsOlr595hjy0MUtcK2G13YcPh29qtwv74fe/J19PmgR8/z35HLPSG4VV5YeSH8X6PrfcQmZH6+pIVUeq/BgWOwDiVn4AwHPKyeHIh+nT5fwqU/k+AAnxpMndQv0h8Hhw5zwS9vD6Rx3CFcYoPvmE+Be9ehmoAEBcKgS+/BK3N/0NXvixcFVZuEIjxbffkmc6N1ezDkNitnfswITtD6AEh7BlXwf83/9F/vngQbli5MiRNttuacH5yx9CH2xAXWtuOOeYIhAA5s4lnw0jUugD39hoqfTyCZ8/hwvwEYLw4pFHov9OnyvDdmdmyg+ehbYXf/g6bgSJFZ4y1RPlB1DbMSNx4rjunv+8iYl4CgDw92nZUcuc0fH79NN1CntQxEG8BGxCXh4wezYZFObNIy9AN3nvbkB9PXEGe/YEJk9Gz6bVeOmUl7DjnW/x17+SOcCDB0kk1imnkLH9nnvIeMeLS27YQBYv7dePjAGZmSTCY8ECkyHtbkZFBfDmm2RWZdYsuV6305CSEHV1dRIAqa6uLua+y5ZJ0jHHSBIZASSpuFiS7rlHkvr1I7+/844JgzfeSHa+++7Y+/7f/5F9Bw2K+HrlSvkcysrI9j//MWH76qvJzo89ZmJnSZIuuyxi/0BAkn76U/LVGWeQbW6uJDU1mTjWn/9M/uHmm83Zvususv9NN4W/Ov988tWpp5Kt1ytJhw+bONasWeQfhg0zZ3vBArL/ccdJkiRJdXWSVFEhX3NAkj7+2NyhpLffJv/Qv7+5/SdMIPtPnhzx9cqVpL3Ufl6eJLW2xjjWjz/KFyoQiG27vl6SPB7yP3v3SpIkSVddFdnu3/3OXDMkSZKkvn3JP336qel/sfI8uglWznvkSHJZxoyRpGBQ/v6CC8j3f/xjjAN8/DHZ8fjjzZ/gDTdIEiD9svd/JUCSBg+WpLY2+c+33UYOefnlMY6zfj3ZMT9fkvx+c7YffliSAOnBbq9IgCR16UK6GsXTT2sOc9FobJSkjAyy85495mz/5z+SBEivlf1OAiSpoECSdu6U/zx3Ljlchw6S1NIS41idO5Odv/zSnO1VqyQJkBb7hkoAebSWL5f//MMP8uO2fXuMYw0bRnZ85RVztg8flqTsbGk7jpWyswJR74imJvndMXdujGPddJPJjhlCMChJPXpIjciVKoubJECSpkyJ/DN9j/z97zGO9dRTZMdx48zZDiEZxxHXnvNbb8kvgPvuixy00hW1tZJ0771k4KDXpmdP8pApro/fL0nvvy9J48cTX0n5Lu3QgYy3zz1Hhgqzw2k8OHhQkl5+WX730J/zz5ekDRucs8sNzzwjN/LZZ+M6hJXnMeXJjyQRh3P6dEnq0yeyEwGStGaNiQO8+CLZecSI2PvefTfZ98Ybo/50+eWRjnBDgwnb991H/uFnPzOxsyRJ3bqR/RcuDH+1ZElkm02/k156ifzDkCHm9h8xguz/z3+Gv1q/PpIAnH22SdsLF5J/6NbN3MD9t7+R/cePD39Fb5uley1JZNShDtuOHbH3HzyY7Pv221F/mjRJtj98uAnbra0WvCtJkhYtksLeaQjbt0tSTo5s99FHTdilOO888k8vv2z6X1zrAMSAlfNet06SfD5yaf76V9Ilv/iC/J6RIUmbN8c4wL598g0xc52OHCFePyDVvvOVVFRE/vU3vyGcePNm+R7H5Kl+f/hYph4Cv59MIgBS43MzpK5dyb9efDHpnocOSVJ1NfnuuediHy480/TeeyZ2lsLjSOBP90innUb+9bTTCPlqa5Od8N/+1sSxxo0jOz/xhDnbt95K9r/ssvAkwnHHSVJNDbnnP/85+W7UKBPHuvNOa5NH06aR/fv2le6/Lxh2ttavJ3+eOpX8uWtXSWpvj3Gsf/7TwqAjyeNtfr702kstEkD6O32NfPgh+XN2NvEhDbF4Mdm5qsqc7RCScRxx9Tk/8YQ85vz+98566m4FHaivuEKSMjPl69GnD3EKY8xGHj0qSW+8QXw3JWeiPwUFxKe5+Wbiuy9YQCZqYj6fKrS2StLatYSHTZpExjil3+TxkPH3q6/ivxRJgfvvlxv94IOWSbsgPzoIBIjSc8op8kSoKQXk229l2h/rZowaRfZ9/vmoP23YIPvUMWdrKZYtM8+WDh6UO45KXqECEkA4jSns2iU74sqpVy0Eg5JUUkL2VU6VSpJ0++2y7UceMWn7yBHypgXI9Y+Fiy6K8vT9fkkaMEC2feSISduSJMtkGvcxAn6/7IVu2RL154YGKew8qoQhfZx5pskpVokofIAkXXJJxNf33CO3+/XXTdqVJFnlNH2yLncADGD1vKlvCpB+RfmExjyHNmhHUExM6OLvfyf79usnScGg9M47su0TTpCkjh3J53POMfl+GDrUvApBjZWWSlJDg7RkiSRlZckTpSFeJPXoIUnNzSZsX3+9PAMdC6tXy4xy2zZp61bZ6ejShShNgCQVFkrS7t0mbD/0EPmHq66Kve+hQ2ScBSRpwQLpwAFJ6t6d/NqxoyzkeDyStHSpCdtvvkn+4eSTY+8bCJCLG5r1bGmRwsSvsPD/27v74CjKOw7g38vbBSgJIykJKYhErSCEt1B8gQhD23SAyjC0VBCQGR0rFVrSMAqWWhw6GArjS5G3Yhla5S11JjCIWg2U18EahCRNQRKUNEFejCAkwZiQ3D7943GzudfsXu6yu3ffz8z+wd3e7cPe7m+fl9/zRIiHH9aeHVu36jj2tyNYIilJ3wjyT38q93/6aaEosq4IyPri9OmirfG9eLGOY9+8qRX28891fECyYxyxfJnVUTi1xV5ba3aJukZFhXyG3XOPe2vl/vtlJ6Wee8JDS4vsSF6+XPbP9Ozp3Rhq31hJS5PxasIEIaZMkf2yM2fK5JypU+V3ZGbK2KJWszy3YcNkCPv009CfIktSFG0AAZCBSFeqkMTGTwcURbag9dSphRCyu1GtiAfq4lUULS/ho4987rJwobzQ9+83UFh1NOettwLvqz7ov039aq+mRj7XExNlL6Zu2dnyO195JfB+W7dqT0uPXJRr1+RpiYnRejF1+fnP5Xfm5QXeb9Mm7WbxOO8ffCBfTkszcFwhZM4HIKNWIGfPao1TPwG1rEw2AK9d03nsDRvkd44aFXi/khKtVuLRUKqvl/9nQLafdfs23Ulf17Zk+QqAH0bLrShCvPSSNgIEyDZFQ4POA6opqatWBd6voUGI1FS571//2vbym2+6j+gNHqw/k6xtFGL+/MD7uVxCDB8u922X5vvPf7r3fKamyutaF/V61nNNqeeo3Uh3cbE20gTIVJR9+3Qe+/33tZZaR9Qeg2HD2lqU5865Zww4HDLlT5fz57WY2FEr8c03tQ62by+o2lqtD0bdfvlLnY3dlhYtZ6ejHBm1g83hkJVGIbMVp093P/b48To7C4XQep1279b5AXvGEVuUuaBAa9SnpMiU8khLg1MUWblYvVrLxFC3Hj3kjaO7wqdPa6uMgW+8IcTSpbL/9e673UdsjGxJSXJ6wJNPynCgJ/EjYm3cqJ3IAQOEePttXR9j4ycc1EkrgbrRy8vlPnFxfh92LpcQV68aPPYzz2itYH9eeUW7i/w8nU+fDuL+V7u7H3jA/z47d2o9fc8+63OXykr9afdt9uyR39m3r/8h+7fe0rpN/PQsv/uuwQaAEDKqqTUtf0/869e1xqHe1EA9vvxSq2H7q7hUVmqTmrKzfZaxokJOQTPks8+037KkRNdHbFEB8CHYcl+8KC/5/fsNZpKovbAdXStqJfzOO73SMmprhdi2Td4aukZdVLt3a8MngXo9t2zRnsQeger6dflQ3r5dDpLopt5LiYmBU/7UFM6YGK/0vJs3ZZ3t9df1ZaK6FVp9iJ4963+/qiqtseBRYW9qkvfR2rVyQEU3RZGxCwjcWmtoEOL22+V++flub7W2yuf+mjVCFBUZrLOqo32BRpBdLi2GzZnjVfwDB2Q/0M6d7vPNOjR/vvzOJ57Q/RE7xhHblLmszD0NIitL9mjYuRF044a8rxYs0DqI1S02Vk6O+fvf9aUZh1Brq0wNPXVKiHfeEWLXLhlW166Vj4D162VK/htvyL6Z0lK5v51/irD48EMtzQCQE2xragJ+hI2fcFBnF0+aJLvFPB0/rlVGx48P7bGLi7UeDF8V8XXrtAvkD38I7bEvXdIaF75qHYWFWuXiySeDGk72q7lZpt4A8snv6cABLR/nqadCGz0URVsp4513vN+/ckXrIU9Kkr9/KE2ZIr/7+ee93/v8cy2FasQIg/l8OqiTHWbO1LW7bSoAHrq83BcvavdSVZXvfT78ULufdK3GotM332ijhIcO+d6nqkquCAPoX2BFD0XRhk/+9jff+9y4IRt7ahwJpUD3khBylERtKIwfH9o4kpvb8b305JNaD6evZ0uw1BG3QKtSqJ1m3buHtqv54EH5vcnJOlalkOwYR2xV5uZmIVas0PJ1Abmoz5//bCAtwSSKIkdS//EPmUYxYoTWSaduCQlydHn9+uhJ74t09fWyQz0+XsaSbxd18oeNn3A4dEiruNx7r8xNV+3cqaXFjRjR8fwYoxRFq+x6TqpXJ7YCcuw1HN0HDz3kuwdx3z5tEuHcuaFt+KjUVYvmzXN//eOPtSD+s5+FZzKneuwZM9y72auqtPz81FTdIySGbN8uvz8jw/03vXZNW5Htrrt0zD4OgjpfICbG5zwmT7aqALRjSrknTtQa654qKrRcxUCjvMF6/HH53T/5iXecqK2VFSFAjnIbnbHbkT/+UatseQ4hNDZqSxr17x/6xvzOnfK7v/td7/xxl0trfHTvrut6N+Tjj7WKma+U6faT0nXnQut09aoWn311Hu3bpzW0g1xdyS+XS+s8eu01XR+xYxyxY5lFba1MJW+fQxsbKyenrFkjJ7TpbLCGnKLI8h0/LucnLlok6x9qp4znduedcpRx716dK0iRLZ09q2vBHDZ+wmX/fq1ykpgo8xLVhzogZ6XqngBgkJqzn5golxw6cEAGB7VBlpcXvnFTdWQpPl4uObJnj8wlUxt8jzwS+sqS6uhR7dgzZshGwYkT2ozviRPDF6jVCUOAnHSwdq2szKgTEO64I/SVJdXNm1qe9rhxsnfu7Fkt/TI93f/oQSioazj7qqR7sGUFQJhU7iNH5Hl1OOQoiKLIiuKuXdp8wcxM93WlQ6WiQhspzc+Xx1Vzm9T0grS00HfeCKFN/ANkmoraACor01ag6dbNa7GUkGhulhOkAJmYr46uVFdrq8E5HD5Xa+w0RdHW+x8zRqa0CiHzBtVsAsB9XelQUlebueMOmdIqhOzIWbVKS62dMyc8zw515Ck5WddkTzvGETuWuc1XX8mGqZrB0H6Lj5f35RNPyFjx1lvyuVtdHfzoZFOT7LmvqJCdyTt2yEmUixfLOkRWlv9GjtqBMGqUvG8KCnSueELRhI2fcPriC5n65nlj5uWFdynJS5fkje8rKCxcGN6E0fp6rcfac5s2zWAyuEEul1Z58NxGjQp/Pu+WLbI32vPYQ4aEP/iqiy54brfdJtfFDCe1kp6Q0OGsertWAEwr99NPa79l//5aowCQFYAOhvY7RV0SHpDzUdqvJHDHHYHnxXSWOgKjjsKoaW6AnOh/5Ej4jn30qNbw69VL3r9q2kxCgpxIFS7nzmmrRfToISubascRENSSrrrduKE1bNXKY/uVK2bPDl/8bm2V89sAXX+qwY5xxI5l9unTT2UH2+TJ7vHI39atmxzZu+sueS9lZcl5wWPGyGts2DCZoXDXXXI6QPvrXc/Wv79cyjI3V3YSlZWFt55BEYGNn3BzuWSPRXy8HC7+y1+65riKIuf/PPWUlr8f6rkugZSXy0Xo1ZWoJk/umuFx9f/93HPa3IHvfz+8lcT2mprkKJ/aCLr//q7Lka6ulnn56rJP3/mOznV2Q2D2bPn/7mBmven3Y5BMK7fLJf/YXvsKQa9ecg3VcN9PiiJn3bZfp9XplA0yA0uKBm3HDm3UFpANkBkzOpzIGhL792vpw+o2caLBVQyC5DnhHJAVxPffD/+xL1zQUpfVrV8/mTkQ7mfHl1/KkT4dKUl2jCN2LHOHFEWOEu7cKZeLnjNHPvPS07UOhM5sSUlyCeoJE+Tf4Fi8WNan9uyRnXq6lxQkcmfkfnQIIQRspr6+HsnJyairq0NSUpJ5BTl/HmhpAe65p+uP3dgInDsHDBsGOBxde+zWVuC//wUyM4HY2K49NgBUVwMpKUCPHl173OZm4KOPgPvuA5zOrj02AHzxhfyt+/Tp+mMHYJn70SDTy33jhryPEhPlfZyQ0HXHvnkTKCuT19Pw4V17L33zDVBaKu+nzEygd++uO3ZLC1BSIs/94MFA//5dd2xFkef88mUgI0M+N7oqdgsBfPIJ8NlnQN++wMiR5sTuAEy/H4NgxzJ3ihAydly9Cnz1FdDUJO9jdYuL896SkoDkZLn17Gm5644ih5H70dTGz4YNG7BmzRpcvnwZQ4YMwauvvors7OwOPxd1AYfIwsy8H4ONIQDjCJGV2DGOMIYQWYeR+zGmi8rkpaCgALm5uVi2bBlKSkqQnZ2NSZMmoaamxqwiEZGNMIYQUWcxjhBFH9NGfu677z6MGjUKGzdubHtt8ODBmDZtGvLz8wN+lr0tRNZh1v3YmRgCMI4QWYkd4whjCJF1WH7k59atWzh58iRycnLcXs/JycHx48e99m9ubkZ9fb3bRkTRy2gMARhHiMgd6yJE0cmUxs/Vq1fhcrmQmprq9npqaiquXLnitX9+fj6Sk5Pbtv5dOUmViCzHaAwBGEeIyB3rIkTRybQ5PwDg8FjpRgjh9RoAPPfcc6irq2vbLly40FVFJCIL0xtDAMYRIvKNdRGi6BJnxkFTUlIQGxvr1bNSW1vr1QMDAE6nE04zlhYmIksyGkMAxhEicse6CFF0MmXkJyEhAVlZWSgqKnJ7vaioCA8++KAZRSIiG2EMIaLOYhwhik6mjPwAQF5eHubOnYvRo0fjgQcewObNm1FTU4P58+ebVSQishHGECLqLMYRouhjWuPnkUcewbVr17BixQpcvnwZQ4cOxbvvvosBAwaYVSQishHGECLqLMYRouhj2t/56QyurU9kHXa9H+1abqJIZMf70Y5lJopURu5H00Z+OkNtr3GNfSLzqfeh3fpRGEeIrMOOcYQxhMg6jMQQWzZ+GhoaAIBr7BNZSENDA5KTk80uhm6MI0TWY6c4whhCZD16Yogt094URcGlS5fQs2dPv3/TQ1VfX4/+/fvjwoULHJbuJJ7L0Ii08yiEQENDA9LT0xETY+qfDjNEbxyJtN/LTDyXoRNp59KOccRIXSSc7HotsNxdK9LLbSSG2HLkJyYmBv369TP0maSkJFv92FbGcxkakXQe7dJT257ROBJJv5fZeC5DJ5LOpd3iSDB1kXCy67XAcnetSC633hhij+4VIiIiIiKiTmLjh4iIiIiIokLEN36cTieWL18Op9NpdlFsj+cyNHge7YW/V+jwXIYOzyWp7HotsNxdi+XW2HLBAyIiIiIiIqMifuSHiIiIiIgIYOOHiIiIiIiiBBs/REREREQUFdj4ISIiIiKiqBDRjZ8NGzZg4MCBSExMRFZWFo4ePWp2kSwvPz8fP/jBD9CzZ0/06dMH06ZNQ0VFhds+Qgi88MILSE9PR7du3TBhwgScPn3apBLbQ35+PhwOB3Jzc9te43m0B8YRYxhDwodxhPzxdW1Y1cWLFzFnzhz07t0b3bt3x4gRI3Dy5EmzixVQa2srfv/732PgwIHo1q0bMjIysGLFCiiKYnbRvBw5cgQPP/ww0tPT4XA4sGfPHrf3rRozApW7paUFS5YsQWZmJnr06IH09HQ89thjuHTpUlDHitjGT0FBAXJzc7Fs2TKUlJQgOzsbkyZNQk1NjdlFs7TDhw9jwYIF+Pe//42ioiK0trYiJycHX3/9dds+q1evxssvv4x169bhxIkTSEtLw49//GM0NDSYWHLrOnHiBDZv3oxhw4a5vc7zaH2MI8YxhoQH4wj54+/asKLr169j7NixiI+Px3vvvYczZ87gpZdeQq9evcwuWkB/+tOfsGnTJqxbtw6ffPIJVq9ejTVr1uC1114zu2hevv76awwfPhzr1q3z+b5VY0agcjc2NuLUqVN4/vnncerUKRQWFqKyshJTp04N7mAiQo0ZM0bMnz/f7bVBgwaJpUuXmlQie6qtrRUAxOHDh4UQQiiKItLS0sSqVava9mlqahLJycli06ZNZhXTshoaGsTdd98tioqKxPjx48WiRYuEEDyPdsE40nmMIZ3HOEL++Ls2rGrJkiVi3LhxZhfDsClTpojHH3/c7bXp06eLOXPmmFQifQCI3bt3t/3bLjHDs9y+FBcXCwCiurra8PdH5MjPrVu3cPLkSeTk5Li9npOTg+PHj5tUKnuqq6sDANx2220AgKqqKly5csXt3DqdTowfP57n1ocFCxZgypQp+NGPfuT2Os+j9TGOhAZjSOcxjpA//q4Nq9q7dy9Gjx6NGTNmoE+fPhg5ciRef/11s4vVoXHjxuHAgQOorKwEAJSVleHYsWOYPHmyySUzJpJiRl1dHRwOR1CjhnGhL475rl69CpfLhdTUVLfXU1NTceXKFZNKZT9CCOTl5WHcuHEYOnQoALSdP1/ntrq6usvLaGW7du3CqVOncOLECa/3eB6tj3Gk8xhDOo9xhPwJdG1Y1fnz57Fx40bk5eXhd7/7HYqLi/Gb3/wGTqcTjz32mNnF82vJkiWoq6vDoEGDEBsbC5fLhZUrV2LWrFlmF82QSIkZTU1NWLp0KR599FEkJSUZ/nxENn5UDofD7d9CCK/XyL+FCxfiP//5D44dO+b1Hs9tYBcuXMCiRYvwwQcfIDEx0e9+PI/Wx98oeIwhncM4Qv7ovTasRlEUjB49Gi+++CIAYOTIkTh9+jQ2btxo6cZPQUEBtm3bhh07dmDIkCEoLS1Fbm4u0tPTMW/ePLOLZ5idY0ZLSwtmzpwJRVGwYcOGoL4jItPeUlJSEBsb69U7W1tb69XaJd9+/etfY+/evTh48CD69evX9npaWhoA8Nx24OTJk6itrUVWVhbi4uIQFxeHw4cPY+3atYiLi2s7VzyP1sU40jmMIZ3HOEL+dHRtuFwus4voU9++fXHvvfe6vTZ48GDLLyLzzDPPYOnSpZg5cyYyMzMxd+5c/Pa3v0V+fr7ZRTPE7vG3paUFv/jFL1BVVYWioqKgRn2ACG38JCQkICsrC0VFRW6vFxUV4cEHHzSpVPYghMDChQtRWFiIf/3rXxg4cKDb+wMHDkRaWprbub116xYOHz7Mc9vOD3/4Q5SXl6O0tLRtGz16NGbPno3S0lJkZGTwPFoc40hwGENCh3GE/Ono2oiNjTW7iD6NHTvWa+n7yspKDBgwwKQS6dPY2IiYGPcqc2xsrCWXug7EzvFXbficO3cO+/fvR+/evYP/MsNLJNjErl27RHx8vNiyZYs4c+aMyM3NFT169BD/+9//zC6apf3qV78SycnJ4tChQ+Ly5cttW2NjY9s+q1atEsnJyaKwsFCUl5eLWbNmib59+4r6+noTS259nivx8DxaH+OIcYwh4cU4Qv7YYbW34uJiERcXJ1auXCnOnTsntm/fLrp37y62bdtmdtECmjdvnvje974n9u3bJ6qqqkRhYaFISUkRzz77rNlF89LQ0CBKSkpESUmJACBefvllUVJS0rYqmlVjRqByt7S0iKlTp4p+/fqJ0tJSt2dLc3Oz4WNFbONHCCHWr18vBgwYIBISEsSoUaPallol/wD43LZu3dq2j6IoYvny5SItLU04nU7x0EMPifLycvMKbROeDyaeR3tgHDGGMSS8GEfIHzs0foQQ4u233xZDhw4VTqdTDBo0SGzevNnsInWovr5eLFq0SNx+++0iMTFRZGRkiGXLlgVV8Q63gwcP+ozB8+bNE0JYN2YEKndVVZXfZ8vBgwcNH8shhBDBjxsRERERERHZQ0TO+SEiIiIiIvLExg8REREREUUFNn6IiIiIiCgqsPFDRERERERRgY0fIiIiIiKKCmz8EBERERFRVGDjh4iIiIiIogIbP0REREREFBXY+CEiIiIioqjAxg8REREREUUFNn6IiIiIiCgqsPFDRERERERR4f+V/iBbCDIYLAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz8AAAF0CAYAAAANVYfFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADgdElEQVR4nOxdeZgUxfl+Z2f2vtiDZXcRATlEDgmiUfEAEVAU8Ip4RCNGE+OVECUmXhEThajxxHjEKGgQMf4Ub1AQJSJiAEHuSwE5drnZZe+dmf79UVPTPT3dPd0z3VU9M/U+zz49O9vbX1d3dfX31vt9X3kkSZIgICAgICAgICAgICCQ4sjgfQICAgICAgICAgICAgIsIMiPgICAgICAgICAgEBaQJAfAQEBAQEBAQEBAYG0gCA/AgICAgICAgICAgJpAUF+BAQEBAQEBAQEBATSAoL8CAgICAgICAgICAikBQT5ERAQEBAQEBAQEBBICwjyIyAgICAgICAgICCQFhDkR0BAQEBAQEBAQEAgLSDIj0AEZsyYAY/Hg5ycHOzYsSPq78OGDUP//v05nFnimDBhArp168b7NAQE0g5LlizB5MmTceTIEd6nYhoejweTJ0/mfRoCAq4A9Q3oT05ODiorK3HOOedg6tSp2LdvH+9TtBXz5s3DhRdeiI4dOyI7OxtdunTBddddh/Xr18d9zKamJkyePBlffPGFfSdqgPXr12Py5MnYvn07E3vJBEF+BDTR2tqK++67j/dpCAgIpACWLFmCBx98MKnIj4CAQDSmT5+Or7/+GvPnz8c//vEP/OQnP8EjjzyCE044AQsWLOB9erbgrrvuwujRoxEMBvHcc89h/vz5eOCBB7Bs2TKcdNJJeOedd+I6blNTEx588EGm5OfBBx8U5EcDgvwIaOL888/HrFmz8N133zlmo7m52bFjCwgICAgICNiL/v3747TTTsNZZ52Fyy67DE8++SRWr16N/Px8XHrppdi7dy/vU0wIb7zxBh577DHcfPPNmDt3Li6//HKcffbZuPHGG7Fs2TL0798f1157LX744QfepyqQAAT5EdDEXXfdhbKyMvzxj3803K+lpQV33303unfvjqysLHTu3Bm33npr1Axvt27dMGbMGLzzzjsYNGgQcnJywjMgHo8Hs2bNwh//+EdUVVWhoKAAY8eOxd69e3H06FH8+te/Rnl5OcrLy3H99dejoaEh4tj/+Mc/cPbZZ6OiogL5+fkYMGAAHn30UbS3t9t9WQQEBCxi8uTJ+MMf/gAA6N69ezhsxuzs55YtW3D11VejoqIC2dnZOOGEE/CPf/wj/Pf9+/cjKysL999/f9T/bty4ER6PB88880x431tuuQV9+/ZFQUEBKioqMHz4cHz55ZeJN1RAIE1x7LHH4vHHH8fRo0fx4osvRvxt+fLlGDduHEpLS5GTk4NBgwbhP//5T8Q+NKTu888/x80334zy8nKUlZXh0ksvxZ49eyL2XbhwIYYNG4aysjLk5ubi2GOPxWWXXYampqbwPm1tbXjooYfQp08fZGdno2PHjrj++uuxf//+mG15+OGHUVJSgr///e9Rf8vPz8e0adPQ1NSEJ598Mvz9sGHDMGzYsKj9laH227dvR8eOHQEADz74YHgcnDBhAgAyTno8HqxcuRKXXnopioqKUFxcjGuuuSbqvPVCcrt16xY+3owZM3D55ZcDAM4555ywvRkzZsS8BukAH+8TEHAnCgsLcd999+F3v/sdFi5ciOHDh0ftI0kSLr74Ynz22We4++67cdZZZ2H16tV44IEH8PXXX+Prr79GdnZ2eP9vv/0WGzZswH333Yfu3bsjPz8fjY2NAIB77rkH55xzDmbMmIHt27dj0qRJuOqqq+Dz+TBw4EC88cYbWLlyJe655x4UFhaGnRkA+P7773H11VeHCdh3332Hhx9+GBs3bsQrr7zi/MUSEBDQxY033ohDhw5h2rRpeOedd1BVVQUA6Nu3b8z/Xb9+PYYMGRJ2riorK/HJJ5/gt7/9LQ4cOIAHHngAHTt2xJgxY/Dqq6/iwQcfREaGPKc3ffp0ZGVl4ec//zkA4NChQwCABx54AJWVlWhoaMCcOXMwbNgwfPbZZ5oOjICAQGxccMEF8Hq9+O9//xv+7vPPP8f555+PU089FS+88AKKi4sxe/ZsXHHFFWhqago76hQ33ngjLrzwQsyaNQs7d+7EH/7wB1xzzTVYuHAhAEIgLrzwQpx11ll45ZVX0KFDB+zevRvz5s1DW1sb8vLyEAwGcdFFF+HLL7/EXXfdhSFDhmDHjh144IEHMGzYMCxfvhy5ubmabaipqcG6detwxRVXIC8vT3Of008/HRUVFZg/f76l61NVVYV58+bh/PPPxw033IAbb7wRAMKEiOKSSy7B+PHj8Zvf/Abr1q3D/fffj/Xr1+Obb75BZmamaXsXXnghpkyZgnvuuQf/+Mc/cNJJJwEAevToYem8UxaSgIAC06dPlwBIy5Ytk1pbW6XjjjtOOvnkk6VgMChJkiQNHTpU6tevnyRJkjRv3jwJgPToo49GHOPNN9+UAEj//Oc/w9917dpV8nq90qZNmyL2/fzzzyUA0tixYyO+nzhxogRA+u1vfxvx/cUXXyyVlpbqnn8gEJDa29ul1157TfJ6vdKhQ4fCf7vuuuukrl27mr8YAgICtuCxxx6TAEjbtm2z9H/nnXeedMwxx0h1dXUR3992221STk5O+Pl+//33JQDSp59+Gt7H7/dL1dXV0mWXXaZ7fL/fL7W3t0vnnnuudMkll0T8DYD0wAMPWDpfAYFUhdI30EOnTp2kE044Ifx7nz59pEGDBknt7e0R+40ZM0aqqqqSAoFAxLFvueWWiP0effRRCYBUU1MjSZIk/d///Z8EQFq1apXuObzxxhsSAOntt9+O+H7ZsmUSAOm5557T/d+lS5dKAKQ//elPuvtIkiSdeuqpUm5ubvj3oUOHSkOHDo3aT+1z7N+/X3dceeCBByQA0u9///uI719//XUJgDRz5szwd3rH6Nq1q3TdddeFf3/rrbckANLnn39u2J50hAh7E9BFVlYWHnroISxfvjxKpgYQno1Rz95cfvnlyM/Px2effRbx/YknnojevXtr2hozZkzE7yeccAIAMnuh/v7QoUMRoW8rV67EuHHjUFZWBq/Xi8zMTPziF79AIBDA5s2bzTVWQEDAVWhpacFnn32GSy65BHl5efD7/eGfCy64AC0tLVi6dCkAYPTo0aisrMT06dPD///JJ59gz549+OUvfxlx3BdeeAEnnXQScnJy4PP5kJmZic8++wwbNmxg2j4BgVSDJEnhz1u3bsXGjRvDqqv6+a2pqcGmTZsi/n/cuHERv5944okAEK48+5Of/ARZWVn49a9/jVdffVUz7+bDDz9Ehw4dMHbs2AibP/nJT1BZWWlLsQFJkuDxeBI+jhbo9aIYP348fD4fPv/8c0fspSsE+REwxJVXXomTTjoJ9957b1QOzcGDB+Hz+aJkW4/Hg8rKShw8eDDiexruooXS0tKI37Oysgy/b2lpAQD8+OOPOOuss7B79248/fTT+PLLL7Fs2bJwToAoqiAgkJw4ePAg/H4/pk2bhszMzIifCy64AABw4MABAIDP58O1116LOXPmhPMNZ8yYgaqqKpx33nnhYz7xxBO4+eabceqpp+Ltt9/G0qVLsWzZMpx//vlirBAQSACNjY04ePAgqqurASBc+GDSpElRz+8tt9wCQH5+KcrKyiJ+p2Hz9Nns0aMHFixYgIqKCtx6663o0aMHevTogaeffjr8P3v37sWRI0eQlZUVZbe2tjbKphLHHnssAGDbtm2Gbd2xYwe6dOkS85rEg8rKyojffT4fysrKovwpgcQgcn4EDOHxePDII49g5MiR+Oc//xnxt7KyMvj9fuzfvz+CAEmShNraWpxyyilRx7Ib7777LhobG/HOO++ga9eu4e9XrVpluy0BAQF2KCkpgdfrxbXXXotbb71Vc5/u3buHP19//fV47LHHwjkF77//PiZOnAiv1xveZ+bMmRg2bBief/75iOMcPXrUmUYICKQJPvroIwQCgXDeXHl5OQDg7rvvxqWXXqr5P8cff7xlO2eddRbOOussBAIBLF++HNOmTcPEiRPRqVMnXHnlleFiCfPmzdP8/8LCQt1jV1VVoV+/fvj000/R1NSkmffz9ddfY+/eveFiAgCQk5ODurq6qH2NiJYeamtr0blz5/Dvfr8fBw8ejCCG2dnZaG1tjfpfQZDMQ5AfgZgYMWIERo4cib/85S8Rsx3nnnsuHn30UcycORO///3vw9+//fbbaGxsxLnnnuv4uVFCpSysIEkSXnrpJcdtCwgImIN6BtcM8vLycM4552DlypU48cQTw6qvHk444QSceuqpmD59OgKBAFpbW3H99ddH7OPxeCLGCgBYvXo1vv76a8dmcgUEUh0//vgjJk2ahOLiYtx0000ACLHp1asXvvvuO0yZMsV2m16vF6eeeir69OmD119/Hd9++y2uvPJKjBkzBrNnz0YgEMCpp55q+bj33nsvrr76akyaNAnPPfdcxN8aGxvx29/+Fnl5eRE+T7du3fDWW2+htbU1PL4cPHgQS5YsQVFRUXg/M+Pg66+/jsGDB4d//89//gO/3x9RjKVbt25YvXp1xP8tXLgwqhJuPONuukCQHwFTeOSRRzB48GDs27cP/fr1AwCMHDkS5513Hv74xz+ivr4eZ5xxRrja26BBg3Dttdc6fl4jR45EVlYWrrrqKtx1111oaWnB888/j8OHDztuW0BAwBwGDBgAAHj66adx3XXXITMzE8cff7zhLCzd/8wzz8RZZ52Fm2++Gd26dcPRo0exdetWfPDBB+G8Q4pf/vKXuOmmm7Bnzx4MGTIkamZ5zJgx+Otf/4oHHngAQ4cOxaZNm/CXv/wF3bt3h9/vt7fRAgIpiLVr14bzaPbt24cvv/wS06dPh9frxZw5cyKiQF588UWMHj0a5513HiZMmIDOnTvj0KFD2LBhA7799lu89dZblmy/8MILWLhwIS688EIce+yxaGlpCVd0HTFiBAASqv/666/jggsuwO9+9zv89Kc/RWZmJnbt2oXPP/8cF110ES655BJdG1dddRW+/fZb/P3vf8f27dvxy1/+Ep06dcKmTZvw5JNP4vvvv8esWbNw3HHHhf/n2muvxYsvvohrrrkGv/rVr3Dw4EE8+uijEcQHIKpT165d8d577+Hcc89FaWkpysvLw+WwAeCdd96Bz+fDyJEjw9XeBg4ciPHjx0fYu//++/HnP/8ZQ4cOxfr16/Hss8+iuLg4wl7//v0BAP/85z9RWFiInJwcdO/ePSq8MC3Bt96CgNtgVNHl6quvlgCEq71JkiQ1NzdLf/zjH6WuXbtKmZmZUlVVlXTzzTdLhw8fjvjfrl27ShdeeGHUMWm1t7feesvUedCKKPv37w9/98EHH0gDBw6UcnJypM6dO0t/+MMfpLlz50ZVORHV3gQE+OHuu++WqqurpYyMDEsViLZt2yb98pe/lDp37ixlZmZKHTt2lIYMGSI99NBDUfvW1dVJubm5EgDppZdeivp7a2urNGnSJKlz585STk6OdNJJJ0nvvvuu5tgAUe1NQCAM+k6mP1lZWVJFRYU0dOhQacqUKdK+ffs0/++7776Txo8fL1VUVEiZmZlSZWWlNHz4cOmFF16IOrb6fU/9AzpWfP3119Ill1wide3aVcrOzpbKysqkoUOHSu+//37E/7W3t0t///vfw35BQUGB1KdPH+mmm26StmzZYqq9H3/8sXTBBRdIZWVlUmZmptS5c2fp2muvldatW6e5/6uvviqdcMIJUk5OjtS3b1/pzTff1BxXFixYIA0aNEjKzs6WAISrs1HfZsWKFdLYsWOlgoICqbCwULrqqqukvXv3RhyjtbVVuuuuu6QuXbpIubm50tChQ6VVq1ZFVXuTJEl66qmnpO7du0ter1cCIE2fPt1U+1MdHklSlOcQEBAQEBAQEBAQEGCGyZMn48EHH8T+/fvD+VICzkFUexMQEBAQEBAQEBAQSAuInB8BAQEBAaYIBoMIBoOG+/h84vUkICAgIGA/RNibgICAgABT0BAPI2zbti0iEVhAQEBAQMAOiLA3AQEBpnj++edx4oknoqioCEVFRTj99NMxd+7c8N8nTJgAj8cT8XPaaadFHKO1tRW33347ysvLkZ+fj3HjxmHXrl2smyIQJ379619j2bJlhj90sUQBAQEBAQE7IZQfAQEBpvjggw/g9XrRs2dPAMCrr76Kxx57DCtXrkS/fv0wYcIE7N27F9OnTw//T1ZWFkpLS8O/33zzzfjggw8wY8YMlJWV4c4778ShQ4ewYsWKiEUtBQQEBAQEBASUEORHQECAO0pLS/HYY4/hhhtuwIQJE3DkyBG8++67mvvW1dWhY8eO+Pe//40rrrgCALBnzx506dIFH3/8Mc477zyGZy4gICAgICCQTEjKjNJgMIg9e/agsLAQHo+H9+kICKQ1JEnC0aNHUV1djYwMa5G0gUAAb731FhobG3H66aeHv//iiy9QUVGBDh06YOjQoXj44YdRUVEBAFixYgXa29sxatSo8P7V1dXo378/lixZYpr8iHFEQMA9SGQc4QUxhggIuAdWxpCkJD90lldAQMA92LlzJ4455hhT+65Zswann346WlpaUFBQgDlz5qBv374AgNGjR+Pyyy9H165dsW3bNtx///0YPnw4VqxYgezsbNTW1iIrKwslJSURx+zUqRNqa2t1bba2tqK1tTX8++7du8M2BQQE3AEr4whvCF9EQMB9MDOGJCX5KSwsBEAaWFRUxPlsBATSG/X19ejSpUv4uTSD448/HqtWrcKRI0fw9ttv47rrrsOiRYvQt2/fcCgbAPTv3x8nn3wyunbtio8++giXXnqp7jElSTKcfZ06dapmhTExjggI8Ec84whvCF9EQMA9sDKGJCX5oQ4OrRYlICDAH1bCPrKyssIFD04++WQsW7YMTz/9NF588cWofauqqtC1a1ds2bIFAFBZWYm2tjYcPnw4Qv3Zt28fhgwZomvz7rvvxh133BH+nQ6UYhwREHAPkil8TPgiAgLug5kxJDkCawUEBFIakiRFhKQpcfDgQezcuRNVVVUAgMGDByMzMxPz588P71NTU4O1a9cakp/s7OywkyKcFQEBAQEBgfREUio/AgICyYt77rkHo0ePRpcuXXD06FHMnj0bX3zxBebNm4eGhgZMnjwZl112GaqqqrB9+3bcc889KC8vxyWXXAIAKC4uxg033IA777wTZWVlKC0txaRJkzBgwACMGDGCc+sEBAQEBAQE3AxBfgQEBJhi7969uPbaa1FTU4Pi4mKceOKJmDdvHkaOHInm5masWbMGr732Go4cOYKqqiqcc845ePPNNyPieJ988kn4fD6MHz8ezc3NOPfcczFjxgyxxo+AgICAgICAIZJynZ/6+noUFxejrq5OhK4ICHBGsj6PyXreAgKpiGR8HpPxnAUEUhVWnkeR8yMgICAgICAgICAgkBYQ5EdAQEBAQEBAQEBAIC0gyI+AgICAgICAgICAQFpAkB8BAQEBAQEBAQEBgbSAID8CAgICAgICAgICAmkBQX4EBAQEBAQEBAQEBNICgvwICITQ2gpcdx0wezbvMxEQSH7wXEShvh44dIiP7e3bgYUL+dheuxZ46CGguZm97VWrgJ/9DNi4kb3tVEdLC/DUU8Af/gBs3cr7bAQEYuPHH4ErrwRGjwYWL+Z9NtEQ5Mel2LEDuPlmYNMm9rbXrweOPx6YOZO9bQBYvRo4eJC93a+/Bl57jTgPPLBtG7n2AqmD/fuBiROBNWvY2z5yBBgxAvjXv9jbbmoiY8jPfsbedjAI9OoFHHMMOQ/W6NEDOPdc4Jtv2NseNAi4/35g6lT2ti+8EHj7beDii9nbTmVIEjBhAvD73wN//ztwyinA5s28z0pAQB+NjcB55wFvvgnMmweMGgWsXMn7rCIhyI8ODh4EhgwBnnuOj/0ZM4AXXgCef5697QULyOD6f//H3vb33wMDB/Jxmhobybahgb1tADjzTPJi42VfwH5MmgQ8/TS5r6zx1FPAZ58Bv/oVe9uffw5s2UKc4bY2trb37gX27SPqB+vJo2CQ/ADkGrCG30+2Cxawt71nD9nymLBLZXzyCXEiASA/n0xq/Pa3XE9JQMAQM2YQBbikhExENTcT1dJNEORHB199RZSAf/6Tj/2jRyO3LEFDJniETmzfTrY//MDedksL2fJod3s7cR6amoADB9jbF3AGS5eSbWsre9vKfhQIsLWtHLd+/JGt7R075M87d7K1vW+f/Jk16VOGGbK2LeAcXniBbH/3OxJamJVFCNGyZVxPS0BAE5IEPPMM+fzXvwKffkr67GefEZ/aLRDkRwft7WRbV8fHPk8CwtM2DVOhRIQlqIPK85rzsi/gDAoK5M+sCYgSu3eztackPNu2sbVNJ1B42Fa2mzXxOnxY/syzrwnYh/37gQ8/JJ9vugno2RO4/HLy+0sv8TsvAQE9rFlDIodyc0kOdbduJPcHAF59leupRUCQHx3wJj88VQhqkwcBoeSHR7tpe3nkCSjby+O6CzgDn0/+zDoBv6ZG/sya/NAQKPVnFti7V/6sVGJYQKm2sb7fyjxJ1kqjurgFDf0TSAwLFhAiO3AgcMIJ5Dsaxjp7Nh9FWUDACHPnku3w4fLk3y9+QbZu6rOC/OiAxk7X1fGpWuQG8pNutuk1DwRk8ssKSsLFo+2BACk0IZwWe6F0SFmHsB45ws82zZ/jYVv5LAnbbKB2aETeoj2guVsjRsjfnXUWUFVF7vEXX3A5LQEBXcybR7bnny9/d845QKdOxJ/+8ks+56WGID86oM5vMMhnIE9XAkJf4H6/TEBZQfkCZ63+8A57mzaNzC7S+HIBe6DsR/X1bG0r+1E6OeI82y1sE7Du66mKzz4jWyX5ycgAxo4ln99/n/05CQjoob1dznNV99kLLiCfP/6Y/XlpQZAfHSgdbx6hb1SF4BEC5QbVSXkerKC0x7rtvMPe6NocYg0Je+EWh1TYZgM3kT6WEQvq8ZJHoZ5Uw969pHiHxwOccUbk38aNI1s6yy4g4AasW0f8l6IioHfvyL9deCHZ0rA43hDkRwfKsCdl+AgruIGA8FR+eNhXKj+sbfMOe6MztW6Jx00VKO9lOik/goDwtR0MslWvBfmxHytWkO3xxwOFhZF/O/tswOslVVFZV1MUENADrUB48slE7VFi+HCy3biRFPLgDUF+dKAkPzyVn3QjP25RftIt7I06K6LYgn0IBiPJZDqRAEFA+F5z1vZF2Jv9+PZbsh08OPpvhYXy2mE81pMSENACJT8//Wn030pKgL59yeclS9idkx4E+dEB77A3NxCQlhb2xR7SVfnhHfZGnRVBfuyD+lryVH6E6sQGatKXLqFnQvmxH1T5Oekk7b+fcw7ZLlrE5nwEBGJh9WqyHTRI++80fPOrr9icjxEE+dGBCHsjYB0GpXQe0kn54R32Rp0VEfZmH3jPhgsCwrfdfj/b58lN5EdZ7U8gPqxZQ7Y/+Yn234cMIdv//Y/J6QgIGEKSgPXryed+/bT3oeRn8WI252QEQX50wFv5cQv54amAsLbtloIHPHN+hPJjH9T3kSWhlqRI+6wrVirbytq2st2snXCe91xtm+WzzNN2KqKlRV6gl67vowYNe1u/XihtAvyxezfph14v0KuX9j5nnkm2K1bwHyME+dGBW3J+eISe8XTE3RL2xjPnh8egIHJ+7AdPh7C9PXLNJtb3lWd/5mlbPW7wJCAsx0+etlMRW7eS57e4GKis1N6nUyega1fiH9AQOQEBXqCqT69eQFaW9j7HHUf6bVsbsHw5u3PTgiA/OlAqPzzC3ujLQ5JIR+FhW/2Zte10KnXNO+xNKD/2Q30tWd5Xnk642j5P2zzHL9b23US8xDiSGOjSA336kFLXeqCJ5SL0TYA3NmwgW1rUQAvKsu28834E+dGBW5QfIL1CsNyi/KQT6Wtvl22KnB/74KYwpHTqz0p7gQDbxZJ53nO1LZ62hfKTGJTkxwiU/HzzjbPnIyAQC5s2kW2sPnvqqWTLW60U5EcHPAseSJJ7HPF0sp2upa6V8eJixtY+8CQgPB1htVrNuj+rlXKWbXeT7XTpb6kI6kgef7zxfkL5EXALvv+ebHv0MN6PVoJbtcrR04kJQX50wLPgAc9ZNHWiNE/lh/ULNF0XORXkxxnwdAh5OsJqpYV1n+LZduWkGWvbPImXut1iHEkMP/xAtrEcyZNOIotJ7toF7Nnj/HkJCOjBbJ+l1Qu3bOFbqEOQHx3wDHvj6TSpE6XTiQS4Rflh7TgoSzALp8U+uMkJTydHmKd9NxGQdCF9qQha6e2444z3KyiQcyx4hxEJpC/8fmD7dvI5Vp/t2BHo3Jl8pusC8YAgPzrgWfCAp/LDO3zBLbkC6RTup5x9ETk/9iFdnXAt2ywrVrqJgPC+7ulgO9XQ3AzU1JDP3bvH3p/OpPN0JAXSGzt3Ep85K0smNkagfXblSkdPyxCC/OjATcpPOpUsTdeCBzzbLZQfZ5CuM/Fq2wBbUu2m0LN0VfuE8hM/6Ax6URFQWhp7/xNPJFtBfgR4geb7dO9OwjBjwQ15P4L86IBnwYN0Xq9BFDxgT0BEzo8zcJMzylMF4G2fx3WnDgAP2z4f2fIgXnR9DzGOxA+aO9G9u3GZawpBfgR4gxJ2M0olICs/gvy4EMqwt8ZGtuVS01X5CQQiHZd0KnjAk/QplR91zpdA/KB9OSeHbHkoEHl57G1TRzgnRyYBPOwXFpItDwJSVMTeNr3nPGzzbHeqgeb7mHUkKfnZvFkobgJ8sHs32XbpYm5/qvysWaMdKcAClsjP888/jxNPPBFFRUUoKirC6aefjrlz54b/LkkSJk+ejOrqauTm5mLYsGFYt25dxDFaW1tx++23o7y8HPn5+Rg3bhx27dplT2tshPqGKB1Ep5Gu5Ie36sRT+XFLtTdA5P3YBZ4OoZZtVnk31AnPypKJH6u2B4NkEgWQ286DdPKw7SbiJZzw+LFzJ9kee6y5/SsrSRJ5MAisX+/ceQkI6IG68MccY27/7t3JWNHWJq9pxRqWyM8xxxyDv/3tb1i+fDmWL1+O4cOH46KLLgoTnEcffRRPPPEEnn32WSxbtgyVlZUYOXIkjiq8q4kTJ2LOnDmYPXs2Fi9ejIaGBowZMwYB+sZyCdRKD8vQt3RdHFFNONIp58ct1d542E9VqBUIno5wMMhuhk0ZApWbSz6zaruyjW4hnaxtu6G/Od3uVJ6IpbPoZhLHARIaJ0LfBHiCPjZW+mz//uSz6rFkBkvkZ+zYsbjgggvQu3dv9O7dGw8//DAKCgqwdOlSSJKEp556Cvfeey8uvfRS9O/fH6+++iqampowa9YsAEBdXR1efvllPP744xgxYgQGDRqEmTNnYs2aNViwYIEjDYwXakeBZdEDofwQsHQcgkG+CzO6SfkRjos94BmGpLbN0j4dOzMz2Ss/ymfYDcpPuoW9sSJeqTwRa5X8ADL5+e47+89HQCAWaJ81q/wAQL9+ZMtLrYw75ycQCGD27NlobGzE6aefjm3btqG2thajRo0K75OdnY2hQ4diyZIlAIAVK1agvb09Yp/q6mr0798/vI9boFZ+0pX8sHyB8lR+1KFePAse8Mz5AZy/56nsuCihng3nMROfny9/x5qA8Ah7c4vy4wb1JZVJXypPxCZCfoTyI8ADVpUfQF6fKimUHwBYs2YNCgoKkJ2djd/85jeYM2cO+vbti9raWgBAp06dIvbv1KlT+G+1tbXIyspCSUmJ7j5aaG1tRX19fcSP01ArPyzD3txEfniGvbF0WtTkJ53C3ljn/KSy46KEG/JusrPZF1xQKj+sw95ouz0emfilm/riBttsC+Wwm4h12heRJEF+BJILTU3A4cPksxXlh5KfpFF+jj/+eKxatQpLly7FzTffjOuuuw7rFWfvUdVmlCQp6js1Yu0zdepUFBcXh3+6mC0pkQB4hr25KfQsXWyrHQWeBQ9aW9lWXOOZ85NKjosabsi7URKQdFJ+eBAvpf10UF+U4FFhj8dErNO+SF2d/C6wQn769CGE/+BBYP9+W09JQMAQlKzn5wPFxeb/j4a9bdmivTyC07BMfrKystCzZ0+cfPLJmDp1KgYOHIinn34alZWVABA1cOzbty88CFVWVqKtrQ2HKU3U2EcLd999N+rq6sI/O2k5FAdBw97o7KFQfpyHm8LeWNoOBqPts3RcWOf8AKnpuKjhtrwbHsoPr5wfHsRLaZ9nmW03hNyxaDePiVinfRHqSHboIJepN4O8PKBbN/JZVHwTYAllyJuZdakoqqvJeBEIkDLtrJHwOj+SJKG1tRXdu3dHZWUl5s+fH/5bW1sbFi1ahCFDhgAABg8ejMzMzIh9ampqsHbt2vA+WsjOzg4nR9Mfp0EH8/JysuWZ85Mu1d545hvxJJxa7WTZdrUAwqLUdSo6Lmpo5d2wDv/iQQKUtnlVe+OheAUCclijG0LPUr3UNY+JWKd9kXhC3ihOOIFsN2yw73wEBGIhnmIHACFKPIseWCI/99xzD7788kts374da9aswb333osvvvgCP//5z+HxeDBx4kRMmTIFc+bMwdq1azFhwgTk5eXh6quvBgAUFxfjhhtuwJ133onPPvsMK1euxDXXXIMBAwZgxIgRjjQwXlDlxw3kh4cjnpnJ3jZVfugq4elS8EBpi8eikDyUn1R0XNRQlnxOp/Avtyk/rAknkL5hb9R2IMB2YXCAzUSs0xDkRyDZYHWNHyV4Fj3wWdl57969uPbaa1FTU4Pi4mKceOKJmDdvHkaOHAkAuOuuu9Dc3IxbbrkFhw8fxqmnnopPP/0UhVSHB/Dkk0/C5/Nh/PjxaG5uxrnnnosZM2bA6/Xa27IEoVZ+eK7zw0N9KS0F9u7lY7usDKip4aP8FBQADQ3k/vv9gM/SExIfaLuzsshPQwMf5Sc/H2hs5LPOj5bjMii0DDR1XB555BEAkY7L+PHjAciOy6OPPsr+5HWgVkBaWtgTEN7EKx1tA+kb9qZ41aO5OfJ3O3HPPfdg9OjR6NKlC44ePYrZs2fjiy++wLx58yImYnv16oVevXphypQpuhOxZWVlKC0txaRJk7hPxAryI5BsSKTP8ix6YMm1e/nllw3/7vF4MHnyZEyePFl3n5ycHEybNg3Tpk2zYpo53BD2VlREHFOe5IdHqevSUkJ+eCheJSWEfADOvryVoO3MzZXJDw/lp6IC2LbN+Xueqo6LGm5QQHgXPOBV7U1pm+caQ+lWaU45Xra0ODd+pupErCA/AsmGRJQfnmFvDOa1kxNuCHsrLeVLfpS/s4CS/LC2TcPeOnQAaCoIK/JD252byz7csL1d7m8dOxLy43TOT6o6Lmq4LfQsHcLe3NBuj4coyCxtK+3zDLnLziY/ra3O2k/Vidh48ycAmfzs2kX8Bgap0QICtig/mzeTMYSmPLCAID86oC8SWlBKnRfhJOhLo6QE2L6dT8EDHgREbZuui2Klgki8oNc4N5c4TSxDlKidvDw5zI7VPVf2a0r0nbadqo6LGm4pOuAGAsLats+XXraV9nmG3NF73trKJ3w22ZGII1lSAlRWArW1wMaNwE9/au+5CQhoIRHl55hjyHh19CiwdatMhlgg4WpvqQqq/NAZPBYVsCiUIVhA+ik/ZWVky3JdFHp/s7PlWXpWRQ+UYW+sFQKa75OTw8dpSmXwVH7o+OXzpZftQIBseVV7A/iRH/U7y+9nV3RAec9ZK26phETIDyBC3wTYwu8nZBuIr896PPzyfgT50YG6TG26kR83EC+W9uk1z8mR11dgZVsZ9sbacaDKT1ERH4ctlaHlELK6tjydUS0SwJp4eb38bPMgfYB83Sn5Afj2N5bvzFRAezuwbx/5LMiPQDJg/34SnZORQcLm4wGvim+C/OhAKD/sbVMS0KGDHOrG6uXtBuUnL4/9bDVVfgoLSdsB4bTYBaVDyPraKgkIa9taBCQd2s3TtiQRpRyIXByT9T3n0fZUQW0tuY+ZmXIIslUI8iPAEpSsl5eT8T4e0KIHgvy4BDyVHzepL62t8kuVle28PPaztjyVH55hb0L5cQ5aDiHrmfh0IyBa7eZxzVnfb3rNAWKbOiKs77my7YL8WMPevWRbUSGv92YVlPzwqJ4lkH6g5KeiIv5j9OlDtps2JX4+ViDIjw4o+Ul35Qdg13aqtCjJDyvnQUl+WBMQnmFvSuVHkB97oRX+lW4EJJ3UF573W5nbw/Oe88p3SgXY4UjSEKIffhDXX8B5UMJusLZ4TBx/PNlu2cJuoh0Q5EcTwaB8E3iSH2XVM1ZQq07K75yGkgSwJiDpGvYmlB/nwJMEuEEB4Znr5Bblp62NhDI5DaXyw+O68ySdqQI7yE9lJVBcTPyXLVvsOS8BAT3Y0We7dSOhns3N8jIjLCDIjwaUs2huKXjA4gVKbQFECaBll3mUfGZNftwS9sZT+RFOi73gWf3LDQqIUH7Y2Ve+s3iTbTGOxAc7HEmPR+T9CLCDHcqPzwf07Ek+b96c+DmZhSA/GlC+SKjyw2oGD4hWXyQpcvVwJ6Fc74ZX+BePsDeeyg9PxUsoP87BLcoPzxCodGy30jYr+2rlxw3ET4wj1mAH+QEE+RFgB7v6LA19Y5n3I8iPBpRry1DlB2BPQHiEnvFMvudp2w3KD+9qb8JpsRduUyHSYb0bt9hWrlTOWvnJyHBHyJ9QfqzBLkeSVwK5QPrBrj7buzfZCvLDGUryo1wzgdVgTl9YRUVyyed0CMFSKj9uyPlJh2sulB/n4Lb8k3RVX3jY9njYVnxThhoqbadDuGGqIJln0QXSE3aEvQFC+XEN6EvM45EdYYDdYK6lgLB4gUqSe5QfntXeqPLDM+yNdcGDggLhtNgNN1Rc46068Sr5rG43y6IDNFeS5XVXEi/WttX2xSRKfHCC/LAK1RdITyQzYRfkRwNU+cnMJCEE9GXG4kUSDMrhdazLLivbx8MR56n80DbyVH54tJs6LVlZwmmxG24o+cxbdeJV8llpW5Ii1XwWtgG291xNvNKpwEaqYP9+sk3UkezRg9yHxkZg9+7Ez0tAQAuSZD/5+fFHdpPOgvxoQDlrCrB9gSttsCY/ShvppvzQ66685qxLXfMIexPrczgHN5R8dovyw1PxYmWfJwFxk/IjyI912OlIZmYCxx1HPm/cmNixBAT0UF8vP+OJ9tnycnlpF1Yl2gX50YBS+QHYDubKFyVrAkJtULWLpe32dvkFylv5YV3wQEvx4rkmi3Ba7IHbSj6nw1o7WtccSP3QM54hd5Ikqr0livp6OeKjY8fEjyeKHgg4DUrWCwpknykRUPWHVblrQX40oFZ+WL5IqMPt9Ua+SFiSn9zcyHwnFraVKgvPgges1TalHR5qm9aMrXBa7IGWCpEOoWduUX7oGAqwLTrghpwflgREuSq7UH7iA3UkCwsj84zjBXUkhfIj4BRosYNEVR8K1hXffGzMJBfcoPzQlxcP5Yfa5GHb4+GTf8Kz4IHyumdkRH7nNETYm3PQyrtJJwKiJtSSJFevdApaBMTvT30CwpN48V5jKBVgV8gbhVB+BJwG7bOJVnqjYF30QCg/GnAD+VETEBYvUDX5Yak6KZ1w1qoTEFnq2g0lvtNhXZRUh1sW+3TDWjuSFLkWjVNIVwKiF3LHMt+I2hfjiHXYTX5EuWsBp5HsfVaQHw24Iewt3ZQfvSITPBY5Ze2oKm3zCnsTOT/2wy0LbrpB+WFl3w0ERG2bB/Fi+SwL5SdxOKX8/PgjqfomIGA37Frjh4J1iXZBfjTgBuWHB/mhCZd0dXKWttUvb9YKiLLgAS9nMTOTb7U3kfNjL9yy4KYbii0AqV/1TE91SvViC2rlR5Af67Cb/JSVkR+AXfUsgfSC3X22Z08S9l9fLxMrJyHIjwZ4Kj9q8sPSGaZOCyV9LAmI+uXNs+ABz7VJeFV7U4artLVFJjELxAee6gtP1UnZp5RFB1K93HS6q06ACHuLF3Y7koAoeiDgLOzus9nZQLdu5DOL0DdBfjTgBuWHZ+gZDwLCe5E+Nyg/rMuLq23Taw6IWVs7wDPvRk/5YRFOwHPyyA0KCM98I56qk8dDZm6F8mMdTpAfUfRAwEkcOEC25eX2HZNluWtBfjRAyY+bcn54zFymC/ECIpUfN8zSC/KT/HCL8qMMPaOhrSxsu6HoAI/cFzcpP6ne7lSBUH4Ekg0HD5ItDa+0AyzLXQvyowFlDgbAN+yN58ylG3J+eCxyynNNFtruQIBNdSzldaeV9gARsmIHeK6hpKU6AanviLuh6hnPRU55EE6eileqYP9+srVzFl0oPwJOwgnyw7LimyA/GnBT2Fu6xazzmi2m9nnk/Civu3KBOx4lxoXjYh94VtJT9ilawISVfb1xJNXHMJ6hu0L5SW4cOkS2TjmSIodTwG7QPltaat8xBfnhDDcVPHDDrCmP2WKWyo+yfTxzftSlgXmEGwryYw94r3qvvK8ZGTIB4qkEpPokipuUn3R5b6QCJEmeRbfTkTzuOPI+bWoCdu+277gCAk1N8pjqBGH/4QfnQ7QF+dEAT+VHnfPDI2zDDZWSWOa+KNunzvlhkSCubLvSUU31EKVUhjJkUan8+P2R1bGctp9uSkC62uY5dvO0nQpobJQdPTsdycxMoEcP8lmEvgnYCUrWfT6gsNC+41ZXAwUFZCz94Qf7jqsFQX404Cblh0fCrhtmD1m2m9rweKITxCkRdgrBoKwSuEFxE46LPVCX/+W12KcbnuV0ybvhHbqrtJ0uqlMqgDqSWVlAfr69xxZFDwScgDLfh+YJ2wGPh13RA0F+NMBT+aE2qE1RMch520rC6fGwXZhRvTo6PQ8WtpX2BfmxF2rlhzX5caOKm27tTpexW6jHiUGZ72OnIwmIogcCzsCJfB8KSn6cLnctyI8G9MgPz8TVVHeEec7Y6hFOFva1yI8blB/huCQGtfJDQxqB9HHE002FcFO73bDGkJhAMQcn8n0ohPIj4AScqPRGwarogSA/GnCTAsIzWdgN7WbxAqVkl+baZGTIxNfptisVAp5J2jzIdipDrfwoFcVUDz3jWe3NjWN3qrdbz3YgwCa/LdnhpCMplB8BJ5B25Gfq1Kk45ZRTUFhYiIqKClx88cXYpDrDCRMmwOPxRPycdtppEfu0trbi9ttvR3l5OfLz8zFu3Djs2rUr8dbYBJ5hb256ebshVp9FgrjattJ+uig/YtbWXijvK1V83KDipnr+XroSEDfm/LCyn+xg4Uju3EkKKwgI2IG0Iz+LFi3CrbfeiqVLl2L+/Pnw+/0YNWoUGlVP1fnnn4+amprwz8cffxzx94kTJ2LOnDmYPXs2Fi9ejIaGBowZMwYBl0wTuWEWzQ3Jwm6I1WdhX20bYHfdtZQfN4S9CfKTGLT6VLqquG6YROFJAlK94prR2O2U/VSaiHVijR+KsjJ54VSncygE0gcscn727wcOH7b/+BSWyM+8efMwYcIE9OvXDwMHDsT06dPx448/YsWKFRH7ZWdno7KyMvxTqrhCdXV1ePnll/H4449jxIgRGDRoEGbOnIk1a9ZgwYIF9rQqQfBUftwwY+sm1YmFfSPywzLsjSoEqZ6cnkqOix7U1xVwxziS6pMobho/ebabJ+lT5rc5ZT+VJmKdzPkBRN6PgP1wUvkpKAA6dyafnVR/Esr5qaurA4AIcgMAX3zxBSoqKtC7d2/86le/wr59+8J/W7FiBdrb2zFq1Kjwd9XV1ejfvz+WLFmSyOnYhnQPe3PDAoEsE8S1HFVWjovSNq3044b+5uQ1TyXHRQ9aoZSsnidJclf59HRRztO12AKPyaNUmoh10pEERN6PgP1wus+yqPjmi72LNiRJwh133IEzzzwT/fv3D38/evRoXH755ejatSu2bduG+++/H8OHD8eKFSuQnZ2N2tpaZGVloaSkJOJ4nTp1Qm1traat1tZWtCpG0fr6+nhP2xTS9eWt1+72duJMZThYHkNNQGiCeHNzeig/PJzkYFBexJWlQjBv3ryI36dPn46KigqsWLECZ599dvh76rhogTou//73vzFixAgAwMyZM9GlSxcsWLAA5513nnMNMAGeyg/vPDKe4V9uqHLntkqdkmR/CWUt2+oxrLmZXfhsrInYDh06YOjQoXj44YdRUVEBIPZErNYY4oQv4rQjySqHQiB9wKLPfv65S5Wf2267DatXr8Ybb7wR8f0VV1yBCy+8EP3798fYsWMxd+5cbN68GR999JHh8SRJgkdnhJ46dSqKi4vDP126dIn3tE3BTcqPG0InAHkFaqdgRAJSmfzwdJJ5V5qjYKUgt7a2or6+PuLHKfAsosH7vvIcw9y00KgbcrwkKbI/OGmbV4in0UTs66+/joULF+Lxxx/HsmXLMHz48DB5iWci1glfxMmcH0CEvQnYD1Z91nXk5/bbb8f777+Pzz//HMccc4zhvlVVVejatSu2bNkCAKisrERbWxsOqzKZ9u3bh06dOmke4+6770ZdXV34Z+fOnfGctmm4IfTMDaoTi8RVCiMSwKroAE/bWk4yy2ILvNb5SXbHRQ9GBQ94LJybLmOYG8ZPN7WbhX0t5Ydl21lOxDrhizid80PD3jZvlsNhBQQSAas8NdeQH0mScNttt+Gdd97BwoUL0b1795j/c/DgQezcuRNVVVUAgMGDByMzMxPz588P71NTU4O1a9diyJAhmsfIzs5GUVFRxI+TcJPywzN0grYf4BP+xXqmnEfOD0/bRk4yK+Un2R0XPfB0CN1SQdANFSvdMHnEs90s7PMk+qwnYp3wRZwOIerendybpibAJfVgBJIYwSA75WfLFueWOrFEfm699VbMnDkTs2bNQmFhIWpra1FbW4vm5mYAQENDAyZNmoSvv/4a27dvxxdffIGxY8eivLwcl1xyCQCguLgYN9xwA+6880589tlnWLlyJa655hoMGDAgHLvPG27K+VE6wjQ/g5Vtlgsz8nyBirA3PlXBUsFx0YMb1ESl/VSvIBjLdrrlG3m98udUVH54TcTajWBQLufrlCOZmQn07Ek+i7wfgURRVycriE712a5dyaLzra1kjSonYIn8PP/886irq8OwYcNQVVUV/nnzzTcBAF6vF2vWrMFFF12E3r1747rrrkPv3r3x9ddfo7CwMHycJ598EhdffDHGjx+PM844A3l5efjggw/gVY6eHOGmUtfKGTx6Xk7BDaE6blF+0qHgAa/ckFRxXIyglwQOsFX01AusCuUnNW0bjZ+pOHmUKhOxR47Ik5pOhRABIu9HwD5Q1Sc/P9I/tRNer/OE3VK1NymG9JCbm4tPPvkk5nFycnIwbdo0TJs2zYp5ZnBj2BtAXmJZWc7ZdhsBEcqPs7ZpuzMy5GpQLBz0W2+9FbNmzcJ7770XdlwA4ozk5uaioaEBkydPxmWXXYaqqips374d99xzj67jUlZWhtLSUkyaNMk1CrJbCLW6fHq6Kj88bbOolqk3fjY28lF+nB67n3/+eQDAsGHDIr6fPn06JkyYEJ6Ife2113DkyBFUVVXhnHPOwZtvvhk1Eevz+TB+/Hg0Nzfj3HPPxYwZM5hNxNKQt4ICZ9/tffoA770nlB+BxOF0vg/F8ccD69eTPutE8da4S12nMtwU9uaWxT55FjxI5Xa7QflhTThTxXExAs+ZeJ7rVgHuVF945920tgK5uc7ZdtvEFYuwNyMky0Ss0/k+FEL5EbALrPusK5SfdIGblJ+MDHIe7e18Z/B4hn+lQ9GBdCJ9qeK4GMENRTR4Vd/SC91N9bybWBXXnCQ/bpi44tXfkhlOJ45TiLV+BOxCqpAfB4X45IWbSpYq7adr+Fcqt5tnqWsjhYDlOj+pCJ4OIc/7qlw41w3r3fC0nZkphx3yICBumDwS44gxWDuSu3YBDQ3O2hJIbbAi7L17k+3mzc4cX5AfDegpP8EgnwXj3KBC8FzvJpVnyt2gEAinxX64IYeNJ/EC+Cg/bloqgHe1TNb3XCg/1sEqf6KsDCgvJ5+dciYF0gMsc34AUu2tsdH+4wvyowE98gOkhyOebrOHbggZcYvqJMiPPeB5X93QpwB3VD2jttva2C0V4LbQs1RWzpMdrJQfQF7sVIS+CSQCVn22rEy2EVrhwlYI8qMBo4pr6aC+pNvsodvC3txQ8EA4LYnBrZMYrJxwgE/FNXWfprZZ2Hdr6FkqVntLFbAKIQJE0QMBe8CSsDuZ9yPIjwbUyo/PJ8dui5eYM3DDGkNuCzVMZbUt1eG2/uwG5YdnwQMgtSdR0nXyKNkhlB+BZAMPwi7IDyOoB3OPJz0qNbnh5e0WEpBOs/Q8VMZUhxucUZ4hUED6LRXgttCzdFigOtnBKn8CEMqPgD1g2WedLHogyI8G1MoP4A5HPJVfYm7LN3LD/RbKT/LCDc8xTyUTkBf15LnQqMcjLx6ZymGkbhi7xThiHSxn0anys3kzKd4kIBAPRNhbCoMO5jzID0/HxQ2zh27LdUqHECURq28/3JD/4RZHWGmbVdEBnpXu3HjdnYRQfuIHS0eye3fi0zQ3kwpaAgLxgBf5sfvdIciPBqjy45bZ+HQKPXOL8uOGxV1TOVQm1eG259gN+XMAqbrGy346TB65ZRwR5MccWDqSPh/Qowf5LPJ+BOJBeztw9Cj5zKLP9uhBIgiOHgVqa+09tiA/GnBD2BvPuHG3LLjpBuUnHQinlrPW3i5CIxKBG5xRt4SvKvNu0mEME8qPmEQxg7Y2ecFRFvkTgCh6IJAYaJimxwN06OC8vexsolgC9vdZQX404IYXidtmLtM5VIeFbbcUPGBZGjiV4YY+5Zbxi+bcOG0/GJRDI9L1uqfb+JnMoI5kRgYbRxIQRQ8EEgNVKjt0iBxrnIRTRQ8E+dGAG5Qf8QJNj7ANt9oGxKxtIuD5LPEMe9Mi8xkZMgFysu3KYgs8wmfdoPa5JeROkJ/YoI5kSYlcHMRpCOVHIBGwDNOkcKrogSA/GnCDQ+qWcqluCHtLhwp7bgn38/nkF7EgP/HDDWReawxxOpxRqz8r7TvZdq0FVlnZBtz73kjliatkBk9HUig/AvFAkJ8Uh9uUHzfMXIqCB87a1mp3IBDp0LGwrVzTSjgu8cNtyg+r9W60+pTSPgvbavvpELrrhskjofxYA8v1UiioI7l7t5y4LiBgFjRUk0efFeSHAdxW6toNCgjPdqfyjK0bHFX1LL0gP4mDp5poRKgBNqFnen2KVdibW1RcnmqfG5YpEORHHyzX+KEoLQU6diSfnVg4UiC1wVP52bbN3mqhgvxowK2lrtP15Z3KpC+Wo8oiTIiHo5rq4Nmfte6rciKHp/LjZH/WU37SQQFxw6SZqPZmDTwcScDZhSMFUhs8+mxVFXDSScCFFwL19fYd1xd7l/SDG8LeRNhG+pb4pnk3waBQfpIVsZxRSSIhhk7AKJyxpSV1CbWS/CgTyHmSznRXr8UEij54kZ8+fYDFi0Xej4B18OizHg+wYoX9xxXKjwbS9UXiVgUkHa65eqacBQHRIz+sHLZUhlEeWTAY6ajbjVhFB1JV+VHmWSmJJU8C4oZ8zVReVyqZwSN/AhDKj0D84BGq6RQE+VEhGJSrIbFWfmKtU5Guq4TzdFpYFR1wk6MqlJ/EYVTwAEjdogNuIF48bAPuWyogHUqrJzN4Kj+AID8C1sGjSIdTEORHBeWMLGvy45ZqRW55gbrBcXDaPs/SwCLszTm4sU+xVBP1CHWqFlsA3JGvyXOJBKH8WAPvnJ/Nm50tey+QeuDVZ52AID8q0HwfgL0jriQ/6brIqdtIn9P23ewsCvITP7SeJa9XvtY8CIgb1Bee7XbStiS5Y6kAniF3IufHGng5kt27k4nd5mZg5062tgWSG4L8pDCU5Ie18sO7VKsbVgnXazcNB3QCeot90rwBHgniPB1VUe0tcfAMwXLDQqNuajeL/qycQU/XiSu9sGEn89uSGbxyfnw+oGdP8lkUPRAwC0kSOT8pDZ7qi55tnkmzblB+gEhS6pRt5TX3eFI/70aEvTkHrWcJ4KuAsKy45ibbrCeu0i1nkmd+W7JCkvjOoou8HwGraGqSn2WR85OCoE52RkZkuVSeOT9uyH3hqfw4bZ+nAuLGggei2lviSNc+5WbVidUaQ25RftIhbDhZ0dgoL9jIg/zQvB+h/AiYBSXrmZlAQQHfc7EDgvyowHM2nL7AMjIiS7XynD10wxpDTttPV2dRKD/OIZbyw6JP8VQTeeYb8cyfU9t3w8QVD+Ll88m/i3EkGtSRzM4G8vLY2xflrgWsQqlUOrVGHUsI8qOC1gKngDxANTU5Z1uUao0OPcvKIp95rneTqg6bID/OwQ2J/24i8ywnj9yk/LDOmeRZ7Y3XeysZocz34eFI0rA3ofwImEUq5fsAgvxEgQ7kPMkPj1lTpX2t2UO/39n1btyY+O+GUJ1UdVRTHW5QIdxE5lPdthuVH2Vfc7JgDE+VM1nBu2oWVX727AGOHuVzDgLJhVRa4wcQ5CcKVPlROw75+WTb2Oicbd4z8UZx40D6KiDpWvBAOC3xw40EhKf64obS7SyuucfDPlcUiF10gHXBGEBMohiBN/kpKQEqKsjnzZv5nINAcoF3n7UbgvyowDPsjafDJElyuVY3LcyY6mFCbrDNw0lOdbiRgLhBfUnVdX545lkBxsqP0/aF8mMdvMpcKyGKHghYgSA/KQ49Z5Sn8sMzbMPnk2cyU708b7qFnvEM90t1uJmApGrInRuUHzfla9J8Saft8257MsINjqQody1gBSLnJ8XhhoIHRgTAqdhtvYRdVuvduFn5SfXqWCJcxX6kO6FOt0pzPMcvQLu/ZWTI77FUrS6YrHAD+RHKj4AVpHXOz9SpU3HKKaegsLAQFRUVuPjii7FJNW0gSRImT56M6upq5ObmYtiwYVi3bl3EPq2trbj99ttRXl6O/Px8jBs3Drt27Uq8NTYgVsEDJ5WfWC9QQF4bwG7okR+l/VTN+XFDWWI3FVsQTkviSNdy025QvNw0icFzqQCl/VQLG052X8RN5EcoPwJm4IY+aycskZ9Fixbh1ltvxdKlSzF//nz4/X6MGjUKjQpG8Oijj+KJJ57As88+i2XLlqGyshIjR47EUUVJkYkTJ2LOnDmYPXs2Fi9ejIaGBowZMwYBJ8uJmUSsggc8S10Dzr1E9cLeAHe8QFM18d+N4X5O3+9kd1zMwI3KT6ormbEIJ0/iFQhETjDZCZqraWQ/1SaPkt0XcUPODw1727w5sg8JCGghrcnPvHnzMGHCBPTr1w8DBw7E9OnT8eOPP2LFihUAiMPy1FNP4d5778Wll16K/v3749VXX0VTUxNmzZoFAKirq8PLL7+Mxx9/HCNGjMCgQYMwc+ZMrFmzBgsWLLC/hRahR36o8tPW5txLLJbjADjnuPBWftzsuKTbTLnT1zzZHRcziOUQpqoKwTOU0g3PsdHY7ZR95didLuGzye6LuMGR7NaNRLi0tAA//sjvPASSAyLnR4G6ujoAQGlo+mLbtm2ora3FqFGjwvtkZ2dj6NChWLJkCQBgxYoVaG9vj9inuroa/fv3D++jRmtrK+rr6yN+nAIlP8pkUUBWfgDn1B+9l4hysU8Wyk+Gqle4Ie8mVcmPG8JVWNtOdsfFDHiqiW4oOuDGkDue6jHAZuzmubgsz2pvyeaLuIH8+HxAr17k8/r1/M5DIDmQ1jk/SkiShDvuuANnnnkm+vfvDwCora0FAHTq1Cli306dOoX/Vltbi6ysLJSUlOjuo8bUqVNRXFwc/unSpUu8px0TegUPsrPllZidIj96L29qH3B+9tDrjV5x2g0OW7qF3LmB9LHK+Uk2x8UMeDqEbiDU6RZCqne/ldUy0035YUV+ktEXcQP5AYDQ5YIqolhAIALBIHD4MPnMu8/ahbjJz2233YbVq1fjjTfeiPqbR+U9S5IU9Z0aRvvcfffdqKurC//s3Lkz3tOOCT3y4/E4X+5a7yUCOO+46L28AXc4bKn68uZZdMANBQ+S0XExA57hX25QftxUwIPnJAbAbuzWsu+GkGWnx5Fk80WUjiTvWXRKftau5XseAu7GkSNyXlhak5/bb78d77//Pj7//HMcc8wx4e8rKysBIMr52LdvX9iRqaysRFtbGw7Tp19jHzWys7NRVFQU8eMU9MgP4Hy5az0CALBTfoxUJ6deYnoLrLKwDbhztjpVY/XVSDbHxSzcqPykq23an/1+5xK7eU4eGSk/qZ5rlYy+yJEj8pIVvMnPgAFku2YN3/MQcDdovk9BQXRKSLLCEvmRJAm33XYb3nnnHSxcuBDdu3eP+Hv37t1RWVmJ+fPnh79ra2vDokWLMGTIEADA4MGDkZmZGbFPTU0N1q5dG96HJ2gpaa0b7HS5a7eEvanhNAkwU2ku3ZQfN5A+p8lPMjouZuHGcMZUVxPNLBXAc/KIZ75mquV5JbMvQkPeCgv5O5JU+Vm/PrIfCQgokWr5PoBF8nPrrbdi5syZmDVrFgoLC1FbW4va2lo0NzcDIDO1EydOxJQpUzBnzhysXbsWEyZMQF5eHq6++moAQHFxMW644Qbceeed+Oyzz7By5Upcc801GDBgAEaMGGF/Cy3CSPlxuty1G0IneL+83UQC3DBbnYq2k9lxMQueeTduqCDoJuWHRbVMI+XH6XtulK+ZqmQ7mX0RN1XN6t4dyM0l/WPrVt5nI+BWuCVHzU5ouLr6eP755wEAw4YNi/h++vTpmDBhAgDgrrvuQnNzM2655RYcPnwYp556Kj799FMUFhaG93/yySfh8/kwfvx4NDc349xzz8WMGTPg1XpzMIYIe9O3zaLMNmtHPBh0Z8hdqjotAHFcZs2ahffeey/suADEGcnNzY1wXHr16oVevXphypQpuo5LWVkZSktLMWnSJNdMoriZgKQq8dKznZlJSIEkpbbyw2PSTGmfJeFNZl/ETbPoXi/Qrx+wfDnJ+6ELnwoIKJH25EeigaoG8Hg8mDx5MiZPnqy7T05ODqZNm4Zp06ZZMc8EZpQfHgUPWL1AeYS98VxjyEyZ2HQreOC0k5zMjotZuJGAuEFN5FG63eMh172lhc/4yTNkOVWrvSWzL+I2R7J/f0J+1qwBLruM99kIuBFuUivtgiXykw4wk/PDo9Q1q9AJt4W9sWq3lm03zNLzVH7oqvRafSIRJLPjYhZuJCBuyGGjRQfUuSlO2qb2W1r4jJ9uCFnmofywLJySTHAb+aFFD0TFNwE9uK3P2gEHXkHJDaH8RP+NJQFhnbDLm/y4ueCB0/ZTGW4kIDzVF5ZFB3gWbXFbyLLz+Xt8Qx2TEW6bRRflrgViwU2hmnZBkB8VRM4Pe9tKx0EvYZen8sPDWXSDQgAI8hMv3ExAeBIvIDWLtvDMmeRJvIwqdQryow23OZJU+dmyBQjVixAQiIBQftIAPJUfN4S9Gb1AedjmWWY7VePlY9n2euX+L8hPfHBz+XQehFo5nvJUfngQL1Y5kzyJl5Z9EfamDbc5kpWVhIgFg8DGjbzPRsCNcFuftQOC/KjAM+fHDeoLj5c3z5h1es09nuiQu9xcsnVyNswNCgGPe57qcOMipzyLaHg8qZ23yFO1d0uxGqH8mIPbHEmPRyx2KmAM2mfLy/meh50Q5EcFM2FvTuf8pFvYG0/lx6jdTit9SvtGjoOJ+gBxgXeJ3FSGGxcapX2KFrJwAm4lAawUEJ4TOG4rViPIjzbcRn4AkfcjYIwDB8jWTX02UQjyo0K6L3LKM+zNbbH6LMiPmRwJqkbaDZ7hMqkONyo/LIsOuO1ZZjWJ4tZiCzzXaBNjSCTcOIsuyI+AEdzYZxOFID8q8Cx44NaEXZ5hbzxDZdyg/ACpmSOR6oiV88NznR8gNZ9lnuNnuo/dgAh7Mws3zqKLsDcBPTQ3yz6vm/psohDkRwWjnJ90LXWdyvHyRte8oIBsWZAftX1l/0vFtUlSHW6s4ufzyXltqfwsu7VoC89iNU5fc62cSUF+oqF0JN00i96vH9nu2gUcOcL1VARcBqr6+HxAURHfc7ETgvyo4NZS125IFuZZKYmn8uP3Oxd6pkc6MzJkAsRzxliQn/hgpuKaU7lcbgifdZv64oaKa6lYMEbkDVqD0pEsLOR7Lkp06AB06UI+i9A3ASWUSqV6KZJkhiA/Kri11HU6FB1wm/JD7zcANDSwt5/KzmKqw0w4I2tCrbSfiqGUbi+2IMZuAepIlpe7z5EUeT8CWkjFfB9AkJ8oUIeEp/LjNkfYDbZ5KD+ZmXI/SOW1ncSsrb0IBmVVh0fejRhHov+Wys+SW6+5ID/RcLMjSfN+Vq/mex4C7oIbc9TsgCA/KlDlx2idHx6lrumaM6lYac4NM5da7QacVfskyR0zxqLam70wSgJXjiupTAKE8sPOtluvuZhAiYabHcmBA8n2u+/4noeAu+Bmwp4IBPlRwa2lrlmF3Gm9xFJZ8eJJfoJB+TNP1Us4LvbCaO0TZS5XKpOAdFMhhNrG3nYyQhn25jb85Cdk+913ke8mgfSGmwl7IhDkRwW3lrp2uvKYmapnTuW9mJmp9vsjnUq7wJP8GK2RAfBVvQT5iR+x7qsbHNJUJF48ybzR5FEqK15mbAeDzi2qm2xw8yx6796krzY2At9/z/tsBNwCN/fZRCDIjwpGOT9KR9iJSk1uICBaLzHabqeT/o1eoIAzL/BY5MdJ0ql0CESlptSBkfIDuIMEpGLInVB+ov/G85or89vEOELg5ll0nw848UTyedUqrqci4CK4uc8mAkF+VDCT8yNJzjriPAlILNXJCdJnxmkBnHmBGtkGnFV+YjnJNM+rudl+28GgHNogqr3Zi1ikNh1IgFtVCB7KT7qqbU6P3ckIN4e9AXLo28qVXE9DwEUQyk+awEzYG+CsM8wz7E3rJUZtS5IzjriRbZ9PJqJOhBuaDXtzgnTGCo9y8p7HIl5C+YkfymurXvgRSO0kdLerEDxDSNNN+fF65e/FOELgdkeSkh+h/AhQ0D4rlJ8UhxH54emI88y7UZI+J+zHUl+cbDvPnB+jqmAAm3br2RbV3uKHknxoreXBM3fQSTURMFexMhVti2uu/Xen7Scb3B5CJMiPgBpuVyvjhSA/Khjl/ABsEuCNHOGWFmcT/7VsZ2Q4W+Y71guUBQnQs83ifmdkaDvJrMiPUH7sRaw+xap6otsqN7qBgKTiNTczceX3yxN7rGwDgvyo4XZH8sQTybuopgbYu5f32Qi4AUL5SRMY5fwAzr7I/C3kDWpU6hpgH3IH8FVfUlX54dluEfbmHHg6hMq1o4ycYacdcZ7Ey8h2uik/StXeyWgFofyYg9sdyfx8UvUNEOv9CBAx4OhR8tmthD1eCPKjglHYG+CgAvLOOwi89Q4A/URl+oJxhATs2K1rG3DYET94BABf5YdHtbfAytUh29pVJBxt91+mhD+LdX7shX8TqRPLQ/kJbtwc/sw8DGrdOvgbyIGZk4ANG+DftlPXtqPE64cf4P9yCQAOpG/vXgReex2AdruzsmRV2fbr3tCAwF+n6NoGBPlRorlZfo+42ZEURQ/SEEePAnfcAfTtC4waBSwh4xkl6xkZQHExx/NzAIL8qBCL/Di20OlXX8EP8ubUepF4PA46w3V1CLw8A0Ds8C9HHPGH/gYA8EE7LsOxdi9bBv8f7ia2eSg/Dz8CAPBK2otgONbu/fvhf/IZAEBGhmSYlC+qvVnEjz8iMO4SAPqk1jGHsKkJ/tPODP/KnAT89KcI7DvIx/aIEQhs+V7XtqNO+NVXI/DdWl3bjrb7T3+Cf9m3ALTHbo/HQfuvvAL/osXEtkd7VUx63cUkiuxI+nxAURHfczGCyPtJMxw5AgwZAjz5JLBhAzB/PjBsGDB/fkSOmpafkMxIseYkjlg5P469SA4dgh/kzcmcgPz4I/w0bCNDO6HIMQWkpQWBfeQJ8/m135COkYD33oO/Zh+xzaHaW4DaztB2HBxr94EDMfuaUH7ixKJF8LeT++kNapN5x8aQ775DoF7uLEbKj+22d+8m5MugXznW7vZ2YM8ePrYB4JtvDG3Ta97e7sBin6tWIUAnzSTt/uYY8du6Vbbdpn1hhfIjQxnyppXj6RYMGkS2gvykASQJ+PnPgbVrgcpK4LXXgHHjyGD1i1/g4HYS8+bWMM1EIMiPCrFyfhxTAg4dkl8krEOw9u+XX96sVYh9+xS2jYmX7bYPHw7b5qL8HKoHoD9r6li7FUTb59VWJ0S1tzixZo38HEP7WXLMEV+5MnxfAWMVwnZnNBQjYzSGOeYIb9kS07Zj1zz0gIRtazxPyrwb29t+8KA8frZpH9yxtm/cKNsOtGnuIsiPDLcXO6Cgys+mTc4trSHgErz+OvDxx+SFP3cucO21wBtvkMSv2loc+PdcAO7vs/FAkB8VzOb8OKn8MM+72bcv5uwhE9s6ziITEsCa/LS2wt9IHCefC8mPUH7ixK5dMScSHHMId+4MP0sAYxKwZw8A8FFfTNh27JrX1kbabo9+YOizBNjcdkkCamvl8bOdMfmpqZFtBwX5iYVkIT+dOgHV1aR7CfUnhdHcDPzpT+Tzn/8ss968POCvfwUAHPzwawBC+Ul5SJL5nB8nlB9uYW9K9SWgTX4ca3eE8sOY/PBUfvbvlx2HGKGGTpAfo5lqQJCfuHHgAD/lp7Y2QvlhSgJqagBwUl9CBMSM+uK47Zboh9Xjcei6Hz4MtLcrlB/GoWd798q2/drJgYL8hOD34+BSolAmgyN58slku3w53/MQcBAvvUTClbt0IcUOlLjsMuC443CgmQycbifs8UCQHwUCAUKAAHcrP4464qyVn717+dnmqfwoQw3BMdxPJ99IkJ84ocyn0sn5cVKFoM9SBgJsF1hVKyA81Zfm6AeGttv2vBu17aajmrs5ct1Vtn2t2gd3xLbfH0n0A9oDhSA/IbzyCg489W8AyeFICvKT4ggEgKefJp/vuSdSngbIAH7ddTgIwtSTgbBbhSA/CigXgWOa8yNJlnJ+nFR+9MIX2OT8MCY/JpQfJoSTY7ifXr6RqPYWJ5QOoc6zxEL50SPUzBQQT7R9ZrYbjkTtQp1wwGZHXE1AmrXJjyMkQN1ulsrP/v2AJAnlxywuvBAHQFhPWbYD1XNshiA/KY6PPgJ++AEoKQF+8Qvtfa65Jtxny/McWpyNIwT5UUBJfpgqP01NQFtbzLA3J0sf0xeoXuIqi5A7n85MeUoqP0rSx1r5UbY7BvkRyo9FKJUfnTBOx0iACULtmDMaSmgIt11DhXCs2ILadkv0w+pY3k2ohFd4/GSZd3P4MADEJCCO2Fa1W2/sPv54YOhQElmT1ujcGQfLyOqh5TVrOJ9MbAweTLabNgH19XzPRcABUNXnV7+KrMiixHHH4WBBNwBA2e7VbM6LIQT5UYAb+VG9xHg64rGUHydscwl7CwaBI0cMZ6oBB0mfS5QfvXaLam9xoKkJaG6OSeYdIyB1dfyUn0OHIAEI0j7dGj1QKMtsS9qpZvEhNH4aJf47tt7NoUMAFGM3S/Jz5AgARbsDDMlPXR0ABfHSmTT7/e+BL74Arr/eRttJigMlIfKzdSnnM4mNigrg2GPJc/rtt7zPRsBWbNgALFxIZtlvvdVw1wOF3QEA5RsXszgzphDkRwG6xo/HE7vogK0kIPQC5Zb7osw/0XmBOpnzI+dIMAy5q68HgsGYpE95v2112CLKixsrP+3tct+0BYcPK0ifNvESyk8cCCkQ8nPMMOzN7wcaGiIJdSC6Xzm2zo8ibBfQVl9ouwOByIkmO2wDxqoT4BDpVI/dGtXeHLOtJiAsbYeIlzx+ivjYWDjg6wQAKNu0xIEFn+zHKaeQrQh9SzH8m+SeYfRownANcDAjFKq55gubHSD+sEx+/vvf/2Ls2LGorq6Gx+PBu+++G/H3CRMmwOPxRPycdtppEfu0trbi9ttvR3l5OfLz8zFu3Djs2rUroYbYgVhr/AB8Zw+ZlJvWmcFLOdtqtU2H9FHyEwjYTECUahuMK+wBNrddqfzoKARFRcAVVwBXXmmj3RBSdgxRh1/FUH5sHUNCsSkRyo+GAUdCzyQpglAD2lXPHFvvRk1ANFQnpX1HQ89YrrWjVn50Fol2UvkJh/v57RwczSHZxpGDtHJW849JIaeIvJ8URDAIzJxJPuvl+ihwoIHMgpYf2QJs3OjkmTGHZfLT2NiIgQMH4tlnn9Xd5/zzz0dNTU345+OPP474+8SJEzFnzhzMnj0bixcvRkNDA8aMGYOAxkwlS8Qqcw04q/zEeoE6EoLV1gYcORIzbpxJ7ksM8nNUO5c4PqgJZwzyA9jcdmXYm46TnJkph585R360ZyBLSoDZs4Hp0220G0LKjiFU+cktBKBP5h0hINQRziYd1ge/Zod1xBFubibrVinLbGsoP1lZ8sr2jkweZZBZq1jKjxO2A9nkwuoVHXA09CybDJCxlB9HbBeUANCv9uYkkm0cOXCAdP5yHAA+/9z249sNQX5SEIsWATt3AsXFwNixhrv6/UBdHemzZThI4ldTCDrZJfoYPXo0Ro8ebbhPdnY2KisrNf9WV1eHl19+Gf/+978xYsQIAMDMmTPRpUsXLFiwAOedd57VU7IHH36I9o0AMMaQ/DBRfnReoI7k3ahDdXRmDx3Lu1EqPzqhEyyUHz3Sl5lJnLa2NnLdS0ttsr9/P/zoSGzrhDkCpO2trfa33Y/uIdvswy9Sdgyhyk9FFbAjdF/9/qgkPkcd4cISoDWk/DREsytlCJQkQbMctmXQZ8mbAyokapWbpnk3jY02Er9QpUwgRH6C2sQLcIh0UttZeeS6s6y4RglvfhHQGjvfyBHbxaVAg/746SSSaRxpaZHf22U4CPzvf7Yd2ynQogfff0+6uW3vPgF+eO01sh0/Prq8tQqhoQ0ej4QS6TCweDFw880OnyA7OJLz88UXX6CiogK9e/fGr371K+zbty/8txUrVqC9vR2jRo0Kf1ddXY3+/ftjyZIlmsdrbW1FfX19xI+tCAaBK65A2x/uAcBP+YlVstQREhC6N7FIgGMEJBBQ2GYY9qYmnH59z8CRe25C+QEcaHswGFniWyfkjjfsHkOYgFbAKiex/Xrqi6M5GAUdZNsanUYZemZbPhe1XSwvBpHZYlzy2Tbi19oajkf1e8jAndnGMOyNks5M0rBMliF31HZIadRTfhy1XUQ8Yh8H8mMGbvFFQkMDvBkSilEHLFsWf6MYoaQE6NGDfF6xgu+5CNiA9naAhoZec03M3UNzeSgpaIcXwZTrBLaTn9GjR+P111/HwoUL8fjjj2PZsmUYPnw4WkMLhtTW1iIrKwslJSUR/9epUyfUhtYtUGPq1KkoLi4O/3Sxu27m0aNAUxPaQV6evHN+9MI2HAl7278fQGzlxxHbKuKlF3pGCUBTk2YOd3xQ5/zoOA6Ac22PlRsCOEB+QoUeYhXX4AknxhCAwSSKUn1BSH1hFXpGbecXAwAy0W5IvGy1Hw6B6gAA8CCoqfwADrQ9ZBseT/h5ymzVtu1o0QEfmUWNtdaOM+SHDBJ6pM/JdgcKOwAITZoFtcvm84KbfBHqSJaVSfBkZJDQI4Oxyi2goW9JwNUEYuHLL8lEVceOwBlnxNw95BqiojJEE1Ks7rnt5OeKK67AhRdeiP79+2Ps2LGYO3cuNm/ejI8++sjw/yRJgkcnBuPuu+9GXV1d+Gfnzp32nnRoIKfkJ9Or72HTl7eTOT8+nZeYI2FvagKio4A4aTvWKuHUNmCj82CyyATggPLT2grU18esNAc4QH7U7TYgXrzgxBgCMJhEoUUHckLOKNo1b5wjjnBIfWnP7wAgpPxoJMn5fLKybZszTMfPwlLZts7DYnsIFn0ZFxaiPRgaR3QWGrWdeAUC4WvcnkGS87QKPShtO6H2tYdyfpjmG6n6WybaXFca0k2+CFV+yjtmACecQH5JAkZBK74lQZSeQCy89x7ZjhmjX85YASqSVlT5gK5dyS8ppP44Xuq6qqoKXbt2xZYtWwAAlZWVaGtrw+HQzDvFvn370KlTJ81jZGdno6ioKOLHVtCBnJKfxiO6u1JH2JGkWUoCdGLWHQn/CtF7udiCMQFpbLRxgm/v3kjb7drKT04OkBHqqba1Xa386DgOgAPkR51nZVAm1vZ7rm63AfFyC+wYQwAGkyghR7w9K+SMwq/pEDpS8lml/OjZVtq3bQyjpC+k/GSiXffgthM/qvwUFcEvkecps42R6qR4KGmxhcx2DgUPMsnBM3UmrhxVnZREv9WdoW8UPH0Rn4+oKAMGAPjpT8mXScAoaHG8r79OuUrH6QVJksnPRReZ+pcw+alAStY9d5z8HDx4EDt37kRVVRUAYPDgwcjMzMT8+fPD+9TU1GDt2rUYMmSI06ejjdBA3obQC6zugG58FZOCBzpx407m/BgtEKi0DdjYdmo7FKuvF3Ln8QCFJKzdOQWEpfJDCacnVJ0q0Kb7ZnFa+dFbW8lNsGsMcXwShZKArJAzinZD8gPY+CzRCZzcIkPbgHMEJEJ10nGEnQp7k4qKEQiS1xmztXYo8crKQrtElXP2a+20+3INbTuiOtF7rqwu6HLyw9MXOftsIvTMng3ZkUwC5WfwYKIU79sHbN/O+2wE4saaNcCOHWQmeeRIU/8SQX5SsPSf5WpvDQ0N2Lp1a/j3bdu2YdWqVSgtLUVpaSkmT56Myy67DFVVVdi+fTvuuecelJeX45JLLgEAFBcX44YbbsCdd96JsrIylJaWYtKkSRgwYEC44gpz0IG8ay9gB5DV3gh8+KEmQ6aOcGsr4Ucm1MPYoA6pJxOQAK9O6IQjifc07C07n1QrMnAcPB7iozc0RJKhhG3nF4cqBumHTRQUkNtkuwKSUwC06BNOwIHrTklfSTlwSDFLr0zICMEx8hOqzKVXjtlJpOQYAsjjSIj86KkvtOSzJBGHtLjYPtv+vEJD24ADzrAq58eIeDkV9kYT7wGGBQ9oyF1xMfwh4sXMtiQp8o1IyF2mn33Ym58SL4P+5hSSdhxRKj+2lVx0Bjk5wKBB5FS//hro3p33GQnEBar6jBwZOftmgFQnP5aVn+XLl2PQoEEYNGgQAOCOO+7AoEGD8Oc//xlerxdr1qzBRRddhN69e+O6665D79698fXXX6OQTt0DePLJJ3HxxRdj/PjxOOOMM5CXl4cPPvgAXluYRBygM2gdSOnhTLQDL72kuasjs7bUEacKiE6yMHWEW1ttDJehBQ+ow6YT/uXxOEgCCshstZH64hgJyAvZNgh7sz3fiSo/pRUA9BekVNq2u92BUtLX9YpMOImUHEMAbeVHYzaclnwG7Fd+/DmFhrYB50gAVZ2MVADHVKdCmfzEKvnsRMhde8BYOXck5C4UfxzON2pv0VSQnS30ECJeBoTXKSTtODJgAJkBOXwY2LbNOTs2gYa+LV3K9zwEEoDFkDdARX5OOon88sMPcg3sJIdl5WfYsGGQDII/P/nkk5jHyMnJwbRp0zBt2jSr5p0BfYEqQ0Z27NDcNSdHnrVtbJTDsRJCVM6PMfkBiO0OHWywTdWXkMOmt8Aqtd/QYKMjTnN+QtddL9+I2gYcUH6ow6ZzzQEHw96KFAniTU1AWVnUro61u7QC2M9nccKUHEMAmQT4jJUfgDikjY0OkICc2MqPU+FfVvKNbLddKFfs0lNxHQt7Ky6G/zCZvdcjP47Z9vnkEt9oI7NiqnKlTuYbtWeEqtxxCHtL2nEkKwvo2xdYtQpYuxY47jh2tuPA6acDzzxDlB+BJMSuXaRQgcdDih2YRAT5oXXPv/8e+PZbgGeEhU1wPOcnKRCaNW3LUZAfnYHc9lnbtrawZxvOw2jSrlaUlSWvl2ibM0yVn0zjUq2AAyWfKfEKrVPBRfkJlYk1Q35sv+b5CkeVsfLjL1EoPy4rUZu0oMpPqOwx0/CvsPITOwHdKQWEhtyZabftxRby5dhBZkUHaNhbURH7sDdKfjp0CNvWIyC2q21+eQ0pv5ef8pPU6N+fbNeu5XseJkCVn1WrbFYPBdjggw/I9rTTAIOCQGpQ8tOxY+iLAQPIdt06+86NIwT5AaJmTbPQZjiLZasSQCvNeDzwxyjVCjgQgkUJSHidCv0DO2U7QAkIS/ITuu6BnFDCrs7aIIBz4X7+POKw8Qh7owtSGtkWsAg6jnhjz4Y75QxHJKAzJiDtORzD3gpk5SejhXGlueJitPtDyg+rdX5CZBfFxWgPKMiPQYEN28uLA2gPFW1JhoIHrkISkZ+uXYHKSsJ5U6jScfogjpA3QKX8AEC/fmQryE8KIew4mCvbaavzEHJGgx0UMetN+gtJ2eoMt7SE16mgM3jeVoYEhIa9hRw2b3uzrgphq22l2pYVchZ18qwA58LeAsrkdJ2DO0Z+QmFCPvhtLh+YppAkS8qP7WFQVPkJ9WemttWLbbJUvKIWd22Dp82YcNoeelZUBH+AkJ9Yyo/ttjt0gD9EvPTeW8r3lS3liqntvDxZ8RLKjzUkEfnxeEjoGyBC35IO9fXAwoXkswXy09Ymz6+EyQ/ts4L8pBBUi8XxID80DAkwJj+2hmDRJXx9PgQyQsUWDKqe2eqINzeHiVcgO3aOhK22Fes6+DND1YoM1DbHcn5CIUpMlR9llTsI8mMbmpvD5fFpEjhT9SVcaS526WHnVCdFn2Kl/FDVKY/f+kYRyo/O+OlUgQsUF4eL3+i1XVlE0hZ+YsG2gA6oI7lxo43Vi5yDKHqQpPjkE9K/evcG+vQx/W8K11DOLVcqPymw6JMgP4C8zk+mYtaUVdgbJT8dysNf6eX8ADaHntEeXlEBv0S6gldngVXAIeKVlSWrTqxIACU/HTrA7wmtz9F8NOZaO7YrP7kKZ5F1tbcchZMsyE/ioI6wx4N2ul6YwThiKwmQJFn5CZF5puv8UMUrh7/ywyPkDsXF8PvJR1+wFeFfWNju0CFsTq+/KcmPLdfdgm0BHRx7LBnc29uB0KKrboZS+UkBvzd9QEPexo2z9G/KfB+6wDx69yZru9TVAXv22HeOnCDIDyDPXIZWyg7n/Og85Y4rP411urvb6gwrenh4gcDWBjYkQBFQGgiGZk1ZkQBaqrG0VC4yIbXrHtyxnB8eyg/tb8q1aAT5SRyU/BQWhkOgmFU9a24OO9x0DDOj/NhNQNqzYis/jqlOJhZ3dSr3JVhQBEkyF3pmd5ijGfUlM5P8ADZdd2Wuk1B+4oPHI8+kJ0Ho2+DBRAWoqRGLnSYN2tuBjz4inxPN9wGA7GygVy/yOQVC3wT5AeSwN+X6HMGg5gwe4IzyE+gglzk2Ij+2qi+KHu4PERAvAmxCz0L5PqioCF9m5spPSUlkpaR67XBDW+93W5s8W60M92Md9pZFpoO9CAjyYwcsOoS2kgDqCGdkwJ+hUJ1YV1yLsbgr4LzqxCXUML9D+Cs94udY3o1CdTKjNNpCvhTEK8K2ID/WkER5P3l5hAABwJdf8j0XAZNYvJg8q+XlsnRnEprkB0ipogeC/ADyS8ynCBkB2MxeqqpvAYC3IbbyY2vYW8eOptQXR4hXp05yyAgP5cevaHed9nW3td0HDpCt14sAzTdi1e7m5rD3488Uyo+tUJY9NuGM0jHEludYK/eEFQFpbQ23kRYu4bHAakSZbcb5Rv6CDuGv9EgAtS1JNkWHKe55xPgZg/jZ3t+URF+EvVlDEpEfADj7bLIV5CdJQEPexowh4WoWoEt+kqzPGkGQH0DO+ckwR34cyfkJLXiZgQA8jfrOqCNhbxUVkSQghiNue9gbyRMnKoTO1KRjyo/ScWCh/FDCWVYWDo/yIsCm2httt9cbVggE+bEJCvJjRvmx9VnSIF5GzqitfUpZ9tinIPM67bY9hJQWPMiOvbir7bl7qmILYfsa15222zb7Gv3NiPg53d+E8hMH6Cz6+vV8z8MkKPn573/5noeACUhS3CWuAaH8pAfa28POPl2fI4ul8kPXmykm5McHf0TlKDVsdVwUyg/z0LMI4kU+miFeR/VrQZhHhPKjsB1D+XGK9Jlpt0GXMA/a7pKSSKVPkJ/EYdEhtLU/a4TcmbFtK/nJzzdV9riw0EbbwaBcql8Z9ub3az4stoeQaiywqke+fD4gJ8dG+3qEl+U9F8pPYjj+eLL9/nvdEHs34YwzSKrS5s1AbS3vsxEwxNq1JDkrJwcYOdLyv+uSn759yXbDhqSvfCHIj8Lhbc8IrVbtC91UFiErWuuuGBzcqZwfK4643cSLuW095YcF+YmTcNpin7ZbTfoE+Ukcejk/OmOIrSTAovLjlG0z7bb1OW6Qi7O0K9c3AjTtU9ttbeQnYdDcvTxSbCEDAWRAP67N1rZb7G+OkG2h/CSGY44h8ZB+f1JUESgpAQYMIJ8XL+Z7LgIxQFWfkSMjZWeT0CU/PXsSBlxfL++UpBDkhyZvFhSEV8rO9IUW2owR9mZrzk+I/HgRYgI6b0jHSl2bcMRtJV4a6gsz1UlP+dEJe1Ne84QnOzTIjxHpy86Ww3UTbrteuwX5SRxxKj9OkR9mtvUS71m22+eLDOMEDMkPYG/4V3uOIuQOYKP2uay/iWpvcSAjQ66etXkz33MxCRH6liSIs8Q1hS75yc4GunUjn5Okz+pBkB/Fy5vOBmZ6Qx4ui6pBauXHY4782Kq+lJdbUl9scRwU6kuyKD+BgA0zxgr1xUy7PR4b264Ie4sgnIL8JI44c34cVV942o6hOtlKABSFHsLKj07J5+xsm+y3tYVt+HNDxRY8+sQLYKS4sQg3tJhvJGCA3r3JdtMmvudhEmedRbaC/LgYu3cDy5cT52Hs2LgOQcMaO3XS+CPts0mwPpURBPnRCB/IyjSn/Nha6jqfhE7EIj+2qi8aYVDMy00ngfKjVI0Ttk+VRsUCgUbtVtoXyo+LYbHaGxP1hUUIVJwKhC2hZxrhVz6P8dht23VXXDwache2zVJx49HfhPJjH6gjmSSz6JT8rF4tv8oEXIYPPiDb007TYS/GCAZl8lNVpbFDkvVZPQjyo3BGw7NYvtDfnC54EAjIK7OHyqV66Qs0RvWvhIlXICC/QN2kvpiwnXDomZ7qpKP8+HxAFomqSfy6K/pbhG2DA9t23fVUJ0F+EofFdX6cIiDcVAB1uwMBzSRuW6ueaTnhGYwICL3feXnwezJDtkMPldMERJLkBVYLi8PjITO1T6/AhlB+rCPJHMmqKpL2IUnAV1/xPhsBTSQY8nbgABm6PZ4Yyk+S9Fk9CPKjNZCHVsN2XPmpqwt78jRpNvzydjrsTWE7WFwSfoGayflJuN2SFFl5zEKpa0myYaE+i9XeABvbHofyY3vYm1B+7IfLcjDMqgAJTyRoqS8GeTdZWfJEQsJt1wq/YkVAtK45te30PW9tBW1we25R+Gueap9QfuIErfiWJGFvgJz3s2gR3/MQ0MDRo8DCheRzHCWuAaCmhmzLyxW+sBJJlqemB0F+tHJ+YpAf25Qf6owWFCCQQWcPQ96I02FvVAXIzw8nCwOMlJ/mZjnmxaTyQ695wvYlyfI6P4Cz5Meo3YCzOT+C/NiEOHNfHK38FcMJ9/ttCD3TI16A83k/Wgt9es0pP7bZVt5vkyF3ttmGXOIb4JvnJaq9xQk6i757d9KMw8OGkS31sQVchE8+IYN6r15Anz5xHYKSH82QN0Dus1u32rD+Bj8I8qMR9kZnJh1XfrRm4r3mlB/byh4rlBeA0Zoz1LbPR4ifiZC7jAybiF9jY3jWlLfyY6bdgLPKjyh4YBPcqPzEWGgUcIoEMFJAFKqTrPwYExDbSKfWNfcat9s227TdhYXhCqWAsfJjm21FyJ3Z0uoCBigtBcrKyOetW/mei0mcey7Zfvut/EoRcAmUC5t6PHEdgpKf6mqdHY49ljjJra3Azp1x2XADBPmJI+zNduVH6YyGyho7HvamoQIA5sLegARJgIJ4weNhG/5FbWdmknh9k+THNtKZQNibWOfHxYhz0cnGRpJgapftKNVJI67N1gU3NdSXWNUynQw987GyraW2xSBetrdbcc0BRspPc7Ocy2VyUV2BGKChb0kSRlRdDZxwAhlaPv+c99kIhNHeDnz0EfkcZ74PAOzZQ7a6yo/XSxK/gKTps1oQ5Ie+xJQFD7JCjNnpUteayk/ob06TnziUn5wcosAACTriCuIFgK0CorjmSuLFI+yNm/KjLvQgyE/isJgEbmsOm1HomU5cm+0qhJJ4xVgk2gkSwM12hPLDqNiChm2PR2KzwCq17fGQkGmh/CSOJCt3DQAjRpDtZ5/xPQ8BBb76ivh15eXAkCFxHyZm2BuQEkUPBPmhzqgy54eSH6fD3rSqjvnM5fy0tycYr6+hAgDGKoRta84olR+Aj/JTQoo8RBRbMBH2lpDtYFB2HtRr7bCo9iYKHjgDo1AgHUc4N1eOSkg49Ewv5wfgQwJotcwY4V92htzxVJ3C19zLnnhFFXpgmOsEj8dUjplADCShI0lD3xYs4HseAgrQkLcxYxQhRNYhyE+6QGudn2xj8qNUfhKqlqQV9uYz9oicCD1TKj8ZCLIjIKWlABA5U25g25bZasU1j1K8DKbgbSG89fVyhykujlZ+dDqTLddcWdpci/wkXPYrjaFMgjOZBG5bDhugT7wAdiSAh/qiVWkuhm0niVeskDvbbGu1mwPxAhCpNAryEx+S0JEcNoyMYVu2JHXaR+pAkhIucU0hyE+6QCvsLTt0WWIoP8Fggkq/VtWxGLOmtpWKVYRAhRUvbwAewPkFNxXtVl7DXDQbEhC7lR+z8fKATeSHqoy5uUB2dqTyEwzqSnm2tFtR2jxKdQoERMhKIqBjiFYoUEuLLrG0hcyrVKeotcoYKgHyGGYcNuyoAuJjrPwoc504hNyF2x0j5M72MMfiYgAQYW92QFnuOkkmoYqLgVNOIZ9F6JsLsGYNsG0byU0YNSqhQwnyky5QhL2ZJT/KsssJ5f1ohb1RtdKEI26X+kLbkJcVepM5nXyvIF7KZuaimWnOTxT5aWvTzT63lfx06AAA0bP0TpYYV5RVR2ZmtG0R+hY/FDPxyMiIVH4kSXOxT8Cm+6pU7ZQEJNNYvXZSfQkXjOFAQGJNHjlZaS7W2O1ouzkoP8qwYbHIaQLo0YNMnNTVAfv38z4b0xChby7Cu++S7ahRkeFBFiFJcsED3WpvgEx+tm9P2udekB+tdX5ikB+fT1Zf7CIBstMS+psB+bGFgCiIFxVbcrODMQ9st/qiFHqYkB8j5QeI6TzYSX7kKlEhx4UF+QmFGobJdpbXhoOnORTqMaBBap10SKkz6vMBubnRBIRhyWc57M2cbUfKbMew7WyuE0flx4LthMQFjXYDQvlJCLm5pHwwkLRFD5JEsEpdzJlDthdfnNBhDh+WA1AqKw12rKggk32SBHz/fUI2eSG9yY8kaa/zkxO6LAYExJaKbxpFB7xe45ARwGZnuKREVn5yQuSHVdibQnXK9AXhZZFvZKT8AM4WuaDtDjnJlPjFuu5O5FmFHfQcnw0HT3OoQoEilB/A2UUv9RLQWSg/ra3ym1IZ/hWDeDFRnVxM+hzJdaKqk4nqggm9szTaDQjlJ2HQmfQtW/iehwWcfjrhbbW1wNq1vM8mjbF9O7BqFUnCGjs2oUPRkLeSEnk5BE14PGQhVSCpCLsS6U1+9NYsyAm9SQwGc1udYYvKj90EJKz85BgrEICDqpMF23YrPx6PhAy6HliMhSETsq1SfsJtzw21Xeei2k12AQX5yc204eBpDt08iJC8xkL5USegmyQgthCv0AGZEi+l/QgCYs62M7lO4GY7M9NY+VGGatvV34TyYyOoI5lE5CcnBxg+nHz++GO+55LWoIUOzjqLlLlOAKbyfSiSkLArkd7khzotGRkRL28z5MdW5UeZ8xPDcQCcIyB51AlnqDpF2TZBfhJyHrTKPfs88jRHDPJjZ9ibrLiF2q5T7MGJsLew0phrR/WMNIee8hOjZL5thSw0bPuyjEN3bbVdUAB4vbIjHqPdtiggwaA8EChVp1B3ZqY6xal42RJ6FlFhz9h26BUXth83NKqjAiHlp73dhhV70xRJmkB+wQVkK8gPR9CQt0suSfhQlshPEhJ2JdKb/CiKHcDjkXN+ckNvEqfJj0bOj9cXO+TOqbC3XCpzOm1bS/nJVYT76bxA7bYtr60ELuQnSvVyMlFah/z48oTykzCU4wgU1zbbeBLFFhKgp/ywICAKJxywTrwSmsRQnjiPQg9aqpNJ235/gmu0aZb4hqFtpX0nlJ8MhMbshBqWxkhSR3L0aLL96it5GBRgiAMHgC+/JJ8vuijhw9FiB4L8pDp0Zk2z8mKTn4Sd4dZW2ftVqhBZDHJ+2tvlf1aGvdHQCB4hd4qwDEdLPmsqPwCys8kvTub86Co/DFaG18v5EcpP4tBTfmIUTnEi7C2KgDjZp3SIFxPVidrOzASysxUExNi2Ezk/ZpUfZREmu657uK/FsA3Yf89l2xJo1LAIfYsTVPnZujWp1LPu3YETTiAFdObP5302aYgPPiD9ZdAgoFu3hA+3ezfZdu5sYmdBfpIYqipN4cGchfJDnVGPBygqUoS9xVZ+EiYgyimaDh1kJzzPPPGKmwRIkmbYW26eR96HBQlQr63EWPmRJGXODwxt2xIuo8r5Cfe3PDvKFqY5FOOIsrJ1LOXH9oIHUCg/JomXnba5hft5PKYVL1tst7XJz6oF5SdUkC9x+1r5RhbCpe2651GqUwz7Agbo1o1cyOZm2QNNEojQN46gJa4TrPJG8eOPZEuLDxqCkp89e5LSf0hv8qMKV7FCfhJ2hpWVvzIy4lJ+4rZNHeGiIsDrlZ3wfAYhdw0NsuetDLnL85DAdAP7CdsOBOR7rlZ+YpAfu0tdK83kxVDcqO1gMIFF1HXD3oTykzAUjrhy0paJ8qOX88PStkXlx4lwP1nxMkd+2toSiNBSFnpQkgALY7ddBERWXxhVCdXI+cnM9MjSkyA/8cHnIzIKkHQz6ZT8zJ2bVKJV8qOxEfj0U/LZJvKzcyfZduliYufS0rA/ga1bbbHPEpbJz3//+1+MHTsW1dXV8Hg8eJcyzxAkScLkyZNRXV2N3NxcDBs2DOvWrYvYp7W1FbfffjvKy8uRn5+PcePGYdeuXQk1JC4oBnJJ0iA/Tpa6VigQgCIB3YTyk/BLTGU7rPwUhGy3t8sERYWEVSdqOysLyM2NzPkxSUDitk3vN8Bd+YlY3ygG6bSlUpNewYOcTEPbTiClxhBANwncrPLjSM4PS9uqXCceqpOs/JibQAESaDu1nZcH+HzRtp0MPZMkzWILZpQfu0mnlbBhJ5By40iSFj0480zSr/fuBVau5H02aYS5c8k4d9xxwIABthzSkvIDJHXom2Xy09jYiIEDB+LZZ5/V/Pujjz6KJ554As8++yyWLVuGyspKjBw5EkcVb7qJEydizpw5mD17NhYvXoyGhgaMGTMGAR2H2zEowlWUyZtZ+bFnsRJ2hvVKD9NFJ50Me1Plf4QJSIGiOzi12KeSeHk8kaFflIA4VfWMXvOCAiAzU5v8xIjXt6vUdXh9o0yF+qJzz71emQDZdc+jSl3rXHMnkFJjCKDpjAKxq0ZSZ1QpJFiGngJi0rYTYW9Wwv3iDuOMletkEHpGH/W42x6n6gTYQPxaWuSHV5lvRG0bVFxzTnUCF/KTcuNIkjqSWVnygqcffcT3XNIK//kP2f7sZyR9IkE0N5P6CUB6kB9f7F0iMXr0aIymJT5UkCQJTz31FO69915ceumlAIBXX30VnTp1wqxZs3DTTTehrq4OL7/8Mv79739jROiJmTlzJrp06YIFCxbgvPPOS6A5FqEIe4so25kXm/zYpvyEnNFwDka2eeXHFgIChfJTqOgOLS2RkoPKtl0KRLjUdR6cV3501LaImUsTyo8kxTnWaCg/Ee02ICAFBeQ+JXzd1W2ni5wyJD8pNYYAcSs/oVTDCEEyEduAMt/IOHQ3tLs9ti3mG1Hbfj953MI5b/HYtlhhj55uS0sCpDOW6mRgm7Y9YdtA5NpKWYoBqa1Nc4VCW+65UvkJDRk+HwAve/KTcuNIEjuSY8aQ9JN33wX+/GfeZ5MGaGwEPvyQfB4/3pZD0pC3/Hz53RQTSdxnbc352bZtG2prazFq1Kjwd9nZ2Rg6dCiWLFkCAFixYgXa29sj9qmurkb//v3D+6jR2tqK+vr6iB9boLdmQX4WNaz7r86FvYVe3m1tzpV8VjnCETk/NHuVEQHRVH6cSvzXC/3yxrZNyU8wmMD7nZIfZa6TiXYDCV53ZZEJNdmmqhND8mMEp8YQR6GYRIlY+DGHAQHRKzoQQ/mx1XZUvpGxel1QIKf3xW0/zkIPitO1zbZZxctW24WFEbmi4XYb2E/Ytk7IHS/lxwhJ54sASRv2BgDjxpFneuVKYPt23meTBvjwQ/LO7tEDOOkkWw5Jyc+xx1qY3BXkh6C2thYA0KlTp4jvO3XqFP5bbW0tsrKyUBJyfrX2UWPq1KkoLi4O/3QxlY1lAoqZeGXyqxnyY1vBA/VMPH2BGth3KuzNjPpim+0EyE/c62QYKT8m2w3Eec8DAdlxiaiwF9s2kCD5aW6WL5he2BvDnB8jODWGAAwmUTp0CDvCXi/gyTF2COnsWkLrY+gVHTCpOjU3J+Cv6ik/MYiXxyM74nG3nf6jxXA/wIbrrruuU2zilbBt1TWPKvFtYD9h283N8qxJYWHkAqsuIz9J54sAsiP5ww+ImEVJAnTsSHJ/ALkAmYCDoCFv48fbEvIGyPk+lrq0ID+R8KhuhiRJUd+pYbTP3Xffjbq6uvDPTkpRE4WG8uP1Ahm5sQfyhJUflfpCTWXnK8iPU5XHdMLerBAQu2xHkB8a/2KCgMRFAvQqnpkgPz6f/H6Pq+1KR7u42BLpAxIkP7TdPl/4IkZVe3OJ8kNh9xgCOOS4JDAbbgv5UT1PZitWhnxnAAkoATq2mRIQ1URGrEIPttjWmUThadtnouKabba9XqCgwNXKD0XS+CIA8Tqzs8mDRD3RJMIll5DtnDl8zyPlcfSoXFf8iitsO6xS+TENSn727k0weZU9bCU/lZWVABA1a7Jv377wDExlZSXa2tpwmA6kGvuokZ2djaKioogfW6AxYxsxkJsoOpAwCQg54tSpLSjMcL7ks07YG5O8GxUBsUK8lMnKcdk3k/PjlNpHbeflAVlZbJUf5TUPvdTDIX+57iI/To0hgEOOS1OTPBuumEQx06eo+qEU5ixD0aeDQTkcNFbIndcrEyDbHfEY+UaA/SRAJl4cbXMgPxHvrRhFW2y17fG4WvlJOl8EIO/9nj3J5yQMfaPVlhcvBvbv53oqqY0PPiC+Qu/ewIkn2nZYy5XeAPIS69iRfE6ycte2kp/u3bujsrIS8xVL/ba1tWHRokUYMmQIAGDw4MHIzMyM2KempgZr164N78MMGgUPzM5i2Z3zI5MfBiWfVcQrHuWntTVOZT6BsDelfdbKD5BgyJ8ixBLg225A0fb8UF93CflxcgxxxHGhEyheL5Cfb2k2PGH1RZI0F+0FzK1V5pgjbqJgjGMKCEcCErYdCOguFeBYu00QkIQLbOgpXi5UfpLOF6FI4jCibt2AQYNIXuz77/M+mxTGm2+S7RVX2BbyBsQZ9gYkbZ+1XO2toaEBWxUMb9u2bVi1ahVKS0tx7LHHYuLEiZgyZQp69eqFXr16YcqUKcjLy8PVV18NACguLsYNN9yAO++8E2VlZSgtLcWkSZMwYMCAcMUVZlCEq9CZV7MDud05P2HyUwDiDDc1uTLvRp37QmevE7VtperZgQMOKD8WyE9c91xFfpgqPyqyK0lyLQ1fPnvlJyXHkKIiy7PhPh/JWz96lHQPOoFmGk1Nsuetyls0k8vVoQN54dnlDFP7WbnmE//tIgHUdnYeP/ITtk3ta1TLdFT5Mak02k76OCk/KTWOUNCiB0nmSFJccgkpejBnDnDDDbzPJgVRVwfMm0c+21TljSKusDeAkJ8lS5Kuz1omP8uXL8c555wT/v2OO+4AAFx33XWYMWMG7rrrLjQ3N+OWW27B4cOHceqpp+LTTz9FIV1YAsCTTz4Jn8+H8ePHo7m5Geeeey5mzJgBr9cbZc9RKMPeQr5fVhYiB3KdusZ25/xQhzo/H5bybuIqu6yybcURz8oiLzu/nzjidpGfZFJ+7CA/VnKdAJvaHbrmyklpX37sdtuNlBxDVBXPzE6idOggkx/LUOVgtCmid8yQgIScYZXqBCjITx571YmaMmPbbhIQZZt+qUF+HCN92XA+x0yH/ES9MxkhpcYRCjqLnoRhbwAhP3/+MzB/PkkBsTMqUADAe++Rh75vX6B/f9sOK0lC+YmJYcOGQTKoM+zxeDB58mRMnjxZd5+cnBxMmzYN06ZNs2rePgSDEaVa20MfI2KnATLCZ2VF/btjOT9U+QFMVz2j7514bVshIB4PsX/kiD0EhCn5Ub28w+WeWeT8mFF+YihegL2kD+AT9pYyYwgQMYECWHNGAeIM79wZp/qiysGgtjMyFIUsnCIgStVJTX5MLBJtdwhWPMQrbtuqYgth2zkZZICUJGahZ2HiZYKAKO93XJNmetecE/lJqXGEIkkdSYp+/YDjjwc2bSJV337xC95nlGJ44w2ytVn1OXxY9kmOOcbiPydpn3Wk2ltSQLm8uF7OD6A7mDuW82OC/CRc9cxM6JlTuS9C+QHgjnYDgDfPXTk/SQdV2eMIZzRGAjqQIAFJ0Bm1xXYo10lpPzufvfITtl1gLtzPEds5Hubqi5V7Tm23t8cp9CZAvARMgoa9bd+eQBUUfvB4gKuuIp+pny5gE2pqgE8/JZ9//nNbD71jB9lWVMSx6LQgP0kGOvWWnQ3k5Gjn/ADOkB/l4hpxkJ+Eyi63tMiObhylrsPnGI9twLjMttPhXwnm/CTUbhfl/EQoPwWxVScBA6iIpaYz6pQjnqAzapttjycix9+K8hOXbY3xM0r5aW/XXSTaNgKiUvvM3HPHiJcJpVG5uCwPsi1gApWV5EYFg2S9nyQEJT/z54uqb7bijTdIvzj9dLkqoE34/nuyPe64OP6ZnsuBAwmu28AW6Ut+VDO2EfHLGRkhjxgx1ZeECIDXSzKeYS3nB0jAGaa2MzLCAblWlZ+4bQeDUSEjblBA0kb5URHOjAxBfhKGDvkxG/aWUBiUXvgVR9UJYEB+lGNY6MGICrlTn5RdtpX2Ewg9q6/XLQhnDNU9t2I74cVldUif2b4uYAIej+xMJtlMOkXv3sDgwaR/v/UW77NJIbz2Gtk6EEtIyU+PHnH8c2EhIe1AUvXZ9CU/RonKQMzBnCo/ra1xvMSow9ShQzjw2oryAyQQeqZ8gWVkQJJ0HHEn8k/q6+XZ2ASqvQEkatESNBQvnqWuua3zA2DPHvJrVRWQkR9bbRMwAL22ZWUArKsvtjijcagAgDPECwCyCkL5RgZ9yjYnPCRlhK87ta38UoWEyE97uzz7EYcCoiwQE9eagG4IdRRhb84iySu+ASL0zXasXg189x152GzO9wHkJXriFpSSMPQtfcmPyhm1Sn6UeTeWQ980Sg9rkh+DF0ncIViqF5jSP3E854fazs0N27GqgNBCPXYoXkwXOXWD8qMiP9XVkEMNm5vlHDgB8zAT9ubSnB8niBegICCM2q20H875MbCvbLflLq9cEDMOBSQrS37k7FRfrPa3hAtsxGFbwCSSvOIbIC9Bs3ixXEVMIAH8+99kO2ZMxHp9diEh5QcQ5CepoFJ+InJ+gJgEJCdHLgJH/R/T0CAg9CXseNibTggUwCDnR8NpYUYCNGaL4835saw6Ae7I+Qld9927ya+dOytsA8JxiQc8w97ckvODyPHTk8NWdVLaz8rJkAfmGMqP35/AxFVREQlbBkMCohE27IZ7LsLebEYKKD/HHAOcdRb5PHs233NJegQCwOuvk88Olc8T5CedoCpRG5HzA5iKn66qIp/pTLpp6FR6Axg4wzplrjMzrZOAuG3zID8qJxWwTn46dSLb2lqLtgFj8sNqnR8j5QcQeT/x4OBBsg1dWzeEvblGdWpr05VWnFJ+zLQ9Pz/MW6wTEA3bzCr81dfL19OIgDgdbijC3pxFCig/gFyQ7NVXRVBBQpg3j1R6KysDRo+2/fCtrfICp3GTH0rYN22y5ZxYIH3Jj07BA7Nhb0Bo5hzyTLppqNQX6tDm5YVeyiZeYgmHnmkVHACcDXtTOeGBgHx5Ha/2puG0UPLj9cJUu2n9+127LNoGzIW9OZFn5ffLyQWh6x6h/GRmyiWgBPmxDheGvVlVnWx3hJVqYoyiA8rCbfHaDgTkVEKzif9xtz1B4gXYYDsnJ3yN3dDfBPmxGZT87NqVwFoa/HHFFeT9tn498L//8T6bJMZLL5HtL36hueZkoti+nZDTggJS6jounHAC2W7alDRMN33Jj9mCBwbOcNzkx2iBU8DZ0DOdsDcr5MeJfCPuyo+Jlzdd+Tgu8qNT4ttxpU/p5YQ8nwjlx+MxRToFdKAqeOAaAuKG/A8D+0VF8iKbiaovShOOX3ejfCMLC9vabdvxe25QXlyEvdmMsjL5HtN4pCREcTHws5+Rz6+8wvdckhY1NcCHH5LPv/qVIyZosYMePeJY+JiiRw8yi3z0aByhUHwgyI8qcZSJ8qN6iUWUuQZMOcN0bLRcR18n7I1WrzNjO1QvICL315JtleoEMMz5UTgO1G8tLjZnmyo/Bw5Y5Al+v3zCRspPIBC5CI8CtN1tbRbXvqONLCoKl2+PUH4AU8qTgAYkKYpUu46AmFhjqKFBt9tZtp2djcjZSZ22Z2TIxUsSJQERxRacDjeMFfbGmHgxs03/QXHjRNibQ/B4Uib07Ze/JNs33khqEYsfpk8nfsEZZ8jqis1ION8HIIMALRW3YUPC58QC6Ut+jNb5AZiSn3iUn2OPJVsaqxmv7XiUH6qAJGqb+tpZWarQMyfCvzSUH3r+XbrAVLs7dJBJoqV7rvRsQ/1NU/kxsK+sLmip7RrtjiI/yopvAubR2CgPHAmGvVmeSFD+U4LV3oAEHHGtqmMZGfIsEgMSoCQ/EYtUO3HdjYotsCIgNqhOcU9cKQrGiLA3B5GEORRaOPtssnDm0aPA22/zPpskQzAI/Otf5LNDqg9gE/kBgD59yHbjxgQPxAbpS34SXOcHkJ1HyyqfTs5PPOTHchlJle14lJ+EbatUJyvEi6pOiVbYA6yTH48nzrwf6rTk54c7WETblWFCOvazsuSZ8n37LNjWuOb0UlRXQ3ESEOTHKmixg+zs8DW06oyGouVw9GjiuS+attvb5YQYFXw++56nCBUgfBIwbBTl43Hb1lDtPR6YUr2o7UTVa6V9syQg4XYnYJv2Nztti7A3B0Bn+ZNkFl0PGRnA9deTzy+/zPdckg4LFwLbtpFBmsYPOgBKfuJe44dCkJ8kgU61N7OlrgHZeeSp/FgmIKqwt3iUH6XqpONXGdtOoNgCVZ1qa+MM/1IoIPTadekC0y/vhMgPnfKFSvnxeuWOZ9D2rl3JdscOC7ZV95sS9bw8xcy/ID/xQdmnQsHS8YQh0cpjlEuZQlNTVA6Gpm3A8EEpLydby+Gzqip3EU44YKrtCdvWyrNiZVsxjlglAXbattrf4ratmjSLx7aABfTtS7br1/M9Dxtw3XVkeFy0KGn8YnfgxRfJ9uc/jwz9sBm0OnXCyk+SEfb0JT+qsLdEc34sFbhQOaTx5PxQArJrFwkJtWw7AeWnuprM6LS1WVQhYoXcmUi8r6ggpyhJFsPuVLb9fpJLCISuJW13W5sho7OL/MRD/OIiPyqnRVnsIJzcKAoexAdVsQPA+kx8Rob875YcUrqzQhK0WnQAADp2jMN2MCg74qHyQPGQn7hsK/8hdIB4VCe7bAcC8vhrNuTOLtuA9f7G07aABVDys2GDxRlG96FLF2DsWPL5uef4nkvSYOdOYM4c8vk3v3HMTGurrPwknFIklJ8kQYLr/AAy+WlqspiwbIPyU1VFZozb24G9ey3YtqHaW2amrHol4ojHQwA8ngRJgEIBCQZJWyoqEJl3Y3DP7SA/waDcRCuk0452R+X7KG0L5ccaNNTEeBxC6k8eOGDBNp116NgxSnWKUCBi2I/L9uHDsscfkhJotw0/RiZCz+KyDUQ54rq27W63hm2liYgQVgbtVtrPzoapaAWlbUsTdoL8sMVxx5Fr2txMahEnOW67jWxnzIhzkfB0wwsvkDF22DDgxBMdM7NpEzHToYO8bmXcoORnz544K/iwRfqSH7Pr/Bi8xHJz5SgA06FvkmQL+fH5ZAfWdOib0nYC1d4A2RG3FHanY9sK+VHatvROUF1zqhodc0wof9dE0QG6v/L/TUFFfqJKfCs/MCI/4XwfpW1BfqxBg/xEOOImnFEgzlAkDWeU2s7NBSFEdCbH7jAounNxcdhGPAQkLtvt7fLzlAD5iTv8S4d4hc0ytK20H0G8TNhubbVYOMXAdk6OOdsCFuDzAccfTz6nQOjbueeS5hw9Cvz737zPxuVoaQH++U/y+fbbHTVFu1bfvgmUuaYoLpYZVBIU6khP8tPWJjt6CRQ8AOKo+KasEJUA+QHiyPtpaoqyHS8BiSvnyIaQOwDo1o1sEyEBEcUOAPKyoYt92r3QqYr8KEt+Rl13AwJiB+mjYW8Ryo8gP/FBIwdDs5CF328YuhJXKBLdWbEqXSIKiF3Ey3HbVC7JyAhf9yjbFhQQu8iPz2d+vTCl7UTVF6sEJD9fftxtveeC/NiPFMr7ycgAbr2VfH722aRZB5MPZs8m41yXLsC4cY6aWreObPv1s+mAVP1Jgj6bnuSHMpWsrITW+QHiqPhGndHMzHCSTzw5P0AcBITa9vnCxiIS7520HQjIUmgs4hUIyCRNA5YVEA21LYr8eDym7rkd5CeqxDfAN+xNkJ/4EEv5cTL0zGYCknS2y8rCkxXMbLe0yDNVNqhO7e1Afb0F+zYRkITCLBVkW3OtMkF+7EMKkR+AFD4oKCBpTAsX8j4bl0KSgGeeIZ9vvTW8Np9TUCo/tqB/f7Jdu9amAzqH9CQ/27aRbffu4RdoVM6PycHccsU3pRMe0hmZKT8a1amYKT/KRS1ikZ8Y9i2TgKNH5RyFkKMaUemNwsJCp3v3Wqg2p6P8hAmnSdu03Xv2GHLDSGjkOgGqsDeT91xABeqMUm8W8ZEfu8Le6PPkePiXGfJjYvx0zLaFdh84YCGfnNrOzAxHDMRzzfPy5Gc/EdKpnCOyQn4cue5C+bEf1COl0/NJjqIi4Be/IJ+feILvubgW//0vsHIleahuvNFxc7Rr2UZ+Bgwg2zVrbDqgcxDkJwRmYW8a6yUwIz8atuMpeJCQ7YKC8EXWtR3DPg17Mx3+RQmAYj0WqvzQdkTYN7BdXi4TZNNqHw2PUpGfcLtN2u7UiTQhGLSgPKnyrITyYyNopZFOncJfRRD68GAC14ee2aX8hPu0y0PuKAEIBCwsNqoku6HJo3hIHxBH25ua5IFDI98oHuVHkB+Xg8YipUDFN4qJE8mj8/HHSeEfs8cjj5DthAkRVUSdQGsrsHUr+Wxb2BslP6tX23RA55Ce5OeHH8j2uOPCXzEjPxrrJfAkP/Hm3dhpO+wwKUPPTCggpst8qwgAoBH2Bji30Cmtex9aRSzqmpu0nZEhX3fTqpeiv0mSjvIjyE980CA/EQ6hyVBKpQphGjaTAJ7E6/BhkhbF0nZ2trzAq+nrbpNtII7rrlHaPFHyYyvhFeTHfvToQRySxkaLsc7uRa9ewGWXkc+PPsr3XFyH1auBuXPJi37SJMfNbd5M/KeiIpU/kAgoi6qtjaOcJVukJ/nRUH50c35ikIC4lR+FI84s50eDeOmqL36/oUdCbR84IJ+/IcyQH6X9GGW+fT5yeqbUF412a5IfJxY69fvlwNpQycp4w94AiyF/khQR9nb4sHx4QX5sQCzyA7hDATFRdpkH+VFE35pf4NUNBMQG25avu9K2SnWyUmwBiKPdjY3y2KAXZkltB4MWmKyAITIz5Xik777jey424o9/JNs33kgZTmcPHnuMbH/2MxtWHI0N6pb062dDpTeKwkJZVHC5tJee5MdA+bGyzg/gjrC3gwctEhCN6lRRyg8Qc2V6OnNqquyzBgGJVwHxeuW2mwp9U7W7pUV+8VtVfgCL5GfzZsKs8/PD8Xrxkj7AIvlpaJAdkdLScB8tK4tMRxGLnMaBYFBOAtcLewOcW/dFuc4PIk3EQ7yUUVUxYRMJ8HrloSjpCIhNtk3fc42CA8zbnZ2teEnFl98mYBE/+QnZphD5OflkUvo6EAAef5z32bgEO3YQNggAd93FxCTlJrbl+1AkSd5PepIfB3J+9u41OeFlI/kpLrZIQMyoL8qXmJ3KkwHx0iQBMVQISyRARbwoacnLi7gUzpAfOgAMGBAursFM+aHXPCsLyM3VLnOttC2UH/M4dEiOuUzQIU0o+T7BvJvCQnnM4xH+ZZkE2KR4OW47CVSnuIhXaIo4GJSjJQT5cRCU/KxaxfMsbAdVf/71L4uLtKcq/v538j4591xg8GAmJlesINuTTrL5wEmS95N+5KehQR7MjXJ+LCSu+nwkwqi21oR9Kzk/ra0xC+JbIiAGYW9hRzwcQwFnyI8NYW9AnCRAo9JbhNzrBPmhAwAdEKDTbpOhZ3GRvlB8kWaxAwu2BRSgb+zS0ojCBvFUT7ScfK9Rcllpwooz7PHwVUB4kgA3EBBHbMcYv+xsNxDq6ybXSROwiBQlPyNGAKecQsbLv/2N99lwxq5d8qKmd9/NxKQkyeTn5JNtPrhQflwKGidVUhIuVwrEv85PRoa8qK2p0DcNEhCV86OcRYtRT5mGbTmivjhMfuKtegZYrPimIn2a+T6AaechLuUnlO8DMFR+zJS5BgT5iQca+T6AhkNKb7LBtbWcfE+dUZ8vXEFQ07bJ+2pJCZAkc2W2TaqJjpAAk8+So7btvOZmbZsMX7Wz3RH2TfR1AYsYOJBst2+3UJbQ/fB4gIceIp+ff95C2kAqYsoU4uedfTYwfDgTkzt3ksfa54twTewBPeData6uUph+5Ecj5A0wyPkxMYtlKe9nyxayDXnewaBMfqKUHxP27SIg8TjiiapOhgqIg8qPZplrwLTa54jyY5H8/PijiXHFzAKnyhMRTot5WCU/MZLyaOScKfVYo+QyoEFA6GxKjGQe6tOaCj+pr5cHSw1nODxvQ9tt0jYV42PCDAlIItumQ37MhDlS221thjHYtK/ZYdvrVazDSPubqQRUAVMoKZFfVCmU9wMAI0cCZ55JXrcPP8z7bDhhxw4S+wcAf/mLjZUHjLF8Odn27x/pbtqCnj3JoNTUJPu7LkT6kR+NYgeARtgbZSI0vMQApslPW5usBITiOpXvyDD5CTMw8CEgTio/NqlOieT86Co/Jm3T/6upiZHnVVcnn6CC/CRCODt3JmpjW5sJR1lFdmMqPyJcxTw0yE/UopOAaQJiaQJFI/kd0HieTBKvuGwXFEQ8uFF92ol2+/1yWThF22nzHLUNaF73eNtNn0HTa4UZ2I7qazHsU9sNDWT9Z9O2jZQ+wDTxE7CIFCx6AESqP//6l4V1+1IJU6aQl8bw4cDQoczMOhbyBpDZkEGDyGfKslyI9CM/MZSfMPmhIXF1dTEPafolum4d8VpLSsJxW5RbeTyq9W4YERBmyo+ZNYYs2KZhbzt2mFBAdJSfeMlPRQV5voPBGARk7Vqy7dzZNtKXmSkrTzGJn1nlRxQ8sA4N8qPkGGE/1AkCosNio8JnnSABOrapiSjbdrZ7714Sduf1RjjiTGzrLJKlS7xi2KbPcG2tyUI5Graj2p2dLefdGNgvKJDDLE21vaZG13bE2C2UH2eQonk/APH3R4wg/tf99/M+G8bYuhV45RXy+cEHmZqmnMQR8qM88LJlDhlIHOlHfnSUn6icnzjIT8xZPGV5jZC8qXRY4km+d0PRgZ07LRAQm2wfcwx5z7e2mghbUSk/yoIHETBpOyNDvueGoW8a+T5AYoQTsKB66ZAfkfNjAwzIj3LugiUBidcRd4R4OUn6qqpkJx8a7Y7Ddoy6MiTcj95DmuQJDQKitG1w0IoKwuFiTqBQUAKisB11zT0ey203FbprQPqUYpNQfhwCJT/ffsv1NJzC1KlkO3Mm8L//8T0XpvjTn8jMx+jRJP6PERwtdkBBDyyUHxfBbM4PJT9Hj8olbXVA3wkxX+C0xylKGUZVeqOwSH5iEpD29igFRJISKzpQXS2HYMWMH7cachfDEc/MlK97TBJgVvmxsEo5nbk1LDGuLHOtQCKkD4iP/Pj98j0SOT82gF5MjTCkiIkMRspPICB32yhHPIYzSvuyZQKiQLyqk6X8Oauqk0nC2dRkYo6L2u7QIWLWQpdwKmMgNeD1WiiUo3x4jVQnpX2HybYm+RHKjzP46U/Jds2alLy2J58M/OIX5PMdd5iYiEgFLF4MvP02caAefZSp6e3bSfRwZibJ+XEElPysXOnaRY/Ti/xIkvmcH0UluFiB0aZfJHTmRlFYPVHy07kzcbTa2mIoIOvXE3ZUXAxUVgKI9PHjUSF8PrnthspTU5N8cai3g8SIF2Ch4puCeNXXk0lcIH7lBzDptGkUOwAYKj8Kta22lnR/ny8iYohAkB/rMFB+HHdGNcKQNEPuLCo/dhCQeFWnQ4dMdD8N9UNpwmq7c3PlaNSYbbeqeJmwb/qemw33U9o3GXZnK/kRyo8z6NyZ/ASDrp5JTwRTppDu89VXwFtv8T4bhyFJwJ13ks833OAgA9HGf/9LtoMHqxY7txO9exOntqkJ2LjRISOJwXbyM3nyZHg8noifypCzDQCSJGHy5Mmorq5Gbm4uhg0bhnXr1tl9GtrYv5/cDI8nqtSX5iKntGfEmBY09RJrb5cTFm1UfpQKiCEBURKv0LS00tmIl4CYCrv77jsycHfqFOG4JFLtDTBJAtrbZfJaWhpWakpK4r/mgAnyI0kxw97iUbyA+JQfnYihSNsuKXjg6jGEQiOG0NAhNOmMxktAaJ+KCLmzqDqZWqjZ5rC3Dh3k5yBm2LBZ4mXBCTdNQMyqTllZcvkzu+55jHA/TfXFLrJ99Kg8fhqF+wGm7zkrJMU4YhannUa233zD9zwcQufOwF13kc933ZXi/PnNN0l8X34+qfDGGIsWka2j9RW8XtnPdSlhd0T56devH2pqasI/axSLHT366KN44okn8Oyzz2LZsmWorKzEyJEjcdRU2ZkEQUPeOneOorxROT+AnBVqkvw0NMiqQhTWrydSS3Ex0KNH+GvNFxhgPwHRWM6XDjA+n6rddtumxGvwYM3SvI6GfynXRujQQT/kzaLtmI7Lzp2k3/h8QJ8+EX/SLPRgN+kD5MpYJSX6xQ6UtpubXRNz4NoxBIiM81R0JDuc0T17TOTPxUi8Dz9iJm2bLuChYzsYjD/0zONJnIAYhtzFuJimbcdQnRxV+8zmeCl/sUt1ou0uLCQ/RrZNtpslXD2OWMGpp5Lt0qV8z8NB/OEPZDjdsYN5/j87HD0KTJpEPt91VzgKhyWYkB/A9Xk/jpAfn8+HysrK8E/HkFQvSRKeeuop3Hvvvbj00kvRv39/vPrqq2hqasKsWbOcOJVI6IS8ARo5P4Ac+qbLaAjy8+VddV8mlHwMGhRBABJVfoA4CEgImuTDCdsaxEtpP97wL1Nhb9RxKCkBfD5j8hNHzo8u+aEv2T59VJ0q8XA/JfnR5Srt7cCmTeRzjx76Za6VJyJJMRfVZQXXjiEAcQglidzX8vLw14koP5WVZFjw+2MsPhkMGoa9xWPb0kLNGh1J2WWthr0BFkKwrJIfIKaSmqjtRBQQ20mf8hdGxMvNyg/g8nHECqjys3Spayao7EZeHvCPf5DPjz+ecpW9CR58kDx0xx1H2B5j7NpF3OCMDOCMMxw2dsopZPv11w4big+OkJ8tW7aguroa3bt3x5VXXokfQqRj27ZtqK2txahRo8L7ZmdnY+jQoViyZInu8VpbW1FfXx/xExd0ih0AGmFvgL3lrjXIB8CI/AQCcplMDeUngnzYbRvQbHsgIPvZjio/1HZopWzdSm8WbcckPzr5PkDipI9e84YGObItCuvWyUpjz57mlB/lyXGG3WMIYOM4Qhk0XXQphESc0cxMOX3I0CHdt488PB6PZr5RPLYBkyRAkgzD/YDEQs9ihn/plCuMGseU/dkkCYjXtqECYlfeDd1BpTppEi+787zMFrhQ/uIi5ce1vohVDB5MQolqakzGxiYnxo4FLruMDHG//nXMWlPJhTVrgKeeIp+ffVZj1tl5UNXnpJPkwCbHQCvYrVoVU0DgAdvJz6mnnorXXnsNn3zyCV566SXU1tZiyJAhOHjwIGpDMRWdVKuid+rUKfw3LUydOhXFxcXhny6anqsJmFB+4iU/MRet06j0BjAiPxs3Eqe2oADo1Sv8tR3KDyUgurZbWogjDkQQL+WhHVVAqOQauu52h73t2aMzQOvk+wCJFzzIzZWLjOkSP2V/83j0y1wDRMGgaqQLyI8TYwhg4zhCnQ/V/yeaB2FqNp4+aJ07y7klNto29KsOHpT7h0bhkpwcBRdUOuExZqpNqxC07Yp8TUnScMQzMuRBxS71hT5oqlxRJuqLRruVthMJe9u717Aone5sUTIoP672RawiL09+l6Rw6BsAPPMMibD83/8IR0gJBIPALbcQZ+HSS0l5aw5gFvIGkEHmuONI22NMTPKA7eRn9OjRuOyyyzBgwACMGDECH330EQDg1VdfDe/jiVjQhkjQ6u+UuPvuu1FXVxf+2WlYX9gAOsqPMtrHEeXH75c1XFXoF5OcH6p+DBoUMVOtq/xYyD+htnWd8DVrSPvLyyNeoEq/IN7Ef1MKiGo1L7vIT2UluZR+v06VPRPKT7ykDzCheqnaTUm5pvJjYVFdFnBiDAFsHEfo/ykIACBPZMQ7G26KgOg44TRNIVHbho44td2pk6Kqgmw7YiZRWfI5RiilKdv19XL+nqLtra1ykQZFSor9axzRwZU+eCHQex5hO461dgz5Ib3uOrYjJs4s5nlJUow8Lx3byZDz42pfJB6cfjrZLl7MziYHVFcDjzxCPv/pT8CGDXzPxxY8/zy5b3l5svrDGJIELFxIPjMhPwBw1llk++WXjAyah+OlrvPz8zFgwABs2bIlXGlFPbOyb9++qBkYJbKzs1FUVBTxExd0lJ+DB+XZe8UyNPaRnw0biMdbWBihvACMlB+NEtuACeXHAgE5eFDnXa+xsKvy0FlZqupjFohXbq4c+aNJApQV9lTkR+U7EtCcHxO2fT45EiTKWW1rk/NtHFB+ADnfySz5MQx7A1xd7tqOMQSwcRyhN1xFfqiyH3FYC7PhpnLYdJxRaltZod+KbXo4Q9s6BIAOj5rtBmI6w/RZNNXu0tKIwVIZTRExhpoMuzNlu6VFLnChGjg077mFsDePhzxyhnleOtc9kXuekSFPAPHobzzgKl8kHpxzDtlSDzaF8ZvfAKNGkUfv2mtjqJNuxw8/yKXs/vY3nZlX57FxI/D998Tnol3JcVDyQ+truwiOk5/W1lZs2LABVVVV6N69OyorKzF//vzw39va2rBo0SIMGTLE2RNpb5c9X5Xys3Ur2R5zjMohtYv86CgvgL3kZ/9+Hd/VSsEBi7aLi+UXv+YkmE6ukx0hd0AMBUSZ99KjByTJpPJjouABYJD3s3EjmY4uLo5ykAEGyk9bm6w8ha67YcED5cm4kPy4Zgyh0AkFosNEhENoYTa8Z0+ypeORJmI4o/E44Y7YzsyUZfQY9qntLVsMFJAYBKCwUDW0mmw7nQc7csRAPaa28/PlhYFAztXwuse45zk58vDw/fc6OwUC8gBjhXjx7G8uUX7UcN04YhXDhpHt2rUmVhVPbng8wCuvkMnoFSu4VIS2B8Eg8Mtfkmdi6FDg1lu5ncoHH5Dt8OEa/qZTOPtssv3f/1wRVaKE7eRn0qRJWLRoEbZt24ZvvvkGP/vZz1BfX4/rrrsOHo8HEydOxJQpUzBnzhysXbsWEyZMQF5eHq6++mq7TyUSO3eSF0lOTlR5wS1byFYlysgju4lkLUPyo5PvA9hDfkpK5PdOFAEJBskquxr2NauOWbQNxFCeYhCvRG0bzpYr1Q+PBwcPyofVVECobZMvb13yQ4nHiSdGqF0UMZUfE9V8DMnP2rWEAJWUAN27o7FRdsyTQflx7RhCQcNnVQpyosqPHc6o5kx8e3vMqVNafX/r1vgJSNQkuEUCUldnQEB0wv0StZ2XJz8T9D0QBWW7Fc9zY6NcSduxe75nD5lIUUrNIdjV33SJlyQltfLj+nHEKsrLw4V78MUXXE+FBTp3Bl54gXyeMgX47DO+5xMXnn2WJNrk5xM2F7XIHju8/z7Zjh3L0GjPniQ8p62NECAXwfY7sWvXLlx11VU4/vjjcemllyIrKwtLly5F19Dgedddd2HixIm45ZZbcPLJJ2P37t349NNPURgRNO0AqMPSrVtUB6QvHvoyCMMu5UeHAAD25Pwo12yNIj9btxKGlZsLHH98xJ/sUH4AA/LT1iYn/usoP4naNiQBqtAven6dOumsbExndXU9sEjokh/aZo18n5hV7gBTypPpdiuKHRQUqHITlLAQ6ug0XDuGAMQh1Amf1XQILagvlIB8/70JAmJFBQBiEvrjjiPjSH09cOCAzk5WVADAdOiZkoDokgCHbAMmCEgM4uX1xlftzZLtLl2IIQU0ww3ttH3okHwcHZXTzcqPq8eReDF8ONmmQegbAIwfD1x/PZlkuOoqE7l5bsKqVXI560cf1Sy0xQoHDsgVp8eMYWjY45ETjFzGXn2xd7GG2bNnG/7d4/Fg8uTJmDx5st2mjWFQ5lpX+Ymj2lttLXFww+8pZZlph5QfgLyXN2zQICCUeA0cGFEdCjBQfugXJl9iuuRn7Voy41xSIks0ITAJe7NS7AAAQmtA4MAB4n3GSKA3pfyooOQWmoucAqTtSjKkAVPtVoW86ao+SvsukKZdO4YAJLmNZvir+rRh7ouJZ4nOyzQ2kqiWqPXvJEmWOM3k3WRnkwPSVUgjWFkkaAjWzp3EGaaPQgR0bCeqvgDEEd+9m9im6zmytL1okQEJMGE7Yqiwk3hR2yriFQzGKDRhJ+mrqIgaqBNVnVjA1eNIvBg+HHjySeDzz3mfCTM8+yxxY1avBq64gjQ9ojCVG9HQQE62rQ0YNw64+Waup/PRR2TMGDhQJ9/ZSZx/PvCf/wAff+yq1Wv5aXCsYVDm2g7lp1MnQniCQVU47qZN5EWUnw/07h31f7rkh84+mbANGBAQnZwbwICAlJWRre4UcCR0y10rCy2oiETMkDuTxEs37K21VSYhZskPXbDS7zd13eNRfpTkJ4LfZGbK18hE2+k11yw0QQmvqtiBbr4P4KqwN1eDjiPV1VEE1VD5aW2NuWhFVpZ8XzUd0gMH5H5pJuTO47EvBEuS5Fki1UCpSbwAex1xHdsxyY8J23TSy3bbdqgvOi8n+t4A4g89U9rWVBp1X4wx+rpLlJ+UxNlnE0djy5YYC9ylDvLygLffJs/ZV18BEye6fJ1XSSK5PZs3EyfhlVdiTqQ6Dbpu78UXczB+/vlku3y5TmlcPkgf8mNQ5toO5cfrlWdqI6RZ6oj+5CdRYQuAAfmhC7mY7CwxyY9GyJ1uqWta7cZkUqVuuWuDcD+7iVeU7TVriOpUVhbeybDSG0CcWXojTNjXJD+HDskdoH//qP/RXBMFIIOjhbYXF8vdM6LtLS0y+TJT5ppCkB9zMJhEocOEZtljIHFnmH7ZpUvUg+M4Adm/n0gNHk9U23Vtx+GIa+bdSJJ8UqpB2k7bMcmPWdt2kp8YtjMzVSG8Fu43DXWsqyOTKGZtK+27WflJSRQVAbQgA03iSAP07Am89hrpr889B0ybxvuMDPD88+RkMzII66DvdU7YvRtYsIB8vvZaDidQVUX8XwD45BMOJ6CN9CE/BmWu6fIRNOY+DAvkB9DJ+zEodgAY5PxQ8mORgESQH0kyJD+6BMRu4mVFdaIM8vBhS7kvhw+r6lKo8l4AE8oPIKs/hrVnCZTkhyY+h4lHt26aSyjrKl6AZdKpWZ5YSfpCNyZmmWvlCQnyYwwD8kNTxRQFwch1pTEaJsYRQ2dYR4EAZOc1wjZgSUE2ZfvYY6MS5mi7o97xdCKBxmfFa3vfPl3iRdtth22rxEv3mlPbSnlGB/Sdc+iQTqqhDgFR9rWISWVq20SRHmW1OSv9rb1dbpru0hCunppPclx0Edm+9x7f82CMiy6S1//5/e+BDz/kez6aWLQI+N3vyOepU+VSzxzx+uvEPznjDA0flxUuuIBs587ldALRSB/yo6P8KMtcRzmkdpAfAwIAGCg/1BFOhIBs20aYXVYW0K9f1P/oFh2g5OfIkZgLFCpt79ypIAHKNXasEK+SEtlZNNH2wkLZ+YhQQFT5PvT8gBjkhyY7mCA/1dXE8WhrU4g1BoubAgbXHIib/ES0WxnyFvKKYpa5Bly1yKmrsXEj2aqKh0iSjiPu8cgeoolCGvTlpOmIG8zE6xIQ+nAcPhzTNvVxN2+2ZluXBFiwTQ9r2G4N4qVLfug1N2GbXvODBzV237+fEAkN4qV7zS3Yzs+Xn0tDtc8s8bJwzYEYxE/HNm23xwN06KD4A213e7sIfXMSlPwsWiTP3KYJJk0CfvUr4mdccQWwZAnvM1Jgxw7gZz8jYfNXXSUXO+AISQLomr7XXcfxREaPJttPPpFXpeaM9CA/DQ2yM6siPwbv9MhS1yZmsqLIj7LMtAYBoKcGxAh7M2FbSX7Cu1PideKJmhmCuipESYkcomeSBGRkkHde2G/fsIEoN0VFmtMNuiTA47GsemmSAA3yo7M8SySo8mMi9CwrS+Yr4dA3qvxoFDsA7FV+NBc61Wi3UH5sBCU/ffpEfN3QIFeTToSA0DkK2o0ioOOMAvaQgBNOINv16zXSkwxUp5gkwATp69WLjCGHDpGiMREwaLem2qb8wkS7CwrkMWHdOtUfabu7dInK8dK95harRtKutHat6g9KNqYaQ2Peb5O26T2Psg3ovhypbeVrAgBhcrSojkn7AnGgZ0+gb1/iRH78Me+zYQqPB/jHP0gaSVMTERSoi8UVhw6RkzlwgPh6//oX9zwfgFR4W7+ezBldfjnHEzntNDJYHTrkmmId6UF+qOpTWhpV8cggp1PeNxg0FcdMZ/DoTDs2b5bLTKucJYA4GHSiXZf8tLSYCt3o3Jk8ay0tCr/dIOcGMCAgGRmWCIjPJzvWYeWJ2tZY2FVp287wrzAJaG6W3+YhEhAIyCTALuUH0Mj7MSh2QE8N0FF+aMifzaRPFDywCZKkS36oQ5idrXFvLTikNDSa1kmJALWtckaDQdlHTsQR792bdIOmJg0VYtMmeScV7CABeXnyoWlxzDBoux2yDcjXPcq2iXZHES8LhNOU7ajVt00ofUo2Ho/tI0dk5V3V3+j7Jcq2x2NZeRKIE1T9efddrqfBA5mZpADCWWeRoJxRozQmLViipYXcj/XriSP07rs6L3j2ePxxsr3mGpVKyxo+H1HFAOCNNzieiIz0Ij8acfqGyk9enjy1Fc9aP8piB6oy00Akn4rK+cnPl780Ef6VnS37zmECEiPkzlCFSDTvJxHbFklAVMW3774jbKdTp/BNUZYgV60VGAkLyg+gIj/BoGnlxzDsLWrqWxuapI++BULXXZJMFjygKmeahVFYwp49ZCLC642aLVE64VETfhYcwspK8ugFg6rZeL+fqKlAVCGNI0fkcFNdR9wECfB6Zc4e5QzTk9Eo4mGH+gIYOOIGtu1SQOKxHZOAOGhbt91KD8fEdae2V65UBRhQ28ceG7U4mC7pAyxfd4E4cdllZPvBB6bD8lMJeXmk6YMHk1f1sGGyy8EUfj/w858DixeTyfK5c2PMrrLD1q3AnDnk8x138D0XACQUEADeecdUPrfTSA/yQ5OUDdb40VR+PB5LeT+0z69dG7q3JvN9vF6dRTcTISAxih0AMVQIi7ajyl2bVJ0MlZ94SYBBsYPOnTWL7slIRPnZvp0w2uxsHTbtsOK1ejUZjCsqwid24IA8ARy1bowSlBlFrZIrEAYlHz16kJhHBXRnwwF7lIDvvyeDSm5u1DhGu2phocY4YgcBaWmRB0qVI97eLvu5UWsDWXSEBw3SsA0YkgDadjpnEQYDAkKHRl3bSlZq0nbE7vG02+uV31km2t6/PxHm9+9XDbcmiFeUbUAoP6xw0kkkRralhayhkoYoLiYpJCefTMbf4cMZ5wAFAiSR5p13yPvg3Xd1Iz544IkniBt44YUkSpI7zjqL+Bl1dcC8ebzPJk3ITzxlrikskJ/TTiOqQm0t8NJLiEkAlPk+muGhcZac/vFHECf2wAGiOGm8wACT+SfxEK8YC7sCDpOAeIsdAJELnZpABPmhxQ769tVU+gCTyo/FdtfUhOpSaJA+qvpUVET565GgF0aQH33Q+6vxPNXUkK2mqmiHCkGd0X79osJIDW3HSQJorRIAJOwsGCTHUjFo2lV9PocUkPp6+cFWFW2RJIO2x0n66LrMYRiQAEoWomzT+y1Jpt4bffqQZ/PoUVXlRgPbpu65ibbn5sq1OyKuu0H4LrWtOZlikegLxAmPB5gwgXyeMYPnmXBFWRnw2WfAmWeSR23ECEaRgIEAuf6zZpHB7z//IfKTS/DDDyTtCCBFIlyBjAxSpQIAZs7key5IF/JjUOaavpt0SwBaID+5ucB995HPDz8soWlFaKbYaqU3ikSUH6r69O8flahLYUr5iWetn40bycHz83VZJW2SZtvjTPwPOw6JkB8Lpa4BmfysWQNIq43zfQB7SV/HjuQ4khRqn0ZZdVPFDgBBfsyAeodUolDALmcUiEF+DJxwO5zRmLZVszS03Z06aaT2WWz3wIFku3mzIiR4/Xqyra6OirOqq5NzJqPariScJtQXWpm+tVVOtcGhQ3IDNaZOde95VpYcsmyC+GVmyrc1fN0lyRT5MbzndpDteImXCHtzHj//OXnolizRKdGYHigqIkLC+eeT9+ull8qqhyNoayML5sycSZTWN9+Uc7BcgnvvJZM4I0e6ipMBv/gF2b77riI5ng/Sg/zEU+aawmK56xtvJC/S2loPnm24jhAPHc1Rd40fCjvIj47qJEmyf69p3w7bgwZpxpgFAmS2BpDXa4tAnIn/+/YBzfsb5PAkBQkwVekNsKz8DBtGyOOqVcCMD0Ivfp18H0AujBCxPgYFJT/795ty2DweFenUIH2mylwD8oXZt88V8biuBC0rRL1FBUwpP3EQkLAKoazcaMW2RWd0wADSr2pqFO8maluD1OuqH4BlJ7xTJ3IcSVJUcDJhu7hYp2IlQJ4jEwVjMjJk8kXnEMK2u3ePynvx++XxU5OAxKl6hW3v3k0MeL1ySTYFnCDbdPhAMChLfwbKjx19XSABVFURjx8gC2umMfLzSQ7Qb35Dxo877yTCjO3r7TY2EqLzxhtE8XnjDcK2XIT//Q+YPZuM4489xvtsVBg4kMh0fj/w4otcTyX1yY8k6RY8iBnyBkSWuzaBrCzggQfI50fwR9T3O103BCqm8hOnAvLNN0Dr//TX2AEIP9i1i+QIaExkWw57owRkyxagbsk6Q9tLl5J3Y0kJCRXUtW0y56ekRL6GP87fRF7e1dURb2enlJ/OnYEHHySfJ337c+xHuaHys3gx2Wq2mxLOQEBnyfVohEP+NrfKxQ6slrkGSLupQhguXScQRkuLTKo1yA8lCnYQkOOPJ326uVmRxLtsGdmecoqjtgsKZBLw5ZexbdP+FdMJNzkNe/rpZEufk7ht5+bKjMhk263Yrq0lTfJ6dXJfLJIAOgkUtk2ZSL9+UdK8Ybif0rbJdittSxJCg3id7sSdnbYFEsTtt5PtSy+lPeH0+YDnniOqT0YG8NprwE9/Kg/bCWPvXhJXN2+eXHGBa/3oaLS1kQl4gIgsdCx3FW67jWxffNHUOpJOIfXJz759JNFCOU0egmGxAwqLyg9AygoeX7oPh1CGJz36ZTbsDns791zi8+/cCTz9VcgB1iEg779PtsOH26P8nHACiV1vaAAe+iD0xOmE+9GlCc47T4cXWiR9Ho8s6i35IEQaFAQAiCPn5+hR0wrI734HDBwQxKFgB9yBJwzLXP/vf+Tz2Wdr7JCZKTuMJttOwzXnvXWUkL7KygiZx1SZa4BcRBH6po9Vqwgp7dhRk0nSkEtKRiNg0RHOyJAXBv/ySxB2U1ND/qAxU0Ft08mPRGwDct/88kuQGTrKwDRIAE3HMbQdCJhSX5S2//vf0BeUBFi1DVhWQKzYptf82GN1CqhYJJ30fn/zTWjYMSBehw7J7w7N8cyi7VNOIZNg+/aF3onU9qBBmuvDKduuazvNHXFmOO888r5pbAReeIH32XCHxwP8/vfAwoXkVbh+PXEFpk9PMAxuxQpyoKVLybi2YIGsurkIf/0rCcHv2NGFqg/FJZeQmZO9e7mWvU598kPzfbp0icr4Nlg7T0Yc5MfnA/5SRWTox9eO0p3Et5v85OcDU6eSzw81/A57PZW61P+DD8h27NgYtk064V4vmXEBgKd3X4at6KFLvCj5ueACnYNR8nP4sOmZAVpF8c/vD0YTcuMnP8XFsjdjMvQtMxP4552b4EEQM3Et5q/RLqv2v/+R5lRWGuSYWVS9brqJDPj/WViOr3FaVLtNlbmmEORHH7SM0Omna1Yn0YmsJYgjD4I6w4sWQXZG+/XTnKmgzqih7cOHTYVSRtnesIFMHhUUyJnxCtB2axKQ3FxZTbRIAhYvBvx1jXLOjwEB0SU/FlWIM84gt3bz5pC6Qa+76pkyZdsiCejVizz6ra2hCRID8kNtV1bqhGtbJLzZ2cCpp5LP//2vse2mJvmVoNnfhPLDFh6PnNH+zDNinbYQhg4l81Xnnkv67C9/SfyNcDVaK3jjDRKqtWsXmeFdulSWiV2EL76Q/b/nntOovukWZGUBv/0t+fyXv5haj8wJpD75MfBKnFJ+IEn42c6nMBCrcLQlC48+qr0bfa/rdlKLCghAVKdTeh3BURThvuJpmtUM9u8nK/8CJsjPvn2mp0xGjwbOP6sB7cjCpIwnNRd23b2bDEoej8HESUmJLAmZJH4TJ5KZyF1NZXgCd0Q4LG1t8iXUnK1UIiPD8lo/APBT6RvchmcBADff4tF8B9EworPPNlj82WK+08CBZGAHgN/jSQRPinTUTCs/gCA/RqDkRyNJrb5e9vU0HUL6HNfUmH6Whg8n288/B1oXLSW/UA9VBUMCQhceCgZNh1IOHUr+Ze1aYPdHq8iXp5yiKXFQ25qKFyA/Sxb6c0kJEYqWTl9PzrtLF80YKzqvFdO2yTGkQwd5vubTNw6S58Dr1VSwY7ablr4zadvjAc45h3z+ZG6QOFgAidvRsa1LvCxec0Bh+xPIfV3DNiVeRUU6eYsWJ80EbMCVV5IXW20t8NRTvM/GNejUifTnqVMJwZ83j8wf/eMfRIyOieZmEqJ19dUk7PnCC8lzqbHgMW9s307WEA0EiA9I1xN1LW6/nYwVP/zArVph2pIfU2WugfjIzw8/IKP+CB7ykWSQadPkOGml/bfeIp/HjNE5jkXlByC++1NnvwMAePnIpXLisAIffUTsDxokVyvTtd3ebqntT4z9Al748V5wLD5bFB3TRsu7//SnBqQvI8OyApKbC/ztAVJH+m/4E/Z0lmctd+8m7c3J0YnPV8Ni3g8AYPVqPIT70LngCL7/nsjPatBwGjq7rYk4CO9DDwH5niZ8g9MwuzGSzQrlxwZIEvDVV+TzGWdE/XnjRrKtrIzKiyegD1lzs2kCMmgQ8fcbG4FFH4Uk4qFDo/bbv58c0uPRmcTJytJY/dgYHTvKPOujt0Pl1DRKBkmS3HaNeQ6CqNWPjeH1ypMiH70Vqguv0W7AhG3any1M91I1+qM3Q2F6gwdr3lRqW0MMI4ioRGLR9tvNhP116KBZ4ILa1vXBLF5zpe1PPpHQtiJUtVLjutNKeD176kzgxGFbIEFkZQEPP0w+T5kiiKcCXi/wpz+RCdchQ0i0zW23kfF1/nyDf1y9mkyg/uMf5Pc//Ql47z3ZH3QR9u0jz+/Bg2Ty5p//5H1GJpCfD9xzD/n8l784UJkiNlKf/NC4bdVbylSZayA+8hMq2XPhwF047TTi80yZEn1aO3YQYUY3/IsSkEOHLEmDQ/a/hyvxBiRk4Pe/j55sjhnyBhCmQIs9WCBfJ+z9ArfgOQAk9lY9w/LRR2Sr22aKOEjAlcctw2n4Go0owP1PyyyHvoePOcZAcVHCYsU3AMCaNSjCUTx7Helvjz0mV4sFSOoEnVDVzPehiKPdlQUNuBukg/3pjYHhtYTa2uRbJ8hPAli/npDwnBzNEChaZ0K1DI2M7GzLBMTjkZ+R9zeHvHsNZ5Ta7t5dp2Q9oLEQVmxceGHI9upuurZ37yaql89nMIEUh206GfT+qmMhAZrEKxiUE5k1iqElbPuTlRVoRZZunViq2usuHhgH+Rk9mtz3VZvz8SO6kIFCQ22LaTtqxenYOPlk8ro5etSDRdJZhN1ozIzF7Ou03UeOmC4SJGADrr6a3MSGBlLnWCACffqQycdnniFzCmvWAKNGkXEuYoK4vZ28vE85hTxolZWyfGS4Ojof7NtHQvs2bCDv+HffNahc7DbcdBMZq3btkquEMURqk5/2dhxcsBJ7UEV6iAJU9TEscw3I5OfIEfN2Q+THM/ik8ITMiy9GvgeVqo+u01JWJi+eYUWF+PZbPII/IicrgEWLyALEFC0todAGAOPGxThOPCEMK1bgATyIkrxWrFkjL7QFEGeczrY4QX48K5aTkDeQBEe6boXpfB8KSn4sKj8AcPF1xbj4YkJ2brpJTrNYuZJMbnTooLvmLEEc7caqVbhDehzHendh5x4vnnySfE1Fs6wsjQUotSDIjyaC8z7FEpxOCIDGmlm0n+k6hEBcM+KXXUa2/8HlaO/eW7MDU9uGfSoO27R66ydtw7A/q7NmyB213bu3wQK6cRCQCy4AsrIkrG/qju8wUJOAbNlCYvlzcgwmr+KwffLJwDHHSKhvz8OHGKNJ+lpbZQKie93jICDl5fLEyCxcrUu8aBXqmLb37DGdM5mRAVx8cWzbdJ1f3b5eUCDnOwn1hx0yMhAe+F9+WX7JC4Th9ZJoq61bSZEin4/kH590EhlzvnpxLRkA7rqLPDdjx5IOP2oU71PXxLp1ZFheu5ZECXz+uQUfxw3IySHJSQDpu+HSpmyQ0uTn5fu3o0vDetyf/WhU8r2pYgeA/CLZuNF8uRB6EwcPxvDhJH6/vZ2oe0BkyJthpcSMDNkRN6u+7NsH7NqFYz278IeJfgDAH/4gLwb4xRfECa+u1q1HIMNiuWsEg8C336IMhzD5NqKa3HefLJotXkwmpjp1smDbCglYvhynYymuPHE9JAm44w7FAqCwMDBYzfnZu5dcI48H6NcP06aRSJklS2QJmub7nHmmxmKQSsTZ7ly04G8DZwMgk1Q1NZH5PqYUL0F+otDaCpw4+RKcgSVYM+BqzX2++YZsNVIkZMRBQEaOBDrl1mE/KjC3r3bVSFO24yABffsCJ1XXwI9MzO55nybps9RuC7Y7dADGnUQ672sdfqfJbmjVxJNO0l1JIK52Z2QAPx9JJj1ey5igSQK++474RuXlOjleSts//mi60AQAXHs5Gahfwy8gnT866u/19bLipVGPgKBjR6I2SpI8CJixfQ15v/0ffobGc7RjsZ3q6wI24Mwz5dLXN9wgKu7poKyMpEatW0fXiZUwdy5w5m/644zVz2FmwW/Q8uKrJMzNhVUDJIlM7p52Gsn16dGD+HUxfVk34oILgCuuIGPktdfKVcAYIKXJT19pHZqRh5ntV6B2f6RkaarYAUAycL1e4oyaWf9EkuSV6kKJsg89RH599VVSSWjFCtJpDUPeKKzm/VDi1bs3/vjnbFRXk7QnmgdJQ97GjDHhEFu1/cMP5O2cnY2bH6hAnz6EP9D8F1rlbfToGAQAkMOETOb8AAiHOE6ddBDZ2WQm5IMPGCg/a0Ix8j17Anl5OOYYOQT7T38iRITm+xiGvAHxkZ9Qf7vyomacdhoht/fdZ7HYASBfoMOHucTguhHZWRL6+sjq6U9sjY4Tra+XH3fNBXsp4iABvowgrvW8DgB4end0BqskhSqyIUbxoTid0euzZgEAph24UjNB+IsvTNiOQwEBgOvz3gQAvNJ8pWaVbEu2d+ywVOf2ukIilX8YvABb90TL8vSan3aawRjauTMZ5JTVVkzgZ4WfIA+N2IC+WLAzOqHoyy9JU447Th6eo5CREVd/O6NsI3piCxpQiBm10dVotm8nt9Hr1Yz+lCHIDz/87W/EC969m4TC+f28z8i16F3dgJm9HsSmnJ/gRryETLRhCc7AtQ3P45h7foE77vRg+fIES2TbjC1biCD1y18SnjBsGJmQcGENBvN45hkiXa1fT8JlGF3wlCY/pz9yMU47xY+2YCYGDSKhnDQM2bTyk5cnxxfQEqBG2L6dOI+ZmeH/O/10ElsaCJDQRqr6XHihQcgbhVVnmJKfk05Cfj4ZCwHijNfUmMz3oYiXeJ14IjLzMsOlr595hjy0MUtcK2G13YcPh29qtwv74fe/J19PmgR8/z35HLPSG4VV5YeSH8X6PrfcQmZH6+pIVUeq/BgWOwDiVn4AwHPKyeHIh+nT5fwqU/k+AAnxpMndQv0h8Hhw5zwS9vD6Rx3CFcYoPvmE+Be9ehmoAEBcKgS+/BK3N/0NXvixcFVZuEIjxbffkmc6N1ezDkNitnfswITtD6AEh7BlXwf83/9F/vngQbli5MiRNttuacH5yx9CH2xAXWtuOOeYIhAA5s4lnw0jUugD39hoqfTyCZ8/hwvwEYLw4pFHov9OnyvDdmdmyg+ehbYXf/g6bgSJFZ4y1RPlB1DbMSNx4rjunv+8iYl4CgDw92nZUcuc0fH79NN1CntQxEG8BGxCXh4wezYZFObNIy9AN3nvbkB9PXEGe/YEJk9Gz6bVeOmUl7DjnW/x17+SOcCDB0kk1imnkLH9nnvIeMeLS27YQBYv7dePjAGZmSTCY8ECkyHtbkZFBfDmm2RWZdYsuV6305CSEHV1dRIAqa6uLua+y5ZJ0jHHSBIZASSpuFiS7rlHkvr1I7+/844JgzfeSHa+++7Y+/7f/5F9Bw2K+HrlSvkcysrI9j//MWH76qvJzo89ZmJnSZIuuyxi/0BAkn76U/LVGWeQbW6uJDU1mTjWn/9M/uHmm83Zvususv9NN4W/Ov988tWpp5Kt1ytJhw+bONasWeQfhg0zZ3vBArL/ccdJkiRJdXWSVFEhX3NAkj7+2NyhpLffJv/Qv7+5/SdMIPtPnhzx9cqVpL3Ufl6eJLW2xjjWjz/KFyoQiG27vl6SPB7yP3v3SpIkSVddFdnu3/3OXDMkSZKkvn3JP336qel/sfI8uglWznvkSHJZxoyRpGBQ/v6CC8j3f/xjjAN8/DHZ8fjjzZ/gDTdIEiD9svd/JUCSBg+WpLY2+c+33UYOefnlMY6zfj3ZMT9fkvx+c7YffliSAOnBbq9IgCR16UK6GsXTT2sOc9FobJSkjAyy85495mz/5z+SBEivlf1OAiSpoECSdu6U/zx3Ljlchw6S1NIS41idO5Odv/zSnO1VqyQJkBb7hkoAebSWL5f//MMP8uO2fXuMYw0bRnZ85RVztg8flqTsbGk7jpWyswJR74imJvndMXdujGPddJPJjhlCMChJPXpIjciVKoubJECSpkyJ/DN9j/z97zGO9dRTZMdx48zZDiEZxxHXnvNbb8kvgPvuixy00hW1tZJ0771k4KDXpmdP8pApro/fL0nvvy9J48cTX0n5Lu3QgYy3zz1Hhgqzw2k8OHhQkl5+WX730J/zz5ekDRucs8sNzzwjN/LZZ+M6hJXnMeXJjyQRh3P6dEnq0yeyEwGStGaNiQO8+CLZecSI2PvefTfZ98Ybo/50+eWRjnBDgwnb991H/uFnPzOxsyRJ3bqR/RcuDH+1ZElkm02/k156ifzDkCHm9h8xguz/z3+Gv1q/PpIAnH22SdsLF5J/6NbN3MD9t7+R/cePD39Fb5uley1JZNShDtuOHbH3HzyY7Pv221F/mjRJtj98uAnbra0WvCtJkhYtksLeaQjbt0tSTo5s99FHTdilOO888k8vv2z6X1zrAMSAlfNet06SfD5yaf76V9Ilv/iC/J6RIUmbN8c4wL598g0xc52OHCFePyDVvvOVVFRE/vU3vyGcePNm+R7H5Kl+f/hYph4Cv59MIgBS43MzpK5dyb9efDHpnocOSVJ1NfnuuediHy480/TeeyZ2lsLjSOBP90innUb+9bTTCPlqa5Od8N/+1sSxxo0jOz/xhDnbt95K9r/ssvAkwnHHSVJNDbnnP/85+W7UKBPHuvNOa5NH06aR/fv2le6/Lxh2ttavJ3+eOpX8uWtXSWpvj3Gsf/7TwqAjyeNtfr702kstEkD6O32NfPgh+XN2NvEhDbF4Mdm5qsqc7RCScRxx9Tk/8YQ85vz+98566m4FHaivuEKSMjPl69GnD3EKY8xGHj0qSW+8QXw3JWeiPwUFxKe5+Wbiuy9YQCZqYj6fKrS2StLatYSHTZpExjil3+TxkPH3q6/ivxRJgfvvlxv94IOWSbsgPzoIBIjSc8op8kSoKQXk229l2h/rZowaRfZ9/vmoP23YIPvUMWdrKZYtM8+WDh6UO45KXqECEkA4jSns2iU74sqpVy0Eg5JUUkL2VU6VSpJ0++2y7UceMWn7yBHypgXI9Y+Fiy6K8vT9fkkaMEC2feSISduSJMtkGvcxAn6/7IVu2RL154YGKew8qoQhfZx5pskpVokofIAkXXJJxNf33CO3+/XXTdqVJFnlNH2yLncADGD1vKlvCpB+RfmExjyHNmhHUExM6OLvfyf79usnScGg9M47su0TTpCkjh3J53POMfl+GDrUvApBjZWWSlJDg7RkiSRlZckTpSFeJPXoIUnNzSZsX3+9PAMdC6tXy4xy2zZp61bZ6ejShShNgCQVFkrS7t0mbD/0EPmHq66Kve+hQ2ScBSRpwQLpwAFJ6t6d/NqxoyzkeDyStHSpCdtvvkn+4eSTY+8bCJCLG5r1bGmRwsSvsPD/27v74CjKOw7g38vbBSgJIykJKYhErSCEt1B8gQhD23SAyjC0VBCQGR0rFVrSMAqWWhw6GArjS5G3Yhla5S11JjCIWg2U18EahCRNQRKUNEFejCAkwZiQ3D7943GzudfsXu6yu3ffz8z+wd3e7cPe7m+fl9/zRIiHH9aeHVu36jj2tyNYIilJ3wjyT38q93/6aaEosq4IyPri9OmirfG9eLGOY9+8qRX28891fECyYxyxfJnVUTi1xV5ba3aJukZFhXyG3XOPe2vl/vtlJ6Wee8JDS4vsSF6+XPbP9Ozp3Rhq31hJS5PxasIEIaZMkf2yM2fK5JypU+V3ZGbK2KJWszy3YcNkCPv009CfIktSFG0AAZCBSFeqkMTGTwcURbag9dSphRCyu1GtiAfq4lUULS/ho4987rJwobzQ9+83UFh1NOettwLvqz7ov039aq+mRj7XExNlL6Zu2dnyO195JfB+W7dqT0uPXJRr1+RpiYnRejF1+fnP5Xfm5QXeb9Mm7WbxOO8ffCBfTkszcFwhZM4HIKNWIGfPao1TPwG1rEw2AK9d03nsDRvkd44aFXi/khKtVuLRUKqvl/9nQLafdfs23Ulf17Zk+QqAH0bLrShCvPSSNgIEyDZFQ4POA6opqatWBd6voUGI1FS571//2vbym2+6j+gNHqw/k6xtFGL+/MD7uVxCDB8u922X5vvPf7r3fKamyutaF/V61nNNqeeo3Uh3cbE20gTIVJR9+3Qe+/33tZZaR9Qeg2HD2lqU5865Zww4HDLlT5fz57WY2FEr8c03tQ62by+o2lqtD0bdfvlLnY3dlhYtZ6ejHBm1g83hkJVGIbMVp093P/b48To7C4XQep1279b5AXvGEVuUuaBAa9SnpMiU8khLg1MUWblYvVrLxFC3Hj3kjaO7wqdPa6uMgW+8IcTSpbL/9e673UdsjGxJSXJ6wJNPynCgJ/EjYm3cqJ3IAQOEePttXR9j4ycc1EkrgbrRy8vlPnFxfh92LpcQV68aPPYzz2itYH9eeUW7i/w8nU+fDuL+V7u7H3jA/z47d2o9fc8+63OXykr9afdt9uyR39m3r/8h+7fe0rpN/PQsv/uuwQaAEDKqqTUtf0/869e1xqHe1EA9vvxSq2H7q7hUVmqTmrKzfZaxokJOQTPks8+037KkRNdHbFEB8CHYcl+8KC/5/fsNZpKovbAdXStqJfzOO73SMmprhdi2Td4aukZdVLt3a8MngXo9t2zRnsQeger6dflQ3r5dDpLopt5LiYmBU/7UFM6YGK/0vJs3ZZ3t9df1ZaK6FVp9iJ4963+/qiqtseBRYW9qkvfR2rVyQEU3RZGxCwjcWmtoEOL22+V++flub7W2yuf+mjVCFBUZrLOqo32BRpBdLi2GzZnjVfwDB2Q/0M6d7vPNOjR/vvzOJ57Q/RE7xhHblLmszD0NIitL9mjYuRF044a8rxYs0DqI1S02Vk6O+fvf9aUZh1Brq0wNPXVKiHfeEWLXLhlW166Vj4D162VK/htvyL6Z0lK5v51/irD48EMtzQCQE2xragJ+hI2fcFBnF0+aJLvFPB0/rlVGx48P7bGLi7UeDF8V8XXrtAvkD38I7bEvXdIaF75qHYWFWuXiySeDGk72q7lZpt4A8snv6cABLR/nqadCGz0URVsp4513vN+/ckXrIU9Kkr9/KE2ZIr/7+ee93/v8cy2FasQIg/l8OqiTHWbO1LW7bSoAHrq83BcvavdSVZXvfT78ULufdK3GotM332ijhIcO+d6nqkquCAPoX2BFD0XRhk/+9jff+9y4IRt7ahwJpUD3khBylERtKIwfH9o4kpvb8b305JNaD6evZ0uw1BG3QKtSqJ1m3buHtqv54EH5vcnJOlalkOwYR2xV5uZmIVas0PJ1Abmoz5//bCAtwSSKIkdS//EPmUYxYoTWSaduCQlydHn9+uhJ74t09fWyQz0+XsaSbxd18oeNn3A4dEiruNx7r8xNV+3cqaXFjRjR8fwYoxRFq+x6TqpXJ7YCcuw1HN0HDz3kuwdx3z5tEuHcuaFt+KjUVYvmzXN//eOPtSD+s5+FZzKneuwZM9y72auqtPz81FTdIySGbN8uvz8jw/03vXZNW5Htrrt0zD4OgjpfICbG5zwmT7aqALRjSrknTtQa654qKrRcxUCjvMF6/HH53T/5iXecqK2VFSFAjnIbnbHbkT/+UatseQ4hNDZqSxr17x/6xvzOnfK7v/td7/xxl0trfHTvrut6N+Tjj7WKma+U6faT0nXnQut09aoWn311Hu3bpzW0g1xdyS+XS+s8eu01XR+xYxyxY5lFba1MJW+fQxsbKyenrFkjJ7TpbLCGnKLI8h0/LucnLlok6x9qp4znduedcpRx716dK0iRLZ09q2vBHDZ+wmX/fq1ykpgo8xLVhzogZ6XqngBgkJqzn5golxw6cEAGB7VBlpcXvnFTdWQpPl4uObJnj8wlUxt8jzwS+sqS6uhR7dgzZshGwYkT2ozviRPDF6jVCUOAnHSwdq2szKgTEO64I/SVJdXNm1qe9rhxsnfu7Fkt/TI93f/oQSioazj7qqR7sGUFQJhU7iNH5Hl1OOQoiKLIiuKuXdp8wcxM93WlQ6WiQhspzc+Xx1Vzm9T0grS00HfeCKFN/ANkmoraACor01ag6dbNa7GUkGhulhOkAJmYr46uVFdrq8E5HD5Xa+w0RdHW+x8zRqa0CiHzBtVsAsB9XelQUlebueMOmdIqhOzIWbVKS62dMyc8zw515Ck5WddkTzvGETuWuc1XX8mGqZrB0H6Lj5f35RNPyFjx1lvyuVtdHfzoZFOT7LmvqJCdyTt2yEmUixfLOkRWlv9GjtqBMGqUvG8KCnSueELRhI2fcPriC5n65nlj5uWFdynJS5fkje8rKCxcGN6E0fp6rcfac5s2zWAyuEEul1Z58NxGjQp/Pu+WLbI32vPYQ4aEP/iqiy54brfdJtfFDCe1kp6Q0OGsertWAEwr99NPa79l//5aowCQFYAOhvY7RV0SHpDzUdqvJHDHHYHnxXSWOgKjjsKoaW6AnOh/5Ej4jn30qNbw69VL3r9q2kxCgpxIFS7nzmmrRfToISubascRENSSrrrduKE1bNXKY/uVK2bPDl/8bm2V89sAXX+qwY5xxI5l9unTT2UH2+TJ7vHI39atmxzZu+sueS9lZcl5wWPGyGts2DCZoXDXXXI6QPvrXc/Wv79cyjI3V3YSlZWFt55BEYGNn3BzuWSPRXy8HC7+y1+65riKIuf/PPWUlr8f6rkugZSXy0Xo1ZWoJk/umuFx9f/93HPa3IHvfz+8lcT2mprkKJ/aCLr//q7Lka6ulnn56rJP3/mOznV2Q2D2bPn/7mBmven3Y5BMK7fLJf/YXvsKQa9ecg3VcN9PiiJn3bZfp9XplA0yA0uKBm3HDm3UFpANkBkzOpzIGhL792vpw+o2caLBVQyC5DnhHJAVxPffD/+xL1zQUpfVrV8/mTkQ7mfHl1/KkT4dKUl2jCN2LHOHFEWOEu7cKZeLnjNHPvPS07UOhM5sSUlyCeoJE+Tf4Fi8WNan9uyRnXq6lxQkcmfkfnQIIQRspr6+HsnJyairq0NSUpJ5BTl/HmhpAe65p+uP3dgInDsHDBsGOBxde+zWVuC//wUyM4HY2K49NgBUVwMpKUCPHl173OZm4KOPgPvuA5zOrj02AHzxhfyt+/Tp+mMHYJn70SDTy33jhryPEhPlfZyQ0HXHvnkTKCuT19Pw4V17L33zDVBaKu+nzEygd++uO3ZLC1BSIs/94MFA//5dd2xFkef88mUgI0M+N7oqdgsBfPIJ8NlnQN++wMiR5sTuAEy/H4NgxzJ3ihAydly9Cnz1FdDUJO9jdYuL896SkoDkZLn17Gm5644ih5H70dTGz4YNG7BmzRpcvnwZQ4YMwauvvors7OwOPxd1AYfIwsy8H4ONIQDjCJGV2DGOMIYQWYeR+zGmi8rkpaCgALm5uVi2bBlKSkqQnZ2NSZMmoaamxqwiEZGNMIYQUWcxjhBFH9NGfu677z6MGjUKGzdubHtt8ODBmDZtGvLz8wN+lr0tRNZh1v3YmRgCMI4QWYkd4whjCJF1WH7k59atWzh58iRycnLcXs/JycHx48e99m9ubkZ9fb3bRkTRy2gMARhHiMgd6yJE0cmUxs/Vq1fhcrmQmprq9npqaiquXLnitX9+fj6Sk5Pbtv5dOUmViCzHaAwBGEeIyB3rIkTRybQ5PwDg8FjpRgjh9RoAPPfcc6irq2vbLly40FVFJCIL0xtDAMYRIvKNdRGi6BJnxkFTUlIQGxvr1bNSW1vr1QMDAE6nE04zlhYmIksyGkMAxhEicse6CFF0MmXkJyEhAVlZWSgqKnJ7vaioCA8++KAZRSIiG2EMIaLOYhwhik6mjPwAQF5eHubOnYvRo0fjgQcewObNm1FTU4P58+ebVSQishHGECLqLMYRouhjWuPnkUcewbVr17BixQpcvnwZQ4cOxbvvvosBAwaYVSQishHGECLqLMYRouhj2t/56QyurU9kHXa9H+1abqJIZMf70Y5lJopURu5H00Z+OkNtr3GNfSLzqfeh3fpRGEeIrMOOcYQxhMg6jMQQWzZ+GhoaAIBr7BNZSENDA5KTk80uhm6MI0TWY6c4whhCZD16Yogt094URcGlS5fQs2dPv3/TQ1VfX4/+/fvjwoULHJbuJJ7L0Ii08yiEQENDA9LT0xETY+qfDjNEbxyJtN/LTDyXoRNp59KOccRIXSSc7HotsNxdK9LLbSSG2HLkJyYmBv369TP0maSkJFv92FbGcxkakXQe7dJT257ROBJJv5fZeC5DJ5LOpd3iSDB1kXCy67XAcnetSC633hhij+4VIiIiIiKiTmLjh4iIiIiIokLEN36cTieWL18Op9NpdlFsj+cyNHge7YW/V+jwXIYOzyWp7HotsNxdi+XW2HLBAyIiIiIiIqMifuSHiIiIiIgIYOOHiIiIiIiiBBs/REREREQUFdj4ISIiIiKiqBDRjZ8NGzZg4MCBSExMRFZWFo4ePWp2kSwvPz8fP/jBD9CzZ0/06dMH06ZNQ0VFhds+Qgi88MILSE9PR7du3TBhwgScPn3apBLbQ35+PhwOB3Jzc9te43m0B8YRYxhDwodxhPzxdW1Y1cWLFzFnzhz07t0b3bt3x4gRI3Dy5EmzixVQa2srfv/732PgwIHo1q0bMjIysGLFCiiKYnbRvBw5cgQPP/ww0tPT4XA4sGfPHrf3rRozApW7paUFS5YsQWZmJnr06IH09HQ89thjuHTpUlDHitjGT0FBAXJzc7Fs2TKUlJQgOzsbkyZNQk1NjdlFs7TDhw9jwYIF+Pe//42ioiK0trYiJycHX3/9dds+q1evxssvv4x169bhxIkTSEtLw49//GM0NDSYWHLrOnHiBDZv3oxhw4a5vc7zaH2MI8YxhoQH4wj54+/asKLr169j7NixiI+Px3vvvYczZ87gpZdeQq9evcwuWkB/+tOfsGnTJqxbtw6ffPIJVq9ejTVr1uC1114zu2hevv76awwfPhzr1q3z+b5VY0agcjc2NuLUqVN4/vnncerUKRQWFqKyshJTp04N7mAiQo0ZM0bMnz/f7bVBgwaJpUuXmlQie6qtrRUAxOHDh4UQQiiKItLS0sSqVava9mlqahLJycli06ZNZhXTshoaGsTdd98tioqKxPjx48WiRYuEEDyPdsE40nmMIZ3HOEL++Ls2rGrJkiVi3LhxZhfDsClTpojHH3/c7bXp06eLOXPmmFQifQCI3bt3t/3bLjHDs9y+FBcXCwCiurra8PdH5MjPrVu3cPLkSeTk5Li9npOTg+PHj5tUKnuqq6sDANx2220AgKqqKly5csXt3DqdTowfP57n1ocFCxZgypQp+NGPfuT2Os+j9TGOhAZjSOcxjpA//q4Nq9q7dy9Gjx6NGTNmoE+fPhg5ciRef/11s4vVoXHjxuHAgQOorKwEAJSVleHYsWOYPHmyySUzJpJiRl1dHRwOR1CjhnGhL475rl69CpfLhdTUVLfXU1NTceXKFZNKZT9CCOTl5WHcuHEYOnQoALSdP1/ntrq6usvLaGW7du3CqVOncOLECa/3eB6tj3Gk8xhDOo9xhPwJdG1Y1fnz57Fx40bk5eXhd7/7HYqLi/Gb3/wGTqcTjz32mNnF82vJkiWoq6vDoEGDEBsbC5fLhZUrV2LWrFlmF82QSIkZTU1NWLp0KR599FEkJSUZ/nxENn5UDofD7d9CCK/XyL+FCxfiP//5D44dO+b1Hs9tYBcuXMCiRYvwwQcfIDEx0e9+PI/Wx98oeIwhncM4Qv7ovTasRlEUjB49Gi+++CIAYOTIkTh9+jQ2btxo6cZPQUEBtm3bhh07dmDIkCEoLS1Fbm4u0tPTMW/ePLOLZ5idY0ZLSwtmzpwJRVGwYcOGoL4jItPeUlJSEBsb69U7W1tb69XaJd9+/etfY+/evTh48CD69evX9npaWhoA8Nx24OTJk6itrUVWVhbi4uIQFxeHw4cPY+3atYiLi2s7VzyP1sU40jmMIZ3HOEL+dHRtuFwus4voU9++fXHvvfe6vTZ48GDLLyLzzDPPYOnSpZg5cyYyMzMxd+5c/Pa3v0V+fr7ZRTPE7vG3paUFv/jFL1BVVYWioqKgRn2ACG38JCQkICsrC0VFRW6vFxUV4cEHHzSpVPYghMDChQtRWFiIf/3rXxg4cKDb+wMHDkRaWprbub116xYOHz7Mc9vOD3/4Q5SXl6O0tLRtGz16NGbPno3S0lJkZGTwPFoc40hwGENCh3GE/Ono2oiNjTW7iD6NHTvWa+n7yspKDBgwwKQS6dPY2IiYGPcqc2xsrCWXug7EzvFXbficO3cO+/fvR+/evYP/MsNLJNjErl27RHx8vNiyZYs4c+aMyM3NFT169BD/+9//zC6apf3qV78SycnJ4tChQ+Ly5cttW2NjY9s+q1atEsnJyaKwsFCUl5eLWbNmib59+4r6+noTS259nivx8DxaH+OIcYwh4cU4Qv7YYbW34uJiERcXJ1auXCnOnTsntm/fLrp37y62bdtmdtECmjdvnvje974n9u3bJ6qqqkRhYaFISUkRzz77rNlF89LQ0CBKSkpESUmJACBefvllUVJS0rYqmlVjRqByt7S0iKlTp4p+/fqJ0tJSt2dLc3Oz4WNFbONHCCHWr18vBgwYIBISEsSoUaPallol/wD43LZu3dq2j6IoYvny5SItLU04nU7x0EMPifLycvMKbROeDyaeR3tgHDGGMSS8GEfIHzs0foQQ4u233xZDhw4VTqdTDBo0SGzevNnsInWovr5eLFq0SNx+++0iMTFRZGRkiGXLlgVV8Q63gwcP+ozB8+bNE0JYN2YEKndVVZXfZ8vBgwcNH8shhBDBjxsRERERERHZQ0TO+SEiIiIiIvLExg8REREREUUFNn6IiIiIiCgqsPFDRERERERRgY0fIiIiIiKKCmz8EBERERFRVGDjh4iIiIiIogIbP0REREREFBXY+CEiIiIioqjAxg8REREREUUFNn6IiIiIiCgqsPFDRERERERR4f+V/iBbCDIYLAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -579,7 +598,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 6, "id": "094818de", "metadata": {}, "outputs": [ @@ -594,7 +613,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGxCAYAAABIjE2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACb1ElEQVR4nO2deXxU1fn/P5NtsocskBAIm6LIIiK4gFZwAYvi+rV+lbrb1qq1Um2t1rbS5SvWfmttoda61LUWf23FSrVfwQ1ExbKI7CRAIAESQkLIvs/5/fHkzL0TsszMPefcZc779crrTjI3c+8z997zfM7zPOccH2OMQaPRaDQajcZBxNl9AhqNRqPRaDQ90QJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Qhj4cKF8Pl8tp7DRx99BJ/Ph48++sjW89BoNNZIsPsENBqNRiSnn346PvvsM4wfP97uU9FoNBbQAkWj0XiKzMxMnH322XafhkajsYhO8Wg0Ghw5cgTf+ta3UFRUBL/fj8GDB+Occ87Be++9F9znz3/+MyZPnozk5GTk5OTgqquuwo4dO/r93CuvvBIjR45EIBA47r2zzjoLp59+evB3xhieeuopnHbaaUhJSUF2djauueYa7N27NyJbeqZ4nnzySfh8Puzevfu4fX/4wx8iKSkJ1dXVAIBZs2Zh4sSJ+Pjjj3H22WcjJSUFw4YNw09+8hN0dXVFdB4ajcYaWqBoNBrceOONePPNN/HTn/4UK1aswHPPPYeLLroINTU1AIBFixbh9ttvx4QJE/DGG2/gd7/7HTZv3ozp06ejpKSkz8+97bbbUFZWhg8++CDk7zt37sR//vMf3HrrrcG/3XHHHViwYAEuuugivPnmm3jqqaewbds2zJgxA4cPH47athtuuAFJSUl48cUXQ/7e1dWFV199FZdddhny8vKCf6+srMR1112Hr3/96/jnP/+Ja665Br/85S9x7733Rn0OGo0mCphGo4l50tPT2YIFC3p9r7a2lqWkpLBLLrkk5O9lZWXM7/ez+fPnB//2yCOPMHOz0tHRwfLz80P2YYyxBx54gCUlJbHq6mrGGGOfffYZA8B+85vfhOxXXl7OUlJS2AMPPBC2LR9++CEDwD788MPg366++mo2fPhw1tXVFfzbO++8wwCw5cuXB/82c+ZMBoD985//DPnMb37zmywuLo7t378/7PPQaDTW0BEUjUaDM888Ey+++CJ++ctfYu3atejo6Ai+99lnn6GlpQW33HJLyP8UFRXhggsuwPvvv9/n5yYkJOCGG27AG2+8gbq6OgAUuXjllVdwxRVXIDc3FwDwr3/9Cz6fDzfccAM6OzuDPwUFBZg8ebLlETm33norDhw4EJKyeuGFF1BQUIC5c+eG7JuRkYHLL7885G/z589HIBDA6tWrLZ2HRqMJHy1QNBoNXn/9ddx888147rnnMH36dOTk5OCmm25CZWVlMM0zdOjQ4/6vsLAw+H5f3HbbbWhtbcXSpUsBAO+++y4qKipC0juHDx8GYwz5+flITEwM+Vm7dm2wRiRa5s6di6FDh+KFF14AANTW1uKtt97CTTfdhPj4+JB98/Pzj/v/goICABjQVo1GIw49ikej0SAvLw9PPvkknnzySZSVleGtt97Cgw8+iKqqqmDtRUVFxXH/d+jQoZD6jd4YP348zjzzTLzwwgu444478MILL6CwsBBz5swJOb7P58PHH38Mv99/3Gf09rdIiI+Px4033ojf//73OHbsGF577TW0tbWFiCROb/UulZWVABCM+Gg0GvnoCIpGowlhxIgR+M53voPZs2dj48aNmD59OlJSUvDqq6+G7HfgwAF88MEHuPDCCwf8zFtvvRWff/451qxZg+XLl+Pmm28OiVzMmzcPjDEcPHgQ06ZNO+5n0qRJlu269dZb0drair/+9a948cUXMX36dIwbN+64/RoaGvDWW2+F/O21115DXFwczjvvPMvnodFowkNHUDSaGKeurg7nn38+5s+fj3HjxiEjIwPr1q3D//3f/+Hqq6/GoEGD8JOf/AQ/+tGPcNNNN+H6669HTU0NfvaznyE5ORmPPPLIgMe4/vrrcd999+H6669HW1vbcfUs55xzDr71rW/h1ltvxfr163HeeechLS0NFRUVWLNmDSZNmoQ777zTkp3jxo3D9OnTsWjRIpSXl+OZZ57pdb/c3FzceeedKCsrw0knnYR33nkHzz77LO68806MGDHC0jloNJoIsLtKV6PR2Etrayv79re/zU499VSWmZnJUlJS2Mknn8weeeQR1tTUFNzvueeeY6eeeipLSkpiWVlZ7IorrmDbtm0L+ayeo3jMzJ8/nwFg55xzTp/n8uc//5mdddZZLC0tjaWkpLATTjiB3XTTTWz9+vVh29PbKB7OM888wwCwlJQUVldXd9z7M2fOZBMmTGAfffQRmzZtGvP7/Wzo0KHsRz/6Eevo6Aj7HDQajXV8jDFmr0TSaDQaZzBr1ixUV1dj69atdp+KRhPz6BoUjUaj0Wg0jkPXoGg0GlfAGBtwuvn4+HjbV1PWaDRi0BEUjUbjCl566aXj5kjp+bNq1SpLx/joo490ekejcQi6BkWj0biCmpoalJaW9rvPySefjIyMDEVnpNFoZKIFikaj0Wg0GsehUzwajUaj0WgchyuLZAOBAA4dOoSMjAxdEKfRaDQajUtgjKGhoQGFhYWIi+s/RuJKgXLo0CEUFRXZfRoajUaj0WiioLy8HMOHD+93H1cKFF4EV15ejszMTJvPRqPRaDQaTTjU19ejqKgorGJ2VwoUntbJzMzUAkWj0Wg0GpcRTnmGLpLVaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEDRaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEDRaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEDRaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEAJg44OoK3N7rOQz8svA+vW2X0WcmEMePppYNMmu89ELoEA8MILQGmp3WciF8aAd98F6uvtPhP57N9P11WjiRW0QBkAxoCLLwaGDgWOHLH7bOTx4YfAzTcDV11FNnuVt94C7rwTuPZab9v5978Dt90GXHed3Wcil7/9DfjqV4EbbrD7TOTy1lvAqFHA975n95nIZc0aYPBg4Jln7D4TjRPQAmUAVqwg511bC3z0kd1nI4/ly2l78CCwdau95yKTlStpW1IC7Nhh77nI5MMPafuf/wC7dtl7LjL54APaLl9O19SrvPMObf/wB2D3bnvPRSavvw5UVwPf/S5QXGz32cjjueeA6dOp83vnnUBdnd1n5Ey0QBmAxx83Xq9fb995yObtt43X3Il7Ee64AeCf/7TvPGTzySfG67/8xb7zkI05JfnUU/adh2x4SrKrC/jZz2w9Fals3kzbtjbgW9/ybkrrZz8D1q6lDvDTTwNLl9p9Rs5EC5R+WL/e6KHx373I7t2hvRWvCpTKSmD7duP3t96y71xkUlcXGgX7y1+8mc5qbTUcGgD8+c9AY6N95yOLrq5QO//yl9D72CswZtgZFwesWkWRBq/R3AwcOECvZ8+m7c6d9p2Pk9ECpR9+/Wvann46bTds8Kai5+Hj4cNpu2qVN4uCefRkxAjafv45iRavsXYtNfbDhwNpacDevfQ3r7FpE9DZCQwZAowdS4Wyr7xi91mJZ9cuoKWFruWVV9K1/fnP7T4r8Rw8CBw7BsTHA7/8Jf3tT3+y9ZSksHcvbQcNAq6+ml57OZ1lBS1Q+qC8nAoNAeDZZ4HkZOqZ7tlj73nJgAuU734XyM+nxvDTT+09JxlwgfK1rwFnnEEN/b/+Ze85yYCnd84/n4qeAeDVV+07H1nw9M4ZZwB3302vvVhc+cUXtJ08Gbj/fnq9apV95yMLHj0ZNw644gp67cX2ltcQjR0LnHQSvfZy/ZQVtEDpgy1bKFoyaRJFUE47jf7utTRPU5NR/DtvHnDRRfTai2kenq47/3yjAfRiHQoXlzNmGKNb/vY376V5zALlyivp9bZt3otycoEyZQpw8sn0urKSUlxeYssW2k6aRCOWAOoUHjtm1xnJgYuRE080BMrevTSdhSYULVD64OBB2vJ0wLRptPWaQPngA0rnjBpFPReeE/WaQCkro95YfDzwla8Al19Of3/vPW+lszo7jXTOOeeQrQANkffaSIH//Ie2Z5wBDBtGdQsdHcDhw/ael2jMAiUvD0hJod/Ly+07JxnwCMqppwKpqZS6A4B9+2w7JSnwCMqJJwKFhXQ9u7q8Z6cItEDpAy5Qhg2jrVcFCm/kL7oI8PmMCMqGDTS02ivw9M60aUBmJjBxIjUMra3GtfYCmzdTVCwzE5gwgRr6nBx6z0sOra7OGD59xhlAQoLxrJaV2XdeomEsVKD4fEZ0Yf9+205LCmaBAhh2es1xmwVKXBylegBdh9IbEQuU1atX47LLLkNhYSF8Ph/efPPN4/bZsWMHLr/8cmRlZSEjIwNnn302ykytRltbG+655x7k5eUhLS0Nl19+OQ7wsmaH0JdA2biR1K5X4EWiI0fSdtgwUvWMeSv/++WXtJ0xg7Y+n1EU7LBbzxI8vTN9OjV+AFBURFsvCZQNG2g7ciRN7AUY0U4vCZSyMuooJCSQ4ASMZ9VLAqW93RjJMmkSbWNBoACGQNF1KMcTsUBpamrC5MmTsWTJkl7f37NnD84991yMGzcOH330Eb788kv85Cc/QXJycnCfBQsWYNmyZVi6dCnWrFmDxsZGzJs3D10O8vyHDtG2sJC248ZRb7Sx0VtKlwuUggLjb1yUeSmywO3kosT82ksChefxzzjD+JsXBYq5/oTjRYHCoycTJgB+P732okDZuZPSk1lZxv3KBYqXlmtobTWeQy5MeB2Kl/yKKBIi/Ye5c+di7ty5fb7/8MMP45JLLsHjphnOxowZE3xdV1eH559/Hq+88gou6s4nvPrqqygqKsJ7772Hiy++ONJTkkLPCEp8PIVYP/mE0jynnGLfuYmkL4Gybp23BAqvS8jPN/7mRYFSVUVbLqwBbwoUPg8IL14HvC1Qpkwx/uZFgcKF9amnUnQTAEaPpq2XIih791J0OjOT6okAHUHpD6E1KIFAAG+//TZOOukkXHzxxRgyZAjOOuuskDTQhg0b0NHRgTlz5gT/VlhYiIkTJ+LTPsa2trW1ob6+PuRHNj0FCmA0Evxh8gKxFkExCxRup5cESm9CjAsUL9nZmxDzokDhdTY87QF4U6Dw+hOznV5M8ZjTO1yI6QhK3wgVKFVVVWhsbMRjjz2Gr371q1ixYgWuuuoqXH311VjVPXC/srISSUlJyM7ODvnf/Px8VPYxa9aiRYuQlZUV/CniLa4k2tpoPQggVKDwHndFhdTDKyMQMBya1wVKb3Z6OYLCR0AAhp1eiqDwhTvNdnpRoPDrab5vvShQePTAHJk2CxSvDJE3DzHm8AhKeTnNQaUxEB5BAYArrrgC3/ve93DaaafhwQcfxLx58/D000/3+7+MMfi4pOzBQw89hLq6uuBPueSWltef+P3GCAiAVjQGvDP7aG2tMfbe3NDzXqlXBEpHB1BTQ697S/F4xU6g/wiKlwRKb0LMiwKFCzFeCAwYAuXAAe8U7PMOofm+5XbW13tnLhTzJG2cwYOp9sZrAxNEIFSg5OXlISEhAePHjw/5+ymnnBIcxVNQUID29nbU9hjDWlVVhXzz3WnC7/cjMzMz5Ecm5gJZs2biAsUrERQutHJzgaQk4+88gsK/B7fDG/n4eLKV47UISnOzsRaN2XGbBYoXeqKM9S9Qqqvpu/ACvQmUoUNpVE9np/eeUbOdKSmGYPFKoWzPETwA+Rhdh9I7QgVKUlISzjjjDOzqsb57cXExRnbL4alTpyIxMRErTTOBVVRUYOvWrZjBx4DaTG/1J4D3BAq3wxw+BryX4uFRhcGDjaG3QGjKzguzOHKn7fdTER6H29naakSS3ExDgzG5ntmhZWUBGRn02gvRokDAiCyYhVh8vCE6vZLm6U2gAN4rlO1NoAC6DqUvIhYojY2N2LRpEzZ1r/9dWlqKTZs2BSMkP/jBD/D666/j2Wefxe7du7FkyRIsX74cd911FwAgKysLt99+O+6//368//77+OKLL3DDDTdg0qRJwVE9djOQQDl61Buzj/ZWIAsYdtfV0aRfbqe3AlmAGsPEROqReyFtZ44qmCN/fr/h4LzguLmdaWk09J/j83krzXPsmJHC4SM+OF6qQ+nqojYVON5OLxXKBgLGfcmFF0dHUHonYoGyfv16TJkyBVO6h7Tcd999mDJlCn76058CAK666io8/fTTePzxxzFp0iQ899xz+Mc//oFzzz03+Bm//e1vceWVV+Laa6/FOeecg9TUVCxfvhzx8fGCzLJGXwIlJ4ccGuANh9aXQMnMBNLT6bUXoii9FcgCFE3x0kie3tIeHC/VofRWIMvxkkDh1zMrKzQFC3hrNtmjR43UozkFC3hLoBw7ZqwT1TNSpCMovRPxPCizZs0CGyCRfdttt+G2227r8/3k5GQsXrwYixcvjvTwSuB53Z4CxecjJ1deTmkB3otxK30JFIBs37WLBAp/eNxKb4WjnOHDqfHzgkDpz86iIpp91QsCpT8h5iWB0lfaA/BWBIXbmZ1NtTVmvCRQeHo1Pf14wakjKL2j1+LpBR41MM+xwPHSSJ6BBArgrQhKXwIF8IZAiZUIihYohkDxguPmdTa92eml2WS5QOkZJQIMgVJZaRS6a7RA6ZW+UjyAtwplY0Wg9FWDAngrxTNQBAXwlkDpzaHFmkDxUgSlNzvNRbJuH4HWn0AZNMiop/LaatxW0AKlB4xpgQJ4S6D0VYMCxF4Exet2xppAKStzv+PmdvYskAWM69nYaBTSupX+BApg3M/8/tZogXIcx47RcEyg/xSPlwQKt8mMFwWK11M8sRJBCadItrzcKEh0K/3ZWVRENXEtLcZ+bqW/FE9ystE+uT2dxQWKefJPM1qgHI8WKD3gDjknhx6OnnhFoLS3Gw9MrERQ+hMoXrAz3AiK2x13f3YOG0aOu63N/Y67v1RWUpLRFrk9zdNfpAjwTqGsjqBEjhYoPegvvQMYztztAoU/BImJVD3fE68IlI6O3qfR5pgFitsdd39CbOhQGlbd0eH+BrA/gZKYaEQ+3Z7mGchxe6UOhT+fvaV4gNgTKG4X1iLRAqUHvPHrY9Z9z4zi4QIrPz90dlUOFygVFe5e76Ovae45BQVkf2enux13V1fvs45yEhMNce32NE9/kQXAO3UosSJQBrKT37duLx7lNTQ6ghI+WqD0YKCbiAuUw4fd7bj7K5AFDOHS1eXuB8Y8zX1v8wAmJBjX1M11KDU1VCzp8/XdE/VCHUpf07+biRWBwqN/bl+Pp78iWcCw3+2RBZ3iiRwtUHrABUpfhUz5+eQEzD1WNzKQQElIMN5zc5qnv7QHxwuFstzO3NzjJ7vieEGg1Nb2Pf07xwsChbH+i0fNf3dzOwSEb6cWKLGHFig9GOgmSkgwHhg316EMJFAAb9Sh9DcHCscLAqW/ugyOFwQKtzM7+/jZODn8Wru5oa+rMxaw9LLjZmzgSJEX7AS0QIkGLVB6MFAEBfBGoWw4Ds0LAiXWIijh2Onm6xnOfeuFyAJ3xhkZvY8mBLzhuBsbjYVXB0rxuPl6AlqgRIMWKD0YqAYF8MZQ42PHaNvbCB6OlwRKOJEiNwuUSBw3byjdyEAFsoDh6Nzs0GLFTn7uKSm0OnVveEGItbYCzc30OpxRPG4fUSgKLVB6MNBkOoA3RvJwgTJoUN/7eEGg8OvZV+8MMOx0c7FhOBEU3jB6QaD0J8T4tXazQxso7WF+zwt29vd8cjsbGoxoi9vgz1x8PK1O3Rv8OwgE3D9rrii0QOlBOCkeL0VQvC5QwrEzVhx3rNjphZRAOAKFO7SmJppR1o2EY2dWllH47VYxxp+57GwaZNEb5jmpdJqH0AKlBwPlCQFvCJS6Otr257j5hFdesLOvXgvgDcddW0vb/oS1F+zsb/p3DnfcLS3kvN1IOI47M5OcGuBeMTbQCB4gdOi82wVKf34F0HUoPdECxURnp+HQdATFaBTc7NBiJYISiRAzFya6jXAcd3o64PfTa7c67nDs9Pncn+YJJ8UDuN9OLVCiQwsUE9yZAf0Xj3phFE+kjtutK6aGEynidpoL2dxGONczK8uYNditYiwcO809bi8LFMD9kYVwIijm991qpxYo0aEFigl+E5lznr1hjqC40XF3dlLBGRBej7ujw9jfbXCH1p+dGRnG9Xar4w4nghIXZ0QGvWwn4H7HHa5Dc3u9TaxEUMIZHQpogdITLVBMpKYCd90F3Hhj//txgdLaCtTXyz8v0ZjPub+GPjWVfgB3NoCBQHgRFJ/P/WmecOwEvGPnQALF7Y473OvpdsetIyih6AUDQ9ECxURREfCHPwCLF/e/X2oqFagB7kzz8KhCamrfs3Fy3Bwqb2w0IlwDOTQ3O27GwosUAe62EwjfTrdHUGIlUhTOfEyA+wWnTvFEhxYoUeJmpRtOHp/jZofG7UxK6ns2To6b7WxpobQd4H2BEm5kwc3CGoi9SBHv8PVFrEVQtEAhtECJEjc39OE28oC7G3qzEOtr7gGOm68ntzMujkaw9Ieb7WxrM0YfxYrj9noEJVbs1AIlOrRAiRI3N/SRRFDcLFDCbfwAd19Ps51eFmLcToAKm/vDzQ6tq4vSk4AWYhwdQYlNtECJEjc39LGW4vG6nbEmxDIyaMrw/nCz4w63iB1wt+NmzLDVy3YCkQuUY8eA9napp+QKtECJEn6jubEB1BGU4+HX041rYGghdjxujqBwO5OTwy9id6OdTU0ULQLCFyhHjxr1Vm7BvLZOfxOAAvQMc/HtxmsqGi1QosTNs6yGOxICcLdA0Y77eGLFTjfft5HYaXbc3Nm7BR49iY83pjPoi9xcI33ptnu3sdFYnXig0UpxccY11WkeLVCixs0NfTSO240NfawJFK/bGYmwdrPjjkSg8B45Y+6L/plH8AxUOxUfb9jqtsgCF2IJCUBKysD76zoUAy1QosTNDX00o3jcbKfXIwuROG432xnN9QwEjIUU3UIkdppXwHWb447ETsC9dShcoIQjxAAtUMxogRIlbm7oY6UGJdYiKJHW2vCws1uIRFgnJhr7ue3ejdZxx4qdbhYo4aAFioEWKFESa6mP6mr3rTsUjeOurXVvSiCS62leBsAtROrQ3FpAqu3sHbd2liK1UwsUAy1QooQ/LEePus9xRyNQzAsMuoVI7DTn8s2rWruBSFI8fj+Qlkav3RYt0g6td2IlshArdmqBYqAFSpRwx93V5b6eaCSO280LBkZiZ2Ki0YB43XG7NZ0VK6mPaB232+zUQqx3tEAx0AIlSpKTDcfttoY+kh43EDs9Ubc77nCEGOB+O3XqI5RYsTNWBIpbn08ZaIFiATfeSIGA8cB43aFFEkEB3G+n14VYpHbqyIKz0Xb2jpsnjRSNFigWcGND39Bg1Mx4PYISqUPjdShuup6AjqD0hVvv21izU9eghOLWdkgGWqBYwI0NA3faycn0Ew5utLO11VjLwuuOO1YiKDr10TtuddyxYme0KZ7aWvdNBSAaLVAs4MaGPtK0B+DOIdXcTp9v4JVvOW68noGAMboqVgRKuPdurKV43GZnuAsFcswdJTc57mgjKG4cUSgaLVAs4MaGPhqB4sbZZM3h47gw73I3Xs9oUnZutBPQEZS+MNvppikPohViXV3uctyRCrGkJCA9nV7Heh1KxAJl9erVuOyyy1BYWAifz4c333yzz33vuOMO+Hw+PPnkkyF/b2trwz333IO8vDykpaXh8ssvx4EDByI9FdtxY0NvRaC4qYdmJVLkxuvp94efsnOjneaUXazUZkTquNvaaGE6txCpnX6/EQ110zWNtNYG0HUonIgFSlNTEyZPnowlS5b0u9+bb76Jzz//HIWFhce9t2DBAixbtgxLly7FmjVr0NjYiHnz5qHLZVN4urGhj7UUT7iNH+DO6xlpIw+4285IUnbccTc1AS0tcs5LNNGk7NLSjEXo3PSMRuO43TjCJdIUD+BOO2WQEOk/zJ07F3Pnzu13n4MHD+I73/kO3n33XVx66aUh79XV1eH555/HK6+8gosuuggA8Oqrr6KoqAjvvfceLr744khPyTbc2EOLxqG5OcXj9QhKrNjJBWdGRvgpu8xMmoCvo4Oe0aIiaacnjGhSdgA9o+XllOYZPVrOuYkmmrYoJwfYt89d9240AoVHUGJdoAivQQkEArjxxhvxgx/8ABMmTDju/Q0bNqCjowNz5swJ/q2wsBATJ07Ep59+2utntrW1ob6+PuTHCbi5odcpnuNx8/WMlQhKJHb6fO67d7mdSUnhp+wA9zm0trbIU3aAOyMLkdagADrFwxEuUH71q18hISEB3/3ud3t9v7KyEklJScjma4R3k5+fj8rKyl7/Z9GiRcjKygr+FDmkK+TGht6qQHFLEV6spT6isbO5mWo73EA0dgLuS09atdMtjtu8PEi4KTvAfY7bnLLTKZ7IESpQNmzYgN/97nd48cUX4fP5Ivpfxlif//PQQw+hrq4u+FNeXi7idC3jRodmpcftpgUDrURQWlvJebuBaFI8WVlAfDy9dsu9a9Vxe91OtzlubmdGhnEvhoPbHHdjo9Gp00WykSNUoHz88ceoqqrCiBEjkJCQgISEBOzfvx/3338/Ro0aBQAoKChAe3s7amtrQ/63qqoK+fn5vX6u3+9HZmZmyI8T4A9LS4t7ivCiCTempLhvwcBohFhGBpDQXZXlloYhGjt9Pvc1gNEIMcB9Di3WIiiRNuVuu295e5uYGFnKzm3XUxZCBcqNN96IzZs3Y9OmTcGfwsJC/OAHP8C7774LAJg6dSoSExOxcuXK4P9VVFRg69atmDFjhsjTkU5mpvscGo+ARBJWBdyby4/Eofl87u1xR+u43WZnrEQWtJ294zbHbS6QjSSp4LbrKYuIR/E0NjZi9+7dwd9LS0uxadMm5OTkYMSIEcjld1A3iYmJKCgowMknnwwAyMrKwu233477778fubm5yMnJwfe//31MmjQpOKrHLXCHdvgwOe7hw+0+o4HhD0ykAiU3Fygrc59AibSHxq+nWxoGnfroH7c5tFixM5pILuC+YuBoRvAA7ruesohYoKxfvx7nn39+8Pf77rsPAHDzzTfjxRdfDOszfvvb3yIhIQHXXnstWlpacOGFF+LFF19EfCTJSIfgNocWTcEW4L6hxtHa6TbHHU2KB4gdO93m0KxGUGLFTrfct7GSypJFxAJl1qxZYBEM5di3b99xf0tOTsbixYuxePHiSA/vONzW0FtN8bhl2vBo7XTb9dQRlP7RdjoTHSnqH7fZKQu9Fo9F3NYwWHXcbnlgrKSyAPddT69HinRkoX/caqfXIwvRpni4nceO0ejJWEULFIu4KfXBWPSO220NYKw4bh0p6p9YsdNtjtvq9ayvpxmCnY5VgQK4a2FE0WiBYhE3TQTV2korgQLRPzBuEyhed9xWi/C8bqfb7lurjvvYMeMZdzLR2mkerdZjpgpHEm2kKCHB+B+3PKMy0ALFIm5q6M2TrKWlRfa/bkrxdHYaE6153XHHihCzGhE7epRm9XQ60dYs8Im5GXNHjztaOxMSDJHihrYoWjsBd7W5stACxSJuauj5w5KeHv6Caxw3hZDNS8572XFbSdm5yU4geiHG79tAwPiunEy0kaKkJOO7cYNDizaCArirLYr2egLui/7JQAsUi7ipoY+2Fwq462HhdiYmAn5/ZP/rpl5LW5tRQOf1SFG0QszvN6KFbrBVhENzg53Rpj4Adz2jsXI9ZaEFikXcVCQbbS8UcJdAsdIouMlxm1N26emR/S+3s7bW+amPQABoaqLXsSKuo3lGteN2HiLaIjdcT1logWIRNzV+0fZCAcNON1TPi2jka2udX2zIr2daWuQpO25nIOD8mgUrKTvAnaLTyjPqJju97rhjJZUlCy1QLOKm6nkrjYK5et7pDk1EI++GYkMr1zMpyYi6OL0B5EIsISGyBdc4bulEtLdT2g7wvuOOldoMHUGxhhYoFnFT9bwVx22unneLQ4umUUhMdM/wPivXE3BPZMFsZyQLrnHc0hO1krID3GMnY7ETKYqVVJYstECxSGKie6rnraR4APf0XGLFcVtp/AD32Wn1ejr9vuV2pqYaq6RHglvsbGoikQJ4P7KgIyjW0AJFAG5z3NE6NLfYKcqhOd1xx4oQE3XfusVOqx0It9gZF0diLFLcYmcgYNiqa1CiQwsUAbjFcYtqAN1ip3Zo/eM2geL1CEqs2ZmeHl3Kzi12NjbGTqRIFlqgCMAtN5JO8YSHWxy3TvGEh1sEp9Xr6ZbnU5Sdbrme0czHBLjHTplogSIAt9xIViMLbnNoXrczVoSYqPvW6Y471q6n1yNF5nbISqSoocH5UzvIQgsUAbil5xJrKR6vN/S61iY83NKB0BGU8OB2NjbS0GynYvX5HDTIEDZOv6ay0AJFAG5rGLRA6R+3OW6vR4pERcS8ft/y57OuzlgCwYlYtdMtjtuqnfHx7loYUQZaoAjAbY5b99D6xy2OO9aEmFXH7fTJFK3ayedkAmgmZKditaMUF2fY6uS2yOr1BNzT5spCCxQBxFoPzet2usVxx4oQExX5c/pkilavZ0KCMZzVydfUakcJcMe9K1KgONlOmWiBIgC33ES6ZiE8tJ3OwqpDM0+m6GRbRTg0N3SWYiWyECvXUyZaoAjADQ8LEDsRlFiJLIgSKC0t9ONUYqWht3rfAu7oLMWKnTqCYh0tUATgBsfd1mZUvFutQfF6ER53Zq2tQHOzmHOSgdWGPjPTmFLdyQ2g1cgf4I6GPlaEWKzZKSKV5WQ7ZaIFigD4TVRbS9MbOxGrC5EBoUV4Ts3lBwI0/BCIvgHMyHCH47ba0Pt87nLcXm/oY6XHrSMo4eMGO2WiBYoAzCsa19XZey59wR+WlJToFiID6P94o+LUhp6LEyD6BtDnc0eaR0RkwQ12xkpDL8Jxx4oQ03bGBlqgCCApyYhKOPVGEtELBZzv0Lid8fFAcnL0n+N0O9vbrafsAOfbCWjHHQluEGLazvBxg50y0QJFEE6/kUT0tgHn19uYG4VoppfmON1xi0jZAc63kzHrKTvA+c8nIDYi5tTnE9CCMxLcYKdMtEARhJsctxWcbqeIxg9wvuPmdlpJ2QHOt7OpyVgR1usNvYgopxuEWKxEFmKluFsmWqAIwukNoKgUj9MFiigh5nTHHSspO97Ix8UBqanRf47TG/qODho1BnhfiOkISvi4wU6ZaIEiCKc77lhL8XjdcceaEBOVsnP6fQt4ewIzxvREbZHA7WxqoqkiYg0tUATh9AdGtENzqp2ihJjTHXespbJECWun2smfz+Rkmvk2WpxuZ0uLMRWDiAhKc7MReXIaItrcrCyKHgLObXNlogWKIJzeMIhO8TjdTq8LlFizU5QQc2ojL1pYNzYao7ycBLfT5wPS0qL/nMxMGqkHOPOaiooUuWVhRFlogSIIp0dQdIonMpzuuGMlUiS6uLu+nuo9nIao+zYry0iFOfEZ5Xamp1tL2fl8huN24r3b2mqsnO316J9MtEARhNN7aLE2iidWHHesCDGrdppnQa6ttfZZMhD1fMbHO7vHLep6As5uc0VNAwA4207ZaIEiCKc7bj2KJzKc7rhF21lba/T4nIRIxz1oEL124jUV6bid3OMWdT0Bd9iZlmbUkESLk+2UjRYognC649YpnsjgjvvYMWc6btHXkzFnrq8k0qE5uScaK3bGWgTF69dTNlqgCMItjltUjzuWHLeTUwJWG/qkJOO7cmIPLVYiC6LuW8DZdsZaBMXr961stEARhFmgOHFFY1ENg3lhRC/3uBMTnb0woowemhMbwFjpiYp0aNpO+xEpOJ1sp2y0QBEEFyiBgHFzOglRPdHEROOhc+IDIyOE7ETHHWt2xkqP2+t26usZOU62UzYRC5TVq1fjsssuQ2FhIXw+H958883gex0dHfjhD3+ISZMmIS0tDYWFhbjppptw6NChkM9oa2vDPffcg7y8PKSlpeHyyy/HgQMHLBtjJ36/Ma7fiY5bxgPjdTud7Lhjzc5Y6XF73c5Yi4h53U7ZRCxQmpqaMHnyZCxZsuS495qbm7Fx40b85Cc/wcaNG/HGG2+guLgYl19+ech+CxYswLJly7B06VKsWbMGjY2NmDdvHrqcWNQQAbHiuJ2s6GMl9yvyeubl0dbrdsbK9XSynTJqinR7610iXgd17ty5mDt3bq/vZWVlYeXKlSF/W7x4Mc4880yUlZVhxIgRqKurw/PPP49XXnkFF110EQDg1VdfRVFREd577z1cfPHFUZjhDHJygPJy5z0wnZ00xTSgUwKR4AY7Y+V6ej2yECs1C7HiuHUERQzSa1Dq6urg8/kwqHsSgg0bNqCjowNz5swJ7lNYWIiJEyfi008/7fUz2traUF9fH/LjRJza0ItaiIzjVDsZoym+AW/bCchpAKurrX+WaGLNocVK5M/rgjNWUuqykSpQWltb8eCDD2L+/PnI7L4jKysrkZSUhGzz1I4A8vPzUVlZ2evnLFq0CFlZWcGfoqIimacdNU69kfjDkpREP1ZxquNubhazEBnHqXYCsRMpipWeaKzYKatIljHrnycSGdezpcWIhMcK0gRKR0cHrrvuOgQCATz11FMD7s8Yg6+PxRkeeugh1NXVBX/Ky8tFn64QnC5QRDhtwLkOjTd+cXFAaqr1z3OqnZ2dxgqusSLEvB5ZiLXaDJH3bVub8xy3SIGSkeHshRFlIkWgdHR04Nprr0VpaSlWrlwZjJ4AQEFBAdrb21HbY/arqqoq5Ofn9/p5fr8fmZmZIT9OxKkNg8heC+BchyZqITKO0+0EvB1BEbUiLMfJkQUZKYHmZkPIOgWRbVF6OpDQXUXptHtX5PX0+ZwtrmUiXKBwcVJSUoL33nsPubxV6Gbq1KlITEwMKaatqKjA1q1bMWPGDNGnoxSnChSRDwvgXIcWa5Eiv5/mpbGKU+00p+xEOu6mJup1OwmRjjsry7k9btGO26miU1ab6zQ7ZRPxKJ7Gxkbs3r07+HtpaSk2bdqEnJwcFBYW4pprrsHGjRvxr3/9C11dXcG6kpycHCQlJSErKwu333477r//fuTm5iInJwff//73MWnSpOCoHrfi1GLDWHPcWohFhtlOxsREn0TA7fT5jDmGrJCVRem/QIAa+qFDrX+mCESPsvP5aMbn6mq6poWF1j9TFCJTWQCJzsOHnfuMimqLYjWCErFAWb9+Pc4///zg7/fddx8A4Oabb8bChQvx1ltvAQBOO+20kP/78MMPMWvWLADAb3/7WyQkJODaa69FS0sLLrzwQrz44ouI57LfpTjVocWa49Z2RoY5l9/cLEYMiMCcsrO6IixAn5GdTdezpsY5AoWPPAPEXtPqamf1uEWn7ADnRhZktblOs1M2EQuUWbNmgfVTMt3fe5zk5GQsXrwYixcvjvTwjibWHJpT7RQdWWhtJcctovBWBKJ7oenplCrq6KBr6hSBItpOgK5pTY2zGnpzyk7EKDvAmT3u1lZjgVGRERTAWXYCOoIiCr0Wj0CcOiOnLMfttCI80b2WjAxnFuGJbvzMuXwv2wk4s6GXYacTe9zm6atEiWAn2gnIa3OdZqdstEARCL+Jamspr+wURDtucxGelxt6pzpu0dcTcKadsea4Y0mIiUjZAc4cmNDVRZ03QEdQrKIFikDMc8/1GEVtK7HiuEX3WgBtp53ISPE40aHJvJ5OsjNWhJismiLAWddTBVqgCCQhwRApTnpgZPZEnWSnjixEj7bTPnQqK3qc6Li5nQkJVFckAideTxVogSIYJw41llVsCDjLzliLLHjdccvscTvJocl8Pp1kp4zn04mO2yzERA3Zd+L1VIEWKIJxYkOve6LR42Q7vS7EYs1Or0dQZAprJzlumdfTSXaqQAsUwThxJE+sOO5YiSzEyvWMlYY+1hx3LEVQRNFzMsVYQQsUwTgx9SEzhOzEhsHrdsbK9YwVO2U6bicJFNlCzCmOW2Zxd3u7MUIoFtACRTBObgB1jztytJ32ESsRlFjpccsUYh0doaNn7ESGQElLM9bdctIzKhstUASjUzz2oVM80RMrdjoxJSCzx93WZqzzYzcyns/UVGOkjFNEp4zr6eSFEWWiBYpgnJbiCQSMnoUOlUeOE+2MldSHTDtbW53juGUIsfR0582CLMNOn895UTEZ7RDgTHEtGy1QBOO0hl7GpEGA8+xkTEdQrMDtPHbMObMgy7DTicsXyLhvndjjluW4nfaMyhDWgDOj87LRAkUw/CZySgSFNwrx8UBysrjPdVqjYF6ITJbj5p9vNzLnBwGcMwuyLMete9z2ION6As67nrLsdJpvUYEWKIJxmuM2q3lRkwYBoesOOcFx80YeoPC2KHjjx5gzHLd5nQ+RDi0hgdZYApxz78aK45YRKQJiJ4LitOspO4KiBYomasyNQiBg77kA8ho/s+M+dkzsZ0cDbxTS08UtRAZQ5TxvaJzQAMpK2QHOEteMxY7jluXQnOq49fWMDi1QNJbhD0tXF1BXZ++5APIa+aQk4zOd0ADK6p0BznLcvPFLShK3zgfHSXa2thq1MF533LEixGR3lpx2PWUJlCNHxH6uk9ECRTB+v5FicMIDI0vNA85yaLIaP0DbaQeyUnaAsxx3VxfQ1ESvteOODiddT0Bemzt4MG11BEVjCSc29F53aLLCx4CzivBi5XpyO9PSxKbsAGc5bnPKzsuOW9YoO8BZ1xPQKR6RaIEiASfdSLHm0LweKYqViJgKO53guPl9m5goPmXnJMfd1iYvZeek+xbQAkUkWqBIwEkPTKw4tFgTYtrO6HGS444VIcbtBMSn7JzmuFUMM3bK8gWy0QJFAk6aUCdWHJrMFI+2Uz0q7HSC41YhxJzguLmdokfZAUZthhOKRzs6qMAbkBdBaW2NnQUDtUCRgJOmu48VgRIrKR5tp3WcFEGR+Xw6qahShZ3HjpFAsBNzcbdoW9PSjDSgE8SYCrRAkYCTGvpY6XHHmhDTdkaPk+yUmeLhjrumxv7JFGW2Q9nZxiSUdosxbmdKirH6sCh8PmeJThVogSIBJ6Z4vN7jjhUhFmt2yrhvzbl8uydTVCHEGLM/nSWzHYqPd07UWuZ9Cziv3kY2WqBIwCkPCxA7PdFYEWKq7LS7CE9FSqCry/5ZkGU6tMREii4A9qcEZAprwDl1KFqgiEULFAk4yaHFSo871oSYDDt549feHjo/hx3ItNPvNz7Xbocm007AObOPyhTWgBYoXkULFAnoFI96VAgxJ1TPy2wA09Iodw4AVVXiPz8SZDf0TnFosgWKU+yUHUFxiuOOFTtVoQWKBMwpHi+Hyp3kuGUKsYwMo+DN7oZBtkMbMoS2dju0WHPcsoWYU+7bWBGcXrdTFVqgSIA77vZ2Y50Nu5Cp6DMygIQEem13FEWmQzNXz9vdMMRaLl8LMWs45XrGip06xSMWLVAkkJoKJCfTazsddyBgNAxZWeI/3+dzTpon1lIC2k5rOMXOWLlvY01Ya4EiBi1QJGB23HbeSA0NRopJhkABnNMwqEp92F2boaonGit2ev2+dZqdXnfcWqCIRQsUSTghssAflsREI6IjGic0gG1tlE4DvN/Qx0rqI1YiC7EiUHQERQxaoGiE4ISRPHV1tM3KMmZaFI0TIgsyp5fmOMHOQMAY/qsdtzWcYmesCTGv26lqFE9Njf2TDKpACxRJOCHFYxYosnCC4+aNX2oqzSopAydEFswF11533LEiULSdYjCPVrLTcatKZTlhkkEVaIEiCSekeFQKFDsbQNm9FsAZtRnczoQEeSk7JwhOc8pO97itYXbcdk55oCr10dVltHt2INvOpCTjs2MhzaMFiiSclOKR9bAAznLcMu10guM290Jlpeyc4LjNKbv0dDnHMNtpl+NWmbLr6LDXccuOoDhldmAVbVEs1aFogSIJneJRB7dz0CB5x3CS41YRKbLTcZtXhOXz7IiG29neHiqIVKIiZZecbIg8JzhuVfeuXWiBIhYtUCThhMhCrAgUnov1up0qGj9+37a22jfJoOw8PkD1Sqmp9Nouh6YiZQfYvx5PWxtFcAA1964WKN4hYoGyevVqXHbZZSgsLITP58Obb74Z8j5jDAsXLkRhYSFSUlIwa9YsbNu2LWSftrY23HPPPcjLy0NaWhouv/xyHDhwwJIhTiM/n7axIlDsbBRU2Mkbv+Zm+xy3CiHmhPV4VESKAPsdmoqUHWD/dPfcaQPyUnaA/XYypkZc233fqiRigdLU1ITJkydjyZIlvb7/+OOP44knnsCSJUuwbt06FBQUYPbs2WgwxVEXLFiAZcuWYenSpVizZg0aGxsxb948dHV1RW+Jw3BCj1ul425oAFpa5B2nP1SkeDIyKM8N2NcwqLDTCdP6q0gHANpOVfCmPy1N3ig7wP5IUXOzMYJI5jWNpQhKxBneuXPnYu7cub2+xxjDk08+iYcffhhXX301AOCll15Cfn4+XnvtNdxxxx2oq6vD888/j1deeQUXXXQRAODVV19FUVER3nvvPVx88cXHfW5bWxva2tqCv9ebJblD4RGU6mqqLJf5YPYF/5pkCpSsLJoIrqODGoYRI+Qdqy9URBa44z5wgOwcNUresfpChZ0A2VlW5m0hBjjHccvsbQPOsdPrQoy3t3FxRvpQBrEkUITWoJSWlqKyshJz5swJ/s3v92PmzJn49NNPAQAbNmxAR0dHyD6FhYWYOHFicJ+eLFq0CFlZWcGfoqIikacthdxccmqBgH0jeVREUHw++6NFKuwEnGOn1x03F2JetzPWHLfXhZjZTpkpOy1QoqSyshIAkM/DB93k5+cH36usrERSUhKys7P73KcnDz30EOrq6oI/5eXlIk9bCgkJxkiew4ftOQfVjlv3uOWiKoJitxBTGSkC7LfT6/etaiFmd62NbCEWSwJFyiA+Xw/5yBg77m896W8fv98PPy8AcBH5+XQT2d3j9npDryMoYrHbocWKnbEiUFTV2thdg6IFiniERlAKCgoA4LhISFVVVTCqUlBQgPb2dtTW1va5j1fgDi1WIih290RVCTG7HVqs2CnbcTsl8uf16xkrgjNWaopUIlSgjB49GgUFBVi5cmXwb+3t7Vi1ahVmzJgBAJg6dSoSExND9qmoqMDWrVuD+3gFu4ca6xSPWOwWYrFipxZiYtF2qoE/n6oiRXV1xvwyXiXiFE9jYyN2794d/L20tBSbNm1CTk4ORowYgQULFuDRRx/F2LFjMXbsWDz66KNITU3F/PnzAQBZWVm4/fbbcf/99yM3Nxc5OTn4/ve/j0mTJgVH9XgFOyMojKkLOdrt0GKlJxorjjtWetyx4rhV29nSQkN+ZY6k6Q1uZ4/ySuEMGkQjhfgAjO7EhSeJWKCsX78e559/fvD3++67DwBw880348UXX8QDDzyAlpYW3HXXXaitrcVZZ52FFStWIMMkK3/7298iISEB1157LVpaWnDhhRfixRdfRLwdY3ElYmcEpamJhjcD3q9BiZXiUe24xRJrdra0ULuQlib3eD1RZWd6Oi2m195O13TkSLnH64kqO+PjgZwcqkGprtYCJYRZs2aB9bNIh8/nw8KFC7Fw4cI+90lOTsbixYuxePHiSA/vKuyMoHBnFh8vv0Gy03F3dFBvCYgdh6YygsKY3CGTvaEdt1jMjru62rt28rmKDh70tkABKM3DBYqX0WvxSMTOCIqqMfmAvTUo5jn7VKayVC+kx5j6GhTuuFWjKmWXnm7v7MCqHTfgbTsBe4ca83EfXrdTJVqgSMQJERTZjTwQmuJR7bh545eWJm/lW46dC+k1NhrTaMu+pmlpxuJ1XnZoTnHcKp9RL19PIHbs5IWydi6logItUCRiZ49bpUDhdra2kiNViUo77VxIj9uZmGicgyzsdNzt7caaTl53aKoiYkDsOW477ZRdJAsYdSd9zG3qGbRAkUgsOW5eMW+X41bR+Jmn9VfdAJqvp4qaELscGrcTkJ+yA+yzMxDQAkUGsWKnFigay6SlGQVpqtM8KgUKYJ/jVhkmB+wbsaTaTrsKn7mdGRlqFti0y6GZU3bacYvDztoMLVDEowWKZOwqlFUtUOxy3LEixFT2tgH7HJrKRh6w306/36j3kYlddra20g+ghZhIhg6lrRYoGkvYVShrl+P2cooHiJ0Iit0pHq/bGStCjF9Pn0/+DKuAfTUogYAxolBHUMShBYpkYiWCEispnliJoNh9Pb3uuGNFcJrtjFPgbewUYnwghIprahYoqgdgqEQLFMnYHUFRUWgI2B9B8XoqK9ZqbbwuUHTKTg52106lpBhz68iE29nRYcy/4kW0QJGMXREUHm70ukOLlchCrDg0neKRg13Fo6rt5JGFujpjuLoKVA4xBkgE5eTQ64oKNce0Ay1QJGN3BMXrNSixFlnQjlsssWInfz7r6oyiVRWotjMryyg6Vum4VdsJxEYdihYokomV1IfdkYVYsdPrkSK7HHdDg7cd96BBRupBpUNTbafPZ4xw0QLF/WiBIhme4tERFDnYOYpHZXGaXRGU5ma10/qrvm+zsmghPUDtvav6epod96FDao4J2OO4CwtpqwWK+9ECRTJ2O247UgJ8AioV2OW429up160K1ULMroX07Ohx84be6w4tVhx3rERQYmEuFC1QJMMjKLW15NRUYF75VrXj7uw0HlYVqLYzNdWYHdjrPW476qfsdNwqIwuqBSdgbwRF1X0L2CNQVK5kzNERFI1lsrONKbtV9UQbG2n4GQDk5qo5pt9vNEKq7DQLMZUNgx1RMTvstKPHrVpwAvYIFB1BkUespLK0QNFYJi5OvUM7epS2fr/8lW/NqB7h0tpqRKVUOjQ7RvLY0RONNcftdTtjxXHHSopHCxSNEFSHyrlAyclRs/ItR7UQM0+jnZ6u5piA+gawo4OKVQHtuGUQa3Z63XHbKVBUzYMC2FM7pRotUBRgVwSFT+SjCrsESmammmm0OcOG0VaVQ+N2AupmBgbUO+5AwCg8jpXIgh21GVqIicfOCEpNjbr6RtVogaIA1UON7RIo3E5VIUc7GnnAaAAPHlRzPC5Q0tOBhAQ1xwTU21lfr3Y9E45qh8aYdtwy4UKsulqd47bDzpwcoz1QPUpUFVqgKCBWIig8sqDKoXE7VRUCc1RHUOwWYqrtTE5Ws54JR7WdTU1AVxe9tsNx19QAbW1qjmmH487NBRIT6bWqTqEddsbFqe8UqkYLFAXYFUGxy3GrEig1NbRVLcTsiqCoFih2pbJUNvKAcT1VOW5uZ0ICDVtXRU6OMSmdCofW1mbMzqvymprntlF179oxzBjw/lwoWqAoQEdQ5MAFSqwIMdV2csd99KiaaeDtihRlZxsRGxXpD3NvW2URu+pp4M1F7CprpwC1dnZ20tQOgHqB4vWRPFqgKCBWalBixXFzO2tr1ayYapedgwapXXjNrl6o6mng7UgHcOywU3URO2CPEAPUi2stUDSWibUIytGjahy3XamsrCxjfhkVDX11NW1V2+nzqU1n2SXEALV1KHZFigC1hbJ2CjE77ExPN2pfVKEFisYy5ggKL46TiV0CZdAgw3F72aH5fGrrM2LFcXM78/LkH6snKh0ajxSpnDODE2uRIq8LMa/PhaIFigIKCijE2dWlJopil0AxO24vCxQgdiILWoiJh0fEYkWI2REpihUhpiMoGsskJBgPzIED8o9nl0ABYkeg2OG47XRoXk5lAbEjUFQ6bjvv21iLoGiBorFEURFty8vlHyvWBIoddsZKBCXWUjyxEilS4bidIMRU2MnbW7sFCp/k0EtogaKI4cNpKzuC0tJiDAmNFYFiZwTF63bGSgRFZWTBCY47VuysqpJf98ft5IuIqoQLlOZmY6izl9ACRRGqBAp3ZgkJahfQ46hy3O3txgMZKymeWKm18XpthhNqUFRMA2+nnUOGUN1fICC/7u/IEdraYWdaGpCRQa+9mObRAkURqlI8dq1kzFElULidcXH2DmOUbWdnp1FsqCMo8uB2qpjbxk7BaZ4GXrZDs1OgxMcboydli047IyiAt+tQtEBRhKoIip31J4A6gcIb+exs9ZNAAaERFJm5Xy5OAHtrbRobjZWGZRAIGPeuHQ7NPLeNKodmh50qZ5O1005AXTrLbju9PNRYCxRFxJpAOXSInI4sjuuFqphgxgRv/FpbQ0WEaLidWVndK5c2N8v9YnuQnm5MUy6zoa+rM8zKzQUNjejslHfAHpgnpZNpJ2M9HNrRo0rtBGxy3LW1tj2jSoVYY6PyalUdQdFYhqd4Dh6U619CZlfdswe4/37ghz9U1jgMHUqNfWenkZuVQYhAWbuWvMs118g7YA+Skw1xJLOhD6nLWL2a4tb/9V/yDtgLKhw3b+QzMoCkNR9Qq3vttfIO2AsqHHdDA9DRQa9zv+y2c/58eQfsBeWOe9cnVBRy441yD9gDVXbydm5w+UbqGd50k1KRogWKxjJ8sraODrlFW8EIyr4NwNixwBNPAI8/Drz3nryDmkhMNKb2l5nmCQqUuFrg4ovpS/3HP4CtW+UdtAcq0llBO9Nbgauvph7am28CX3wh76A9UFFvE7Qzuwu44QZaCnfZMuCTT+QdtAcqhBi3MyWFIfXuW6lB+NvfgJUr5R20ByoKgpubjVqevJ9/l3osf/0rXVNFKBdiSxbS9Xz1VeC55+Qe1IQWKBrLJCYaN5LMNE9QoGxZRSqeH/Svf5V30B6odNw5//k3UF/fnf8A8Kc/yTtoD5Q67t3/oV94wc1vfiPvoD1QGUHJPbaXPAqv8P7Zz+QdtAcqHHfQmcUfA8rKjDfuv19plBNQcz2T4juRXrLReOOee+h5VYAKgdLaaowmzNux2rhv770X2L5d3oFNcDu1QAmDzs5O/PjHP8bo0aORkpKCMWPG4Oc//zkCprwGYwwLFy5EYWEhUlJSMGvWLGzbtk30qTgOFSN5ggIFR4GzzqLeGUA9Fz5BimSURhY6KoEJEww7X34ZaGqSd2ATKoYaB+1s2k9i86236A+vv65mWmKotTOvfg/g9wP//CeJzpUrlUVRVAqxvMZSevHXv9IwtC1bgBdflHdgE0qFWKAKPgD4wx+AE0+kRuHHP5Z3YBMq7AxO64AOZKEO+MUvgDlzKHz0ne/IO7AJ3gdVMdJONcIFyq9+9Ss8/fTTWLJkCXbs2IHHH38cv/71r7F48eLgPo8//jieeOIJLFmyBOvWrUNBQQFmz56NBpnDBByAikLZEIFy2WXAjBl04Pp64N//lndgEyoESrDWBjXA174GXH45cMIJZOfSpfIObEJFBCUYWUAN1SpceikwaxaFzH//e3kHNqEy9ZGLGkrxXHYZcMst9EdFURTldl52GXDddcBPf0p//OUv5R3YhMoISh47Apx+OvDtbwPcB7z0kpJCbxV2BudAQTV8Q4cC3/ue8Vx+8on8yWYAjBhB2/37pR9KOcIFymeffYYrrrgCl156KUaNGoVrrrkGc+bMwfr16wFQ9OTJJ5/Eww8/jKuvvhoTJ07ESy+9hObmZrz22muiT8dRKBEoRyhMnIOj5LTj4qgRBJSleZREUKqpCC0XNcDs2WTnHXfQm08/Le/AJpRGUFADXHAB/XL//bR95hklDaDSyAKqgfPPp18eeoi2K1fKHePcjXI7L76YfvnWtyg1sG+fktVElUZQUE21U3FxwIUXAklJ1InYt0/ewbsxpz5k6aEQO+fPB1JTgZNOovkP2tuV1MSNHEnbY8eUZc+UIVygnHvuuXj//fdRXFwMAPjyyy+xZs0aXHLJJQCA0tJSVFZWYs6cOcH/8fv9mDlzJj799NNeP7OtrQ319fUhP25ESYqnnBKiOflJwMSJ9Mfrr6ft8uVKGnolAqWM7MxNaQHOPJP+eMstlBZYv15Jd0JJDUp5MwAg11cLnHce/fGSS2jsb10dUFIi7+DdKLGzgoRWLmqAmTPpj2PGGPFrBSlgJZGFKvKUeag2rmdaGqU/AGDzZnkH78Y8DTwfUSSa6iPUgchDNXDuufTHxESjTdq0Sc6BTfCJ2jo7DaEvmhCBcs459IvPB0ybRq/XrZNzYBPp6caIQq9FUYQLlB/+8Ie4/vrrMW7cOCQmJmLKlClYsGABru92kpXdlTz5/O7pJj8/P/heTxYtWoSsrKzgTxH39C5DSQSliuZUyJk5ySjYmjKFDt7aqqRhUCJQDlI9Te6UEUaB7ODBwLhx9FqBQ1MSQdlHYjzvxEHGnNZxccD48fRagZ3myIKs0ZPVxZSzy8vzGQ8KAEyaRFsFPVFuZ329vDKm6p3k0XKTm6l2ijN5Mm0VCJS8POOROXxYzjGq9xyjY8UdBc44w3jjtNNoq6AdSkoyJk+TFS06UkYdiDxUUzqdwwVKd+ZANjyKoiAwpRThAuX111/Hq6++itdeew0bN27ESy+9hP/93//FSy+9FLKfr8c87Iyx4/7Geeihh1BXVxf8KVexJLAEpAsUxnC0ORkAkDPP9LD4fEbPZccOSQc3UCJQjsUDAHK/Mj70jVNOoa2CCnpu5+HD8ubaqqmkD849Y0zoG9y5KXDcvMfd3m7U/oimppwUQe6kwtA3uEDZskXOgU1kZFAwA5Dn0Gr20Kx+eScOCp0C+dRTafvll3IObCIuTn5hZfU2SlXlDU2itAdHoUAB5I/kqf6SvsDBme1GyAYwRJmCCApgCBQdQRmAH/zgB3jwwQdx3XXXYdKkSbjxxhvxve99D4sWLQIAFHQ/GT2jJVVVVcdFVTh+vx+ZmZkhP26EB34OHJCTE23ZVYYmRi1s7sXTQt/kjnvnTvEH7gF33MeO0XwIomFNzahpp2hCzlfPDH2TRxYUCLHBg6knGghIGuLHGGoaaOGU3JkTQ9/jglNBBMXvN3qi0hwaLwY+84TQNxQKFBWzyVYfpFRW3uQeQowLFAURFEB+HUr1Pkol553cY8GhKVNoq0igyE5PVhdT7ihvZFroG1ygbN0qf3EnAKNG0VYLlAFobm5GXI/FUeLj44PDjEePHo2CggKsNE1M1N7ejlWrVmGGOUTmQfgsqx0dcmZZPbx6FwAg2deKzMH+0Dd56kOB487KMjpNMhqGhvf/g050O+6ekQUuUBREUOLi5NYtsF3FqAlkAwByzz819E0eQVE0PF+q466vR00L3TB5s/oQYlu2KJmdU6qdgQCqaynyl3f22ND3eIpn+3Z5hSEmZNfbVFdSsX7eacND3+BCrLxcXmGICe64ZaU+qnmK55QeKwUOG0YRla4uJWJMp3jC5LLLLsP//M//4O2338a+ffuwbNkyPPHEE7jqqqsAUGpnwYIFePTRR7Fs2TJs3boVt9xyC1JTUzFf8ZTPqpE9WVvlOkp9FaQ1HL+SscIIis8nN81z9HMqDE2Oa0dqWg9DzQJFoUOTIsQ+WIcOJAEAcoclh77JBUpJiZL5bWTaydZ8ghpQTzt3QkHom+PH0w1VXS2vYMKEVMe9bRtqAoMA9BIpGjmSckzt7cCuXRIOHgpPN0vJltfUoLqZVl7MO/vE0PcyM2k6AEBJOmv0aNru3Svhwzs7caSaXGje6SNC3/P5jCiKgjoUneIJk8WLF+Oaa67BXXfdhVNOOQXf//73cccdd+AXv/hFcJ8HHngACxYswF133YVp06bh4MGDWLFiBTJ4EaCHkTmSp3ILhWXyc3opiOARlP375eRdeiBToNRsJnWXm96LYx47ltZar69XMnORzELZmo3U2iTHt4ek8QGQJ83OpvySAocmM7LQ8NlWQ4j1yAggNdUY4aIgzSNbiFWDcmV5QxND3/T5lNahjOkOPEpx3J9+ath54qDj31dYh8IFSmmphA/fvBnV3RHOwacNO/59hSN5tEAJk4yMDDz55JPYv38/WlpasGfPHvzyl79EUlJScB+fz4eFCxeioqICra2tWLVqFSZOnNjPp3oHmYWylXto6G3B8ITj3xw8mFp/xoDuIeAy4XZKESh8JER2LxESv99waAoLZaXYuZUKBHIzewn5+3xK0zwyBUrNJlLrKYkdxwsxQOlIHpkNfcPGkr6FGKB0JI/MyAL7zzpDoOT1soNXBIpZiA3pxZUqLJTlqayqKiX9T2XotXgUI02g1NfjcDXltwvG9hGJUliHIs1xd3Whcj9FTvKHJ/a+D09nKbBTquMu6S7A662RB5QKFH49ZQjr6h0U+csb1MdQKIWFsjyysGeP+M+u2UwPQ0pSZ+9CzIYIigzH3bC5tH8hZoNAqagQX6vKNm/pX4jx67l7t7xhft0MGmTMQmBe4sntaIGiGGkpni1bUAnK3xeMSu59HxtG8ggXKLt3o6KDWoOhY1J630dhoaw0O2tqcORo91DqQn/v+ygcasx7aMIdWkcHarpHfOQOju99HxsEyt694kuYqnd1C87sPobwKRzJwx13dbX4uRurt1GtUKq/q3chxgXKjh3S66dyc2kiM0B8VKx+y/6gEOtVoBQW0mQsnZ1y51wABVS9mObRAkUx0iIomzYFBUofo7W9EUHZsgUVoErGoYW9z5tjh0ARLji3bQvaWVjUS8oOUDrUmNc1CnfcJSWo7hoEAMjtWZfB4QJl2zbpK/5yx11fL3jOl6oqVNfRdcwr6ON6cjsrKuQM8zORmWlEN4SKzvZ2VO+jVHNeXh83yrBhdPDOTun3rs8nKc3DGKq301wvaSldSOmtrxQXZ6gGKTmmUGSPWLIDLVAUI02gfPmlEUEp6GMfL0RQzAJlaB/7KBQo5lC5UN+5ZQsOgfJHhYV97MMjKHv3Sk88jxxJ7W1zs+A5X7Ztw2GQos7P70NwnnACkJxMMXopVZ0GKSnG9y30UNu3B9MBuYP7aHbT0w0lqDhaJAyT4MzL7yMi5vMZz6iCpRqkCJSqKlTXk6DOG9zHfWs+uALVoCMoGsuYBYrQnuiXXwYb+j4FCo+gFBdL74lyOw8dEjytg8lx9ylQTj6ZGsGaGuk90aIiGj7e3i5YjG3dOrAQGzKEYsuMSY+KJSUZq6YKrc/YuhUHQWp2WC8DIQDQqCzu0BSks6TUoWzbhiOguTIGD+5nv5NOoq1kIQZIEijbtpnqMvpx3Aq9qZR6G5PgzOtLcAISc6PHowWKxjKFheQ729sF+s6uLrDNWwZO8YwcST3Rtjbpin7oUDpUV5fgByacCEpqqtEwSI6ixMcbnSTRjnvACApgRFEURIt451604w7LTj4yS6FDE+24uRDr106FXkZKZGH79qAQ67VAluMhO/ssYpd28N7RKR6NZZKSDAEhLM1TUoKG1gS0gCrS+hQo8fFGD01yjzsuzvApu3cL+tCmJrDdewYWKIDSKe+54xZmJ2PhCxR+cIWO2xYhxsM3CoYoyBYofUaKAPfbuX17eNfTAwKl3xE8PQ+uUzxRoQWKDQivQ9mxI5jeMS941iu8DkXB5F7CBcr27WhAOppBBvYrUHh3QsHCksLtPHgQ7Nix8ISYzJn/eiA8gtLaCuzeHZlAUdD6mguChcBY+ALFhtSHLULMBoEiS4iF1Q4pTPEcOkQRei+gBYoNCPcpu3YNXCDL4XexQsctrA7OVJcxoBBTsaRyN9xOYY5761bUIzM8Iaawxy1coOzaBdbV5f3IQlUVUFPjuEiRuXMvZPHSjg6guDhygSJ5SQquEY4dox8h7NgRtHP48H7241/ywYOUWpfIkCGUVmdMznxFdqAFig1wgSIs6ldcPHD9CUeh4x7bvR6asMiCSaD028gDcqfs7YHwFI8p7TFoEHqfS4LjZoGydSuOYRBaQWM0nSLEuEApLxfUE922DQzAQR/dk2E57vJy6YXsRUWU9W1tFTQyq6QE6OzEAR81cP06bn49GxuB2loBB++b9HSjMFlIIKOmBjh8GAdABvZr5+DB9AAzJv3eNc+F4pU6FC1QbIA7bmGRBZNAGTCCotBxC4+g7NoVXtoDsCWCsnu3oM5gOCN4OGbHLbknygVKdTXNE2IZU4FsTg71/vqEt7xVVdKXr8/PJ58SCAjKQGzbhqPIQRujCff6FdeFhaQaOjsFj+c+nsRE4/YR4ri3bwcDgte0XyGWkkJdfsB9dSjddW0H4ume7NdO80Qsug4lYrRAsYGTT6atsDKQXbsGHmLMscFxl5YKmum5uDi8vC+gVIiNGkVFwU1N5D8tY7Iz7EhRYyNQVyfg4H2TmWkUBApJf4Q7ggeghRF5Tk/yNfX5BKd5THUZeXm0XFSfxMcb19Rt9RndQ4zbGc2uOuAz6tZC2e3b0YU4HApQY9tvBAXQQ40toAWKDfCBNHv2CHDcR48C1dXhp3jME5QomAvF7ycbLUc3OzqA0tLIIyiNjYK6+33j9xtpOyFpnkgESmqqoRrcluYx1SsMaKfP5946lHBHtnDcWii7fXsw7ZGfTyMW+8XFAqUKQ9DJEhAXF0anUA81jhotUGygqIginB0dAm6k7vxJpX8UgDAelvx86u53dQnq7vdNXJzh0CynefbtAzo7URFPSmBAgZKWRgUcgNJ0lmXHXVMTUlA5oJ2AO+tQurqAvXvDSwdwbBAoooWYU+0UlfqIyE63Tta2fXvQzqFDgYQ+Vi4IolM8UaMFig3ExRl1KJbTPN0fUJlEjntAgZKQYHg9BY5bWKFscTEAoCKFHvawHLfCdJawQtluJVeRQi1qWD1uNwqUsjKgvR2H4ui+jchON0UW6uuBw4cd67iFpXgCAaCkxPF2ihJiYRXISjl4/2iBohECT/N0+93o6f6AwwEqUx8wxQPYUodiOYLCBYovgsiCDQXBogTKoaRRAMJ03G6cC4XbmUZfnNOEmDCB0v1FHUwmO50aQbFs58GDQGsrDvjo3MNy3DYJFEu15M3NwIEDkQkUG2pQFAwCU4IWKDYhrFC2uBgB+HC4NQtAGBEUwNWOu6Kd5s+OKILiphRPtxA7FAhzODXgzghK9/U82D0Swql2Wl69mduZQh/otMgCFyiHDtFw46jhdmZQw+Y0O0eMoMi15SHV3Tf+AX8EgpOro6oq6Yt6FhZSkLyzk65p1Bw5Anz/+8Bzzwk7t2jQAsUmhAmUXbtQi2x0dNHKoXzkXr+4cS6U4mI0IwV1bWHMmcHhQsxNKZ7iYjAAFa2DADi3BqU7QxM9PILSSTes0yILvNPb0EDDqqOG2+kLsxgYMBy3Ajtzc2meEMYs6gQuUJLIGUd0PauraQicRBITjebAUiCj284DadSAhxVBGTSIvmRAelsUH28EVC1dz23bgN/8BnjsMSHnFS1aoNiEkBRPd96Xj+DJyRlgCCPHhgjK3r0WRywVFwdH8KSkAFlZYfyPDZO1HT1qcd6p4mLUIQstHbSUu9MESkEBff+W5wgpKUEAPlQ0ZwKIIoIiec6X5GTDyVpKf3DH3UYjrcJy3NzD1NcLnPq0d4QNqeaOOxBB0fOgQTQlNKB05lwRAuVgAonIsAQKoLRTyMW1pSgnz8nzHqZNaIHSGx0d0g/BIyiHDlEvLSoOHgRaWnAwjhrusJwZoPRhKSoi0dTRYaFEorkZKC8PGWLs62cl9yAK7UxLM9JrUTcMjAElJcGRLdnZJAYGhDu0gwelJ57NDs1qA3gEg9EViIPPF2bt1PDhdAJtbQKXAu8bUY67HYmoaqIedFiOOy1N6dBxIY67O3R4sCUHQJiO2zz1qVsKZbkQ66QbNmyBwhW4pbxLePB1Ui0tcK4FigPZvJnCEAouyqBBRjom6gLS7vzQnryzABgN6oAojCzExRnnFXX6o9sTVqTRdQlbiCm0ExBQb1NRATQ1ocJnDGEMi4ICSjx3ddFnSMbyYnqdnUBpaVCI5eeHMVQToIk1+JfilkUDS0qCwjoxcYCVb824bcRSSQkakYa6FgrhhiXEAKXpLFEChQE40EAhXCdGUCZOpO3WrRY+RAsUB5KdTfH5Q4cErZ7VPzzNE3UdSnd+aE/6ZABGgzog5odFcqgcEDCSh4/gyZsEIIpIUXW1xQrA8LAsUHiB7GC6nmGlPYDQ2UfdUCi7fz/Q2YmDieQxwrYTcNdcKHV1wJEjIZPRhRX5A9w1F0ogAOzZE7QzPZ1mHQ4L/owqiCyIihQdRQ5aO0hRh33vuk2g8EZMCxQHUVBALUhHB02YJRnLhbJcoMSRZ4xYoDQ3S89xAwIKZblASY8wgmJe4EVBA2jZcXOBMohitE513Jbt5IWj3UIs7N42YKSz3DAEl9uZRdczIjttcNxR21leDrS1BUdkhR1VAJTaafl6NjUBhw4FhxgPHhxmzR+gNMUzYQJty8qinEQ7EDAaa97rsgktUMwkJhp5FwVKlwuUqAtlu5XN3la6+cNO8aSkkPMG3DEXSvcXtC+OWlLuowbE57Nt0cCo4EOpU0kBhC3EAKWOW5hAyRwHIEIh5iaHxgsqcyjyF5VAUXDfmiNFUQVUuZ2DTwMQoZ384iuwcxzdbti/P0rHzets0umDohJiCuzMzjYOt21bFB/QPacNEhKMilub0AKlJwqVrogUDwOwp3oQgAgiKIC75kLpbgCLG+nacGEXFjbYaTWCUsbonJ3a47Y8R0g0k9FxbJgd+MABqsuNGO640+hBd+r1HDOGfFFDQ5SPCS8cHURdd6cKsdxc43CbN0fxAdzObiEWkUBRKMQAI4oSVZqH9yRHjw6zOEweWqD0ROEDY46gRNzQt7cD+/ahCkPQ1BoPny9CsWvDXCh790Y5yKRbiBUfpsI0LuzCwgaH1l3rGjndAmXXMRoh4FQ7R46k4ufm5ignvepuAMsDESygx1HouAcPpuHsjAE7dkTxAcHJ6Cj9FpGdCh2a32+M/Pjiiyg+gNvppwfAqSkeADjtNNp++WUU/8wFipUIyqFDSur+LNWhOKRAFtAC5XgURlDGjKH6xsbGKAZf7N8PBALY4yepzIfzho3CyEJREQ3AaG+PYqjxsWPAkSOoRAEam+NDRgWFhUI7s7ONzFnEUZTOTmDPHnQiHiWH0gBEGClS2NAnJRli2Irj3lVDQ1oiagcVOm6fD5gyhV5H5bh5SqAjgsnoOAoFJ2DYuWlTFP/MBUokCz9y+PU8ciTKMFVkTKayJ2sCJWEUgAgFCs/XdnRYnPkvPLRA8SoKBUpSklGgFnGap/sm2jNkOoAI0zuA0gYwPt7CUGOe3skhO0eNCmMZdzM2DTWOuK6orAzo6MC+pJPQ0eFDcrJR9xoWikPI3KFt3BjhP3Yv4d2CZOyrpALmU06J4P8Vj0CzJFC4EKsaBCDCekN+PevqpM+yChiRBSsC5UALLUMRkUDJzTUeaAVD5IUIlE6a8CgiOxXXN2qB4lUU91yiLpTt9vR70k4FEIVAcYvj7v6H4jwSKBGlPQDl15M3gBE7bp7eKZgFgOyMi+TpNEdQFAyRP/102kZsZ2kp0NWF4uTJYMyH7GxKpYQNd9wtLeS8JRO1QKmtBWpqUItBqKymWYEjEmKZmTRhG6CksxS1QOnsBPbuBQOw6xDNChuREPP5lHYK+fO5ZUsU6WYuUBoHAYhQoJj/QeFkbVVV9BMRWqA4GIUPC2BhqHH3TbQ3PsIhxhzFjpsr+ogbei5QkkmIRSxQFAuxadNou359hP/IBUrmGQAiTO8AykPIU6fSdsOGCP+x+77dOeQ8AOS0w54bBABSU2mWQ0DJvcuF2KZNEeq+bjt35H4FAKU5+azuYWEegabQcZeWRjjzQHfk70DSCWhojENCQhR+TfFIu9RU0rcRjSqsrwcOH0Y7ElFSTpE/J3eW0tKMqHVEI3m6uoz8tBYoDkSx4456JA+PoLSSA45aoChy3GeeSdt16yL8Ry5QOulpi7pRqKhQsv64WaBElIHgAiWeuj4RCxRzCFmBQ+OOu7g4wiGbXKCkkcLhQz8jQnEhe3Iy1YlFlJ7stnN7zrkAIoyecBSm7bKzjUldI0p/dH8p2wouBEA+LaIULKBUiMXHA5No1HdUdpZkn4XOTh8yMiKY7oCjOA0bVZqnvJyKBZOSIswxy0ELlJ7wm6iqSumaPFELlKPZACIsHAWMyMLRo9SdkMwZFBjA1q0RrjjOa1DqKe8bsUApKKBWqasLOHw4wn+OnIkT6dmurY1wxkper9BKjULEAgVQ6rgHDzYa6IjSAjyyAFImlgSKAoeWkGBEFyKK/nGBknQaACPkHhFuKJTttnNbOi23wYe3RoRixx1VHUq3nVsHnw+AnvOIIn+A8hFLUQkU3g4NuwCDC+Lx1a+KP69I0AKlJ7m51BsFlBRt8Qd6794IUuodHUBpKRqRhsO11F2JOIIyaJCxEp2ChmHYMNIKXV0RNPSMAcXF6EQ89lTSYmsRC5T4eGMVPwV2JiUZDWBEaZ7uCMrOI1Ro6HSBAhhRlIjSPDyC0kgC2emRBSDKgmAuxDooBWtJoCgeghuVQPGRN4xKoNhUJxaRnd0dwq1+ivxx5x8RNqXVoxEoxXkzUF2tpE/XL1qg9CQuTmkdyuDBJC4YAz7/PMx/2r8f6OrCXj+1ejk5Rlo+bHw+I4qiaMhmxGmew4eBhgaU+Uaho9MHvz+KsCrg/DqU1lZg/37UIROHj5LgtCRQFDk0XocSkePevRtdiMOuw4MAOD+CAkRZKMsjKEdJHLtBiFkSKE2UH7IkUJw8F0q3nVs66IblaaKIsCnFs21bBOlmLlBSSMVF3CEUjBYovaG4UHY6DVDBp5+G+Q98iHF+lEOMOYrrUHia5z//CfMfeP3JEMrjjx0b4cgWjuKeS8QCpXuO8V1pFJIYOjSCxdbMKG4AIy6UbW8H9u9HGUagtT0+ZJh9RNgUKfriizAbesaCq/uWVacCiFKgKLaTO+5t2+hShUX36r7bD1Pkzw0pHi4uDh2KoJ6cp3hq6VwtRVAUDsBISKDIfNhfbbedX7ZRDymqyJ9AtEDpDcUNw4wZtA1boHSHG/dmUtcuaoGiMIICRBFB4Wo+m/LbUat5myIoGzaEOfKD532H0IiPqKIngG2Oe+fOMKfq2LsXCASwM5nu25NOogxcxNjQE42PJ2cW1i1UUwMcO4ad3XU2+fmUOY4YxR2lESOoWLajA9i+PYx/6OwESktRhhFobElAYmKUAz8Uz22TkWG0mWFHUUpK0IRU7K2iVLMlgaJoUrqkJKPNDDvN090WbTxM58o7IXahBUpvKG4YuED5/PMwB5rwAtkEuvvcEkHhjnv3bqrNHRAeQUmkblnUAkWxnePH08iP+vowR37wETyp5LgtCxRF921BAT0qjIWZFggOvT0HQJTpHUC5ncnJEU4Fz9M72WRn1L1QxdOj+3wRpnn27QM6O7Et0RCcvHwvInh729wc5Sp+kRNRHUpdHXDkCHbgFDDmw5AhEc7dw8nJMab7VlDfCERYh9I9p00TUrGjjObg0QLFidjQQ0tPp2czrJ4LT/G0U0GGWyIoOTnGuYaV/uACpX0UAAERFEV2JiQYdQuR2LkzQMokaoGi+L4FIiyU5QWyfvIOUaU9AMNxV1ZSo6oAc5pnQLpV6fbukS1R28nntmlvp6iMAiISKLz+JIcif1GldwDlc9sAEdah8PROJgnOqKIngPJJ6QDjXMNaHHH/fqCzE5sTpyEQ8KGgIMIV1SUgRaAcPHgQN9xwA3Jzc5GamorTTjsNG0wtGGMMCxcuRGFhIVJSUjBr1ixsi2pdaEko7qHFxwNnUVsWXpqnuwHcUU0y3i0RFCDCNA9P8dSSnW5J8QAR1qHwCEpDFKs1m+HXs7paSQgZiLBQtsfIlqgjKEOG0EMTCCgbZhBRoSyPoPjIY0cdQUlKMrrqih13JHZu89OXE7VAAZS3uRENNeYCJeNsABYECqA8Dcvr/latCiMI123nhtw5AOyPngASBEptbS3OOeccJCYm4t///je2b9+O3/zmNxhkGmby+OOP44knnsCSJUuwbt06FBQUYPbs2WhoaBB9OtGhWOUCEdShdOd992MEyquSkZBg4UZSHFkAjAdmQIHS1QXs3o0WJKPsSJQzN3IU57iBCAVKSQm6EIeSKqqMjVqgmEPIikfyRBRBOWZhZAsQOnRckZ0RTe3PhVgTzWljqdDQpkLZTZvCd2jb2qnwxJJAsWkulB07wigI5gIFpEwsCRTFdn7lK6Rzy8rCmDmX158kUW+Z3/N2Ilyg/OpXv0JRURFeeOEFnHnmmRg1ahQuvPBCnNDdzWeM4cknn8TDDz+Mq6++GhMnTsRLL72E5uZmvPbaa6JPJzoUNwqAIVA++2yAHbvDcB8nXgCAbiK+ZEfE2BAq5xGUAUfylJcDbW3YkzAOjPkwaBCQlxflQbmdLS00g5oCuEDZuHGAuqL6eqCyEmUYgbb2uJCVgiPGhhAyb8S2bw9jAr6SElQjF9UNFgUnYNvcGeXlYWRbSkrQgmTsrR0EwIIQA5RHFk45hRxafX0YEw2WlCAAX3AotZAIiqLraS4IHjBaxAVKAw2lFhJBUXQ909IM3/LeewPszCMoLaSoPRlBeeuttzBt2jR87Wtfw5AhQzBlyhQ8++yzwfdLS0tRWVmJOXPmBP/m9/sxc+ZMfNpH+KCtrQ319fUhP1LhjXx9Pc1xrYCzKXqIkhIq8u6T7vTOx+lzAQDnnWfhoPn5SmdZBShUHh9PNWL9tkXdaY/1g8nOiNdsMZOcbAyjULgIZFoajW7pd5ZgPoIni3otY8dGObKFo7ihLyyk2ygQGCDP3doKlJcHR7aMHGlBWPMDA8rszMw0FsHrN1rUPcS4GCchEKDFEPPzLRxYsZ2JiUYU5aOPBti5pAT7MRLN7YlISopwkcCeKHbcPh9wIc3Oj3feGWDnkhLUYhAO1lOE001CDAAuuoi2K1cOsGO3sN5WQ4LTkxGUvXv34o9//CPGjh2Ld999F9/+9rfx3e9+Fy+//DIAoLKyEgCQ3+Opzc/PD77Xk0WLFiErKyv4UxTVbF0RkJFBVauAsgdm0CDjxu83itLt0FZ30BwoX/mKhYPGxxtVUIoemNRUw85+0zzddq6Io7mWeWMSNYrrUOLjjQe83zRPtxD7LPNiABZ7Z4DyBtDnM+zs977tnutlRzLtHHX9CUexQwOAc2k6nv4d2pEjQH09doB6oePHWxDWgC0O7dJLafvWW/3s1N4O7NuH7TDWjkpIsHBQGwq8582j7fLlA+xYUhJM74wYEeUcRRwb7Jw9m7YffDBAoHz3bmzBJHQF4jB4sNFk2olwgRIIBHD66afj0UcfxZQpU3DHHXfgm9/8Jv74xz+G7Ofr8dQyxo77G+ehhx5CXV1d8Ke8vFz0aR+PDQ1gWBO27d6NKgzGzkYSabzRjBobCkh5mqffmXOLixGADyuPkkMzBdyiw4aGntfbfPhhPzt1C7F3WmYBAC6+2OJBbaif4tdm2bJ+duq288OUSwAYRadRY8P1vPJK2i5b1k99Bp9xNNPiEGOODdfziitou2JFP2m7ffuAQCA4xNhSVAGwpb2dO5fE4xdf9HMbHT0KHD0qpv4EsMXOqVMpnVVf30+nsHv5lA2gvM7pp1sU1oIQLlCGDh2K8T2eylNOOQVlZWUAgILu4rae0ZKqqqrjoiocv9+PzMzMkB/pOLVQtqQEa0CqZNIkqou0hA0N/TnUdmP58n4a+uJibMJpqG5JR0aGkQKLGhuEGG/oly3rZ1BNcTEOYwjWV9OUqpYX57Lhel59NW3XrOlneoeSEnQgAf9upHuX916jxoae6Jw5FAEsK+unWJYLzgBdSN7piBobruepp1IKrqUFeP/9PnbqtnNdKuWYLTtuG67nkCFGu/L2233sxNfgSaUUrNAIp6KC/fh44AIqWey7DmXfPqCrCxvjqffohPoTQIJAOeecc7CrR9K9uLgYI7vX8h49ejQKCgqw0pQQa29vx6pVqzCDe2gnYGOh7Lp1/Ti0XbuwGtQoWErvcGxw3FdeSYV427b1U7dQXIwVoK75BRdEOQGUGRuu57nnUrtbVwe8+24fOxUX411Q2GTKFAHzDthg54gRNEyesX6iKCUl+ATn4FhHOvLyBAhOG3qiKSnU6wb6t7MUo7Cp8UTExQGXXWbxoDbY6fMBl19Or//5zz52KilBM1LwTiO1RcKEdWVlmLNVioEL5X/9q48duqfyfzdAhRyWHbd5UrqwV4e1Dk/z9FmHwgtkE+nB9KxA+d73voe1a9fi0Ucfxe7du/Haa6/hmWeewd133w2AUjsLFizAo48+imXLlmHr1q245ZZbkJqaivnz54s+neixIYJy0kmkF1pb+2gA29uB0lJ8DFImlgpkOTY4tEGDjIb71Vd72aE7v80dt+X0DmCLEIuLA/77v+n10qW97NC9WvM7oLTHJZcIOKgNDg0ArrmGtn/7Wx877N6Nt0Be79JLLRYCA7bctwBw1VW07U+gLAPtNHOmhZFnHN4OVVVFsECOdbhAWb68D71QUoJ3cAmau5IxerSAgsr8fHpgurrIVkVwgfLeexQxOo6SEqzHNOxpHY7UVAHPaEoK5VsApc8oL5T97DOg19k8SkrQhiRsbaNKZycUyAIAmASWL1/OJk6cyPx+Pxs3bhx75plnQt4PBALskUceYQUFBczv97PzzjuPbdmyJezPr6urYwBYXV2d6FM3+N3vGAMY+9rX5B2jFxYupMOed14vb27fzo4hk8WhkwGMHTwo4ICvvUYHnDlTwIeFz7JldNhhwxjr7Ozx5o4drAFpLBFtDGCspETAAd99lw44caKADwuftWvpsGlpjDU19Xizqop1IJ5lo4YBjK1ZI+CAu3fTAVNSGAsEBHxgeJSW0mHj4hirrDz+/cCw4exEFDOAsb//XcABjx2jAwKMNTYK+MDwqK1lLCGBDrtzZy87nHYaOxerGcDY738v4ICBAGNJSXTAffsEfGB4tLczlpVFh/300152mD2bXYulDGDsgQcEHbSwkA64bp2gDxyYQICxESPosP/6Vy87zJ/PvoffMICx664TdNAJE+iAK1YI+sDwGD2aDrt8eS9v3n03W4YrGMDYkCFym45I/LeUmWTnzZuHLVu2oLW1FTt27MA3v/nNkPd9Ph8WLlyIiooKtLa2YtWqVZhoObknGBsiKADwjW9Q73L16l6mvS8uxqeYgQDiccIJxilawqae6Ny5FEk5eJBmOQyhuBirMBMdSMLo0RZmyjVjk51nnknzmjQ19ZLnLi7G5zgLtchBdrYxm7Al+E3R0gIcOybgA8Nj1Cia+yUQAN58s8ebzc3YdTANuzEWSUlMTEQsM9MYp6zwGR00yMjnHxdFYQyHi+vwCajIihfVWsKGuW0ASqnyaEFvaZ7mXeX4Fyj8cO21gg5qwzPq8/Wf5ukq3oPXQWHQ668XdFCb2iKe5lmxopc3S0rwFO4CANx6qzMKZAG9Fk/f8EZBYUoAoHuXpz+efrrHm6b6EyHpHSA09aGoaAugCU95w3ZcmqekJFh/MmeOoIeF21lbG8aMYuLw+YDrrqPXx6V5TOmdiy+2OEyTk5JiVE4rbgB5mufvf+/xxp49wfTO+ef7kJEh4GA+n20NPS8KPk6gHD6MfzZfBIY4nDEtAGGzIdhQQAr0U4fS1oZ3yiehGWkYPaJTXDrApvSkWaCENIGMYfWOwTiEYRiU0WV9hB3HJjv58PGXXjo+i1a8vRMrMQc+H8Mddyg9rX7RAqUvuEM7dIi6hQq5807avvxy6DL21ZsP4Tl8AwBw/vmCDsYbv9ZWZbOscm64gbZ//3uP/K+pQFZIbxsI7XErbui5QHn77R6LtRYX49+gqktefCkEm6J/XKB8+CEtBxSkuBjLQaqbOz0h2OS4r7iC9NF//kMTOwcx1Z9cdbXAptXGKGdCArBzZ48pAfbuxd/YfwEAvvbf8eJ62zZdz/PPp6bhwIEeNVQ1NfhrE923/3U1C64iYRmb7Jw3j2pL6uuBhQtNb7S346kD3fVhF7Zh9Gilp9UvWqD0xdCh1Ap1dPRobeVz0UXAmDFU5P3668bf7195MaoxGBOHHwsWX1omOdmo5FMcLTrnHBoB0tAQ2jC8sGoMduIUxMcFguF0y/h8thTKAjRs8+STaWTWkiXG3z9dG4cvQN1Py6MgzNjk0E44gUYidXUBDzxg9EbL1x7Ep6AhapaHF5uxqSdaUGBEMG+80ahdrdtUivdBMwryKIsQbBKcWVnA175Gr7/+dWPQSfPWvcH0zteuFZgLsOl6JicD991Hr7/9beOxad++G38Hqe7rbxQR3uzGpuczLg544gl6/cwzRglB09ZSvIibAQB33ydKhYlBC5S+SEw0FiRT7NDi4hAMsy1aBKxdS1XmL1fNhQ8BPPfLCiQlCTygjQ/MzfRc4JvfpBTIqlXAHbu+BwB4+NZDMK0xaR2b7PT5gO98h14//DDw+9/TPBqXrP4hAOCq6ZUYMkTgAW2yEwD+53/our7wAvCTn9DoxZlPX4cA4nFW0UGMGCHwYDba+ac/UVDu44+Be+6hU5j72HnoQBJOya6MfsHH3rDRziVLaE6UPXuoPq6mBrjtf06g9E7aYbHDUW2KLAB0r06bRkHkW26hTtNDizJQixwUJNVg1iyBB7NJiAE0suzKK6kT8YMf0MyyzzzViToMwolJZZhzsUOKTzjyanXloWQUD2OMnXEGlT3/859yj9MLR44wlptrDFRISwswgLF78DvGRNt96aV0kB6jrVTQ3MzYVVcdb+e1WMq6jtSIPdhNN9FBFi0S+7lhEAgw9uCDhp3p6WTnuVjNGr/cLfZgP/4xHeTOO8V+bpg8+6xhZ0YGbU9ACdvz1P+JPdCTT9KHX3ON2M8Nk7ffZsznC7UzC7Xsg3vfFHugv/yFPnzWLLGfGyZr1zKWmBhqZxw62QuXvyH2QCtW0IdPmCD2c8Nk504a/Ga2E2Dsl9OWiT3QunX0wYWFYj83TIqLjZFofr9h529OfVHJ8W0fxeMZbEoJAJR12bCBKqrj4oCmJh+KUIb/yV9scTGIXrCxh5aSQumd71HQBE1NPpyFtXgx9/uIy7M6TW4PbLTT5wMefZQiKADQ2OjDGfgP3o6/AmnjR4o9mI12AtTT/vnP6XVDA3B63Bf4BOdgzCyR4RPY2hMFaJTLY4/R64YG4NSkHViPaTj/CsHPp00pHs5ZZwGPP06vGxqAcSn78Clm4Jbr+5pNMkpsvp4nnwz85jf0uqEBGJNWib/hGvxo/j6xB7JhFXkzY8cC995Lr9vagNSENszBu/jGRfuUn8tACEyseRAbBQpAodU//5ny+S8/sAXXLf86MsYNE38gm+2Mj6fc6KRJwKqXSvGrVVcg5SQRY4t7YLOdPh/wi19QedOG5Yfwv+9+FZknDhE0fMeEzQIFAH78Y8rt79vWhEUvzURmfLOg8eImHGDnD35ANfT1Rzvx4/89A6loErASYg96To9uwxjQe++lWptAAFjw63OQ3HJIvJ1ciNXWUtV8SorYzw+Db3+byg4TEoDbF38V/p1fAqd8Q+xBhgwxVpGvqhI0X0RkPPYYjRYdPhwY/a15iPvgPWDin5Wfx0BogdIfNjs0zrhxwKOT/x+wfAtw8rfEH8ABDT1A0aJbD/4FWFUFnCRyWEs33E4br6fPB9x9N4C4fwLv1gJjzxF/EJt73ADZ+YMfAPjgc+ClBmDMWIgtnEKonTY5bp8PePBBANt2Ab9uougmr10TBbezqYm69irWIuuBz0cdJRw5AjzUfV+ddJLYg2Rl0WJHzc3UFp14otjPDwOfD/jud0GRjQXdVaSnnCL2IPHxdI8cPEg/NgiUhASqRwEAlHQvTTN2rPLzGAid4ukPhwgUAABf30h0owA4y87uNSGk2mmzEAMAFBfTVoadXIgdPmxLCDkEft+K7m0DxsJFNoy0O46dO2k7bpx4oZSWRs4bsP/e5XaOHEliQiTmuW1sFNcAgL176b5KTYW4CW1M8LaovFz8Z0dCQ4NxDqKFmAC0QOkPJzlu7tCEDg/oxiERFACGnTLUPL+elZXU+NiJTIEypDttFAiQrXbCHZqM+zYpCcHhT3bfu2aBIgOnPKPcTlnOzMaRPCHs2EHbk0+mIkDRcNFjt0Dh13PIECA3195z6QUtUPrDpllWjyMQkOvQbJpltVdk2jl4MA0fZ8x+xy0zUhQXZ0QX7G7oZTtuB6SzAGg7ReGUCIpsO/l4e7sFChdi48fbex59oAVKf5jXNVE8y2oIBw/SOSQkQMo0fzbOshpCTQ1w9Ci9lpF/jouzbQmDEDo6KIQMyMv7xppD87oQixU7nRZBkRUpckoEZbukOhtBaIHSH8nJ1OsG7HVoPI8/ZgxFAERj4yyrIfCowvDhhmASjRMa+tJSquBPTZVXIOcEO5ubgbIyei0jxQM4w07GYkegcMcty04ntEOA/OvpFIGiIyguxwEjP6Tm8TlOaABl1p9wnNAAmu2Ukd8GnHU9c3ON5RRE44RI0aFDQGMjjc4QPZSa44R2qKUF2LePXstOfYQscqQYxtRFULiAtwvZdlpEC5SBcIJD27aNthMmyDuGE+yUWX/CcYLjlll/wnGC45bdCwWcMRqC23nCCeKHUnNGdk/mZ6dDKykh552dDbFrM5hwgp2VlbSiXlycvM4SFygVFfaNtGttpTUMAB1BcS1OcNxbt9J24kR5x4gVx+2E66kiUuSEHjdPTcqM/PEet50OTYUQc0JkQeZQag63s7KSpjm1Ax5VGDMG4pYw7kF+PqXrAwH7OhElJXT8rCzxc/cIQguUgbDboTEWOxEU3jCoiKA4QaDItDNWHDfvce/fb99IO5V2Hj1K6SQ7UGFnbq4xg6xdz6gKO+Pi7I/+8QLZ8eNtmeQwHLRAGQi7HXdFBY0giouT+8DYHUHp6DAaBpmRIic5bpkCZdQo2paVUS/JDlRGFpqajBFgqlFhZ2Ymgkt723Xvyi6QBchR2h0tUlWXYXehrMPrTwAtUAbGboHCoycnnkijimRhd9FWcTGJlPR0o7coA+64DxywZ7K2o0eNkK7MiNiwYVS02d5uz5wvXV1yZ5HlJCdTuBywz6GpECiA/Y5b9iRtHLvrUFRdT7vbXIeP4AG0QBkYuwWKivoTwHDchw9Ttb5qtmyh7cSJcsON+fmUVw4E7IkWcTtHjZK7pkpCghEVs8Oh7dljLPg2ZozcY5nTPKqprzfaBpm1NoC9dgYCagQnYH+UM1YiKA6fAwXQAmVgeCPf0ECNkWp4BEW2QMnOBjIy6LUdDSAXYpMmyT1OXJzR0PMhkyrhAkW2nYAhOu20c8IEiuTIxE7Hze0cPhzIyZF7LDsjC/v2keBMSpIzWaQZOyNFDQ1Gx0WVELNDoHR2GrVwOoLiYtLTjdyvHTcSd9wy0wEARS2c4NBUOG47BcrmzbRVaacdDT2389RT5R8rVuy003F/+SVtJ0yg6JxM7Iyg8Pa2oIA6bTKxM4Kydy+lf1NTje/bgWiBEg52OTTzCB7ZERTA6BmVlso/Vk/MKR7ZxIoQs9NOLVDEY2cEJVbs5EJs8mT5x7JToMheDFEQzj0zJ8Fz6Hz9FFWUldGQwsREuXNmcOxyaA0NhijysuMOBNSlsgBnpD60QBGHnXaqdNzmCIrqoeP8eqoUKEeOqK/7c0GBLKAFSnhwgaI6ssCjJyefLGcNnp7Y5bh5sVZBgbwp0c3YZef+/SQ4k5LkDjHm2OXQGhuNGSq9LMQCAbVCjDvugwfVj0BTKcSGDaOUc2srOW+VqBRi2dmUYgHUD8Lg11N26YBFtEAJB576UB1BUVV/wuGOW7UQU5n2AAw7VTs0bucpp6gXnCp7ovy+HTpUjeDkAqWmhuZDUcX+/RT9UyU48/PpWKpnH21oMASnCsft9xszm6pM8wQCaiMo5jlfVKd5vviCtlOmqD1uhGiBEg52pXhU1p8AhhBTHVlQWX8CGI67vFztOhiqhRgPIbe0ANXVao4JqI0qADRVd1YWvVYpOrkzGz9ejeCMi7OnUJYLzsJCNYITsKcOpbSUon9+v/wh4xw75kJpajKGjJ92mrrjRoEWKOFgTvHY0RNVHUE5ckRtT1RlXQZAvbOkJJpMTOVcKCpH8ADU0PJFA+1w3KrsBOxJ86hMB3DsECjcTlWCE7DXThUjlTjct+zereZ4AHUgGKN20KFr8HC0QAmHkSMpHNfYqK4n2tVlFDKpiiwMGmRPT1R1ZMHcE1UZLVIdWQDsGYGmsl6BY4dDs8NOOyILKtMeHDuGGtshOPngB5UChad3HB49AbRACY/kZGPCNlVpHj4TZ3Ky/Jk4zageanz4MEVsfD61FeWqC2Xb2oyJkbwcWWDMXiEWKwIlViIodggUlXZygcJXclfBpk20dXj9CaAFSvioLpTdsIG2U6bIn4nTjGrHzdM7J5xgVLSrQLWdO3ZQVCw720i7qEC1nQcP0uKW8fHyZ+I0o9pxNzUZvV4vO27VhaMcOyJ/dkRQTjyRtiUl6soHdATFg6gearx+PW2nTlVzPI5qh6Y6vcNRPZLHbKfKpc1VO27uzMaNoxoYVai2c9s2cij5+cCQIWqOCRh2qmqH9u1TOzSewyMLxcVqHHddndHmqRQoY8ZQe9DQoGZIdWen0RbpCIqHUD2ShwuUadPUHI+jOsWzcSNtVfZCAS3EZGFHegdQfz3tSO8AhuPeu1fNXCjmwlEVI5U4Y8ZQrVhjI1BRIf94/HqqWFPJTHKyMZJHRZpn1y6aXyY9naLWDkcLlHBRKVC6ugzHrVqgqG7o//Mf2p51lprjcVTbyQWn6rCqucetoifKHZpqIcZD5YcOUW9UNnYJlGHDgLQ06gmraIvsstPvNzpLfEisTOxIY3FU1qHw+pPJkx09xT3H+WfoFFRGFoqLqeeQmqo2jw+oddzHjhmNzxlnyD+eGfNoCNlzoXR1AevW0WvVQmz0aGqIGhqoIFk23E7V4eOcHCPVosKh2VFQCdC15KkWlXba4bj5XCRet1PlSB4X1Z8AWqCED4+glJXJD63y3vbpp6stkAUMgVJTI78nyu0cM0bdBFCcwkIKr3Z1yRdjO3eS4ExPV7/2RXKyIa75sHVZ1NQYjaxqIQYYYn7nTrnH6ey0LwULGHaqcNy8x61aiAGGQOGj32Rip0AxF8rKxkUjeAAtUMKnoIAa+0BAfgW9nY1fZqYhFmQ/MDy9c+aZco/TG3FxRkPP1wKSxeef03baNPWCE6Cp9QH5AoVfz5NOkr9UfW+oEihbtwLNzfSsqI5wAobjlm3n4cMUMfb57GmLVEVQ2tuNFI8dkQVVERTGdATFs/h86upQ7BQogNHLl+247RQogDo7uUCxy05VAmXtWtqefbbc4/QFt1O24+Z2nnWWPXl8VRGUzz6j7fjxxgSOKlElUDZtosLRnBw1q8b3xFyDIrNOrLwcOHqUZslVNfmnRaQ/XYsWLYLP58OCBQuCf2OMYeHChSgsLERKSgpmzZqFbXzdGSejog6ls9NQuXYLFNnXxCkCRVVkwY60B6BOoHAhZpedqiIodgsxVREUbuf06XKP0xfcztJSmuhQFp9+Stvp09VOAcAZPdoYalxVJe843K+MH692CgALSBUo69atwzPPPINTe+QvH3/8cTzxxBNYsmQJ1q1bh4KCAsyePRsNKqrvrcCHZcnMie7YQTPIZmTYo+YBY+0fmQLl4EEaPhgfb18+VEUEpbnZGHrr5QhKIGAIFLscNxcoJSVyC5/tdty8Xaipkbv0Bo+g2GVnQQHVbQUCcqPW3M4ZM+Qdoz+Sk40J+GSmebiddnV8o0CaQGlsbMTXv/51PPvss8g25aMZY3jyySfx8MMP4+qrr8bEiRPx0ksvobm5Ga+99pqs0xEDd9x89lMZmCdos2sYGLdTpuPmUYVJk9TOIGvGHEEJBOQcY8MGKsQtLKQ5FuyAC5RDh2hCKhmUlNCorORk9UOMOSNG0PHb2+UVPh89aqQc7BKcaWmGQ5OV/ujoMEZk2SVQfD41aR5zBMUuVBTKrllD2698Rd4xBCPNA95999249NJLcdFFF4X8vbS0FJWVlZgzZ07wb36/HzNnzsSn/EbpQVtbG+rr60N+bIFHgniPWAZ2158AhkDZu5ciADKwO70DUEQsMZGmLS8vl3MMu9M7ANUPDB1Kr2WlBXhUYepUtRN6mYmLMxyarGgRjxKddBKQmyvnGOEg23Fv3kyR3EGDjGPZgWw7y8uBAwcokqt6qgMzsudCaW01BOe558o5hgSkCJSlS5di48aNWLRo0XHvVVZWAgDy8/ND/p6fnx98ryeLFi1CVlZW8KeIz7ynGu64Dx2SF1p1gkAZPJgaX8bkOTTuuO1sFBISjDklZEWL7C6Q5fD0h2zHbVd6hyO7DsXu+hOO7EJZng44+2x7J/SSLVC4naeeSukku5A9kmfdOoos5ue7YgZZjvA7r7y8HPfeey9effVVJCcn97mfr0cxEmPsuL9xHnroIdTV1QV/ymX1dgciI8MYySMjitLaaozHV70GjxmfT24dSiBgqHm7HbfsOhS7C0c5sutQzCNb7ET2SB6nCBTZhbJ2159wZAsUHrW3q/6EIzvFY07v2FEIHCXCBcqGDRtQVVWFqVOnIiEhAQkJCVi1ahV+//vfIyEhIRg56RktqaqqOi6qwvH7/cjMzAz5sQ2eX5chUNaupWr1ggL7Va5MgbJrF1Wsp6aqn7isJzIFSmUlzZlj1zwSZmQKlOZmYx4Jux23zAiKEwqBOaoiKE4RKLIGJthdIMsxR1BkDDXmAsVF6R1AgkC58MILsWXLFmzatCn4M23aNHz961/Hpk2bMGbMGBQUFGDlypXB/2lvb8eqVasww+6bJBy4QOENskg++IC2F1xgv8qV6bh5Iz91KqVZ7ESmnTyNNX48Rd/sRGZkYeNGKgQeOtS+QmCOOZUluqHfuZOKjFNT7SsE5nDHvWeP+JmtzRO02R0R4467upoKlEXS0mKseWa3EBszhupgGhqoJkYkgQDwySf02mUCRbh3yMjIwMQek8CkpaUhNzc3+PcFCxbg0UcfxdixYzF27Fg8+uijSE1Nxfz580WfjnhkFspygXLhheI/O1JkRlA+/JC255wj/rMjxTyShzGxwtApaQ/AECh79lCUTuQ8CGY77RbWY8fSOdTWklMbPFjcZ3M7zzjDfmHNFw1saqJidpGFrNzOCRNotlw7SUsj0XvgAEWLRAqJDRtoOHpBgbHEh134/fR9b95M5yWyznLbNhLW6en2TOVvAVuqnx544AEsWLAAd911F6ZNm4aDBw9ixYoVyLC7lxkOvOe0davYoamNjUZk4YILxH1utHCBUloqdiQPYwCPns2eLe5zo2XsWOq51NWJX9ad23neeWI/NxqGDiVnEwiIz3Pz3pndaQ+Aoht8IUjR0SKn1J8AoUNwRdvplPQOR1Ydit0TtPWEp4H5QAlRfPwxbadPt19YR4gSgfLRRx/hySefDP7u8/mwcOFCVFRUoLW1FatWrTou6uJYTjyR5lpobhY7edDHH5OaHz3afjUP0MqweXkkKETWLWzbRkIgJcUZERS/3yhQE5nmqa6mnhAAmIbU24bPJ6cOpb0deP99eu2EyB8grw7lo49o6zTH7XWBwqOcfACBKJxSIMuRJVBcWn8C6LV4IichwXhgRNahmOtPnIKM+owVK2g7c6ZzplvmjluknStXkrg79VRjDhK7kSFQPvuM8uaDB9Pq206ACxSR6cnduynylJgInH++uM+1Ak83i3Ro9fWG43bKhF48RcojWCLo6jIif04RYnzKhfXrxdZPaYESY8ioQ3GiQJFRh8LTHk6IKnBkCLF336XtxReL+0yryBDW//d/tL34YnvnyzDDh+iLdGj//jdtzz3X/roMDu/5f/qpOIe2ciVFck86yYgs2g0XEBs3iluTZ906inJmZto/1QFn0iQSwDU1wP79Yj6zrIwmo0tIcEYtXIQ4pEVxGaJH8hw9aizk5JTeGSBeoLS2AqtW0Wsn1J9wuJ38GliFMSNS5CSBwhsokQ6NC5SvflXM54mApw43bqSRGiJ45x3aXnKJmM8TwbRp5HgOHRI3E/Lbb9P20kvFfJ4IRo+mCF17u7hn9F//ou1Xv2rfzMc98fvFR8V4e3v66VRw7DK0QIkG0RGUVavIYZxyinPSAYBh57p1YhzaJ5+Qwxg61BAFTsDs0BobrX/eli1UZ5Oa6qyw6hlnUGNcUSGmfqqigpaq9/mcFREbNYruMfN6MlZobjZGnjlJoKSmAqedRq953YgVAgFDiDlJoPh8RmGyqKjY8uW0vewyMZ8nCtF1KG+9RdseS864BS1QooFHUHbvpmF+VnHS8GIzZ5xBqv7wYTETJZlH7zihap4zciQtvtbZKaYB5OmdWbOcU2cDUGEybwB5XtoK3M6pU8UO57WKz2eITl5nYIWPPqLUwogRRh2PU+Dpjz7WMYuIjRvpWc/IcE79CUekQCkro+h3XJyzIn+AWIHS0mKkJq+6yvrn2YAWKNGQn08/jBkT/ViBj4JwUv0JQKOVeAPIRzBYgac9nNTb5vChwKtXW/8sJ9afcLjjESFQeHpn7lzrnyUaLlBEOG5zesdJwhow6lBERFB4emf2bCApyfrniYQLFJF2Tp9OIxWdhFmgWI1av/cedaCLiuxdOsUCWqBEy6xZtH3vPWufc+AAjarw+Whki9PgdloVKEeOGPljJ4YbRQmUpiZj3gEnChSecrIqULq6DMHptF4oEFpAamW+IsYMgeJEIcY7EF98Yb3exon1J5wzzqCIR1kZ1dxYgdefzJtn/bxEM2ECdQzr6mhSRSu88QZtr7rKecI6TLRAiRZe5Gmasj8q/vpX2s6YAeTkWPssGZgFihVFz4Xc5MkUfXIaXKDw9ZCiZdUqKuYbOdJYKdlJ8MjCzp0kGqNl3TqarXXQIOeMgjAzZQqltI4etTbBV3ExTVaYlOS8CCdAaafCQkpPWkkLHD5s1Os4UYhlZAB8riw+oWU0NDUZEWun1Z8AVCPG64qsXM/OTqPOxqXpHUALlOjhAuXzz4Fjx6L/nFdeoe2NN1o+JSmcdRbVUVRWWqtDMYePnchJJ9HkdG1t1gorzekdJ/ZacnKMAmUr9Rk8tz17tjNnp0xMNISTFTt59GTmTJoq3Gn4fGLqUPj1PP10ZxXqmxGR5nn/fXrGR42yf6HSvuBpHivt0Mcf03Dl3FxnFepHiBYo0TJiBM3kGAgYFf6R8uWXNOIjKQm49lqx5ycKcx0KH7IWKceOAf/4B72+5hohpyUcn896mqez07DTiWkPjog6FO64nWyniEJZJ6d3OPz5tOK4nZze4YgolDWnd5zYgQCMCduspJuXLaPt5Zc7swMRJlqgWMFqmufVV2k7bx6QnS3mnGRgtQ7lL3+hOVAmTXJmOoBjVaC8/TZw8CAV3jlpOGpPeI+K18pEypdfUvg5IcHZDs1qoWxVlSHKnSxQrE7Y1t5u1BM5+XpygbJ+fXQrODPm7PoTDo++rl9PNTeRwpghUFyc3gG0QLGGFYHS1QW89hq9dmp6h8OLd6OpQ2EMePZZev2Nbzi31wIYdn7yCUVDIuVPf6LtLbc4a3hxT7hA2bgxumHyf/wjbf/rv5xZT8ThkYXi4ujqbZ59lhzhmWca0+c7kdNPpyjskSPR1dv8v/9HU9wXFhq9dydy8smUomxpia4T8fHHNHdPWprR6XIi+flGlJMXukbC+vU0+CItzbkp9TDRAsUKs2ZRL3L3biqki4QPPqBq9JwcZ/e2Aeq5+P30cEe6Eu7GjdTj9vuBG26Qc36imDiRij4bG2kCskjYt88Ydvutbwk+McGMHElDDzs7I09/1NUZkb+77hJ/biLJzjbmLOI953Dp6DCE2D33iD0v0fj9xgzUS5dG9r+MAb/9Lb2++27nLFfQG3FxRor4L3+J/P+feIK28+c7uwMBAFdfTdtoBAqPnlxyCaXoXYyD70YXkJlphB0jjaLw4tj//m/nzTnQk+Rkw05eAR8uzz1H26uvduYoJTNxcUaa5803I/vf556jxv6CC4CxY4WfmnB4yuLllyP7v5dfpqjLhAnOm8yrN66/nrYvvBDZ/y1bRum6IUOAr31N/HmJ5qabaPvyy5FFOdesoU5EcrLzhTUAfP3rtP3HPyIbVl1SYsyqet994s9LNFygrFlDAxTCpbkZ+POfQz/DxWiBYpVo0jxNTYYydnp6h8Nz09wRh0NTk5HG+uY35ZyXaHiU5/nnw89zd3TQ/gBwxx1yzks03/gGbf/+dxqKGw6MAU89Ra/vusvZ6TrOTTeR8Pz448iif4sX0/aOO5zf2waAK6+kUUalpZFFxZ58krY33ui8Sct649xzaYBCfX1kUbHf/pbu30svdXa6jlNUROk2xoB//jP8/3vmGRoyPmqUJwQKmAupq6tjAFhdXZ3dp8LY2rWMAYylpDBWVRXe/7z8Mv3PCScwFgjIPT9RHDnCmN9P5/3pp+H9zwsvGHZ2dUk9PWG0tzNWUEDn/be/hfc///gH7T9kCGNtbXLPTxSBAGOTJ9N5//734f3PBx/Q/unpjDnh2QuXr36VzvtHPwpv/y++oP0TEhg7eFDqqQnl1lvpvL/xjfD237uXsbg4+p+tW+Wem0gefJDO+Yorwtu/upraZ4DuYbfw2GN0zrNnh7d/c7PRdj3zjNxzs0Ak/ltHUKxy5pk0br2lBfjd7wbev6UFWLiQXt90kzt6oQD1rubPp9e8dzkQPL1z++3Ozm2bSUyk8wWMGoSB4MWxt93m/HQdx+czolrPPhteVIxHT268kdKbbuG222j70ktUnD4Q/P6+5hoqHHULN99M2//3/8JLfyxeTNMkzJnjrMU7B4JHOd95J7zo3x//SN/HlCnOLo7tCY+AfPhheHY+8wylg0aMMO4Ft6NAMAnHUREUxhh74w1SrVlZjB071v++P/oR7TtsGGP19UpOTxgbNxo9y0OH+t/3X/+ifePjB97Xaezfb/Qsd+7sf9/Nm2k/gLE9e9ScnyiOHmUsOZnOfe3a/vc9cICuJUA2u4nWVsZycujc/+//+t/3yBHjO/nkEzXnJ4quLsZGjqRzX7q0/33r6hjLyKB933lHyekJhUf/nn66//1aWiiyCTD26qtKTk0okybRuS9e3P9+zc2MDR1K+/7pT2rOLUp0BEU1V1xBsxLW1Rm9zN7Yvh349a/p9eLFNH2zm5gyheaW6Ow0oga9cfgwcOut9Pq733XuzJR9MWKEUXPTn51NTcB119HrK68ExoyRfmpCyc42CkD5UPDe6OqiqFJXFxXG8pExbsHvN6J/vICwL372M5qz5/TTjWHKbiEuzqhpG8jOp54CGhpo6K4T14waCF4s++yz/UfFXn2V5rMZPty5k2H2By9c/slPqF3ti2efpVGWI0bQNAdeQYFgEo7jIiiMMfbKK6ReBw9mrKnp+Pe7uhj7yldon8suc0/tSU+WLiUbCgqoZ9qTQICxuXNpn1NPpR6MG3n7bbIhO5ty2L1xyy20z9ChjB0+rPb8RLF6NdmQmsrY9u297/Pww0ad1aZNas9PFDz6Fx/P2Hvv9b7Pn/5kRMOWL1d7fqIoLmbM5yMbnn++933eftuIhj37rNrzE8WhQ1QLBTD205/2vs+GDYxlZtI+jz+u9vxE0dHB2Omnkw3XX9/7Po2NjBUW0j5//KPa84uCSPy3Fiii6OhgbNQoukl+/OPjBcjzzxuOYN8+e85RBO3txsMwb97xAmTxYnovOdldhXc96exk7KSTyJapU49P3b34Ir0XF8fYhx/acopCCAQM4Txy5PHpuGXLDKf9l7/YcYbiuOkmQ3QWF4e+9/77lLoEGPvFL+w5P1H8/Odkh9/P2Pr1oe+tW0dtEMDYzTe7t6PEGN2PAAmy998PfW/HDsby8uj9mTPd21FijK4hTzn3TFFWVjJ25pn0XlFR751Gh6EFil08+6zRmF97LTm1Q4eo7oSr/f/9X7vP0jorVhh5+tmzKWJUU0PRFT7SZ6CcqRvYsYMiYgBjM2Yw1tBAdUPvvms08j//ud1naZ0jRxgbO5bsOe00qk9oaaG6FF6nsGCB3WdpnZYWxs4+m+w5+WTGamupY7FtG4kWgLH5893ttBmjaO1ll4WKzq4uqpHi9RizZ1Nnw+3cfjvZk59PorOjg2rIioro76ef7q4RZ32xYAHZM3o0tT9tbXTf8pqjnBzX1ExpgWIXgQAJEN4TGzqUsaQkQ7Scdx49QF7ggw8YS0sz0lo8rAwwdskl7m/kOZs2MTZokFEEzW0EGLvoIoq0eAGz8+Lik//MnOkNZ8YYYxUVhvMy37MAY2ed5e6etpnaWhreb7aP28tFqBdoamJswoRQG3knady48Kd+cDoNDcZ9C1DqinceTjzx+Iigg9ECxW7WrjWULe99v/GGd5wZZ80a4yEBGBs/nrF776XRIV7i889D7Rw6lCJkbq076Yv1641IHxcqs2ZRGNlLfPGFERnjP6edRuLFS3z5ZWg7xCNHbprbJRx27KB6N7PgHD2asbIyu89MLMXFjH3rWxQt4naeey5FQF1EJP7bx1g4EyA4i/r6emRlZaGurg6ZTp2PobYWePFF4KyzjNVGvUhJCbBtG414cPLCcVbZtw/Yv5/W68nNtfts5FFZSYvODRtGo3zcMk9PpLS2AjU1QEoKTfOekuJNWwMBmv68tZV+hg4F4uPtPis5dHUB1dV0/558Ms1p5EUCAeDzz6ntvfZa1623E4n/1gJFo9FoNBqNEiLx33oeFI1Go9FoNI5DCxSNRqPRaDSOQwsUjUaj0Wg0jkMLFI1Go9FoNI5DCxSNRqPRaDSOQwsUjUaj0Wg0jkMLFI1Go9FoNI5DCxSNRqPRaDSOQwsUjUaj0Wg0jkMLFI1Go9FoNI5DCxSNRqPRaDSOQwsUjUaj0Wg0jkMLFI1Go9FoNI4jwe4TiAa+AHN9fb3NZ6LRaDQajSZcuN/mfrw/XClQGhoaAABFRUU2n4lGo9FoNJpIaWhoQFZWVr/7+Fg4MsZhBAIBHDp0CBkZGfD5fEI/u76+HkVFRSgvL0dmZqbQz9YY6O9ZDfp7VoP+ntWhv2s1yPqeGWNoaGhAYWEh4uL6rzJxZQQlLi4Ow4cPl3qMzMxMffMrQH/PatDfsxr096wO/V2rQcb3PFDkhKOLZDUajUaj0TgOLVA0Go1Go9E4Di1QeuD3+/HII4/A7/fbfSqeRn/PatDfsxr096wO/V2rwQnfsyuLZDUajUaj0XgbHUHRaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEDRaDQajUbjOLRA0Wg0Go1G4zi0QDHx1FNPYfTo0UhOTsbUqVPx8ccf231Krmf16tW47LLLUFhYCJ/PhzfffDPkfcYYFi5ciMLCQqSkpGDWrFnYtm2bPSfrUhYtWoQzzjgDGRkZGDJkCK688krs2rUrZB/9PYvhj3/8I0499dTg7JrTp0/Hv//97+D7+nsWz6JFi+Dz+bBgwYLg3/T3LIaFCxfC5/OF/BQUFATft/t71gKlm9dffx0LFizAww8/jC+++AJf+cpXMHfuXJSVldl9aq6mqakJkydPxpIlS3p9//HHH8cTTzyBJUuWYN26dSgoKMDs2bODC0JqBmbVqlW4++67sXbtWqxcuRKdnZ2YM2cOmpqagvvo71kMw4cPx2OPPYb169dj/fr1uOCCC3DFFVcEG239PYtl3bp1eOaZZ3DqqaeG/F1/z+KYMGECKioqgj9btmwJvmf798w0jDHGzjzzTPbtb3875G/jxo1jDz74oE1n5D0AsGXLlgV/DwQCrKCggD322GPBv7W2trKsrCz29NNP23CG3qCqqooBYKtWrWKM6e9ZNtnZ2ey5557T37NgGhoa2NixY9nKlSvZzJkz2b333ssY0/ezSB555BE2efLkXt9zwvesIygA2tvbsWHDBsyZMyfk73PmzMGnn35q01l5n9LSUlRWVoZ8736/HzNnztTfuwXq6uoAADk5OQD09yyLrq4uLF26FE1NTZg+fbr+ngVz991349JLL8VFF10U8nf9PYulpKQEhYWFGD16NK677jrs3bsXgDO+Z1euZiya6upqdHV1IT8/P+Tv+fn5qKystOmsvA//bnv73vfv32/HKbkexhjuu+8+nHvuuZg4cSIA/T2LZsuWLZg+fTpaW1uRnp6OZcuWYfz48cFGW3/P1lm6dCk2btyIdevWHfeevp/FcdZZZ+Hll1/GSSedhMOHD+OXv/wlZsyYgW3btjnie9YCxYTP5wv5nTF23N804tHfuzi+853vYPPmzVizZs1x7+nvWQwnn3wyNm3ahGPHjuEf//gHbr75ZqxatSr4vv6erVFeXo57770XK1asQHJycp/76e/ZOnPnzg2+njRpEqZPn44TTjgBL730Es4++2wA9n7POsUDIC8vD/Hx8cdFS6qqqo5Tjxpx8Gpx/b2L4Z577sFbb72FDz/8EMOHDw/+XX/PYklKSsKJJ56IadOmYdGiRZg8eTJ+97vf6e9ZEBs2bEBVVRWmTp2KhIQEJCQkYNWqVfj973+PhISE4Hepv2fxpKWlYdKkSSgpKXHE/awFCqjBmTp1KlauXBny95UrV2LGjBk2nZX3GT16NAoKCkK+9/b2dqxatUp/7xHAGMN3vvMdvPHGG/jggw8wevTokPf19ywXxhja2tr09yyICy+8EFu2bMGmTZuCP9OmTcPXv/51bNq0CWPGjNHfsyTa2tqwY8cODB061Bn3s5JSXBewdOlSlpiYyJ5//nm2fft2tmDBApaWlsb27dtn96m5moaGBvbFF1+wL774ggFgTzzxBPviiy/Y/v37GWOMPfbYYywrK4u98cYbbMuWLez6669nQ4cOZfX19TafuXu48847WVZWFvvoo49YRUVF8Ke5uTm4j/6exfDQQw+x1atXs9LSUrZ582b2ox/9iMXFxbEVK1YwxvT3LAvzKB7G9Pcsivvvv5999NFHbO/evWzt2rVs3rx5LCMjI+j37P6etUAx8Yc//IGNHDmSJSUlsdNPPz04TFMTPR9++CEDcNzPzTffzBijoWyPPPIIKygoYH6/n5133nlsy5Yt9p60y+jt+wXAXnjhheA++nsWw2233RZsIwYPHswuvPDCoDhhTH/PsugpUPT3LIb//u//ZkOHDmWJiYmssLCQXX311Wzbtm3B9+3+nn2MMaYmVqPRaDQajUYTHroGRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j+P8ggzi+ix0W2AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGxCAYAAABIjE2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACb1ElEQVR4nO2deXxU1fn/P5NtsocskBAIm6LIIiK4gFZwAYvi+rV+lbrb1qq1Um2t1rbS5SvWfmttoda61LUWf23FSrVfwQ1ExbKI7CRAIAESQkLIvs/5/fHkzL0TsszMPefcZc779crrTjI3c+8z997zfM7zPOccH2OMQaPRaDQajcZBxNl9AhqNRqPRaDQ90QJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Qhj4cKF8Pl8tp7DRx99BJ/Ph48++sjW89BoNNZIsPsENBqNRiSnn346PvvsM4wfP97uU9FoNBbQAkWj0XiKzMxMnH322XafhkajsYhO8Wg0Ghw5cgTf+ta3UFRUBL/fj8GDB+Occ87Be++9F9znz3/+MyZPnozk5GTk5OTgqquuwo4dO/r93CuvvBIjR45EIBA47r2zzjoLp59+evB3xhieeuopnHbaaUhJSUF2djauueYa7N27NyJbeqZ4nnzySfh8Puzevfu4fX/4wx8iKSkJ1dXVAIBZs2Zh4sSJ+Pjjj3H22WcjJSUFw4YNw09+8hN0dXVFdB4ajcYaWqBoNBrceOONePPNN/HTn/4UK1aswHPPPYeLLroINTU1AIBFixbh9ttvx4QJE/DGG2/gd7/7HTZv3ozp06ejpKSkz8+97bbbUFZWhg8++CDk7zt37sR//vMf3HrrrcG/3XHHHViwYAEuuugivPnmm3jqqaewbds2zJgxA4cPH47athtuuAFJSUl48cUXQ/7e1dWFV199FZdddhny8vKCf6+srMR1112Hr3/96/jnP/+Ja665Br/85S9x7733Rn0OGo0mCphGo4l50tPT2YIFC3p9r7a2lqWkpLBLLrkk5O9lZWXM7/ez+fPnB//2yCOPMHOz0tHRwfLz80P2YYyxBx54gCUlJbHq6mrGGGOfffYZA8B+85vfhOxXXl7OUlJS2AMPPBC2LR9++CEDwD788MPg366++mo2fPhw1tXVFfzbO++8wwCw5cuXB/82c+ZMBoD985//DPnMb37zmywuLo7t378/7PPQaDTW0BEUjUaDM888Ey+++CJ++ctfYu3atejo6Ai+99lnn6GlpQW33HJLyP8UFRXhggsuwPvvv9/n5yYkJOCGG27AG2+8gbq6OgAUuXjllVdwxRVXIDc3FwDwr3/9Cz6fDzfccAM6OzuDPwUFBZg8ebLlETm33norDhw4EJKyeuGFF1BQUIC5c+eG7JuRkYHLL7885G/z589HIBDA6tWrLZ2HRqMJHy1QNBoNXn/9ddx888147rnnMH36dOTk5OCmm25CZWVlMM0zdOjQ4/6vsLAw+H5f3HbbbWhtbcXSpUsBAO+++y4qKipC0juHDx8GYwz5+flITEwM+Vm7dm2wRiRa5s6di6FDh+KFF14AANTW1uKtt97CTTfdhPj4+JB98/Pzj/v/goICABjQVo1GIw49ikej0SAvLw9PPvkknnzySZSVleGtt97Cgw8+iKqqqmDtRUVFxXH/d+jQoZD6jd4YP348zjzzTLzwwgu444478MILL6CwsBBz5swJOb7P58PHH38Mv99/3Gf09rdIiI+Px4033ojf//73OHbsGF577TW0tbWFiCROb/UulZWVABCM+Gg0GvnoCIpGowlhxIgR+M53voPZs2dj48aNmD59OlJSUvDqq6+G7HfgwAF88MEHuPDCCwf8zFtvvRWff/451qxZg+XLl+Pmm28OiVzMmzcPjDEcPHgQ06ZNO+5n0qRJlu269dZb0drair/+9a948cUXMX36dIwbN+64/RoaGvDWW2+F/O21115DXFwczjvvPMvnodFowkNHUDSaGKeurg7nn38+5s+fj3HjxiEjIwPr1q3D//3f/+Hqq6/GoEGD8JOf/AQ/+tGPcNNNN+H6669HTU0NfvaznyE5ORmPPPLIgMe4/vrrcd999+H6669HW1vbcfUs55xzDr71rW/h1ltvxfr163HeeechLS0NFRUVWLNmDSZNmoQ777zTkp3jxo3D9OnTsWjRIpSXl+OZZ57pdb/c3FzceeedKCsrw0knnYR33nkHzz77LO68806MGDHC0jloNJoIsLtKV6PR2Etrayv79re/zU499VSWmZnJUlJS2Mknn8weeeQR1tTUFNzvueeeY6eeeipLSkpiWVlZ7IorrmDbtm0L+ayeo3jMzJ8/nwFg55xzTp/n8uc//5mdddZZLC0tjaWkpLATTjiB3XTTTWz9+vVh29PbKB7OM888wwCwlJQUVldXd9z7M2fOZBMmTGAfffQRmzZtGvP7/Wzo0KHsRz/6Eevo6Aj7HDQajXV8jDFmr0TSaDQaZzBr1ixUV1dj69atdp+KRhPz6BoUjUaj0Wg0jkPXoGg0GlfAGBtwuvn4+HjbV1PWaDRi0BEUjUbjCl566aXj5kjp+bNq1SpLx/joo490ekejcQi6BkWj0biCmpoalJaW9rvPySefjIyMDEVnpNFoZKIFikaj0Wg0GsehUzwajUaj0WgchyuLZAOBAA4dOoSMjAxdEKfRaDQajUtgjKGhoQGFhYWIi+s/RuJKgXLo0CEUFRXZfRoajUaj0WiioLy8HMOHD+93H1cKFF4EV15ejszMTJvPRqPRaDQaTTjU19ejqKgorGJ2VwoUntbJzMzUAkWj0Wg0GpcRTnmGLpLVaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEDRaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEDRaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEDRaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEAJg44OoK3N7rOQz8svA+vW2X0WcmEMePppYNMmu89ELoEA8MILQGmp3WciF8aAd98F6uvtPhP57N9P11WjiRW0QBkAxoCLLwaGDgWOHLH7bOTx4YfAzTcDV11FNnuVt94C7rwTuPZab9v5978Dt90GXHed3Wcil7/9DfjqV4EbbrD7TOTy1lvAqFHA975n95nIZc0aYPBg4Jln7D4TjRPQAmUAVqwg511bC3z0kd1nI4/ly2l78CCwdau95yKTlStpW1IC7Nhh77nI5MMPafuf/wC7dtl7LjL54APaLl9O19SrvPMObf/wB2D3bnvPRSavvw5UVwPf/S5QXGz32cjjueeA6dOp83vnnUBdnd1n5Ey0QBmAxx83Xq9fb995yObtt43X3Il7Ee64AeCf/7TvPGTzySfG67/8xb7zkI05JfnUU/adh2x4SrKrC/jZz2w9Fals3kzbtjbgW9/ybkrrZz8D1q6lDvDTTwNLl9p9Rs5EC5R+WL/e6KHx373I7t2hvRWvCpTKSmD7duP3t96y71xkUlcXGgX7y1+8mc5qbTUcGgD8+c9AY6N95yOLrq5QO//yl9D72CswZtgZFwesWkWRBq/R3AwcOECvZ8+m7c6d9p2Pk9ECpR9+/Wvann46bTds8Kai5+Hj4cNpu2qVN4uCefRkxAjafv45iRavsXYtNfbDhwNpacDevfQ3r7FpE9DZCQwZAowdS4Wyr7xi91mJZ9cuoKWFruWVV9K1/fnP7T4r8Rw8CBw7BsTHA7/8Jf3tT3+y9ZSksHcvbQcNAq6+ml57OZ1lBS1Q+qC8nAoNAeDZZ4HkZOqZ7tlj73nJgAuU734XyM+nxvDTT+09JxlwgfK1rwFnnEEN/b/+Ze85yYCnd84/n4qeAeDVV+07H1nw9M4ZZwB3302vvVhc+cUXtJ08Gbj/fnq9apV95yMLHj0ZNw644gp67cX2ltcQjR0LnHQSvfZy/ZQVtEDpgy1bKFoyaRJFUE47jf7utTRPU5NR/DtvHnDRRfTai2kenq47/3yjAfRiHQoXlzNmGKNb/vY376V5zALlyivp9bZt3otycoEyZQpw8sn0urKSUlxeYssW2k6aRCOWAOoUHjtm1xnJgYuRE080BMrevTSdhSYULVD64OBB2vJ0wLRptPWaQPngA0rnjBpFPReeE/WaQCkro95YfDzwla8Al19Of3/vPW+lszo7jXTOOeeQrQANkffaSIH//Ie2Z5wBDBtGdQsdHcDhw/ael2jMAiUvD0hJod/Ly+07JxnwCMqppwKpqZS6A4B9+2w7JSnwCMqJJwKFhXQ9u7q8Z6cItEDpAy5Qhg2jrVcFCm/kL7oI8PmMCMqGDTS02ivw9M60aUBmJjBxIjUMra3GtfYCmzdTVCwzE5gwgRr6nBx6z0sOra7OGD59xhlAQoLxrJaV2XdeomEsVKD4fEZ0Yf9+205LCmaBAhh2es1xmwVKXBylegBdh9IbEQuU1atX47LLLkNhYSF8Ph/efPPN4/bZsWMHLr/8cmRlZSEjIwNnn302ykytRltbG+655x7k5eUhLS0Nl19+OQ7wsmaH0JdA2biR1K5X4EWiI0fSdtgwUvWMeSv/++WXtJ0xg7Y+n1EU7LBbzxI8vTN9OjV+AFBURFsvCZQNG2g7ciRN7AUY0U4vCZSyMuooJCSQ4ASMZ9VLAqW93RjJMmkSbWNBoACGQNF1KMcTsUBpamrC5MmTsWTJkl7f37NnD84991yMGzcOH330Eb788kv85Cc/QXJycnCfBQsWYNmyZVi6dCnWrFmDxsZGzJs3D10O8vyHDtG2sJC248ZRb7Sx0VtKlwuUggLjb1yUeSmywO3kosT82ksChefxzzjD+JsXBYq5/oTjRYHCoycTJgB+P732okDZuZPSk1lZxv3KBYqXlmtobTWeQy5MeB2Kl/yKKBIi/Ye5c+di7ty5fb7/8MMP45JLLsHjphnOxowZE3xdV1eH559/Hq+88gou6s4nvPrqqygqKsJ7772Hiy++ONJTkkLPCEp8PIVYP/mE0jynnGLfuYmkL4Gybp23BAqvS8jPN/7mRYFSVUVbLqwBbwoUPg8IL14HvC1Qpkwx/uZFgcKF9amnUnQTAEaPpq2XIih791J0OjOT6okAHUHpD6E1KIFAAG+//TZOOukkXHzxxRgyZAjOOuuskDTQhg0b0NHRgTlz5gT/VlhYiIkTJ+LTPsa2trW1ob6+PuRHNj0FCmA0Evxh8gKxFkExCxRup5cESm9CjAsUL9nZmxDzokDhdTY87QF4U6Dw+hOznV5M8ZjTO1yI6QhK3wgVKFVVVWhsbMRjjz2Gr371q1ixYgWuuuoqXH311VjVPXC/srISSUlJyM7ODvnf/Px8VPYxa9aiRYuQlZUV/CniLa4k2tpoPQggVKDwHndFhdTDKyMQMBya1wVKb3Z6OYLCR0AAhp1eiqDwhTvNdnpRoPDrab5vvShQePTAHJk2CxSvDJE3DzHm8AhKeTnNQaUxEB5BAYArrrgC3/ve93DaaafhwQcfxLx58/D000/3+7+MMfi4pOzBQw89hLq6uuBPueSWltef+P3GCAiAVjQGvDP7aG2tMfbe3NDzXqlXBEpHB1BTQ697S/F4xU6g/wiKlwRKb0LMiwKFCzFeCAwYAuXAAe8U7PMOofm+5XbW13tnLhTzJG2cwYOp9sZrAxNEIFSg5OXlISEhAePHjw/5+ymnnBIcxVNQUID29nbU9hjDWlVVhXzz3WnC7/cjMzMz5Ecm5gJZs2biAsUrERQutHJzgaQk4+88gsK/B7fDG/n4eLKV47UISnOzsRaN2XGbBYoXeqKM9S9Qqqvpu/ACvQmUoUNpVE9np/eeUbOdKSmGYPFKoWzPETwA+Rhdh9I7QgVKUlISzjjjDOzqsb57cXExRnbL4alTpyIxMRErTTOBVVRUYOvWrZjBx4DaTG/1J4D3BAq3wxw+BryX4uFRhcGDjaG3QGjKzguzOHKn7fdTER6H29naakSS3ExDgzG5ntmhZWUBGRn02gvRokDAiCyYhVh8vCE6vZLm6U2gAN4rlO1NoAC6DqUvIhYojY2N2LRpEzZ1r/9dWlqKTZs2BSMkP/jBD/D666/j2Wefxe7du7FkyRIsX74cd911FwAgKysLt99+O+6//368//77+OKLL3DDDTdg0qRJwVE9djOQQDl61Buzj/ZWIAsYdtfV0aRfbqe3AlmAGsPEROqReyFtZ44qmCN/fr/h4LzguLmdaWk09J/j83krzXPsmJHC4SM+OF6qQ+nqojYVON5OLxXKBgLGfcmFF0dHUHonYoGyfv16TJkyBVO6h7Tcd999mDJlCn76058CAK666io8/fTTePzxxzFp0iQ899xz+Mc//oFzzz03+Bm//e1vceWVV+Laa6/FOeecg9TUVCxfvhzx8fGCzLJGXwIlJ4ccGuANh9aXQMnMBNLT6bUXoii9FcgCFE3x0kie3tIeHC/VofRWIMvxkkDh1zMrKzQFC3hrNtmjR43UozkFC3hLoBw7ZqwT1TNSpCMovRPxPCizZs0CGyCRfdttt+G2227r8/3k5GQsXrwYixcvjvTwSuB53Z4CxecjJ1deTmkB3otxK30JFIBs37WLBAp/eNxKb4WjnOHDqfHzgkDpz86iIpp91QsCpT8h5iWB0lfaA/BWBIXbmZ1NtTVmvCRQeHo1Pf14wakjKL2j1+LpBR41MM+xwPHSSJ6BBArgrQhKXwIF8IZAiZUIihYohkDxguPmdTa92eml2WS5QOkZJQIMgVJZaRS6a7RA6ZW+UjyAtwplY0Wg9FWDAngrxTNQBAXwlkDpzaHFmkDxUgSlNzvNRbJuH4HWn0AZNMiop/LaatxW0AKlB4xpgQJ4S6D0VYMCxF4Exet2xppAKStzv+PmdvYskAWM69nYaBTSupX+BApg3M/8/tZogXIcx47RcEyg/xSPlwQKt8mMFwWK11M8sRJBCadItrzcKEh0K/3ZWVRENXEtLcZ+bqW/FE9ystE+uT2dxQWKefJPM1qgHI8WKD3gDjknhx6OnnhFoLS3Gw9MrERQ+hMoXrAz3AiK2x13f3YOG0aOu63N/Y67v1RWUpLRFrk9zdNfpAjwTqGsjqBEjhYoPegvvQMYztztAoU/BImJVD3fE68IlI6O3qfR5pgFitsdd39CbOhQGlbd0eH+BrA/gZKYaEQ+3Z7mGchxe6UOhT+fvaV4gNgTKG4X1iLRAqUHvPHrY9Z9z4zi4QIrPz90dlUOFygVFe5e76Ovae45BQVkf2enux13V1fvs45yEhMNce32NE9/kQXAO3UosSJQBrKT37duLx7lNTQ6ghI+WqD0YKCbiAuUw4fd7bj7K5AFDOHS1eXuB8Y8zX1v8wAmJBjX1M11KDU1VCzp8/XdE/VCHUpf07+biRWBwqN/bl+Pp78iWcCw3+2RBZ3iiRwtUHrABUpfhUz5+eQEzD1WNzKQQElIMN5zc5qnv7QHxwuFstzO3NzjJ7vieEGg1Nb2Pf07xwsChbH+i0fNf3dzOwSEb6cWKLGHFig9GOgmSkgwHhg316EMJFAAb9Sh9DcHCscLAqW/ugyOFwQKtzM7+/jZODn8Wru5oa+rMxaw9LLjZmzgSJEX7AS0QIkGLVB6MFAEBfBGoWw4Ds0LAiXWIijh2Onm6xnOfeuFyAJ3xhkZvY8mBLzhuBsbjYVXB0rxuPl6AlqgRIMWKD0YqAYF8MZQ42PHaNvbCB6OlwRKOJEiNwuUSBw3byjdyEAFsoDh6Nzs0GLFTn7uKSm0OnVveEGItbYCzc30OpxRPG4fUSgKLVB6MNBkOoA3RvJwgTJoUN/7eEGg8OvZV+8MMOx0c7FhOBEU3jB6QaD0J8T4tXazQxso7WF+zwt29vd8cjsbGoxoi9vgz1x8PK1O3Rv8OwgE3D9rrii0QOlBOCkeL0VQvC5QwrEzVhx3rNjphZRAOAKFO7SmJppR1o2EY2dWllH47VYxxp+57GwaZNEb5jmpdJqH0AKlBwPlCQFvCJS6Otr257j5hFdesLOvXgvgDcddW0vb/oS1F+zsb/p3DnfcLS3kvN1IOI47M5OcGuBeMTbQCB4gdOi82wVKf34F0HUoPdECxURnp+HQdATFaBTc7NBiJYISiRAzFya6jXAcd3o64PfTa7c67nDs9Pncn+YJJ8UDuN9OLVCiQwsUE9yZAf0Xj3phFE+kjtutK6aGEynidpoL2dxGONczK8uYNditYiwcO809bi8LFMD9kYVwIijm991qpxYo0aEFigl+E5lznr1hjqC40XF3dlLBGRBej7ujw9jfbXCH1p+dGRnG9Xar4w4nghIXZ0QGvWwn4H7HHa5Dc3u9TaxEUMIZHQpogdITLVBMpKYCd90F3Hhj//txgdLaCtTXyz8v0ZjPub+GPjWVfgB3NoCBQHgRFJ/P/WmecOwEvGPnQALF7Y473OvpdsetIyih6AUDQ9ECxURREfCHPwCLF/e/X2oqFagB7kzz8KhCamrfs3Fy3Bwqb2w0IlwDOTQ3O27GwosUAe62EwjfTrdHUGIlUhTOfEyA+wWnTvFEhxYoUeJmpRtOHp/jZofG7UxK6ns2To6b7WxpobQd4H2BEm5kwc3CGoi9SBHv8PVFrEVQtEAhtECJEjc39OE28oC7G3qzEOtr7gGOm68ntzMujkaw9Ieb7WxrM0YfxYrj9noEJVbs1AIlOrRAiRI3N/SRRFDcLFDCbfwAd19Ps51eFmLcToAKm/vDzQ6tq4vSk4AWYhwdQYlNtECJEjc39LGW4vG6nbEmxDIyaMrw/nCz4w63iB1wt+NmzLDVy3YCkQuUY8eA9napp+QKtECJEn6jubEB1BGU4+HX041rYGghdjxujqBwO5OTwy9id6OdTU0ULQLCFyhHjxr1Vm7BvLZOfxOAAvQMc/HtxmsqGi1QosTNs6yGOxICcLdA0Y77eGLFTjfft5HYaXbc3Nm7BR49iY83pjPoi9xcI33ptnu3sdFYnXig0UpxccY11WkeLVCixs0NfTSO240NfawJFK/bGYmwdrPjjkSg8B45Y+6L/plH8AxUOxUfb9jqtsgCF2IJCUBKysD76zoUAy1QosTNDX00o3jcbKfXIwuROG432xnN9QwEjIUU3UIkdppXwHWb447ETsC9dShcoIQjxAAtUMxogRIlbm7oY6UGJdYiKJHW2vCws1uIRFgnJhr7ue3ejdZxx4qdbhYo4aAFioEWKFESa6mP6mr3rTsUjeOurXVvSiCS62leBsAtROrQ3FpAqu3sHbd2liK1UwsUAy1QooQ/LEePus9xRyNQzAsMuoVI7DTn8s2rWruBSFI8fj+Qlkav3RYt0g6td2IlshArdmqBYqAFSpRwx93V5b6eaCSO280LBkZiZ2Ki0YB43XG7NZ0VK6mPaB232+zUQqx3tEAx0AIlSpKTDcfttoY+kh43EDs9Ubc77nCEGOB+O3XqI5RYsTNWBIpbn08ZaIFiATfeSIGA8cB43aFFEkEB3G+n14VYpHbqyIKz0Xb2jpsnjRSNFigWcGND39Bg1Mx4PYISqUPjdShuup6AjqD0hVvv21izU9eghOLWdkgGWqBYwI0NA3faycn0Ew5utLO11VjLwuuOO1YiKDr10TtuddyxYme0KZ7aWvdNBSAaLVAs4MaGPtK0B+DOIdXcTp9v4JVvOW68noGAMboqVgRKuPdurKV43GZnuAsFcswdJTc57mgjKG4cUSgaLVAs4MaGPhqB4sbZZM3h47gw73I3Xs9oUnZutBPQEZS+MNvppikPohViXV3uctyRCrGkJCA9nV7Heh1KxAJl9erVuOyyy1BYWAifz4c333yzz33vuOMO+Hw+PPnkkyF/b2trwz333IO8vDykpaXh8ssvx4EDByI9FdtxY0NvRaC4qYdmJVLkxuvp94efsnOjneaUXazUZkTquNvaaGE6txCpnX6/EQ110zWNtNYG0HUonIgFSlNTEyZPnowlS5b0u9+bb76Jzz//HIWFhce9t2DBAixbtgxLly7FmjVr0NjYiHnz5qHLZVN4urGhj7UUT7iNH+DO6xlpIw+4285IUnbccTc1AS0tcs5LNNGk7NLSjEXo3PSMRuO43TjCJdIUD+BOO2WQEOk/zJ07F3Pnzu13n4MHD+I73/kO3n33XVx66aUh79XV1eH555/HK6+8gosuuggA8Oqrr6KoqAjvvfceLr744khPyTbc2EOLxqG5OcXj9QhKrNjJBWdGRvgpu8xMmoCvo4Oe0aIiaacnjGhSdgA9o+XllOYZPVrOuYkmmrYoJwfYt89d9240AoVHUGJdoAivQQkEArjxxhvxgx/8ABMmTDju/Q0bNqCjowNz5swJ/q2wsBATJ07Ep59+2utntrW1ob6+PuTHCbi5odcpnuNx8/WMlQhKJHb6fO67d7mdSUnhp+wA9zm0trbIU3aAOyMLkdagADrFwxEuUH71q18hISEB3/3ud3t9v7KyEklJScjma4R3k5+fj8rKyl7/Z9GiRcjKygr+FDmkK+TGht6qQHFLEV6spT6isbO5mWo73EA0dgLuS09atdMtjtu8PEi4KTvAfY7bnLLTKZ7IESpQNmzYgN/97nd48cUX4fP5Ivpfxlif//PQQw+hrq4u+FNeXi7idC3jRodmpcftpgUDrURQWlvJebuBaFI8WVlAfDy9dsu9a9Vxe91OtzlubmdGhnEvhoPbHHdjo9Gp00WykSNUoHz88ceoqqrCiBEjkJCQgISEBOzfvx/3338/Ro0aBQAoKChAe3s7amtrQ/63qqoK+fn5vX6u3+9HZmZmyI8T4A9LS4t7ivCiCTempLhvwcBohFhGBpDQXZXlloYhGjt9Pvc1gNEIMcB9Di3WIiiRNuVuu295e5uYGFnKzm3XUxZCBcqNN96IzZs3Y9OmTcGfwsJC/OAHP8C7774LAJg6dSoSExOxcuXK4P9VVFRg69atmDFjhsjTkU5mpvscGo+ARBJWBdyby4/Eofl87u1xR+u43WZnrEQWtJ294zbHbS6QjSSp4LbrKYuIR/E0NjZi9+7dwd9LS0uxadMm5OTkYMSIEcjld1A3iYmJKCgowMknnwwAyMrKwu233477778fubm5yMnJwfe//31MmjQpOKrHLXCHdvgwOe7hw+0+o4HhD0ykAiU3Fygrc59AibSHxq+nWxoGnfroH7c5tFixM5pILuC+YuBoRvAA7ruesohYoKxfvx7nn39+8Pf77rsPAHDzzTfjxRdfDOszfvvb3yIhIQHXXnstWlpacOGFF+LFF19EfCTJSIfgNocWTcEW4L6hxtHa6TbHHU2KB4gdO93m0KxGUGLFTrfct7GSypJFxAJl1qxZYBEM5di3b99xf0tOTsbixYuxePHiSA/vONzW0FtN8bhl2vBo7XTb9dQRlP7RdjoTHSnqH7fZKQu9Fo9F3NYwWHXcbnlgrKSyAPddT69HinRkoX/caqfXIwvRpni4nceO0ejJWEULFIu4KfXBWPSO220NYKw4bh0p6p9YsdNtjtvq9ayvpxmCnY5VgQK4a2FE0WiBYhE3TQTV2korgQLRPzBuEyhed9xWi/C8bqfb7lurjvvYMeMZdzLR2mkerdZjpgpHEm2kKCHB+B+3PKMy0ALFIm5q6M2TrKWlRfa/bkrxdHYaE6153XHHihCzGhE7epRm9XQ60dYs8Im5GXNHjztaOxMSDJHihrYoWjsBd7W5stACxSJuauj5w5KeHv6Caxw3hZDNS8572XFbSdm5yU4geiHG79tAwPiunEy0kaKkJOO7cYNDizaCArirLYr2egLui/7JQAsUi7ipoY+2Fwq462HhdiYmAn5/ZP/rpl5LW5tRQOf1SFG0QszvN6KFbrBVhENzg53Rpj4Adz2jsXI9ZaEFikXcVCQbbS8UcJdAsdIouMlxm1N26emR/S+3s7bW+amPQABoaqLXsSKuo3lGteN2HiLaIjdcT1logWIRNzV+0fZCAcNON1TPi2jka2udX2zIr2daWuQpO25nIOD8mgUrKTvAnaLTyjPqJju97rhjJZUlCy1QLOKm6nkrjYK5et7pDk1EI++GYkMr1zMpyYi6OL0B5EIsISGyBdc4bulEtLdT2g7wvuOOldoMHUGxhhYoFnFT9bwVx22unneLQ4umUUhMdM/wPivXE3BPZMFsZyQLrnHc0hO1krID3GMnY7ETKYqVVJYstECxSGKie6rnraR4APf0XGLFcVtp/AD32Wn1ejr9vuV2pqYaq6RHglvsbGoikQJ4P7KgIyjW0AJFAG5z3NE6NLfYKcqhOd1xx4oQE3XfusVOqx0It9gZF0diLFLcYmcgYNiqa1CiQwsUAbjFcYtqAN1ip3Zo/eM2geL1CEqs2ZmeHl3Kzi12NjbGTqRIFlqgCMAtN5JO8YSHWxy3TvGEh1sEp9Xr6ZbnU5Sdbrme0czHBLjHTplogSIAt9xIViMLbnNoXrczVoSYqPvW6Y471q6n1yNF5nbISqSoocH5UzvIQgsUAbil5xJrKR6vN/S61iY83NKB0BGU8OB2NjbS0GynYvX5HDTIEDZOv6ay0AJFAG5rGLRA6R+3OW6vR4pERcS8ft/y57OuzlgCwYlYtdMtjtuqnfHx7loYUQZaoAjAbY5b99D6xy2OO9aEmFXH7fTJFK3ayedkAmgmZKditaMUF2fY6uS2yOr1BNzT5spCCxQBxFoPzet2usVxx4oQExX5c/pkilavZ0KCMZzVydfUakcJcMe9K1KgONlOmWiBIgC33ES6ZiE8tJ3OwqpDM0+m6GRbRTg0N3SWYiWyECvXUyZaoAjADQ8LEDsRlFiJLIgSKC0t9ONUYqWht3rfAu7oLMWKnTqCYh0tUATgBsfd1mZUvFutQfF6ER53Zq2tQHOzmHOSgdWGPjPTmFLdyQ2g1cgf4I6GPlaEWKzZKSKV5WQ7ZaIFigD4TVRbS9MbOxGrC5EBoUV4Ts3lBwI0/BCIvgHMyHCH47ba0Pt87nLcXm/oY6XHrSMo4eMGO2WiBYoAzCsa19XZey59wR+WlJToFiID6P94o+LUhp6LEyD6BtDnc0eaR0RkwQ12xkpDL8Jxx4oQ03bGBlqgCCApyYhKOPVGEtELBZzv0Lid8fFAcnL0n+N0O9vbrafsAOfbCWjHHQluEGLazvBxg50y0QJFEE6/kUT0tgHn19uYG4VoppfmON1xi0jZAc63kzHrKTvA+c8nIDYi5tTnE9CCMxLcYKdMtEARhJsctxWcbqeIxg9wvuPmdlpJ2QHOt7OpyVgR1usNvYgopxuEWKxEFmKluFsmWqAIwukNoKgUj9MFiigh5nTHHSspO97Ix8UBqanRf47TG/qODho1BnhfiOkISvi4wU6ZaIEiCKc77lhL8XjdcceaEBOVsnP6fQt4ewIzxvREbZHA7WxqoqkiYg0tUATh9AdGtENzqp2ihJjTHXespbJECWun2smfz+Rkmvk2WpxuZ0uLMRWDiAhKc7MReXIaItrcrCyKHgLObXNlogWKIJzeMIhO8TjdTq8LlFizU5QQc2ojL1pYNzYao7ycBLfT5wPS0qL/nMxMGqkHOPOaiooUuWVhRFlogSIIp0dQdIonMpzuuGMlUiS6uLu+nuo9nIao+zYry0iFOfEZ5Xamp1tL2fl8huN24r3b2mqsnO316J9MtEARhNN7aLE2iidWHHesCDGrdppnQa6ttfZZMhD1fMbHO7vHLep6As5uc0VNAwA4207ZaIEiCKc7bj2KJzKc7rhF21lba/T4nIRIxz1oEL124jUV6bid3OMWdT0Bd9iZlmbUkESLk+2UjRYognC649YpnsjgjvvYMWc6btHXkzFnrq8k0qE5uScaK3bGWgTF69dTNlqgCMItjltUjzuWHLeTUwJWG/qkJOO7cmIPLVYiC6LuW8DZdsZaBMXr961stEARhFmgOHFFY1ENg3lhRC/3uBMTnb0woowemhMbwFjpiYp0aNpO+xEpOJ1sp2y0QBEEFyiBgHFzOglRPdHEROOhc+IDIyOE7ETHHWt2xkqP2+t26usZOU62UzYRC5TVq1fjsssuQ2FhIXw+H958883gex0dHfjhD3+ISZMmIS0tDYWFhbjppptw6NChkM9oa2vDPffcg7y8PKSlpeHyyy/HgQMHLBtjJ36/Ma7fiY5bxgPjdTud7Lhjzc5Y6XF73c5Yi4h53U7ZRCxQmpqaMHnyZCxZsuS495qbm7Fx40b85Cc/wcaNG/HGG2+guLgYl19+ech+CxYswLJly7B06VKsWbMGjY2NmDdvHrqcWNQQAbHiuJ2s6GMl9yvyeubl0dbrdsbK9XSynTJqinR7610iXgd17ty5mDt3bq/vZWVlYeXKlSF/W7x4Mc4880yUlZVhxIgRqKurw/PPP49XXnkFF110EQDg1VdfRVFREd577z1cfPHFUZjhDHJygPJy5z0wnZ00xTSgUwKR4AY7Y+V6ej2yECs1C7HiuHUERQzSa1Dq6urg8/kwqHsSgg0bNqCjowNz5swJ7lNYWIiJEyfi008/7fUz2traUF9fH/LjRJza0ItaiIzjVDsZoym+AW/bCchpAKurrX+WaGLNocVK5M/rgjNWUuqykSpQWltb8eCDD2L+/PnI7L4jKysrkZSUhGzz1I4A8vPzUVlZ2evnLFq0CFlZWcGfoqIimacdNU69kfjDkpREP1ZxquNubhazEBnHqXYCsRMpipWeaKzYKatIljHrnycSGdezpcWIhMcK0gRKR0cHrrvuOgQCATz11FMD7s8Yg6+PxRkeeugh1NXVBX/Ky8tFn64QnC5QRDhtwLkOjTd+cXFAaqr1z3OqnZ2dxgqusSLEvB5ZiLXaDJH3bVub8xy3SIGSkeHshRFlIkWgdHR04Nprr0VpaSlWrlwZjJ4AQEFBAdrb21HbY/arqqoq5Ofn9/p5fr8fmZmZIT9OxKkNg8heC+BchyZqITKO0+0EvB1BEbUiLMfJkQUZKYHmZkPIOgWRbVF6OpDQXUXptHtX5PX0+ZwtrmUiXKBwcVJSUoL33nsPubxV6Gbq1KlITEwMKaatqKjA1q1bMWPGDNGnoxSnChSRDwvgXIcWa5Eiv5/mpbGKU+00p+xEOu6mJup1OwmRjjsry7k9btGO26miU1ab6zQ7ZRPxKJ7Gxkbs3r07+HtpaSk2bdqEnJwcFBYW4pprrsHGjRvxr3/9C11dXcG6kpycHCQlJSErKwu333477r//fuTm5iInJwff//73MWnSpOCoHrfi1GLDWHPcWohFhtlOxsREn0TA7fT5jDmGrJCVRem/QIAa+qFDrX+mCESPsvP5aMbn6mq6poWF1j9TFCJTWQCJzsOHnfuMimqLYjWCErFAWb9+Pc4///zg7/fddx8A4Oabb8bChQvx1ltvAQBOO+20kP/78MMPMWvWLADAb3/7WyQkJODaa69FS0sLLrzwQrz44ouI57LfpTjVocWa49Z2RoY5l9/cLEYMiMCcsrO6IixAn5GdTdezpsY5AoWPPAPEXtPqamf1uEWn7ADnRhZktblOs1M2EQuUWbNmgfVTMt3fe5zk5GQsXrwYixcvjvTwjibWHJpT7RQdWWhtJcctovBWBKJ7oenplCrq6KBr6hSBItpOgK5pTY2zGnpzyk7EKDvAmT3u1lZjgVGRERTAWXYCOoIiCr0Wj0CcOiOnLMfttCI80b2WjAxnFuGJbvzMuXwv2wk4s6GXYacTe9zm6atEiWAn2gnIa3OdZqdstEARCL+Jamspr+wURDtucxGelxt6pzpu0dcTcKadsea4Y0mIiUjZAc4cmNDVRZ03QEdQrKIFikDMc8/1GEVtK7HiuEX3WgBtp53ISPE40aHJvJ5OsjNWhJismiLAWddTBVqgCCQhwRApTnpgZPZEnWSnjixEj7bTPnQqK3qc6Li5nQkJVFckAideTxVogSIYJw41llVsCDjLzliLLHjdccvscTvJocl8Pp1kp4zn04mO2yzERA3Zd+L1VIEWKIJxYkOve6LR42Q7vS7EYs1Or0dQZAprJzlumdfTSXaqQAsUwThxJE+sOO5YiSzEyvWMlYY+1hx3LEVQRNFzMsVYQQsUwTgx9SEzhOzEhsHrdsbK9YwVO2U6bicJFNlCzCmOW2Zxd3u7MUIoFtACRTBObgB1jztytJ32ESsRlFjpccsUYh0doaNn7ESGQElLM9bdctIzKhstUASjUzz2oVM80RMrdjoxJSCzx93WZqzzYzcyns/UVGOkjFNEp4zr6eSFEWWiBYpgnJbiCQSMnoUOlUeOE+2MldSHTDtbW53juGUIsfR0582CLMNOn895UTEZ7RDgTHEtGy1QBOO0hl7GpEGA8+xkTEdQrMDtPHbMObMgy7DTicsXyLhvndjjluW4nfaMyhDWgDOj87LRAkUw/CZySgSFNwrx8UBysrjPdVqjYF6ITJbj5p9vNzLnBwGcMwuyLMete9z2ION6As67nrLsdJpvUYEWKIJxmuM2q3lRkwYBoesOOcFx80YeoPC2KHjjx5gzHLd5nQ+RDi0hgdZYApxz78aK45YRKQJiJ4LitOspO4KiBYomasyNQiBg77kA8ho/s+M+dkzsZ0cDbxTS08UtRAZQ5TxvaJzQAMpK2QHOEteMxY7jluXQnOq49fWMDi1QNJbhD0tXF1BXZ++5APIa+aQk4zOd0ADK6p0BznLcvPFLShK3zgfHSXa2thq1MF533LEixGR3lpx2PWUJlCNHxH6uk9ECRTB+v5FicMIDI0vNA85yaLIaP0DbaQeyUnaAsxx3VxfQ1ESvteOODiddT0Bemzt4MG11BEVjCSc29F53aLLCx4CzivBi5XpyO9PSxKbsAGc5bnPKzsuOW9YoO8BZ1xPQKR6RaIEiASfdSLHm0LweKYqViJgKO53guPl9m5goPmXnJMfd1iYvZeek+xbQAkUkWqBIwEkPTKw4tFgTYtrO6HGS444VIcbtBMSn7JzmuFUMM3bK8gWy0QJFAk6aUCdWHJrMFI+2Uz0q7HSC41YhxJzguLmdokfZAUZthhOKRzs6qMAbkBdBaW2NnQUDtUCRgJOmu48VgRIrKR5tp3WcFEGR+Xw6qahShZ3HjpFAsBNzcbdoW9PSjDSgE8SYCrRAkYCTGvpY6XHHmhDTdkaPk+yUmeLhjrumxv7JFGW2Q9nZxiSUdosxbmdKirH6sCh8PmeJThVogSIBJ6Z4vN7jjhUhFmt2yrhvzbl8uydTVCHEGLM/nSWzHYqPd07UWuZ9Cziv3kY2WqBIwCkPCxA7PdFYEWKq7LS7CE9FSqCry/5ZkGU6tMREii4A9qcEZAprwDl1KFqgiEULFAk4yaHFSo871oSYDDt549feHjo/hx3ItNPvNz7Xbocm007AObOPyhTWgBYoXkULFAnoFI96VAgxJ1TPy2wA09Iodw4AVVXiPz8SZDf0TnFosgWKU+yUHUFxiuOOFTtVoQWKBMwpHi+Hyp3kuGUKsYwMo+DN7oZBtkMbMoS2dju0WHPcsoWYU+7bWBGcXrdTFVqgSIA77vZ2Y50Nu5Cp6DMygIQEem13FEWmQzNXz9vdMMRaLl8LMWs45XrGip06xSMWLVAkkJoKJCfTazsddyBgNAxZWeI/3+dzTpon1lIC2k5rOMXOWLlvY01Ya4EiBi1QJGB23HbeSA0NRopJhkABnNMwqEp92F2boaonGit2ev2+dZqdXnfcWqCIRQsUSTghssAflsREI6IjGic0gG1tlE4DvN/Qx0rqI1YiC7EiUHQERQxaoGiE4ISRPHV1tM3KMmZaFI0TIgsyp5fmOMHOQMAY/qsdtzWcYmesCTGv26lqFE9Njf2TDKpACxRJOCHFYxYosnCC4+aNX2oqzSopAydEFswF11533LEiULSdYjCPVrLTcatKZTlhkkEVaIEiCSekeFQKFDsbQNm9FsAZtRnczoQEeSk7JwhOc8pO97itYXbcdk55oCr10dVltHt2INvOpCTjs2MhzaMFiiSclOKR9bAAznLcMu10guM290Jlpeyc4LjNKbv0dDnHMNtpl+NWmbLr6LDXccuOoDhldmAVbVEs1aFogSIJneJRB7dz0CB5x3CS41YRKbLTcZtXhOXz7IiG29neHiqIVKIiZZecbIg8JzhuVfeuXWiBIhYtUCThhMhCrAgUnov1up0qGj9+37a22jfJoOw8PkD1Sqmp9Nouh6YiZQfYvx5PWxtFcAA1964WKN4hYoGyevVqXHbZZSgsLITP58Obb74Z8j5jDAsXLkRhYSFSUlIwa9YsbNu2LWSftrY23HPPPcjLy0NaWhouv/xyHDhwwJIhTiM/n7axIlDsbBRU2Mkbv+Zm+xy3CiHmhPV4VESKAPsdmoqUHWD/dPfcaQPyUnaA/XYypkZc233fqiRigdLU1ITJkydjyZIlvb7/+OOP44knnsCSJUuwbt06FBQUYPbs2WgwxVEXLFiAZcuWYenSpVizZg0aGxsxb948dHV1RW+Jw3BCj1ul425oAFpa5B2nP1SkeDIyKM8N2NcwqLDTCdP6q0gHANpOVfCmPy1N3ig7wP5IUXOzMYJI5jWNpQhKxBneuXPnYu7cub2+xxjDk08+iYcffhhXX301AOCll15Cfn4+XnvtNdxxxx2oq6vD888/j1deeQUXXXQRAODVV19FUVER3nvvPVx88cXHfW5bWxva2tqCv9ebJblD4RGU6mqqLJf5YPYF/5pkCpSsLJoIrqODGoYRI+Qdqy9URBa44z5wgOwcNUresfpChZ0A2VlW5m0hBjjHccvsbQPOsdPrQoy3t3FxRvpQBrEkUITWoJSWlqKyshJz5swJ/s3v92PmzJn49NNPAQAbNmxAR0dHyD6FhYWYOHFicJ+eLFq0CFlZWcGfoqIikacthdxccmqBgH0jeVREUHw++6NFKuwEnGOn1x03F2JetzPWHLfXhZjZTpkpOy1QoqSyshIAkM/DB93k5+cH36usrERSUhKys7P73KcnDz30EOrq6oI/5eXlIk9bCgkJxkiew4ftOQfVjlv3uOWiKoJitxBTGSkC7LfT6/etaiFmd62NbCEWSwJFyiA+Xw/5yBg77m896W8fv98PPy8AcBH5+XQT2d3j9npDryMoYrHbocWKnbEiUFTV2thdg6IFiniERlAKCgoA4LhISFVVVTCqUlBQgPb2dtTW1va5j1fgDi1WIih290RVCTG7HVqs2CnbcTsl8uf16xkrgjNWaopUIlSgjB49GgUFBVi5cmXwb+3t7Vi1ahVmzJgBAJg6dSoSExND9qmoqMDWrVuD+3gFu4ca6xSPWOwWYrFipxZiYtF2qoE/n6oiRXV1xvwyXiXiFE9jYyN2794d/L20tBSbNm1CTk4ORowYgQULFuDRRx/F2LFjMXbsWDz66KNITU3F/PnzAQBZWVm4/fbbcf/99yM3Nxc5OTn4/ve/j0mTJgVH9XgFOyMojKkLOdrt0GKlJxorjjtWetyx4rhV29nSQkN+ZY6k6Q1uZ4/ySuEMGkQjhfgAjO7EhSeJWKCsX78e559/fvD3++67DwBw880348UXX8QDDzyAlpYW3HXXXaitrcVZZ52FFStWIMMkK3/7298iISEB1157LVpaWnDhhRfixRdfRLwdY3ElYmcEpamJhjcD3q9BiZXiUe24xRJrdra0ULuQlib3eD1RZWd6Oi2m195O13TkSLnH64kqO+PjgZwcqkGprtYCJYRZs2aB9bNIh8/nw8KFC7Fw4cI+90lOTsbixYuxePHiSA/vKuyMoHBnFh8vv0Gy03F3dFBvCYgdh6YygsKY3CGTvaEdt1jMjru62rt28rmKDh70tkABKM3DBYqX0WvxSMTOCIqqMfmAvTUo5jn7VKayVC+kx5j6GhTuuFWjKmWXnm7v7MCqHTfgbTsBe4ca83EfXrdTJVqgSMQJERTZjTwQmuJR7bh545eWJm/lW46dC+k1NhrTaMu+pmlpxuJ1XnZoTnHcKp9RL19PIHbs5IWydi6logItUCRiZ49bpUDhdra2kiNViUo77VxIj9uZmGicgyzsdNzt7caaTl53aKoiYkDsOW477ZRdJAsYdSd9zG3qGbRAkUgsOW5eMW+X41bR+Jmn9VfdAJqvp4qaELscGrcTkJ+yA+yzMxDQAkUGsWKnFigay6SlGQVpqtM8KgUKYJ/jVhkmB+wbsaTaTrsKn7mdGRlqFti0y6GZU3bacYvDztoMLVDEowWKZOwqlFUtUOxy3LEixFT2tgH7HJrKRh6w306/36j3kYlddra20g+ghZhIhg6lrRYoGkvYVShrl+P2cooHiJ0Iit0pHq/bGStCjF9Pn0/+DKuAfTUogYAxolBHUMShBYpkYiWCEispnliJoNh9Pb3uuGNFcJrtjFPgbewUYnwghIprahYoqgdgqEQLFMnYHUFRUWgI2B9B8XoqK9ZqbbwuUHTKTg52106lpBhz68iE29nRYcy/4kW0QJGMXREUHm70ukOLlchCrDg0neKRg13Fo6rt5JGFujpjuLoKVA4xBkgE5eTQ64oKNce0Ay1QJGN3BMXrNSixFlnQjlsssWInfz7r6oyiVRWotjMryyg6Vum4VdsJxEYdihYokomV1IfdkYVYsdPrkSK7HHdDg7cd96BBRupBpUNTbafPZ4xw0QLF/WiBIhme4tERFDnYOYpHZXGaXRGU5ma10/qrvm+zsmghPUDtvav6epod96FDao4J2OO4CwtpqwWK+9ECRTJ2O247UgJ8AioV2OW429up160K1ULMroX07Ohx84be6w4tVhx3rERQYmEuFC1QJMMjKLW15NRUYF75VrXj7uw0HlYVqLYzNdWYHdjrPW476qfsdNwqIwuqBSdgbwRF1X0L2CNQVK5kzNERFI1lsrONKbtV9UQbG2n4GQDk5qo5pt9vNEKq7DQLMZUNgx1RMTvstKPHrVpwAvYIFB1BkUespLK0QNFYJi5OvUM7epS2fr/8lW/NqB7h0tpqRKVUOjQ7RvLY0RONNcftdTtjxXHHSopHCxSNEFSHyrlAyclRs/ItR7UQM0+jnZ6u5piA+gawo4OKVQHtuGUQa3Z63XHbKVBUzYMC2FM7pRotUBRgVwSFT+SjCrsESmammmm0OcOG0VaVQ+N2AupmBgbUO+5AwCg8jpXIgh21GVqIicfOCEpNjbr6RtVogaIA1UON7RIo3E5VIUc7GnnAaAAPHlRzPC5Q0tOBhAQ1xwTU21lfr3Y9E45qh8aYdtwy4UKsulqd47bDzpwcoz1QPUpUFVqgKCBWIig8sqDKoXE7VRUCc1RHUOwWYqrtTE5Ws54JR7WdTU1AVxe9tsNx19QAbW1qjmmH487NBRIT6bWqTqEddsbFqe8UqkYLFAXYFUGxy3GrEig1NbRVLcTsiqCoFih2pbJUNvKAcT1VOW5uZ0ICDVtXRU6OMSmdCofW1mbMzqvymprntlF179oxzBjw/lwoWqAoQEdQ5MAFSqwIMdV2csd99KiaaeDtihRlZxsRGxXpD3NvW2URu+pp4M1F7CprpwC1dnZ20tQOgHqB4vWRPFqgKCBWalBixXFzO2tr1ayYapedgwapXXjNrl6o6mng7UgHcOywU3URO2CPEAPUi2stUDSWibUIytGjahy3XamsrCxjfhkVDX11NW1V2+nzqU1n2SXEALV1KHZFigC1hbJ2CjE77ExPN2pfVKEFisYy5ggKL46TiV0CZdAgw3F72aH5fGrrM2LFcXM78/LkH6snKh0ajxSpnDODE2uRIq8LMa/PhaIFigIKCijE2dWlJopil0AxO24vCxQgdiILWoiJh0fEYkWI2REpihUhpiMoGsskJBgPzIED8o9nl0ABYkeg2OG47XRoXk5lAbEjUFQ6bjvv21iLoGiBorFEURFty8vlHyvWBIoddsZKBCXWUjyxEilS4bidIMRU2MnbW7sFCp/k0EtogaKI4cNpKzuC0tJiDAmNFYFiZwTF63bGSgRFZWTBCY47VuysqpJf98ft5IuIqoQLlOZmY6izl9ACRRGqBAp3ZgkJahfQ46hy3O3txgMZKymeWKm18XpthhNqUFRMA2+nnUOGUN1fICC/7u/IEdraYWdaGpCRQa+9mObRAkURqlI8dq1kzFElULidcXH2DmOUbWdnp1FsqCMo8uB2qpjbxk7BaZ4GXrZDs1OgxMcboydli047IyiAt+tQtEBRhKoIip31J4A6gcIb+exs9ZNAAaERFJm5Xy5OAHtrbRobjZWGZRAIGPeuHQ7NPLeNKodmh50qZ5O1005AXTrLbju9PNRYCxRFxJpAOXSInI4sjuuFqphgxgRv/FpbQ0WEaLidWVndK5c2N8v9YnuQnm5MUy6zoa+rM8zKzQUNjejslHfAHpgnpZNpJ2M9HNrRo0rtBGxy3LW1tj2jSoVYY6PyalUdQdFYhqd4Dh6U619CZlfdswe4/37ghz9U1jgMHUqNfWenkZuVQYhAWbuWvMs118g7YA+Skw1xJLOhD6nLWL2a4tb/9V/yDtgLKhw3b+QzMoCkNR9Qq3vttfIO2AsqHHdDA9DRQa9zv+y2c/58eQfsBeWOe9cnVBRy441yD9gDVXbydm5w+UbqGd50k1KRogWKxjJ8sraODrlFW8EIyr4NwNixwBNPAI8/Drz3nryDmkhMNKb2l5nmCQqUuFrg4ovpS/3HP4CtW+UdtAcq0llBO9Nbgauvph7am28CX3wh76A9UFFvE7Qzuwu44QZaCnfZMuCTT+QdtAcqhBi3MyWFIfXuW6lB+NvfgJUr5R20ByoKgpubjVqevJ9/l3osf/0rXVNFKBdiSxbS9Xz1VeC55+Qe1IQWKBrLJCYaN5LMNE9QoGxZRSqeH/Svf5V30B6odNw5//k3UF/fnf8A8Kc/yTtoD5Q67t3/oV94wc1vfiPvoD1QGUHJPbaXPAqv8P7Zz+QdtAcqHHfQmcUfA8rKjDfuv19plBNQcz2T4juRXrLReOOee+h5VYAKgdLaaowmzNux2rhv770X2L5d3oFNcDu1QAmDzs5O/PjHP8bo0aORkpKCMWPG4Oc//zkCprwGYwwLFy5EYWEhUlJSMGvWLGzbtk30qTgOFSN5ggIFR4GzzqLeGUA9Fz5BimSURhY6KoEJEww7X34ZaGqSd2ATKoYaB+1s2k9i86236A+vv65mWmKotTOvfg/g9wP//CeJzpUrlUVRVAqxvMZSevHXv9IwtC1bgBdflHdgE0qFWKAKPgD4wx+AE0+kRuHHP5Z3YBMq7AxO64AOZKEO+MUvgDlzKHz0ne/IO7AJ3gdVMdJONcIFyq9+9Ss8/fTTWLJkCXbs2IHHH38cv/71r7F48eLgPo8//jieeOIJLFmyBOvWrUNBQQFmz56NBpnDBByAikLZEIFy2WXAjBl04Pp64N//lndgEyoESrDWBjXA174GXH45cMIJZOfSpfIObEJFBCUYWUAN1SpceikwaxaFzH//e3kHNqEy9ZGLGkrxXHYZcMst9EdFURTldl52GXDddcBPf0p//OUv5R3YhMoISh47Apx+OvDtbwPcB7z0kpJCbxV2BudAQTV8Q4cC3/ue8Vx+8on8yWYAjBhB2/37pR9KOcIFymeffYYrrrgCl156KUaNGoVrrrkGc+bMwfr16wFQ9OTJJ5/Eww8/jKuvvhoTJ07ESy+9hObmZrz22muiT8dRKBEoRyhMnIOj5LTj4qgRBJSleZREUKqpCC0XNcDs2WTnHXfQm08/Le/AJpRGUFADXHAB/XL//bR95hklDaDSyAKqgfPPp18eeoi2K1fKHePcjXI7L76YfvnWtyg1sG+fktVElUZQUE21U3FxwIUXAklJ1InYt0/ewbsxpz5k6aEQO+fPB1JTgZNOovkP2tuV1MSNHEnbY8eUZc+UIVygnHvuuXj//fdRXFwMAPjyyy+xZs0aXHLJJQCA0tJSVFZWYs6cOcH/8fv9mDlzJj799NNeP7OtrQ319fUhP25ESYqnnBKiOflJwMSJ9Mfrr6ft8uVKGnolAqWM7MxNaQHOPJP+eMstlBZYv15Jd0JJDUp5MwAg11cLnHce/fGSS2jsb10dUFIi7+DdKLGzgoRWLmqAmTPpj2PGGPFrBSlgJZGFKvKUeag2rmdaGqU/AGDzZnkH78Y8DTwfUSSa6iPUgchDNXDuufTHxESjTdq0Sc6BTfCJ2jo7DaEvmhCBcs459IvPB0ybRq/XrZNzYBPp6caIQq9FUYQLlB/+8Ie4/vrrMW7cOCQmJmLKlClYsGABru92kpXdlTz5/O7pJj8/P/heTxYtWoSsrKzgTxH39C5DSQSliuZUyJk5ySjYmjKFDt7aqqRhUCJQDlI9Te6UEUaB7ODBwLhx9FqBQ1MSQdlHYjzvxEHGnNZxccD48fRagZ3myIKs0ZPVxZSzy8vzGQ8KAEyaRFsFPVFuZ329vDKm6p3k0XKTm6l2ijN5Mm0VCJS8POOROXxYzjGq9xyjY8UdBc44w3jjtNNoq6AdSkoyJk+TFS06UkYdiDxUUzqdwwVKd+ZANjyKoiAwpRThAuX111/Hq6++itdeew0bN27ESy+9hP/93//FSy+9FLKfr8c87Iyx4/7Geeihh1BXVxf8KVexJLAEpAsUxnC0ORkAkDPP9LD4fEbPZccOSQc3UCJQjsUDAHK/Mj70jVNOoa2CCnpu5+HD8ubaqqmkD849Y0zoG9y5KXDcvMfd3m7U/oimppwUQe6kwtA3uEDZskXOgU1kZFAwA5Dn0Gr20Kx+eScOCp0C+dRTafvll3IObCIuTn5hZfU2SlXlDU2itAdHoUAB5I/kqf6SvsDBme1GyAYwRJmCCApgCBQdQRmAH/zgB3jwwQdx3XXXYdKkSbjxxhvxve99D4sWLQIAFHQ/GT2jJVVVVcdFVTh+vx+ZmZkhP26EB34OHJCTE23ZVYYmRi1s7sXTQt/kjnvnTvEH7gF33MeO0XwIomFNzahpp2hCzlfPDH2TRxYUCLHBg6knGghIGuLHGGoaaOGU3JkTQ9/jglNBBMXvN3qi0hwaLwY+84TQNxQKFBWzyVYfpFRW3uQeQowLFAURFEB+HUr1Pkol553cY8GhKVNoq0igyE5PVhdT7ihvZFroG1ygbN0qf3EnAKNG0VYLlAFobm5GXI/FUeLj44PDjEePHo2CggKsNE1M1N7ejlWrVmGGOUTmQfgsqx0dcmZZPbx6FwAg2deKzMH+0Dd56kOB487KMjpNMhqGhvf/g050O+6ekQUuUBREUOLi5NYtsF3FqAlkAwByzz819E0eQVE0PF+q466vR00L3TB5s/oQYlu2KJmdU6qdgQCqaynyl3f22ND3eIpn+3Z5hSEmZNfbVFdSsX7eacND3+BCrLxcXmGICe64ZaU+qnmK55QeKwUOG0YRla4uJWJMp3jC5LLLLsP//M//4O2338a+ffuwbNkyPPHEE7jqqqsAUGpnwYIFePTRR7Fs2TJs3boVt9xyC1JTUzFf8ZTPqpE9WVvlOkp9FaQ1HL+SscIIis8nN81z9HMqDE2Oa0dqWg9DzQJFoUOTIsQ+WIcOJAEAcoclh77JBUpJiZL5bWTaydZ8ghpQTzt3QkHom+PH0w1VXS2vYMKEVMe9bRtqAoMA9BIpGjmSckzt7cCuXRIOHgpPN0vJltfUoLqZVl7MO/vE0PcyM2k6AEBJOmv0aNru3Svhwzs7caSaXGje6SNC3/P5jCiKgjoUneIJk8WLF+Oaa67BXXfdhVNOOQXf//73cccdd+AXv/hFcJ8HHngACxYswF133YVp06bh4MGDWLFiBTJ4EaCHkTmSp3ILhWXyc3opiOARlP375eRdeiBToNRsJnWXm96LYx47ltZar69XMnORzELZmo3U2iTHt4ek8QGQJ83OpvySAocmM7LQ8NlWQ4j1yAggNdUY4aIgzSNbiFWDcmV5QxND3/T5lNahjOkOPEpx3J9+ath54qDj31dYh8IFSmmphA/fvBnV3RHOwacNO/59hSN5tEAJk4yMDDz55JPYv38/WlpasGfPHvzyl79EUlJScB+fz4eFCxeioqICra2tWLVqFSZOnNjPp3oHmYWylXto6G3B8ITj3xw8mFp/xoDuIeAy4XZKESh8JER2LxESv99waAoLZaXYuZUKBHIzewn5+3xK0zwyBUrNJlLrKYkdxwsxQOlIHpkNfcPGkr6FGKB0JI/MyAL7zzpDoOT1soNXBIpZiA3pxZUqLJTlqayqKiX9T2XotXgUI02g1NfjcDXltwvG9hGJUliHIs1xd3Whcj9FTvKHJ/a+D09nKbBTquMu6S7A662RB5QKFH49ZQjr6h0U+csb1MdQKIWFsjyysGeP+M+u2UwPQ0pSZ+9CzIYIigzH3bC5tH8hZoNAqagQX6vKNm/pX4jx67l7t7xhft0MGmTMQmBe4sntaIGiGGkpni1bUAnK3xeMSu59HxtG8ggXKLt3o6KDWoOhY1J630dhoaw0O2tqcORo91DqQn/v+ygcasx7aMIdWkcHarpHfOQOju99HxsEyt694kuYqnd1C87sPobwKRzJwx13dbX4uRurt1GtUKq/q3chxgXKjh3S66dyc2kiM0B8VKx+y/6gEOtVoBQW0mQsnZ1y51wABVS9mObRAkUx0iIomzYFBUofo7W9EUHZsgUVoErGoYW9z5tjh0ARLji3bQvaWVjUS8oOUDrUmNc1CnfcJSWo7hoEAMjtWZfB4QJl2zbpK/5yx11fL3jOl6oqVNfRdcwr6ON6cjsrKuQM8zORmWlEN4SKzvZ2VO+jVHNeXh83yrBhdPDOTun3rs8nKc3DGKq301wvaSldSOmtrxQXZ6gGKTmmUGSPWLIDLVAUI02gfPmlEUEp6GMfL0RQzAJlaB/7KBQo5lC5UN+5ZQsOgfJHhYV97MMjKHv3Sk88jxxJ7W1zs+A5X7Ztw2GQos7P70NwnnACkJxMMXopVZ0GKSnG9y30UNu3B9MBuYP7aHbT0w0lqDhaJAyT4MzL7yMi5vMZz6iCpRqkCJSqKlTXk6DOG9zHfWs+uALVoCMoGsuYBYrQnuiXXwYb+j4FCo+gFBdL74lyOw8dEjytg8lx9ylQTj6ZGsGaGuk90aIiGj7e3i5YjG3dOrAQGzKEYsuMSY+KJSUZq6YKrc/YuhUHQWp2WC8DIQDQqCzu0BSks6TUoWzbhiOguTIGD+5nv5NOoq1kIQZIEijbtpnqMvpx3Aq9qZR6G5PgzOtLcAISc6PHowWKxjKFheQ729sF+s6uLrDNWwZO8YwcST3Rtjbpin7oUDpUV5fgByacCEpqqtEwSI6ixMcbnSTRjnvACApgRFEURIt451604w7LTj4yS6FDE+24uRDr106FXkZKZGH79qAQ67VAluMhO/ssYpd28N7RKR6NZZKSDAEhLM1TUoKG1gS0gCrS+hQo8fFGD01yjzsuzvApu3cL+tCmJrDdewYWKIDSKe+54xZmJ2PhCxR+cIWO2xYhxsM3CoYoyBYofUaKAPfbuX17eNfTAwKl3xE8PQ+uUzxRoQWKDQivQ9mxI5jeMS941iu8DkXB5F7CBcr27WhAOppBBvYrUHh3QsHCksLtPHgQ7Nix8ISYzJn/eiA8gtLaCuzeHZlAUdD6mguChcBY+ALFhtSHLULMBoEiS4iF1Q4pTPEcOkQRei+gBYoNCPcpu3YNXCDL4XexQsctrA7OVJcxoBBTsaRyN9xOYY5761bUIzM8Iaawxy1coOzaBdbV5f3IQlUVUFPjuEiRuXMvZPHSjg6guDhygSJ5SQquEY4dox8h7NgRtHP48H7241/ywYOUWpfIkCGUVmdMznxFdqAFig1wgSIs6ldcPHD9CUeh4x7bvR6asMiCSaD028gDcqfs7YHwFI8p7TFoEHqfS4LjZoGydSuOYRBaQWM0nSLEuEApLxfUE922DQzAQR/dk2E57vJy6YXsRUWU9W1tFTQyq6QE6OzEAR81cP06bn49GxuB2loBB++b9HSjMFlIIKOmBjh8GAdABvZr5+DB9AAzJv3eNc+F4pU6FC1QbIA7bmGRBZNAGTCCotBxC4+g7NoVXtoDsCWCsnu3oM5gOCN4OGbHLbknygVKdTXNE2IZU4FsTg71/vqEt7xVVdKXr8/PJ58SCAjKQGzbhqPIQRujCff6FdeFhaQaOjsFj+c+nsRE4/YR4ri3bwcDgte0XyGWkkJdfsB9dSjddW0H4ume7NdO80Qsug4lYrRAsYGTT6atsDKQXbsGHmLMscFxl5YKmum5uDi8vC+gVIiNGkVFwU1N5D8tY7Iz7EhRYyNQVyfg4H2TmWkUBApJf4Q7ggeghRF5Tk/yNfX5BKd5THUZeXm0XFSfxMcb19Rt9RndQ4zbGc2uOuAz6tZC2e3b0YU4HApQY9tvBAXQQ40toAWKDfCBNHv2CHDcR48C1dXhp3jME5QomAvF7ycbLUc3OzqA0tLIIyiNjYK6+33j9xtpOyFpnkgESmqqoRrcluYx1SsMaKfP5946lHBHtnDcWii7fXsw7ZGfTyMW+8XFAqUKQ9DJEhAXF0anUA81jhotUGygqIginB0dAm6k7vxJpX8UgDAelvx86u53dQnq7vdNXJzh0CynefbtAzo7URFPSmBAgZKWRgUcgNJ0lmXHXVMTUlA5oJ2AO+tQurqAvXvDSwdwbBAoooWYU+0UlfqIyE63Tta2fXvQzqFDgYQ+Vi4IolM8UaMFig3ExRl1KJbTPN0fUJlEjntAgZKQYHg9BY5bWKFscTEAoCKFHvawHLfCdJawQtluJVeRQi1qWD1uNwqUsjKgvR2H4ui+jchON0UW6uuBw4cd67iFpXgCAaCkxPF2ihJiYRXISjl4/2iBohECT/N0+93o6f6AwwEqUx8wxQPYUodiOYLCBYovgsiCDQXBogTKoaRRAMJ03G6cC4XbmUZfnNOEmDCB0v1FHUwmO50aQbFs58GDQGsrDvjo3MNy3DYJFEu15M3NwIEDkQkUG2pQFAwCU4IWKDYhrFC2uBgB+HC4NQtAGBEUwNWOu6Kd5s+OKILiphRPtxA7FAhzODXgzghK9/U82D0Swql2Wl69mduZQh/otMgCFyiHDtFw46jhdmZQw+Y0O0eMoMi15SHV3Tf+AX8EgpOro6oq6Yt6FhZSkLyzk65p1Bw5Anz/+8Bzzwk7t2jQAsUmhAmUXbtQi2x0dNHKoXzkXr+4cS6U4mI0IwV1bWHMmcHhQsxNKZ7iYjAAFa2DADi3BqU7QxM9PILSSTes0yILvNPb0EDDqqOG2+kLsxgYMBy3Ajtzc2meEMYs6gQuUJLIGUd0PauraQicRBITjebAUiCj284DadSAhxVBGTSIvmRAelsUH28EVC1dz23bgN/8BnjsMSHnFS1aoNiEkBRPd96Xj+DJyRlgCCPHhgjK3r0WRywVFwdH8KSkAFlZYfyPDZO1HT1qcd6p4mLUIQstHbSUu9MESkEBff+W5wgpKUEAPlQ0ZwKIIoIiec6X5GTDyVpKf3DH3UYjrcJy3NzD1NcLnPq0d4QNqeaOOxBB0fOgQTQlNKB05lwRAuVgAonIsAQKoLRTyMW1pSgnz8nzHqZNaIHSGx0d0g/BIyiHDlEvLSoOHgRaWnAwjhrusJwZoPRhKSoi0dTRYaFEorkZKC8PGWLs62cl9yAK7UxLM9JrUTcMjAElJcGRLdnZJAYGhDu0gwelJ57NDs1qA3gEg9EViIPPF2bt1PDhdAJtbQKXAu8bUY67HYmoaqIedFiOOy1N6dBxIY67O3R4sCUHQJiO2zz1qVsKZbkQ66QbNmyBwhW4pbxLePB1Ui0tcK4FigPZvJnCEAouyqBBRjom6gLS7vzQnryzABgN6oAojCzExRnnFXX6o9sTVqTRdQlbiCm0ExBQb1NRATQ1ocJnDGEMi4ICSjx3ddFnSMbyYnqdnUBpaVCI5eeHMVQToIk1+JfilkUDS0qCwjoxcYCVb824bcRSSQkakYa6FgrhhiXEAKXpLFEChQE40EAhXCdGUCZOpO3WrRY+RAsUB5KdTfH5Q4cErZ7VPzzNE3UdSnd+aE/6ZABGgzog5odFcqgcEDCSh4/gyZsEIIpIUXW1xQrA8LAsUHiB7GC6nmGlPYDQ2UfdUCi7fz/Q2YmDieQxwrYTcNdcKHV1wJEjIZPRhRX5A9w1F0ogAOzZE7QzPZ1mHQ4L/owqiCyIihQdRQ5aO0hRh33vuk2g8EZMCxQHUVBALUhHB02YJRnLhbJcoMSRZ4xYoDQ3S89xAwIKZblASY8wgmJe4EVBA2jZcXOBMohitE513Jbt5IWj3UIs7N42YKSz3DAEl9uZRdczIjttcNxR21leDrS1BUdkhR1VAJTaafl6NjUBhw4FhxgPHhxmzR+gNMUzYQJty8qinEQ7EDAaa97rsgktUMwkJhp5FwVKlwuUqAtlu5XN3la6+cNO8aSkkPMG3DEXSvcXtC+OWlLuowbE57Nt0cCo4EOpU0kBhC3EAKWOW5hAyRwHIEIh5iaHxgsqcyjyF5VAUXDfmiNFUQVUuZ2DTwMQoZ384iuwcxzdbti/P0rHzets0umDohJiCuzMzjYOt21bFB/QPacNEhKMilub0AKlJwqVrogUDwOwp3oQgAgiKIC75kLpbgCLG+nacGEXFjbYaTWCUsbonJ3a47Y8R0g0k9FxbJgd+MABqsuNGO640+hBd+r1HDOGfFFDQ5SPCS8cHURdd6cKsdxc43CbN0fxAdzObiEWkUBRKMQAI4oSVZqH9yRHjw6zOEweWqD0ROEDY46gRNzQt7cD+/ahCkPQ1BoPny9CsWvDXCh790Y5yKRbiBUfpsI0LuzCwgaH1l3rGjndAmXXMRoh4FQ7R46k4ufm5ignvepuAMsDESygx1HouAcPpuHsjAE7dkTxAcHJ6Cj9FpGdCh2a32+M/Pjiiyg+gNvppwfAqSkeADjtNNp++WUU/8wFipUIyqFDSur+LNWhOKRAFtAC5XgURlDGjKH6xsbGKAZf7N8PBALY4yepzIfzho3CyEJREQ3AaG+PYqjxsWPAkSOoRAEam+NDRgWFhUI7s7ONzFnEUZTOTmDPHnQiHiWH0gBEGClS2NAnJRli2Irj3lVDQ1oiagcVOm6fD5gyhV5H5bh5SqAjgsnoOAoFJ2DYuWlTFP/MBUokCz9y+PU8ciTKMFVkTKayJ2sCJWEUgAgFCs/XdnRYnPkvPLRA8SoKBUpSklGgFnGap/sm2jNkOoAI0zuA0gYwPt7CUGOe3skhO0eNCmMZdzM2DTWOuK6orAzo6MC+pJPQ0eFDcrJR9xoWikPI3KFt3BjhP3Yv4d2CZOyrpALmU06J4P8Vj0CzJFC4EKsaBCDCekN+PevqpM+yChiRBSsC5UALLUMRkUDJzTUeaAVD5IUIlE6a8CgiOxXXN2qB4lUU91yiLpTt9vR70k4FEIVAcYvj7v6H4jwSKBGlPQDl15M3gBE7bp7eKZgFgOyMi+TpNEdQFAyRP/102kZsZ2kp0NWF4uTJYMyH7GxKpYQNd9wtLeS8JRO1QKmtBWpqUItBqKymWYEjEmKZmTRhG6CksxS1QOnsBPbuBQOw6xDNChuREPP5lHYK+fO5ZUsU6WYuUBoHAYhQoJj/QeFkbVVV9BMRWqA4GIUPC2BhqHH3TbQ3PsIhxhzFjpsr+ogbei5QkkmIRSxQFAuxadNou359hP/IBUrmGQAiTO8AykPIU6fSdsOGCP+x+77dOeQ8AOS0w54bBABSU2mWQ0DJvcuF2KZNEeq+bjt35H4FAKU5+azuYWEegabQcZeWRjjzQHfk70DSCWhojENCQhR+TfFIu9RU0rcRjSqsrwcOH0Y7ElFSTpE/J3eW0tKMqHVEI3m6uoz8tBYoDkSx4456JA+PoLSSA45aoChy3GeeSdt16yL8Ry5QOulpi7pRqKhQsv64WaBElIHgAiWeuj4RCxRzCFmBQ+OOu7g4wiGbXKCkkcLhQz8jQnEhe3Iy1YlFlJ7stnN7zrkAIoyecBSm7bKzjUldI0p/dH8p2wouBEA+LaIULKBUiMXHA5No1HdUdpZkn4XOTh8yMiKY7oCjOA0bVZqnvJyKBZOSIswxy0ELlJ7wm6iqSumaPFELlKPZACIsHAWMyMLRo9SdkMwZFBjA1q0RrjjOa1DqKe8bsUApKKBWqasLOHw4wn+OnIkT6dmurY1wxkper9BKjULEAgVQ6rgHDzYa6IjSAjyyAFImlgSKAoeWkGBEFyKK/nGBknQaACPkHhFuKJTttnNbOi23wYe3RoRixx1VHUq3nVsHnw+AnvOIIn+A8hFLUQkU3g4NuwCDC+Lx1a+KP69I0AKlJ7m51BsFlBRt8Qd6794IUuodHUBpKRqRhsO11F2JOIIyaJCxEp2ChmHYMNIKXV0RNPSMAcXF6EQ89lTSYmsRC5T4eGMVPwV2JiUZDWBEaZ7uCMrOI1Ro6HSBAhhRlIjSPDyC0kgC2emRBSDKgmAuxDooBWtJoCgeghuVQPGRN4xKoNhUJxaRnd0dwq1+ivxx5x8RNqXVoxEoxXkzUF2tpE/XL1qg9CQuTmkdyuDBJC4YAz7/PMx/2r8f6OrCXj+1ejk5Rlo+bHw+I4qiaMhmxGmew4eBhgaU+Uaho9MHvz+KsCrg/DqU1lZg/37UIROHj5LgtCRQFDk0XocSkePevRtdiMOuw4MAOD+CAkRZKMsjKEdJHLtBiFkSKE2UH7IkUJw8F0q3nVs66IblaaKIsCnFs21bBOlmLlBSSMVF3CEUjBYovaG4UHY6DVDBp5+G+Q98iHF+lEOMOYrrUHia5z//CfMfeP3JEMrjjx0b4cgWjuKeS8QCpXuO8V1pFJIYOjSCxdbMKG4AIy6UbW8H9u9HGUagtT0+ZJh9RNgUKfriizAbesaCq/uWVacCiFKgKLaTO+5t2+hShUX36r7bD1Pkzw0pHi4uDh2KoJ6cp3hq6VwtRVAUDsBISKDIfNhfbbedX7ZRDymqyJ9AtEDpDcUNw4wZtA1boHSHG/dmUtcuaoGiMIICRBFB4Wo+m/LbUat5myIoGzaEOfKD532H0IiPqKIngG2Oe+fOMKfq2LsXCASwM5nu25NOogxcxNjQE42PJ2cW1i1UUwMcO4ad3XU2+fmUOY4YxR2lESOoWLajA9i+PYx/6OwESktRhhFobElAYmKUAz8Uz22TkWG0mWFHUUpK0IRU7K2iVLMlgaJoUrqkJKPNDDvN090WbTxM58o7IXahBUpvKG4YuED5/PMwB5rwAtkEuvvcEkHhjnv3bqrNHRAeQUmkblnUAkWxnePH08iP+vowR37wETyp5LgtCxRF921BAT0qjIWZFggOvT0HQJTpHUC5ncnJEU4Fz9M72WRn1L1QxdOj+3wRpnn27QM6O7Et0RCcvHwvInh729wc5Sp+kRNRHUpdHXDkCHbgFDDmw5AhEc7dw8nJMab7VlDfCERYh9I9p00TUrGjjObg0QLFidjQQ0tPp2czrJ4LT/G0U0GGWyIoOTnGuYaV/uACpX0UAAERFEV2JiQYdQuR2LkzQMokaoGi+L4FIiyU5QWyfvIOUaU9AMNxV1ZSo6oAc5pnQLpV6fbukS1R28nntmlvp6iMAiISKLz+JIcif1GldwDlc9sAEdah8PROJgnOqKIngPJJ6QDjXMNaHHH/fqCzE5sTpyEQ8KGgIMIV1SUgRaAcPHgQN9xwA3Jzc5GamorTTjsNG0wtGGMMCxcuRGFhIVJSUjBr1ixsi2pdaEko7qHFxwNnUVsWXpqnuwHcUU0y3i0RFCDCNA9P8dSSnW5J8QAR1qHwCEpDFKs1m+HXs7paSQgZiLBQtsfIlqgjKEOG0EMTCCgbZhBRoSyPoPjIY0cdQUlKMrrqih13JHZu89OXE7VAAZS3uRENNeYCJeNsABYECqA8Dcvr/latCiMI123nhtw5AOyPngASBEptbS3OOeccJCYm4t///je2b9+O3/zmNxhkGmby+OOP44knnsCSJUuwbt06FBQUYPbs2WhoaBB9OtGhWOUCEdShdOd992MEyquSkZBg4UZSHFkAjAdmQIHS1QXs3o0WJKPsSJQzN3IU57iBCAVKSQm6EIeSKqqMjVqgmEPIikfyRBRBOWZhZAsQOnRckZ0RTe3PhVgTzWljqdDQpkLZTZvCd2jb2qnwxJJAsWkulB07wigI5gIFpEwsCRTFdn7lK6Rzy8rCmDmX158kUW+Z3/N2Ilyg/OpXv0JRURFeeOEFnHnmmRg1ahQuvPBCnNDdzWeM4cknn8TDDz+Mq6++GhMnTsRLL72E5uZmvPbaa6JPJzoUNwqAIVA++2yAHbvDcB8nXgCAbiK+ZEfE2BAq5xGUAUfylJcDbW3YkzAOjPkwaBCQlxflQbmdLS00g5oCuEDZuHGAuqL6eqCyEmUYgbb2uJCVgiPGhhAyb8S2bw9jAr6SElQjF9UNFgUnYNvcGeXlYWRbSkrQgmTsrR0EwIIQA5RHFk45hRxafX0YEw2WlCAAX3AotZAIiqLraS4IHjBaxAVKAw2lFhJBUXQ909IM3/LeewPszCMoLaSoPRlBeeuttzBt2jR87Wtfw5AhQzBlyhQ8++yzwfdLS0tRWVmJOXPmBP/m9/sxc+ZMfNpH+KCtrQ319fUhP1LhjXx9Pc1xrYCzKXqIkhIq8u6T7vTOx+lzAQDnnWfhoPn5SmdZBShUHh9PNWL9tkXdaY/1g8nOiNdsMZOcbAyjULgIZFoajW7pd5ZgPoIni3otY8dGObKFo7ihLyyk2ygQGCDP3doKlJcHR7aMHGlBWPMDA8rszMw0FsHrN1rUPcS4GCchEKDFEPPzLRxYsZ2JiUYU5aOPBti5pAT7MRLN7YlISopwkcCeKHbcPh9wIc3Oj3feGWDnkhLUYhAO1lOE001CDAAuuoi2K1cOsGO3sN5WQ4LTkxGUvXv34o9//CPGjh2Ld999F9/+9rfx3e9+Fy+//DIAoLKyEgCQ3+Opzc/PD77Xk0WLFiErKyv4UxTVbF0RkJFBVauAsgdm0CDjxu83itLt0FZ30BwoX/mKhYPGxxtVUIoemNRUw85+0zzddq6Io7mWeWMSNYrrUOLjjQe83zRPtxD7LPNiABZ7Z4DyBtDnM+zs977tnutlRzLtHHX9CUexQwOAc2k6nv4d2pEjQH09doB6oePHWxDWgC0O7dJLafvWW/3s1N4O7NuH7TDWjkpIsHBQGwq8582j7fLlA+xYUhJM74wYEeUcRRwb7Jw9m7YffDBAoHz3bmzBJHQF4jB4sNFk2olwgRIIBHD66afj0UcfxZQpU3DHHXfgm9/8Jv74xz+G7Ofr8dQyxo77G+ehhx5CXV1d8Ke8vFz0aR+PDQ1gWBO27d6NKgzGzkYSabzRjBobCkh5mqffmXOLixGADyuPkkMzBdyiw4aGntfbfPhhPzt1C7F3WmYBAC6+2OJBbaif4tdm2bJ+duq288OUSwAYRadRY8P1vPJK2i5b1k99Bp9xNNPiEGOODdfziitou2JFP2m7ffuAQCA4xNhSVAGwpb2dO5fE4xdf9HMbHT0KHD0qpv4EsMXOqVMpnVVf30+nsHv5lA2gvM7pp1sU1oIQLlCGDh2K8T2eylNOOQVlZWUAgILu4rae0ZKqqqrjoiocv9+PzMzMkB/pOLVQtqQEa0CqZNIkqou0hA0N/TnUdmP58n4a+uJibMJpqG5JR0aGkQKLGhuEGG/oly3rZ1BNcTEOYwjWV9OUqpYX57Lhel59NW3XrOlneoeSEnQgAf9upHuX916jxoae6Jw5FAEsK+unWJYLzgBdSN7piBobruepp1IKrqUFeP/9PnbqtnNdKuWYLTtuG67nkCFGu/L2233sxNfgSaUUrNAIp6KC/fh44AIqWey7DmXfPqCrCxvjqffohPoTQIJAOeecc7CrR9K9uLgYI7vX8h49ejQKCgqw0pQQa29vx6pVqzCDe2gnYGOh7Lp1/Ti0XbuwGtQoWErvcGxw3FdeSYV427b1U7dQXIwVoK75BRdEOQGUGRuu57nnUrtbVwe8+24fOxUX411Q2GTKFAHzDthg54gRNEyesX6iKCUl+ATn4FhHOvLyBAhOG3qiKSnU6wb6t7MUo7Cp8UTExQGXXWbxoDbY6fMBl19Or//5zz52KilBM1LwTiO1RcKEdWVlmLNVioEL5X/9q48duqfyfzdAhRyWHbd5UrqwV4e1Dk/z9FmHwgtkE+nB9KxA+d73voe1a9fi0Ucfxe7du/Haa6/hmWeewd133w2AUjsLFizAo48+imXLlmHr1q245ZZbkJqaivnz54s+neixIYJy0kmkF1pb+2gA29uB0lJ8DFImlgpkOTY4tEGDjIb71Vd72aE7v80dt+X0DmCLEIuLA/77v+n10qW97NC9WvM7oLTHJZcIOKgNDg0ArrmGtn/7Wx877N6Nt0Be79JLLRYCA7bctwBw1VW07U+gLAPtNHOmhZFnHN4OVVVFsECOdbhAWb68D71QUoJ3cAmau5IxerSAgsr8fHpgurrIVkVwgfLeexQxOo6SEqzHNOxpHY7UVAHPaEoK5VsApc8oL5T97DOg19k8SkrQhiRsbaNKZycUyAIAmASWL1/OJk6cyPx+Pxs3bhx75plnQt4PBALskUceYQUFBczv97PzzjuPbdmyJezPr6urYwBYXV2d6FM3+N3vGAMY+9rX5B2jFxYupMOed14vb27fzo4hk8WhkwGMHTwo4ICvvUYHnDlTwIeFz7JldNhhwxjr7Ozx5o4drAFpLBFtDGCspETAAd99lw44caKADwuftWvpsGlpjDU19Xizqop1IJ5lo4YBjK1ZI+CAu3fTAVNSGAsEBHxgeJSW0mHj4hirrDz+/cCw4exEFDOAsb//XcABjx2jAwKMNTYK+MDwqK1lLCGBDrtzZy87nHYaOxerGcDY738v4ICBAGNJSXTAffsEfGB4tLczlpVFh/300152mD2bXYulDGDsgQcEHbSwkA64bp2gDxyYQICxESPosP/6Vy87zJ/PvoffMICx664TdNAJE+iAK1YI+sDwGD2aDrt8eS9v3n03W4YrGMDYkCFym45I/LeUmWTnzZuHLVu2oLW1FTt27MA3v/nNkPd9Ph8WLlyIiooKtLa2YtWqVZhoObknGBsiKADwjW9Q73L16l6mvS8uxqeYgQDiccIJxilawqae6Ny5FEk5eJBmOQyhuBirMBMdSMLo0RZmyjVjk51nnknzmjQ19ZLnLi7G5zgLtchBdrYxm7Al+E3R0gIcOybgA8Nj1Cia+yUQAN58s8ebzc3YdTANuzEWSUlMTEQsM9MYp6zwGR00yMjnHxdFYQyHi+vwCajIihfVWsKGuW0ASqnyaEFvaZ7mXeX4Fyj8cO21gg5qwzPq8/Wf5ukq3oPXQWHQ668XdFCb2iKe5lmxopc3S0rwFO4CANx6qzMKZAG9Fk/f8EZBYUoAoHuXpz+efrrHm6b6EyHpHSA09aGoaAugCU95w3ZcmqekJFh/MmeOoIeF21lbG8aMYuLw+YDrrqPXx6V5TOmdiy+2OEyTk5JiVE4rbgB5mufvf+/xxp49wfTO+ef7kJEh4GA+n20NPS8KPk6gHD6MfzZfBIY4nDEtAGGzIdhQQAr0U4fS1oZ3yiehGWkYPaJTXDrApvSkWaCENIGMYfWOwTiEYRiU0WV9hB3HJjv58PGXXjo+i1a8vRMrMQc+H8Mddyg9rX7RAqUvuEM7dIi6hQq5807avvxy6DL21ZsP4Tl8AwBw/vmCDsYbv9ZWZbOscm64gbZ//3uP/K+pQFZIbxsI7XErbui5QHn77R6LtRYX49+gqktefCkEm6J/XKB8+CEtBxSkuBjLQaqbOz0h2OS4r7iC9NF//kMTOwcx1Z9cdbXAptXGKGdCArBzZ48pAfbuxd/YfwEAvvbf8eJ62zZdz/PPp6bhwIEeNVQ1NfhrE923/3U1C64iYRmb7Jw3j2pL6uuBhQtNb7S346kD3fVhF7Zh9Gilp9UvWqD0xdCh1Ap1dPRobeVz0UXAmDFU5P3668bf7195MaoxGBOHHwsWX1omOdmo5FMcLTrnHBoB0tAQ2jC8sGoMduIUxMcFguF0y/h8thTKAjRs8+STaWTWkiXG3z9dG4cvQN1Py6MgzNjk0E44gUYidXUBDzxg9EbL1x7Ep6AhapaHF5uxqSdaUGBEMG+80ahdrdtUivdBMwryKIsQbBKcWVnA175Gr7/+dWPQSfPWvcH0zteuFZgLsOl6JicD991Hr7/9beOxad++G38Hqe7rbxQR3uzGpuczLg544gl6/cwzRglB09ZSvIibAQB33ydKhYlBC5S+SEw0FiRT7NDi4hAMsy1aBKxdS1XmL1fNhQ8BPPfLCiQlCTygjQ/MzfRc4JvfpBTIqlXAHbu+BwB4+NZDMK0xaR2b7PT5gO98h14//DDw+9/TPBqXrP4hAOCq6ZUYMkTgAW2yEwD+53/our7wAvCTn9DoxZlPX4cA4nFW0UGMGCHwYDba+ac/UVDu44+Be+6hU5j72HnoQBJOya6MfsHH3rDRziVLaE6UPXuoPq6mBrjtf06g9E7aYbHDUW2KLAB0r06bRkHkW26hTtNDizJQixwUJNVg1iyBB7NJiAE0suzKK6kT8YMf0MyyzzzViToMwolJZZhzsUOKTzjyanXloWQUD2OMnXEGlT3/859yj9MLR44wlptrDFRISwswgLF78DvGRNt96aV0kB6jrVTQ3MzYVVcdb+e1WMq6jtSIPdhNN9FBFi0S+7lhEAgw9uCDhp3p6WTnuVjNGr/cLfZgP/4xHeTOO8V+bpg8+6xhZ0YGbU9ACdvz1P+JPdCTT9KHX3ON2M8Nk7ffZsznC7UzC7Xsg3vfFHugv/yFPnzWLLGfGyZr1zKWmBhqZxw62QuXvyH2QCtW0IdPmCD2c8Nk504a/Ga2E2Dsl9OWiT3QunX0wYWFYj83TIqLjZFofr9h529OfVHJ8W0fxeMZbEoJAJR12bCBKqrj4oCmJh+KUIb/yV9scTGIXrCxh5aSQumd71HQBE1NPpyFtXgx9/uIy7M6TW4PbLTT5wMefZQiKADQ2OjDGfgP3o6/AmnjR4o9mI12AtTT/vnP6XVDA3B63Bf4BOdgzCyR4RPY2hMFaJTLY4/R64YG4NSkHViPaTj/CsHPp00pHs5ZZwGPP06vGxqAcSn78Clm4Jbr+5pNMkpsvp4nnwz85jf0uqEBGJNWib/hGvxo/j6xB7JhFXkzY8cC995Lr9vagNSENszBu/jGRfuUn8tACEyseRAbBQpAodU//5ny+S8/sAXXLf86MsYNE38gm+2Mj6fc6KRJwKqXSvGrVVcg5SQRY4t7YLOdPh/wi19QedOG5Yfwv+9+FZknDhE0fMeEzQIFAH78Y8rt79vWhEUvzURmfLOg8eImHGDnD35ANfT1Rzvx4/89A6loErASYg96To9uwxjQe++lWptAAFjw63OQ3HJIvJ1ciNXWUtV8SorYzw+Db3+byg4TEoDbF38V/p1fAqd8Q+xBhgwxVpGvqhI0X0RkPPYYjRYdPhwY/a15iPvgPWDin5Wfx0BogdIfNjs0zrhxwKOT/x+wfAtw8rfEH8ABDT1A0aJbD/4FWFUFnCRyWEs33E4br6fPB9x9N4C4fwLv1gJjzxF/EJt73ADZ+YMfAPjgc+ClBmDMWIgtnEKonTY5bp8PePBBANt2Ab9uougmr10TBbezqYm69irWIuuBz0cdJRw5AjzUfV+ddJLYg2Rl0WJHzc3UFp14otjPDwOfD/jud0GRjQXdVaSnnCL2IPHxdI8cPEg/NgiUhASqRwEAlHQvTTN2rPLzGAid4ukPhwgUAABf30h0owA4y87uNSGk2mmzEAMAFBfTVoadXIgdPmxLCDkEft+K7m0DxsJFNoy0O46dO2k7bpx4oZSWRs4bsP/e5XaOHEliQiTmuW1sFNcAgL176b5KTYW4CW1M8LaovFz8Z0dCQ4NxDqKFmAC0QOkPJzlu7tCEDg/oxiERFACGnTLUPL+elZXU+NiJTIEypDttFAiQrXbCHZqM+zYpCcHhT3bfu2aBIgOnPKPcTlnOzMaRPCHs2EHbk0+mIkDRcNFjt0Dh13PIECA3195z6QUtUPrDpllWjyMQkOvQbJpltVdk2jl4MA0fZ8x+xy0zUhQXZ0QX7G7oZTtuB6SzAGg7ReGUCIpsO/l4e7sFChdi48fbex59oAVKf5jXNVE8y2oIBw/SOSQkQMo0fzbOshpCTQ1w9Ci9lpF/jouzbQmDEDo6KIQMyMv7xppD87oQixU7nRZBkRUpckoEZbukOhtBaIHSH8nJ1OsG7HVoPI8/ZgxFAERj4yyrIfCowvDhhmASjRMa+tJSquBPTZVXIOcEO5ubgbIyei0jxQM4w07GYkegcMcty04ntEOA/OvpFIGiIyguxwEjP6Tm8TlOaABl1p9wnNAAmu2Ukd8GnHU9c3ON5RRE44RI0aFDQGMjjc4QPZSa44R2qKUF2LePXstOfYQscqQYxtRFULiAtwvZdlpEC5SBcIJD27aNthMmyDuGE+yUWX/CcYLjlll/wnGC45bdCwWcMRqC23nCCeKHUnNGdk/mZ6dDKykh552dDbFrM5hwgp2VlbSiXlycvM4SFygVFfaNtGttpTUMAB1BcS1OcNxbt9J24kR5x4gVx+2E66kiUuSEHjdPTcqM/PEet50OTYUQc0JkQeZQag63s7KSpjm1Ax5VGDMG4pYw7kF+PqXrAwH7OhElJXT8rCzxc/cIQguUgbDboTEWOxEU3jCoiKA4QaDItDNWHDfvce/fb99IO5V2Hj1K6SQ7UGFnbq4xg6xdz6gKO+Pi7I/+8QLZ8eNtmeQwHLRAGQi7HXdFBY0giouT+8DYHUHp6DAaBpmRIic5bpkCZdQo2paVUS/JDlRGFpqajBFgqlFhZ2Ymgkt723Xvyi6QBchR2h0tUlWXYXehrMPrTwAtUAbGboHCoycnnkijimRhd9FWcTGJlPR0o7coA+64DxywZ7K2o0eNkK7MiNiwYVS02d5uz5wvXV1yZ5HlJCdTuBywz6GpECiA/Y5b9iRtHLvrUFRdT7vbXIeP4AG0QBkYuwWKivoTwHDchw9Ttb5qtmyh7cSJcsON+fmUVw4E7IkWcTtHjZK7pkpCghEVs8Oh7dljLPg2ZozcY5nTPKqprzfaBpm1NoC9dgYCagQnYH+UM1YiKA6fAwXQAmVgeCPf0ECNkWp4BEW2QMnOBjIy6LUdDSAXYpMmyT1OXJzR0PMhkyrhAkW2nYAhOu20c8IEiuTIxE7Hze0cPhzIyZF7LDsjC/v2keBMSpIzWaQZOyNFDQ1Gx0WVELNDoHR2GrVwOoLiYtLTjdyvHTcSd9wy0wEARS2c4NBUOG47BcrmzbRVaacdDT2389RT5R8rVuy003F/+SVtJ0yg6JxM7Iyg8Pa2oIA6bTKxM4Kydy+lf1NTje/bgWiBEg52OTTzCB7ZERTA6BmVlso/Vk/MKR7ZxIoQs9NOLVDEY2cEJVbs5EJs8mT5x7JToMheDFEQzj0zJ8Fz6Hz9FFWUldGQwsREuXNmcOxyaA0NhijysuMOBNSlsgBnpD60QBGHnXaqdNzmCIrqoeP8eqoUKEeOqK/7c0GBLKAFSnhwgaI6ssCjJyefLGcNnp7Y5bh5sVZBgbwp0c3YZef+/SQ4k5LkDjHm2OXQGhuNGSq9LMQCAbVCjDvugwfVj0BTKcSGDaOUc2srOW+VqBRi2dmUYgHUD8Lg11N26YBFtEAJB576UB1BUVV/wuGOW7UQU5n2AAw7VTs0bucpp6gXnCp7ovy+HTpUjeDkAqWmhuZDUcX+/RT9UyU48/PpWKpnH21oMASnCsft9xszm6pM8wQCaiMo5jlfVKd5vviCtlOmqD1uhGiBEg52pXhU1p8AhhBTHVlQWX8CGI67vFztOhiqhRgPIbe0ANXVao4JqI0qADRVd1YWvVYpOrkzGz9ejeCMi7OnUJYLzsJCNYITsKcOpbSUon9+v/wh4xw75kJpajKGjJ92mrrjRoEWKOFgTvHY0RNVHUE5ckRtT1RlXQZAvbOkJJpMTOVcKCpH8ADU0PJFA+1w3KrsBOxJ86hMB3DsECjcTlWCE7DXThUjlTjct+zereZ4AHUgGKN20KFr8HC0QAmHkSMpHNfYqK4n2tVlFDKpiiwMGmRPT1R1ZMHcE1UZLVIdWQDsGYGmsl6BY4dDs8NOOyILKtMeHDuGGtshOPngB5UChad3HB49AbRACY/kZGPCNlVpHj4TZ3Ky/Jk4zageanz4MEVsfD61FeWqC2Xb2oyJkbwcWWDMXiEWKwIlViIodggUlXZygcJXclfBpk20dXj9CaAFSvioLpTdsIG2U6bIn4nTjGrHzdM7J5xgVLSrQLWdO3ZQVCw720i7qEC1nQcP0uKW8fHyZ+I0o9pxNzUZvV4vO27VhaMcOyJ/dkRQTjyRtiUl6soHdATFg6gearx+PW2nTlVzPI5qh6Y6vcNRPZLHbKfKpc1VO27uzMaNoxoYVai2c9s2cij5+cCQIWqOCRh2qmqH9u1TOzSewyMLxcVqHHddndHmqRQoY8ZQe9DQoGZIdWen0RbpCIqHUD2ShwuUadPUHI+jOsWzcSNtVfZCAS3EZGFHegdQfz3tSO8AhuPeu1fNXCjmwlEVI5U4Y8ZQrVhjI1BRIf94/HqqWFPJTHKyMZJHRZpn1y6aXyY9naLWDkcLlHBRKVC6ugzHrVqgqG7o//Mf2p51lprjcVTbyQWn6rCqucetoifKHZpqIcZD5YcOUW9UNnYJlGHDgLQ06gmraIvsstPvNzpLfEisTOxIY3FU1qHw+pPJkx09xT3H+WfoFFRGFoqLqeeQmqo2jw+oddzHjhmNzxlnyD+eGfNoCNlzoXR1AevW0WvVQmz0aGqIGhqoIFk23E7V4eOcHCPVosKh2VFQCdC15KkWlXba4bj5XCRet1PlSB4X1Z8AWqCED4+glJXJD63y3vbpp6stkAUMgVJTI78nyu0cM0bdBFCcwkIKr3Z1yRdjO3eS4ExPV7/2RXKyIa75sHVZ1NQYjaxqIQYYYn7nTrnH6ey0LwULGHaqcNy8x61aiAGGQOGj32Rip0AxF8rKxkUjeAAtUMKnoIAa+0BAfgW9nY1fZqYhFmQ/MDy9c+aZco/TG3FxRkPP1wKSxeef03baNPWCE6Cp9QH5AoVfz5NOkr9UfW+oEihbtwLNzfSsqI5wAobjlm3n4cMUMfb57GmLVEVQ2tuNFI8dkQVVERTGdATFs/h86upQ7BQogNHLl+247RQogDo7uUCxy05VAmXtWtqefbbc4/QFt1O24+Z2nnWWPXl8VRGUzz6j7fjxxgSOKlElUDZtosLRnBw1q8b3xFyDIrNOrLwcOHqUZslVNfmnRaQ/XYsWLYLP58OCBQuCf2OMYeHChSgsLERKSgpmzZqFbXzdGSejog6ls9NQuXYLFNnXxCkCRVVkwY60B6BOoHAhZpedqiIodgsxVREUbuf06XKP0xfcztJSmuhQFp9+Stvp09VOAcAZPdoYalxVJe843K+MH692CgALSBUo69atwzPPPINTe+QvH3/8cTzxxBNYsmQJ1q1bh4KCAsyePRsNKqrvrcCHZcnMie7YQTPIZmTYo+YBY+0fmQLl4EEaPhgfb18+VEUEpbnZGHrr5QhKIGAIFLscNxcoJSVyC5/tdty8Xaipkbv0Bo+g2GVnQQHVbQUCcqPW3M4ZM+Qdoz+Sk40J+GSmebiddnV8o0CaQGlsbMTXv/51PPvss8g25aMZY3jyySfx8MMP4+qrr8bEiRPx0ksvobm5Ga+99pqs0xEDd9x89lMZmCdos2sYGLdTpuPmUYVJk9TOIGvGHEEJBOQcY8MGKsQtLKQ5FuyAC5RDh2hCKhmUlNCorORk9UOMOSNG0PHb2+UVPh89aqQc7BKcaWmGQ5OV/ujoMEZk2SVQfD41aR5zBMUuVBTKrllD2698Rd4xBCPNA95999249NJLcdFFF4X8vbS0FJWVlZgzZ07wb36/HzNnzsSn/EbpQVtbG+rr60N+bIFHgniPWAZ2158AhkDZu5ciADKwO70DUEQsMZGmLS8vl3MMu9M7ANUPDB1Kr2WlBXhUYepUtRN6mYmLMxyarGgRjxKddBKQmyvnGOEg23Fv3kyR3EGDjGPZgWw7y8uBAwcokqt6qgMzsudCaW01BOe558o5hgSkCJSlS5di48aNWLRo0XHvVVZWAgDy8/ND/p6fnx98ryeLFi1CVlZW8KeIz7ynGu64Dx2SF1p1gkAZPJgaX8bkOTTuuO1sFBISjDklZEWL7C6Q5fD0h2zHbVd6hyO7DsXu+hOO7EJZng44+2x7J/SSLVC4naeeSukku5A9kmfdOoos5ue7YgZZjvA7r7y8HPfeey9effVVJCcn97mfr0cxEmPsuL9xHnroIdTV1QV/ymX1dgciI8MYySMjitLaaozHV70GjxmfT24dSiBgqHm7HbfsOhS7C0c5sutQzCNb7ET2SB6nCBTZhbJ2159wZAsUHrW3q/6EIzvFY07v2FEIHCXCBcqGDRtQVVWFqVOnIiEhAQkJCVi1ahV+//vfIyEhIRg56RktqaqqOi6qwvH7/cjMzAz5sQ2eX5chUNaupWr1ggL7Va5MgbJrF1Wsp6aqn7isJzIFSmUlzZlj1zwSZmQKlOZmYx4Jux23zAiKEwqBOaoiKE4RKLIGJthdIMsxR1BkDDXmAsVF6R1AgkC58MILsWXLFmzatCn4M23aNHz961/Hpk2bMGbMGBQUFGDlypXB/2lvb8eqVasww+6bJBy4QOENskg++IC2F1xgv8qV6bh5Iz91KqVZ7ESmnTyNNX48Rd/sRGZkYeNGKgQeOtS+QmCOOZUluqHfuZOKjFNT7SsE5nDHvWeP+JmtzRO02R0R4467upoKlEXS0mKseWa3EBszhupgGhqoJkYkgQDwySf02mUCRbh3yMjIwMQek8CkpaUhNzc3+PcFCxbg0UcfxdixYzF27Fg8+uijSE1Nxfz580WfjnhkFspygXLhheI/O1JkRlA+/JC255wj/rMjxTyShzGxwtApaQ/AECh79lCUTuQ8CGY77RbWY8fSOdTWklMbPFjcZ3M7zzjDfmHNFw1saqJidpGFrNzOCRNotlw7SUsj0XvgAEWLRAqJDRtoOHpBgbHEh134/fR9b95M5yWyznLbNhLW6en2TOVvAVuqnx544AEsWLAAd911F6ZNm4aDBw9ixYoVyLC7lxkOvOe0davYoamNjUZk4YILxH1utHCBUloqdiQPYwCPns2eLe5zo2XsWOq51NWJX9ad23neeWI/NxqGDiVnEwiIz3Pz3pndaQ+Aoht8IUjR0SKn1J8AoUNwRdvplPQOR1Ydit0TtPWEp4H5QAlRfPwxbadPt19YR4gSgfLRRx/hySefDP7u8/mwcOFCVFRUoLW1FatWrTou6uJYTjyR5lpobhY7edDHH5OaHz3afjUP0MqweXkkKETWLWzbRkIgJcUZERS/3yhQE5nmqa6mnhAAmIbU24bPJ6cOpb0deP99eu2EyB8grw7lo49o6zTH7XWBwqOcfACBKJxSIMuRJVBcWn8C6LV4IichwXhgRNahmOtPnIKM+owVK2g7c6ZzplvmjluknStXkrg79VRjDhK7kSFQPvuM8uaDB9Pq206ACxSR6cnduynylJgInH++uM+1Ak83i3Ro9fWG43bKhF48RcojWCLo6jIif04RYnzKhfXrxdZPaYESY8ioQ3GiQJFRh8LTHk6IKnBkCLF336XtxReL+0yryBDW//d/tL34YnvnyzDDh+iLdGj//jdtzz3X/roMDu/5f/qpOIe2ciVFck86yYgs2g0XEBs3iluTZ906inJmZto/1QFn0iQSwDU1wP79Yj6zrIwmo0tIcEYtXIQ4pEVxGaJH8hw9aizk5JTeGSBeoLS2AqtW0Wsn1J9wuJ38GliFMSNS5CSBwhsokQ6NC5SvflXM54mApw43bqSRGiJ45x3aXnKJmM8TwbRp5HgOHRI3E/Lbb9P20kvFfJ4IRo+mCF17u7hn9F//ou1Xv2rfzMc98fvFR8V4e3v66VRw7DK0QIkG0RGUVavIYZxyinPSAYBh57p1YhzaJ5+Qwxg61BAFTsDs0BobrX/eli1UZ5Oa6qyw6hlnUGNcUSGmfqqigpaq9/mcFREbNYruMfN6MlZobjZGnjlJoKSmAqedRq953YgVAgFDiDlJoPh8RmGyqKjY8uW0vewyMZ8nCtF1KG+9RdseS864BS1QooFHUHbvpmF+VnHS8GIzZ5xBqv7wYTETJZlH7zihap4zciQtvtbZKaYB5OmdWbOcU2cDUGEybwB5XtoK3M6pU8UO57WKz2eITl5nYIWPPqLUwogRRh2PU+Dpjz7WMYuIjRvpWc/IcE79CUekQCkro+h3XJyzIn+AWIHS0mKkJq+6yvrn2YAWKNGQn08/jBkT/ViBj4JwUv0JQKOVeAPIRzBYgac9nNTb5vChwKtXW/8sJ9afcLjjESFQeHpn7lzrnyUaLlBEOG5zesdJwhow6lBERFB4emf2bCApyfrniYQLFJF2Tp9OIxWdhFmgWI1av/cedaCLiuxdOsUCWqBEy6xZtH3vPWufc+AAjarw+Whki9PgdloVKEeOGPljJ4YbRQmUpiZj3gEnChSecrIqULq6DMHptF4oEFpAamW+IsYMgeJEIcY7EF98Yb3exon1J5wzzqCIR1kZ1dxYgdefzJtn/bxEM2ECdQzr6mhSRSu88QZtr7rKecI6TLRAiRZe5Gmasj8q/vpX2s6YAeTkWPssGZgFihVFz4Xc5MkUfXIaXKDw9ZCiZdUqKuYbOdJYKdlJ8MjCzp0kGqNl3TqarXXQIOeMgjAzZQqltI4etTbBV3ExTVaYlOS8CCdAaafCQkpPWkkLHD5s1Os4UYhlZAB8riw+oWU0NDUZEWun1Z8AVCPG64qsXM/OTqPOxqXpHUALlOjhAuXzz4Fjx6L/nFdeoe2NN1o+JSmcdRbVUVRWWqtDMYePnchJJ9HkdG1t1gorzekdJ/ZacnKMAmUr9Rk8tz17tjNnp0xMNISTFTt59GTmTJoq3Gn4fGLqUPj1PP10ZxXqmxGR5nn/fXrGR42yf6HSvuBpHivt0Mcf03Dl3FxnFepHiBYo0TJiBM3kGAgYFf6R8uWXNOIjKQm49lqx5ycKcx0KH7IWKceOAf/4B72+5hohpyUcn896mqez07DTiWkPjog6FO64nWyniEJZJ6d3OPz5tOK4nZze4YgolDWnd5zYgQCMCduspJuXLaPt5Zc7swMRJlqgWMFqmufVV2k7bx6QnS3mnGRgtQ7lL3+hOVAmTXJmOoBjVaC8/TZw8CAV3jlpOGpPeI+K18pEypdfUvg5IcHZDs1qoWxVlSHKnSxQrE7Y1t5u1BM5+XpygbJ+fXQrODPm7PoTDo++rl9PNTeRwpghUFyc3gG0QLGGFYHS1QW89hq9dmp6h8OLd6OpQ2EMePZZev2Nbzi31wIYdn7yCUVDIuVPf6LtLbc4a3hxT7hA2bgxumHyf/wjbf/rv5xZT8ThkYXi4ujqbZ59lhzhmWca0+c7kdNPpyjskSPR1dv8v/9HU9wXFhq9dydy8smUomxpia4T8fHHNHdPWprR6XIi+flGlJMXukbC+vU0+CItzbkp9TDRAsUKs2ZRL3L3biqki4QPPqBq9JwcZ/e2Aeq5+P30cEe6Eu7GjdTj9vuBG26Qc36imDiRij4bG2kCskjYt88Ydvutbwk+McGMHElDDzs7I09/1NUZkb+77hJ/biLJzjbmLOI953Dp6DCE2D33iD0v0fj9xgzUS5dG9r+MAb/9Lb2++27nLFfQG3FxRor4L3+J/P+feIK28+c7uwMBAFdfTdtoBAqPnlxyCaXoXYyD70YXkJlphB0jjaLw4tj//m/nzTnQk+Rkw05eAR8uzz1H26uvduYoJTNxcUaa5803I/vf556jxv6CC4CxY4WfmnB4yuLllyP7v5dfpqjLhAnOm8yrN66/nrYvvBDZ/y1bRum6IUOAr31N/HmJ5qabaPvyy5FFOdesoU5EcrLzhTUAfP3rtP3HPyIbVl1SYsyqet994s9LNFygrFlDAxTCpbkZ+POfQz/DxWiBYpVo0jxNTYYydnp6h8Nz09wRh0NTk5HG+uY35ZyXaHiU5/nnw89zd3TQ/gBwxx1yzks03/gGbf/+dxqKGw6MAU89Ra/vusvZ6TrOTTeR8Pz448iif4sX0/aOO5zf2waAK6+kUUalpZFFxZ58krY33ui8Sct649xzaYBCfX1kUbHf/pbu30svdXa6jlNUROk2xoB//jP8/3vmGRoyPmqUJwQKmAupq6tjAFhdXZ3dp8LY2rWMAYylpDBWVRXe/7z8Mv3PCScwFgjIPT9RHDnCmN9P5/3pp+H9zwsvGHZ2dUk9PWG0tzNWUEDn/be/hfc///gH7T9kCGNtbXLPTxSBAGOTJ9N5//734f3PBx/Q/unpjDnh2QuXr36VzvtHPwpv/y++oP0TEhg7eFDqqQnl1lvpvL/xjfD237uXsbg4+p+tW+Wem0gefJDO+Yorwtu/upraZ4DuYbfw2GN0zrNnh7d/c7PRdj3zjNxzs0Ak/ltHUKxy5pk0br2lBfjd7wbev6UFWLiQXt90kzt6oQD1rubPp9e8dzkQPL1z++3Ozm2bSUyk8wWMGoSB4MWxt93m/HQdx+czolrPPhteVIxHT268kdKbbuG222j70ktUnD4Q/P6+5hoqHHULN99M2//3/8JLfyxeTNMkzJnjrMU7B4JHOd95J7zo3x//SN/HlCnOLo7tCY+AfPhheHY+8wylg0aMMO4Ft6NAMAnHUREUxhh74w1SrVlZjB071v++P/oR7TtsGGP19UpOTxgbNxo9y0OH+t/3X/+ifePjB97Xaezfb/Qsd+7sf9/Nm2k/gLE9e9ScnyiOHmUsOZnOfe3a/vc9cICuJUA2u4nWVsZycujc/+//+t/3yBHjO/nkEzXnJ4quLsZGjqRzX7q0/33r6hjLyKB933lHyekJhUf/nn66//1aWiiyCTD26qtKTk0okybRuS9e3P9+zc2MDR1K+/7pT2rOLUp0BEU1V1xBsxLW1Rm9zN7Yvh349a/p9eLFNH2zm5gyheaW6Ow0oga9cfgwcOut9Pq733XuzJR9MWKEUXPTn51NTcB119HrK68ExoyRfmpCyc42CkD5UPDe6OqiqFJXFxXG8pExbsHvN6J/vICwL372M5qz5/TTjWHKbiEuzqhpG8jOp54CGhpo6K4T14waCF4s++yz/UfFXn2V5rMZPty5k2H2By9c/slPqF3ti2efpVGWI0bQNAdeQYFgEo7jIiiMMfbKK6ReBw9mrKnp+Pe7uhj7yldon8suc0/tSU+WLiUbCgqoZ9qTQICxuXNpn1NPpR6MG3n7bbIhO5ty2L1xyy20z9ChjB0+rPb8RLF6NdmQmsrY9u297/Pww0ad1aZNas9PFDz6Fx/P2Hvv9b7Pn/5kRMOWL1d7fqIoLmbM5yMbnn++933eftuIhj37rNrzE8WhQ1QLBTD205/2vs+GDYxlZtI+jz+u9vxE0dHB2Omnkw3XX9/7Po2NjBUW0j5//KPa84uCSPy3Fiii6OhgbNQoukl+/OPjBcjzzxuOYN8+e85RBO3txsMwb97xAmTxYnovOdldhXc96exk7KSTyJapU49P3b34Ir0XF8fYhx/acopCCAQM4Txy5PHpuGXLDKf9l7/YcYbiuOkmQ3QWF4e+9/77lLoEGPvFL+w5P1H8/Odkh9/P2Pr1oe+tW0dtEMDYzTe7t6PEGN2PAAmy998PfW/HDsby8uj9mTPd21FijK4hTzn3TFFWVjJ25pn0XlFR751Gh6EFil08+6zRmF97LTm1Q4eo7oSr/f/9X7vP0jorVhh5+tmzKWJUU0PRFT7SZ6CcqRvYsYMiYgBjM2Yw1tBAdUPvvms08j//ud1naZ0jRxgbO5bsOe00qk9oaaG6FF6nsGCB3WdpnZYWxs4+m+w5+WTGamupY7FtG4kWgLH5893ttBmjaO1ll4WKzq4uqpHi9RizZ1Nnw+3cfjvZk59PorOjg2rIioro76ef7q4RZ32xYAHZM3o0tT9tbXTf8pqjnBzX1ExpgWIXgQAJEN4TGzqUsaQkQ7Scdx49QF7ggw8YS0sz0lo8rAwwdskl7m/kOZs2MTZokFEEzW0EGLvoIoq0eAGz8+Lik//MnOkNZ8YYYxUVhvMy37MAY2ed5e6etpnaWhreb7aP28tFqBdoamJswoRQG3knady48Kd+cDoNDcZ9C1DqinceTjzx+Iigg9ECxW7WrjWULe99v/GGd5wZZ80a4yEBGBs/nrF776XRIV7i889D7Rw6lCJkbq076Yv1641IHxcqs2ZRGNlLfPGFERnjP6edRuLFS3z5ZWg7xCNHbprbJRx27KB6N7PgHD2asbIyu89MLMXFjH3rWxQt4naeey5FQF1EJP7bx1g4EyA4i/r6emRlZaGurg6ZTp2PobYWePFF4KyzjNVGvUhJCbBtG414cPLCcVbZtw/Yv5/W68nNtfts5FFZSYvODRtGo3zcMk9PpLS2AjU1QEoKTfOekuJNWwMBmv68tZV+hg4F4uPtPis5dHUB1dV0/558Ms1p5EUCAeDzz6ntvfZa1623E4n/1gJFo9FoNBqNEiLx33oeFI1Go9FoNI5DCxSNRqPRaDSOQwsUjUaj0Wg0jkMLFI1Go9FoNI5DCxSNRqPRaDSOQwsUjUaj0Wg0jkMLFI1Go9FoNI5DCxSNRqPRaDSOQwsUjUaj0Wg0jkMLFI1Go9FoNI5DCxSNRqPRaDSOQwsUjUaj0Wg0jkMLFI1Go9FoNI4jwe4TiAa+AHN9fb3NZ6LRaDQajSZcuN/mfrw/XClQGhoaAABFRUU2n4lGo9FoNJpIaWhoQFZWVr/7+Fg4MsZhBAIBHDp0CBkZGfD5fEI/u76+HkVFRSgvL0dmZqbQz9YY6O9ZDfp7VoP+ntWhv2s1yPqeGWNoaGhAYWEh4uL6rzJxZQQlLi4Ow4cPl3qMzMxMffMrQH/PatDfsxr096wO/V2rQcb3PFDkhKOLZDUajUaj0TgOLVA0Go1Go9E4Di1QeuD3+/HII4/A7/fbfSqeRn/PatDfsxr096wO/V2rwQnfsyuLZDUajUaj0XgbHUHRaDQajUbjOLRA0Wg0Go1G4zi0QNFoNBqNRuM4tEDRaDQajUbjOLRA0Wg0Go1G4zi0QDHx1FNPYfTo0UhOTsbUqVPx8ccf231Krmf16tW47LLLUFhYCJ/PhzfffDPkfcYYFi5ciMLCQqSkpGDWrFnYtm2bPSfrUhYtWoQzzjgDGRkZGDJkCK688krs2rUrZB/9PYvhj3/8I0499dTg7JrTp0/Hv//97+D7+nsWz6JFi+Dz+bBgwYLg3/T3LIaFCxfC5/OF/BQUFATft/t71gKlm9dffx0LFizAww8/jC+++AJf+cpXMHfuXJSVldl9aq6mqakJkydPxpIlS3p9//HHH8cTTzyBJUuWYN26dSgoKMDs2bODC0JqBmbVqlW4++67sXbtWqxcuRKdnZ2YM2cOmpqagvvo71kMw4cPx2OPPYb169dj/fr1uOCCC3DFFVcEG239PYtl3bp1eOaZZ3DqqaeG/F1/z+KYMGECKioqgj9btmwJvmf798w0jDHGzjzzTPbtb3875G/jxo1jDz74oE1n5D0AsGXLlgV/DwQCrKCggD322GPBv7W2trKsrCz29NNP23CG3qCqqooBYKtWrWKM6e9ZNtnZ2ey5557T37NgGhoa2NixY9nKlSvZzJkz2b333ssY0/ezSB555BE2efLkXt9zwvesIygA2tvbsWHDBsyZMyfk73PmzMGnn35q01l5n9LSUlRWVoZ8736/HzNnztTfuwXq6uoAADk5OQD09yyLrq4uLF26FE1NTZg+fbr+ngVz991349JLL8VFF10U8nf9PYulpKQEhYWFGD16NK677jrs3bsXgDO+Z1euZiya6upqdHV1IT8/P+Tv+fn5qKystOmsvA//bnv73vfv32/HKbkexhjuu+8+nHvuuZg4cSIA/T2LZsuWLZg+fTpaW1uRnp6OZcuWYfz48cFGW3/P1lm6dCk2btyIdevWHfeevp/FcdZZZ+Hll1/GSSedhMOHD+OXv/wlZsyYgW3btjnie9YCxYTP5wv5nTF23N804tHfuzi+853vYPPmzVizZs1x7+nvWQwnn3wyNm3ahGPHjuEf//gHbr75ZqxatSr4vv6erVFeXo57770XK1asQHJycp/76e/ZOnPnzg2+njRpEqZPn44TTjgBL730Es4++2wA9n7POsUDIC8vD/Hx8cdFS6qqqo5Tjxpx8Gpx/b2L4Z577sFbb72FDz/8EMOHDw/+XX/PYklKSsKJJ56IadOmYdGiRZg8eTJ+97vf6e9ZEBs2bEBVVRWmTp2KhIQEJCQkYNWqVfj973+PhISE4Hepv2fxpKWlYdKkSSgpKXHE/awFCqjBmTp1KlauXBny95UrV2LGjBk2nZX3GT16NAoKCkK+9/b2dqxatUp/7xHAGMN3vvMdvPHGG/jggw8wevTokPf19ywXxhja2tr09yyICy+8EFu2bMGmTZuCP9OmTcPXv/51bNq0CWPGjNHfsyTa2tqwY8cODB061Bn3s5JSXBewdOlSlpiYyJ5//nm2fft2tmDBApaWlsb27dtn96m5moaGBvbFF1+wL774ggFgTzzxBPviiy/Y/v37GWOMPfbYYywrK4u98cYbbMuWLez6669nQ4cOZfX19TafuXu48847WVZWFvvoo49YRUVF8Ke5uTm4j/6exfDQQw+x1atXs9LSUrZ582b2ox/9iMXFxbEVK1YwxvT3LAvzKB7G9Pcsivvvv5999NFHbO/evWzt2rVs3rx5LCMjI+j37P6etUAx8Yc//IGNHDmSJSUlsdNPPz04TFMTPR9++CEDcNzPzTffzBijoWyPPPIIKygoYH6/n5133nlsy5Yt9p60y+jt+wXAXnjhheA++nsWw2233RZsIwYPHswuvPDCoDhhTH/PsugpUPT3LIb//u//ZkOHDmWJiYmssLCQXX311Wzbtm3B9+3+nn2MMaYmVqPRaDQajUYTHroGRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j0AJFo9FoNBqN49ACRaPRaDQajePQAkWj0Wg0Go3j+P8ggzi+ix0W2AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -613,7 +632,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGxCAYAAABIjE2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACdeklEQVR4nO2deXhV1dX/vzfTzRwyQEIgTIoDgoiAVhxAESgKDryWKo7VttYZh7Za20pbX7G2tbZQtQ6vs2JtxYq2P8EJB0QZZSYBAoRACAkh83z374+Vfc+5Ge+w9z7D3Z/nyXNuck/uOeuec/b67rXW3tvDGGPQaDQajUajsRExVp+ARqPRaDQaTWe0QNFoNBqNRmM7tEDRaDQajUZjO7RA0Wg0Go1GYzu0QNFoNBqNRmM7tEDRaDQajUZjO7RA0Wg0Go1GYzu0QNFoNBqNRmM7tEDRaDQajUZjO7RA0Wg0yvF4PFiwYIGl5zBlyhRMmTLF0nPQaDQ9E2f1CWg0Go0VPPnkk1afgkaj6QUtUDQaTVQyatQoq09Bo9H0gk7xaDQuZcGCBfB4PNiwYQPmzJmD9PR0ZGRk4JprrsGRI0cAADfddBOysrLQ0NDQ5f8vuOACnHLKKf7f33rrLZx55pnIyMhAcnIyRowYgRtvvDHgf/bv349rrrkGAwYMgNfrxcknn4w//elP8Pl8PZ7nt99+C4/Hg+eff77Le//973/h8Xjw7rvv+v9WVFSEefPmBRzjb3/7W8jfjznF09raigEDBuDaa6/tst+xY8eQlJSEe+65BwDw6aefwuPx4NVXX8U999yDvLw8JCUlYfLkydiwYUPI56HRaLpHCxSNxuVcfvnlOP744/HPf/4TCxYswDvvvIMZM2agtbUVd911F6qqqvD6668H/M+2bdvwySef4LbbbgMAfPXVV/j+97+PESNGYMmSJXj//ffx61//Gm1tbf7/OXLkCCZNmoTly5fjd7/7Hd59911ceOGFuO+++3D77bf3eH5jx47FuHHj8MILL3R578UXX8SAAQNw0UUX+c9r4sSJ2LJlC/70pz/hvffew8UXX4w777wTv/nNb8L+juLj43HNNdfgX//6F2pqagLee+ONN9DU1IQf/OAHAX//xS9+gT179uC5557Dc889h4MHD2LKlCnYs2dP2Oeh0WhMMI1G40oeeughBoDdfffdAX9/7bXXGAD26quvMsYYmzx5MjvttNMC9rnllltYeno6q62tZYwx9sc//pEBYMeOHevxePfffz8DwL7++usun+XxeNjOnTv9fwPAHnroIf/vf/3rXxmAgH2OHj3KvF4vu/fee/1/mzFjBhs8eDCrrq4OOMbtt9/OEhMT2dGjR3v7SgKYPHkymzx5sv/3TZs2MQDsmWeeCdjvjDPOYOPHj/f//sknnzAA7PTTT2c+n8//971797L4+Hj2wx/+MOhz0Gg0PaMjKBqNy7n66qsDfp87dy7i4uLwySefAADuuusubNy4EV9++SUAoKamBq+88gquv/56pKamAgAmTpzo/99//OMfKC0t7XKcjz/+GKNGjcIZZ5wR8PcbbrgBjDF8/PHHvZ6j1+vFiy++6P/bG2+8gebmZn/koqmpCR999BEuv/xyJCcno62tzf9z0UUXoampCatXrw7x2zEYM2YMxo8fHxDJ2b59O7755psuqSwAmDdvHjwej//3oUOHYtKkSf7vVaPRRIYWKBqNy8nLywv4PS4uDtnZ2aisrAQAXHrppRg2bJi/juPFF19EfX29P70DAOeddx7eeecdtLW14brrrsPgwYMxevRovPHGG/59KisrMXDgwC7Hz8/P97/fE1lZWbjkkkvw8ssvo7293X8eZ5xxhr8OprKyEm1tbVi0aBHi4+MDfngKqKKiIuTvx8yNN96Ir776Cjt27AAAvPDCC/B6vbjqqqu67Nv5e+V/681OjUYTPFqgaDQup6ysLOD3trY2VFZWIjs7GwAQExOD2267Df/85z9x6NAhPPnkk5g6dSpOPPHEgP+79NJL8dFHH6G6uhqffvopBg8ejHnz5uGrr74CAGRnZ+PQoUNdjn/w4EEAQE5OTq/n+YMf/AClpaVYsWIFtm3bhjVr1gTUfWRmZiI2NhY33HAD1qxZ0+0PFyrhctVVV/kjOe3t7XjllVdw2WWXITMzs8u+nb9X/jf+vWo0msjQAkWjcTmvvfZawO//+Mc/0NbWFjBJ2Q9/+EMkJCTg6quvxs6dO3stavV6vZg8eTJ+//vfA4B/5MrUqVOxbds2rF+/PmD/l19+GR6PB+eff36v5zl9+nQMGjQIL7zwAl544QUkJiYGRC6Sk5Nx/vnnY8OGDTj11FMxYcKELj+RioPMzExcdtllePnll/Hee++hrKys2/QOQCkoxpj/93379mHVqlV68jeNRhB6HhSNxuW8/fbbiIuLw7Rp07B161b86le/wtixYzF37lz/Pv369cN1112Hp556CkOHDsXs2bMDPuPXv/41Dhw4gKlTp2Lw4ME4duwY/vKXvyA+Ph6TJ08GANx99914+eWXcfHFF+O3v/0thg4divfffx9PPvkkbrnlFpxwwgm9nmdsbCyuu+46PP7440hPT8ecOXOQkZERsM9f/vIXnHPOOTj33HNxyy23YNiwYaitrcWuXbuwbNmyXutcguXGG2/Em2++idtvvx2DBw/GhRde2O1+5eXluPzyy/GjH/0I1dXVeOihh5CYmIgHHngg4nPQaDTQo3g0GrfCR/GsW7eOzZ49m6WmprK0tDR21VVXscOHD3fZ/9NPP2UA2KOPPtrlvffee4/NnDmTDRo0iCUkJLABAwawiy66iH3++ecB++3bt4/NmzePZWdns/j4eHbiiSeyP/zhD6y9vT1gP3QaxcMpLCxkABgAtmLFim7tKi4uZjfeeCMbNGgQi4+PZ/3792eTJk1iDz/8cAjfTtdRPJz29nZWUFDAALAHH3ywy/t8FM8rr7zC7rzzTta/f3/m9XrZueeey9auXRvSOWg0mp7xMGaKUWo0GtewYMEC/OY3v8GRI0f6rP8AgHvvvRdPPfUUSkpKdB1FL3z66ac4//zz8dZbb+GKK66w+nQ0GteiUzwaTZSzevVqFBYW4sknn8TNN9+sxYlGo7EFWqBoNFHOWWedheTkZMyaNQsPP/yw1acTMe3t7egtMOzxeBAbG6vwjDQaTTjoFI9Go3EVw4YNw759+3p8f/Lkyfj000/VnZBGowkLHUHRaDSuYtmyZWhubu7x/bS0NIVno9FowkVHUDQajUaj0dgOPVGbRqPRaDQa2+HIFI/P58PBgweRlpYWsFiXRqPRaDQa+8IYQ21tLfLz8xET03uMxJEC5eDBgygoKLD6NDQajUaj0YRBSUkJBg8e3Os+jhQovMitpKQE6enpFp+NRqPRaDSaYKipqUFBQUFQxeqOFCg8rZOenq4Fikaj0Wg0DiOY8gxdJKvRaDQajcZ2aIGi0Wg0Go3GdmiBotFoNBqNxnZogaLRaDQajcZ2aIGi0Wg0Go3GdmiBotFoNBqNxnZogaLRaDQajcZ2aIGi0Wg0Go3GdmiBotFoNBqNxnZogaLRaDQajcZ2aIGi0Wg0Go3GdmiBotFoNBqNxnZogRIEra1Ac7PVZyGfl18G1qyx+izkwhjw9NPAxo1Wn4lcfD7ghReA4mKrz0QujAEffADU1Fh9JvLZt4+uq0YTLWiB0geMATNmAAMHAkeOWH028vjkE+D664HLLyeb3cq77wK33ALMnetuO//5T+DGG4Err7T6TOTy1lvAd78LXHON1Wcil3ffBYYNA+6+2+ozkcsXXwD9+wPPPGP1mWjsgBYofbB8OTnvqirg00+tPht5LFtG29JSYMsWa89FJitW0LaoCNi+3dpzkcknn9D2m2+AnTutPReZfPwxbZcto2vqVv7zH9r+7W/Arl3WnotM3nwTqKgA7rwTKCy0+mzk8dxzwFlnUef3lluA6mqrz8ieaIHSB489Zrxeu9a685DN++8br7kTdyPccQPAv/9t3XnI5ssvjdevvWbdecjGnJJ88knrzkM2PCXZ3g785jeWnopUNm2ibXMz8OMfuzel9ZvfAKtXUwf46aeBJUusPiN7ogVKL6xda/TQ+O9uZNeuwN6KWwVKWRmwbZvx+7vvWncuMqmuDoyCvfaaO9NZTU2GQwOA//s/oK7OuvORRXt7oJ2vvRZ4H7sFxgw7Y2KAlSsp0uA2GhqAAwfo9bRptN2xw7rzsTNaoPTCH/5A29NPp+26de5U9Dx8PHgwbVeudGdRMI+eDBlC26+/JtHiNlavpsZ+8GAgJQXYs4f+5jY2bgTa2oABA4CRI6lQ9pVXrD4r8ezcCTQ20rW87DK6tr/9rdVnJZ7SUuDYMSA2Fnj4Yfrb3/9u6SlJYc8e2vbrB8yZQ6/dnM6KBC1QeqCkhAoNAeDZZ4HEROqZ7t5t7XnJgAuUO+8EcnOpMVy1ytpzkgEXKN/7HjBxIjX0771n7TnJgKd3zj+fip4B4NVXrTsfWfD0zsSJwG230Ws3Fldu2EDbsWOBe++l1ytXWnc+suDRk5NOAi69lF67sb3lNUQjRwInnECv3Vw/FQlaoPTA5s0ULRkzhiIop51Gf3dbmqe+3ij+nTULuPBCeu3GNA9P151/vtEAurEOhYvLSZOM0S1vveW+NI9ZoFx2Gb3eutV9UU4uUMaNA048kV6XlVGKy01s3kzbMWNoxBJAncJjx6w6IzlwMXL88YZA2bOHprPQBKIFSg+UltKWpwMmTKCt2wTKxx9TOmfYMOq58Jyo2wTK/v3UG4uNBc49F7jkEvr7hx+6K53V1makc84+m2wFaIi820YKfPMNbSdOBAYNorqF1lbg8GFrz0s0ZoGSkwMkJdHvJSXWnZMMeATl1FOB5GRK3QHA3r2WnZIUeATl+OOB/Hy6nu3t7rNTBFqg9AAXKIMG0datAoU38hdeCHg8RgRl3ToaWu0WeHpnwgQgPR0YPZoahqYm41q7gU2bKCqWng6ccgo19FlZ9J6bHFp1tTF8euJEIC7OeFb377fuvETDWKBA8XiM6MK+fZadlhTMAgUw7HSb4zYLlJgYSvUAug6lO0IWKJ999hlmz56N/Px8eDwevPPOO1322b59Oy655BJkZGQgLS0N3/nOd7Df1Go0NzfjjjvuQE5ODlJSUnDJJZfgAC9rtgk9CZT160ntugVeJDp0KG0HDSJVz5i78r/ffkvbSZNo6/EYRcE2u/Uigqd3zjqLGj8AKCigrZsEyrp1tB06lCb2Aoxop5sEyv791FGIiyPBCRjPqpsESkuLMZJlzBjaRoNAAQyBoutQuhKyQKmvr8fYsWOxePHibt/fvXs3zjnnHJx00kn49NNP8e233+JXv/oVEhMT/fvMnz8fS5cuxZIlS/DFF1+grq4Os2bNQruNPP/Bg7TNz6ftSSdRb7Suzl1KlwuUvDzjb1yUuSmywO3kosT82k0ChefxJ040/uZGgWKuP+G4UaDw6MkppwBeL712o0DZsYPSkxkZxv3KBYqblmtoajKeQy5MeB2Km/yKKOJC/YeZM2di5syZPb7/4IMP4qKLLsJjphnORowY4X9dXV2N559/Hq+88gou7MgnvPrqqygoKMCHH36IGTNmhHpKUugcQYmNpRDrl19Smufkk607N5H0JFDWrHGXQOF1Cbm5xt/cKFDKy2nLhTXgToHC5wHhxeuAuwXKuHHG39woULiwPvVUim4CwPDhtHVTBGXPHopOp6dTPRGgIyi9IbQGxefz4f3338cJJ5yAGTNmYMCAATjzzDMD0kDr1q1Da2srpk+f7v9bfn4+Ro8ejVU9jG1tbm5GTU1NwI9sOgsUwGgk+MPkBqItgmIWKNxONwmU7oQYFyhusrM7IeZGgcLrbHjaA3CnQOH1J2Y73ZjiMad3uBDTEZSeESpQysvLUVdXh0cffRTf/e53sXz5clx++eWYM2cOVnYM3C8rK0NCQgIyMzMD/jc3NxdlPcyatXDhQmRkZPh/CniLK4nmZloPAggUKLzHfeiQ1MMrw+czHJrbBUp3dro5gsJHQACGnW6KoPCFO812ulGg8Otpvm/dKFB49MAcmTYLFLcMkTcPMebwCEpJCc1BpTEQHkEBgEsvvRR33303TjvtNNx///2YNWsWnn766V7/lzEGD5eUnXjggQdQXV3t/ymR3NLy+hOv1xgBAdCKxoB7Zh+tqjLG3psbet4rdYtAaW0FKivpdXcpHrfYCfQeQXGTQOlOiLlRoHAhxguBAUOgHDjgnoJ93iE037fczpoa98yFYp6kjdO/P9XeuG1gggiECpScnBzExcVh1KhRAX8/+eST/aN48vLy0NLSgqpOY1jLy8uRa747TXi9XqSnpwf8yMRcIGvWTFyguCWCwoVWdjaQkGD8nUdQ+PfgdHgjHxtLtnLcFkFpaDDWojE7brNAcUNPlLHeBUpFBX0XbqA7gTJwII3qaWtz3zNqtjMpyRAsbimU7TyCByAfo+tQukeoQElISMDEiROxs9P67oWFhRjaIYfHjx+P+Ph4rDDNBHbo0CFs2bIFk/gYUIvprv4EcJ9A4XaYw8eA+1I8PKrQv78x9BYITNm5YRZH7rS9XirC43A7m5qMSJKTqa01JtczO7SMDCAtjV67IVrk8xmRBbMQi401RKdb0jzdCRTAfYWy3QkUQNeh9ETIAqWurg4bN27Exo71v4uLi7Fx40Z/hOSnP/0p3nzzTTz77LPYtWsXFi9ejGXLluHWW28FAGRkZOCmm27Cvffei48++ggbNmzANddcgzFjxvhH9VhNXwLl6FF3zD7aXYEsYNhdXU2Tfjmd7gpkAWoM4+OpR+6GtJ05qmCO/Hm9hoNzg+Pmdqak0NB/jsfjrjTPsWNGCoeP+OC4qQ6lvZ3aVKCrnW4qlPX5jPuSCy+OjqB0T8gCZe3atRg3bhzGdQxpueeeezBu3Dj8+te/BgBcfvnlePrpp/HYY49hzJgxeO655/Cvf/0L55xzjv8z/vznP+Oyyy7D3LlzcfbZZyM5ORnLli1DbGysILMioyeBkpVFDg1wh0PrSaCkpwOpqfTaDVGU7gpkAYqmuGkkT3dpD46b6lC6K5DluEmg8OuZkRGYggXcNZvs0aNG6tGcggXcJVCOHTPWieocKdIRlO4JeR6UKVOmgPWRyL7xxhtx44039vh+YmIiFi1ahEWLFoV6eCXwvG5ngeLxkJMrKaG0AO/FOJWeBApAtu/cSQKFPzxOpbvCUc7gwdT4uUGg9GZnQQHNvuoGgdKbEHOTQOkp7QG4K4LC7czMpNoaM24SKDy9mpraVXDqCEr36LV4uoFHDcxzLHDcNJKnL4ECuCuC0pNAAdwhUKIlgqIFiiFQ3OC4eZ1Nd3a6aTZZLlA6R4kAQ6CUlRmF7hotULqlpxQP4K5C2WgRKD3VoADuSvH0FUEB3CVQunNo0SZQ3BRB6c5Oc5Gs00eg9SZQ+vUz6qncthp3JGiB0gnGtEAB3CVQeqpBAaIvguJ2O6NNoOzf73zHze3sXCALGNezrs4opHUqvQkUwLif+f2t0QKlC8eO0XBMoPcUj5sECrfJjBsFittTPNESQQmmSLakxChIdCq92VlQQDVxjY3Gfk6ltxRPYqLRPjk9ncUFinnyTzNaoHRFC5ROcIeclUUPR2fcIlBaWowHJloiKL0JFDfYGWwExemOuzc7Bw0ix93c7HzH3VsqKyHBaIucnubpLVIEuKdQVkdQQkcLlE70lt4BDGfudIHCH4L4eKqe74xbBEpra/fTaHPMAsXpjrs3ITZwIA2rbm11fgPYm0CJjzcin05P8/TluN1Sh8Kfz+5SPED0CRSnC2uRaIHSCd749TDrvmtG8XCBlZsbOLsqhwuUQ4ecvd5HT9Pcc/LyyP62Nmc77vb27mcd5cTHG+La6Wme3iILgHvqUKJFoPRlJ79vnV48ymtodAQleLRA6URfNxEXKIcPO9tx91YgCxjCpb3d2Q+MeZr77uYBjIszrqmT61AqK6lY0uPpuSfqhjqUnqZ/NxMtAoVH/5y+Hk9vRbKAYb/TIws6xRM6WqB0gguUngqZcnPJCZh7rE6kL4ESF2e85+Q0T29pD44bCmW5ndnZXSe74rhBoFRV9Tz9O8cNAoWx3otHzX93cjsEBG+nFijRhxYonejrJoqLMx4YJ9eh9CVQAHfUofQ2BwrHDQKlt7oMjhsECrczM7PrbJwcfq2d3NBXVxsLWLrZcTPWd6TIDXYCWqCEgxYonegrggK4o1A2GIfmBoESbRGUYOx08vUM5r51Q2SBO+O0tO5HEwLucNx1dcbCq32leJx8PQEtUMJBC5RO9FWDArhjqPGxY7TtbgQPx00CJZhIkZMFSiiOmzeUTqSvAlnAcHROdmjRYic/96QkWp26O9wgxJqagIYGeh3MKB6njygUhRYonehrMh3AHSN5uEDp16/nfdwgUPj17Kl3Bhh2OrnYMJgICm8Y3SBQehNi/Fo72aH1lfYwv+cGO3t7PrmdtbVGtMVp8GcuNpZWp+4O/h34fM6fNVcUWqB0IpgUj5siKG4XKMHYGS2OO1rsdENKIBiBwh1afT3NKOtEgrEzI8Mo/HaqGOPPXGYmDbLoDvOcVDrNQ2iB0om+8oSAOwRKdTVte3PcfMIrN9jZU68FcIfjrqqibW/C2g129jb9O4c77sZGct5OJBjHnZ5OTg1wrhjrawQPEDh03ukCpTe/Aug6lM5ogWKirc1waDqCYjQKTnZo0RJBCUWImQsTnUYwjjs1FfB66bVTHXcwdno8zk/zBJPiAZxvpxYo4aEFignuzIDei0fdMIonVMft1BVTg4kUcTvNhWxOI5jrmZFhzBrsVDEWjJ3mHrebBQrg/MhCMBEU8/tOtVMLlPDQAsUEv4nMOc/uMEdQnOi429qo4AwIrsfd2mrs7zS4Q+vNzrQ043o71XEHE0GJiTEig262E3C+4w7WoTm93iZaIijBjA4FtEDpjBYoJpKTgVtvBa69tvf9uEBpagJqauSfl2jM59xbQ5+cTD+AMxtAny+4CIrH4/w0TzB2Au6xsy+B4nTHHez1dLrj1hGUQPSCgYFogWKioAD429+ARYt63y85mQrUAGemeXhUITm559k4OU4OldfVGRGuvhyakx03Y8FFigBn2wkEb6fTIyjREikKZj4mwPmCU6d4wkMLlDBxstINJo/PcbJD43YmJPQ8GyfHyXY2NlLaDnC/QAk2suBkYQ1EX6SId/h6ItoiKFqgEFqghImTG/pgG3nA2Q29WYj1NPcAx8nXk9sZE0MjWHrDyXY2Nxujj6LFcbs9ghItdmqBEh5aoISJkxv6UCIoThYowTZ+gLOvp9lONwsxbidAhc294WSH1t5O6UlACzGOjqBEJ1qghImTG/poS/G43c5oE2JpaTRleG842XEHW8QOONtxM2bY6mY7gdAFyrFjQEuL1FNyBFqghAm/0ZzYAOoISlf49XTiGhhaiHXFyREUbmdiYvBF7E60s76eokVA8ALl6FGj3sopmNfW6W0CUICeYS6+nXhNRaMFSpg4eZbVYEdCAM4WKNpxdyVa7HTyfRuKnWbHzZ29U+DRk9hYYzqDnsjONtKXTrt36+qM1Yn7Gq0UE2NcU53m0QIlbJzc0IfjuJ3Y0EebQHG7naEIayc77lAECu+RM+a86J95BE9ftVOxsYatTosscCEWFwckJfW9v65DMdACJUyc3NCHM4rHyXa6PbIQiuN2sp3hXE+fz1hI0SmEYqd5BVynOe5Q7AScW4fCBUowQgzQAsWMFihh4uSGPlpqUKItghJqrQ0POzuFUIR1fLyxn9Pu3XAdd7TY6WSBEgxaoBhogRIm0Zb6qKhw3rpD4TjuqirnpgRCuZ7mZQCcQqgOzakFpNrO7nFqZylUO7VAMdACJUz4w3L0qPMcdzgCxbzAoFMIxU5zLt+8qrUTCCXF4/UCKSn02mnRIu3QuidaIgvRYqcWKAZaoIQJd9zt7c7riYbiuJ28YGAodsbHGw2I2x23U9NZ0ZL6CNdxO81OLcS6RwsUAy1QwiQx0XDcTmvoQ+lxA9HTE3W64w5GiAHOt1OnPgKJFjujRaA49fmUgRYoEeDEG8nnMx4Ytzu0UCIogPPtdLsQC9VOHVmwN9rO7nHypJGi0QIlApzY0NfWGjUzbo+ghOrQeB2Kk64noCMoPeHU+zba7NQ1KIE4tR2SgRYoEeDEhoE77cRE+gkGJ9rZ1GSsZeF2xx0tERSd+ugepzruaLEz3BRPVZXzpgIQjRYoEeDEhj7UtAfgzCHV3E6Pp++VbzlOvJ4+nzG6KloESrD3brSleJxmZ7ALBXLMHSUnOe5wIyhOHFEoGi1QIsCJDX04AsWJs8maw8cxQd7lTrye4aTsnGgnoCMoPWG200lTHoQrxNrbneW4QxViCQlAaiq9jvY6lJAFymeffYbZs2cjPz8fHo8H77zzTo/73nzzzfB4PHjiiScC/t7c3Iw77rgDOTk5SElJwSWXXIIDBw6EeiqW48SGPhKB4qQeWiSRIideT683+JSdE+00p+yipTYjVMfd3EwL0zmFUO30eo1oqJOuaai1NoCuQ+GELFDq6+sxduxYLF68uNf93nnnHXz99dfIz8/v8t78+fOxdOlSLFmyBF988QXq6uowa9YstDtsCk8nNvTRluIJtvEDnHk9Q23kAWfbGUrKjjvu+nqgsVHOeYkmnJRdSoqxCJ2TntFwHLcTR7iEmuIBnGmnDOJC/YeZM2di5syZve5TWlqK22+/HR988AEuvvjigPeqq6vx/PPP45VXXsGFF14IAHj11VdRUFCADz/8EDNmzAj1lCzDiT20cByak1M8bo+gRIudXHCmpQWfsktPpwn4WlvpGS0okHZ6wggnZQfQM1pSQmme4cPlnJtowmmLsrKAvXudde+GI1B4BCXaBYrwGhSfz4drr70WP/3pT3HKKad0eX/dunVobW3F9OnT/X/Lz8/H6NGjsWrVqm4/s7m5GTU1NQE/dsDJDb1O8XTFydczWiIoodjp8Tjv3uV2JiQEn7IDnOfQmptDT9kBzowshFqDAugUD0e4QPn973+PuLg43Hnnnd2+X1ZWhoSEBGTyNcI7yM3NRVlZWbf/s3DhQmRkZPh/CmzSFXJiQx+pQHFKEV60pT7CsbOhgWo7nEA4dgLOS09GaqdTHLd5eZBgU3aA8xy3OWWnUzyhI1SgrFu3Dn/5y1/w4osvwuPxhPS/jLEe/+eBBx5AdXW1/6ekpETE6UaMEx1aJD1uJy0YGEkEpamJnLcTCCfFk5EBxMbSa6fcu5E6brfb6TTHze1MSzPuxWBwmuOuqzM6dbpINnSECpTPP/8c5eXlGDJkCOLi4hAXF4d9+/bh3nvvxbBhwwAAeXl5aGlpQVVVVcD/lpeXIzc3t9vP9Xq9SE9PD/ixA/xhaWx0ThFeOOHGpCTnLRgYjhBLSwPiOqqynNIwhGOnx+O8BjAcIQY4z6FFWwQl1Kbcafctb2/j40NL2TntespCqEC59tprsWnTJmzcuNH/k5+fj5/+9Kf44IMPAADjx49HfHw8VqxY4f+/Q4cOYcuWLZg0aZLI05FOerrzHBqPgIQSVgWcm8sPxaF5PM7tcYfruJ1mZ7REFrSd3eM0x20ukA0lqeC06ymLkEfx1NXVYdeuXf7fi4uLsXHjRmRlZWHIkCHI5ndQB/Hx8cjLy8OJJ54IAMjIyMBNN92Ee++9F9nZ2cjKysJ9992HMWPG+Ef1OAXu0A4fJsc9eLDVZ9Q3/IEJVaBkZwP79ztPoITaQ+PX0ykNg0599I7THFq02BlOJBdwXjFwOCN4AOddT1mELFDWrl2L888/3//7PffcAwC4/vrr8eKLLwb1GX/+858RFxeHuXPnorGxEVOnTsWLL76I2FCSkTbBaQ4tnIItwHlDjcO102mOO5wUDxA9djrNoUUaQYkWO51y30ZLKksWIQuUKVOmgIUwlGPv3r1d/paYmIhFixZh0aJFoR7edjitoY80xeOUacPDtdNp11NHUHpH22lPdKSod5xmpyz0WjwR4rSGIVLH7ZQHJpJUFuC86+n2SJGOLPSOU+10e2Qh3BQPt/PYMRo9Ga1ogRIhTkp9MBa+43ZaAxgtjltHinonWux0muOO9HrW1NAMwXYnUoECOGthRNFogRIhTpoIqqmJVgIFwn9gnCZQ3O64Iy3Cc7udTrtvI3Xcx44Zz7idCddO82i1TjNV2JJwI0Vxccb/OOUZlYEWKBHipIbePMlaSkpo/+ukFE9bmzHRmtsdd7QIsUgjYkeP0qyedifcmgU+MTdjzuhxh2tnXJwhUpzQFoVrJ+CsNlcWWqBEiJMaev6wpKYGv+Aax0khZPOS82523JGk7JxkJxC+EOP3rc9nfFd2JtxIUUKC8d04waGFG0EBnNUWhXs9AedF/2SgBUqEOKmhD7cXCjjrYeF2xscDXm9o/+ukXktzs1FA5/ZIUbhCzOs1ooVOsFWEQ3OCneGmPgBnPaPRcj1loQVKhDipSDbcXijgLIESSaPgJMdtTtmlpob2v9zOqir7pz58PqC+nl5Hi7gO5xnVjtt+iGiLnHA9ZaEFSoQ4qfELtxcKGHY6oXpeRCNfVWX/YkN+PVNSQk/ZcTt9PvvXLESSsgOcKTojeUadZKfbHXe0pLJkoQVKhDipej6SRsFcPW93hyaikXdCsWEk1zMhwYi62L0B5EIsLi60Bdc4TulEtLRQ2g5wv+OOltoMHUGJDC1QIsRJ1fOROG5z9bxTHFo4jUJ8vHOG90VyPQHnRBbMdoay4BrHKT3RSFJ2gHPsZCx6IkXRksqShRYoERIf75zq+UhSPIBzei7R4rgjafwA59kZ6fW0+33L7UxONlZJDwWn2FlfTyIFcH9kQUdQIkMLFAE4zXGH69CcYqcoh2Z3xx0tQkzUfesUOyPtQDjFzpgYEmOh4hQ7fT7DVl2DEh5aoAjAKY5bVAPoFDu1Q+sdpwkUt0dQos3O1NTwUnZOsbOuLnoiRbLQAkUATrmRdIonOJziuHWKJzicIjgjvZ5OeT5F2emU6xnOfEyAc+yUiRYoAnDKjRRpZMFpDs3tdkaLEBN139rdcUfb9XR7pMjcDkUSKaqttf/UDrLQAkUATum5RFuKx+0Nva61CQ6ndCB0BCU4uJ11dTQ0265E+nz262cIG7tfU1logSIApzUMWqD0jtMct9sjRaIiYm6/b/nzWV1tLIFgRyK10ymOO1I7Y2OdtTCiDLRAEYDTHLfuofWOUxx3tAmxSB233SdTjNROPicTQDMh25VIO0oxMYatdm6LIr2egHPaXFlogSKAaOuhud1OpzjuaBFioiJ/dp9MMdLrGRdnDGe18zWNtKMEOOPeFSlQ7GynTLRAEYBTbiJdsxAc2k57EalDM0+maGdbRTg0J3SWoiWyEC3XUyZaoAjACQ8LED0RlGiJLIgSKI2N9GNXoqWhj/S+BZzRWYoWO3UEJXK0QBGAExx3c7NR8R5pDYrbi/C4M2tqAhoaxJyTDCJt6NPTjSnV7dwARhr5A5zR0EeLEIs2O0Wksuxsp0y0QBEAv4mqqmh6YzsS6UJkQGARnl1z+T4fDT8Ewm8A09Kc4bgjbeg9Hmc5brc39NHS49YRlOBxgp0y0QJFAOYVjaurrT2XnuAPS1JSeAuRAfR/vFGxa0PPxQkQfgPo8TgjzSMisuAEO6OloRfhuKNFiGk7owMtUASQkGBEJex6I4nohQL2d2jczthYIDEx/M+xu50tLZGn7AD72wloxx0KThBi2s7gcYKdMtECRRB2v5FE9LYB+9fbmBuFcKaX5tjdcYtI2QH2t5OxyFN2gP2fT0BsRMyuzyegBWcoOMFOmWiBIggnOe5IsLudIho/wP6Om9sZScoOsL+d9fXGirBub+hFRDmdIMSiJbIQLcXdMtECRRB2bwBFpXjsLlBECTG7O+5oSdnxRj4mBkhODv9z7N7Qt7bSqDHA/UJMR1CCxwl2ykQLFEHY3XFHW4rH7Y472oSYqJSd3e9bwN0TmDGmJ2oLBW5nfT1NFRFtaIEiCLs/MKIdml3tFCXE7O64oy2VJUpY29VO/nwmJtLMt+FidzsbG42pGEREUBoajMiT3RDR5mZkUPQQsG+bKxMtUARh94ZBdIrH7na6XaBEm52ihJhdG3nRwrquzhjlZSe4nR4PkJIS/uekp9NIPcCe11RUpMgpCyPKQgsUQdg9gqJTPKFhd8cdLZEi0cXdNTVU72E3RN23GRlGKsyOzyi3MzU1spSdx2M4bjveu01NxsrZbo/+yUQLFEHYvYcWbaN4osVxR4sQi9RO8yzIVVWRfZYMRD2fsbH27nGLup6AvdtcUdMAAPa2UzZaoAjC7o5bj+IJDbs7btF2VlUZPT47IdJx9+tHr+14TUU6bjv3uEVdT8AZdqakGDUk4WJnO2WjBYog7O64dYonNLjjPnbMno5b9PVkzJ7rK4l0aHbuiUaLndEWQXH79ZSNFiiCcIrjFtXjjibHbeeUQKQNfUKC8V3ZsYcWLZEFUfctYG87oy2C4vb7VjZaoAjCLFDsuKKxqIbBvDCim3vc8fH2XhhRRg/Njg1gtPRERTo0baf1iBScdrZTNlqgCIILFJ/PuDnthKieaHy88dDZ8YGREUK2o+OONjujpcftdjv19QwdO9spm5AFymeffYbZs2cjPz8fHo8H77zzjv+91tZW/PznP8eYMWOQkpKC/Px8XHfddTh48GDAZzQ3N+OOO+5ATk4OUlJScMkll+DAgQMRG2MlXq8xrt+OjlvGA+N2O+3suKPNzmjpcbvdzmiLiLndTtmELFDq6+sxduxYLF68uMt7DQ0NWL9+PX71q19h/fr1ePvtt1FYWIhLLrkkYL/58+dj6dKlWLJkCb744gvU1dVh1qxZaLdjUUMIRIvjtrOij5bcr8jrmZNDW7fbGS3X0852yqgp0u2tewl5HdSZM2di5syZ3b6XkZGBFStWBPxt0aJFOOOMM7B//34MGTIE1dXVeP755/HKK6/gwgsvBAC8+uqrKCgowIcffogZM2aEYYY9yMoCSkrs98C0tdEU04BOCYSCE+yMluvp9shCtNQsRIvj1hEUMUivQamurobH40G/jkkI1q1bh9bWVkyfPt2/T35+PkaPHo1Vq1Z1+xnNzc2oqakJ+LEjdm3oRS1ExrGrnYzRFN+Au+0E5DSAFRWRf5Zoos2hRUvkz+2CM1pS6rKRKlCamppw//33Y968eUjvuCPLysqQkJCATPPUjgByc3NRVlbW7ecsXLgQGRkZ/p+CggKZpx02dr2R+MOSkEA/kWJXx93QIGYhMo5d7QSiJ1IULT3RaLFTVpEsY5F/nkhkXM/GRiMSHi1IEyitra248sor4fP58OSTT/a5P2MMnh4WZ3jggQdQXV3t/ykpKRF9ukKwu0AR4bQB+zo03vjFxADJyZF/nl3tbGszVnCNFiHm9shCtNVmiLxvm5vt57hFCpS0NHsvjCgTKQKltbUVc+fORXFxMVasWOGPngBAXl4eWlpaUNVp9qvy8nLk5uZ2+3lerxfp6ekBP3bErg2DyF4LYF+HJmohMo7d7QTcHUERtSIsx86RBRkpgYYGQ8jaBZFtUWoqENdRRWm3e1fk9fR47C2uZSJcoHBxUlRUhA8//BDZvFXoYPz48YiPjw8opj106BC2bNmCSZMmiT4dpdhVoIh8WAD7OrRoixR5vTQvTaTY1U5zyk6k466vp163nRDpuDMy7NvjFu247So6ZbW5drNTNiGP4qmrq8OuXbv8vxcXF2Pjxo3IyspCfn4+rrjiCqxfvx7vvfce2tvb/XUlWVlZSEhIQEZGBm666Sbce++9yM7ORlZWFu677z6MGTPGP6rHqdi12DDaHLcWYqFhtpMxMdEnEXA7PR5jjqFIyMig9J/PRw39wIGRf6YIRI+y83hoxueKCrqm+fmRf6YoRKayABKdhw/b9xkV1RZFawQlZIGydu1anH/++f7f77nnHgDA9ddfjwULFuDdd98FAJx22mkB//fJJ59gypQpAIA///nPiIuLw9y5c9HY2IipU6fixRdfRCyX/Q7Frg4t2hy3tjM0zLn8hgYxYkAE5pRdpCvCAvQZmZl0PSsr7SNQ+MgzQOw1raiwV49bdMoOsG9kQVabazc7ZROyQJkyZQpYLyXTvb3HSUxMxKJFi7Bo0aJQD29ros2h2dVO0ZGFpiZy3CIKb0UguheamkqpotZWuqZ2ESii7QTomlZW2quhN6fsRIyyA+zZ425qMhYYFRlBAexlJ6AjKKLQa/EIxK4zcspy3HYrwhPda0lLs2cRnujGz5zLd7OdgD0behl22rHHbZ6+SpQItqOdgLw21252ykYLFIHwm6iqivLKdkG04zYX4bm5ober4xZ9PQF72hltjjuahJiIlB1gz4EJ7e3UeQN0BCVStEARiHnuuU6jqC0lWhy36F4LoO20EhkpHjs6NJnX0052RosQk1VTBNjreqpACxSBxMUZIsVOD4zMnqid7NSRhfDRdlqHTmWFjx0dN7czLo7qikRgx+upAi1QBGPHocayig0Be9kZbZEFtztumT1uOzk0mc+nneyU8Xza0XGbhZioIft2vJ4q0AJFMHZs6HVPNHzsbKfbhVi02en2CIpMYW0nxy3zetrJThVogSIYO47kiRbHHS2RhWi5ntHS0Eeb446mCIooOk+mGC1ogSIYO6Y+ZIaQ7dgwuN3OaLme0WKnTMdtJ4EiW4jZxXHLLO5uaTFGCEUDWqAIxs4NoO5xh4620zqiJYISLT1umUKstTVw9IyVyBAoKSnGult2ekZlowWKYHSKxzp0iid8osVOO6YEZPa4m5uNdX6sRsbzmZxsjJSxi+iUcT3tvDCiTLRAEYzdUjw+n9Gz0KHy0LGjndGS+pBpZ1OTfRy3DCGWmmq/WZBl2Onx2C8qJqMdAuwprmWjBYpg7NbQy5g0CLCfnYzpCEokcDuPHbPPLMgy7LTj8gUy7ls79rhlOW67PaMyhDVgz+i8bLRAEQy/iewSQeGNQmwskJgo7nPt1iiYFyKT5bj551uNzPlBAPvMgizLcesetzXIuJ6A/a6nLDvt5ltUoAWKYOzmuM1qXtSkQUDgukN2cNy8kQcovC0K3vgxZg/HbV7nQ6RDi4ujNZYA+9y70eK4ZUSKgOiJoNjtesqOoGiBogkbc6Pg81l7LoC8xs/suI8dE/vZ4cAbhdRUcQuRAVQ5zxsaOzSAslJ2gL3ENWPR47hlOTS7Om59PcNDCxRNxPCHpb0dqK629lwAeY18QoLxmXZoAGX1zgB7OW7e+CUkiFvng2MnO5uajFoYtzvuaBFisjtLdruesgTKkSNiP9fOaIEiGK/XSDHY4YGRpeYBezk0WY0foO20AlkpO8Bejru9Haivp9facYeHna4nIK/N7d+ftjqCookIOzb0bndossLHgL2K8KLlenI7U1LEpuwAezluc8rOzY5b1ig7wF7XE9ApHpFogSIBO91I0ebQ3B4pipaImAo77eC4+X0bHy8+ZWcnx93cLC9lZ6f7FtACRSRaoEjATg9MtDi0aBNi2s7wsZPjjhYhxu0ExKfs7Oa4VQwztsvyBbLRAkUCdppQJ1ocmswUj7ZTPSrstIPjViHE7OC4uZ2iR9kBRm2GHYpHW1upwBuQF0FpaoqeBQO1QJGAnaa7jxaBEi0pHm1n5NgpgiLz+bRTUaUKO48dI4FgJebibtG2pqQYaUA7iDEVaIEiATs19NHS4442IabtDB872SkzxcMdd2Wl9ZMpymyHMjONSSitFmPczqQkY/VhUXg89hKdKtACRQJ2TPG4vccdLUIs2uyUcd+ac/lWT6aoQogxZn06S2Y7FBtrn6i1zPsWsF+9jWy0QJGAXR4WIHp6otEixFTZaXURnoqUQHu79bMgy3Ro8fEUXQCsTwnIFNaAfepQtEARixYoErCTQ4uWHne0CTEZdvLGr6UlcH4OK5Bpp9drfK7VDk2mnYB9Zh+VKawBLVDcihYoEtApHvWoEGJ2qJ6X2QCmpFDuHADKy8V/fijIbujt4tBkCxS72Ck7gmIXxx0tdqpCCxQJmFM8bg6V28lxyxRiaWlGwZvVDYNshzZgAG2tdmjR5rhlCzG73LfRIjjdbqcqtECRAHfcLS3GOhtWIVPRp6UBcXH02uooikyHZq6et7phiLZcvhZikWGX6xktduoUj1i0QJFAcjKQmEivrXTcPp/RMGRkiP98j8c+aZ5oSwloOyPDLnZGy30bbcJaCxQxaIEiAbPjtvJGqq01UkwyBApgn4ZBVerD6toMVT3RaLHT7fet3ex0u+PWAkUsWqBIwg6RBf6wxMcbER3R2KEBbG6mdBrg/oY+WlIf0RJZiBaBoiMoYtACRSMEO4zkqa6mbUaGMdOiaOwQWZA5vTTHDnb6fMbwX+24I8MudkabEHO7napG8VRWWj/JoAq0QJGEHVI8ZoEiCzs4bt74JSfTrJIysENkwVxw7XbHHS0CRdspBvNoJSsdt6pUlh0mGVSBFiiSsEOKR6VAsbIBlN1rAexRm8HtjIuTl7Kzg+A0p+x0jzsyzI7byikPVKU+2tuNds8KZNuZkGB8djSkebRAkYSdUjyyHhbAXo5bpp12cNzmXqislJ0dHLc5ZZeaKucYZjutctwqU3atrdY6btkRFLvMDqyiLYqmOhQtUCShUzzq4Hb26yfvGHZy3CoiRVY6bvOKsHyeHdFwO1taAgWRSlSk7BITDZFnB8et6t61Ci1QxKIFiiTsEFmIFoHCc7Fut1NF48fv26Ym6yYZlJ3HB6heKTmZXlvl0FSk7ADr1+NpbqYIDqDm3tUCxT2ELFA+++wzzJ49G/n5+fB4PHjnnXcC3meMYcGCBcjPz0dSUhKmTJmCrVu3BuzT3NyMO+64Azk5OUhJScEll1yCAwcORGSI3cjNpW20CBQrGwUVdvLGr6HBOsetQojZYT0eFZEiwHqHpiJlB1g/3T132oC8lB1gvZ2MqRHXVt+3KglZoNTX12Ps2LFYvHhxt+8/9thjePzxx7F48WKsWbMGeXl5mDZtGmpNcdT58+dj6dKlWLJkCb744gvU1dVh1qxZaG9vD98Sm2GHHrdKx11bCzQ2yjtOb6hI8aSlUZ4bsK5hUGGnHab1V5EOALSdquBNf0qKvFF2gPWRooYGYwSRzGsaTRGUkDO8M2fOxMyZM7t9jzGGJ554Ag8++CDmzJkDAHjppZeQm5uL119/HTfffDOqq6vx/PPP45VXXsGFF14IAHj11VdRUFCADz/8EDNmzOjyuc3NzWhubvb/XmOW5DaFR1AqKqiyXOaD2RP8a5IpUDIyaCK41lZqGIYMkXesnlARWeCO+8ABsnPYMHnH6gkVdgJk5/797hZigH0ct8zeNmAfO90uxHh7GxNjpA9lEE0CRWgNSnFxMcrKyjB9+nT/37xeLyZPnoxVq1YBANatW4fW1taAffLz8zF69Gj/Pp1ZuHAhMjIy/D8FBQUiT1sK2dnk1Hw+60byqIigeDzWR4tU2AnYx063O24uxNxuZ7Q5brcLMbOdMlN2WqCESVlZGQAgl4cPOsjNzfW/V1ZWhoSEBGRmZva4T2ceeOABVFdX+39KSkpEnrYU4uKMkTyHD1tzDqodt+5xy0VVBMVqIaYyUgRYb6fb71vVQszqWhvZQiyaBIqUQXyeTvKRMdblb53pbR+v1wsvLwBwELm5dBNZ3eN2e0OvIyhisdqhRYud0SJQVNXaWF2DogWKeIRGUPLy8gCgSySkvLzcH1XJy8tDS0sLqqqqetzHLXCHFi0RFKt7oqqEmNUOLVrslO247RL5c/v1jBbBGS01RSoRKlCGDx+OvLw8rFixwv+3lpYWrFy5EpMmTQIAjB8/HvHx8QH7HDp0CFu2bPHv4xasHmqsUzxisVqIRYudWoiJRdupBv58qooUVVcb88u4lZBTPHV1ddi1a5f/9+LiYmzcuBFZWVkYMmQI5s+fj0ceeQQjR47EyJEj8cgjjyA5ORnz5s0DAGRkZOCmm27Cvffei+zsbGRlZeG+++7DmDFj/KN63IKVERTG1IUcrXZo0dITjRbHHS097mhx3KrtbGykIb8yR9J0B7ezU3mlcPr1o5FCfABGR+LClYQsUNauXYvzzz/f//s999wDALj++uvx4osv4mc/+xkaGxtx6623oqqqCmeeeSaWL1+ONJOs/POf/4y4uDjMnTsXjY2NmDp1Kl588UXEWjEWVyJWRlDq62l4M+D+GpRoKR7Vjlss0WZnYyO1Cykpco/XGVV2pqbSYnotLXRNhw6Ve7zOqLIzNhbIyqIalIoKLVACmDJlClgvi3R4PB4sWLAACxYs6HGfxMRELFq0CIsWLQr18I7CyggKd2axsfIbJCsdd2sr9ZaA6HFoKiMojMkdMtkd2nGLxey4Kyrcayefq6i01N0CBaA0DxcobkavxSMRKyMoqsbkA9bWoJjn7FOZylK9kB5j6mtQuONWjaqUXWqqtbMDq3bcgLvtBKwdaszHfbjdTpVogSIRO0RQZDfyQGCKR7Xj5o1fSoq8lW85Vi6kV1dnTKMt+5qmpBiL17nZodnFcat8Rt18PYHosZMXylq5lIoKtECRiJU9bpUChdvZ1ESOVCUq7bRyIT1uZ3y8cQ6ysNJxt7QYazq53aGpiogB0ee4rbRTdpEsYNSd9DC3qWvQAkUi0eS4ecW8VY5bReNnntZfdQNovp4qakKscmjcTkB+yg6wzk6fTwsUGUSLnVqgaCImJcUoSFOd5lEpUADrHLfKMDlg3Ygl1XZaVfjM7UxLU7PAplUOzZyy045bHFbWZmiBIh4tUCRjVaGsaoFileOOFiGmsrcNWOfQVDbygPV2er1GvY9MrLKzqYl+AC3ERDJwIG21QNFEhFWFslY5bjeneIDoiaBYneJxu53RIsT49fR45M+wClhXg+LzGSMKdQRFHFqgSCZaIijRkuKJlgiK1dfT7Y47WgSn2c4YBd7GSiHGB0KouKZmgaJ6AIZKtECRjNURFBWFhoD1ERS3p7KirdbG7QJFp+zkYHXtVFKSMbeOTLidra3G/CtuRAsUyVgVQeHhRrc7tGiJLESLQ9MpHjlYVTyq2k4eWaiuNoarq0DlEGOARFBWFr0+dEjNMa1ACxTJWB1BcXsNSrRFFrTjFku02Mmfz+pqo2hVBartzMgwio5VOm7VdgLRUYeiBYpkoiX1YXVkIVrsdHukyCrHXVvrbsfdr5+RelDp0FTb6fEYI1y0QHE+WqBIhqd4dARFDlaO4lFZnGZVBKWhQe20/qrv24wMWkgPUHvvqr6eZsd98KCaYwLWOO78fNpqgeJ8tECRjNWO24qUAJ+ASgVWOe6WFup1q0K1ELNqIT0rety8oXe7Q4sWxx0tEZRomAtFCxTJ8AhKVRU5NRWYV75V7bjb2oyHVQWq7UxONmYHdnuP24r6KSsdt8rIgmrBCVgbQVF13wLWCBSVKxlzdARFEzGZmcaU3ap6onV1NPwMALKz1RzT6zUaIVV2moWYyobBiqiYFXZa0eNWLTgBawSKjqDII1pSWVqgaCImJka9Qzt6lLZer/yVb82oHuHS1GREpVQ6NCtG8ljRE402x+12O6PFcUdLikcLFI0QVIfKuUDJylKz8i1HtRAzT6OdmqrmmID6BrC1lYpVAe24ZRBtdrrdcVspUFTNgwJYUzulGi1QFGBVBIVP5KMKqwRKerqaabQ5gwbRVpVD43YC6mYGBtQ7bp/PKDyOlsiCFbUZWoiJx8oISmWluvpG1WiBogDVQ42tEijcTlUhRysaecBoAEtL1RyPC5TUVCAuTs0xAfV21tSoXc+Eo9qhMaYdt0y4EKuoUOe4rbAzK8toD1SPElWFFigKiJYICo8sqHJo3E5VhcAc1REUq4WYajsTE9WsZ8JRbWd9PdDeTq+tcNyVlUBzs5pjWuG4s7OB+Hh6rapTaIWdMTHqO4Wq0QJFAVZFUKxy3KoESmUlbVULMasiKKoFilWpLJWNPGBcT1WOm9sZF0fD1lWRlWVMSqfCoTU3G7Pzqrym5rltVN27VgwzBtw/F4oWKArQERQ5cIESLUJMtZ3ccR89qmYaeKsiRZmZRsRGRfrD3NtWWcSuehp4cxG7ytopQK2dbW00tQOgXqC4fSSPFigKiJYalGhx3NzOqio1K6ZaZWe/fmoXXrOqF6p6Gngr0gEcK+xUXcQOWCPEAPXiWgsUTcREWwTl6FE1jtuqVFZGhjG/jIqGvqKCtqrt9HjUprOsEmKA2joUqyJFgNpCWSuFmBV2pqYatS+q0AJFEzHmCAovjpOJVQKlXz/DcbvZoXk8auszosVxcztzcuQfqzMqHRqPFKmcM4MTbZEitwsxt8+FogWKAvLyKMTZ3q4mimKVQDE7bjcLFCB6IgtaiImHR8SiRYhZESmKFiGmIyiaiImLMx6YAwfkH88qgQJEj0CxwnFb6dDcnMoCokegqHTcVt630RZB0QJFExEFBbQtKZF/rGgTKFbYGS0RlGhL8URLpEiF47aDEFNhJ29vrRYofJJDN6EFiiIGD6at7AhKY6MxJDRaBIqVERS32xktERSVkQU7OO5osbO8XH7dH7eTLyKqEi5QGhqMoc5uQgsURagSKNyZxcWpXUCPo8pxt7QYD2S0pHiipdbG7bUZdqhBUTENvJV2DhhAdX8+n/y6vyNHaGuFnSkpQFoavXZjmkcLFEWoSvFYtZIxR5VA4XbGxFg7jFG2nW1tRrGhjqDIg9upYm4bKwWneRp42Q7NSoESG2uMnpQtOq2MoADurkPRAkURqiIoVtafAOoECm/kMzPVTwIFBEZQZOZ+uTgBrK21qaszVhqWgc9n3LtWODTz3DaqHJoVdqqcTdZKOwF16Syr7XTzUGMtUBQRbQLl4EFyOrLo0gtVMcGMCd74NTUFigjRcDszMjpWLm1okPvFdiI11ZimXGZDX11tmJWdDRoa0dYm74CdME9KJ9NOxjo5tKNHldoJWOS4q6ose0aVCrG6OuXVqjqCookYnuIpLZXrXwJmV929G7j3XuDnP1fWOAwcSI19W5uRm5VBgEBZvZq8yxVXyDtgJxITDXEks6EPqMv47DOKW//P/8g7YDeocNy8kU9LAxK++Jha3blz5R2wG1Q47tpaoLWVXmd/22HnvHnyDtgNyh33zi+pKOTaa+UesBOq7OTtXP+S9dQzvO46pSJFCxRNxPDJ2lpb5RZt+SMoe9cBI0cCjz8OPPYY8OGH8g5qIj7emNpfZprHL1BiqoAZM+hL/de/gC1b5B20EyrSWX47U5uAOXOoh/bOO8CGDfIO2gkV9TZ+OzPbgWuuoaVwly4FvvxS3kE7oUKIcTuTkhiSb/sBNQhvvQWsWCHvoJ1QURDc0GDU8uT89k7qsbzxBl1TRSgXYosX0PV89VXguefkHtSEFiiaiImPN24kmWkev0DZvJJUPD/oG2/IO2gnVDrurG/+C9TUdOQ/APz97/IO2gmljnvXN/QLL7j505/kHbQTKiMo2cf2kEfhFd6/+Y28g3ZCheP2O7PYY8D+/cYb996rNMoJqLmeCbFtSC1ab7xxxx30vCpAhUBpajJGE+Zs/8y4b++6C9i2Td6BTXA7tUAJgra2Nvzyl7/E8OHDkZSUhBEjRuC3v/0tfKa8BmMMCxYsQH5+PpKSkjBlyhRs3bpV9KnYDhUjefwCBUeBM8+k3hlAPRc+QYpklEYWWsuAU04x7Hz5ZaC+Xt6BTagYauy3s34fic1336U/vPmmmmmJodbOnJrdgNcL/PvfJDpXrFAWRVEpxHLqiunFG2/QMLTNm4EXX5R3YBNKhZivHB4A+NvfgOOPp0bhl7+Ud2ATKuz0T+uAVmSgGvjd74Dp0yl8dPvt8g5sgvdBVYy0U41wgfL73/8eTz/9NBYvXozt27fjsccewx/+8AcsWrTIv89jjz2Gxx9/HIsXL8aaNWuQl5eHadOmoVbmMAEboKJQNkCgzJ4NTJpEB66pAf77X3kHNqFCoPhrbVAJfO97wCWXAMcdR3YuWSLvwCZURFD8kQVUUq3CxRcDU6ZQyPyvf5V3YBMqUx/ZqKQUz+zZwA030B8VRVGU2zl7NnDllcCvf01/fPhheQc2oTKCksOOAKefDvzkJwD3AS+9pKTQW4Wd/jlQUAHPwIHA3Xcbz+WXX8qfbAbAkCG03bdP+qGUI1ygfPXVV7j00ktx8cUXY9iwYbjiiiswffp0rF27FgBFT5544gk8+OCDmDNnDkaPHo2XXnoJDQ0NeP3110Wfjq1QIlCOUJg4C0fJacfEUCMIKEvzKImgVFARWjYqgWnTyM6bb6Y3n35a3oFNKI2goBK44AL65d57afvMM0oaQKWRBVQA559PvzzwAG1XrJA7xrkD5XbOmEG//PjHlBrYu1fJaqJKIyiooNqpmBhg6lQgIYE6EXv3yjt4B+bUhyw9FGDnvHlAcjJwwgk0/0FLi5KauKFDaXvsmLLsmTKEC5RzzjkHH330EQoLCwEA3377Lb744gtcdNFFAIDi4mKUlZVh+vTp/v/xer2YPHkyVq1a1e1nNjc3o6amJuDHiShJ8ZRQQjQrNwEYPZr+eNVVtF22TElDr0Sg7Cc7s5MagTPOoD/ecAOlBdauVdKdUFKDUtIAAMj2VAHnnUd/vOgiGvtbXQ0UFck7eAdK7DxEQisblcDkyfTHESOM+LWCFLCSyEI5ecocVBjXMyWF0h8AsGmTvIN3YJ4Gno8oEk3FEepA5KACOOcc+mN8vNEmbdwo58Am+ERtbW2G0BdNgEA5+2z6xeMBJkyg12vWyDmwidRUY0Sh26IowgXKz3/+c1x11VU46aSTEB8fj3HjxmH+/Pm4qsNJlnVU8uTyu6eD3Nxc/3udWbhwITIyMvw/BdzTOwwlEZRymlMha/IYo2Br3Dg6eFOTkoZBiUAppXqa7HFDjALZ/v2Bk06i1wocmpIIyl4S4znH9zPmtI6JAUaNotcK7DRHFmSNnqwopJxdTo7HeFAAYMwY2iroiXI7a2rklTFV7CCPlp3YQLVTnLFjaatAoOTkGI/M4cNyjlGx+xgdK+YoMHGi8cZpp9FWQTuUkGBMniYrWnRkP3UgclBB6XQOFygdmQPZ8CiKgsCUUoQLlDfffBOvvvoqXn/9daxfvx4vvfQS/vjHP+Kll14K2M/TaR52xliXv3EeeOABVFdX+39KVCwJLAHpAoUxHG1IBABkzTI9LB6P0XPZvl3SwQ2UCJRjsQCA7HNHBb5x8sm0VVBBz+08fFjeXFuVZfTB2RNHBL7BnZsCx8173C0tRu2PaCpLSBFkj8kPfIMLlM2b5RzYRFoaBTMAeQ6tcjfN6pdzfL/AKZBPPZW2334r58AmYmLkF1ZWbKVUVc7ABEp7cBQKFED+SJ6Kb+kL7J/eYoRsAEOUKYigAIZA0RGUPvjpT3+K+++/H1deeSXGjBmDa6+9FnfffTcWLlwIAMjreDI6R0vKy8u7RFU4Xq8X6enpAT9OhAd+DhyQkxNt3Lkf9Yxa2OwZEwLf5I57xw7xB+4Ed9zHjtF8CKJh9Q2obKFoQtZ3zwh8k0cWFAix/v2pJ+rzSRrixxgqa2nhlOzJowPf44JTQQTF6zV6otIcGi8GPuO4wDcUChQVs8lWlFIqK2dsJyHGBYqCCAogvw6lYi+lknNO7LTg0LhxtFUkUGSnJysKKXeUMzQl8A0uULZskb+4E4Bhw2irBUofNDQ0IKbT4iixsbH+YcbDhw9HXl4eVpgmJmppacHKlSsxyRwicyF8ltXWVjmzrB7+bCcAINHThPT+3sA3eepDgePOyDA6TTIahtqPvkEbOhx358gCFygKIigxMXLrFtjOQlT6MgEA2eefGvgmj6AoGp4v1XHX1KCykW6YnCk9CLHNm5XMzinVTp8PFVUU+cv5zsjA93iKZ9s2eYUhJmTX21SUUbF+zmmDA9/gQqykRF5hiAnuuGWlPip4iufkTisFDhpEEZX2diViTKd4gmT27Nn43//9X7z//vvYu3cvli5discffxyXX345AErtzJ8/H4888giWLl2KLVu24IYbbkBycjLmKZ7yWTWyJ2srW0Opr7yU2q4rGSuMoHg8ctM8R7+mwtDEmBYkp3Qy1CxQFDo0KULs4zVoRQIAIHtQYuCbXKAUFSmZ30amneyLL1EJ6mlnn5IX+OaoUXRDVVTIK5gwIdVxb92KSl8/AN1EioYOpRxTSwuwc6eEgwfC081SsuWVlahooJUXc75zfOB76ek0HQCgJJ01fDht9+yR8OFtbThSQS405/Qhge95PEYURUEdik7xBMmiRYtwxRVX4NZbb8XJJ5+M++67DzfffDN+97vf+ff52c9+hvnz5+PWW2/FhAkTUFpaiuXLlyONFwG6GJkjeco2U1gmN6ubgggeQdm3T07epRMyBUrlJlJ32andOOaRI2mt9ZoaJTMXySyUrVxPrU1ibEtAGh8AedLMTMovKXBoMiMLtV9tMYRYp4wAkpONES4K0jyyhVgFKFeWMzA+8E2PR2kdyoiOwKMUx71qlWHn8f26vq+wDoULlOJiCR++aRMqOiKc/U8b1PV9hSN5tEAJkrS0NDzxxBPYt28fGhsbsXv3bjz88MNISEjw7+PxeLBgwQIcOnQITU1NWLlyJUaPHt3Lp7oHmYWyZbtp6G3e4Liub/bvT60/Y0DHEHCZcDulCBQ+EiKzmwiJ12s4NIWFslLs3EIFAtnp3YT8PR6laR6ZAqVyI6n1pPjWrkIMUDqSR2ZDX7u+qGchBigdySMzssC+WWMIlJxudnCLQDELsQHduFKFhbI8lVVerqT/qQy9Fo9ipAmUmhocrqD8dt7IHiJRCutQpDnu9naU7aPISe7g+O734eksBXZKddxFHQV43TXygFKBwq+nDGFdsZ0ifzn9ehgKpbBQlkcWdu8W/9mVm+hhSEpo616IWRBBkeG4azcV9y7ELBAohw6Jr1Vlmzb3LsT49dy1S94wvw769TNmITAv8eR0tEBRjLQUz+bNKAPl7/OGJXa/jwUjeYQLlF27cKiVWoOBI5K630dhoaw0OysrceRox1DqfG/3+ygcasx7aMIdWmsrKjtGfGT3j+1+HwsEyp494kuYKnZ2CM7MHobwKRzJwx13RYX4uRsrtlKtULK3vXshxgXK9u3S66eys2kiM0B8VKxm8z6/EOtWoOTn02QsbW1y51wABVTdmObRAkUx0iIoGzf6BUoPo7XdEUHZvBmHQJWMA/O7nzfHCoEiXHBu3eq3M7+gm5QdoHSoMa9rFO64i4pQ0d4PAJDduS6DwwXK1q3SV/zljrumRvCcL+XlqKim65iT18P15HYeOiRnmJ+J9HQjuiFUdLa0oGIvpZpzcnq4UQYNooO3tUm/dz0eSWkexlCxjeZ6SUlqR1J3faWYGEM1SMkxBSJ7xJIVaIGiGGkC5dtvjQhKXg/7uCGCYhYoA3vYR6FAMYfKhfrOzZtxEJQ/ys/vYR8eQdmzR3rieehQam8bGgTP+bJ1Kw6DFHVubg+C87jjgMREitFLqeo0SEoyvm+hh9q2zZ8OyO7fQ7ObmmooQcXRImGYBGdObg8RMY/HeEYVLNUgRaCUl6OihgR1Tv8e7lvzwRWoBh1B0USMWaAI7Yl++62/oe9RoPAISmGh9J4ot/PgQcHTOpgcd48C5cQTqRGsrJTeEy0ooOHjLS2CxdiWLX0LsQEDKLbMmPSoWEKCsWqq0PqMLVtQClKzg7oZCAGARmVxh6YgnSWlDmXrVhwBzZXRv38v+51wAm0lCzFAkkDZutVUl9GL41boTaXU25gEZ05PghOQmBvtihYomojJzyff2dIi0He2t4Nt2tx3imfoUOqJNjdLV/QDB9Kh2tsFPzDBRFCSk42GQXIUJTbW6CSJdtx9RlAAI4qiIFrEO/eiHXdQdvKRWQodmmjHzYVYr3Yq9DJSIgvbtvmFWLcFshwX2dljEbu0g3ePTvFoIiYhwRAQwtI8RUWobYpDI6girUeBEhtr9NAk97hjYgyfsmuXoA+trwfbtbtvgQIonfKeO25hdjIWvEDhB1fouC0RYjx8o2CIgmyB0mOkCHC+ndu2BXc9XSBQeh3B0/ngOsUTFlqgWIDwOpTt2/3pHfOCZ93C61AUTO4lXKBs24ZapKIBZGCvAoV3JxQsLCncztJSsGPHghNiMmf+64TwCEpTE7BrV2gCRUHray4IFgJjwQsUC1IflggxCwSKLCEWVDukMMVz8CBF6N2AFigWINyn7NzZd4Esh9/FCh23sDo4U11Gn0JMxZLKHXA7hTnuLVtQg/TghJjCHrdwgbJzJ1h7u/sjC+XlQGWl7SJF5s69kMVLW1uBwsLQBYrkJSm4Rjh2jH6EsH27387Bg3vZj3/JpaWUWpfIgAGUVmdMznxFVqAFigVwgSIs6ldY2Hf9CUeh4x7ZsR6asMiCSaD02sgDcqfs7YTwFI8p7dGvH7qfS4LjZIGyZQuOoR+aQGM07SLEuEApKRHUE926FQxAqYfuyaAcd0mJ9EL2ggLK+jY1CRqZVVQEtLXhgIcauF4dN7+edXVAVZWAg/dMaqpRmCwkkFFZCRw+jAMgA3u1s39/eoAZk37vmudCcUsdihYoFsAdt7DIgkmg9BlBUei4hUdQdu4MLu0BWBJB2bVLUGcwmBE8HLPjltwT5QKlooLmCYkYU4FsVhb1/nqEt7zl5dKXr8/NJZ/i8wnKQGzdiqPIQjOjCfd6Fdf5+aQa2toEj+fuSny8cfsIcdzbtoEB/mvaqxBLSqIuP+C8OpSOurYDsXRP9mqneSIWXYcSMlqgWMCJJ9JWWBnIzp19DzHmWOC4i4sFzfRcWBhc3hdQKsSGDaOi4Pp68p8RY7Iz6EhRXR1QXS3g4D2Tnm4UBApJfwQ7ggeghRF5Tk/yNfV4BKd5THUZOTm0XFSPxMYa19Rp9RkdQ4xbGM2u2ucz6tRC2W3b0I4YHPRRY9trBAXQQ40jQAsUC+ADaXbvFuC4jx4FKiqCT/GYJyhRMBeK10s2RhzdbG0FiotDj6DU1Qnq7veM12uk7YSkeUIRKMnJhmpwWprHVK/Qp50ej3PrUIId2cJxaqHstm3+tEduLo1Y7BUHC5RyDEAbi0NMTBCdQj3UOGy0QLGAggKKcLa2CriROvInZd5hAIJ4WHJzqbvf3i6ou98zMTGGQ4s4zbN3L9DWhkOxpAT6FCgpKVTAAShNZ0XsuCsrAwoq+7QTcGYdSns7sGdPcOkAjgUCRbQQs6udolIfIdnp1Mnatm3z2zlwIBDXw8oFfnSKJ2y0QLGAmBijDiXiNE/HB5QlkOPuU6DExRleT4HjFlYoW1gIADiURA97UI5bYTpLWKFsh5I7lEQtalA9bicKlP37gZYWHIyh+zYkO50UWaipAQ4ftq3jFpbi8fmAoiLb2ylKiAVVICvl4L2jBYpGCDzN0+F3w6fjAw77qEy9zxQPYEkdSsQRFC5QPCFEFiwoCBYlUA4mDAMQpON24lwo3M4U+uLsJsSECZSOL6o0key0awQlYjtLS4GmJhzw0LkH5bgtEigR1ZI3NAAHDoQmUCyoQVEwCEwJWqBYhLBC2cJC+ODB4aYMAEFEUABHO+5DLTR/dkgRFCeleDqE2EFfkMOpAWdGUDquZ2nHSAi72hnx6s3cziT6QLtFFrhAOXiQhhuHDbczjRo2u9k5ZAhFriMeUt1x4x/whiA4uToqL5e+qGd+PgXJ29romobNkSPAffcBzz0n7NzCQQsUixAmUHbuRBUy0dpOK4fykXu94sS5UAoL0YAkVDcHMWcGhwsxJ6V4CgvBABxq6gfAvjUoHRma8OERlDa6Ye0WWeCd3tpaGlYdNtxOT5DFwIDhuBXYmZ1N84QwFqFO4AIlgZxxSNezooKGwEkkPt5oDiIKZHTYeSCFGvCgIij9+tGXDEhvi2JjjYBqRNdz61bgT38CHn1UyHmFixYoFiEkxdOR9+UjeLKy+hjCyLEggrJnT4QjlgoL/SN4kpKAjIwg/seCydqOHo1w3qnCQlQjA42ttJS73QRKXh59/xHPEVJUBB88ONSQDiCMCIrkOV8SEw0nG1H6gzvuZhppFZTj5h6mpkbg1KfdI2xINXfcvhCKnvv1oymhAaUz54oQKKVxJCKDEiiA0k4hF9cRRTl5Tp73MC1CC5TuaG2VfggeQTl4kHppYVFaCjQ2ojSGGu6gnBmg9GEpKCDR1NoaQYlEQwNQUhIwxNjTy0rufhTamZJipNfCbhgYA4qK/CNbMjNJDPQJd2ilpdITz2aHFmkDeAT90e6LgccTZO3U4MF0As3NApcC7xlRjrsF8Sivpx50UI47JUXp0HEhjrsjdFjamAUgSMdtnvrUKYWyXIi10Q0btEDhCjyivEtw8HVSI1rgXAsUG7JpE4UhFFyUfv2MdEzYBaQd+aHdOWcCMBrUPlEYWYiJMc4r7PRHhyc8lELXJWghptBOQEC9zaFDQH09DnmMIYxBkZdHief2dvoMyUS8mF5bG1Bc7BdiublBDNUEaGIN/qU4ZdHAoiK/sI6P72PlWzNOG7FUVIQ6pKC6kUK4QQkxQGk6S5RAYQAO1FII144RlNGjabtlSwQfogWKDcnMpPj8wYOCVs/qHZ7mCbsOpSM/tDt1LACjQe0T88MiOVQOCBjJw0fw5IwBEEakqKIiwgrA4IhYoPAC2f50PYNKewCBs486oVB23z6grQ2l8eQxgrYTcNZcKNXVwJEjAZPRBRX5A5w1F4rPB+ze7bczNZVmHQ4K/owqiCyIihQdRRaaWklRB33vOk2g8EZMCxQbkZdHLUhrK02YJZmIC2W5QIkhzxiyQGlokJ7jBgQUynKBkhpiBMW8wIuCBjBix80FSj+K0drVcUdsJy8c7RBiQfe2ASOd5YQhuNzODLqeIdlpgeMO286SEqC52T8iK+ioAqDUzoivZ309cPCgf4hx//5B1vwBSlM8p5xC2/37w5xE2+czGmve67IILVDMxMcbeRcFSpcLlLALZTuUzZ4muvmDTvEkJZHzBpwxF0rHF7Q3hlpS7qP6xOOxbNHAsOBDqZNJAQQtxACljluYQEk/CUCIQsxJDo0XVGZR5C8sgaLgvjVHisIKqHI7+58GIEQ7+cVXYOdJdLth374wHTevs0mlDwpLiCmwMzPTONzWrWF8QMecNoiLMypuLUILlM4oVLoiUjwMwO6KfgBCiKAAzpoLpaMBLKyja8OFXVBYYGekEZT9jM7Zrj3uiOcICWcyOo4FswMfOEB1uSHDHXcKPeh2vZ4jRpAvqq0N8zHhhaP9qOtuVyGWnW0cbtOmMD6A29khxEISKAqFGGBEUcJK8/Ce5PDhQRaHyUMLlM4ofGDMEZSQG/qWFmDvXpRjAOqbYuHxhCh2LZgLZc+eMAeZdAixwsNUmMaFXVBY4NA6al1Dp0Og7DxGIwTsaufQoVT83NAQ5qRXHQ1giS+EBfQ4Ch13//40nJ0xYPv2MD7APxkdpd9CslOhQ/N6jZEfGzaE8QHcTi89AHZN8QDAaafR9ttvw/hnLlAiiaAcPKik7i+iOhSbFMgCWqB0RWEEZcQIqm+sqwtj8MW+fYDPh91eksp8OG/QKIwsFBTQAIyWljCGGh87Bhw5gjLkoa4hNmBUUFAotDMz08ichRxFaWsDdu9GG2JRdDAFQIiRIoUNfUKCIYYjcdw7K2lIS0jtoELH7fEA48bR67AcN08JtIYwGR1HoeAEDDs3bgzjn7lACWXhRw6/nkeOhBmmCo2xVPYUmUCJGwYgRIHC87WtrRHO/BccWqC4FYUCJSHBKFALOc3TcRPtHnAWgBDTO4DSBjA2NoKhxjy9k0V2DhsWxDLuZiwaahxyXdH+/UBrK/YmnIDWVg8SE42616BQHELmDm39+hD/sWMJ70YkYm8ZFTCffHII/694BFpEAoULsfJ+AEKsN+TXs7pa+iyrgBFZiESgHGikZShCEijZ2cYDrWCIvBCB0kYTHoVkp+L6Ri1Q3IrinkvYhbIdnn53yqkAwhAoTnHcHf9QmEMCJaS0B6D8evIGMGTHzdM7eVMAkJ0xoTyd5giKgiHyp59O25DtLC4G2ttRmDgWjHmQmUmplKDhjruxkZy3ZMIWKFVVQGUlqtAPZRU0K3BIQiw9nSZsA5R0lsIWKG1twJ49YAB2HqRZYUMSYh6P0k4hfz43bw4j3cwFSl0/ACEKFPM/KJysrbycfkJCCxQbo/BhASIYatxxE+2JDXGIMUex4+aKPuSGnguURBJiIQsUxUJswgTarl0b4j9ygZI+EUCI6R1AeQh5/HjarlsX4j923Lc7BpwHgJx20HODAEByMs1yCCi5d7kQ27gxRN3XYef27HMBUJqTz+oeFOYRaAodd3FxiDMPdET+DiQch9q6GMTFheHXFI+0S04mfRvSqMKaGuDwYbQgHkUlFPmzc2cpJcWIWoc0kqe93chPa4FiQxQ77rBH8vAIShM54LAFiiLHfcYZtF2zJsR/5AKljZ62sBuFQ4eUrD9uFighZSC4QImlrk/IAsUcQlbg0LjjLiwMccgmFygppHD40M+QUFzInphIdWIhpSc77NyWdQ6AEKMnHIVpu8xMY1LXkNIfHV/K1rypAMinhZSCBZQKsdhYYAyN+g7LzqLMM9HW5kFaWgjTHXAUp2HDSvOUlFCxYEJCiDlmOWiB0hl+E5WXK12TJ2yBcjQTQIiFo4ARWTh6lLoTkplIgQFs2RLiiuO8BqWG8r4hC5S8PGqV2tuBw4dD/OfQGT2anu2qqhBnrOT1Ck3UKIQsUACljrt/f6OBDiktwCMLIGUSkUBR4NDi4ozoQkjRPy5QEk4DYITcQ8IJhbIddm5NpeU2+PDWkFDsuMOqQ+mwc0v/8wHQcx5S5A9QPmIpLIHC26FBF6B/Xiy++13x5xUKWqB0JjubeqOAkqIt/kDv2RNCSr21FSguRh1ScLiKuishR1D69TNWolPQMAwaRFqhvT2Ehp4xoLAQbYjF7jJabC1kgRIba6zip8DOhASjAQwpzdMRQdlxhAoN7S5QACOKElKah0dQ6kgg2z2yAIRZEMyFWCulYCMSKIqH4IYlUDzkDcMSKBbViYVkZ0eHcIuXIn/c+YeERWn1cARKYc4kVFQo6dP1ihYonYmJUVqH0r8/iQvGgK+/DvKf9u0D2tuxx0utXlaWkZYPGo/HiKIoGrIZcprn8GGgthb7PcPQ2uaB1xtGWBWwfx1KUxOwbx+qkY7DR0lwRiRQFDk0XocSkuPetQvtiMHOw/0A2D+CAoRZKMsjKEdJHDtBiEUkUOopPxSRQLHzXCgddm5upRuWp4lCwqIUz9atIaSbuUBJIhUXcodQMFqgdIfiQtmzaIAKVq0K8h/4EOPcMIcYcxTXofA0zzffBPkPvP5kAOXxR44McWQLR3HPJWSB0jHH+M4UCkkMHBjCYmtmFDeAIRfKtrQA+/ZhP4agqSU2YJh9SFgUKdqwIciGnjH/6r77K5IBhClQFNvJHffWrXSpgqJjdd9thyny54QUDxcXBw+GUE/OUzxVdK4RRVAUDsCIi6PIfNBfbYed3zZTDymsyJ9AtEDpDsUNw6RJtA1aoHSEG/ekU9cubIGiMIIChBFB4Wo+k/LbYat5iyIo69YFOfKD530H0IiPsKIngGWOe8eOIKfq2LMH8PmwI5Hu2xNOoAxcyFjQE42NJWcW1C1UWQkcO4YdHXU2ubmUOQ4ZxR2lIUOoWLa1Fdi2LYh/aGsDiouxH0NQ1xiH+PgwB34ontsmLc1oM4OOohQVoR7J2FNOqeaIBIqiSekSEow2M+g0T0dbtP4wnSvvhFiFFijdobhh4ALl66+DHGjCC2Tj6O5zSgSFO+5du6g2t094BCWeumVhCxTFdo4aRSM/amqCHPnBR/Akk+OOWKAoum/z8uhRYSzItIB/6O3ZAMJM7wDK7UxMDHEqeJ7eySQ7w+6FKp4e3eMJMc2zdy/Q1oat8Ybg5OV7IcHb24aGMFfxC52Q6lCqq4EjR7AdJ4MxDwYMCHHuHk5WljHdt4L6RiDEOpSOOW3qkYzt+2kOHi1Q7IgFPbTUVHo2g+q58BRPCxVkOCWCkpVlnGtQ6Q8uUFqGARAQQVFkZ1ycUbcQip07fKRMwhYoiu9bIMRCWV4g6yXvEFbaAzAcd1kZNaoKMKd5+qRDlW7rGNkStp18bpuWForKKCAkgcLrT7Io8hdWegdQPrcNEGIdCk/vpJPgDCt6AiiflA4wzjWoxRH37QPa2rApfgJ8Pg/y8kJcUV0CUgRKaWkprrnmGmRnZyM5ORmnnXYa1plaMMYYFixYgPz8fCQlJWHKlCnYGta60JJQ3EOLjQXOpLYsuDRPRwO4vYJkvFMiKECIaR6e4qkiO52S4gFCrEPhEZTaMFZrNsOvZ0WFkhAyEGKhbKeRLWFHUAYMoIfG51M2zCCkQlkeQfGQxw47gpKQYHTVFTvuUOzc6qUvJ2yBAihvc0MaaswFStp3AEQgUADlaVhe97dyZRBBuA4712VPB2B99ASQIFCqqqpw9tlnIz4+Hv/973+xbds2/OlPf0I/0zCTxx57DI8//jgWL16MNWvWIC8vD9OmTUNtba3o0wkPxSoXCKEOpSPvuw9DUFKeiLi4CG4kxZEFwHhg+hQo7e3Arl1oRCL2Hwlz5kaO4hw3EKJAKSpCO2JQVE6VsWELFHMIWfFInpAiKMciGNkCBA4dV2RnSFP7cyFWT3PaRFRoaFGh7MaNwTu0rS1UeBKRQLFoLpTt24MoCOYCBaRMIhIoiu0891zSufv3BzFzLq8/SaDeMr/nrUS4QPn973+PgoICvPDCCzjjjDMwbNgwTJ06Fcd1dPMZY3jiiSfw4IMPYs6cORg9ejReeuklNDQ04PXXXxd9OuGhuFEADIHy1Vd97NgRhvs8/gIAdBPxJTtCxoJQOY+g9DmSp6QEaG7G7riTwJgH/foBOTlhHpTb2dhIM6gpgAuU9ev7qCuqqQHKyrAfQ9DcEhOwUnDIWBBC5o3Ytm1BTMBXVIQKZKOiNkLBCVg2d0ZJSRDZlqIiNCIRe6r6AYhAiAHKIwsnn0wOraYmiIkGi4rgg8c/lFpIBEXR9TQXBPcZLeICpZaGUguJoCi6nikphm/58MM+duYRlEZS1K6MoLz77ruYMGECvve972HAgAEYN24cnn32Wf/7xcXFKCsrw/Tp0/1/83q9mDx5Mlb1ED5obm5GTU1NwI9UeCNfU0NzXCvgOxQ9RFERFXn3SEd65/PUmQCA886L4KC5uUpnWQUoVB4bSzVivbZFHWmPtf3JzpDXbDGTmGgMo1C4CGRKCo1u6XWWYD6CJ4N6LSNHhjmyhaO4oc/Pp9vI5+sjz93UBJSU+Ee2DB0agbDmBwaU2ZmebiyC12u0qGOIcSFOgM9HiyHm5kZwYMV2xscbUZRPP+1j56Ii7MNQNLTEIyEhxEUCO6PYcXs8wFSanR//+U8fOxcVoQr9UFpDEU4nCTEAuPBC2q5Y0ceOHcJ6ayUJTldGUPbs2YOnnnoKI0eOxAcffICf/OQnuPPOO/Hyyy8DAMrKygAAuZ2e2tzcXP97nVm4cCEyMjL8PwVhzdYVAmlpVLUKKHtg+vUzbvxeoygdDu2zVpoD5dxzIzhobKxRBaXogUlONuzsNc3TYefyGJprmTcmYaO4DiU21njAe03zdAixr9JnAIiwdwYobwA9HsPOXu/bjrletifSzmHXn3AUOzQAOIem4+ndoR05AtTUYDuoFzpqVATCGrDEoV18MW3ffbeXnVpagL17sQ3G2lFxcREc1IIC71mzaLtsWR87FhX50ztDhoQ5RxHHAjunTaPtxx/3ESjftQubMQbtvhj07280mVYiXKD4fD6cfvrpeOSRRzBu3DjcfPPN+NGPfoSnnnoqYD9Pp6eWMdblb5wHHngA1dXV/p+SkhLRp90VCxrAoCZs27UL5eiPHXUk0nijGTYWFJDyNE+vM+cWFsIHD1YcJYdmCriFhwUNPa+3+eSTXnbqEGL/aZwCAJgxI8KDWlA/xa/N0qW97NRh5ydJFwEwik7DxoLredlltF26tJf6DD7jaHqEQ4w5FlzPSy+l7fLlvaTt9u4FfD7/EOOIogqAJe3tzJkkHjds6OU2OnoUOHpUTP0JYImd48dTOqumppdOYcfyKetAeZ3TT49QWAtCuEAZOHAgRnV6Kk8++WTs378fAJDXUdzWOVpSXl7eJarC8Xq9SE9PD/iRjl0LZYuK8AVIlYwZQ3WREWFBQ382td1YtqyXhr6wEBtxGioaU5GWZqTAwsYCIcYb+qVLexlUU1iIwxiAtRU0pWrEi3NZcD3nzKHtF1/0Mr1DURFaEYf/1tG9y3uvYWNBT3T6dIoA7t/fS7EsF5w+upC80xE2FlzPU0+lFFxjI/DRRz3s1GHnmmTKMUfsuC24ngMGGO3K++/3sBNfgyeZUrBCI5yKCvZjY4ELqGSx5zqUvXuB9nasj6Xeox3qTwAJAuXss8/Gzk5J98LCQgztWMt7+PDhyMvLwwpTQqylpQUrV67EJO6h7YCFhbJr1vTi0HbuxGegRiGi9A7HAsd92WVUiLd1ay91C4WFWA7qml9wQZgTQJmx4Hqecw61u9XVwAcf9LBTYSE+AIVNxo0TMO+ABXYOGULD5BnrJYpSVIQvcTaOtaYiJ0eA4LSgJ5qURL1uoHc7izEMG+uOR0wMMHt2hAe1wE6PB7jkEnr973/3sFNRERqQhP/UUVskTFiXlQU5W6UYuFB+770eduiYyv8DHxVyROy4zZPSBb06bOTwNE+PdSi8QDaeHkzXCpS7774bq1evxiOPPIJdu3bh9ddfxzPPPIPbbrsNAKV25s+fj0ceeQRLly7Fli1bcMMNNyA5ORnz5s0TfTrhY0EE5YQTSC80NfXQALa0AMXF+BykTCIqkOVY4ND69TMa7ldf7WaHjvw2d9wRp3cAS4RYTAzw/e/T6yVLutmhY7Xm/4DSHhddJOCgFjg0ALjiCtq+9VYPO+zahXdBXu/iiyMsBAYsuW8B4PLLadubQFkK2mny5AhGnnF4O1ReHsICOZHDBcqyZT3ohaIi/AcXoaE9EcOHCyiozM2lB6a9nWxVBBcoH35IEaMuFBVhLSZgd9NgJCcLeEaTkijfAih9Rnmh7FdfAd3O5lFUhGYkYEszVTrboUAWAMAksGzZMjZ69Gjm9XrZSSedxJ555pmA930+H3vooYdYXl4e83q97LzzzmObN28O+vOrq6sZAFZdXS361A3+8hfGAMa+9z15x+iGBQvosOed182b27axY0hnMWhjAGOlpQIO+PrrdMDJkwV8WPAsXUqHHTSIsba2Tm9u385qkcLi0cwAxoqKBBzwgw/ogKNHC/iw4Fm9mg6bksJYfX2nN8vLWStiWSYqGcDYF18IOOCuXXTApCTGfD4BHxgcxcV02JgYxsrKur7vGzSYHY9CBjD2z38KOOCxY3RAgLG6OgEfGBxVVYzFxdFhd+zoZofTTmPn4DMGMPbXvwo4oM/HWEICHXDvXgEfGBwtLYxlZNBhV63qZodp09hcLGEAYz/7maCD5ufTAdesEfSBfePzMTZkCB32vfe62WHePHY3/sQAxq68UtBBTzmFDrh8uaAPDI7hw+mwy5Z18+Ztt7GluJQBjA0YILfpCMV/S5lJdtasWdi8eTOampqwfft2/OhHPwp43+PxYMGCBTh06BCampqwcuVKjI44uScYCyIoAPDDH1Lv8rPPupn2vrAQqzAJPsTiuOOMU4wIi3qiM2dSJKW0lGY5DKCwECsxGa1IwPDhEcyUa8YiO884g+Y1qa/vJs9dWIivcSaqkIXMTGM24YjgN0VjI3DsmIAPDI5hw2juF58PeOedTm82NGBnaQp2YSQSEpiYiFh6ujFOWeEz2q+fkc/vEkVhDIcLq/ElqMiKF9VGhAVz2wCUUuXRgu7SPA07S/AeKPwwd66gg1rwjHo8vad52gt3401QGPSqqwQd1KK2iKd5li/v5s2iIjyJWwEAP/iBPQpkAb0WT8/wRkFhSgCge5enP55+utObpvoTIekdIDD1oahoC6AJT3nD1iXNU1Tkrz+ZPl3Qw8LtrKoKYkYxcXg8wJVX0usuaR5TemfGjAiHaXKSkozKacUNIE/z/POfnd7Yvduf3jn/fA/S0gQczOOxrKHnRcFdBMrhw/h3w4VgiMHECT4Imw3BggJSoJc6lOZm/KdkDBqQguFD2sSlAyxKT5oFSkATyBg+294fBzEI/dLaIx9hx7HITj58/KWXumbRCre1YQWmw+NhuPlmpafVK1qg9AR3aAcPUrdQIbfcQtuXXw5cxr5i00E8hx8CAM4/X9DBeOPX1KRsllXONdfQ9p//7JT/NRXICultA4E9bsUNPRco77/fabHWwkL8F1R1yYsvhWBR9I8LlE8+oeWA/BQWYhlIdXOnJwSLHPell5I++uYbmtjZj6n+5PI5AptWC6OccXHAjh2dpgTYswdvsf8BAHzv+7HietsWXc/zz6em4cCBTjVUlZV4o57u2/+Zw/yrSESMRXbOmkW1JTU1wIIFpjdaWvDkgY76sKnNGD5c6Wn1ihYoPTFwILVCra2dWlv5XHghMGIEFXm/+abx93tXzEAF+mP04GP+4suISUw0KvkUR4vOPptGgNTWBjYML6wcgR04GbExPn84PWI8HksKZQEatnniiTQya/Fi4++rVsdgA6j7GfEoCDMWObTjjqORSO3twM9+ZvRGS1aXYhVoiFrEw4vNWNQTzcszIpjXXmvUrlZvLMZHoBkFeZRFCBYJzowM4Hvfo9dXX20MOmnYssef3vneXIG5AIuuZ2IicM899PonPzEem5Ztu/BPkOq+6loR4c0OLHo+Y2KAxx+n1888Y5QQ1G8pxou4HgBw2z2iVJgYtEDpifh4Y0EyxQ4tJgb+MNvChcDq1VRl/nL5THjgw3MPH0JCgsADWvjAXE/PBX70I0qBrFwJ3LzzbgDAgz84CNMak5FjkZ0eD3D77fT6wQeBv/6V5tG46LOfAwAuP6sMAwYIPKBFdgLA//4vXdcXXgB+9SsavTj56SvhQyzOLCjFkCECD2ahnX//OwXlPv8cuOMOOoWZj56HViTg5Myy8Bd87A4L7Vy8mOZE2b2b6uMqK4Eb//c4Su+kHBY7HNWiyAJA9+qECRREvuEG6jQ9sDANVchCXkIlpkwReDCLhBhAI8suu4w6ET/9Kc0s+8yTbahGPxyfsB/TZ9ik+IQjr1ZXHkpG8TDG2MSJVPb873/LPU43HDnCWHa2MVAhJcXHAMbuwF8YE233xRfTQTqNtlJBQwNjl1/e1c65WMLaj1SKPdh119FBFi4U+7lB4PMxdv/9hp2pqWTnOfiM1X27S+zBfvlLOsgtt4j93CB59lnDzrQ02h6HIrb7yf8n9kBPPEEffsUVYj83SN5/nzGPJ9DODFSxj+96R+yBXnuNPnzKFLGfGySrVzMWHx9oZwza2AuXvC32QMuX04efcorYzw2SHTto8JvZToCxhycsFXugNWvog/PzxX5ukBQWGiPRvF7Dzj+d+qKS41s+isc1WJQSACjrsm4dVVTHxAD19R4UYD/+N3dRhItBdIOFPbSkJErv3E1BE9TXe3AmVuPF7PsQkxPpNLmdsNBOjwd45BGKoABAXZ0HE/EN3o+9FCmjhoo9mIV2AtTT/u1v6XVtLXB6zAZ8ibMxYorI8Aks7YkCNMrl0UfpdW0tcGrCdqzFBJx/qeDn06IUD+fMM4HHHqPXtbXASUl7sQqTcMNVPc0mGSYWX88TTwT+9Cd6XVsLjEgpw1u4Ar+Yt1fsgSxYRd7MyJHAXXfR6+ZmIDmuGdPxAX544V7l59IXAhNrLsRCgQJQaPX//o/y+S//bDOuXHY10k4aJP5AFtsZG0u50TFjgJUvFeP3Ky9F0gkixhZ3wmI7PR7gd7+j8qZ1yw7ijx98F+nHDxA0fMeExQIFAH75S8rt791aj4UvTUZ6bIOg8eImbGDnT39KNfQ1R9vwyz9ORDLqBayE2InO06NbMAb0rruo1sbnA+b/4WwkNh4UbycXYlVVVDWflCT284PgJz+hssO4OOCmRd+Fd8e3wMk/FHuQAQOMVeTLywXNFxEajz5Ko0UHDwaG/3gWYj7+EBj9f8rPoy+0QOkNix0a56STgEfG/gNYthk48cfiD2CDhh6gaNEPSl8DVpYDJ4gc1tIBt9PC6+nxALfdBiDm38AHVcDIs8UfxOIeN0B2/vSnAD7+GnipFhgxEmILpxBop0WO2+MB7r8fwNadwB/qKbrJa9dEwe2sr6euvYq1yDrh8VBHCUeOAA903FcnnCD2IBkZtNhRQwO1RccfL/bzg8DjAe68ExTZmN9RRXryyWIPEhtL90hpKf1YIFDi4qgeBQBQ1LE0zciRys+jL3SKpzdsIlAAAHx9I9GNAmAvOzvWhJBqp8VCDABQWEhbGXZyIXb4sCUh5AD4fSu6tw0YCxdZMNKuCzt20Pakk8QLpZQUct6A9fcut3PoUBITIjHPbWOhuAYA7NlD91VyMsRNaGOCt0UlJeI/OxRqa41zEC3EBKAFSm/YyXFzhyZ0eEAHNomgADDslKHm+fUsK6PGx0pkCpQBHWkjn49stRLu0GTctwkJ8A9/svreNQsUGdjlGeV2ynJmFo7kCWD7dtqeeCIVAYqGix6rBQq/ngMGANnZ1p5LN2iB0hsWzbLaBZ9PrkOzaJbVbpFpZ//+NHycMesdt8xIUUyMEV2wuqGX7bhtkM4CoO0UhV0iKLLt5OPtrRYoXIiNGmXtefSAFii9YV7XRPEsqwGUltI5xMVByjR/Fs6yGkBlJXD0KL2WkX+OibFsCYMAWlsphAzIy/tGm0NzuxCLFjvtFkGRFSmySwRlm6Q6G0FogdIbiYnU6wasdWg8jz9iBEUARGPhLKsB8KjC4MGGYBKNHRr64mKq4E9OllcgZwc7GxqA/fvptYwUD2APOxmLHoHCHbcsO+3QDgHyr6ddBIqOoDgcG4z8kJrH59ihAZRZf8KxQwNotlNGfhuw1/XMzjaWUxCNHSJFBw8CdXU0OkP0UGqOHdqhxkZg7156LTv1EbDIkWIYUxdB4QLeKmTbGSFaoPSFHRza1q20PeUUecewg50y6084dnDcMutPOHZw3LJ7oYA9RkNwO487TvxQas7Qjsn8rHRoRUXkvDMzIXZtBhN2sLOsjFbUi4mR11niAuXQIetG2jU10RoGgI6gOBY7OO4tW2g7erS8Y0SL47bD9VQRKbJDj5unJmVG/niP20qHpkKI2SGyIHMoNYfbWVZG05xaAY8qjBgBcUsYdyI3l9L1Pp91nYiiIjp+Rob4uXsEoQVKX1jt0BiLnggKbxhURFDsIFBk2hktjpv3uPfts26knUo7jx6ldJIVqLAzO9uYQdaqZ1SFnTEx1kf/eIHsqFGWTHIYDFqg9IXVjvvQIRpBFBMj94GxOoLS2mo0DDIjRXZy3DIFyrBhtN2/n3pJVqAyslBfb4wAU40KO9PT4V/a26p7V3aBLECO0upokaq6DKsLZW1efwJogdI3VgsUHj05/ngaVSQLq4u2CgtJpKSmGr1FGXDHfeCANZO1HT1qhHRlRsQGDaKizZYWa+Z8aW+XO4ssJzGRwuWAdQ5NhUABrHfcsidp41hdh6Lqelrd5tp8BA+gBUrfWC1QVNSfAIbjPnyYqvVVs3kzbUePlhtuzM2lvLLPZ020iNs5bJjcNVXi4oyomBUObfduY8G3ESPkHsuc5lFNTY3RNsistQGstdPnUyM4AeujnNESQbH5HCiAFih9wxv52lpqjFTDIyiyBUpmJpCWRq+taAC5EBszRu5xYmKMhp4PmVQJFyiy7QQM0WmlnaecQpEcmVjpuLmdgwcDWVlyj2VlZGHvXhKcCQlyJos0Y2WkqLbW6LioEmJWCJS2NqMWTkdQHExqqpH7teJG4o5bZjoAoKiFHRyaCsdtpUDZtIm2Ku20oqHndp56qvxjRYudVjrub7+l7SmnUHROJlZGUHh7m5dHnTaZWBlB2bOH0r/Jycb3bUO0QAkGqxyaeQSP7AgKYPSMiovlH6sz5hSPbKJFiFlppxYo4rEyghItdnIhNnas/GNZKVBkL4YoCPuemZ3gOXS+fooq9u+nIYXx8XLnzOBY5dBqaw1R5GbH7fOpS2UB9kh9aIEiDivtVOm4zREU1UPH+fVUKVCOHFFf9+eAAllAC5Tg4AJFdWSBR09OPFHOGjydscpx82KtvDx5U6KbscrOfftIcCYkyB1izLHKodXVGTNUulmI+XxqhRh33KWl6kegqRRigwZRyrmpiZy3SlQKscxMSrEA6gdh8Ospu3QgQrRACQae+lAdQVFVf8Lhjlu1EFOZ9gAMO1U7NG7nySerF5wqe6L8vh04UI3g5AKlspLmQ1HFvn0U/VMlOHNz6ViqZx+trTUEpwrH7fUaM5uqTPP4fGojKOY5X1SneTZsoO24cWqPGyJaoASDVSkelfUngCHEVEcWVNafAIbjLilRuw6GaiHGQ8iNjUBFhZpjAmqjCgBN1Z2RQa9Vik7uzEaNUiM4Y2KsKZTlgjM/X43gBKypQykupuif1yt/yDjHirlQ6uuNIeOnnabuuGGgBUowmFM8VvREVUdQjhxR2xNVWZcBUO8sIYEmE1M5F4rKETwANbR80UArHLcqOwFr0jwq0wEcKwQKt1OV4ASstVPFSCUO9y27dqk5HkAdCMaoHbTpGjwcLVCCYehQCsfV1anriba3G4VMqiIL/fpZ0xNVHVkw90RVRotURxYAa0agqaxX4Fjh0Kyw04rIgsq0B8eKocZWCE4++EGlQOHpHZtHTwAtUIIjMdGYsE1VmofPxJmYKH8mTjOqhxofPkwRG49HbUW56kLZ5mZjYiQ3RxYYs1aIRYtAiZYIihUCRaWdXKDwldxVsHEjbW1efwJogRI8qgtl162j7bhx8mfiNKPacfP0znHHGRXtKlBt5/btFBXLzDTSLipQbWdpKS1uGRsrfyZOM6odd3290et1s+NWXTjKsSLyZ0UE5fjjaVtUpK58QEdQXIjqocZr19J2/Hg1x+Oodmiq0zsc1SN5zHaqXNpctePmzuykk6gGRhWq7dy6lRxKbi4wYICaYwKGnaraob171Q6N5/DIQmGhGsddXW20eSoFyogR1B7U1qoZUt3WZrRFOoLiIlSP5OECZcIENcfjqE7xrF9PW5W9UEALMVlYkd4B1F9PK9I7gOG49+xRMxeKuXBUxUglzogRVCtWVwccOiT/ePx6qlhTyUxiojGSR0WaZ+dOml8mNZWi1jZHC5RgUSlQ2tsNx61aoKhu6L/5hrZnnqnmeBzVdnLBqTqsau5xq+iJcoemWojxUPnBg9QblY1VAmXQICAlhXrCKtoiq+z0eo3OEh8SKxMr0lgclXUovP5k7FhbT3HPsf8Z2gWVkYXCQuo5JCerzeMDah33sWNG4zNxovzjmTGPhpA9F0p7O7BmDb1WLcSGD6eGqLaWCpJlw+1UHT7OyjJSLSocmhUFlQBdS55qUWmnFY6bz0XidjtVjuRxUP0JoAVK8PAIyv798kOrvLd9+ulqC2QBQ6BUVsrviXI7R4xQNwEUJz+fwqvt7fLF2I4dJDhTU9WvfZGYaIhrPmxdFpWVRiOrWogBhpjfsUPucdrarEvBAoadKhw373GrFmKAIVD46DeZWClQzIWysnHQCB5AC5Tgycujxt7nk19Bb2Xjl55uiAXZDwxP75xxhtzjdEdMjNHQ87WAZPH117SdMEG94ARoan1AvkDh1/OEE+QvVd8dqgTKli1AQwM9K6ojnIDhuGXbefgwRYw9HmvaIlURlJYWI8VjRWRBVQSFMR1BcS0ej7o6FCsFCmD08mU7bisFCqDOTi5QrLJTlUBZvZq23/mO3OP0BLdTtuPmdp55pjV5fFURlK++ou2oUcYEjipRJVA2bqTC0awsNavGd8ZcgyKzTqykBDh6lGbJVTX5Z4RIf7oWLlwIj8eD+fPn+//GGMOCBQuQn5+PpKQkTJkyBVv5ujN2RkUdSluboXKtFiiyr4ldBIqqyIIVaQ9AnUDhQswqO1VFUKwWYqoiKNzOs86Se5ye4HYWF9NEh7JYtYq2Z52ldgoAzvDhxlDj8nJ5x+F+ZdQotVMARIBUgbJmzRo888wzOLVT/vKxxx7D448/jsWLF2PNmjXIy8vDtGnTUKui+j4S+LAsmTnR7dtpBtm0NGvUPGCs/SNToJSW0vDB2Fjr8qEqIigNDcbQWzdHUHw+Q6BY5bi5QCkqklv4bLXj5u1CZaXcpTd4BMUqO/PyqG7L55MbteZ2Tpok7xi9kZhoTMAnM83D7bSq4xsG0gRKXV0drr76ajz77LPINOWjGWN44okn8OCDD2LOnDkYPXo0XnrpJTQ0NOD111+XdTpi4I6bz34qA/MEbVYNA+N2ynTcPKowZozaGWTNmCMoPp+cY6xbR4W4+fk0x4IVcIFy8CBNSCWDoiIalZWYqH6IMWfIEDp+S4u8wuejR42Ug1WCMyXFcGiy0h+trcaILKsEisejJs1jjqBYhYpC2S++oO2558o7hmCkecDbbrsNF198MS688MKAvxcXF6OsrAzTp0/3/83r9WLy5MlYxW+UTjQ3N6OmpibgxxJ4JIj3iGVgdf0JYAiUPXsoAiADq9M7AEXE4uNp2vKSEjnHsDq9A1D9wMCB9FpWWoBHFcaPVzuhl5mYGMOhyYoW8SjRCScA2dlyjhEMsh33pk0Uye3XzziWFci2s6QEOHCAIrmqpzowI3sulKYmQ3Cec46cY0hAikBZsmQJ1q9fj4ULF3Z5r6ysDACQm5sb8Pfc3Fz/e51ZuHAhMjIy/D8FfOY91XDHffCgvNCqHQRK//7U+DImz6Fxx21loxAXZ8wpIStaZHWBLIenP2Q7bqvSOxzZdShW159wZBfK8nTAd75j7YResgUKt/PUUymdZBWyR/KsWUORxdxcR8wgyxF+55WUlOCuu+7Cq6++isTExB7383QqRmKMdfkb54EHHkB1dbX/p0RWb7cv0tKMkTwyoihNTcZ4fNVr8JjxeOTWofh8hpq32nHLrkOxunCUI7sOxTyyxUpkj+Sxi0CRXShrdf0JR7ZA4VF7q+pPOLJTPOb0jhWFwGEiXKCsW7cO5eXlGD9+POLi4hAXF4eVK1fir3/9K+Li4vyRk87RkvLy8i5RFY7X60V6enrAj2Xw/LoMgbJ6NVWr5+VZr3JlCpSdO6liPTlZ/cRlnZEpUMrKaM4cq+aRMCNToDQ0GPNIWO24ZUZQ7FAIzFEVQbGLQJE1MMHqAlmOOYIiY6gxFygOSu8AEgTK1KlTsXnzZmzcuNH/M2HCBFx99dXYuHEjRowYgby8PKxYscL/Py0tLVi5ciUmWX2TBAMXKLxBFsnHH9P2ggusV7kyHTdv5MePpzSLlci0k6exRo2i6JuVyIwsrF9PhcADB1pXCMwxp7JEN/Q7dlCRcXKydYXAHO64d+8WP7O1eYI2qyNi3HFXVFCBskgaG401z6wWYiNGUB1MbS3VxIjE5wO+/JJeO0ygCPcOaWlpGN1pEpiUlBRkZ2f7/z5//nw88sgjGDlyJEaOHIlHHnkEycnJmDdvnujTEY/MQlkuUKZOFf/ZoSIzgvLJJ7Q9+2zxnx0q5pE8jIkVhnZJewCGQNm9m6J0IudBMNtptbAeOZLOoaqKnFr//uI+m9s5caL1wpovGlhfT8XsIgtZuZ2nnEKz5VpJSgqJ3gMHKFokUkisW0fD0fPyjCU+rMLrpe970yY6L5F1llu3krBOTbVmKv8IsKT66Wc/+xnmz5+PW2+9FRMmTEBpaSmWL1+ONKt7mcHAe05btogdmlpXZ0QWLrhA3OeGCxcoxcViR/IwBvDo2bRp4j43XEaOpJ5LdbX4Zd25needJ/Zzw2HgQHI2Pp/4PDfvnVmd9gAousEXghQdLbJL/QkQOARXtJ12Se9wZNWhWD1BW2d4GpgPlBDF55/T9qyzrBfWIaJEoHz66ad44okn/L97PB4sWLAAhw4dQlNTE1auXNkl6mJbjj+e5lpoaBA7edDnn5OaHz7cejUP0MqwOTkkKETWLWzdSkIgKckeERSv1yhQE5nmqaignhAAmIbUW4bHI6cOpaUF+Ogjem2HyB8grw7l009pazfH7XaBwqOcfACBKOxSIMuRJVAcWn8C6LV4QicuznhgRNahmOtP7IKM+ozly2k7ebJ9plvmjluknStWkLg79VRjDhKrkSFQvvqK8ub9+9Pq23aACxSR6clduyjyFB8PnH++uM+NBJ5uFunQamoMx22XCb14ipRHsETQ3m5E/uwixPiUC2vXiq2f0gIlypBRh2JHgSKjDoWnPewQVeDIEGIffEDbGTPEfWakyBDW/+//0XbGDGvnyzDDh+iLdGj//S9tzznH+roMDu/5r1olzqGtWEGR3BNOMCKLVsMFxPr14tbkWbOGopzp6dZPdcAZM4YEcGUlsG+fmM/cv58mo4uLs0ctXIjYpEVxGKJH8hw9aizkZJfeGSBeoDQ1AStX0ms71J9wuJ38GkQKY0akyE4ChTdQIh0aFyjf/a6YzxMBTx2uX08jNUTwn//Q9qKLxHyeCCZMIMdz8KC4mZDff5+2F18s5vNEMHw4RehaWsQ9o++9R9vvfte6mY874/WKj4rx9vb006ng2GFogRIOoiMoK1eSwzj5ZPukAwDDzjVrxDi0L78khzFwoCEK7IDZodXVRf55mzdTnU1ysr3CqhMnUmN86JCY+qlDh2ipeo/HXhGxYcPoHjOvJxMJDQ3GyDM7CZTkZOC00+g1rxuJBJ/PEGJ2Eigej1GYLCoqtmwZbWfPFvN5ohBdh/Luu7TttOSMU9ACJRx4BGXXLhrmFyl2Gl5sZuJEUvWHD4uZKMk8escOVfOcoUNp8bW2NjENIE/vTJlinzobgAqTeQPI89KRwO0cP17scN5I8XgM0cnrDCLh008ptTBkiFHHYxd4+qOHdcxCYv16etbT0uxTf8IRKVD276fod0yMvSJ/gFiB0thopCYvvzzyz7MALVDCITeXfhgzJvqJBD4Kwk71JwCNVuINIB/BEAk87WGn3jaHDwX+7LPIP8uO9Scc7nhECBSe3pk5M/LPEg0XKCIctzm9YydhDRh1KCIiKDy9M20akJAQ+eeJhAsUkXaedRaNVLQTZoESadT6ww+pA11QYO3SKRGgBUq4TJlC2w8/jOxzDhygURUeD41ssRvczkgFypEjRv7YjuFGUQKlvt6Yd8COAoWnnCIVKO3thuC0Wy8UCCwgjWS+IsYMgWJHIcY7EBs2RF5vY8f6E87EiRTx2L+fam4igdefzJoV+XmJ5pRTqGNYXU2TKkbC22/T9vLL7Sesg0QLlHDhRZ6mKfvD4o03aDtpEpCVFdlnycAsUCJR9FzIjR1L0Se7wQUKXw8pXFaupGK+oUONlZLtBI8s7NhBojFc1qyh2Vr79bPPKAgz48ZRSuvo0cgm+CospMkKExLsF+EEKO2Un0/pyUjSAocPG/U6dhRiaWkAnyuLT2gZDvX1RsTabvUnANWI8bqiSK5nW5tRZ+PQ9A6gBUr4cIHy9dfAsWPhf84rr9D22msjPiUpnHkm1VGUlUVWh2IOH9uRE06gyemamyMrrDSnd+zYa8nKMgqUI6nP4LntadPsOTtlfLwhnCKxk0dPJk+mqcLthscjpg6FX8/TT7dXob4ZEWmejz6iZ3zYMOsXKu0JnuaJpB36/HMarpydba9C/RDRAiVchgyhmRx9PqPCP1S+/ZZGfCQkAHPnij0/UZjrUPiQtVA5dgz417/o9RVXCDkt4Xg8kad52toMO+2Y9uCIqEPhjtvOdooolLVzeofDn89IHLed0zscEYWy5vSOHTsQgDFhWyTp5qVLaXvJJfbsQASJFiiREGma59VXaTtrFpCZKeacZBBpHcprr9EcKGPG2DMdwIlUoLz/PlBaSoV3dhqO2hneo+K1MqHy7bcUfo6Ls7dDi7RQtrzcEOV2FiiRTtjW0mLUE9n5enKBsnZteCs4M2bv+hMOj76uXUs1N6HCmCFQHJzeAbRAiYxIBEp7O/D66/TarukdDi/eDacOhTHg2Wfp9Q9/aN9eC2DY+eWXFA0Jlb//nbY33GCv4cWd4QJl/frwhsk/9RRt/+d/7FlPxOGRhcLC8Optnn2WHOEZZxjT59uR00+nKOyRI+HV2/zjHzTFfX6+0Xu3IyeeSCnKxsbwOhGff05z96SkGJ0uO5Kba0Q5eaFrKKxdS4MvUlLsm1IPEi1QImHKFOpF7tpFhXSh8PHHVI2elWXv3jZAPRevlx7uUFfCXb+eetxeL3DNNXLOTxSjR1PRZ10dTUAWCnv3GsNuf/xjwScmmKFDaehhW1vo6Y/qaiPyd+ut4s9NJJmZxpxFvOccLK2thhC74w6x5yUar9eYgXrJktD+lzHgz3+m17fdZp/lCrojJsZIEb/2Wuj///jjtJ03z94dCACYM4e24QgUHj256CJK0TsYG9+NDiA93Qg7hhpF4cWx3/++/eYc6ExiomEnr4APlueeo+2cOfYcpWQmJsZI87zzTmj/+9xz1NhfcAEwcqTwUxMOT1m8/HJo//fyyxR1OeUU+03m1R1XXUXbF14I7f+WLqV03YABwPe+J/68RHPddbR9+eXQopxffEGdiMRE+wtrALj6atr+61+hDasuKjJmVb3nHvHnJRouUL74ggYoBEtDA/B//xf4GQ5GC5RICSfNU19vKGO7p3c4PDfNHXEw1Ncbaawf/UjOeYmGR3mefz74PHdrK+0PADffLOe8RPPDH9L2n/+kobjBwBjw5JP0+tZb7Z2u41x3HQnPzz8PLfq3aBFtb77Z/r1tALjsMhplVFwcWlTsiSdoe+219pu0rDvOOYcGKNTUhBYV+/Of6f69+GJ7p+s4BQWUbmMM+Pe/g/+/Z56hIePDhrlCoIA5kOrqagaAVVdXW30qjK1ezRjAWFISY+Xlwf3Pyy/T/xx3HGM+n9zzE8WRI4x5vXTeq1YF9z8vvGDY2d4u9fSE0dLCWF4enfdbbwX3P//6F+0/YABjzc1yz08UPh9jY8fSef/1r8H9z8cf0/6pqYzZ4dkLlu9+l877F78Ibv8NG2j/uDjGSkulnppQfvADOu8f/jC4/ffsYSwmhv5nyxa55yaS+++nc7700uD2r6ig9hmge9gpPPoonfO0acHt39BgtF3PPCP33CIgFP+tIyiRcsYZNG69sRH4y1/63r+xEViwgF5fd50zeqEA9a7mzaPXvHfZFzy9c9NN9s5tm4mPp/MFjBqEvuDFsTfeaP90HcfjMaJazz4bXFSMR0+uvZbSm07hxhtp+9JLVJzeF/z+vuIKKhx1CtdfT9t//CO49MeiRTRNwvTp9lq8sy94lPM//wku+vfUU/R9jBtn7+LYzvAIyCefBGfnM89QOmjIEONecDoKBJNwbBVBYYyxt98m1ZqRwdixY73v+4tf0L6DBjFWU6Pk9ISxfr3Rszx4sPd933uP9o2N7Xtfu7Fvn9Gz3LGj9303baL9AMZ271ZzfqI4epSxxEQ699Wre9/3wAG6lgDZ7CSamhjLyqJz/3//r/d9jxwxvpMvv1RzfqJob2ds6FA69yVLet+3upqxtDTa9z//UXJ6QuHRv6ef7n2/xkaKbAKMvfqqklMTypgxdO6LFvW+X0MDYwMH0r5//7uacwsTHUFRzaWX0qyE1dVGL7M7tm0D/vAHer1oEU3f7CTGjaO5JdrajKhBdxw+DPzgB/T6zjvtOzNlTwwZYtTc9GZnfT1w5ZX0+rLLgBEjpJ+aUDIzjQJQPhS8O9rbKarU3k6FsXxkjFPweo3oHy8g7Inf/Ibm7Dn9dGOYslOIiTFq2vqy88kngdpaGrprxzWj+oIXyz77bO9RsVdfpflsBg+272SYvcELl3/1K2pXe+LZZ2mU5ZAhNM2BW1AgmIRjuwgKY4y98gqp1/79Gauv7/p+eztj555L+8ye7Zzak84sWUI25OVRz7QzPh9jM2fSPqeeSj0YJ/L++2RDZiblsLvjhhton4EDGTt8WO35ieKzz8iG5GTGtm3rfp8HHzTqrDZuVHt+ouDRv9hYxj78sPt9/v53Ixq2bJna8xNFYSFjHg/Z8Pzz3e/z/vtGNOzZZ9WenygOHqRaKICxX/+6+33WrWMsPZ32eewxtecnitZWxk4/nWy46qru96mrYyw/n/Z56im15xcGofhvLVBE0drK2LBhdJP88pddBcjzzxuOYO9ea85RBC0txsMwa1ZXAbJoEb2XmOiswrvOtLUxdsIJZMv48V1Tdy++SO/FxDD2ySeWnKIQfD5DOA8d2jUdt3Sp4bRfe82KMxTHddcZorOwMPC9jz6i1CXA2O9+Z835ieK3vyU7vF7G1q4NfG/NGmqDAMauv965HSXG6H4ESJB99FHge9u3M5aTQ+9PnuzcjhJjdA15yrlzirKsjLEzzqD3Cgq67zTaDC1QrOLZZ43GfO5ccmoHD1LdCVf7f/yj1WcZOcuXG3n6adMoYlRZSdEVPtKnr5ypE9i+nSJiAGOTJjFWW0t1Qx98YDTyv/2t1WcZOUeOMDZyJNlz2mlUn9DYSHUpvE5h/nyrzzJyGhsZ+853yJ4TT2Ssqoo6Flu3kmgBGJs3z9lOmzGK1s6eHSg629upRorXY0ybRp0Np3PTTWRPbi6JztZWqiErKKC/n366s0ac9cT8+WTP8OHU/jQ3033La46yshxTM6UFilX4fCRAeE9s4EDGEhIM0XLeefQAuYGPP2YsJcVIa/GwMsDYRRc5v5HnbNzIWL9+RhE0txFg7MILKdLiBszOi4tP/jN5sjucGWOMHTpkOC/zPQswduaZzu5pm6mqouH9Zvu4vVyEuoH6esZOOSXQRt5JOumk4Kd+sDu1tcZ9C1Dqincejj++a0TQxmiBYjWrVxvKlve+337bPc6M88UXxkMCMDZqFGN33UWjQ9zE118H2jlwIEXInFp30hNr1xqRPi5UpkyhMLKb2LDBiIzxn9NOI/HiJr79NrAd4pEjJ83tEgzbt1O9m1lwDh/O2P79Vp+ZWAoLGfvxjylaxO085xyKgDqIUPy3h7FgJkCwFzU1NcjIyEB1dTXS7TofQ1UV8OKLwJlnGquNupGiImDrVhrxYOeF4yJl715g3z5aryc72+qzkUdZGS06N2gQjfJxyjw9odLUBFRWAklJNM17UpI7bfX5aPrzpib6GTgQiI21+qzk0N4OVFTQ/XviiTSnkRvx+YCvv6a2d+5cx623E4r/1gJFo9FoNBqNEkLx33oeFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLYjzuoTCAe+AHNNTY3FZ6LRaDQajSZYuN/mfrw3HClQamtrAQAFBQUWn4lGo9FoNJpQqa2tRUZGRq/7eFgwMsZm+Hw+HDx4EGlpafB4PEI/u6amBgUFBSgpKUF6errQz9YY6O9ZDfp7VoP+ntWhv2s1yPqeGWOora1Ffn4+YmJ6rzJxZAQlJiYGgwcPlnqM9PR0ffMrQH/PatDfsxr096wO/V2rQcb33FfkhKOLZDUajUaj0dgOLVA0Go1Go9HYDi1QOuH1evHQQw/B6/VafSquRn/PatDfsxr096wO/V2rwQ7fsyOLZDUajUaj0bgbHUHRaDQajUZjO7RA0Wg0Go1GYzu0QNFoNBqNRmM7tEDRaDQajUZjO7RA0Wg0Go1GYzu0QDHx5JNPYvjw4UhMTMT48ePx+eefW31Kjuezzz7D7NmzkZ+fD4/Hg3feeSfgfcYYFixYgPz8fCQlJWHKlCnYunWrNSfrUBYuXIiJEyciLS0NAwYMwGWXXYadO3cG7KO/ZzE89dRTOPXUU/2za5511ln473//639ff8/iWbhwITweD+bPn+//m/6exbBgwQJ4PJ6An7y8PP/7Vn/PWqB08Oabb2L+/Pl48MEHsWHDBpx77rmYOXMm9u/fb/WpOZr6+nqMHTsWixcv7vb9xx57DI8//jgWL16MNWvWIC8vD9OmTfMvCKnpm5UrV+K2227D6tWrsWLFCrS1tWH69Omor6/376O/ZzEMHjwYjz76KNauXYu1a9figgsuwKWXXupvtPX3LJY1a9bgmWeewamnnhrwd/09i+OUU07BoUOH/D+bN2/2v2f598w0jDHGzjjjDPaTn/wk4G8nnXQSu//++y06I/cBgC1dutT/u8/nY3l5eezRRx/1/62pqYllZGSwp59+2oIzdAfl5eUMAFu5ciVjTH/PssnMzGTPPfec/p4FU1tby0aOHMlWrFjBJk+ezO666y7GmL6fRfLQQw+xsWPHdvueHb5nHUEB0NLSgnXr1mH69OkBf58+fTpWrVpl0Vm5n+LiYpSVlQV8716vF5MnT9bfewRUV1cDALKysgDo71kW7e3tWLJkCerr63HWWWfp71kwt912Gy6++GJceOGFAX/X37NYioqKkJ+fj+HDh+PKK6/Enj17ANjje3bkasaiqaioQHt7O3JzcwP+npubi7KyMovOyv3w77a7733fvn1WnJLjYYzhnnvuwTnnnIPRo0cD0N+zaDZv3oyzzjoLTU1NSE1NxdKlSzFq1Ch/o62/58hZsmQJ1q9fjzVr1nR5T9/P4jjzzDPx8ssv44QTTsDhw4fx8MMPY9KkSdi6dastvmctUEx4PJ6A3xljXf6mEY/+3sVx++23Y9OmTfjiiy+6vKe/ZzGceOKJ2LhxI44dO4Z//etfuP7667Fy5Ur/+/p7joySkhLcddddWL58ORITE3vcT3/PkTNz5kz/6zFjxuCss87Ccccdh5deegnf+c53AFj7PesUD4CcnBzExsZ2iZaUl5d3UY8acfBqcf29i+GOO+7Au+++i08++QSDBw/2/11/z2JJSEjA8ccfjwkTJmDhwoUYO3Ys/vKXv+jvWRDr1q1DeXk5xo8fj7i4OMTFxWHlypX461//iri4OP93qb9n8aSkpGDMmDEoKiqyxf2sBQqowRk/fjxWrFgR8PcVK1Zg0qRJFp2V+xk+fDjy8vICvveWlhasXLlSf+8hwBjD7bffjrfffhsff/wxhg8fHvC+/p7lwhhDc3Oz/p4FMXXqVGzevBkbN270/0yYMAFXX301Nm7ciBEjRujvWRLNzc3Yvn07Bg4caI/7WUkprgNYsmQJi4+PZ88//zzbtm0bmz9/PktJSWF79+61+tQcTW1tLduwYQPbsGEDA8Aef/xxtmHDBrZv3z7GGGOPPvooy8jIYG+//TbbvHkzu+qqq9jAgQNZTU2NxWfuHG655RaWkZHBPv30U3bo0CH/T0NDg38f/T2L4YEHHmCfffYZKy4uZps2bWK/+MUvWExMDFu+fDljTH/PsjCP4mFMf8+iuPfee9mnn37K9uzZw1avXs1mzZrF0tLS/H7P6u9ZCxQTf/vb39jQoUNZQkICO/300/3DNDXh88knnzAAXX6uv/56xhgNZXvooYdYXl4e83q97LzzzmObN2+29qQdRnffLwD2wgsv+PfR37MYbrzxRn8b0b9/fzZ16lS/OGFMf8+y6CxQ9Pcshu9///ts4MCBLD4+nuXn57M5c+awrVu3+t+3+nv2MMaYmliNRqPRaDQaTXDoGhSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tuP/A732i/HErd5YAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGxCAYAAABIjE2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdeklEQVR4nO2deXhV1dX/vzfTzRwyQEIgTIoDgoiAVhxAESgKDryWKo7VttYZh7Za20pbX7G2tbZQtQ6vs2JtxYq2P8EJB0QZZSYBAoRACAkh83z374+Vfc+5Ge+w9z7D3Z/nyXNuck/uOeuec/b67rXW3tvDGGPQaDQajUajsRExVp+ARqPRaDQaTWe0QNFoNBqNRmM7tEDRaDQajUZjO7RA0Wg0Go1GYzu0QNFoNBqNRmM7tEDRaDQajUZjO7RA0Wg0Go1GYzu0QNFoNBqNRmM7tEDRaDQajUZjO7RA0Wg0yvF4PFiwYIGl5zBlyhRMmTLF0nPQaDQ9E2f1CWg0Go0VPPnkk1afgkaj6QUtUDQaTVQyatQoq09Bo9H0gk7xaDQuZcGCBfB4PNiwYQPmzJmD9PR0ZGRk4JprrsGRI0cAADfddBOysrLQ0NDQ5f8vuOACnHLKKf7f33rrLZx55pnIyMhAcnIyRowYgRtvvDHgf/bv349rrrkGAwYMgNfrxcknn4w//elP8Pl8PZ7nt99+C4/Hg+eff77Le//973/h8Xjw7rvv+v9WVFSEefPmBRzjb3/7W8jfjznF09raigEDBuDaa6/tst+xY8eQlJSEe+65BwDw6aefwuPx4NVXX8U999yDvLw8JCUlYfLkydiwYUPI56HRaLpHCxSNxuVcfvnlOP744/HPf/4TCxYswDvvvIMZM2agtbUVd911F6qqqvD6668H/M+2bdvwySef4LbbbgMAfPXVV/j+97+PESNGYMmSJXj//ffx61//Gm1tbf7/OXLkCCZNmoTly5fjd7/7Hd59911ceOGFuO+++3D77bf3eH5jx47FuHHj8MILL3R578UXX8SAAQNw0UUX+c9r4sSJ2LJlC/70pz/hvffew8UXX4w777wTv/nNb8L+juLj43HNNdfgX//6F2pqagLee+ONN9DU1IQf/OAHAX//xS9+gT179uC5557Dc889h4MHD2LKlCnYs2dP2Oeh0WhMMI1G40oeeughBoDdfffdAX9/7bXXGAD26quvMsYYmzx5MjvttNMC9rnllltYeno6q62tZYwx9sc//pEBYMeOHevxePfffz8DwL7++usun+XxeNjOnTv9fwPAHnroIf/vf/3rXxmAgH2OHj3KvF4vu/fee/1/mzFjBhs8eDCrrq4OOMbtt9/OEhMT2dGjR3v7SgKYPHkymzx5sv/3TZs2MQDsmWeeCdjvjDPOYOPHj/f//sknnzAA7PTTT2c+n8//971797L4+Hj2wx/+MOhz0Gg0PaMjKBqNy7n66qsDfp87dy7i4uLwySefAADuuusubNy4EV9++SUAoKamBq+88gquv/56pKamAgAmTpzo/99//OMfKC0t7XKcjz/+GKNGjcIZZ5wR8PcbbrgBjDF8/PHHvZ6j1+vFiy++6P/bG2+8gebmZn/koqmpCR999BEuv/xyJCcno62tzf9z0UUXoampCatXrw7x2zEYM2YMxo8fHxDJ2b59O7755psuqSwAmDdvHjwej//3oUOHYtKkSf7vVaPRRIYWKBqNy8nLywv4PS4uDtnZ2aisrAQAXHrppRg2bJi/juPFF19EfX29P70DAOeddx7eeecdtLW14brrrsPgwYMxevRovPHGG/59KisrMXDgwC7Hz8/P97/fE1lZWbjkkkvw8ssvo7293X8eZ5xxhr8OprKyEm1tbVi0aBHi4+MDfngKqKKiIuTvx8yNN96Ir776Cjt27AAAvPDCC/B6vbjqqqu67Nv5e+V/681OjUYTPFqgaDQup6ysLOD3trY2VFZWIjs7GwAQExOD2267Df/85z9x6NAhPPnkk5g6dSpOPPHEgP+79NJL8dFHH6G6uhqffvopBg8ejHnz5uGrr74CAGRnZ+PQoUNdjn/w4EEAQE5OTq/n+YMf/AClpaVYsWIFtm3bhjVr1gTUfWRmZiI2NhY33HAD1qxZ0+0PFyrhctVVV/kjOe3t7XjllVdw2WWXITMzs8u+nb9X/jf+vWo0msjQAkWjcTmvvfZawO//+Mc/0NbWFjBJ2Q9/+EMkJCTg6quvxs6dO3stavV6vZg8eTJ+//vfA4B/5MrUqVOxbds2rF+/PmD/l19+GR6PB+eff36v5zl9+nQMGjQIL7zwAl544QUkJiYGRC6Sk5Nx/vnnY8OGDTj11FMxYcKELj+RioPMzExcdtllePnll/Hee++hrKys2/QOQCkoxpj/93379mHVqlV68jeNRhB6HhSNxuW8/fbbiIuLw7Rp07B161b86le/wtixYzF37lz/Pv369cN1112Hp556CkOHDsXs2bMDPuPXv/41Dhw4gKlTp2Lw4ME4duwY/vKXvyA+Ph6TJ08GANx99914+eWXcfHFF+O3v/0thg4divfffx9PPvkkbrnlFpxwwgm9nmdsbCyuu+46PP7440hPT8ecOXOQkZERsM9f/vIXnHPOOTj33HNxyy23YNiwYaitrcWuXbuwbNmyXutcguXGG2/Em2++idtvvx2DBw/GhRde2O1+5eXluPzyy/GjH/0I1dXVeOihh5CYmIgHHngg4nPQaDTQo3g0GrfCR/GsW7eOzZ49m6WmprK0tDR21VVXscOHD3fZ/9NPP2UA2KOPPtrlvffee4/NnDmTDRo0iCUkJLABAwawiy66iH3++ecB++3bt4/NmzePZWdns/j4eHbiiSeyP/zhD6y9vT1gP3QaxcMpLCxkABgAtmLFim7tKi4uZjfeeCMbNGgQi4+PZ/3792eTJk1iDz/8cAjfTtdRPJz29nZWUFDAALAHH3ywy/t8FM8rr7zC7rzzTta/f3/m9XrZueeey9auXRvSOWg0mp7xMGaKUWo0GtewYMEC/OY3v8GRI0f6rP8AgHvvvRdPPfUUSkpKdB1FL3z66ac4//zz8dZbb+GKK66w+nQ0GteiUzwaTZSzevVqFBYW4sknn8TNN9+sxYlGo7EFWqBoNFHOWWedheTkZMyaNQsPP/yw1acTMe3t7egtMOzxeBAbG6vwjDQaTTjoFI9Go3EVw4YNw759+3p8f/Lkyfj000/VnZBGowkLHUHRaDSuYtmyZWhubu7x/bS0NIVno9FowkVHUDQajUaj0dgOPVGbRqPRaDQa2+HIFI/P58PBgweRlpYWsFiXRqPRaDQa+8IYQ21tLfLz8xET03uMxJEC5eDBgygoKLD6NDQajUaj0YRBSUkJBg8e3Os+jhQovMitpKQE6enpFp+NRqPRaDSaYKipqUFBQUFQxeqOFCg8rZOenq4Fikaj0Wg0DiOY8gxdJKvRaDQajcZ2aIGi0Wg0Go3GdmiBotFoNBqNxnZogaLRaDQajcZ2aIGi0Wg0Go3GdmiBotFoNBqNxnZogaLRaDQajcZ2aIGi0Wg0Go3GdmiBotFoNBqNxnZogaLRaDQajcZ2aIGi0Wg0Go3GdmiBotFoNBqNxnZogRIEra1Ac7PVZyGfl18G1qyx+izkwhjw9NPAxo1Wn4lcfD7ghReA4mKrz0QujAEffADU1Fh9JvLZt4+uq0YTLWiB0geMATNmAAMHAkeOWH028vjkE+D664HLLyeb3cq77wK33ALMnetuO//5T+DGG4Err7T6TOTy1lvAd78LXHON1Wcil3ffBYYNA+6+2+ozkcsXXwD9+wPPPGP1mWjsgBYofbB8OTnvqirg00+tPht5LFtG29JSYMsWa89FJitW0LaoCNi+3dpzkcknn9D2m2+AnTutPReZfPwxbZcto2vqVv7zH9r+7W/Arl3WnotM3nwTqKgA7rwTKCy0+mzk8dxzwFlnUef3lluA6mqrz8ieaIHSB489Zrxeu9a685DN++8br7kTdyPccQPAv/9t3XnI5ssvjdevvWbdecjGnJJ88knrzkM2PCXZ3g785jeWnopUNm2ibXMz8OMfuzel9ZvfAKtXUwf46aeBJUusPiN7ogVKL6xda/TQ+O9uZNeuwN6KWwVKWRmwbZvx+7vvWncuMqmuDoyCvfaaO9NZTU2GQwOA//s/oK7OuvORRXt7oJ2vvRZ4H7sFxgw7Y2KAlSsp0uA2GhqAAwfo9bRptN2xw7rzsTNaoPTCH/5A29NPp+26de5U9Dx8PHgwbVeudGdRMI+eDBlC26+/JtHiNlavpsZ+8GAgJQXYs4f+5jY2bgTa2oABA4CRI6lQ9pVXrD4r8ezcCTQ20rW87DK6tr/9rdVnJZ7SUuDYMSA2Fnj4Yfrb3/9u6SlJYc8e2vbrB8yZQ6/dnM6KBC1QeqCkhAoNAeDZZ4HEROqZ7t5t7XnJgAuUO+8EcnOpMVy1ytpzkgEXKN/7HjBxIjX0771n7TnJgKd3zj+fip4B4NVXrTsfWfD0zsSJwG230Ws3Fldu2EDbsWOBe++l1ytXWnc+suDRk5NOAi69lF67sb3lNUQjRwInnECv3Vw/FQlaoPTA5s0ULRkzhiIop51Gf3dbmqe+3ij+nTULuPBCeu3GNA9P151/vtEAurEOhYvLSZOM0S1vveW+NI9ZoFx2Gb3eutV9UU4uUMaNA048kV6XlVGKy01s3kzbMWNoxBJAncJjx6w6IzlwMXL88YZA2bOHprPQBKIFSg+UltKWpwMmTKCt2wTKxx9TOmfYMOq58Jyo2wTK/v3UG4uNBc49F7jkEvr7hx+6K53V1makc84+m2wFaIi820YKfPMNbSdOBAYNorqF1lbg8GFrz0s0ZoGSkwMkJdHvJSXWnZMMeATl1FOB5GRK3QHA3r2WnZIUeATl+OOB/Hy6nu3t7rNTBFqg9AAXKIMG0datAoU38hdeCHg8RgRl3ToaWu0WeHpnwgQgPR0YPZoahqYm41q7gU2bKCqWng6ccgo19FlZ9J6bHFp1tTF8euJEIC7OeFb377fuvETDWKBA8XiM6MK+fZadlhTMAgUw7HSb4zYLlJgYSvUAug6lO0IWKJ999hlmz56N/Px8eDwevPPOO1322b59Oy655BJkZGQgLS0N3/nOd7Df1Go0NzfjjjvuQE5ODlJSUnDJJZfgAC9rtgk9CZT160ntugVeJDp0KG0HDSJVz5i78r/ffkvbSZNo6/EYRcE2u/Uigqd3zjqLGj8AKCigrZsEyrp1tB06lCb2Aoxop5sEyv791FGIiyPBCRjPqpsESkuLMZJlzBjaRoNAAQyBoutQuhKyQKmvr8fYsWOxePHibt/fvXs3zjnnHJx00kn49NNP8e233+JXv/oVEhMT/fvMnz8fS5cuxZIlS/DFF1+grq4Os2bNQruNPP/Bg7TNz6ftSSdRb7Suzl1KlwuUvDzjb1yUuSmywO3kosT82k0ChefxJ040/uZGgWKuP+G4UaDw6MkppwBeL712o0DZsYPSkxkZxv3KBYqblmtoajKeQy5MeB2Km/yKKOJC/YeZM2di5syZPb7/4IMP4qKLLsJjphnORowY4X9dXV2N559/Hq+88gou7MgnvPrqqygoKMCHH36IGTNmhHpKUugcQYmNpRDrl19Smufkk607N5H0JFDWrHGXQOF1Cbm5xt/cKFDKy2nLhTXgToHC5wHhxeuAuwXKuHHG39woULiwPvVUim4CwPDhtHVTBGXPHopOp6dTPRGgIyi9IbQGxefz4f3338cJJ5yAGTNmYMCAATjzzDMD0kDr1q1Da2srpk+f7v9bfn4+Ro8ejVU9jG1tbm5GTU1NwI9sOgsUwGgk+MPkBqItgmIWKNxONwmU7oQYFyhusrM7IeZGgcLrbHjaA3CnQOH1J2Y73ZjiMad3uBDTEZSeESpQysvLUVdXh0cffRTf/e53sXz5clx++eWYM2cOVnYM3C8rK0NCQgIyMzMD/jc3NxdlPcyatXDhQmRkZPh/CniLK4nmZloPAggUKLzHfeiQ1MMrw+czHJrbBUp3dro5gsJHQACGnW6KoPCFO812ulGg8Otpvm/dKFB49MAcmTYLFLcMkTcPMebwCEpJCc1BpTEQHkEBgEsvvRR33303TjvtNNx///2YNWsWnn766V7/lzEGD5eUnXjggQdQXV3t/ymR3NLy+hOv1xgBAdCKxoB7Zh+tqjLG3psbet4rdYtAaW0FKivpdXcpHrfYCfQeQXGTQOlOiLlRoHAhxguBAUOgHDjgnoJ93iE037fczpoa98yFYp6kjdO/P9XeuG1gggiECpScnBzExcVh1KhRAX8/+eST/aN48vLy0NLSgqpOY1jLy8uRa747TXi9XqSnpwf8yMRcIGvWTFyguCWCwoVWdjaQkGD8nUdQ+PfgdHgjHxtLtnLcFkFpaDDWojE7brNAcUNPlLHeBUpFBX0XbqA7gTJwII3qaWtz3zNqtjMpyRAsbimU7TyCByAfo+tQukeoQElISMDEiROxs9P67oWFhRjaIYfHjx+P+Ph4rDDNBHbo0CFs2bIFk/gYUIvprv4EcJ9A4XaYw8eA+1I8PKrQv78x9BYITNm5YRZH7rS9XirC43A7m5qMSJKTqa01JtczO7SMDCAtjV67IVrk8xmRBbMQi401RKdb0jzdCRTAfYWy3QkUQNeh9ETIAqWurg4bN27Exo71v4uLi7Fx40Z/hOSnP/0p3nzzTTz77LPYtWsXFi9ejGXLluHWW28FAGRkZOCmm27Cvffei48++ggbNmzANddcgzFjxvhH9VhNXwLl6FF3zD7aXYEsYNhdXU2Tfjmd7gpkAWoM4+OpR+6GtJ05qmCO/Hm9hoNzg+Pmdqak0NB/jsfjrjTPsWNGCoeP+OC4qQ6lvZ3aVKCrnW4qlPX5jPuSCy+OjqB0T8gCZe3atRg3bhzGdQxpueeeezBu3Dj8+te/BgBcfvnlePrpp/HYY49hzJgxeO655/Cvf/0L55xzjv8z/vznP+Oyyy7D3LlzcfbZZyM5ORnLli1DbGysILMioyeBkpVFDg1wh0PrSaCkpwOpqfTaDVGU7gpkAYqmuGkkT3dpD46b6lC6K5DluEmg8OuZkRGYggXcNZvs0aNG6tGcggXcJVCOHTPWieocKdIRlO4JeR6UKVOmgPWRyL7xxhtx44039vh+YmIiFi1ahEWLFoV6eCXwvG5ngeLxkJMrKaG0AO/FOJWeBApAtu/cSQKFPzxOpbvCUc7gwdT4uUGg9GZnQQHNvuoGgdKbEHOTQOkp7QG4K4LC7czMpNoaM24SKDy9mpraVXDqCEr36LV4uoFHDcxzLHDcNJKnL4ECuCuC0pNAAdwhUKIlgqIFiiFQ3OC4eZ1Nd3a6aTZZLlA6R4kAQ6CUlRmF7hotULqlpxQP4K5C2WgRKD3VoADuSvH0FUEB3CVQunNo0SZQ3BRB6c5Oc5Gs00eg9SZQ+vUz6qncthp3JGiB0gnGtEAB3CVQeqpBAaIvguJ2O6NNoOzf73zHze3sXCALGNezrs4opHUqvQkUwLif+f2t0QKlC8eO0XBMoPcUj5sECrfJjBsFittTPNESQQmmSLakxChIdCq92VlQQDVxjY3Gfk6ltxRPYqLRPjk9ncUFinnyTzNaoHRFC5ROcIeclUUPR2fcIlBaWowHJloiKL0JFDfYGWwExemOuzc7Bw0ix93c7HzH3VsqKyHBaIucnubpLVIEuKdQVkdQQkcLlE70lt4BDGfudIHCH4L4eKqe74xbBEpra/fTaHPMAsXpjrs3ITZwIA2rbm11fgPYm0CJjzcin05P8/TluN1Sh8Kfz+5SPED0CRSnC2uRaIHSCd749TDrvmtG8XCBlZsbOLsqhwuUQ4ecvd5HT9Pcc/LyyP62Nmc77vb27mcd5cTHG+La6Wme3iILgHvqUKJFoPRlJ79vnV48ymtodAQleLRA6URfNxEXKIcPO9tx91YgCxjCpb3d2Q+MeZr77uYBjIszrqmT61AqK6lY0uPpuSfqhjqUnqZ/NxMtAoVH/5y+Hk9vRbKAYb/TIws6xRM6WqB0gguUngqZcnPJCZh7rE6kL4ESF2e85+Q0T29pD44bCmW5ndnZXSe74rhBoFRV9Tz9O8cNAoWx3otHzX93cjsEBG+nFijRhxYonejrJoqLMx4YJ9eh9CVQAHfUofQ2BwrHDQKlt7oMjhsECrczM7PrbJwcfq2d3NBXVxsLWLrZcTPWd6TIDXYCWqCEgxYonegrggK4o1A2GIfmBoESbRGUYOx08vUM5r51Q2SBO+O0tO5HEwLucNx1dcbCq32leJx8PQEtUMJBC5RO9FWDArhjqPGxY7TtbgQPx00CJZhIkZMFSiiOmzeUTqSvAlnAcHROdmjRYic/96QkWp26O9wgxJqagIYGeh3MKB6njygUhRYonehrMh3AHSN5uEDp16/nfdwgUPj17Kl3Bhh2OrnYMJgICm8Y3SBQehNi/Fo72aH1lfYwv+cGO3t7PrmdtbVGtMVp8GcuNpZWp+4O/h34fM6fNVcUWqB0IpgUj5siKG4XKMHYGS2OO1rsdENKIBiBwh1afT3NKOtEgrEzI8Mo/HaqGOPPXGYmDbLoDvOcVDrNQ2iB0om+8oSAOwRKdTVte3PcfMIrN9jZU68FcIfjrqqibW/C2g129jb9O4c77sZGct5OJBjHnZ5OTg1wrhjrawQPEDh03ukCpTe/Aug6lM5ogWKirc1waDqCYjQKTnZo0RJBCUWImQsTnUYwjjs1FfB66bVTHXcwdno8zk/zBJPiAZxvpxYo4aEFignuzIDei0fdMIonVMft1BVTg4kUcTvNhWxOI5jrmZFhzBrsVDEWjJ3mHrebBQrg/MhCMBEU8/tOtVMLlPDQAsUEv4nMOc/uMEdQnOi429qo4AwIrsfd2mrs7zS4Q+vNzrQ043o71XEHE0GJiTEig262E3C+4w7WoTm93iZaIijBjA4FtEDpjBYoJpKTgVtvBa69tvf9uEBpagJqauSfl2jM59xbQ5+cTD+AMxtAny+4CIrH4/w0TzB2Au6xsy+B4nTHHez1dLrj1hGUQPSCgYFogWKioAD429+ARYt63y85mQrUAGemeXhUITm559k4OU4OldfVGRGuvhyakx03Y8FFigBn2wkEb6fTIyjREikKZj4mwPmCU6d4wkMLlDBxstINJo/PcbJD43YmJPQ8GyfHyXY2NlLaDnC/QAk2suBkYQ1EX6SId/h6ItoiKFqgEFqghImTG/pgG3nA2Q29WYj1NPcAx8nXk9sZE0MjWHrDyXY2Nxujj6LFcbs9ghItdmqBEh5aoISJkxv6UCIoThYowTZ+gLOvp9lONwsxbidAhc294WSH1t5O6UlACzGOjqBEJ1qghImTG/poS/G43c5oE2JpaTRleG842XEHW8QOONtxM2bY6mY7gdAFyrFjQEuL1FNyBFqghAm/0ZzYAOoISlf49XTiGhhaiHXFyREUbmdiYvBF7E60s76eokVA8ALl6FGj3sopmNfW6W0CUICeYS6+nXhNRaMFSpg4eZbVYEdCAM4WKNpxdyVa7HTyfRuKnWbHzZ29U+DRk9hYYzqDnsjONtKXTrt36+qM1Yn7Gq0UE2NcU53m0QIlbJzc0IfjuJ3Y0EebQHG7naEIayc77lAECu+RM+a86J95BE9ftVOxsYatTosscCEWFwckJfW9v65DMdACJUyc3NCHM4rHyXa6PbIQiuN2sp3hXE+fz1hI0SmEYqd5BVynOe5Q7AScW4fCBUowQgzQAsWMFihh4uSGPlpqUKItghJqrQ0POzuFUIR1fLyxn9Pu3XAdd7TY6WSBEgxaoBhogRIm0Zb6qKhw3rpD4TjuqirnpgRCuZ7mZQCcQqgOzakFpNrO7nFqZylUO7VAMdACJUz4w3L0qPMcdzgCxbzAoFMIxU5zLt+8qrUTCCXF4/UCKSn02mnRIu3QuidaIgvRYqcWKAZaoIQJd9zt7c7riYbiuJ28YGAodsbHGw2I2x23U9NZ0ZL6CNdxO81OLcS6RwsUAy1QwiQx0XDcTmvoQ+lxA9HTE3W64w5GiAHOt1OnPgKJFjujRaA49fmUgRYoEeDEG8nnMx4Ytzu0UCIogPPtdLsQC9VOHVmwN9rO7nHypJGi0QIlApzY0NfWGjUzbo+ghOrQeB2Kk64noCMoPeHU+zba7NQ1KIE4tR2SgRYoEeDEhoE77cRE+gkGJ9rZ1GSsZeF2xx0tERSd+ugepzruaLEz3BRPVZXzpgIQjRYoEeDEhj7UtAfgzCHV3E6Pp++VbzlOvJ4+nzG6KloESrD3brSleJxmZ7ALBXLMHSUnOe5wIyhOHFEoGi1QIsCJDX04AsWJs8maw8cxQd7lTrye4aTsnGgnoCMoPWG200lTHoQrxNrbneW4QxViCQlAaiq9jvY6lJAFymeffYbZs2cjPz8fHo8H77zzTo/73nzzzfB4PHjiiScC/t7c3Iw77rgDOTk5SElJwSWXXIIDBw6EeiqW48SGPhKB4qQeWiSRIideT683+JSdE+00p+yipTYjVMfd3EwL0zmFUO30eo1oqJOuaai1NoCuQ+GELFDq6+sxduxYLF68uNf93nnnHXz99dfIz8/v8t78+fOxdOlSLFmyBF988QXq6uowa9YstDtsCk8nNvTRluIJtvEDnHk9Q23kAWfbGUrKjjvu+nqgsVHOeYkmnJRdSoqxCJ2TntFwHLcTR7iEmuIBnGmnDOJC/YeZM2di5syZve5TWlqK22+/HR988AEuvvjigPeqq6vx/PPP45VXXsGFF14IAHj11VdRUFCADz/8EDNmzAj1lCzDiT20cByak1M8bo+gRIudXHCmpQWfsktPpwn4WlvpGS0okHZ6wggnZQfQM1pSQmme4cPlnJtowmmLsrKAvXudde+GI1B4BCXaBYrwGhSfz4drr70WP/3pT3HKKad0eX/dunVobW3F9OnT/X/Lz8/H6NGjsWrVqm4/s7m5GTU1NQE/dsDJDb1O8XTFydczWiIoodjp8Tjv3uV2JiQEn7IDnOfQmptDT9kBzowshFqDAugUD0e4QPn973+PuLg43Hnnnd2+X1ZWhoSEBGTyNcI7yM3NRVlZWbf/s3DhQmRkZPh/CmzSFXJiQx+pQHFKEV60pT7CsbOhgWo7nEA4dgLOS09GaqdTHLd5eZBgU3aA8xy3OWWnUzyhI1SgrFu3Dn/5y1/w4osvwuPxhPS/jLEe/+eBBx5AdXW1/6ekpETE6UaMEx1aJD1uJy0YGEkEpamJnLcTCCfFk5EBxMbSa6fcu5E6brfb6TTHze1MSzPuxWBwmuOuqzM6dbpINnSECpTPP/8c5eXlGDJkCOLi4hAXF4d9+/bh3nvvxbBhwwAAeXl5aGlpQVVVVcD/lpeXIzc3t9vP9Xq9SE9PD/ixA/xhaWx0ThFeOOHGpCTnLRgYjhBLSwPiOqqynNIwhGOnx+O8BjAcIQY4z6FFWwQl1Kbcafctb2/j40NL2TntespCqEC59tprsWnTJmzcuNH/k5+fj5/+9Kf44IMPAADjx49HfHw8VqxY4f+/Q4cOYcuWLZg0aZLI05FOerrzHBqPgIQSVgWcm8sPxaF5PM7tcYfruJ1mZ7REFrSd3eM0x20ukA0lqeC06ymLkEfx1NXVYdeuXf7fi4uLsXHjRmRlZWHIkCHI5ndQB/Hx8cjLy8OJJ54IAMjIyMBNN92Ee++9F9nZ2cjKysJ9992HMWPG+Ef1OAXu0A4fJsc9eLDVZ9Q3/IEJVaBkZwP79ztPoITaQ+PX0ykNg0599I7THFq02BlOJBdwXjFwOCN4AOddT1mELFDWrl2L888/3//7PffcAwC4/vrr8eKLLwb1GX/+858RFxeHuXPnorGxEVOnTsWLL76I2FCSkTbBaQ4tnIItwHlDjcO102mOO5wUDxA9djrNoUUaQYkWO51y30ZLKksWIQuUKVOmgIUwlGPv3r1d/paYmIhFixZh0aJFoR7edjitoY80xeOUacPDtdNp11NHUHpH22lPdKSod5xmpyz0WjwR4rSGIVLH7ZQHJpJUFuC86+n2SJGOLPSOU+10e2Qh3BQPt/PYMRo9Ga1ogRIhTkp9MBa+43ZaAxgtjltHinonWux0muOO9HrW1NAMwXYnUoECOGthRNFogRIhTpoIqqmJVgIFwn9gnCZQ3O64Iy3Cc7udTrtvI3Xcx44Zz7idCddO82i1TjNV2JJwI0Vxccb/OOUZlYEWKBHipIbePMlaSkpo/+ukFE9bmzHRmtsdd7QIsUgjYkeP0qyedifcmgU+MTdjzuhxh2tnXJwhUpzQFoVrJ+CsNlcWWqBEiJMaev6wpKYGv+Aax0khZPOS82523JGk7JxkJxC+EOP3rc9nfFd2JtxIUUKC8d04waGFG0EBnNUWhXs9AedF/2SgBUqEOKmhD7cXCjjrYeF2xscDXm9o/+ukXktzs1FA5/ZIUbhCzOs1ooVOsFWEQ3OCneGmPgBnPaPRcj1loQVKhDipSDbcXijgLIESSaPgJMdtTtmlpob2v9zOqir7pz58PqC+nl5Hi7gO5xnVjtt+iGiLnHA9ZaEFSoQ4qfELtxcKGHY6oXpeRCNfVWX/YkN+PVNSQk/ZcTt9PvvXLESSsgOcKTojeUadZKfbHXe0pLJkoQVKhDipej6SRsFcPW93hyaikXdCsWEk1zMhwYi62L0B5EIsLi60Bdc4TulEtLRQ2g5wv+OOltoMHUGJDC1QIsRJ1fOROG5z9bxTHFo4jUJ8vHOG90VyPQHnRBbMdoay4BrHKT3RSFJ2gHPsZCx6IkXRksqShRYoERIf75zq+UhSPIBzei7R4rgjafwA59kZ6fW0+33L7UxONlZJDwWn2FlfTyIFcH9kQUdQIkMLFAE4zXGH69CcYqcoh2Z3xx0tQkzUfesUOyPtQDjFzpgYEmOh4hQ7fT7DVl2DEh5aoAjAKY5bVAPoFDu1Q+sdpwkUt0dQos3O1NTwUnZOsbOuLnoiRbLQAkUATrmRdIonOJziuHWKJzicIjgjvZ5OeT5F2emU6xnOfEyAc+yUiRYoAnDKjRRpZMFpDs3tdkaLEBN139rdcUfb9XR7pMjcDkUSKaqttf/UDrLQAkUATum5RFuKx+0Nva61CQ6ndCB0BCU4uJ11dTQ0265E+nz262cIG7tfU1logSIApzUMWqD0jtMct9sjRaIiYm6/b/nzWV1tLIFgRyK10ymOO1I7Y2OdtTCiDLRAEYDTHLfuofWOUxx3tAmxSB233SdTjNROPicTQDMh25VIO0oxMYatdm6LIr2egHPaXFlogSKAaOuhud1OpzjuaBFioiJ/dp9MMdLrGRdnDGe18zWNtKMEOOPeFSlQ7GynTLRAEYBTbiJdsxAc2k57EalDM0+maGdbRTg0J3SWoiWyEC3XUyZaoAjACQ8LED0RlGiJLIgSKI2N9GNXoqWhj/S+BZzRWYoWO3UEJXK0QBGAExx3c7NR8R5pDYrbi/C4M2tqAhoaxJyTDCJt6NPTjSnV7dwARhr5A5zR0EeLEIs2O0Wksuxsp0y0QBEAv4mqqmh6YzsS6UJkQGARnl1z+T4fDT8Ewm8A09Kc4bgjbeg9Hmc5brc39NHS49YRlOBxgp0y0QJFAOYVjaurrT2XnuAPS1JSeAuRAfR/vFGxa0PPxQkQfgPo8TgjzSMisuAEO6OloRfhuKNFiGk7owMtUASQkGBEJex6I4nohQL2d2jczthYIDEx/M+xu50tLZGn7AD72wloxx0KThBi2s7gcYKdMtECRRB2v5FE9LYB+9fbmBuFcKaX5tjdcYtI2QH2t5OxyFN2gP2fT0BsRMyuzyegBWcoOMFOmWiBIggnOe5IsLudIho/wP6Om9sZScoOsL+d9fXGirBub+hFRDmdIMSiJbIQLcXdMtECRRB2bwBFpXjsLlBECTG7O+5oSdnxRj4mBkhODv9z7N7Qt7bSqDHA/UJMR1CCxwl2ykQLFEHY3XFHW4rH7Y472oSYqJSd3e9bwN0TmDGmJ2oLBW5nfT1NFRFtaIEiCLs/MKIdml3tFCXE7O64oy2VJUpY29VO/nwmJtLMt+FidzsbG42pGEREUBoajMiT3RDR5mZkUPQQsG+bKxMtUARh94ZBdIrH7na6XaBEm52ihJhdG3nRwrquzhjlZSe4nR4PkJIS/uekp9NIPcCe11RUpMgpCyPKQgsUQdg9gqJTPKFhd8cdLZEi0cXdNTVU72E3RN23GRlGKsyOzyi3MzU1spSdx2M4bjveu01NxsrZbo/+yUQLFEHYvYcWbaN4osVxR4sQi9RO8yzIVVWRfZYMRD2fsbH27nGLup6AvdtcUdMAAPa2UzZaoAjC7o5bj+IJDbs7btF2VlUZPT47IdJx9+tHr+14TUU6bjv3uEVdT8AZdqakGDUk4WJnO2WjBYog7O64dYonNLjjPnbMno5b9PVkzJ7rK4l0aHbuiUaLndEWQXH79ZSNFiiCcIrjFtXjjibHbeeUQKQNfUKC8V3ZsYcWLZEFUfctYG87oy2C4vb7VjZaoAjCLFDsuKKxqIbBvDCim3vc8fH2XhhRRg/Njg1gtPRERTo0baf1iBScdrZTNlqgCIILFJ/PuDnthKieaHy88dDZ8YGREUK2o+OONjujpcftdjv19QwdO9spm5AFymeffYbZs2cjPz8fHo8H77zzjv+91tZW/PznP8eYMWOQkpKC/Px8XHfddTh48GDAZzQ3N+OOO+5ATk4OUlJScMkll+DAgQMRG2MlXq8xrt+OjlvGA+N2O+3suKPNzmjpcbvdzmiLiLndTtmELFDq6+sxduxYLF68uMt7DQ0NWL9+PX71q19h/fr1ePvtt1FYWIhLLrkkYL/58+dj6dKlWLJkCb744gvU1dVh1qxZaLdjUUMIRIvjtrOij5bcr8jrmZNDW7fbGS3X0852yqgp0u2tewl5HdSZM2di5syZ3b6XkZGBFStWBPxt0aJFOOOMM7B//34MGTIE1dXVeP755/HKK6/gwgsvBAC8+uqrKCgowIcffogZM2aEYYY9yMoCSkrs98C0tdEU04BOCYSCE+yMluvp9shCtNQsRIvj1hEUMUivQamurobH40G/jkkI1q1bh9bWVkyfPt2/T35+PkaPHo1Vq1Z1+xnNzc2oqakJ+LEjdm3oRS1ExrGrnYzRFN+Au+0E5DSAFRWRf5Zoos2hRUvkz+2CM1pS6rKRKlCamppw//33Y968eUjvuCPLysqQkJCATPPUjgByc3NRVlbW7ecsXLgQGRkZ/p+CggKZpx02dr2R+MOSkEA/kWJXx93QIGYhMo5d7QSiJ1IULT3RaLFTVpEsY5F/nkhkXM/GRiMSHi1IEyitra248sor4fP58OSTT/a5P2MMnh4WZ3jggQdQXV3t/ykpKRF9ukKwu0AR4bQB+zo03vjFxADJyZF/nl3tbGszVnCNFiHm9shCtNVmiLxvm5vt57hFCpS0NHsvjCgTKQKltbUVc+fORXFxMVasWOGPngBAXl4eWlpaUNVp9qvy8nLk5uZ2+3lerxfp6ekBP3bErg2DyF4LYF+HJmohMo7d7QTcHUERtSIsx86RBRkpgYYGQ8jaBZFtUWoqENdRRWm3e1fk9fR47C2uZSJcoHBxUlRUhA8//BDZvFXoYPz48YiPjw8opj106BC2bNmCSZMmiT4dpdhVoIh8WAD7OrRoixR5vTQvTaTY1U5zyk6k466vp163nRDpuDMy7NvjFu247So6ZbW5drNTNiGP4qmrq8OuXbv8vxcXF2Pjxo3IyspCfn4+rrjiCqxfvx7vvfce2tvb/XUlWVlZSEhIQEZGBm666Sbce++9yM7ORlZWFu677z6MGTPGP6rHqdi12DDaHLcWYqFhtpMxMdEnEXA7PR5jjqFIyMig9J/PRw39wIGRf6YIRI+y83hoxueKCrqm+fmRf6YoRKayABKdhw/b9xkV1RZFawQlZIGydu1anH/++f7f77nnHgDA9ddfjwULFuDdd98FAJx22mkB//fJJ59gypQpAIA///nPiIuLw9y5c9HY2IipU6fixRdfRCyX/Q7Frg4t2hy3tjM0zLn8hgYxYkAE5pRdpCvCAvQZmZl0PSsr7SNQ+MgzQOw1raiwV49bdMoOsG9kQVabazc7ZROyQJkyZQpYLyXTvb3HSUxMxKJFi7Bo0aJQD29ros2h2dVO0ZGFpiZy3CIKb0UguheamkqpotZWuqZ2ESii7QTomlZW2quhN6fsRIyyA+zZ425qMhYYFRlBAexlJ6AjKKLQa/EIxK4zcspy3HYrwhPda0lLs2cRnujGz5zLd7OdgD0behl22rHHbZ6+SpQItqOdgLw21252ykYLFIHwm6iqivLKdkG04zYX4bm5ober4xZ9PQF72hltjjuahJiIlB1gz4EJ7e3UeQN0BCVStEARiHnuuU6jqC0lWhy36F4LoO20EhkpHjs6NJnX0052RosQk1VTBNjreqpACxSBxMUZIsVOD4zMnqid7NSRhfDRdlqHTmWFjx0dN7czLo7qikRgx+upAi1QBGPHocayig0Be9kZbZEFtztumT1uOzk0mc+nneyU8Xza0XGbhZioIft2vJ4q0AJFMHZs6HVPNHzsbKfbhVi02en2CIpMYW0nxy3zetrJThVogSIYO47kiRbHHS2RhWi5ntHS0Eeb446mCIooOk+mGC1ogSIYO6Y+ZIaQ7dgwuN3OaLme0WKnTMdtJ4EiW4jZxXHLLO5uaTFGCEUDWqAIxs4NoO5xh4620zqiJYISLT1umUKstTVw9IyVyBAoKSnGult2ekZlowWKYHSKxzp0iid8osVOO6YEZPa4m5uNdX6sRsbzmZxsjJSxi+iUcT3tvDCiTLRAEYzdUjw+n9Gz0KHy0LGjndGS+pBpZ1OTfRy3DCGWmmq/WZBl2Onx2C8qJqMdAuwprmWjBYpg7NbQy5g0CLCfnYzpCEokcDuPHbPPLMgy7LTj8gUy7ls79rhlOW67PaMyhDVgz+i8bLRAEQy/iewSQeGNQmwskJgo7nPt1iiYFyKT5bj551uNzPlBAPvMgizLcesetzXIuJ6A/a6nLDvt5ltUoAWKYOzmuM1qXtSkQUDgukN2cNy8kQcovC0K3vgxZg/HbV7nQ6RDi4ujNZYA+9y70eK4ZUSKgOiJoNjtesqOoGiBogkbc6Pg81l7LoC8xs/suI8dE/vZ4cAbhdRUcQuRAVQ5zxsaOzSAslJ2gL3ENWPR47hlOTS7Om59PcNDCxRNxPCHpb0dqK629lwAeY18QoLxmXZoAGX1zgB7OW7e+CUkiFvng2MnO5uajFoYtzvuaBFisjtLdruesgTKkSNiP9fOaIEiGK/XSDHY4YGRpeYBezk0WY0foO20AlkpO8Bejru9Haivp9facYeHna4nIK/N7d+ftjqCookIOzb0bndossLHgL2K8KLlenI7U1LEpuwAezluc8rOzY5b1ig7wF7XE9ApHpFogSIBO91I0ebQ3B4pipaImAo77eC4+X0bHy8+ZWcnx93cLC9lZ6f7FtACRSRaoEjATg9MtDi0aBNi2s7wsZPjjhYhxu0ExKfs7Oa4VQwztsvyBbLRAkUCdppQJ1ocmswUj7ZTPSrstIPjViHE7OC4uZ2iR9kBRm2GHYpHW1upwBuQF0FpaoqeBQO1QJGAnaa7jxaBEi0pHm1n5NgpgiLz+bRTUaUKO48dI4FgJebibtG2pqQYaUA7iDEVaIEiATs19NHS4442IabtDB872SkzxcMdd2Wl9ZMpymyHMjONSSitFmPczqQkY/VhUXg89hKdKtACRQJ2TPG4vccdLUIs2uyUcd+ac/lWT6aoQogxZn06S2Y7FBtrn6i1zPsWsF+9jWy0QJGAXR4WIHp6otEixFTZaXURnoqUQHu79bMgy3Ro8fEUXQCsTwnIFNaAfepQtEARixYoErCTQ4uWHne0CTEZdvLGr6UlcH4OK5Bpp9drfK7VDk2mnYB9Zh+VKawBLVDcihYoEtApHvWoEGJ2qJ6X2QCmpFDuHADKy8V/fijIbujt4tBkCxS72Ck7gmIXxx0tdqpCCxQJmFM8bg6V28lxyxRiaWlGwZvVDYNshzZgAG2tdmjR5rhlCzG73LfRIjjdbqcqtECRAHfcLS3GOhtWIVPRp6UBcXH02uooikyHZq6et7phiLZcvhZikWGX6xktduoUj1i0QJFAcjKQmEivrXTcPp/RMGRkiP98j8c+aZ5oSwloOyPDLnZGy30bbcJaCxQxaIEiAbPjtvJGqq01UkwyBApgn4ZBVerD6toMVT3RaLHT7fet3ex0u+PWAkUsWqBIwg6RBf6wxMcbER3R2KEBbG6mdBrg/oY+WlIf0RJZiBaBoiMoYtACRSMEO4zkqa6mbUaGMdOiaOwQWZA5vTTHDnb6fMbwX+24I8MudkabEHO7napG8VRWWj/JoAq0QJGEHVI8ZoEiCzs4bt74JSfTrJIysENkwVxw7XbHHS0CRdspBvNoJSsdt6pUlh0mGVSBFiiSsEOKR6VAsbIBlN1rAexRm8HtjIuTl7Kzg+A0p+x0jzsyzI7byikPVKU+2tuNds8KZNuZkGB8djSkebRAkYSdUjyyHhbAXo5bpp12cNzmXqislJ0dHLc5ZZeaKucYZjutctwqU3atrdY6btkRFLvMDqyiLYqmOhQtUCShUzzq4Hb26yfvGHZy3CoiRVY6bvOKsHyeHdFwO1taAgWRSlSk7BITDZFnB8et6t61Ci1QxKIFiiTsEFmIFoHCc7Fut1NF48fv26Ym6yYZlJ3HB6heKTmZXlvl0FSk7ADr1+NpbqYIDqDm3tUCxT2ELFA+++wzzJ49G/n5+fB4PHjnnXcC3meMYcGCBcjPz0dSUhKmTJmCrVu3BuzT3NyMO+64Azk5OUhJScEll1yCAwcORGSI3cjNpW20CBQrGwUVdvLGr6HBOsetQojZYT0eFZEiwHqHpiJlB1g/3T132oC8lB1gvZ2MqRHXVt+3KglZoNTX12Ps2LFYvHhxt+8/9thjePzxx7F48WKsWbMGeXl5mDZtGmpNcdT58+dj6dKlWLJkCb744gvU1dVh1qxZaG9vD98Sm2GHHrdKx11bCzQ2yjtOb6hI8aSlUZ4bsK5hUGGnHab1V5EOALSdquBNf0qKvFF2gPWRooYGYwSRzGsaTRGUkDO8M2fOxMyZM7t9jzGGJ554Ag8++CDmzJkDAHjppZeQm5uL119/HTfffDOqq6vx/PPP45VXXsGFF14IAHj11VdRUFCADz/8EDNmzOjyuc3NzWhubvb/XmOW5DaFR1AqKqiyXOaD2RP8a5IpUDIyaCK41lZqGIYMkXesnlARWeCO+8ABsnPYMHnH6gkVdgJk5/797hZigH0ct8zeNmAfO90uxHh7GxNjpA9lEE0CRWgNSnFxMcrKyjB9+nT/37xeLyZPnoxVq1YBANatW4fW1taAffLz8zF69Gj/Pp1ZuHAhMjIy/D8FBQUiT1sK2dnk1Hw+60byqIigeDzWR4tU2AnYx063O24uxNxuZ7Q5brcLMbOdMlN2WqCESVlZGQAgl4cPOsjNzfW/V1ZWhoSEBGRmZva4T2ceeOABVFdX+39KSkpEnrYU4uKMkTyHD1tzDqodt+5xy0VVBMVqIaYyUgRYb6fb71vVQszqWhvZQiyaBIqUQXyeTvKRMdblb53pbR+v1wsvLwBwELm5dBNZ3eN2e0OvIyhisdqhRYud0SJQVNXaWF2DogWKeIRGUPLy8gCgSySkvLzcH1XJy8tDS0sLqqqqetzHLXCHFi0RFKt7oqqEmNUOLVrslO247RL5c/v1jBbBGS01RSoRKlCGDx+OvLw8rFixwv+3lpYWrFy5EpMmTQIAjB8/HvHx8QH7HDp0CFu2bPHv4xasHmqsUzxisVqIRYudWoiJRdupBv58qooUVVcb88u4lZBTPHV1ddi1a5f/9+LiYmzcuBFZWVkYMmQI5s+fj0ceeQQjR47EyJEj8cgjjyA5ORnz5s0DAGRkZOCmm27Cvffei+zsbGRlZeG+++7DmDFj/KN63IKVERTG1IUcrXZo0dITjRbHHS097mhx3KrtbGykIb8yR9J0B7ezU3mlcPr1o5FCfABGR+LClYQsUNauXYvzzz/f//s999wDALj++uvx4osv4mc/+xkaGxtx6623oqqqCmeeeSaWL1+ONJOs/POf/4y4uDjMnTsXjY2NmDp1Kl588UXEWjEWVyJWRlDq62l4M+D+GpRoKR7Vjlss0WZnYyO1Cykpco/XGVV2pqbSYnotLXRNhw6Ve7zOqLIzNhbIyqIalIoKLVACmDJlClgvi3R4PB4sWLAACxYs6HGfxMRELFq0CIsWLQr18I7CyggKd2axsfIbJCsdd2sr9ZaA6HFoKiMojMkdMtkd2nGLxey4Kyrcayefq6i01N0CBaA0DxcobkavxSMRKyMoqsbkA9bWoJjn7FOZylK9kB5j6mtQuONWjaqUXWqqtbMDq3bcgLvtBKwdaszHfbjdTpVogSIRO0RQZDfyQGCKR7Xj5o1fSoq8lW85Vi6kV1dnTKMt+5qmpBiL17nZodnFcat8Rt18PYHosZMXylq5lIoKtECRiJU9bpUChdvZ1ESOVCUq7bRyIT1uZ3y8cQ6ysNJxt7QYazq53aGpiogB0ee4rbRTdpEsYNSd9DC3qWvQAkUi0eS4ecW8VY5bReNnntZfdQNovp4qakKscmjcTkB+yg6wzk6fTwsUGUSLnVqgaCImJcUoSFOd5lEpUADrHLfKMDlg3Ygl1XZaVfjM7UxLU7PAplUOzZyy045bHFbWZmiBIh4tUCRjVaGsaoFileOOFiGmsrcNWOfQVDbygPV2er1GvY9MrLKzqYl+AC3ERDJwIG21QNFEhFWFslY5bjeneIDoiaBYneJxu53RIsT49fR45M+wClhXg+LzGSMKdQRFHFqgSCZaIijRkuKJlgiK1dfT7Y47WgSn2c4YBd7GSiHGB0KouKZmgaJ6AIZKtECRjNURFBWFhoD1ERS3p7KirdbG7QJFp+zkYHXtVFKSMbeOTLidra3G/CtuRAsUyVgVQeHhRrc7tGiJLESLQ9MpHjlYVTyq2k4eWaiuNoarq0DlEGOARFBWFr0+dEjNMa1ACxTJWB1BcXsNSrRFFrTjFku02Mmfz+pqo2hVBartzMgwio5VOm7VdgLRUYeiBYpkoiX1YXVkIVrsdHukyCrHXVvrbsfdr5+RelDp0FTb6fEYI1y0QHE+WqBIhqd4dARFDlaO4lFZnGZVBKWhQe20/qrv24wMWkgPUHvvqr6eZsd98KCaYwLWOO78fNpqgeJ8tECRjNWO24qUAJ+ASgVWOe6WFup1q0K1ELNqIT0rety8oXe7Q4sWxx0tEZRomAtFCxTJ8AhKVRU5NRWYV75V7bjb2oyHVQWq7UxONmYHdnuP24r6KSsdt8rIgmrBCVgbQVF13wLWCBSVKxlzdARFEzGZmcaU3ap6onV1NPwMALKz1RzT6zUaIVV2moWYyobBiqiYFXZa0eNWLTgBawSKjqDII1pSWVqgaCImJka9Qzt6lLZer/yVb82oHuHS1GREpVQ6NCtG8ljRE402x+12O6PFcUdLikcLFI0QVIfKuUDJylKz8i1HtRAzT6OdmqrmmID6BrC1lYpVAe24ZRBtdrrdcVspUFTNgwJYUzulGi1QFGBVBIVP5KMKqwRKerqaabQ5gwbRVpVD43YC6mYGBtQ7bp/PKDyOlsiCFbUZWoiJx8oISmWluvpG1WiBogDVQ42tEijcTlUhRysaecBoAEtL1RyPC5TUVCAuTs0xAfV21tSoXc+Eo9qhMaYdt0y4EKuoUOe4rbAzK8toD1SPElWFFigKiJYICo8sqHJo3E5VhcAc1REUq4WYajsTE9WsZ8JRbWd9PdDeTq+tcNyVlUBzs5pjWuG4s7OB+Hh6rapTaIWdMTHqO4Wq0QJFAVZFUKxy3KoESmUlbVULMasiKKoFilWpLJWNPGBcT1WOm9sZF0fD1lWRlWVMSqfCoTU3G7Pzqrym5rltVN27VgwzBtw/F4oWKArQERQ5cIESLUJMtZ3ccR89qmYaeKsiRZmZRsRGRfrD3NtWWcSuehp4cxG7ytopQK2dbW00tQOgXqC4fSSPFigKiJYalGhx3NzOqio1K6ZaZWe/fmoXXrOqF6p6Gngr0gEcK+xUXcQOWCPEAPXiWgsUTcREWwTl6FE1jtuqVFZGhjG/jIqGvqKCtqrt9HjUprOsEmKA2joUqyJFgNpCWSuFmBV2pqYatS+q0AJFEzHmCAovjpOJVQKlXz/DcbvZoXk8auszosVxcztzcuQfqzMqHRqPFKmcM4MTbZEitwsxt8+FogWKAvLyKMTZ3q4mimKVQDE7bjcLFCB6IgtaiImHR8SiRYhZESmKFiGmIyiaiImLMx6YAwfkH88qgQJEj0CxwnFb6dDcnMoCokegqHTcVt630RZB0QJFExEFBbQtKZF/rGgTKFbYGS0RlGhL8URLpEiF47aDEFNhJ29vrRYofJJDN6EFiiIGD6at7AhKY6MxJDRaBIqVERS32xktERSVkQU7OO5osbO8XH7dH7eTLyKqEi5QGhqMoc5uQgsURagSKNyZxcWpXUCPo8pxt7QYD2S0pHiipdbG7bUZdqhBUTENvJV2DhhAdX8+n/y6vyNHaGuFnSkpQFoavXZjmkcLFEWoSvFYtZIxR5VA4XbGxFg7jFG2nW1tRrGhjqDIg9upYm4bKwWneRp42Q7NSoESG2uMnpQtOq2MoADurkPRAkURqiIoVtafAOoECm/kMzPVTwIFBEZQZOZ+uTgBrK21qaszVhqWgc9n3LtWODTz3DaqHJoVdqqcTdZKOwF16Syr7XTzUGMtUBQRbQLl4EFyOrLo0gtVMcGMCd74NTUFigjRcDszMjpWLm1okPvFdiI11ZimXGZDX11tmJWdDRoa0dYm74CdME9KJ9NOxjo5tKNHldoJWOS4q6ose0aVCrG6OuXVqjqCookYnuIpLZXrXwJmV929G7j3XuDnP1fWOAwcSI19W5uRm5VBgEBZvZq8yxVXyDtgJxITDXEks6EPqMv47DOKW//P/8g7YDeocNy8kU9LAxK++Jha3blz5R2wG1Q47tpaoLWVXmd/22HnvHnyDtgNyh33zi+pKOTaa+UesBOq7OTtXP+S9dQzvO46pSJFCxRNxPDJ2lpb5RZt+SMoe9cBI0cCjz8OPPYY8OGH8g5qIj7emNpfZprHL1BiqoAZM+hL/de/gC1b5B20EyrSWX47U5uAOXOoh/bOO8CGDfIO2gkV9TZ+OzPbgWuuoaVwly4FvvxS3kE7oUKIcTuTkhiSb/sBNQhvvQWsWCHvoJ1QURDc0GDU8uT89k7qsbzxBl1TRSgXYosX0PV89VXguefkHtSEFiiaiImPN24kmWkev0DZvJJUPD/oG2/IO2gnVDrurG/+C9TUdOQ/APz97/IO2gmljnvXN/QLL7j505/kHbQTKiMo2cf2kEfhFd6/+Y28g3ZCheP2O7PYY8D+/cYb996rNMoJqLmeCbFtSC1ab7xxxx30vCpAhUBpajJGE+Zs/8y4b++6C9i2Td6BTXA7tUAJgra2Nvzyl7/E8OHDkZSUhBEjRuC3v/0tfKa8BmMMCxYsQH5+PpKSkjBlyhRs3bpV9KnYDhUjefwCBUeBM8+k3hlAPRc+QYpklEYWWsuAU04x7Hz5ZaC+Xt6BTagYauy3s34fic1336U/vPmmmmmJodbOnJrdgNcL/PvfJDpXrFAWRVEpxHLqiunFG2/QMLTNm4EXX5R3YBNKhZivHB4A+NvfgOOPp0bhl7+Ud2ATKuz0T+uAVmSgGvjd74Dp0yl8dPvt8g5sgvdBVYy0U41wgfL73/8eTz/9NBYvXozt27fjsccewx/+8AcsWrTIv89jjz2Gxx9/HIsXL8aaNWuQl5eHadOmoVbmMAEboKJQNkCgzJ4NTJpEB66pAf77X3kHNqFCoPhrbVAJfO97wCWXAMcdR3YuWSLvwCZURFD8kQVUUq3CxRcDU6ZQyPyvf5V3YBMqUx/ZqKQUz+zZwA030B8VRVGU2zl7NnDllcCvf01/fPhheQc2oTKCksOOAKefDvzkJwD3AS+9pKTQW4Wd/jlQUAHPwIHA3Xcbz+WXX8qfbAbAkCG03bdP+qGUI1ygfPXVV7j00ktx8cUXY9iwYbjiiiswffp0rF27FgBFT5544gk8+OCDmDNnDkaPHo2XXnoJDQ0NeP3110Wfjq1QIlCOUJg4C0fJacfEUCMIKEvzKImgVFARWjYqgWnTyM6bb6Y3n35a3oFNKI2goBK44AL65d57afvMM0oaQKWRBVQA559PvzzwAG1XrJA7xrkD5XbOmEG//PjHlBrYu1fJaqJKIyiooNqpmBhg6lQgIYE6EXv3yjt4B+bUhyw9FGDnvHlAcjJwwgk0/0FLi5KauKFDaXvsmLLsmTKEC5RzzjkHH330EQoLCwEA3377Lb744gtcdNFFAIDi4mKUlZVh+vTp/v/xer2YPHkyVq1a1e1nNjc3o6amJuDHiShJ8ZRQQjQrNwEYPZr+eNVVtF22TElDr0Sg7Cc7s5MagTPOoD/ecAOlBdauVdKdUFKDUtIAAMj2VAHnnUd/vOgiGvtbXQ0UFck7eAdK7DxEQisblcDkyfTHESOM+LWCFLCSyEI5ecocVBjXMyWF0h8AsGmTvIN3YJ4Gno8oEk3FEepA5KACOOcc+mN8vNEmbdwo58Am+ERtbW2G0BdNgEA5+2z6xeMBJkyg12vWyDmwidRUY0Sh26IowgXKz3/+c1x11VU46aSTEB8fj3HjxmH+/Pm4qsNJlnVU8uTyu6eD3Nxc/3udWbhwITIyMvw/BdzTOwwlEZRymlMha/IYo2Br3Dg6eFOTkoZBiUAppXqa7HFDjALZ/v2Bk06i1wocmpIIyl4S4znH9zPmtI6JAUaNotcK7DRHFmSNnqwopJxdTo7HeFAAYMwY2iroiXI7a2rklTFV7CCPlp3YQLVTnLFjaatAoOTkGI/M4cNyjlGx+xgdK+YoMHGi8cZpp9FWQTuUkGBMniYrWnRkP3UgclBB6XQOFygdmQPZ8CiKgsCUUoQLlDfffBOvvvoqXn/9daxfvx4vvfQS/vjHP+Kll14K2M/TaR52xliXv3EeeOABVFdX+39KVCwJLAHpAoUxHG1IBABkzTI9LB6P0XPZvl3SwQ2UCJRjsQCA7HNHBb5x8sm0VVBBz+08fFjeXFuVZfTB2RNHBL7BnZsCx8173C0tRu2PaCpLSBFkj8kPfIMLlM2b5RzYRFoaBTMAeQ6tcjfN6pdzfL/AKZBPPZW2334r58AmYmLkF1ZWbKVUVc7ABEp7cBQKFED+SJ6Kb+kL7J/eYoRsAEOUKYigAIZA0RGUPvjpT3+K+++/H1deeSXGjBmDa6+9FnfffTcWLlwIAMjreDI6R0vKy8u7RFU4Xq8X6enpAT9OhAd+DhyQkxNt3Lkf9Yxa2OwZEwLf5I57xw7xB+4Ed9zHjtF8CKJh9Q2obKFoQtZ3zwh8k0cWFAix/v2pJ+rzSRrixxgqa2nhlOzJowPf44JTQQTF6zV6otIcGi8GPuO4wDcUChQVs8lWlFIqK2dsJyHGBYqCCAogvw6lYi+lknNO7LTg0LhxtFUkUGSnJysKKXeUMzQl8A0uULZskb+4E4Bhw2irBUofNDQ0IKbT4iixsbH+YcbDhw9HXl4eVpgmJmppacHKlSsxyRwicyF8ltXWVjmzrB7+bCcAINHThPT+3sA3eepDgePOyDA6TTIahtqPvkEbOhx358gCFygKIigxMXLrFtjOQlT6MgEA2eefGvgmj6AoGp4v1XHX1KCykW6YnCk9CLHNm5XMzinVTp8PFVUU+cv5zsjA93iKZ9s2eYUhJmTX21SUUbF+zmmDA9/gQqykRF5hiAnuuGWlPip4iufkTisFDhpEEZX2diViTKd4gmT27Nn43//9X7z//vvYu3cvli5discffxyXX345AErtzJ8/H4888giWLl2KLVu24IYbbkBycjLmKZ7yWTWyJ2srW0Opr7yU2q4rGSuMoHg8ctM8R7+mwtDEmBYkp3Qy1CxQFDo0KULs4zVoRQIAIHtQYuCbXKAUFSmZ30amneyLL1EJ6mlnn5IX+OaoUXRDVVTIK5gwIdVxb92KSl8/AN1EioYOpRxTSwuwc6eEgwfC081SsuWVlahooJUXc75zfOB76ek0HQCgJJ01fDht9+yR8OFtbThSQS405/Qhge95PEYURUEdik7xBMmiRYtwxRVX4NZbb8XJJ5+M++67DzfffDN+97vf+ff52c9+hvnz5+PWW2/FhAkTUFpaiuXLlyONFwG6GJkjeco2U1gmN6ubgggeQdm3T07epRMyBUrlJlJ32andOOaRI2mt9ZoaJTMXySyUrVxPrU1ibEtAGh8AedLMTMovKXBoMiMLtV9tMYRYp4wAkpONES4K0jyyhVgFKFeWMzA+8E2PR2kdyoiOwKMUx71qlWHn8f26vq+wDoULlOJiCR++aRMqOiKc/U8b1PV9hSN5tEAJkrS0NDzxxBPYt28fGhsbsXv3bjz88MNISEjw7+PxeLBgwQIcOnQITU1NWLlyJUaPHt3Lp7oHmYWyZbtp6G3e4Liub/bvT60/Y0DHEHCZcDulCBQ+EiKzmwiJ12s4NIWFslLs3EIFAtnp3YT8PR6laR6ZAqVyI6n1pPjWrkIMUDqSR2ZDX7u+qGchBigdySMzssC+WWMIlJxudnCLQDELsQHduFKFhbI8lVVerqT/qQy9Fo9ipAmUmhocrqD8dt7IHiJRCutQpDnu9naU7aPISe7g+O734eksBXZKddxFHQV43TXygFKBwq+nDGFdsZ0ifzn9ehgKpbBQlkcWdu8W/9mVm+hhSEpo616IWRBBkeG4azcV9y7ELBAohw6Jr1Vlmzb3LsT49dy1S94wvw769TNmITAv8eR0tEBRjLQUz+bNKAPl7/OGJXa/jwUjeYQLlF27cKiVWoOBI5K630dhoaw0OysrceRox1DqfG/3+ygcasx7aMIdWmsrKjtGfGT3j+1+HwsEyp494kuYKnZ2CM7MHobwKRzJwx13RYX4uRsrtlKtULK3vXshxgXK9u3S66eys2kiM0B8VKxm8z6/EOtWoOTn02QsbW1y51wABVTdmObRAkUx0iIoGzf6BUoPo7XdEUHZvBmHQJWMA/O7nzfHCoEiXHBu3eq3M7+gm5QdoHSoMa9rFO64i4pQ0d4PAJDduS6DwwXK1q3SV/zljrumRvCcL+XlqKim65iT18P15HYeOiRnmJ+J9HQjuiFUdLa0oGIvpZpzcnq4UQYNooO3tUm/dz0eSWkexlCxjeZ6SUlqR1J3faWYGEM1SMkxBSJ7xJIVaIGiGGkC5dtvjQhKXg/7uCGCYhYoA3vYR6FAMYfKhfrOzZtxEJQ/ys/vYR8eQdmzR3rieehQam8bGgTP+bJ1Kw6DFHVubg+C87jjgMREitFLqeo0SEoyvm+hh9q2zZ8OyO7fQ7ObmmooQcXRImGYBGdObg8RMY/HeEYVLNUgRaCUl6OihgR1Tv8e7lvzwRWoBh1B0USMWaAI7Yl++62/oe9RoPAISmGh9J4ot/PgQcHTOpgcd48C5cQTqRGsrJTeEy0ooOHjLS2CxdiWLX0LsQEDKLbMmPSoWEKCsWqq0PqMLVtQClKzg7oZCAGARmVxh6YgnSWlDmXrVhwBzZXRv38v+51wAm0lCzFAkkDZutVUl9GL41boTaXU25gEZ05PghOQmBvtihYomojJzyff2dIi0He2t4Nt2tx3imfoUOqJNjdLV/QDB9Kh2tsFPzDBRFCSk42GQXIUJTbW6CSJdtx9RlAAI4qiIFrEO/eiHXdQdvKRWQodmmjHzYVYr3Yq9DJSIgvbtvmFWLcFshwX2dljEbu0g3ePTvFoIiYhwRAQwtI8RUWobYpDI6girUeBEhtr9NAk97hjYgyfsmuXoA+trwfbtbtvgQIonfKeO25hdjIWvEDhB1fouC0RYjx8o2CIgmyB0mOkCHC+ndu2BXc9XSBQeh3B0/ngOsUTFlqgWIDwOpTt2/3pHfOCZ93C61AUTO4lXKBs24ZapKIBZGCvAoV3JxQsLCncztJSsGPHghNiMmf+64TwCEpTE7BrV2gCRUHray4IFgJjwQsUC1IflggxCwSKLCEWVDukMMVz8CBF6N2AFigWINyn7NzZd4Esh9/FCh23sDo4U11Gn0JMxZLKHXA7hTnuLVtQg/TghJjCHrdwgbJzJ1h7u/sjC+XlQGWl7SJF5s69kMVLW1uBwsLQBYrkJSm4Rjh2jH6EsH27387Bg3vZj3/JpaWUWpfIgAGUVmdMznxFVqAFigVwgSIs6ldY2Hf9CUeh4x7ZsR6asMiCSaD02sgDcqfs7YTwFI8p7dGvH7qfS4LjZIGyZQuOoR+aQGM07SLEuEApKRHUE926FQxAqYfuyaAcd0mJ9EL2ggLK+jY1CRqZVVQEtLXhgIcauF4dN7+edXVAVZWAg/dMaqpRmCwkkFFZCRw+jAMgA3u1s39/eoAZk37vmudCcUsdihYoFsAdt7DIgkmg9BlBUei4hUdQdu4MLu0BWBJB2bVLUGcwmBE8HLPjltwT5QKlooLmCYkYU4FsVhb1/nqEt7zl5dKXr8/NJZ/i8wnKQGzdiqPIQjOjCfd6Fdf5+aQa2toEj+fuSny8cfsIcdzbtoEB/mvaqxBLSqIuP+C8OpSOurYDsXRP9mqneSIWXYcSMlqgWMCJJ9JWWBnIzp19DzHmWOC4i4sFzfRcWBhc3hdQKsSGDaOi4Pp68p8RY7Iz6EhRXR1QXS3g4D2Tnm4UBApJfwQ7ggeghRF5Tk/yNfV4BKd5THUZOTm0XFSPxMYa19Rp9RkdQ4xbGM2u2ucz6tRC2W3b0I4YHPRRY9trBAXQQ40jQAsUC+ADaXbvFuC4jx4FKiqCT/GYJyhRMBeK10s2RhzdbG0FiotDj6DU1Qnq7veM12uk7YSkeUIRKMnJhmpwWprHVK/Qp50ej3PrUIId2cJxaqHstm3+tEduLo1Y7BUHC5RyDEAbi0NMTBCdQj3UOGy0QLGAggKKcLa2CriROvInZd5hAIJ4WHJzqbvf3i6ou98zMTGGQ4s4zbN3L9DWhkOxpAT6FCgpKVTAAShNZ0XsuCsrAwoq+7QTcGYdSns7sGdPcOkAjgUCRbQQs6udolIfIdnp1Mnatm3z2zlwIBDXw8oFfnSKJ2y0QLGAmBijDiXiNE/HB5QlkOPuU6DExRleT4HjFlYoW1gIADiURA97UI5bYTpLWKFsh5I7lEQtalA9bicKlP37gZYWHIyh+zYkO50UWaipAQ4ftq3jFpbi8fmAoiLb2ylKiAVVICvl4L2jBYpGCDzN0+F3w6fjAw77qEy9zxQPYEkdSsQRFC5QPCFEFiwoCBYlUA4mDAMQpON24lwo3M4U+uLsJsSECZSOL6o0key0awQlYjtLS4GmJhzw0LkH5bgtEigR1ZI3NAAHDoQmUCyoQVEwCEwJWqBYhLBC2cJC+ODB4aYMAEFEUABHO+5DLTR/dkgRFCeleDqE2EFfkMOpAWdGUDquZ2nHSAi72hnx6s3cziT6QLtFFrhAOXiQhhuHDbczjRo2u9k5ZAhFriMeUt1x4x/whiA4uToqL5e+qGd+PgXJ29romobNkSPAffcBzz0n7NzCQQsUixAmUHbuRBUy0dpOK4fykXu94sS5UAoL0YAkVDcHMWcGhwsxJ6V4CgvBABxq6gfAvjUoHRma8OERlDa6Ye0WWeCd3tpaGlYdNtxOT5DFwIDhuBXYmZ1N84QwFqFO4AIlgZxxSNezooKGwEkkPt5oDiIKZHTYeSCFGvCgIij9+tGXDEhvi2JjjYBqRNdz61bgT38CHn1UyHmFixYoFiEkxdOR9+UjeLKy+hjCyLEggrJnT4QjlgoL/SN4kpKAjIwg/seCydqOHo1w3qnCQlQjA42ttJS73QRKXh59/xHPEVJUBB88ONSQDiCMCIrkOV8SEw0nG1H6gzvuZhppFZTj5h6mpkbg1KfdI2xINXfcvhCKnvv1oymhAaUz54oQKKVxJCKDEiiA0k4hF9cRRTl5Tp73MC1CC5TuaG2VfggeQTl4kHppYVFaCjQ2ojSGGu6gnBmg9GEpKCDR1NoaQYlEQwNQUhIwxNjTy0rufhTamZJipNfCbhgYA4qK/CNbMjNJDPQJd2ilpdITz2aHFmkDeAT90e6LgccTZO3U4MF0As3NApcC7xlRjrsF8Sivpx50UI47JUXp0HEhjrsjdFjamAUgSMdtnvrUKYWyXIi10Q0btEDhCjyivEtw8HVSI1rgXAsUG7JpE4UhFFyUfv2MdEzYBaQd+aHdOWcCMBrUPlEYWYiJMc4r7PRHhyc8lELXJWghptBOQEC9zaFDQH09DnmMIYxBkZdHief2dvoMyUS8mF5bG1Bc7BdiublBDNUEaGIN/qU4ZdHAoiK/sI6P72PlWzNOG7FUVIQ6pKC6kUK4QQkxQGk6S5RAYQAO1FII144RlNGjabtlSwQfogWKDcnMpPj8wYOCVs/qHZ7mCbsOpSM/tDt1LACjQe0T88MiOVQOCBjJw0fw5IwBEEakqKIiwgrA4IhYoPAC2f50PYNKewCBs486oVB23z6grQ2l8eQxgrYTcNZcKNXVwJEjAZPRBRX5A5w1F4rPB+ze7bczNZVmHQ4K/owqiCyIihQdRRaaWklRB33vOk2g8EZMCxQbkZdHLUhrK02YJZmIC2W5QIkhzxiyQGlokJ7jBgQUynKBkhpiBMW8wIuCBjBix80FSj+K0drVcUdsJy8c7RBiQfe2ASOd5YQhuNzODLqeIdlpgeMO286SEqC52T8iK+ioAqDUzoivZ309cPCgf4hx//5B1vwBSlM8p5xC2/37w5xE2+czGmve67IILVDMxMcbeRcFSpcLlLALZTuUzZ4muvmDTvEkJZHzBpwxF0rHF7Q3hlpS7qP6xOOxbNHAsOBDqZNJAQQtxACljluYQEk/CUCIQsxJDo0XVGZR5C8sgaLgvjVHisIKqHI7+58GIEQ7+cVXYOdJdLth374wHTevs0mlDwpLiCmwMzPTONzWrWF8QMecNoiLMypuLUILlM4oVLoiUjwMwO6KfgBCiKAAzpoLpaMBLKyja8OFXVBYYGekEZT9jM7Zrj3uiOcICWcyOo4FswMfOEB1uSHDHXcKPeh2vZ4jRpAvqq0N8zHhhaP9qOtuVyGWnW0cbtOmMD6A29khxEISKAqFGGBEUcJK8/Ce5PDhQRaHyUMLlM4ofGDMEZSQG/qWFmDvXpRjAOqbYuHxhCh2LZgLZc+eMAeZdAixwsNUmMaFXVBY4NA6al1Dp0Og7DxGIwTsaufQoVT83NAQ5qRXHQ1giS+EBfQ4Ch13//40nJ0xYPv2MD7APxkdpd9CslOhQ/N6jZEfGzaE8QHcTi89AHZN8QDAaafR9ttvw/hnLlAiiaAcPKik7i+iOhSbFMgCWqB0RWEEZcQIqm+sqwtj8MW+fYDPh91eksp8OG/QKIwsFBTQAIyWljCGGh87Bhw5gjLkoa4hNmBUUFAotDMz08ichRxFaWsDdu9GG2JRdDAFQIiRIoUNfUKCIYYjcdw7K2lIS0jtoELH7fEA48bR67AcN08JtIYwGR1HoeAEDDs3bgzjn7lACWXhRw6/nkeOhBmmCo2xVPYUmUCJGwYgRIHC87WtrRHO/BccWqC4FYUCJSHBKFALOc3TcRPtHnAWgBDTO4DSBjA2NoKhxjy9k0V2DhsWxDLuZiwaahxyXdH+/UBrK/YmnIDWVg8SE42616BQHELmDm39+hD/sWMJ70YkYm8ZFTCffHII/694BFpEAoULsfJ+AEKsN+TXs7pa+iyrgBFZiESgHGikZShCEijZ2cYDrWCIvBCB0kYTHoVkp+L6Ri1Q3IrinkvYhbIdnn53yqkAwhAoTnHcHf9QmEMCJaS0B6D8evIGMGTHzdM7eVMAkJ0xoTyd5giKgiHyp59O25DtLC4G2ttRmDgWjHmQmUmplKDhjruxkZy3ZMIWKFVVQGUlqtAPZRU0K3BIQiw9nSZsA5R0lsIWKG1twJ49YAB2HqRZYUMSYh6P0k4hfz43bw4j3cwFSl0/ACEKFPM/KJysrbycfkJCCxQbo/BhASIYatxxE+2JDXGIMUex4+aKPuSGnguURBJiIQsUxUJswgTarl0b4j9ygZI+EUCI6R1AeQh5/HjarlsX4j923Lc7BpwHgJx20HODAEByMs1yCCi5d7kQ27gxRN3XYef27HMBUJqTz+oeFOYRaAodd3FxiDMPdET+DiQch9q6GMTFheHXFI+0S04mfRvSqMKaGuDwYbQgHkUlFPmzc2cpJcWIWoc0kqe93chPa4FiQxQ77rBH8vAIShM54LAFiiLHfcYZtF2zJsR/5AKljZ62sBuFQ4eUrD9uFighZSC4QImlrk/IAsUcQlbg0LjjLiwMccgmFygppHD40M+QUFzInphIdWIhpSc77NyWdQ6AEKMnHIVpu8xMY1LXkNIfHV/K1rypAMinhZSCBZQKsdhYYAyN+g7LzqLMM9HW5kFaWgjTHXAUp2HDSvOUlFCxYEJCiDlmOWiB0hl+E5WXK12TJ2yBcjQTQIiFo4ARWTh6lLoTkplIgQFs2RLiiuO8BqWG8r4hC5S8PGqV2tuBw4dD/OfQGT2anu2qqhBnrOT1Ck3UKIQsUACljrt/f6OBDiktwCMLIGUSkUBR4NDi4ozoQkjRPy5QEk4DYITcQ8IJhbIddm5NpeU2+PDWkFDsuMOqQ+mwc0v/8wHQcx5S5A9QPmIpLIHC26FBF6B/Xiy++13x5xUKWqB0JjubeqOAkqIt/kDv2RNCSr21FSguRh1ScLiKuishR1D69TNWolPQMAwaRFqhvT2Ehp4xoLAQbYjF7jJabC1kgRIba6zip8DOhASjAQwpzdMRQdlxhAoN7S5QACOKElKah0dQ6kgg2z2yAIRZEMyFWCulYCMSKIqH4IYlUDzkDcMSKBbViYVkZ0eHcIuXIn/c+YeERWn1cARKYc4kVFQo6dP1ihYonYmJUVqH0r8/iQvGgK+/DvKf9u0D2tuxx0utXlaWkZYPGo/HiKIoGrIZcprn8GGgthb7PcPQ2uaB1xtGWBWwfx1KUxOwbx+qkY7DR0lwRiRQFDk0XocSkuPetQvtiMHOw/0A2D+CAoRZKMsjKEdJHDtBiEUkUOopPxSRQLHzXCgddm5upRuWp4lCwqIUz9atIaSbuUBJIhUXcodQMFqgdIfiQtmzaIAKVq0K8h/4EOPcMIcYcxTXofA0zzffBPkPvP5kAOXxR44McWQLR3HPJWSB0jHH+M4UCkkMHBjCYmtmFDeAIRfKtrQA+/ZhP4agqSU2YJh9SFgUKdqwIciGnjH/6r77K5IBhClQFNvJHffWrXSpgqJjdd9thyny54QUDxcXBw+GUE/OUzxVdK4RRVAUDsCIi6PIfNBfbYed3zZTDymsyJ9AtEDpDsUNw6RJtA1aoHSEG/ekU9cubIGiMIIChBFB4Wo+k/LbYat5iyIo69YFOfKD530H0IiPsKIngGWOe8eOIKfq2LMH8PmwI5Hu2xNOoAxcyFjQE42NJWcW1C1UWQkcO4YdHXU2ubmUOQ4ZxR2lIUOoWLa1Fdi2LYh/aGsDiouxH0NQ1xiH+PgwB34ontsmLc1oM4OOohQVoR7J2FNOqeaIBIqiSekSEow2M+g0T0dbtP4wnSvvhFiFFijdobhh4ALl66+DHGjCC2Tj6O5zSgSFO+5du6g2t094BCWeumVhCxTFdo4aRSM/amqCHPnBR/Akk+OOWKAoum/z8uhRYSzItIB/6O3ZAMJM7wDK7UxMDHEqeJ7eySQ7w+6FKp4e3eMJMc2zdy/Q1oat8Ybg5OV7IcHb24aGMFfxC52Q6lCqq4EjR7AdJ4MxDwYMCHHuHk5WljHdt4L6RiDEOpSOOW3qkYzt+2kOHi1Q7IgFPbTUVHo2g+q58BRPCxVkOCWCkpVlnGtQ6Q8uUFqGARAQQVFkZ1ycUbcQip07fKRMwhYoiu9bIMRCWV4g6yXvEFbaAzAcd1kZNaoKMKd5+qRDlW7rGNkStp18bpuWForKKCAkgcLrT7Io8hdWegdQPrcNEGIdCk/vpJPgDCt6AiiflA4wzjWoxRH37QPa2rApfgJ8Pg/y8kJcUV0CUgRKaWkprrnmGmRnZyM5ORmnnXYa1plaMMYYFixYgPz8fCQlJWHKlCnYGta60JJQ3EOLjQXOpLYsuDRPRwO4vYJkvFMiKECIaR6e4qkiO52S4gFCrEPhEZTaMFZrNsOvZ0WFkhAyEGKhbKeRLWFHUAYMoIfG51M2zCCkQlkeQfGQxw47gpKQYHTVFTvuUOzc6qUvJ2yBAihvc0MaaswFStp3AEQgUADlaVhe97dyZRBBuA4712VPB2B99ASQIFCqqqpw9tlnIz4+Hv/973+xbds2/OlPf0I/0zCTxx57DI8//jgWL16MNWvWIC8vD9OmTUNtba3o0wkPxSoXCKEOpSPvuw9DUFKeiLi4CG4kxZEFwHhg+hQo7e3Arl1oRCL2Hwlz5kaO4hw3EKJAKSpCO2JQVE6VsWELFHMIWfFInpAiKMciGNkCBA4dV2RnSFP7cyFWT3PaRFRoaFGh7MaNwTu0rS1UeBKRQLFoLpTt24MoCOYCBaRMIhIoiu0891zSufv3BzFzLq8/SaDeMr/nrUS4QPn973+PgoICvPDCCzjjjDMwbNgwTJ06Fcd1dPMZY3jiiSfw4IMPYs6cORg9ejReeuklNDQ04PXXXxd9OuGhuFEADIHy1Vd97NgRhvs8/gIAdBPxJTtCxoJQOY+g9DmSp6QEaG7G7riTwJgH/foBOTlhHpTb2dhIM6gpgAuU9ev7qCuqqQHKyrAfQ9DcEhOwUnDIWBBC5o3Ytm1BTMBXVIQKZKOiNkLBCVg2d0ZJSRDZlqIiNCIRe6r6AYhAiAHKIwsnn0wOraYmiIkGi4rgg8c/lFpIBEXR9TQXBPcZLeICpZaGUguJoCi6nikphm/58MM+duYRlEZS1K6MoLz77ruYMGECvve972HAgAEYN24cnn32Wf/7xcXFKCsrw/Tp0/1/83q9mDx5Mlb1ED5obm5GTU1NwI9UeCNfU0NzXCvgOxQ9RFERFXn3SEd65/PUmQCA886L4KC5uUpnWQUoVB4bSzVivbZFHWmPtf3JzpDXbDGTmGgMo1C4CGRKCo1u6XWWYD6CJ4N6LSNHhjmyhaO4oc/Pp9vI5+sjz93UBJSU+Ee2DB0agbDmBwaU2ZmebiyC12u0qGOIcSFOgM9HiyHm5kZwYMV2xscbUZRPP+1j56Ii7MNQNLTEIyEhxEUCO6PYcXs8wFSanR//+U8fOxcVoQr9UFpDEU4nCTEAuPBC2q5Y0ceOHcJ6ayUJTldGUPbs2YOnnnoKI0eOxAcffICf/OQnuPPOO/Hyyy8DAMrKygAAuZ2e2tzcXP97nVm4cCEyMjL8PwVhzdYVAmlpVLUKKHtg+vUzbvxeoygdDu2zVpoD5dxzIzhobKxRBaXogUlONuzsNc3TYefyGJprmTcmYaO4DiU21njAe03zdAixr9JnAIiwdwYobwA9HsPOXu/bjrletifSzmHXn3AUOzQAOIem4+ndoR05AtTUYDuoFzpqVATCGrDEoV18MW3ffbeXnVpagL17sQ3G2lFxcREc1IIC71mzaLtsWR87FhX50ztDhoQ5RxHHAjunTaPtxx/3ESjftQubMQbtvhj07280mVYiXKD4fD6cfvrpeOSRRzBu3DjcfPPN+NGPfoSnnnoqYD9Pp6eWMdblb5wHHngA1dXV/p+SkhLRp90VCxrAoCZs27UL5eiPHXUk0nijGTYWFJDyNE+vM+cWFsIHD1YcJYdmCriFhwUNPa+3+eSTXnbqEGL/aZwCAJgxI8KDWlA/xa/N0qW97NRh5ydJFwEwik7DxoLredlltF26tJf6DD7jaHqEQ4w5FlzPSy+l7fLlvaTt9u4FfD7/EOOIogqAJe3tzJkkHjds6OU2OnoUOHpUTP0JYImd48dTOqumppdOYcfyKetAeZ3TT49QWAtCuEAZOHAgRnV6Kk8++WTs378fAJDXUdzWOVpSXl7eJarC8Xq9SE9PD/iRjl0LZYuK8AVIlYwZQ3WREWFBQ382td1YtqyXhr6wEBtxGioaU5GWZqTAwsYCIcYb+qVLexlUU1iIwxiAtRU0pWrEi3NZcD3nzKHtF1/0Mr1DURFaEYf/1tG9y3uvYWNBT3T6dIoA7t/fS7EsF5w+upC80xE2FlzPU0+lFFxjI/DRRz3s1GHnmmTKMUfsuC24ngMGGO3K++/3sBNfgyeZUrBCI5yKCvZjY4ELqGSx5zqUvXuB9nasj6Xeox3qTwAJAuXss8/Gzk5J98LCQgztWMt7+PDhyMvLwwpTQqylpQUrV67EJO6h7YCFhbJr1vTi0HbuxGegRiGi9A7HAsd92WVUiLd1ay91C4WFWA7qml9wQZgTQJmx4Hqecw61u9XVwAcf9LBTYSE+AIVNxo0TMO+ABXYOGULD5BnrJYpSVIQvcTaOtaYiJ0eA4LSgJ5qURL1uoHc7izEMG+uOR0wMMHt2hAe1wE6PB7jkEnr973/3sFNRERqQhP/UUVskTFiXlQU5W6UYuFB+770eduiYyv8DHxVyROy4zZPSBb06bOTwNE+PdSi8QDaeHkzXCpS7774bq1evxiOPPIJdu3bh9ddfxzPPPIPbbrsNAKV25s+fj0ceeQRLly7Fli1bcMMNNyA5ORnz5s0TfTrhY0EE5YQTSC80NfXQALa0AMXF+BykTCIqkOVY4ND69TMa7ldf7WaHjvw2d9wRp3cAS4RYTAzw/e/T6yVLutmhY7Xm/4DSHhddJOCgFjg0ALjiCtq+9VYPO+zahXdBXu/iiyMsBAYsuW8B4PLLadubQFkK2mny5AhGnnF4O1ReHsICOZHDBcqyZT3ohaIi/AcXoaE9EcOHCyiozM2lB6a9nWxVBBcoH35IEaMuFBVhLSZgd9NgJCcLeEaTkijfAih9Rnmh7FdfAd3O5lFUhGYkYEszVTrboUAWAMAksGzZMjZ69Gjm9XrZSSedxJ555pmA930+H3vooYdYXl4e83q97LzzzmObN28O+vOrq6sZAFZdXS361A3+8hfGAMa+9z15x+iGBQvosOed182b27axY0hnMWhjAGOlpQIO+PrrdMDJkwV8WPAsXUqHHTSIsba2Tm9u385qkcLi0cwAxoqKBBzwgw/ogKNHC/iw4Fm9mg6bksJYfX2nN8vLWStiWSYqGcDYF18IOOCuXXTApCTGfD4BHxgcxcV02JgYxsrKur7vGzSYHY9CBjD2z38KOOCxY3RAgLG6OgEfGBxVVYzFxdFhd+zoZofTTmPn4DMGMPbXvwo4oM/HWEICHXDvXgEfGBwtLYxlZNBhV63qZodp09hcLGEAYz/7maCD5ufTAdesEfSBfePzMTZkCB32vfe62WHePHY3/sQAxq68UtBBTzmFDrh8uaAPDI7hw+mwy5Z18+Ztt7GluJQBjA0YILfpCMV/S5lJdtasWdi8eTOampqwfft2/OhHPwp43+PxYMGCBTh06BCampqwcuVKjI44uScYCyIoAPDDH1Lv8rPPupn2vrAQqzAJPsTiuOOMU4wIi3qiM2dSJKW0lGY5DKCwECsxGa1IwPDhEcyUa8YiO884g+Y1qa/vJs9dWIivcSaqkIXMTGM24YjgN0VjI3DsmIAPDI5hw2juF58PeOedTm82NGBnaQp2YSQSEpiYiFh6ujFOWeEz2q+fkc/vEkVhDIcLq/ElqMiKF9VGhAVz2wCUUuXRgu7SPA07S/AeKPwwd66gg1rwjHo8vad52gt3401QGPSqqwQd1KK2iKd5li/v5s2iIjyJWwEAP/iBPQpkAb0WT8/wRkFhSgCge5enP55+utObpvoTIekdIDD1oahoC6AJT3nD1iXNU1Tkrz+ZPl3Qw8LtrKoKYkYxcXg8wJVX0usuaR5TemfGjAiHaXKSkozKacUNIE/z/POfnd7Yvduf3jn/fA/S0gQczOOxrKHnRcFdBMrhw/h3w4VgiMHECT4Imw3BggJSoJc6lOZm/KdkDBqQguFD2sSlAyxKT5oFSkATyBg+294fBzEI/dLaIx9hx7HITj58/KWXumbRCre1YQWmw+NhuPlmpafVK1qg9AR3aAcPUrdQIbfcQtuXXw5cxr5i00E8hx8CAM4/X9DBeOPX1KRsllXONdfQ9p//7JT/NRXICultA4E9bsUNPRco77/fabHWwkL8F1R1yYsvhWBR9I8LlE8+oeWA/BQWYhlIdXOnJwSLHPell5I++uYbmtjZj6n+5PI5AptWC6OccXHAjh2dpgTYswdvsf8BAHzv+7HietsWXc/zz6em4cCBTjVUlZV4o57u2/+Zw/yrSESMRXbOmkW1JTU1wIIFpjdaWvDkgY76sKnNGD5c6Wn1ihYoPTFwILVCra2dWlv5XHghMGIEFXm/+abx93tXzEAF+mP04GP+4suISUw0KvkUR4vOPptGgNTWBjYML6wcgR04GbExPn84PWI8HksKZQEatnniiTQya/Fi4++rVsdgA6j7GfEoCDMWObTjjqORSO3twM9+ZvRGS1aXYhVoiFrEw4vNWNQTzcszIpjXXmvUrlZvLMZHoBkFeZRFCBYJzowM4Hvfo9dXX20MOmnYssef3vneXIG5AIuuZ2IicM899PonPzEem5Ztu/BPkOq+6loR4c0OLHo+Y2KAxx+n1888Y5QQ1G8pxou4HgBw2z2iVJgYtEDpifh4Y0EyxQ4tJgb+MNvChcDq1VRl/nL5THjgw3MPH0JCgsADWvjAXE/PBX70I0qBrFwJ3LzzbgDAgz84CNMak5FjkZ0eD3D77fT6wQeBv/6V5tG46LOfAwAuP6sMAwYIPKBFdgLA//4vXdcXXgB+9SsavTj56SvhQyzOLCjFkCECD2ahnX//OwXlPv8cuOMOOoWZj56HViTg5Myy8Bd87A4L7Vy8mOZE2b2b6uMqK4Eb//c4Su+kHBY7HNWiyAJA9+qECRREvuEG6jQ9sDANVchCXkIlpkwReDCLhBhAI8suu4w6ET/9Kc0s+8yTbahGPxyfsB/TZ9ik+IQjr1ZXHkpG8TDG2MSJVPb873/LPU43HDnCWHa2MVAhJcXHAMbuwF8YE233xRfTQTqNtlJBQwNjl1/e1c65WMLaj1SKPdh119FBFi4U+7lB4PMxdv/9hp2pqWTnOfiM1X27S+zBfvlLOsgtt4j93CB59lnDzrQ02h6HIrb7yf8n9kBPPEEffsUVYj83SN5/nzGPJ9DODFSxj+96R+yBXnuNPnzKFLGfGySrVzMWHx9oZwza2AuXvC32QMuX04efcorYzw2SHTto8JvZToCxhycsFXugNWvog/PzxX5ukBQWGiPRvF7Dzj+d+qKS41s+isc1WJQSACjrsm4dVVTHxAD19R4UYD/+N3dRhItBdIOFPbSkJErv3E1BE9TXe3AmVuPF7PsQkxPpNLmdsNBOjwd45BGKoABAXZ0HE/EN3o+9FCmjhoo9mIV2AtTT/u1v6XVtLXB6zAZ8ibMxYorI8Aks7YkCNMrl0UfpdW0tcGrCdqzFBJx/qeDn06IUD+fMM4HHHqPXtbXASUl7sQqTcMNVPc0mGSYWX88TTwT+9Cd6XVsLjEgpw1u4Ar+Yt1fsgSxYRd7MyJHAXXfR6+ZmIDmuGdPxAX544V7l59IXAhNrLsRCgQJQaPX//o/y+S//bDOuXHY10k4aJP5AFtsZG0u50TFjgJUvFeP3Ky9F0gkixhZ3wmI7PR7gd7+j8qZ1yw7ijx98F+nHDxA0fMeExQIFAH75S8rt791aj4UvTUZ6bIOg8eImbGDnT39KNfQ1R9vwyz9ORDLqBayE2InO06NbMAb0rruo1sbnA+b/4WwkNh4UbycXYlVVVDWflCT284PgJz+hssO4OOCmRd+Fd8e3wMk/FHuQAQOMVeTLywXNFxEajz5Ko0UHDwaG/3gWYj7+EBj9f8rPoy+0QOkNix0a56STgEfG/gNYthk48cfiD2CDhh6gaNEPSl8DVpYDJ4gc1tIBt9PC6+nxALfdBiDm38AHVcDIs8UfxOIeN0B2/vSnAD7+GnipFhgxEmILpxBop0WO2+MB7r8fwNadwB/qKbrJa9dEwe2sr6euvYq1yDrh8VBHCUeOAA903FcnnCD2IBkZtNhRQwO1RccfL/bzg8DjAe68ExTZmN9RRXryyWIPEhtL90hpKf1YIFDi4qgeBQBQ1LE0zciRys+jL3SKpzdsIlAAAHx9I9GNAmAvOzvWhJBqp8VCDABQWEhbGXZyIXb4sCUh5AD4fSu6tw0YCxdZMNKuCzt20Pakk8QLpZQUct6A9fcut3PoUBITIjHPbWOhuAYA7NlD91VyMsRNaGOCt0UlJeI/OxRqa41zEC3EBKAFSm/YyXFzhyZ0eEAHNomgADDslKHm+fUsK6PGx0pkCpQBHWkjn49stRLu0GTctwkJ8A9/svreNQsUGdjlGeV2ynJmFo7kCWD7dtqeeCIVAYqGix6rBQq/ngMGANnZ1p5LN2iB0hsWzbLaBZ9PrkOzaJbVbpFpZ//+NHycMesdt8xIUUyMEV2wuqGX7bhtkM4CoO0UhV0iKLLt5OPtrRYoXIiNGmXtefSAFii9YV7XRPEsqwGUltI5xMVByjR/Fs6yGkBlJXD0KL2WkX+OibFsCYMAWlsphAzIy/tGm0NzuxCLFjvtFkGRFSmySwRlm6Q6G0FogdIbiYnU6wasdWg8jz9iBEUARGPhLKsB8KjC4MGGYBKNHRr64mKq4E9OllcgZwc7GxqA/fvptYwUD2APOxmLHoHCHbcsO+3QDgHyr6ddBIqOoDgcG4z8kJrH59ihAZRZf8KxQwNotlNGfhuw1/XMzjaWUxCNHSJFBw8CdXU0OkP0UGqOHdqhxkZg7156LTv1EbDIkWIYUxdB4QLeKmTbGSFaoPSFHRza1q20PeUUecewg50y6084dnDcMutPOHZw3LJ7oYA9RkNwO487TvxQas7Qjsn8rHRoRUXkvDMzIXZtBhN2sLOsjFbUi4mR11niAuXQIetG2jU10RoGgI6gOBY7OO4tW2g7erS8Y0SL47bD9VQRKbJDj5unJmVG/niP20qHpkKI2SGyIHMoNYfbWVZG05xaAY8qjBgBcUsYdyI3l9L1Pp91nYiiIjp+Rob4uXsEoQVKX1jt0BiLnggKbxhURFDsIFBk2hktjpv3uPfts26knUo7jx6ldJIVqLAzO9uYQdaqZ1SFnTEx1kf/eIHsqFGWTHIYDFqg9IXVjvvQIRpBFBMj94GxOoLS2mo0DDIjRXZy3DIFyrBhtN2/n3pJVqAyslBfb4wAU40KO9PT4V/a26p7V3aBLECO0upokaq6DKsLZW1efwJogdI3VgsUHj05/ngaVSQLq4u2CgtJpKSmGr1FGXDHfeCANZO1HT1qhHRlRsQGDaKizZYWa+Z8aW+XO4ssJzGRwuWAdQ5NhUABrHfcsidp41hdh6Lqelrd5tp8BA+gBUrfWC1QVNSfAIbjPnyYqvVVs3kzbUePlhtuzM2lvLLPZ020iNs5bJjcNVXi4oyomBUObfduY8G3ESPkHsuc5lFNTY3RNsistQGstdPnUyM4AeujnNESQbH5HCiAFih9wxv52lpqjFTDIyiyBUpmJpCWRq+taAC5EBszRu5xYmKMhp4PmVQJFyiy7QQM0WmlnaecQpEcmVjpuLmdgwcDWVlyj2VlZGHvXhKcCQlyJos0Y2WkqLbW6LioEmJWCJS2NqMWTkdQHExqqpH7teJG4o5bZjoAoKiFHRyaCsdtpUDZtIm2Ku20oqHndp56qvxjRYudVjrub7+l7SmnUHROJlZGUHh7m5dHnTaZWBlB2bOH0r/Jycb3bUO0QAkGqxyaeQSP7AgKYPSMiovlH6sz5hSPbKJFiFlppxYo4rEyghItdnIhNnas/GNZKVBkL4YoCPuemZ3gOXS+fooq9u+nIYXx8XLnzOBY5dBqaw1R5GbH7fOpS2UB9kh9aIEiDivtVOm4zREU1UPH+fVUKVCOHFFf9+eAAllAC5Tg4AJFdWSBR09OPFHOGjydscpx82KtvDx5U6KbscrOfftIcCYkyB1izLHKodXVGTNUulmI+XxqhRh33KWl6kegqRRigwZRyrmpiZy3SlQKscxMSrEA6gdh8Ospu3QgQrRACQae+lAdQVFVf8Lhjlu1EFOZ9gAMO1U7NG7nySerF5wqe6L8vh04UI3g5AKlspLmQ1HFvn0U/VMlOHNz6ViqZx+trTUEpwrH7fUaM5uqTPP4fGojKOY5X1SneTZsoO24cWqPGyJaoASDVSkelfUngCHEVEcWVNafAIbjLilRuw6GaiHGQ8iNjUBFhZpjAmqjCgBN1Z2RQa9Vik7uzEaNUiM4Y2KsKZTlgjM/X43gBKypQykupuif1yt/yDjHirlQ6uuNIeOnnabuuGGgBUowmFM8VvREVUdQjhxR2xNVWZcBUO8sIYEmE1M5F4rKETwANbR80UArHLcqOwFr0jwq0wEcKwQKt1OV4ASstVPFSCUO9y27dqk5HkAdCMaoHbTpGjwcLVCCYehQCsfV1anriba3G4VMqiIL/fpZ0xNVHVkw90RVRotURxYAa0agqaxX4Fjh0Kyw04rIgsq0B8eKocZWCE4++EGlQOHpHZtHTwAtUIIjMdGYsE1VmofPxJmYKH8mTjOqhxofPkwRG49HbUW56kLZ5mZjYiQ3RxYYs1aIRYtAiZYIihUCRaWdXKDwldxVsHEjbW1efwJogRI8qgtl162j7bhx8mfiNKPacfP0znHHGRXtKlBt5/btFBXLzDTSLipQbWdpKS1uGRsrfyZOM6odd3290et1s+NWXTjKsSLyZ0UE5fjjaVtUpK58QEdQXIjqocZr19J2/Hg1x+Oodmiq0zsc1SN5zHaqXNpctePmzuykk6gGRhWq7dy6lRxKbi4wYICaYwKGnaraob171Q6N5/DIQmGhGsddXW20eSoFyogR1B7U1qoZUt3WZrRFOoLiIlSP5OECZcIENcfjqE7xrF9PW5W9UEALMVlYkd4B1F9PK9I7gOG49+xRMxeKuXBUxUglzogRVCtWVwccOiT/ePx6qlhTyUxiojGSR0WaZ+dOml8mNZWi1jZHC5RgUSlQ2tsNx61aoKhu6L/5hrZnnqnmeBzVdnLBqTqsau5xq+iJcoemWojxUPnBg9QblY1VAmXQICAlhXrCKtoiq+z0eo3OEh8SKxMr0lgclXUovP5k7FhbT3HPsf8Z2gWVkYXCQuo5JCerzeMDah33sWNG4zNxovzjmTGPhpA9F0p7O7BmDb1WLcSGD6eGqLaWCpJlw+1UHT7OyjJSLSocmhUFlQBdS55qUWmnFY6bz0XidjtVjuRxUP0JoAVK8PAIyv798kOrvLd9+ulqC2QBQ6BUVsrviXI7R4xQNwEUJz+fwqvt7fLF2I4dJDhTU9WvfZGYaIhrPmxdFpWVRiOrWogBhpjfsUPucdrarEvBAoadKhw373GrFmKAIVD46DeZWClQzIWysnHQCB5AC5Tgycujxt7nk19Bb2Xjl55uiAXZDwxP75xxhtzjdEdMjNHQ87WAZPH117SdMEG94ARoan1AvkDh1/OEE+QvVd8dqgTKli1AQwM9K6ojnIDhuGXbefgwRYw9HmvaIlURlJYWI8VjRWRBVQSFMR1BcS0ej7o6FCsFCmD08mU7bisFCqDOTi5QrLJTlUBZvZq23/mO3OP0BLdTtuPmdp55pjV5fFURlK++ou2oUcYEjipRJVA2bqTC0awsNavGd8ZcgyKzTqykBDh6lGbJVTX5Z4RIf7oWLlwIj8eD+fPn+//GGMOCBQuQn5+PpKQkTJkyBVv5ujN2RkUdSluboXKtFiiyr4ldBIqqyIIVaQ9AnUDhQswqO1VFUKwWYqoiKNzOs86Se5ye4HYWF9NEh7JYtYq2Z52ldgoAzvDhxlDj8nJ5x+F+ZdQotVMARIBUgbJmzRo888wzOLVT/vKxxx7D448/jsWLF2PNmjXIy8vDtGnTUKui+j4S+LAsmTnR7dtpBtm0NGvUPGCs/SNToJSW0vDB2Fjr8qEqIigNDcbQWzdHUHw+Q6BY5bi5QCkqklv4bLXj5u1CZaXcpTd4BMUqO/PyqG7L55MbteZ2Tpok7xi9kZhoTMAnM83D7bSq4xsG0gRKXV0drr76ajz77LPINOWjGWN44okn8OCDD2LOnDkYPXo0XnrpJTQ0NOD111+XdTpi4I6bz34qA/MEbVYNA+N2ynTcPKowZozaGWTNmCMoPp+cY6xbR4W4+fk0x4IVcIFy8CBNSCWDoiIalZWYqH6IMWfIEDp+S4u8wuejR42Ug1WCMyXFcGiy0h+trcaILKsEisejJs1jjqBYhYpC2S++oO2558o7hmCkecDbbrsNF198MS688MKAvxcXF6OsrAzTp0/3/83r9WLy5MlYxW+UTjQ3N6OmpibgxxJ4JIj3iGVgdf0JYAiUPXsoAiADq9M7AEXE4uNp2vKSEjnHsDq9A1D9wMCB9FpWWoBHFcaPVzuhl5mYGMOhyYoW8SjRCScA2dlyjhEMsh33pk0Uye3XzziWFci2s6QEOHCAIrmqpzowI3sulKYmQ3Cec46cY0hAikBZsmQJ1q9fj4ULF3Z5r6ysDACQm5sb8Pfc3Fz/e51ZuHAhMjIy/D8FfOY91XDHffCgvNCqHQRK//7U+DImz6Fxx21loxAXZ8wpIStaZHWBLIenP2Q7bqvSOxzZdShW159wZBfK8nTAd75j7YResgUKt/PUUymdZBWyR/KsWUORxdxcR8wgyxF+55WUlOCuu+7Cq6++isTExB7383QqRmKMdfkb54EHHkB1dbX/p0RWb7cv0tKMkTwyoihNTcZ4fNVr8JjxeOTWofh8hpq32nHLrkOxunCUI7sOxTyyxUpkj+Sxi0CRXShrdf0JR7ZA4VF7q+pPOLJTPOb0jhWFwGEiXKCsW7cO5eXlGD9+POLi4hAXF4eVK1fir3/9K+Li4vyRk87RkvLy8i5RFY7X60V6enrAj2Xw/LoMgbJ6NVWr5+VZr3JlCpSdO6liPTlZ/cRlnZEpUMrKaM4cq+aRMCNToDQ0GPNIWO24ZUZQ7FAIzFEVQbGLQJE1MMHqAlmOOYIiY6gxFygOSu8AEgTK1KlTsXnzZmzcuNH/M2HCBFx99dXYuHEjRowYgby8PKxYscL/Py0tLVi5ciUmWX2TBAMXKLxBFsnHH9P2ggusV7kyHTdv5MePpzSLlci0k6exRo2i6JuVyIwsrF9PhcADB1pXCMwxp7JEN/Q7dlCRcXKydYXAHO64d+8WP7O1eYI2qyNi3HFXVFCBskgaG401z6wWYiNGUB1MbS3VxIjE5wO+/JJeO0ygCPcOaWlpGN1pEpiUlBRkZ2f7/z5//nw88sgjGDlyJEaOHIlHHnkEycnJmDdvnujTEY/MQlkuUKZOFf/ZoSIzgvLJJ7Q9+2zxnx0q5pE8jIkVhnZJewCGQNm9m6J0IudBMNtptbAeOZLOoaqKnFr//uI+m9s5caL1wpovGlhfT8XsIgtZuZ2nnEKz5VpJSgqJ3gMHKFokUkisW0fD0fPyjCU+rMLrpe970yY6L5F1llu3krBOTbVmKv8IsKT66Wc/+xnmz5+PW2+9FRMmTEBpaSmWL1+ONKt7mcHAe05btogdmlpXZ0QWLrhA3OeGCxcoxcViR/IwBvDo2bRp4j43XEaOpJ5LdbX4Zd25needJ/Zzw2HgQHI2Pp/4PDfvnVmd9gAousEXghQdLbJL/QkQOARXtJ12Se9wZNWhWD1BW2d4GpgPlBDF55/T9qyzrBfWIaJEoHz66ad44okn/L97PB4sWLAAhw4dQlNTE1auXNkl6mJbjj+e5lpoaBA7edDnn5OaHz7cejUP0MqwOTkkKETWLWzdSkIgKckeERSv1yhQE5nmqaignhAAmIbUW4bHI6cOpaUF+Ogjem2HyB8grw7l009pazfH7XaBwqOcfACBKOxSIMuRJVAcWn8C6LV4QicuznhgRNahmOtP7IKM+ozly2k7ebJ9plvmjluknStWkLg79VRjDhKrkSFQvvqK8ub9+9Pq23aACxSR6clduyjyFB8PnH++uM+NBJ5uFunQamoMx22XCb14ipRHsETQ3m5E/uwixPiUC2vXiq2f0gIlypBRh2JHgSKjDoWnPewQVeDIEGIffEDbGTPEfWakyBDW/+//0XbGDGvnyzDDh+iLdGj//S9tzznH+roMDu/5r1olzqGtWEGR3BNOMCKLVsMFxPr14tbkWbOGopzp6dZPdcAZM4YEcGUlsG+fmM/cv58mo4uLs0ctXIjYpEVxGKJH8hw9aizkZJfeGSBeoDQ1AStX0ms71J9wuJ38GkQKY0akyE4ChTdQIh0aFyjf/a6YzxMBTx2uX08jNUTwn//Q9qKLxHyeCCZMIMdz8KC4mZDff5+2F18s5vNEMHw4RehaWsQ9o++9R9vvfte6mY874/WKj4rx9vb006ng2GFogRIOoiMoK1eSwzj5ZPukAwDDzjVrxDi0L78khzFwoCEK7IDZodXVRf55mzdTnU1ysr3CqhMnUmN86JCY+qlDh2ipeo/HXhGxYcPoHjOvJxMJDQ3GyDM7CZTkZOC00+g1rxuJBJ/PEGJ2Eigej1GYLCoqtmwZbWfPFvN5ohBdh/Luu7TttOSMU9ACJRx4BGXXLhrmFyl2Gl5sZuJEUvWHD4uZKMk8escOVfOcoUNp8bW2NjENIE/vTJlinzobgAqTeQPI89KRwO0cP17scN5I8XgM0cnrDCLh008ptTBkiFHHYxd4+qOHdcxCYv16etbT0uxTf8IRKVD276fod0yMvSJ/gFiB0thopCYvvzzyz7MALVDCITeXfhgzJvqJBD4Kwk71JwCNVuINIB/BEAk87WGn3jaHDwX+7LPIP8uO9Scc7nhECBSe3pk5M/LPEg0XKCIctzm9YydhDRh1KCIiKDy9M20akJAQ+eeJhAsUkXaedRaNVLQTZoESadT6ww+pA11QYO3SKRGgBUq4TJlC2w8/jOxzDhygURUeD41ssRvczkgFypEjRv7YjuFGUQKlvt6Yd8COAoWnnCIVKO3thuC0Wy8UCCwgjWS+IsYMgWJHIcY7EBs2RF5vY8f6E87EiRTx2L+fam4igdefzJoV+XmJ5pRTqGNYXU2TKkbC22/T9vLL7Sesg0QLlHDhRZ6mKfvD4o03aDtpEpCVFdlnycAsUCJR9FzIjR1L0Se7wQUKXw8pXFaupGK+oUONlZLtBI8s7NhBojFc1qyh2Vr79bPPKAgz48ZRSuvo0cgm+CospMkKExLsF+EEKO2Un0/pyUjSAocPG/U6dhRiaWkAnyuLT2gZDvX1RsTabvUnANWI8bqiSK5nW5tRZ+PQ9A6gBUr4cIHy9dfAsWPhf84rr9D22msjPiUpnHkm1VGUlUVWh2IOH9uRE06gyemamyMrrDSnd+zYa8nKMgqUI6nP4LntadPsOTtlfLwhnCKxk0dPJk+mqcLthscjpg6FX8/TT7dXob4ZEWmejz6iZ3zYMOsXKu0JnuaJpB36/HMarpydba9C/RDRAiVchgyhmRx9PqPCP1S+/ZZGfCQkAHPnij0/UZjrUPiQtVA5dgz417/o9RVXCDkt4Xg8kad52toMO+2Y9uCIqEPhjtvOdooolLVzeofDn89IHLed0zscEYWy5vSOHTsQgDFhWyTp5qVLaXvJJfbsQASJFiiREGma59VXaTtrFpCZKeacZBBpHcprr9EcKGPG2DMdwIlUoLz/PlBaSoV3dhqO2hneo+K1MqHy7bcUfo6Ls7dDi7RQtrzcEOV2FiiRTtjW0mLUE9n5enKBsnZteCs4M2bv+hMOj76uXUs1N6HCmCFQHJzeAbRAiYxIBEp7O/D66/TarukdDi/eDacOhTHg2Wfp9Q9/aN9eC2DY+eWXFA0Jlb//nbY33GCv4cWd4QJl/frwhsk/9RRt/+d/7FlPxOGRhcLC8Optnn2WHOEZZxjT59uR00+nKOyRI+HV2/zjHzTFfX6+0Xu3IyeeSCnKxsbwOhGff05z96SkGJ0uO5Kba0Q5eaFrKKxdS4MvUlLsm1IPEi1QImHKFOpF7tpFhXSh8PHHVI2elWXv3jZAPRevlx7uUFfCXb+eetxeL3DNNXLOTxSjR1PRZ10dTUAWCnv3GsNuf/xjwScmmKFDaehhW1vo6Y/qaiPyd+ut4s9NJJmZxpxFvOccLK2thhC74w6x5yUar9eYgXrJktD+lzHgz3+m17fdZp/lCrojJsZIEb/2Wuj///jjtJ03z94dCACYM4e24QgUHj256CJK0TsYG9+NDiA93Qg7hhpF4cWx3/++/eYc6ExiomEnr4APlueeo+2cOfYcpWQmJsZI87zzTmj/+9xz1NhfcAEwcqTwUxMOT1m8/HJo//fyyxR1OeUU+03m1R1XXUXbF14I7f+WLqV03YABwPe+J/68RHPddbR9+eXQopxffEGdiMRE+wtrALj6atr+61+hDasuKjJmVb3nHvHnJRouUL74ggYoBEtDA/B//xf4GQ5GC5RICSfNU19vKGO7p3c4PDfNHXEw1Ncbaawf/UjOeYmGR3mefz74PHdrK+0PADffLOe8RPPDH9L2n/+kobjBwBjw5JP0+tZb7Z2u41x3HQnPzz8PLfq3aBFtb77Z/r1tALjsMhplVFwcWlTsiSdoe+219pu0rDvOOYcGKNTUhBYV+/Of6f69+GJ7p+s4BQWUbmMM+Pe/g/+/Z56hIePDhrlCoIA5kOrqagaAVVdXW30qjK1ezRjAWFISY+Xlwf3Pyy/T/xx3HGM+n9zzE8WRI4x5vXTeq1YF9z8vvGDY2d4u9fSE0dLCWF4enfdbbwX3P//6F+0/YABjzc1yz08UPh9jY8fSef/1r8H9z8cf0/6pqYzZ4dkLlu9+l877F78Ibv8NG2j/uDjGSkulnppQfvADOu8f/jC4/ffsYSwmhv5nyxa55yaS+++nc7700uD2r6ig9hmge9gpPPoonfO0acHt39BgtF3PPCP33CIgFP+tIyiRcsYZNG69sRH4y1/63r+xEViwgF5fd50zeqEA9a7mzaPXvHfZFzy9c9NN9s5tm4mPp/MFjBqEvuDFsTfeaP90HcfjMaJazz4bXFSMR0+uvZbSm07hxhtp+9JLVJzeF/z+vuIKKhx1CtdfT9t//CO49MeiRTRNwvTp9lq8sy94lPM//wku+vfUU/R9jBtn7+LYzvAIyCefBGfnM89QOmjIEONecDoKBJNwbBVBYYyxt98m1ZqRwdixY73v+4tf0L6DBjFWU6Pk9ISxfr3Rszx4sPd933uP9o2N7Xtfu7Fvn9Gz3LGj9303baL9AMZ271ZzfqI4epSxxEQ699Wre9/3wAG6lgDZ7CSamhjLyqJz/3//r/d9jxwxvpMvv1RzfqJob2ds6FA69yVLet+3upqxtDTa9z//UXJ6QuHRv6ef7n2/xkaKbAKMvfqqklMTypgxdO6LFvW+X0MDYwMH0r5//7uacwsTHUFRzaWX0qyE1dVGL7M7tm0D/vAHer1oEU3f7CTGjaO5JdrajKhBdxw+DPzgB/T6zjvtOzNlTwwZYtTc9GZnfT1w5ZX0+rLLgBEjpJ+aUDIzjQJQPhS8O9rbKarU3k6FsXxkjFPweo3oHy8g7Inf/Ibm7Dn9dGOYslOIiTFq2vqy88kngdpaGrprxzWj+oIXyz77bO9RsVdfpflsBg+272SYvcELl3/1K2pXe+LZZ2mU5ZAhNM2BW1AgmIRjuwgKY4y98gqp1/79Gauv7/p+eztj555L+8ye7Zzak84sWUI25OVRz7QzPh9jM2fSPqeeSj0YJ/L++2RDZiblsLvjhhton4EDGTt8WO35ieKzz8iG5GTGtm3rfp8HHzTqrDZuVHt+ouDRv9hYxj78sPt9/v53Ixq2bJna8xNFYSFjHg/Z8Pzz3e/z/vtGNOzZZ9WenygOHqRaKICxX/+6+33WrWMsPZ32eewxtecnitZWxk4/nWy46qru96mrYyw/n/Z56im15xcGofhvLVBE0drK2LBhdJP88pddBcjzzxuOYO9ea85RBC0txsMwa1ZXAbJoEb2XmOiswrvOtLUxdsIJZMv48V1Tdy++SO/FxDD2ySeWnKIQfD5DOA8d2jUdt3Sp4bRfe82KMxTHddcZorOwMPC9jz6i1CXA2O9+Z835ieK3vyU7vF7G1q4NfG/NGmqDAMauv965HSXG6H4ESJB99FHge9u3M5aTQ+9PnuzcjhJjdA15yrlzirKsjLEzzqD3Cgq67zTaDC1QrOLZZ43GfO5ccmoHD1LdCVf7f/yj1WcZOcuXG3n6adMoYlRZSdEVPtKnr5ypE9i+nSJiAGOTJjFWW0t1Qx98YDTyv/2t1WcZOUeOMDZyJNlz2mlUn9DYSHUpvE5h/nyrzzJyGhsZ+853yJ4TT2Ssqoo6Flu3kmgBGJs3z9lOmzGK1s6eHSg629upRorXY0ybRp0Np3PTTWRPbi6JztZWqiErKKC/n366s0ac9cT8+WTP8OHU/jQ3033La46yshxTM6UFilX4fCRAeE9s4EDGEhIM0XLeefQAuYGPP2YsJcVIa/GwMsDYRRc5v5HnbNzIWL9+RhE0txFg7MILKdLiBszOi4tP/jN5sjucGWOMHTpkOC/zPQswduaZzu5pm6mqouH9Zvu4vVyEuoH6esZOOSXQRt5JOumk4Kd+sDu1tcZ9C1Dqincejj++a0TQxmiBYjWrVxvKlve+337bPc6M88UXxkMCMDZqFGN33UWjQ9zE118H2jlwIEXInFp30hNr1xqRPi5UpkyhMLKb2LDBiIzxn9NOI/HiJr79NrAd4pEjJ83tEgzbt1O9m1lwDh/O2P79Vp+ZWAoLGfvxjylaxO085xyKgDqIUPy3h7FgJkCwFzU1NcjIyEB1dTXS7TofQ1UV8OKLwJlnGquNupGiImDrVhrxYOeF4yJl715g3z5aryc72+qzkUdZGS06N2gQjfJxyjw9odLUBFRWAklJNM17UpI7bfX5aPrzpib6GTgQiI21+qzk0N4OVFTQ/XviiTSnkRvx+YCvv6a2d+5cx623E4r/1gJFo9FoNBqNEkLx33oeFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLYjzuoTCAe+AHNNTY3FZ6LRaDQajSZYuN/mfrw3HClQamtrAQAFBQUWn4lGo9FoNJpQqa2tRUZGRq/7eFgwMsZm+Hw+HDx4EGlpafB4PEI/u6amBgUFBSgpKUF6errQz9YY6O9ZDfp7VoP+ntWhv2s1yPqeGWOora1Ffn4+YmJ6rzJxZAQlJiYGgwcPlnqM9PR0ffMrQH/PatDfsxr096wO/V2rQcb33FfkhKOLZDUajUaj0dgOLVA0Go1Go9HYDi1QOuH1evHQQw/B6/VafSquRn/PatDfsxr096wO/V2rwQ7fsyOLZDUajUaj0bgbHUHRaDQajUZjO7RA0Wg0Go1GYzu0QNFoNBqNRmM7tEDRaDQajUZjO7RA0Wg0Go1GYzu0QDHx5JNPYvjw4UhMTMT48ePx+eefW31Kjuezzz7D7NmzkZ+fD4/Hg3feeSfgfcYYFixYgPz8fCQlJWHKlCnYunWrNSfrUBYuXIiJEyciLS0NAwYMwGWXXYadO3cG7KO/ZzE89dRTOPXUU/2za5511ln473//639ff8/iWbhwITweD+bPn+//m/6exbBgwQJ4PJ6An7y8PP/7Vn/PWqB08Oabb2L+/Pl48MEHsWHDBpx77rmYOXMm9u/fb/WpOZr6+nqMHTsWixcv7vb9xx57DI8//jgWL16MNWvWIC8vD9OmTfMvCKnpm5UrV+K2227D6tWrsWLFCrS1tWH69Omor6/376O/ZzEMHjwYjz76KNauXYu1a9figgsuwKWXXupvtPX3LJY1a9bgmWeewamnnhrwd/09i+OUU07BoUOH/D+bN2/2v2f598w0jDHGzjjjDPaTn/wk4G8nnXQSu//++y06I/cBgC1dutT/u8/nY3l5eezRRx/1/62pqYllZGSwp59+2oIzdAfl5eUMAFu5ciVjTH/PssnMzGTPPfec/p4FU1tby0aOHMlWrFjBJk+ezO666y7GmL6fRfLQQw+xsWPHdvueHb5nHUEB0NLSgnXr1mH69OkBf58+fTpWrVpl0Vm5n+LiYpSVlQV8716vF5MnT9bfewRUV1cDALKysgDo71kW7e3tWLJkCerr63HWWWfp71kwt912Gy6++GJceOGFAX/X37NYioqKkJ+fj+HDh+PKK6/Enj17ANjje3bkasaiqaioQHt7O3JzcwP+npubi7KyMovOyv3w77a7733fvn1WnJLjYYzhnnvuwTnnnIPRo0cD0N+zaDZv3oyzzjoLTU1NSE1NxdKlSzFq1Ch/o62/58hZsmQJ1q9fjzVr1nR5T9/P4jjzzDPx8ssv44QTTsDhw4fx8MMPY9KkSdi6dastvmctUEx4PJ6A3xljXf6mEY/+3sVx++23Y9OmTfjiiy+6vKe/ZzGceOKJ2LhxI44dO4Z//etfuP7667Fy5Ur/+/p7joySkhLcddddWL58ORITE3vcT3/PkTNz5kz/6zFjxuCss87Ccccdh5deegnf+c53AFj7PesUD4CcnBzExsZ2iZaUl5d3UY8acfBqcf29i+GOO+7Au+++i08++QSDBw/2/11/z2JJSEjA8ccfjwkTJmDhwoUYO3Ys/vKXv+jvWRDr1q1DeXk5xo8fj7i4OMTFxWHlypX461//iri4OP93qb9n8aSkpGDMmDEoKiqyxf2sBQqowRk/fjxWrFgR8PcVK1Zg0qRJFp2V+xk+fDjy8vICvveWlhasXLlSf+8hwBjD7bffjrfffhsff/wxhg8fHvC+/p7lwhhDc3Oz/p4FMXXqVGzevBkbN270/0yYMAFXX301Nm7ciBEjRujvWRLNzc3Yvn07Bg4caI/7WUkprgNYsmQJi4+PZ88//zzbtm0bmz9/PktJSWF79+61+tQcTW1tLduwYQPbsGEDA8Aef/xxtmHDBrZv3z7GGGOPPvooy8jIYG+//TbbvHkzu+qqq9jAgQNZTU2NxWfuHG655RaWkZHBPv30U3bo0CH/T0NDg38f/T2L4YEHHmCfffYZKy4uZps2bWK/+MUvWExMDFu+fDljTH/PsjCP4mFMf8+iuPfee9mnn37K9uzZw1avXs1mzZrF0tLS/H7P6u9ZCxQTf/vb39jQoUNZQkICO/300/3DNDXh88knnzAAXX6uv/56xhgNZXvooYdYXl4e83q97LzzzmObN2+29qQdRnffLwD2wgsv+PfR37MYbrzxRn8b0b9/fzZ16lS/OGFMf8+y6CxQ9Pcshu9///ts4MCBLD4+nuXn57M5c+awrVu3+t+3+nv2MMaYmliNRqPRaDQaTXDoGhSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tkMLFI1Go9FoNLZDCxSNRqPRaDS2QwsUjUaj0Wg0tuP/A732i/HErd5YAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -682,7 +701,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 7, "id": "18eb011a", "metadata": {}, "outputs": [ @@ -697,7 +716,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGxCAYAAABIjE2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACZfElEQVR4nO2deXxU1d3/P5N9IQkkgYRA2BRBBJHFBdywIIpra611qfvTWtdSbW2ttfJUK+qvVarU+rhUqNZi+1SsdrGiFZQHtayyiCzKDmEJIfs+9/fHl5NzZzKT2e4959yZ7/v1ymtuZiYzdyb3nvs5n+9yfJZlWWAYhmEYhjGINN07wDAMwzAMEwwLFIZhGIZhjIMFCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGOFigMAzDMAxjHCxQGIZhGIYxDhYoDMMwDMMYBwsUhmEcY9asWfD5fFr3YfHixfD5fFi8eLHW/WAYJjEydO8AwzCMk4wfPx4fffQRRo0apXtXGIZJABYoDMMkFYWFhTjttNN07wbDMAnCIR6GYXDw4EF85zvfQWVlJbKzs9G3b1+cfvrpePfdd7ue87vf/Q5jx45FTk4OiouL8bWvfQ0bN27s8XW/+tWvYvDgwfD7/d0eO/XUUzF+/Piu3y3LwjPPPIOTTjoJubm56NOnDy6//HJ8+eWXMX2W4BDPnDlz4PP5sHXr1m7P/dGPfoSsrCwcOnQIADBlyhSMHj0aH374IU477TTk5uZiwIABeOCBB9DZ2RnTfjAMkxgsUBiGwbXXXos33ngDP/vZz/DOO+/ghRdewLRp01BdXQ0AmD17Nm6++WaccMIJeP311/HrX/8aa9euxaRJk7Bly5awr3vTTTdh586d+Pe//x1w/+eff47//Oc/uPHGG7vuu+WWWzBz5kxMmzYNb7zxBp555hls2LABkydPxv79++P+bN/61reQlZWFefPmBdzf2dmJV155BRdffDFKS0u77q+qqsKVV16Ja665Bn/9619x+eWX4+GHH8b3vve9uPeBYZg4sBiGSXl69eplzZw5M+RjNTU1Vm5urnXBBRcE3L9z504rOzvbuvrqq7vue/DBBy37sNLe3m6VlZUFPMeyLOvee++1srKyrEOHDlmWZVkfffSRBcD61a9+FfC8Xbt2Wbm5uda9994b9Wd5//33LQDW+++/33XfZZddZg0cONDq7Ozsuu8f//iHBcB66623uu47++yzLQDWX//614DX/Pa3v22lpaVZO3bsiHo/GIZJDHZQGIbBKaecgnnz5uHhhx/Gxx9/jPb29q7HPvroIzQ3N+OGG24I+JvKykp85StfwXvvvRf2dTMyMvCtb30Lr7/+OmprawGQc/Hyyy/j0ksvRUlJCQDgb3/7G3w+H771rW+ho6Oj66e8vBxjx45NuCLnxhtvxO7duwNCVi+99BLKy8sxY8aMgOcWFBTgkksuCbjv6quvht/vxwcffJDQfjAMEz0sUBiGwWuvvYbrr78eL7zwAiZNmoTi4mJcd911qKqq6grz9O/fv9vfVVRUdD0ejptuugktLS1YsGABAOBf//oX9u3bFxDe2b9/PyzLQllZGTIzMwN+Pv74464ckXiZMWMG+vfvj5deegkAUFNTgzfffBPXXXcd0tPTA55bVlbW7e/Ly8sBIOJnZRjGObiKh2EYlJaWYs6cOZgzZw527tyJN998Ez/+8Y9x4MCBrtyLffv2dfu7vXv3BuRvhGLUqFE45ZRT8NJLL+GWW27BSy+9hIqKCkyfPj3g/X0+Hz788ENkZ2d3e41Q98VCeno6rr32Wjz11FM4cuQIXn31VbS2tgaIJEGofJeqqioA6HJ8GIZxH3ZQGIYJYNCgQbjjjjtw7rnnYtWqVZg0aRJyc3PxyiuvBDxv9+7d+Pe//42pU6dGfM0bb7wRn3zyCZYuXYq33noL119/fYBzcdFFF8GyLOzZswcTJ07s9jNmzJiEP9eNN96IlpYW/PGPf8S8efMwadIkjBw5stvz6uvr8eabbwbc9+qrryItLQ1nnXVWwvvBMEx0sIPCMClObW0tzjnnHFx99dUYOXIkCgoKsHz5crz99tu47LLL0Lt3bzzwwAP4yU9+guuuuw5XXXUVqqur8d///d/IycnBgw8+GPE9rrrqKtx999246qqr0Nra2i2f5fTTT8d3vvMd3HjjjVixYgXOOuss5OfnY9++fVi6dCnGjBmDW2+9NaHPOXLkSEyaNAmzZ8/Grl278Nxzz4V8XklJCW699Vbs3LkTxx13HP7xj3/g+eefx6233opBgwYltA8Mw8SA7ixdhmH00tLSYn33u9+1TjzxRKuwsNDKzc21RowYYT344INWY2Nj1/NeeOEF68QTT7SysrKsoqIi69JLL7U2bNgQ8FrBVTx2rr76aguAdfrpp4fdl9/97nfWqaeeauXn51u5ubnWMcccY1133XXWihUrov48oap4BM8995wFwMrNzbVqa2u7PX722WdbJ5xwgrV48WJr4sSJVnZ2ttW/f3/rJz/5idXe3h71PjAMkzg+y7IsvRKJYRjGDKZMmYJDhw5h/fr1uneFYVIezkFhGIZhGMY4OAeFYRhPYFlWxHbz6enp2ldTZhjGGdhBYRjGE8yfP79bj5TgnyVLliT0HosXL+bwDsMYAuegMAzjCaqrq7Ft27YenzNixAgUFBQo2iOGYdyEBQrDMAzDMMbBIR6GYRiGYYzDk0myfr8fe/fuRUFBASfEMQzDMIxHsCwL9fX1qKioQFpazx6JJwXK3r17UVlZqXs3GIZhGIaJg127dmHgwIE9PseTAkUkwe3atQuFhYWa94ZhGIZhmGioq6tDZWVlVMnsnhQoIqxTWFjIAoVhGIZhPEY06RmcJMswDMMwjHGwQGEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFIZhGIZhjIMFCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGOFigMAzDMAxjHCxQGIZhGIYxDhYoTMI0NgKPPw5s2aJ7TxiGYZhkgQUKkzCvvQb86EfAz36me08YhmGYZIEFCpMwe/bQ7a5deveDYRiGSR5YoDAJc+gQ3R48qHc/GIZhmOSBBQqTMNXVdHvggN79YBgmPB9/DGzfrnsvGCZ6WKAwCSMEypEjQFub1l1hmIhs3Qq0t+veC7Xs2gWcfjpw0UW694RhoocFCpMwIsQTvM0wprF4MTB8OHDnnbr3RC1ffAH4/cDmzYBl6d4bhokOFihMwggHBeA8FMZs1q2j2xUr9O6HasR52d4O1NXp3ReGiZaYBcoHH3yAiy++GBUVFfD5fHjjjTe6PWfjxo245JJLUFRUhIKCApx22mnYuXNn1+Otra248847UVpaivz8fFxyySXYvXt3Qh+E0YddoHAeCmMyNTV0m2rDjX3iwJMIxivELFAaGxsxduxYzJ07N+TjX3zxBc444wyMHDkSixcvxqeffooHHngAOTk5Xc+ZOXMmFi5ciAULFmDp0qVoaGjARRddhM7Ozvg/CaOFtrbAGRkLFMZkhEDZvz+18qVYoDBeJCPWP5gxYwZmzJgR9vH7778fF1xwAR5//PGu+4YNG9a1XVtbixdffBEvv/wypk2bBgB45ZVXUFlZiXfffRfnnXderLvEaOTw4cDfefBjTEYIFADYuxcYMkTbriiFBQrjRRzNQfH7/fj73/+O4447Dueddx769euHU089NSAMtHLlSrS3t2P69Old91VUVGD06NFYtmxZyNdtbW1FXV1dwA9jBvbwDsAOCmM2doGSSo0FWaAwXsRRgXLgwAE0NDTg0Ucfxfnnn4933nkHX/va13DZZZdhyZIlAICqqipkZWWhT58+AX9bVlaGqqqqkK87e/ZsFBUVdf1UVlY6udtMAgRX7fDgx5iMXaCkUh4KCxTGizjuoADApZdeiu9///s46aST8OMf/xgXXXQRnn322R7/1rIs+Hy+kI/dd999qK2t7frZZejUZ8MG4NZbZev3VIAdFMZLsEBhgcJ4B0cFSmlpKTIyMjBq1KiA+48//viuKp7y8nK0tbWhxj5SgNyXsrKykK+bnZ2NwsLCgB8Teeop4Nlngeef170n6hACJT2dbnnwY0yGBQqfo4x3cFSgZGVl4eSTT8amTZsC7t+8eTMGDx4MAJgwYQIyMzOxaNGirsf37duH9evXY/LkyU7ujnKEe/DFF3r3QyUixCPyoNlBYUwmFQWK3x8YimWBwniFmKt4GhoasHXr1q7ft23bhjVr1qC4uBiDBg3CD3/4Q3zzm9/EWWedhXPOOQdvv/023nrrLSxevBgAUFRUhJtvvhn33HMPSkpKUFxcjB/84AcYM2ZMV1WPVxGDXyqtdyEclOOPB7Zs4cGPMZe2NqCpSf5uaKTYcWpqAHsHBz5HGa8Qs0BZsWIFzjnnnK7f7777bgDA9ddfj3nz5uFrX/sann32WcyePRt33XUXRowYgb/85S8444wzuv7mySefREZGBq644go0Nzdj6tSpmDdvHtJFnMCjCIGybZve/VCJXaC8+Sb1RGlpAWxtbxjGCIKiyinjoAQLEhYojFfwWZb3Vmaoq6tDUVERamtrjcpHGTSIZmU+H9DcDGRn694j97n4YuBvfwOeew64/XZqpb1zJ8CFVoxpfP45Cem0NAp7+HxAayuQmal7z9zlww+Bs84CsrLIRcrNDXSSGEYlsVy/eS0eBxEzNMuii3QqIByU0lKgb1/a5hkaYyLi/Bw0iESJZQH79undJxWI83HECLptbgYaG/XtD8NECwsUh2hvBxoa5O+pEuYRyXclJVKgcKIsYyJCoBQXAwMG0HYqhHmEQBk6VLq6PIlgvAALFIc4ciTw91RJlLU7KP360TYPfoyJCIHSpw8wcCBtp0KirDgf+/Zll5PxFixQHCI4AS8VHJTOTvm5S0qkQGEHhTGRUAIllRwUFiiM14i5iocJTSoKlJoaiuMDZJvz4MeYjDhHe/emH4AFCsOYDAsUhwgWKKkQ4hHhnaIiSjpkB4UxGXZQWKAw3oJDPA5hn50BqeGgCIFSUkK3nCTLmAwLFBYojLdggeIQYvAbP55uDxxI/l4D9goegJNkGbPhJFkWKIy3YIHiEGLwGzqUQh5A8od57BU8ADsojNmEEij79gEdHfr2yW0siwUK411YoDiEffAbOpS2kz3MExziYQeFMRn7OVpWBmRkUEfZqiq9++UmdXXUowlggcJ4DxYoDmEf/IYMoe1kd1CCQzxi8GtsTP7wFuM97OdoejpQUUG/J3MeihAi+fnU4p4FCuMlWKA4xOHDdJuKDooI8RQUcKdKxlzsAgVIjTwUe3jHfsvnJ+MFWKA4BId4aPE1LjVmTKS9Xa4/EyxQUsFBCRYo9fW0UCLDmAwLFIdI5RCPcFAAnqExZmLvUyRaAaSiQOndm3Jv7I8xjKmwQHEI+0JkqeqgAOygMGYizs/CQso/AVJToPh8ckLBAoUxHRYoDhHKQampAWprte2S6wQnyQKpV2q8Zw8nBHuB4PwTAKispNtUEij2bRYojOmwQHGA9nagoYG2+/QBevWSs5RkDfNYlkwMtod4UqnUeOdOcssuukj3njCRCCVQUjFJ1r6dCuco421YoDjAkSNyW8S3kz3MU1cnG1ylqoPyn/+QOF2zRveeMJHoSaDs3UsrcycjLFAYL8MCxQFCxbeTPVFWhHfy8oCcHHl/KjkomzfTbU2NbIbFmEkogVJeDqSlkTjZv1/PfrkNCxTGy7BAcYBQg1+yOyjBPVAEqeSgbNkit8X3wZhJqHM0IyP5m7WxQGG8DAsUB0hlgWIP7wCp6aAAqSHIvEyocxRI/koeFiiMl2GB4gChBr9UCfGEEygHDlAibTJjFyg82JtNJIGSjImyjY1AczNts0BhvAgLFAeI5KAk44U6UoinpUVWNiUjhw9LkQbwYG86qeigiGMyO5sqCwUsUBivwALFAUINfoMH021DQ3LmJ4QL8eTnU+IskNwDoD3/BEjuz5oMpLJA6duXGrQJWKAwXoEFigOEGvxycoD+/Wk7GcM84UI8QGokytrDOwAP9qYTTqAkc7M2cUyKsKtAnJ9cfcaYDgsUBwg3+CVzomy4EA+QGomyLFC8Rao7KHaKi6WjkozubjJx+DDg9+veC32wQHGAcIOfSJRNZoGS6g7KsGF0ywLFbCIJlD17ku9CEE6gpKfL8zYVjtuWFmos6TVWr6bJ3ne/q3tP9MECxQEiOSipFuJJJQfl9NPpNpk/q9cJXorCTv/+5Ca0tyefoA4nUIDUWTDQsoDx44Hhw2VFk1dYuZKaCP7pT7Jrd6rBAsUBOMQTSLI7KJbFAsVLhFqKQpCZSR1lgeQL8/QkUFIlUXbbNmDjRhqLduzQvTexIdY6q60lsZKKsEBxgEghnmRzUCwrtR2UvXtpBeP0dOCUU+i+ZP2syYA4PwsKqHtsMMmaKBuNQLGXyicjK1bIba9NmOz5Qe++q28/dMICxQGE0u0pxJNMvVCamoDWVtruKUnWawNCtNjzT0Sr9Orq5F1wzuuEm0AIkjVRlh2UQIHitc8qrisAsGiRvv3QCQuUBOkpvl1ZSYuRtbQAVVXq980thLLPyqK+J8Eke4hHCJTjjpMOkmVxRYSpRCtQkq2bLAuUwNCI18Yj+3iybBl1Bk41WKAkSKT4thj8kinMYw/v2BtACZI9xGMXKBkZVLYJJO/n9TrsoHR/LBUEit/vbYFid1Da24EPPtC3L7pggZIgYvArLAwd307GRNmeEmSBQAclmUJbArtAAVJjsPcyqShQWluB+nraTlWB8sUXlGAq8NpnFeOsyGVMxTwUFigJEmnwS2aBEipBFpCDX3u7N/sPRIIFireIdI4mY5KsOBYzM4Giou6Pp8Ixa88/AbzroFxxBd2mYh4KC5QEiTT4JWMlT08VPACQmysXJ/PaoBCJ9nbgyy9pmwWKN4jFQUkWx08ci6WlocOwqXDMCoHixc9qz2n7xjfodt265MpljAYWKAmSyg5KuBAPkLx5KNu3U9OkvDxZwZOsnzVZiHSOiv9jW1vy/A97yj+x319dnXwddAVCoJx/Pt16abLU3CwrJUeMAMaNo+1//1vfPumABUqCROugJKNACeegAMlbySPCO8OHU4UW4M0ZWioR6RzNygLKymg7WcI8kQSKmFx0dsrvJ5nw+4FVq2h7xgy69dJYJMbYjAxyo6dNo99TLcwTs0D54IMPcPHFF6OiogI+nw9vvPFG2Ofecsst8Pl8mDNnTsD9ra2tuPPOO1FaWor8/Hxccskl2O3RkSFaB2XnzuTpkxEpxAMkr6sQnH8CsEAxnUjnKJB8eSiRBEpWlsxNScbjdvNmav+QlweceSbd56VeRSL/RFRKnnsu/f7uu8kThoyGmAVKY2Mjxo4di7lz5/b4vDfeeAOffPIJKoR/amPmzJlYuHAhFixYgKVLl6KhoQEXXXQROr1y9NiIxj7OzKSwwJ496vbLTWIJ8Xhp1hINLFC8RzQCJdkqecR5F06g2B9LxuNWhHfGjZNLGXipV5HYT9HC4IwzgOxsOj43bdK3X6qJWaDMmDEDDz/8MC677LKwz9mzZw/uuOMO/OEPf0BmZmbAY7W1tXjxxRfxq1/9CtOmTcO4cePwyiuvYN26dXjXg3VUkQa/9HRg0CDaTpZEWQ7xUIhHkKyfNVkQvYqiESjJ0qwtkoNifyyZBcrEid7sVWR3UAAqPDjjDNr24GUybhzPQfH7/bj22mvxwx/+ECeccEK3x1euXIn29nZMnz69676KigqMHj0ay5YtC/mara2tqKurC/gxhWhmZ8mWKJvKIZ4tW+jW6w7Kxx8DZ58NLF+ue0/cJxUdFBYodDtxIt16zdENdlAAmYfCAiUBHnvsMWRkZOCuu+4K+XhVVRWysrLQJ2i0KCsrQ1WYGqrZs2ejqKio66dSBIwNIBUFSjQhnmR0FZqa5Aw7lEDxUkXEvHnUmfKWW5I7pt3ZKXvxsEAJJFkFSmcnsHo1bXtVoAQ7KIDMQ3n/fUoZSAUcFSgrV67Er3/9a8ybNw++UMX3PWBZVti/ue+++1BbW9v1s8sgHzYagZJMvVBaW+XaQ6nmoGzdSrfFxYGf3YsVEcIFW70aWLhQ7764SU9LUdhJtSRZ+2PJdI4CwOef02SiVy/v9ioK5aCcdBL9XleXGs4n4LBA+fDDD3HgwAEMGjQIGRkZyMjIwI4dO3DPPfdgyNGrdHl5Odra2lATNJIfOHAAZaLWL4js7GwUFhYG/JhCqjko4sRJSwvdoVKQjA5KqARZwJsVEUKgAMDPfuad6oZYEednr16UrB6OZGvWlsoCRYR3xo+XrQC85qCEyvNLTwe+8hXaTpVyY0cFyrXXXou1a9dizZo1XT8VFRX44Q9/iH/9618AgAkTJiAzMxOLbN/wvn37sH79ekyePNnJ3VFCqgqUkhJ58odCDAiHDnkn7BGJcAIF8N5gb69m2LAB+NOf9O2Lm0RzfgKyWVtLi3cqPcLR3i6do1QWKCK8A3jvs4oQj91BAQLLjVOBEMvb9UxDQwO2Cq8bwLZt27BmzRoUFxdj0KBBKAny/TMzM1FeXo4RI0YAAIqKinDzzTfjnnvuQUlJCYqLi/GDH/wAY8aMwTSRBeQROjrkglzRhHj27KFulVlZru+aa0STIAvIsEdHBw2WwSeaF+lJoPTrRyEgrwyA4v/49a8Df/kLMGsWtdQOteCll4lWoOTk0EXs4EFyUXrKrzId8b9NS+v5vPPaRTtaQgmUZHBQAJko+9FHdO0pKFC7X6qJ2UFZsWIFxo0bh3FHe+/efffdGDduHH72s59F/RpPPvkkvvrVr+KKK67A6aefjry8PLz11ltIT0+PdXe0Em18u6yMBkC/3/tljNEkyAJUsy/CHl4ZFCKRLA6KZcmL2M9/ToPg5s3AH/6gd7/cIFqBAiRPoqw4BiO5nF46ZqOlowNYs4a2vSxQwjkow4bRT0cHJbknOzELlClTpsCyrG4/8+bNC/n87du3Y+bMmQH35eTk4Omnn0Z1dTWamprw1ltvGVWZEy3iICoo6Hnm6fMlT6JsND1QBMk2ACaLQKmvl1UAQ4YAP/oRbf/3f1N4IJmIRaAkS6JsNPkn9scPHkyOvBsA+OwzCtMVFgLHHCPv99L5CfQ8zqZSuTGvxZMAsQx+yZKHEm2IB/DerKUnqqvloHHssd0f99IAKP6HubnUCvz228nl27YNeOklvfvmNKnsoEQrUNrbZSm21xHhnQkTAt0jL41FlhXeQQFkHkoqJMqyQEmAVBQo0YZ4gOQqNRYN2gYOBPLzuz/upaql4P9hXh5w3320/fDDchXVZCAegeL1MGy0AiU3Vx7LyXCOAqHzTwD5XdTUmO8S2h3OUBPBc84hV37DBmDfPrX7phoWKAkQy+CXyiEeL1y0I9FTeAfwpoNi/x/ecgswYABdnJ9/Xs9+uQE7KD3jpeM2GsIJlOJi6ajYS+xNRLgnOTk0eQimpIRKqIHkD/OwQEkAMfhFU6GSLA5KPCGeZBj8klGg2F2wnBzgpz+l7V/8ghpdJQMsUHrGS8dtJNragE8/pe1ggZKeLo930ydMoZq0BZMq5cYsUBKAQzw9ww6KmYT7H950Ezl9VVXAb3+rfLdcId4kWS8njaaqQFm/nkRKnz5yvLXjlc8aqs19MCJRdtEibx+rkWCBkgDxhHiqqoDmZtd2yXViCfGkooNy6JD5A0Y4Fywri7rKAsCjj8olDbxMLOfogAF029QU2ELAa6SqQFm5km4nTKAcjWC8kigbjYNy+unkeu7bB2zcqGa/dMACJQFiGfyKi2VTnR073Nsnt4klxJMsDorfH3oVYzv2iojaWjX7FS+hQjyCa68Fhg+n5zz1lNr9coNYztHcXHlcezlRNlUFSrj8E4FXPms0DkpODnDmmbSdzGEeFigJEMvg5/N5P8wjusICsVXxeF2g7N1Ls+qMDOmEBZOTIwWo6QNgTy5YRgbw4IO0/ctfmi+2IhHLOQokRx4KC5TQj3tlPIrGQQFSo9yYBUoCxDr4eb2SRyh7ILrPLAa/6mpvL0YnwjvDhvW84JxXBvueHBQAuPJKYNQoOr6ffFLdfjlNZ6cUWNGeo15v1tbZKS9wqSRQWlqAdeto2+sCJRoHBZB5KIsXm186HS8sUBIgVoHidQdFDHy9e0e3Zou4APr9geLGa0TKPxF4ZbCPlOicnk5dZQESKF5dPM/u/qSKg3L4sMyBSqVuz+vW0UW6tBQYNCj0c7zyWaN1UMaOpc/b0AB88on7+6UDFigJkGoOSiwVPAC5DeIkM31Q6IlkEyjR5BFddhkNgHV1FOrxIuL8zM/v2fmy43WBIo69Pn2i+8xeOWYjESlBFkg+ByUtDZg6lbaTNQ+FBUoCpJqDEkuCrCAZEmVjFSgmf1b7QoE9Cc20NFpIEKBkWZM/UzhiPT8B73eTjSX/xP48rwuUSPkngHc+a7QOCpD86/KwQImTjg5qSQykjkCJ1UEBkqPUOJkclIYGGa+O9H+8+GLg5JMpQfixx9zfN6dJRKB43UGJVaA0NwONje7skwqiESjJ5qAAMlH244+TZz0lOyxQ4sTeJ6F37+j+RoR4qquluPESsfRAEXjBVeiJ9nbgyy9pOxkEinBPwrXRtuPzAQ89RNvPPEPVTF4iHoEikmR37TK/n00oYhUovXoB2dmBf+s1mpupSRsQnUCpqzN7valYHJTBg2nx0s5OYMkSd/dLByxQ4kQMfgUF0SWMArQEuDjovJiHEk+IxyuzlnBs304nf14eUFHR83O9IFBidcGmT6emUC0twCOPuLdfbhCPQBHN2hobvTkjjVWg+HzeOG574tNP6RwtK5P/v1DYk/tN/ax+vzxuox1nk7ncmAVKnMQz+AHeDvPEE+Lx+uBnD++ES74TeOGzxioy7S7K888DO3e6s19uEM85mp8vn+/FPJRYBYr9uSYftz1hD+/0dI7axZipE6baWhIpQHQOCpDceSgsUOIkXoHi5UqeeEI8XndQos0/Abwx0EeTIBvMOefQT1sb8PDD7uyXG8R7jno5DyUVBYq9gicSpn9WMcbm58vQWyTOOYeS2jdu9OYx2xMsUOIkFR2URKp4TB0QIiEEyvDhkZ9r/6ym5i/E44IB0kX53e+AL75wdp/cggVKdHj9HI0mQVZg+oRJJMhG654AdHyLz/7ee87vk05YoMSJOJDidVC8KFASqeIxdUCIRDwOSmuruQvtxSMyAcpDOf98ivWL8mPTiVegeLmbbKoJlMZG4LPPaDsaB8X08SgelxpI3jAPC5Q4SdRBSbUQjxcHPyA2gZKfLytjTP288YR4BEKYvPIK8Pnnzu2TW7CDEh1eFihr1lDORkVF5CR2wPzPGo+DAshE2XffNde9jQcWKHHiRIjHSweS359YmXF1NfWO8RKNjfIiFY1AAcwfAOOdoQHUE+WSS+hYmDXL0d1yhUQFiteSZO1N+FJFoMQS3gGS10GZNIkmR1VVwIYNzu+XLligxIkY/GJVuoMH021dXWAvFdOxZ5fHcvKUlMjMeq+t6bJ1K92WlET/fzZ9sE/EQQGki/Laa3JxNlNJNQflyBE5CUg1gRJNeAcw/7PG66BkZwNnnUXbyVRuzAIlTuId/PLyqF4f8FYeihAX9sZO0ZCeLgWNqbOWcMQS3hGYXsYYb5KsYOxY4BvfoO0HH3Rmn9wi1QSKuOgWFMR2jpp+0e4JUcGT6g4KkJx5KCxQ4iTewQ/wZiVPvMmVgPmDQjgSESimDvaJ/B8FIryzcKG5LqDfL1czjleg1NV5q1mbOObE+RYtph+z4aivl7lQ0Toopo9FsbS5D0bkoSxZQi0BkgEWKHGSiEDxYi+URGbeXh0Ak02gRLtQYCRGjZLH/Z49ie+XG9TWyhyvWM/RggKgqIi2Tf18oYgnQdb+/Pp6s1vAB7N6Nf2PKyulKx0Jk89PILY298GMHk0CrLGR1uZJBligxAk7KNFj+qwlHMkmUBob5cwqEYECAP370+2+fYm9jluI8zMvD8jKiv3vvZgoG69A8UIL+FDEmiALyLGosZEWwTSNRByUtDRg6lTaTpYwDwuUOEk1gZJIbNTki3ZPJJtAESIzOzvyQoGR8IpAief8BLyZhxKvQPH5pGA18bgNRzwCpaBAClYTP2siDgqQfOvysECJg44OuRoxh3gi40UHpbpazmaOPTb6v/OCQCktjbyuUCSSXaB4sVlbvALF/jcmHrfhiLWCB6Dj3uTxKBEHBZCJsv/5j8zB8jIsUOLAnhjYu3fsf29v1uaVXihOhHi8NPgJ96SyMja3weTPmogLFkyyC5RUclDsf2PicRuK2lpgyxbajkWgAOYKlI4OeW2J10GprARGjKAk8fffd2zXtMECJQ7E4FdQIGO3sVBZSUq+qcm8kyQcTiTJeuWzAvGFdwCzB3onEmQFLFDMI5UEyqpVdDtkSOzHs6mf1T7xjVegAMlVbswCJQ4SHfyys4EBA2jbK2GeRGbfJrsK4UhUoDQ1mZeEl2gPFDupIlBSIUnW/jdeOUfjyT8RmOqgiPOzsDC+ia/A3vbe67BAiYNEBz/Ae4myiYR4UslBsTeyM22wd6IHiiBVBAo7KGaSiEAx9bMmmn8imDKFKno2bfKWwA4FC5Q4cEKgeC1R1okk2SNHvNNAKF6B4vOZK8g4xBM9Ikn2yBFzV6a2Y1ksUKLFdAclkfAOQD18TjmFtr3uorBAiYNUc1AsK7EQT58+1PIekBdJk/H7ZQJerAIFMHewdyPE09Bg5gU80XO0sJByzABvNGuzN1lLdoFSUwN8+SVtjx8f+9+bKlCcclCA5Ck3ZoESB6kmUBoapPMRbwMhcVE0bVAIxZ49QHMzxYGF0xULpg72ToZ4CgqA/HzaNtFFceIc9VKYRxxreXnx9bgx9ZgNhVh/55hj4vv/mvpZnXJQgMBEWbHIqxdhgRIHqRbiESdOTk78Db5MHRRCIcI7xxwTX7KaqZ/VSQcFMDvM46RA8UIcP5Hwjv3vvOBwJhLeAVLDQTntNJpAHDxo/qrjPcECJQ7EgeSEg7Jjh/kK1x7eibfBl6mDQijizT8RmCpQnHRQgNQRKF5yUOIVKEK0Hj5M/ThMJlGBYj8/TepD5aSDkpUl+8Ns3Jj46+mCBUocODH4DRhAs/O2NmDvXmf2yy2cuLB5qdQ4kfwTwEyB4tRCgXaSXaB4qZtsogLFPvkQF0pTccpBaWkxK3/KyUaKgBTYXsihCkfMAuWDDz7AxRdfjIqKCvh8Przxxhtdj7W3t+NHP/oRxowZg/z8fFRUVOC6667D3qArcGtrK+68806UlpYiPz8fl1xyCXZ7YRQ4ihODX0aGHABND/M4ERowtbIlFIk6KCaKsaYmmUSZ7ALF75dNr9hBiY70dDlzN+m4DebQIXKdAWDcuPheIz9fhqpNGo+EM++EgwIAFRV0a/oEuCdiFiiNjY0YO3Ys5s6d2+2xpqYmrFq1Cg888ABWrVqF119/HZs3b8Yll1wS8LyZM2di4cKFWLBgAZYuXYqGhgZcdNFF6OzsjP+TKMQJgQJ4J1HWSQfFpAEhHMkY4hH/w6wsmdyaKKYKlLo6ad2zQIkeE4/bYESC7HHHUTltvJj4WZ12UJJBoMScAjhjxgzMmDEj5GNFRUVYFFTX9PTTT+OUU07Bzp07MWjQINTW1uLFF1/Eyy+/jGlHU41feeUVVFZW4t1338V5550Xx8dQixAoiSpdryTKOnHimDgghKK9XZYwJqNAcWKhQIEQKFVVzryeU4jzMzdXNs2Lh1RKkhV/+/nnZh23wSQa3hH060dOjEkTJqcdFNGtPKVCPLFSW1sLn8+H3kdX1Vu5ciXa29sxffr0rudUVFRg9OjRWLZsWcjXaG1tRV1dXcCPTlLNQXEixOMVB2XbNqCzk1wGcQGOFRMFitOzM8BcB8Wp81OEYA8fNm/ZgmBSxUFxSqCY+FnZQemOqwKlpaUFP/7xj3H11VejsLAQAFBVVYWsrCz0CRo9ysrKUBVmKjZ79mwUFRV1/VSKkUMDHR3UFAlIHYHiRIjHxAEhFCK8M3x4/E6D+Kz19ZSIZwJOJ8gCQHk53SarQCkqkuEw02ehLFBiw7QJU1ubTNh1IwfFpGqlWHBNoLS3t+PKK6+E3+/HM888E/H5lmXBF+aKcN9996G2trbrZ5dGz9W+4uRRUyhuvBbiSQUHJdH8E4AubJmZtG3KYO90DxRAOijV1WYtYeCUQPH5vJOHkgoCpaqK/g8+X/wJsgLTxiMR3vH5Er+uCMT52dwceN3yEq4IlPb2dlxxxRXYtm0bFi1a1OWeAEB5eTna2tpQI0aRoxw4cABlZWUhXy87OxuFhYUBP7oQu11QkNiKk4B0UHbtMrv3gJM5KCa5CqFwQqD4fFIImDLYO90DRbyWEGIm5aGIc9SJgd4reSipIFBEguzIkbQoZyKY9lntvbXEsiCJkpsr3RivhnkcFyhCnGzZsgXvvvsuSoJGxAkTJiAzMzMgmXbfvn1Yv349Jk+e7PTuOI5TszOALPLsbMp5MHkAdOLi1ru3FHSmDAqhcEKgAOYNgG6EeHw+M8M8Tp6jXnBQmppkjkwqCJREwzuAeQ6Kk03a7Hg9DyVmgdLQ0IA1a9ZgzZo1AIBt27ZhzZo12LlzJzo6OnD55ZdjxYoV+MMf/oDOzk5UVVWhqqoKbUc94KKiItx8882455578N5772H16tX41re+hTFjxnRV9ZiMk4NfWhoweDBtmxzmcSI84POZ2R8kmGQVKG6EeAAzE2WdPEe90KxNHGNZWXKBw3gw7ZgNxqn8E8C8z+pkm3s7QqCYnkMVjpiDFCtWrMA555zT9fvdd98NALj++usxa9YsvPnmmwCAk046KeDv3n//fUyZMgUA8OSTTyIjIwNXXHEFmpubMXXqVMybNw/pTnlbLuLk4AdQmGfzZkqUtX2txtDcLGdniZ48ffuSkjdl1hJMQ4M8kYcPT+y1TBsA3QjxAMkvULzgoNjDO4mUkJt2zAbjpEBJFQdFlBp71UGJWaBMmTIFVg8pwT09JsjJycHTTz+Np59+Ota3144bAgUwt5JHnDgZGbQEfSKYNigEs3Ur3ZaWJj5QmOYWsYMSH14TKIkg/r66mrrxphm0EMrevXSMpaUBQXPfuLCfn5blXG+geHHbQfGqQDHoEPQGTgsU0yt5nFgoUGD6DM2p8A5g3mdlByU+vJAk65RAEeK1s1N+h6Yg3JNRo+JfUd2O+K7a24Ha2sRfL1HczkHxaoiHBUqMpKqD4sSFzXQHJRUECjsosSEEyqFD5lafOSVQsrJk+3hTjluBkwmyAJCTI/N1TBiP3HJQvB7iYYESI6nmoDg58zbtoh1MsgqUpiZ5cWWBEhvFxVSuCZg7C3VKoNhfw4Tj1o6T+ScCkz4rV/GEhgVKjLjloOzdK1ebNQkncxdS0UEx4bMKkZmZmXj/iGCSXaB4oVlbsgsUy3JHoJg0Hrmdg7JvH+UVeQ0WKDHitEApLaV22pYllxE3iVRxUCwL2LSJtpPNQXFjoUCBECj791Pugm78ftk106lzlAWKXnbvJhGRkQGceKJzr2uSQHHLQSkro8Tizk4zPmessECJEacFis9ndpgnVXJQqqvlhe3YYxN/PTHQ19bqbwPvVgUPQP9Tn4+EgQkXtfp6OVN0WqCYmiib7AJFuCejR8twmxOY9FndclAyMkikAN4M87BAiRF7S2KnMDlRNlVCPCK8M2iQM4OgvWW1cDB04VYFD0ADoPi/mhDmEROI7GznLmbsoOhl9Wq6nTDB2dc1aTxyy0EBvJ2HwgIlRpx2UACzBYobIZ6mJqCxMfHXcxIn808AslXFd6Z7sHfTQQHMykNx4/w0vZtssgsUEfp2wtm0Y0qvouZm+gHcmUSISh5Tk7x7ggVKDHR0kIUMODsApkqIp6CAZraA/kEhGKcFCmDOYO+mgwIkv0Ax2UFpbQXq6mg7WQWKuLCKC61TmJLILlz59PTEm2GGgh2UFMG+ZLVTS2IDZjsoTs6+fT4zB0AgNQQKOyjxYbJAEf/b9HRnxiRTjlk7bgkUU0I89vCOGx1tWaCkCGLwKyiQy8w7gXBQTBQoTs++TRkUgtmyhW6dFCimWMgc4kkMIVD27zevFYA4tkpLnWlNn0oCxZTPKhwUN/JPAA7xpAxuDH6AdFAOHjQrN6O9XdrHTl3cTBkU7Pj97ggUUz4rh3gSo7RUhiZNm4U6mX9ifx2xRo1u6upkWN0tB+XQIb09QpwMo4eCHZQUwS2B0ru3tGdNykMRyt7ncy6kZaKDsmcPJallZgKDBzv3uqYIFLcdlPJyuq2qcuf1Y8GNc9TkZm1uCRT75EQnYtZfVOR8k0FT1h5y20FhgZIiuCVQADMTZcXM214ymyimXLTtiPyTY46hslmnMCUJjx2UxEkVgZKbS40j7a+tE7fCOwCtPSQmXjrPUbcdFPHdHTxoXogyEixQYsBNgWJioqwbM28THRQ3EmQBc8SYyiRZ3WEBFiiJY8pxC7grUAAzxiO3HZTiYhJjgBkuZyywQImBVBUoTip7EwaEYJJZoDQ1yR4LbguU1tbASjcduC1QTOsmywIlMUz4rG47KD6fd8M8LFBiIFVDPE6eOCYMCMEks0ARg19Ghlxe3mlycqRVrjvM49Y5amqzNhYoiWHChMltBwXwbiUPC5QYSFUHhUM88SEG+sOHqcmfDtxcKNCOKXkoHOJJHJMEivi+3RYoJkwi3HJQAHZQUoJUEyhuOyi68xUAWshPfOdOC5SSEikKxCCkGrcreAQsUPSQ7AJFzPjF9+80JiSyu7VQoB0WKCmAihDPkSO0Aq4JuJmD0tICNDQ497rxsm0blRn26iXLZZ0iPV3atroGe7creAQmCBTLkjkwbgmUqioqwTWFVBEoyRzicXOhQIEQKBziSWLcFCj5+fIiIhbH0o0bs+/8fLnKrAkDoAjvDB/uTghEt4WcSg5KfT2JTcD5c7RvX+qTY1nmzEI7OuTsOxkFSns7de8FkjdJ1rLUOCji+zPl2I0WFigx4KZAAWSTMFMEiluzbxNmLQK38k8EugfAVHJQxPmZlSVFsFOkpZkX5hHi0+dLzkT2qiq6gGdmOivA7OgeixobKcwMqHFQWKAkMW4LFBHmMUWguJW8ZcoACKSOQEkFB8V+frrhhpkmUMQxVVLiXCNFQP8xKxDhiP79nVlnKBS6HU7hnmRlyQZ5bsAhniSno0O2fnbbQTGl1Nit8IDuWYsdsQbP8OHuvL7uJLxUCvG4lX8iMFWgOO0umCZQ3ArvAPKzVlfrqbRzeyVjgRAo9fVybSMvwAIlSuwNqJxalyYYk0I8nZ3uxUZNEihCDA4b5s7r6x7sUzHE47ZAMaVZm9sCpblZ7+KlQgi6VcEDyEo7y9JTaaci/wSgHkiiD5LuSrtYYIESJWLw69WLYqJuYJJAOXJElgE7HRvVfdEWdHbKi42TiwTa0f1ZVYd46uv1XdRUCZRkd1B69ZKrN+s8R1U4KBkZeivtVFTwCLwY5mGBEiVuD36AWQJFnDiFhXIdB6cwxUHZt49s3YwMeYF1Gt0CRVWIp6AAyMujbV0zNLfPUdO6ybolUHw+/cctoEagAHrHI1UOCuDNSh4WKFGiQqCIJNkDB+T6KbpwMzRgwuAHADt30u3Agc4mGdrR/VlVhXh8Pv1hnlRzUMQF1Y0KF93HLaBeoKSKg8ICJQkRg5+bB1Lv3jJOqNtFcXPmbYqDIr5jt8I7gN6BvrmZFgsE3HdQgNQRKMJ5041bDor9NVNBoOhMZFfpoHCIJ4lR4aD4fOaEedxcH8KEwQ+Q3/GgQe69h71KwO93731CYV8osLDQ/fdLdoHSrx99l36/GYmGySxQLCs1QjwqHRQO8SQxKgQKYI5AcTM0YB8QdK7HI0I8bjoowrnw++VsSRX2/6GbJYyCZBco6elykDehkieZBUpNjQxzq3JQdIZ4VDooLFCSkFQTKG6GeMSA0N6ud90hFSGezEx5zKgeAFUlyAqSXaAA0m3TfX4CyS1QhHtSUgLk5Lj7XiYkyXIVT2hYoERJqgkUNx2U3FwqZQT0hnlUhHgAfYO9qgRZgVhssapKzfsFo+IcFf1yvvzSvfeIBr9fCtBkFihuuyeAGUmyqqt4TFhJPhpYoESJKoEiKnl0d5N1+8TRnShrWWocFEBfEh47KM4zdCjdbtvm3ntEw+HDMqfJTZczFQSKCUmyKhwUMYFoa1Mfbo4XFihRkmoOitsXN90D4JEjQEMDbbOD4gw6BYplpZaDIo6l3r3daRyp+/zU4aCoFiiqVjIWZGfL8dwrYR4WKFGiWqDs3Us5Grpw++Km20ERArBfP+dXvg1Gt0BR7aAcOiRXaFVFY6Ms/VUhUHQ7KG7mn9hfNxUEivisR46oPW7r6qibNaDGQQG8V8nDAiVKVAmUfv1I6fr9ehtCuR3i0T0Aigoet90TQN9nVR3iKSmhMlwA2L9fzXsKxPmZmSk72rqBCPHs3Kl3AqFKoNTXA62t7rxHT4ixT4VAKS6WqyULUa8CcX7m5ro/SRJ4rZKHBUqUqBIoaWn6KwXsC2e5dXEzxUFxO/8E0O+gqArxpKXJOLfqMI/9/HSzpLq8nKpK/H4pcnXgtkDp3VuKTR2TCOGguLlQoCAtTc85qjL/ROC1Sh4WKFHQ2Ul2HOC+QAH056HU1Um7PFkdlFQSKKocFEBfHorKCYRIZNcZ5nFboPh88rjRKVBUOCiAnkRZlRU8gqQP8XzwwQe4+OKLUVFRAZ/PhzfeeCPgccuyMGvWLFRUVCA3NxdTpkzBhg0bAp7T2tqKO++8E6WlpcjPz8cll1yC3aYscBGCI0fkdu/e7r+f7koeFdajbgeFQzzukOwCBTAjUdZtgWJ/bdXHbWurFNeqBIqO8Uhlgqwg6UM8jY2NGDt2LObOnRvy8ccffxxPPPEE5s6di+XLl6O8vBznnnsu6uvru54zc+ZMLFy4EAsWLMDSpUvR0NCAiy66CJ0iY8gwxODXq5c7GfPB6HZQVFzYdJb2AWodFF19FlSHeIDUEijJ7KDYX1v1cSsuntnZ6sIfOj6ryjb3Aq+FeDJi/YMZM2ZgxowZIR+zLAtz5szB/fffj8suuwwAMH/+fJSVleHVV1/FLbfcgtraWrz44ot4+eWXMW3aNADAK6+8gsrKSrz77rs477zzur1ua2srWm2ZWnUi3qIIlYMfoF+gqLiw6WyOBOgJ8Rw6RPk9KtrOt7RQZQvADorTiETZVHFQVCaOAoHhHRXnCpA6DkrSh3h6Ytu2baiqqsL06dO77svOzsbZZ5+NZcuWAQBWrlyJ9vb2gOdUVFRg9OjRXc8JZvbs2SgqKur6qaysdHK3I5JqAkWFg2IXKKoX0WtpkVUmKkI84nvs6AgMF7qJ+B+mpwNFRWreE0gNgcIhHndRnX8C6Jkw6XRQ9u83Y0XuSDgqUKqO9rguKysLuL+srKzrsaqqKmRlZaFP0Ehif04w9913H2pra7t+dileqUsoXdUCZedO9RdvQE3ylrhod3aqu2gLxOGTn69mcMjOlqsJqxoAVS8UKEglgcIhHncQ6YgqKngEOkLOOhyUvn1p0uL3q28FEA+uVPH4gkZEy7K63RdMT8/Jzs5GYWFhwI9KVDsoAwbQQdTerqcrp4oQT3a2nNmrzkOxh3dUXbxVD4A6EmSB1BAoIsRTXa1nsUvLkueomwJFVxWPTgdFRxWPSgclPV22AvBCmMdRgVJ+9JMHOyEHDhzoclXKy8vR1taGGjGihHiOaagWKBkZcvagI8yj6uKma4amsoJHoPqz6kiQBaRA2b9fdslUgcpztKBAnhs6XJTaWtkkLhkdFB0CRWcfFNXnqJfyUBwVKEOHDkV5eTkWLVrUdV9bWxuWLFmCyZMnAwAmTJiAzMzMgOfs27cP69ev73qOaagWKIDePBRVFzddpcYqE2QFqgdAXQ5KWRm5Up2dapMrVZ+jOhcNFMdQr17UNM4tUkmgpIqDAnirkifmKp6GhgZs3bq16/dt27ZhzZo1KC4uxqBBgzBz5kw88sgjGD58OIYPH45HHnkEeXl5uPrqqwEARUVFuPnmm3HPPfegpKQExcXF+MEPfoAxY8Z0VfWYhhj8VB5IOgWKqgZCugbAVBAoOpq0AeT+9e1LA/2+fSRYVKBaoAwbBixfridRVkX+if31U0mg1NdTEr2bwk+gy0HxUi+UmAXKihUrcM4553T9fvfddwMArr/+esybNw/33nsvmpubcdttt6Gmpgannnoq3nnnHRQUFHT9zZNPPomMjAxcccUVaG5uxtSpUzFv3jykp6c78JGcJ9UcFFWzb90OCod43KF/fylQTjpJzXvqECiAXgdFlUA5fJgqPjJivlrEjt8vL5wqBUpREfW4am+n79ftQtHOTj0TX8BbIZ6YD7kpU6bAsqywj/t8PsyaNQuzZs0K+5ycnBw8/fTTePrpp2N9ey3oFCg6usmqurjpatYmclCS2UHRFeIBSKB8+qm6RFnL0hfiSWYHRVSAibW5VLhhYiVsn0/mM6nA56Pvc+9eGo/cFii1tfS9Ahzi6QleiycKdAgU0e4+mUM8OnoP+P2yzDiZBYpuBwVQJ1CammTSqGoHJZkFSnq6vHiqOm7FRbNfPyArS817ClSeo2KM7dVL/ef0UoiHBUoU6A7x9GBYOU5TE8VggeQM8ezbRxez9HS1MzTVYkxXDgqgXqCI8zMjg3rbqEA4KNu3q+9VpEqg2N9DtUBRGd4RqByPdCwUKPBSiIcFShToECjCYmxqkgezCsSFLTOT1L2b6EjCE+GdgQPVxNQFqRTiEX0WVAuUPn3U9bWprCSR29qqvucLCxR3UDmJEAmyqsM7gHRQDh+Wk1FTYYESgc5OQCz9o1Kg5OTIgV5lmMeu7N0e7HU4KDoqeIDAgV6FI2ZCiCdMY2jH0TGByMyUSdaqE2VZoLiDypw4nQ5K796ySsl0F4UFSgTsbdh791b73joqeVTOvMWAUF2trqmXjgoeQH7WtjYpeN2itRVoaKDtVArxqBQogL5EWRYo7qBywqTTQfH5vBPmYYESATH49epFsyaViERZlZU8Kmfe4uLp98sT1m10VPAAQG6uzI9we7AXIjMtTe1CgQK7QFHhFukSKLoSZZNZoOhYh0egI0lWh4MCeCdRlgVKBHQNfoBeB0XFiZOZKb9XVWEeXSEeQN0AaBeZaRrOcCFQWlrUrFWj20FRGeKxrOQWKOygqMErpcYsUCKQqgJFVWhAdXWLrhAPoG6w15kgC5BbJJwbFWGeVHJQGhtlYiMLFGdRORbpdlA4xJMkpJpAUZ1cqbpZm64QD6DHQdGFyjwU3QJFpYMijp2cHDUl1SoFSlOTzPlL9iRZUxwUFigeJ9UESjI7KEeOyATVZHZQdPZAEaSCQBEhnj171JVr2sM7KkqqVQoU4Z7k5wOFhe6/XzBiLGpqIqfKTXQ7KBziSRJMECg1Ne5XfghUnzgq475C6PXtC+Tluf9+waRKiAdIDYFSWip7BalKZFeZf2J/n+pq9xvS2cM7qvrZ2OnVC8jOpm23z1FdCwUKOMSTJIgDSYdAKSiQFqAqF0VXiEfFDE2Ed3S4J4A6t4hDPGrw+dQnyqoWKELk2he3cwshUHRU8AD0/1Q1YRKTCBNCPCo7lccKC5QI6HRQAPVhHl0hHpUOio78E4AdFLfQeY6qTpRVLVCysmTCs9vHrSgx1pF/IlAxiWhvl4647hBPY6M6dz4eWKBEINUESjI7KKkiUNhBUYfqRFnVAsX+Xm4ftzoreAQqEmXtTpTq5p+CvDz53iaHeVigRCCVBEpbm+xAmow5KLpDPKqqBFIpSday9J6jqrvJskBxFxXjkUgb6N1b7XpgwXihkocFSgRMESgqkvDsHUhVKXuVpX0mOShuxn1TKcTT3EzCGuAQj1ukkkBR8Vl1558IvFDJwwIlAkKg6DqYRLt7FQ6KmHkXF6vrQCpmLIcPAx0d7r6XKQKlpcXdMkaTQjx1dVS26Rbi/ExPd3/17VDYQzwqkg1ZoLiLSgdF5/kJeKOShwVKBExxUFQIFB21+fZVk8WF1Q1aW+XqurpCPPn5chVRtwb7tjagvp62dToohYXUURZw10Wxn586SlPFBKKuTs16UskqUDo75XGiq4oHUJMka5qDwgLFo3R2ygxn3QJl/373m0HpCA2kp0tB5OasZdcuus3L0zdz8fncH+x1hOlC4fOpCfPonkDk5srPqSLMI44bcSFVgQqBsn8/jbfp6UBZmXvvEwkVIWdTHBQO8Xgc0XYZ0DfYFxfLltYiydMtdIUGKivp1s0B3h7e0THTFrg92OsI04UjFQQKoK4XSnOzTGJPNgdFXCTLy0mk6EJFiIcdlOhhgdIDYvDr1YtW3tWBz6cuzKOr/fKJJ9Ltp5+69x66K3gEqhwUneEdQaoIFFWJsuKYycxU2wpepUDRmX8CBIZ43MopMsVB4RwUj2PC4Aeoq+TRdXEbO5Zu16xx7z10J8gK3I5xm5AgKygvp9tUEShuOyiq1+ERpJJAEZ+1tVXmcjmNiQ6K28sYxAsLlB4wYfAD1FXy6Lq4nXQS3brpoJgiUFSFeNhBUYeqXig6EmTt7+emq2CKQMnLkyF1t11O3ZOI8nISuh0d7hYoJAILlB4wYfAD1Id4dDko27a513ZZfHcc4lGHECiiesoNTDhHVYd4dAkUe4t2pzFFoADuJ8qKEI9uByUzUzq6poZ5WKD0gAmDH5D8OSjFxbK0cO1ad95D5KCY4qC4NfiZFOJJNQdl5053e/noEii5ue67CmIdHp0lxgK3E2VNcVAA8yt5WKD0gAmDH6BOoOi8uLmZh+L3yzJjUwRKKjkoyS5QKipoUb2ODnmhdQNdAsX+nm4dtyY5KG7niZnioADmV/KwQOkBEwY/QF5Ud+8mm9UtdF7chEBxIw+lqooamKWnyxNSF6pyUEyYnQmBcvCge8etCedoerrME3MzUZYFihrcdDlbW2UXaRPOUdMreVig9IAJgx9AyUxZWeQEuGXFdXTIz6vjxHEzUVaEdwYM0Ls4F5BaSbKlpfL73r/fnfcw5RxVkSibrAKlrk72dzFBoLjpoAj3JC0NKCpy/vVjhUM8HsaUwS8tTSZ3uhXmsS8BrsN6FA7K+vXUUdJJTKngAeRA39hIjbecxqQQT1qa7ArqVpjHlHNURaLshg2B76US4Ya5Mf6Ii2NRkcx10YmbDoo4P/v00d9IEeAQj6cxZfAD3M9DESeOriXAjzmGSvyam4EtW5x9bVMqeABqsCWa/rkxQzMpxAO4n4diyjnqdjfZgweBL76gstBTTnHnPXpi3Di6XbHC+dc2KbwDuJska1L+CcAhHk8jDibdgx/gvkDRfWFLTwfGjKFtpxNlTangAdxdj8deBmqCgwK4K1CamymmD+g/R912UD75hG5HjtQTGjj5ZLpdvtz5XihCoJhQwQO4G+IxqYIH4BCPpzFldga4303WhBPHrTwUk0I8gHsDoCkLBdpxU6CI8zM9HSgocP71Y8HtbrJCoJx2mjuvH4mxY8n5O3TI+UmSqHwyxUFxM8RjSpt7gRAoBw64W4ARLyxQesBEgeJ2iEfnzNutSh7TBIpbDopwwfr00bvgmh0VAqV3b70LQAIyxHPggEz4dJKPP6ZbXQIlO1uumbV8ubOvbWqIx43Ouaa0uReUlsqQs5sNFeOFBUoYOjulXW6CQHG73b3uEA/gnkAxZaFAgVsCxQSRGYwKgWLC+dm7t9wPp12Uzk79Dgogwzz/+Y+zr2uaQBHnZ0dH4Ir2TmCag5KWJs9RE8M8LFDCYD8wTRgAxex/5053FnYyIcQjclD27nXu4l1bSz9ADwLFrQVGwuCWhWyCyAxGlYNiAm4lyn7+OS1cl58PnHCCs68dCyI5N9kdlOxsuVq00+eoaQ4KYHYlDwuUMIjBr1cvaYHpZMAAUrttbe70lDBh9l1QQNU8gHMuinCcSkvDlDA+8AB5ul984cwbRoHbIR52UPTgVqKsCO+cfLLe0J1wUFaudLYVgGkCBXAvT8w0BwUwu5KHBUoYTBv8MjPlgeRGmMeU2bfTibIRwzu//z19+Pfec+YNoyAVQzz79zvv/Jl2jrqVKGtCeAcAjj+eRH5DA7BpkzOv2d4uJ1ymVPEA7rmcJjsoHOLxEKYNfoC7lTwmhHgA5/NQekyQra6WCsbtpWhtuO2g6P4f2ikrc29Jd9POUbe6yXYlyJ7S6e5iPxFITwfGj6dtp8I8+/ZRhDUzswdhvXYtcM45wOrVzrxpFKSSg5JSIZ6Ojg789Kc/xdChQ5Gbm4thw4bh5z//Ofy26ZNlWZg1axYqKiqQm5uLKVOmYINok2gIpg1+gLuJsqbMvpUKFPuAlwQhHlP+h3bsFx6nwzymnaNuhHjq66m7MgCcuvA+oLIS+L//c+4NYsTeD8UJxKy9oqKHzqpPPAEsXgw884wzbxoFqeSgpFSI57HHHsOzzz6LuXPnYuPGjXj88cfx//7f/8PTTz/d9ZzHH38cTzzxBObOnYvly5ejvLwc5557Lurr653enbgxbfAD3C01NmX2LQTKZ5/JJlyJ0GOIZ9Uquc0Oimu4lYdi2jlqD/E4lXctGqMNGQKUf/JXuvP995158ThwupInqvwTEeNycyXGINzqJmuyg5ISIZ6PPvoIl156KS688EIMGTIEl19+OaZPn44VR3skW5aFOXPm4P7778dll12G0aNHY/78+WhqasKrr74a8jVbW1tRV1cX8OM2pg1+gHsCZd8+ulj6fDRB08mgQVSV0dEBbNyY+Ov16KDYBcoXXyir5hECpa7OGREmMDFJFkgdgTJoEJ1Dzc3OJbKL8M6pJ3cCW7fSLxrdZlHJ8+mnlLCfKBEFypEjVMYEKJ1EuBHiaWoCWlpo2yQHJaVCPGeccQbee+89bN68GQDw6aefYunSpbjgggsAANu2bUNVVRWmT5/e9TfZ2dk4++yzsWzZspCvOXv2bBQVFXX9VCq4ipo2+AHuCZRFi+h2QtFW9CnocPbFY8TnczbME3WIp7Y2cMVEF+ndW1ZjOJmXYWKIB6DVuIHkFyhZWVLgO3Ut7UqQHWLLMtYoUIYOpdl/WxulhiRKRIFijyXt3Kms3akbIR7hnmRk6O98bEd897W1tIipSTguUH70ox/hqquuwsiRI5GZmYlx48Zh5syZuOqqqwAAVUfb1ZWJZU6PUlZW1vVYMPfddx9qa2u7fnbt2uX0bnfDtMEPCEySdXKy/84/SJRMP/Ia1RBqximB0toqL4rdQjx1dcBREY1evehWUR5KWpo7YR4O8ejHyV4olmVLkC38TD6waRNZjBrw+YCJE2nbiTyUiOvwCIUGUG2zgrEfcMdBseef6O58bKegQLZgMM1FcVygvPbaa3jllVfw6quvYtWqVZg/fz5++ctfYv78+QHP8wX9hyzL6nafIDs7G4WFhQE/bmPi4Ccuso2NUo0nit8PLFpEamc63nF+pb44EAIl0V0RBQ+5uSFcBaF+Bg6Utc0ezkNpb5cN6UxzUFJJoDiZKLt9O83gs7KAcc02d7mtTYZ7NOBkomzEdXjsAgVQdo664aCYUikZjM9nbpjHcYHywx/+ED/+8Y9x5ZVXYsyYMbj22mvx/e9/H7NnzwYAlB/1e4PdkgMHDnRzVXRi4uCXm0tlm4BzYZ61a4EDhzORjwZMwkdGCZRPP03MKbKHd7ppXxHeGTdOdofTUMnj1AAoBKvPZ9YxC0iB4vRaHyaeo072QhHuyUknAdlb1gc+qDHM42SibI8hHsuSAkVYGooEini7Q4ec698jzlGT8k8EKSNQmpqakBZUL5aent5VZjx06FCUl5djkUh8ANDW1oYlS5Zg8uTJTu9O3Jg4+AHO56G88w7dnoP3kYV2IwTKCSdQjsbhw4lllovvqMcKnvHj5VXFw6XGJi4UKHDDQWlpkQmHJp2jTvZCCVgg8LOjIR6R0GOAQNm4MbGFES0rgkDZvp1OkMxM4NJL6T5FAkW4kH6/c261qQ4KIL9/0yp5HBcoF198MX7xi1/g73//O7Zv346FCxfiiSeewNe+9jUAFNqZOXMmHnnkESxcuBDr16/HDTfcgLy8PFx99dVO707cpJpAmY6jG2vXOtvHOg5ycoCRI2k7kTwUUWLcYwXP+PHSQfFwiMfUBFkgUKA4lTslzk+fT66bYgJOhni6EmQndsh8qa9/nW4/+yz0Hymgf3+KjPr9gYVwsVJTI0WmmMEHIL6AsWOBUaNoW9E5mpkpx36nXU52UKLHcYHy9NNP4/LLL8dtt92G448/Hj/4wQ9wyy234KGHHup6zr333ouZM2fitttuw8SJE7Fnzx688847KDAotdl0geJEN9mmJuDDD2m7S6A0NQFbtiT+4gniRKJs2Aqe5mY5wI8bl1QOiomzMyFQmpvlCuGJYl8oMGyDLw0IB2X37sTKcFtbZRTytP47KMmoVy/g/PPpTs2NLZ3IQxGz9ZISmpR0QwiUU091b6GjHnA6UdZkByVlBEpBQQHmzJmDHTt2oLm5GV988QUefvhhZGVldT3H5/Nh1qxZ2LdvH1paWrBkyRKMHj3a6V2Jm85OmXBoqkBxwkH54AMaRAdhB47DZlkjaUCYx4lE2bAhnvXr6Z9cWkpTQeGg7N7tbGOSHnBLoJjooOTlSZfDqTCPqROIsjLKFbOsxM7R1avp3OzXDxhSe1SlH388IMbJTZuUldyGwkmBErGCR5NAcStPzEQHJWVCPMnAkSNy27QB0EmBYg/v+AoKgKO9akwSKK6EeOzhHZ+PRqJeveiq4sZCRyFIpRAP4HweiqkCxedzJlG2q0HbqYDv86MdC48/ntR2fj6JE49X8vSYf9LWJs/TU0+V1lRNjbJ+RU53k2UHJXZYoIRAHP/5+RSLNAkn1+MJyD8ZOVKuBGaAQBGVv1u2xNc8yO+PUqAAgVcVxWWMqRDiAVJHoADOJMqGTJAdNYriWSIfQ2OYR/RC+fLL+JsN9lhivHYtuZl9+gDDh9NgLEoYFbW8dzrEY7KDYhcoihpqRwULlBCYPPiJi+3hw4ll0O/ZQ+Obz2dhKt6jQU+ogtWrtR+lZWX0Y1lysbRY2L+fJmFpaSES8OwlxgLFpcbsoCSGyeeoE1q3K0E2WKAAVOYGaBUovXuTbgCAo6uYxEyPDor4Ak45RfYI0DSJSCUHpaUlMIKgGxYoITB58CsspMEBSMxFEVXeJxd/gWLUyPh2WhqdkU43rYiDRPJQhHsyYECQC9beLnt0CwcFUD74idlZTY0zqQQm56AAqSVQEu0mW1VFkUafDzh5fKdci8YggQLIdXniDfNEJVBOPVXep+kcTYUclJwcuV8m5aGwQAmBGPxMPJAAZyp5usI7GUdXRh01irIZR4yg3w0I8ySShxK2gmfjRrKOCwvlgAcod1CKi2X1iZhZJQKHeMwh0euouDaPHg0UVG+naW1OjozvGiJQEs1DMV2gOOlyWpbZDgpgZh4KC5QQmDz4AYknylJ7e9qeXvMabRx/PN2KMI8BAkXsSiICpVsFj8g/OemkwPpUxaXGaWlyoHJihpZqIR5hQ5t4jiaaJGtPkO0K74wYITvwCYGyebMzSwrHib2jbDwR4bBVPDU1su+LsGkATzsoDQ1y+SRTBYoQiixQDMd0gZJoouyaNTTj7pXvx2ltS4DsbOlLi7wMAwSKcFDWro293XTYBFmRf2IP7wCBzdoU5d84OUOL2UERbTwVfdZUclDE+RlvwUlAguzGoxU8IrwDUDuAggK64mnsWXTSSaSZ9u+XCa/R0tIij9luDorooX/MMYGKW5NAceL8FBOI7GwqQzcR4aBwiMdwTB78gMQdFBHe+croA8hER+DszJ4oq5kRI+iEbmiIfUwKG+IJruARDBpEtkZzs7L8G6cESkeHdBSidlAefZSmrq+8ktibR0kqCZReveTFLVYXpbNThkxCJsgClJxiQCVPXp5syxJrmEfM0nNyQvwPQ4V3AClQduxQspqzOD+rqxN/O5F/UlJi1krGdjjE4xFMHvwA5wTKef3X0YYI7wDStti6Faivj+8NHCIjQ7rZsYZ5QgoUv186Q8ECJStLxoMUzdDEgLBuXWKvE/NCgYcPA0cX78R77yX25lEiBEptLWnARDH9HI03zLNhA5XVFxYePS1DCRT77x7NQ7Hnn3S7YIcTKBUVNGPp6IjdsokDu5iIt5RaIBwUU/MaAQ7xeAbTB79EkmQbG4GlS2l7evrRi5NdoPTrRwOBZSV+5XSAeBNlRYgnIAdl61ayY3JyZDKwHcV5KEeXp8L8+YnN0MTg2bs3ibqIPP20FJ+Kmn0VFcl25k64KKafo/H2QhHhnVNOAdJ8VniBYkiibLyVPGETZO0rGAcLlLQ0Z1djjEB6ugyZJupy2h0UU+EQj0cwffATAqWqSi62FS1LllBZ69ChwDG7l9CdwYOfxxNl6+pkyCPAQRHhnbFjQ1/JFS8aeMklFJLZswf417/if52YEmTr6oA5c+TvinIYfD4Hwzx33omafWTDmHqOxuugBCTI7tpFM4qMDHlsCgwRKMJBWbEitjyxsALlyy/pgM7Kkie/HY8mynrBQeEQj0cwXaCUlspEq127YvvbrvLicy34Nh6dndkdFMDIRNlYBIoI75SUUAPKLsLlnwgUlxpnZwPXXUfbzz8f/+vElCD7zDOk3sRM9MAB51bwi4AjAqW1FW3PvIAmP50App6jiTooAQmyxx3XvaW1EChbtmit5DnhBHLGamtjM+PCChThnpx0Ep0gwXg0UdYLDor4X1RVaV/QvgsWKCEwXaD4fPFX8nQJlJNr6MKUni5bQgoMSpQ98US63bEj+oqIkOEdIHwFj0DDgmT/9V90+7e/xX/hjrpJW2Mj8Ktf0fZ//7ccfRWFecrL6TYhgbJpE2r8tPKgD34U9TJkJA0inkPpyBGpSQJKjIMdToASnAsL6UoiSnI1kJkp5zOi+CYawpYYhwvvCDzaTdYLDkq/fhRF6+x0rjldorBACYHpAgWIL1F21y4aANPSgK/0PZpfcswx3WcqQqCsW6ckW74n+vSRQkM0gI1EyARZy5IOir3FvR3FDgpA5tXpp9OgMH9+fK8RdYjnf/6H1MywYcBVVwHHHkv3KwrzOOKgbNiAGtCJWYRapL35RsL75Qb2gpNoZ6Mij+OYY45eGHsSKIZU8gDxJcqGXYfHMIHiVIjHCw5KRoZc7siUMA8LlCA6O8muBLwhUGJJlBXN2U49Fei98+jVPji8A9Ag0KsXdVzdtCmh/XSCWMM8IQXKzp00SmRkyNrIYMTgt39/YgsdxYhwUV54IfZ+L0CUIZ6WFuD//T/avu8++h6Ec+YlgbJ+fZdA6YOawHwagxg4kL7itrboB/uA/BOgZ4ECGJeHEotACRniaW2VLqchAkU4KPv3J/Y6cTkoBw4A3/0u8O9/J/bmMWBaJQ8LlCBqN8sj0QsCJRYHpSu8Mx2hG0AJ0tISWwjHYWJNlA0Z4hHuyejRoWPbAJXBiBFE0YqpAPCNb5Bb/8UXlMQcK1E5KC++SMHlQYNk4osQKIpCPEKgJNRmxuag9MERKkmLd7U6F0lPl+dotNfSgPwTy1bBE2oSARgjUEQlz+rV0a0r5ffLC2CAQPn0U1J0JSXdk4IFIrmnulrOJF1EfPVvvJFY14WY29w3N1MW/f/8D3D//fG/cYyYVsnDAsXOxx+j5sxLAAD5+Va3vDSTiFWgdHba2ttPR+TBz8BE2Wh3JaSDEmoF41AoLjUGKJH36qtpO55k2Yg5KG1twGOP0faPfkQVEoA3Qzx2B6X86Od48snEdswlYlk00F5de9ppoCn7kSM0WTjuuNB/ZIhAOfZYKiNvaYluVw4dIiFjr+wCEHoF42AS6YIXB5ddRjr+0KHEDrOYFgr0+2kSIb6Pzz9X1vHZtEoeFih2+vdHTRuVffTxHdG7LxGINUl29Wo6SQoLj854hIMSTqAYlCgrBMqGDdGlxIQUKJEqeASKS40F3/423f7lL7EvHhgxxPP731MCUv/+wE03yfu9FuJpagK+/FIKlBOOTr//9Cdzpnw2YolGfPEF/d+zs48e72ICccwxsoFMMEKgbN1K4RFNpKUBEyfSdjSJsuJf1a9fUHFSpPwTgcJJREYG8NBDtP3LX8bfsC0mB+X++4H//V/6cnw+EqpO9NuPAg7xmMzgwTj8g0cAAH0adpGvZyji4rt7d3QXbRHemToVyKitlllfI0eG/gN7LxRF6j0csaTEtLXJC2DIEE8kgaLBQQFot8aNo/3/wx9i+9seQzwdHbJr7A9/GHixEw7KwYNK7HIhUA4ejDP3euNGwLJQk0ejaJ9hfYAzz6QX+81vnNtRh4ilF4oI70yYcNTgipR/AtB0t6iI7FHNuWKx5KHEXcEjUJyH8o1v0HBYXy+NyFjw+2XhRUQH5Xe/o2UoAEpKEwO9ov8vh3gMp2bEaQCOJuDdeKPSXIRY6N+fBHZnZ3RqN2T+yaBBdOUPxQknUCC9ulr70ZqWJsuNI+Wh7N5Neio3Vya4oaqKVIvPJ+2YcGhyUACZLPv887Fpwh4dlD/+kT5L377Ad74T+FhhodJS47596ZCyrDiTDo/GD2qKSVj16QPg+9+nx/7nf8hhMYhYeqHEnCAL0PFsSJgnHoESkH9SXS2PQfsKxqFQLFDS0oBf/IK2586NfTisrZXJ7z0KlPfeA265hbYfeIDCPCK8p6iUnEM8hhNQYnzkCPDNb2pthBSOtDRa1BSIXMlTXw8sW0bbAQIlXHgHoJm2eNygPJRIAkWEdwYNsoWxRZhqxIigzm0h0FBqLLj6ahJW69dH31Oio0Mes90clM5OObLefXfoz64wzJOWJssY4wrzrF8PAKjpRQd+nz6gRMKhQyl++fLLzuyoQ8RyHQ1IkAUi54gJDBMo69dH1okhS4zFAT98eGSbQUO/ohkzgDPOoDwbEfKJFpF/kpcXPlqHjRuBr3+dTuirrqI+RYBckkORg8IhHsPpEijTJtAIuHw5cO+9encqDNEmyor29sccc/Tc7qmCx44HE2XtAqWLaMM7gBz8tm9X3k6xd2+yk4Hok2Xtzeu6jev/+780sPXpA9x2W+gX0FTJE5dAEQ5KNqmcPn1Alsxdd9Hjc+bEV6ftEsJBqarq+aLd3CyFdzeBEukcNUSgDBxIjfg6OyOfoyEdlGjDO4AWgeLzAY9Q9B8vvhjb6RIx/+TgQeDCC8lqOf10CvOI2ZVigSIclEOHtKY1dcECJYgugTKwFyUXAsCvfw0sXKhvp8IQrUAJCO8A0c/ODFqTJ1oHRZQYx5UgC9ComZVFik7BiqnBiDDPggXRlTWGXSjQ7wcefpi2v/c9CueEwkuVPMJBASmxrjYAN90EFBRQtYM42A2guFh+7T25nKtW0cS5f/+jruihQzIpMlyOmMAQgeLzRR/mcUygKJ5EnHkmcP759L+aNSv6v+uxgqelBfjqVymVYNgwus7YbRbFIZ7iYlnk58SinonCAiWIgGSmiy6ixEKA8lE05CX0RLSVPN0ESrQOikGVPGPG0CC4f3/P+QsJlRgDNCMXX6yGMM8ZZ9CkqbEReO21yM8PmyD75pt0QS8okA5DKLxSyVNf36U+a9qPVtoJgVJYCNx8M20bVHLs80WXKGsP7/h8kOfnkCGRQ5LiHP7ii9hXDnUYIVAihSe7CRTLkn8UjUCpqKCraEeH8kmEiJi++mr0i72HdVD8frquLFtGM4y//92WOHcU4aB88YWSrt4+n1l5KCxQgujW5v4XvwAmTSL77ZvfNMP3Oko0DsqOHeQOpqcD55wD6pAqbIZIDoqwLb78UkmVR0/k58traU8uSrcQT02NvDpEI1AArYmyPl9gsmwkQvZAsSzpntx5Z88dB70S4jnq+n3e90zs2ktWUcDHuusuSnJ55x3tboKdaBJl40qQFfTvTxc3v98zlTzdqni2biWboavGOgL2SYTic3T8eArDWhbw059G9zdhHZQHHySrNCOD+guEcssGDqTEtPZ2ZQUbQjiaUMnDAiWIbgIlM5OmssXF1LFSOCoGEE27e9Gc7bTTqCIRn39Od/TrFzkZraREZuJGuxCOi0STh9ItxCPck6FDo28NrKnUWHDddXTY/ec/kb/2kBU8b78NrFxJWXkzZ/b8AppKjWMVKG1rPsPDuB9jD72LI0fomhzQbHToULLKAQrJGkI06RJxJ8gCRlXyiF4oW7ZQfUEoGhvlY10OigjvjBsn4wuR0JCHInjoIdLCb74JfPRR5OeHdFDmz5eTiOeeA77yldB/bG/Ul4KVPCxQggi5UGBlpcxHefppUrsGIC7CO3eGzw2MO7wjMDBRNpyD4vf3IFCiyT8RaHRQANKOl15K2y+80PNzu4V4LEuWGdx6a3fLOJiCAllaoyDME49A+eQTYML95+MBPIw2KwszZtDh2E1vCjH28svxd9RymEjdZPfsoSiFvdlZTA4KYIxAKS2Vnzfc6gNiVt6rly0tKpb8E4FGgTJiBHDDDbT9k59EbgnQbaHAxYtlZ8b77qMwT08IgaI4UZYFioGEXcn4wgtlNc9NN2mbXdsZOJAmUK2toVfb7OwE3n2XtmNOkBV4KFH2wAH6LtLSbLOzSCsYh0KzgwLIMM/LL1OVRzi6OSjvv0/Tuuxs4J57onszhWGeWARKQwPl906aBKyv7o9SHMSr//Vv/P3vQTlGgjPOoE5nLS3UF8UAIl1HxbX5xBNt6SaxTiIMESiAbGESLsyTcIKsQKNAASg6k5VFWuO993p+bsBCgZs2Uf/89naKFQkXpSc0lRpziMdAwgoUgA6myZOBujrgiiu056NkZcmDKVQeysqV9Hl697bNzqLpgWLHoERZsSuffx46H1C4JxUVthbasVTwCDQ7KABw7rl0ET5ypOcCsm45KMI9+fa3gxY66QGFlTz2BQN7qgj+5z/puvvUUzRDvS73z9iI43HVzXlhl2mBzycbt/3mN0b0L7InyYaaaXcL79TWyitDtOeoQQIlUh5KN4HS0iInPx4SKIMGkUEJRHZRuhyUrHqa6NbU0D98/nyaTUVCU6kxOyiG0dkpw/AhBUpmJiU1lZTQhe8HP1C6f6HoKVE2oL29KEGNdXYmVMGGDdoH/AEDaBbS2SmNIDvdKngaG+VJHYtAEYNfTU1goxGFpKXJZXN6SpYNCPEsXUpTuszM2Hr3KKzkEdGkjo7Qaw4dPAhccw1wwQUkOIcMAf71v/WY33wFSlEd+bj9xjdIBe3bF10ZlMuIY7GhIXTUqVuCrDg/Bww4mjQWBUKgfPFFz3abAiJV8nQTKGvWkJtgjw9Fg2aBApAwyc8nMdbTqihdDspvf0H/oyFDgL/+lZJfo4FzUBggMEcwbD5lZaXsWDl3LvDnP7u+Xz0RjUDpCu+0tkobP9rZ2ZAhNFC2tckEW03YO9WHijh1EyiffkpTm/795ZUxGvLyqOsUoHUAvPFGEiqLF4fXDgEhHmEX33CDTG6OBoUhnqws6fbYwzyWRafV8cdTCWdaGkWo1q8HppcdjekNGhS+n4v9De64g7affFL7OlI5OfJiHHwotbfLXI24EmQFZWWk3C1L+zk6fjz97/bsCR3G61bBYw/vhLXGQiDEzKFD5GhroF8/adj99KfhW7IcPkzHYMnGD2ks/fvf5RIT0SAclH37lHxWDvEYipgs5+cHrbIZzIwZwI9/TNs336ysRDMU4Sp56upkhvm55x69c8sW8tULC6O3/30+z+ShiBBPV4lxPOEdgcaW94LKSmoMBVBzyVB0OSgHNwL/+heVYIpjM1oUN2sT2k9cwLZtA847j6qXqqvpf/zJJ7R6bH4+uhq0dTkFkfjOd0gZrF4NfPih4/sfK+F6oaxbR4ZH795ykhxzgixgVCVPr15SW4UK83RzUOLJPwFoDBNKV+N6affcQ5PZzz4Lv8hn9R6KRxen11F351j+twCJGjHBUuCiiEtDQ0N0zSLdhAWKDcuiPLuu2UxPPPQQtSWur6d8FE1NksI5KIsXk40+fLjNObWHd2KZrXhEoHRzUBIRKAYkygIyWfall2jGHUyXg7Lg6Gq+11wj9z1ahEA5dCh8faiDiAFw927giSeA0aOpHD47mxZeXr7cljMFyIvu6NHRvUFpKakdwIjGbeF6odivzV2pCLGGYAWGCBSg5zyUbuvwxCtQACPCPL17y/nAgw92j4J3vvJHHGmhUE7J4z8Cpk2L742Ei6JAoBQU0A+gP8zDAsXGscfShEtUvvRIRgblo5SW0kwt2ooJhwknULqFd4D47GPAyERZEb2x002gxFNiLDAgURagZsZlZdQ99+9/D3yss9O2UODiP5Po/MlPYn8Te6mxwkqeu+6i06apCZgyhRyFH/84hHspLrrROigAlf8AFOvX/D8M56B0yz8B4nNQAKMESk+VPAEOysGD8n8TaQXjUBggUACKKPbvTy52QL6YZaHmB7/o+rXPnd+K/00UlxqbEuZhgZIIAwfKfJRnntGSlGdvd2+/YIcUKPHOzuwOiuaY/vHHkzY8ckSGdAQBIZ7WVhkaiKXEWGCIg5KZKXsuBCfL1tTIf0cxDlOnYzHTihWFibJCoDQ1kXv9wgvAv/8td6EbsYZ4ADrGzzuPvqCnnkpofxMlnIPSrYKnsVHGamOdRBgkUOwOin246Oyk6i3g6AVQZNKOGEFWRKwYIlDy8oAHHqDthx6ifyMAYO9eHN5PlkphodVz2kAkUrSShwVKopx/PjXbAai0U1EcXyDyLerrpTu/bRvtRkYGzUy7iNdBGTWKrpShVIFisrPl7tvDPPX10k0YPBh0UevooOTBgKWNo8QQBwWQy8y8/Tawa5e8X4R3inAEmeiIzz0RKEyUnTqV/o+XX06a+eabe4g4HjhAM22fL/bjVmQw/u532hIpgdDX0epq6dZ3mQciwbVv3xCLK0VACJRt23peOlkBJ55IucqHDwd+5v37SaSkpx817BIJ7wDGCBSAjuGhQ+kzzp179M5Vq1ANalBUXBxDSD0ULFCYuPn5z2mpSw35KHl5slmomHyJ9vaTJtmKHjo75YgY60CflSUHQEPzUER4p7iYEvUCwjux5NsIxOC3a5f28urhw0lo+v3AvHny/q4EWRwCvvY1WlExXhQmyp57LiXg/fnPUeRqC0dg6NDIC+cFM306Hev19cCLL8a1r05gP5REHpEwD447ztZkL97wDkBVIaWlZFkIp1QTWVnyHLWHeUS4oH9/EinJJFCysugyAACPPXZ0srhyZZdA6bZQYKzYS40VuNgc4kkmMjKAP/6RBog1a2htBYUE56GEDO9s20Zhj9zcMG04I2B4omzYCp54wjsATfHy80kVRFouWgEiWfbFF2WDs0PrqAymFIeiX7ksHIpXNe7qyxOJWBNk7fh8sv39U0+FrwN1mfJycow6O6UDJq7NAQn5iQgUwNgwjyAg/8Tvj20F41AIgbJ9u7b/rZ2rrqJ/QU0NVaBh1SocBq13FmnZs4gMG0YnTVOTEtWQ1A7Knj178K1vfQslJSXIy8vDSSedhJUrV3Y9blkWZs2ahYqKCuTm5mLKlCnYYMBJlRADBsjBUASXFWEXKB0dsvVyyATZESOOTl9ixNBEWYGjFTwAXdwMyUMBqDt27970OUUS96E/vA0AKOmbHv/nFChe1Thq4sk/sXPttTR93b6dEmY1kJbWPQ8lZIJsvDliAvF3oboYKiaiQBErCubkUEwoHgYOpIt2W5v+KyloWBWtiObMAfb/Z4dzDkpmphyPFIR5klag1NTU4PTTT0dmZib++c9/4rPPPsOvfvUr9LYlQT3++ON44oknMHfuXCxfvhzl5eU499xzUa+76DpRxEVCsctgT5RdsYLO+z59aFmSLmJtcR+MgQ7K1q2yTj9AoHR0SPWSyIXbIAs5N5eutcDRZNlDh1C9jAaq0olxOGLBiJwbRaXGUZOIgwLQF3fLLbStseTYvmig3x/BQYn3HDXIQRF5NStX0ukIBJUYiy9g/PgITad6ID1dDn4GnKMALfJ5yimUKPvI/ptwuCsHxYEXV9hRNmlDPI899hgqKyvx0ksv4ZRTTsGQIUMwdepUHHN0ALQsC3PmzMH999+Pyy67DKNHj8b8+fPR1NSEV1991endUYu4cm7apLTltN1BEeGdadOCjJJEZ2fis+3Yoa39u6BvX5m7sG4d3QaEeDZtojygXr1kbkU8GNCszY4I8/z1r8CBf63GIT+NeiUjY+hKGY6CAtlBTXGid1gsK3EHBQBuv51m2kuXhl9m12XsWnfzZtKAubm2tKGWFnmcJUGIZ8QIOv2amuTQE+CgJJp/IjBoEgGQ8frII7T9LL6L1flnAHDAQQGUJsoefzwVpf7xj66/VY84LlDefPNNTJw4Ed/4xjfQr18/jBs3Ds/b6iO3bduGqqoqTLfFH7Kzs3H22Wdj2bJlIV+ztbUVdXV1AT9G0r8/XT39fjmwKsDeTTZk/gmQ+Oysd285DQy3nLBCgvNQAhwUEd456aToFuMKh0EhHoCc8JNPpkTLl+f7cQhU6RFrwUdYTAvz7NtHV/L09PjLpwHyq7/5TdqeM8eJPYsZey8UEd6ZONFmHmzeTONG795SKMaKvZKnq9ZVD+np0sEVYZ5UECgAValNHbYNbcjG3xunAHDIQVEoUHr3pnqPSZNcf6secVygfPnll/jtb3+L4cOH41//+he++93v4q677sLvf/97AEDV0UL4sqC1UcrKyroeC2b27NkoKirq+qmMZZ0RlWhqCy8EyubNcvDram8PBK7REa9AAYwK8wTnoYQUKInmZRhUaiz49rfp9vllo5wXKIpb3kdEiPxjj6VchUQQJcevvabFt7bnoERMkI2n6gygyZEo6dNcyQN0z0PpEih92+SJm4QCBQB+UflswO9ec1BMwXGB4vf7MX78eDzyyCMYN24cbrnlFnz729/Gb3/724Dn+YJOQsuyut0nuO+++1BbW9v1s8veDMI0NAqUhgZKZh8xIqhQZ88eStbIyEgs5GFQoqx90cD2dpnMNWgQEusga8c++GluUCe48kogP9/CpsZKLMYUAA4NfoDySp6IJJp/YmfCBGoF0NFBTRUVYz+UXEmQFRgU5gknUAbWbqD/Q79+8VUU2jFUoJy6bQG+ioVdvzuag7J9O1VkpgCOC5T+/ftjVNBJdvzxx2Pn0SSB8qP2ZbBbcuDAgW6uiiA7OxuFhYUBP8bS02IxLtG7d+Air2HDO8ceSwX78WKQgyK+5nXrKP/EsmiS3a/U75xAGTKEZrONjdQwzAAKCoArL2wAANSD/ulJG+KJp8V9T4gqu2efVd7MTDgo1dXA2rW07WiCrMAggSISZdeupdOngQ5bDNj+f7QR6wrGoTBRoBw6BOzciYfwAHw+mtg4co6WldFAb1nmnKMu47hAOf3007EpyILavHkzBh9VykOHDkV5eTkWiW5iANra2rBkyRJMnjzZ6d1Rjz32IBpWKEAkswMhBIpTszPx2T77TLuCHz6cBElTE7VJB8g98W37krqGZmcDI0cm9iZZWbSkMGBMHgoA/NeJ/wn4PelDPE4JlEsvpRPl8GG5RIUiCgul0+X3U4Vs14J5QOI9UAQGCZTBg+nYbG8H/vEPuq93byBvtU2gJIoQKHYFpJujIebRx7ZizhwfbrwxaPHLePH5Ui7M47hA+f73v4+PP/4YjzzyCLZu3YpXX30Vzz33HG6//XYAFNqZOXMmHnnkESxcuBDr16/HDTfcgLy8PFx99dVO7456Roygi2NDg1JVL5zSzMyg9vaAc7OzykryKjs6tPdayMiQzv+bb9JtQHjnxBPjL1+0Y2Aeyqk1b+MEyCRsx0I8QqBUV2uv1IJlORviAShz8447aFtDeYJ9kekA96S9XZaOJpFA8flkmOeNN+jW0QRZgBZzEvGT4NUYdSFy4CZMwF130UoL8bSeConCUmMTcFygnHzyyVi4cCH++Mc/YvTo0XjooYcwZ84cXHPNNV3PuffeezFz5kzcdtttmDhxIvbs2YN33nkHBWKNZy+TkSFrBzXkoUyefLTVu51Ee6AINCUBh0Psimhc5miCrMCwSh4A8K1Yjm9DVsY5JlB69ZL127ot5J07SeRnZvawimAcCHtx5Url3UdFmAcIEihbt5Lo79VLOnbxIgTKjh1GOApCoIjqwgF920hI2NVLopgW5hFNSZ0ag+ywg5I4F110EdatW4eWlhZs3LgR3xalB0fx+XyYNWsW9u3bh5aWFixZsgSjnZolmYCGi/jll5OdetddIR50KsQDGCVQRB6KWPooQKDE2+I+GNMclM5OYOVKXIuXUVnehtNOc8Yo6sKUMI9wAEaMcPYDHn88LWDV0KB8kLc7KCETZI8/PvGcjJKSoyvxQbvLCUgNItpCDcg4mns4ciS5H05gmkCxOSiOwwKFSRgNibJnn02Lvl52WdADBw9S0pY9fpkIBlbyCAZVWs47KIY1a8PnnwMNDSjOa8WmzWn4v/9z+PVNqeRxOv9EkJEhjw17H3YFCAfFvgsAnAvBCgwK8wSbJANbjp5HToR3BCYJlJoauR9OTZLsiDGcQzxM3BjkMnTNzgYPppljotg/m8Ik4FAEL+ExOP8QibH09MRW9rVjWohHXFQnTEBuQUZCfehCYkolj9P5J3ZCLRSjAJEoeeaZQaeiUwmyAoMESlmZbQFPAAOqj5YwJatAERO3oUMdqi0Owp4nJpYzT2JYoLiBuHLu3k0XTJ04Gd4ByJrNzqa+Ktu3O/OacVJUFFi9NPjIUcfqhBMSb+wlEA5KVZXy0tSQiIuqU/H7YEwJ8bjloADaBMr48cBHH4XIz3VLoBgQ4gECD9UBO452C09WgeK0gxtMfr7MU0qBMA8LFDcoLJQXNt1t4Z22jzMz5azWAIdIGDo+HzBg50f0i5PWap8+VBsJmDEAui1QTAjx+P1SWLvpoKxZQyvhKuS002SKCADKKRJdnp0SKOJ1DHBQgCCB0rQ5aBEiB7CvI6DZ1e1KkHUj/0SQQnkoLFDcQkMeSkicdlAAo0JY4muuqACy1h5dCM7p2YspibKtrfI7F12wnEY4KIcP048Otm2jrMqcnMDMUqc45hgSnm1tcrVJXYiuoDk5gXZgIggHZedOudy3RgIECvbQxTsjw7k3qKyksG5rK63fpBO3HRQgpUqNWaC4hSkXcacdFMCoRFnhFB9/PNwbHEzJQ1m7lnpmlJQE1qw6SX6+/lJjEd4ZOdLBBhI2fD6ZEKI4zNMNcX6OGOHcZy0ulgsOGhDmOflkMiEH5NegFIecDe8AJHZEnwWdk4i6Oika3BQo7KAwCWOCQKmrkwtguCFQdIsvAOefD7z6KvDcI4co58fn617ekyimOCjiYjpxYuLlqD2hO8zjZoKsQFMeSjeczj8RGJQoW1BARtXKYVcgDZY77p8JeShiPKyslIs2ugELFCZhxEV840bZqEM1Irbdv7/Mo3ACg5KAfT7gqquAoYePxn6HD6cR0UlMcVD+c7TFvVv5JwLdlTxuJsgKWKAoZWBJM8o2LqZfnHZQADMmEW42aLMjBMrWrcqbDaqGBYpbDByovy28G+EdgJKARa6C7hwbgVMLBIbChMEPkBdTt/JPBLoreVQ6KBs20GKQukgRgYJVq2gsDK47dgoTHBQ3G7TZqaykSsq2NuoYnMSwQHELe6hB10XcqRb3oTAozAPA3eQ0IVC2bdM3Y6mvl/9PVQ6KDoHS0SGdPzcdlAEDyFn0+/XlUtmrlZJdoNjX33EjPGmCQFHloKSny3M0ycM8LFDcRPdF3K3BDzAqURaA8y3u7QwcSOXVbW0yp0c1q1bRAnoDB8oESLfQGeLZupW+5/x8mfjoFsKJ0hXm2b2b3JuMDCmCnUIIlN27gdpaZ187HpxcIDAUugVKY6MU1m47KEDK5KGwQHET3QLFrRAPoP+z2amtlfkhbgiU9HRZAqprABT5J26HdwB5sdRRaizyT0aNgvNtcoPQnYcizs/jjnN4QSVQzllFReD76ESVQNHVUPHTT2kC0b+/+xMIIGVKjVmguIm4iIuDVyUtLXL5cTcFyuefy5XAdCFE0uDBDi7tG4TuRFm3G7TZyc+XFzfVYR4V+ScCUwSKGw4nYE6YZ+9eypVwcgXjYHr3pt42gBz3VKKiQZsddlCYhBk5kmZGtbXqk5k2b6YYd58+Qa0rHaKigkrpOjv1D4BuhncEuhNlVQoUQF+YR0UFj0D0Qtm6VU9TulQRKO++S7cTJlCCvVvoDPOoaNBmhwUKkzBZWXKQUB0KsYd33EhK8/nMCfO4WcEj0OmgHDwo1z0SF1W30VXJo9JBKS6WwnPFCvffL5hUEyjTprn7PjoFimoHRYR49uwBGhrUvKcGWKC4ja6LuJsJsgJTEmVVzF50OijCPRkxglZIVIGOSp7WVvl+KhwUQF+Yx7LcrbIDzBAoliUFyrnnuvteuiYRzc1SbKpyUIqLgdJS2ta9sKeLsEBxG10Cxc0EWYEJDkpTkxzok9VBUR3eAfSEeDZvpjLjwkIqA1aBLoFSVQUcOUKJwGI27DRicrJ3L72XDj77jNbHyckBJk929710OShr11Kou18/dcctkBJhHhYobqPbQVEhUD79VN8qomvX0nuXlck1ZNxADH6HD6sf7HUIFB0hHnt4x81W/nZ0CRQxgTjmGLp4u0FREZWl299PNcI9OfNM9z6nQJdAsTu4qo5bQAqUJK7kYYHiNqIt/I4d6i5sHR3yoHUzxDNiBC2d3tior7rl/ffp1u3y2169ZLKxygHQstSWGAuEQKmpAaqr1bynygRZwfjx5GLs3Us/qnA7/0QgXl9XmEdVeAeQAmXbNrUTJlUN2oIRzhs7KEzc9OkjG06p6ij7xRe06m1eHrVFdov0dGDMGNrWFeb5+9/p9oIL3H8vHWGenTspSTYjQzpWKsjLk3a1qjCPygRZQX6+vIirdFFUhGABvXko7e3A4sW07XaCLEBjXXo6tVioqnL//QSqWtwHwyEexhFUh3lEeGfkSPebXelMlD18GPjoI9qeMcP999ORKCsummPGuG+RB6M6zKPDQQH0hHlUJLEDegXKJ59QhUlpqfMrjIciM1Ou86PqHG1tlcetagfFLlBU99lSBAsUFegSKG4PfoDeRNl33iEr94QT3G+LDuhxUFQtEBgKlZU8zc3ye1XpoAB6BIqqEI9OgSLCO1Onuj9REqjOQ1m/npyi4mI1Y5CdYcPoe21oUOsYKYQFigrsyaQqUGUfA3oFigjvXHihmvfT4aCI/BOVCbIClZU8GzfSLLCkhKohVCK+2xUr1MxEDx6kH4BcTjcRAmjfPsonUsmiRXSrIrwjUC1QdCXIArSi8dChtJ2kYR4WKCoQ9uaGDbQQmtuoqOARnHginZj79gH797v/foLOTuDtt2lbRf4JoN5B8ftlAp4OgaIyxKOjgkdw4onUVPHwYTUXNnF+DhlCOTBuUlgo89BUuih1dXL9nWQWKKobtAWT5HkoLFBUMGQIDRRtbXLFS7fw++V7qAjx5OfLbHJVDhFAs91Dh+h7dbu/gkA4KDt3kq3rNps2AfX1VCml4n8ZjD3E47azIC6eqvNPABInYhKhIsyj0uEE9IR5Fi+mScSxx8qFNlWg00HRQZKXGrNAUYHKtvC7dlHZb2am80u4h0NHmOcf/6Db6dOdXwk2HOXlJBb8fjVrK4nwzoQJVMWjGnH8HDni/lo1uhJkBSrzUFTlnwh0CBRV7e2DUSlQ2tupDxOgz0FJ8lJjFiiqUHURF/bxccepu6iJzyYsXRWozj8BSGiqHAB1NGizYy81djvMo6PE2I5KgaIyiR3QK1BU9D+xI87Pffuoy7SbfPYZVfEUFcn3VQ2HeBhHEBay22EQ1fYxIAehf/5TzcJVVVUy9nv++e6/nx3hKqjIQ9EtUAA1lTwNDXIxRN0OyqpVFJpwk2R3UHbvJhHm8wHnnKPmPQV9+sj1qsQx5RZiDBo3Tn3elEAIlG3b1OQ3KoYFiirsDoqb8XyVCbKC8eMp1tzcDLz5pvvvJ5JjJ0ygsItKVCXKtrVJt01HibFARSWPuGCXl1MVjw5GjqR8qsZGeQ65wZEjsmOtqnNUCKH9+9V0BX7vPbqdOJEEg0pUupy6GrTZ6d+fulx3dupZyNRlWKCoYtQoCrkcPkwzDLdQbR8DNChcdRVtL1jg/vvpCO8IVJUar11LIqW4WJ99DKip5NGdfwJQB1JxoXEzzCPOz4oKdStT9+ole3SoWJNHV3hHoEqg6Gpxb8fnS+o8FBYoqsjJkTMmt/JQLEtPiAcArrySbt9+292EyvZ2atAGqCsvtqPKQREXyYkT9dnHgJoQj+78E4GKPBTV4R2BqjCPZelLkBWoECgdHTJcr9NBAZI6D4UFikrcbth24AA1Y7KralWMGkX9JNrbgYUL3XufZcuox0JpKV28VWN3UNwM1ensIGtHRamxCQ4KoEag6HA4AXUCZcMGyhHLzVVX/h+MCoGyaROFtHv1kueILpK41JgFikpEoqxbDooY/IYNowFCNcJF+eMf3XsPUV48YwbZ8qoZMoQEYEOD7AbqBjo7yNoRg31trXv5C6Y5KJ9+StUZbpDsDopwT846izqd6kCFQLEnyKpq4x8ODvEwjuB2qbGu8I5ACJT333dvbQiVqxeHIjsbGDiQtt0aABsapNjULVDy8uTndSPMc+QIsGcPbetoRmdn6FBK0rX3t3AaXQJFiL+VK90tv9XR3j4Yu0Bxy/XT3aDNDod4GEcQDsoXX1CYwml02ceCoUOB006jRmZ//rPzr79jB80A09KoQZsu3M5DWbWKvsMBAyhLXzduVvKIGX1lpbqk0XD4fO6GeRoaZIM/1ZOIcePo/Kyrc8/hbGsDliyhbV0JsgCtaJyWRiEYt5bf0N3i3o5wUA4eVL/eksuwQFFJaamcjboxQ9PtoADuhnn++U+6nTSJqlt04XYljyn5JwI3K3l0trgPhZsCRZyfffvSWKCStDTg1ltp+ze/ccdZ+OQTKtPu2xcYM8b514+WrCy5/pAb56jfD6xeTdsmOCi9elFVGJB0eSgsUFTjZsM2HT1QgrniCpqJfvSR842SdJYX23HbQTEl/0TgZiWPKQmyAjcFyquv0u1ppzn/2tFw001UTbh6NfDxx86/vgjvTJ2qPy/DzTyUzZtJiOXmur8adbQkaZiHBYpq3MpDOXKE2jsDegVK//7AlCm0/dprzr1uS4tsAKUr/0TgdjdZEzrI2lER4tGdICsQ3/nGjc52RW5oAF56ibaFk6GakhLpcP7mN86/vu7+J3bcFCgi/+Skk/Qk6oeCBUp8zJ49Gz6fDzNnzuy6z7IszJo1CxUVFcjNzcWUKVOwQeU6ETpxS6AI92TAAFrhVyduNG1bsoRiygMGUDmzTtwM8Rw6RG2rAT1l1KGwh3icDg2Y5qCUl1MY1u+XFyIn+P3vKf9j+HDgvPOce91Yuf12uv3zn6ktgVPU1krnT2eCrMBNgWJCg7ZgRB4Kh3iiZ/ny5XjuuedwYtAF5fHHH8cTTzyBuXPnYvny5SgvL8e5556L+vp6N3fHDIRAWbeOmv04hQnhHcFll1HX3DVrgM8/d+Y1RXnxBRfobVwGyMFv714STU6yYgXdHncc0Lu3s68dL0KQ1daSgHKKgwflRVJ3BY8d4aKIC26iWBbw9NO0fccdesMfEydSblNbG/Dii8697uLF1G59+HBKUtWNCgfFhARZATsosdHQ0IBrrrkGzz//PPrY1mOwLAtz5szB/fffj8suuwyjR4/G/Pnz0dTUhFdFjDaZGTaMkppaW51Vu6I5mshx0UlJiZwlOpEsa1n6y4vtFBfLihPhdjiFafknAMXaRdKhk2Ee4ZoOHUrr4JiC03ko775LQr1XL+CGG5x5zUQQLsqzzzq3MKJJ4R3APYFid9ZMclCEQNmyhfYxSXBNoNx+++248MILMS3I7tu2bRuqqqow3VYmmp2djbPPPhvLli0L+Vqtra2oq6sL+PEsaWkyROFUmGfVKuBvf6PXvuUWZ14zUUSse8GCxMMCW7ZQvkdmJiXg6ca+IJnTeSim5Z8I3KjkMS3/ROC0QBHuyQ036A+/ApTIXlIC7NxJ44YTmND/xI44P/fsofw1p/jySwrVZWeb5foNGULjY0sLsGuX7r1xDFcEyoIFC7Bq1SrMnj2722NVRxt4lZWVBdxfVlbW9Vgws2fPRlFRUddPpZjNeRWn81Aefphur7pKf9tlwaWXUsXA5s2yJC9eRHjnrLOAgoLE980J3MhDsSzzSowFbiTKmpZ/IhC5P9u2JR7S+vJLKQLuuCOx13KKnBzg5ptp24lk2V27KLSQlgacc07ir+cEJSVyrHCymlC4JyeeSILAFNLT5SQiicI8jguUXbt24Xvf+x5eeeUV5OTkhH2eLyiPwLKsbvcJ7rvvPtTW1nb97PK6QnRSoKxdS+Ednw+4//7EX88pCgqAiy+m7USTZU0pL7bjhoOyaxc1lsrIkMeIKbhRamyqg9K7t/y8IicoXp55hoTn9OnShjeB736XxoxFixIPNYvqupNPNidvyu5yOjmJMKlBWzBJmIfiuEBZuXIlDhw4gAkTJiAjIwMZGRlYsmQJnnrqKWRkZHQ5J8FuyYEDB7q5KoLs7GwUFhYG/Hgau0BJNPwh3JMrrjAjQdaOPcwTb1y0oUF2pzQh/0TghoMi3JPRo/WspdQTTod4LMtcBwVwJszT2CgTUe+8M/F9cpKhQ6Xgf+aZxF7LtPCOwA2BYmL+iYAFSmSmTp2KdevWYc2aNV0/EydOxDXXXIM1a9Zg2LBhKC8vxyJxUANoa2vDkiVLMFnX6peqGT2a7NCDBxNbs+azz4D//V/aNsk9EVxwATkpu3ZR47Z4eO89Whtl2DD1KzT3hBsOiqnhHSAwxONEqXFVFbXlTkszp9mVHScEyiuvUH+iY44xS1wLRLLsvHkkpuLBssxLkBU4LVAsy2wHJQlLjR0XKAUFBRg9enTAT35+PkpKSjB69OiuniiPPPIIFi5ciPXr1+OGG25AXl4err76aqd3x0xyc6XaTSTM84tf0Elz2WV6W0uHIycH+NrXaDveah6Rf3LhhfrLi+0IB2XbNuey5k1NkAXo8/p8zpUai/DOscfScWIadoESjyCzlxbffrv+zqqhmD6dvv/aWtnlNlbWr6dS8bw8fR1yw+G0QNmxg0R1ZqaZrh87KM5w7733YubMmbjtttswceJE7NmzB++88w4KTEmAVEGieSibNsncjgcecGKP3EE0bfvzn2Pv+2JZgf1PTKKyknJFWlupH0qi+P0y38FEgZKT4+yqxiaHdwBaXC89nZwesdpyLCxeTCIsLw+48UbHd88RnFifRzjhZ51FlS0m4bRAEe7JmDHmfVZACpSdO91dsVohSgTK4sWLMWfOnK7ffT4fZs2ahX379qGlpQVLlizBaNMS5dwmUYHyyCN0Ubv4YvMSKu1MnUoZ9QcOAO+/H9vfrlsH7N5NjtPZZ7uzf/GSkQEMHkzbToR5Nm+m8sXcXHMv2k5W8piaICvIy5P/h3jCPE89RbfXX29O4mgobriBxOennwJh2jz0iKnhHSBQoDgRljQ5/wSgBSjFIqpOnKMG9FMx0HdMEYSoiGfRwC++AP7wB9o22T0ByA79xjdoO9Ywj3BPpk41L2kUcDZRVlwEx48n8WMiTlbymO6gAPHnoezYAbz5Jm2bUlocjuJiQITWYy05bm2VCeymJcgCNIHw+Si/5uDBxF/PxBb3wYg8lETDPM3N5Iq98ELi+5QALFB0ITq+ipUxY2H2bOoAOWOGmeGAYEQ1z+uv06AWLSZ1jw2Fk4myJnaQDcapSh7LMt9BAeIXKM88Q7PPqVPNauYVDpEs+7//S2Xu0fLxxxRK6NfPzP9jdrYMSyY6ibAsM1vcB+NEHoplUZ+c//s/4Ec/Aqqrndm3OGCBoouyMlqYzLIolBEt27cD8+fTtunuieDMM2mRv9pa4O23o/ubmhppOc+Y4d6+JYIbDorJAsWpEM+uXUB9PTlFpjQWDIX4X6xYEX2IoKlJzjrvusud/XKa8eMpwbW9HXj++ej/ToR3pk0zMwkYcC4PZc8ecmHS080sSBA4IVBmzya3OyODRGtJiTP7FgeGHlUpQjx5KI89Rsmm06YBkya5sVfOk5YGfPObtB1t07Z33qFZ6KhR1MbZRMTg9+mnsTlDwbS1yWPAxBJjgT3Ek0hMX7gnI0YAWVmJ75dbiGTII0eiF2WvvgocPkzHrEmNBSMhXJT/+Z/ok9lN7X9ixymBIsI7J5xgZrhZkGip8cKFsmXF3LnaOwOzQNFJrAJl1y7Z+OlnP3Njj9xDhHnefDO6kJa9vNhUTj6Zcmw++4zitfF2OF6/ngROnz7SlTGRYcMopl9XF39M/8gR4NFHadvEsICdzEx5jkYT5gkuLU5Pd23XHOcb3wD69qWk9Lfeivz8I0fkd2KyQHHK5TQ9QVZgd1BinUR8+ilw7bW0feedRqzrxgJFJ7Emyj7+ONmwU6ZQ2MRLTJxIg0VTk0wgDIffD/zzn7Rtav4JQKXGb71FwuI//6HY9OLFsb+OyD+ZONGsXi/B5OQktqrxrl3AGWcAH3xADfzuucfZ/XODWPJQPvyQlp7IzQVuusnd/XKa7Gzgv/6LtqNJll28mM7TESPkMWEiTjsoJuefAJQnJvoVHTgQ/d8dOABccglNHqdNA554wr19jAEWKDoRibJr10Ze9nzfPhkf9kruiR2fL7D1fU+sWEEz9MJC4PTT3d+3RDjvPBq8TjqJ9lmc3LHMXkzuIBtMvJU8a9dSnsOGDUBFBV3MTc63EcQiUIR7cu21stzTS9xyC4Vj33sP+Pzznp/rhfAO4JxA8YqDkpMj2x9EG+ZpbaVmnzt30vn9pz8ZU0nIAkUnw4fTbKupKfKM9P/9PzqQTj9de1wwbkTTtn/+k5JgwyHCO9Onm7ViaDiGDqWM92uvJaF5zz30WaOtzvJCgqwgnkqe994j52TvXorhf/yxFOemI/4nq1b1nJuxaxfF7wHzS4vDMXgwcNFFtB1pfR6T+5/YEQJl927g5ZepfDZW9u2jn7Q0bxy3sSTKWhYtHPl//wcUFUlH2BBYoOgkPZ2W7QZ6zkPZvx949lna/tnPzA4D9MQJJ1DeQXu7HMxDYXp5cSjy8qi66umnafbx2mvkGES6kDc2yqRRLwiUWCt5Xn4ZOP98qtqZMgVYutTskEAwI0ZQOKq5mXKNwvHb35I4nTLF7CqPSIhk2fnzaaHOUOzcSbPztDT6vCZTWkoJy5YFXHcdVRN+//s9/y+DEe7JyJFAfr4ru+kosQiUJ56gtZjS0sg5MWnFbbBA0U80eSi/+hUNkKecYv6MJRLCRQnXtG3/ftny3dTy4nD4fDR7fv99KiFfv55Ex9/+Fv5vVq2iWP6AART6MJ1oQzyWReWK111HzsOVV1KJucldVUORlibzDsKFeVpaZPjVK6XF4Zg2jf7HdXW02GEohHtyyik06zYZn48cu4ceAgYNIud2zhyaLJ15Jn3GSK6KFxq02REiI1KI5x//AH74Q9p+8klyrA2DBYpuhGUYzkE5dEjarV52TwQiD+Xf/w69krPokzJhAl3kvcgZZ9CgNnkyJatdfDEwa1bo1tFeCu8AgSGecHk2HR3AbbcBP/kJ/X7vvdT52MT1S6JB5AaFEygLFtB5OmgQ/a+9TFoa/e8AGndC/Y+9Et4RlJUBP/0p5aH84x/AV79K7vXSpRSWjeSqeKFBm51ousl+9hmNxZYFfPvbVLVjIpYHqa2ttQBYtbW1unclcZYtsyzAsvr3D/34T35Cj48fb1l+v9p9c4tTTqHP9PTT3R+74gp67IEH1O+X07S2Wtbtt9PnASzrggss6/DhwOdceSU99otf6NnHWGlutiyfj/Z5//7ujzc0WNZFF9HjPl/o/7HX+POf5TkYjN9vWePG0eOPPqp+39ygpsaycnPpM33wQeBjnZ2W1bcvPbZkiZbdc4Tduy3roYcsa9AgeX4ClnXGGZb18suW1dQkn1tZ6a3Pu3Mn7W9GhmW1tXV//NAhyxo2jJ5z1lk0Tikklus3CxTd1NfLAb+qKvCx6mrLKiigxxYu1LJ7rvDkk/SZJk8OvL+tzbKKiuixjz7SsWfuMG+eZeXk0Oc65hjL+vRT+ZgYKN55R9/+xcrgwbTPS5cG3r9/v2WdfDI9lpNjWa+/rmX3HGf7djngNzcHPrZ0qfy8hw7p2T83+K//os/1zW8G3r9mDd2fn6/8wuYKHR2W9Y9/WNall1pWeroUKn36WNb3vkeiRNxXV6d7b6Ojs9Oy8vJonzdtCnysrc2ypkyhx4YMsayDB5XvHgsUr3HccXTA/Otfgfc/+CDdf+KJdNAlC3v2SFG2fbu8XwwGpaU0cCQTq1bRgADQ4PHqq3RBE4NfsLNiMlOn0j6/9JK8b/NmKbZKSsgZTBb8fukafPxx4GPf/Cbdf/PNevbNLVavlqJs7155/y9/Kd3AZGP3bsv6+c+7uyoAjdFeYuxY2u+33pL3+f2WdcstdH+vXpa1bp2WXYvl+s05KCYQKlG2tpaSuQDqe2LqWhfxUFEBnH02bb/2mrxflBeff763unBGw7hxlPw7fTqVlV99tWz/P3y4UaV9EQmu5Pn4Y1p24csvqeR62TLvLMMQDT5f6H4oe/YAf/kLbZsaw4+Xk06iHKqOjsD1ebzS/yQeBgygsVbkqlx6qRyHvNYYM1QlzzPP0FIGPh8tyWB6J2dwkqwZhEqUffppEimjRlETnWQjVNM2L5YXx0JJCQ18991Hv7/3Ht16JUFWYK/k+etfqS9PdTV1wv3oI5mkl0yEEijPPksX8DPP9EZ/jFixr8/T3k59mD74gO7zSoJsPKSnUwXhG28AO3bQxfyxx3TvVWwEC5R33wW+9z3afvRRzyRzs0AxgeA1eerrqewLoOzzZHJPBF//OvULWb2aTqKdO6ksNy2NurMmK+npwCOPAK+/Tv01AJqpeglRyfP22ySeW1pozaTFi6liIhkRAkUsS9DaCjz3HG17vbQ4HF//OtCvHzXYe/NNEp/NzfQ/PuEE3XunhgEDqDWCxhV948JearxlC6211NlJVUuitNgDJOGVz4MIgfL55zQAPPMMrYh63HHAFVdo3TXXKC2Vs7A//lGuvTNpkjfbhMfK175G5Yu/+Y331m0RDkpdHZVOf/vbNNv0QhOreBECZdMm+tx/+hOtXzJwIJWtJiPZ2fS/Beg4tYd3vN7uINkRLub69eSWHDlCjSOfe85T/zsWKCbQvz+tJOr30wztl7+k+++/P/lyMeyIpm0LFiR/eCcUxx5LPSdMXr49FMOGAb160fbDD1MIwJC1O1yjXz/qc2JZ1OPmqafo/ltvTe7PLtbnef996i4LJHd4J1kQDkp1NYnqgQOpe3dOjt79ihEWKCbg88kY9l13UdOnYcMokTKZufRSOmE2bZIJsqkkULxKdjbFtJcsIRHtoRlZQggXZe5cSni2OwzJSmUlrXILUFIwAEydqm9/mOgoLJSNLvPyKETnwcaXLFBMQYR51q6l2/vvT+6ZGUAn0YUX0nZnJ1X3JGOyYTJy6qnAWWfp3gu1CIHy+ut0e9VV5HwmOyJZFqD1aAYO1LcvTPR85St0Dfn976mK0IOwQDEFIVAAWlX02mu17YpSRJgHIPckVWbjjPcIrrZKttLicEydKkMGHN7xDvPnk+v19a/r3pO4YYFiCnaBct99QGamtl1RygUXyGoWDu8wJmNfi+X0072zeFyi+HzU9uDss1NHlCUDGRmUO+VhkjyG4CFGjCDb3O8HbrhB996oIzcXeOklSg72SG0+k6IUFQEnnkhh2GQtLQ7Hueeye8Iox2dZ4ZYkNZe6ujoUFRWhtrYWhYWFunfHWSyLwxwMYyrr11PH56uv5vOUYeIglus3OyimwYMew5jL6NGeaBHOMMkA56AwDMMwDGMcLFAYhmEYhjEOFigMwzAMwxgHCxSGYRiGYYyDBQrDMAzDMMbBAoVhGIZhGONggcIwDMMwjHGwQGEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFIZhGIZhjIMFCsMwDMMwxuHJ1YwtywJAyzYzDMMwDOMNxHVbXMd7wpMCpb6+HgBQWVmpeU8YhmEYhomV+vp6FBUV9fgcnxWNjDEMv9+PvXv3oqCgAD6fz9HXrqurQ2VlJXbt2oXCwkJHX5uR8PesBv6e1cDfszr4u1aDW9+zZVmor69HRUUF0tJ6zjLxpIOSlpaGgQMHuvoehYWFfPArgL9nNfD3rAb+ntXB37Ua3PieIzknAk6SZRiGYRjGOFigMAzDMAxjHCxQgsjOzsaDDz6I7Oxs3buS1PD3rAb+ntXA37M6+LtWgwnfsyeTZBmGYRiGSW7YQWEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFIZhGIZhjIMFio1nnnkGQ4cORU5ODiZMmIAPP/xQ9y55ng8++AAXX3wxKioq4PP58MYbbwQ8blkWZs2ahYqKCuTm5mLKlCnYsGGDnp31KLNnz8bJJ5+MgoIC9OvXD1/96lexadOmgOfw9+wMv/3tb3HiiSd2ddecNGkS/vnPf3Y9zt+z88yePRs+nw8zZ87suo+/Z2eYNWsWfD5fwE95eXnX47q/ZxYoR3nttdcwc+ZM3H///Vi9ejXOPPNMzJgxAzt37tS9a56msbERY8eOxdy5c0M+/vjjj+OJJ57A3LlzsXz5cpSXl+Pcc8/tWhCSicySJUtw++234+OPP8aiRYvQ0dGB6dOno7Gxses5/D07w8CBA/Hoo49ixYoVWLFiBb7yla/g0ksv7Rq0+Xt2luXLl+O5557DiSeeGHA/f8/OccIJJ2Dfvn1dP+vWret6TPv3bDGWZVnWKaecYn33u98NuG/kyJHWj3/8Y017lHwAsBYuXNj1u9/vt8rLy61HH320676WlharqKjIevbZZzXsYXJw4MABC4C1ZMkSy7L4e3abPn36WC+88AJ/zw5TX19vDR8+3Fq0aJF19tlnW9/73vcsy+Lj2UkefPBBa+zYsSEfM+F7ZgcFQFtbG1auXInp06cH3D99+nQsW7ZM014lP9u2bUNVVVXA956dnY2zzz6bv/cEqK2tBQAUFxcD4O/ZLTo7O7FgwQI0NjZi0qRJ/D07zO23344LL7wQ06ZNC7ifv2dn2bJlCyoqKjB06FBceeWV+PLLLwGY8T17cjVjpzl06BA6OztRVlYWcH9ZWRmqqqo07VXyI77bUN/7jh07dOyS57EsC3fffTfOOOMMjB49GgB/z06zbt06TJo0CS0tLejVqxcWLlyIUaNGdQ3a/D0nzoIFC7Bq1SosX76822N8PDvHqaeeit///vc47rjjsH//fjz88MOYPHkyNmzYYMT3zALFhs/nC/jdsqxu9zHOw9+7c9xxxx1Yu3Ytli5d2u0x/p6dYcSIEVizZg2OHDmCv/zlL7j++uuxZMmSrsf5e06MXbt24Xvf+x7eeecd5OTkhH0ef8+JM2PGjK7tMWPGYNKkSTjmmGMwf/58nHbaaQD0fs8c4gFQWlqK9PT0bm7JgQMHuqlHxjlEtjh/785w55134s0338T777+PgQMHdt3P37OzZGVl4dhjj8XEiRMxe/ZsjB07Fr/+9a/5e3aIlStX4sCBA5gwYQIyMjKQkZGBJUuW4KmnnkJGRkbXd8nfs/Pk5+djzJgx2LJlixHHMwsU0IAzYcIELFq0KOD+RYsWYfLkyZr2KvkZOnQoysvLA773trY2LFmyhL/3GLAsC3fccQdef/11/Pvf/8bQoUMDHufv2V0sy0Jrayt/zw4xdepUrFu3DmvWrOn6mThxIq655hqsWbMGw4YN4+/ZJVpbW7Fx40b079/fjONZSSquB1iwYIGVmZlpvfjii9Znn31mzZw508rPz7e2b9+ue9c8TX19vbV69Wpr9erVFgDriSeesFavXm3t2LHDsizLevTRR62ioiLr9ddft9atW2ddddVVVv/+/a26ujrNe+4dbr31VquoqMhavHixtW/fvq6fpqamrufw9+wM9913n/XBBx9Y27Zts9auXWv95Cc/sdLS0qx33nnHsiz+nt3CXsVjWfw9O8U999xjLV682Pryyy+tjz/+2LrooousgoKCruue7u+ZBYqN3/zmN9bgwYOtrKwsa/z48V1lmkz8vP/++xaAbj/XX3+9ZVlUyvbggw9a5eXlVnZ2tnXWWWdZ69at07vTHiPU9wvAeumll7qew9+zM9x0001dY0Tfvn2tqVOndokTy+Lv2S2CBQp/z87wzW9+0+rfv7+VmZlpVVRUWJdddpm1YcOGrsd1f88+y7IsNV4NwzAMwzBMdHAOCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGOFigMAzDMAxjHCxQGIZhGIYxDhYoDMMwDMMYBwsUhmEYhmGMgwUKwzAMwzDGwQKFYRiGYRjjYIHCMAzDMIxx/H9xJ+OtJ2eU8AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGxCAYAAABIjE2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZfElEQVR4nO2deXxU1d3/P5N9IQkkgYRA2BRBBJHFBdywIIpra611qfvTWtdSbW2ttfJUK+qvVarU+rhUqNZi+1SsdrGiFZQHtayyiCzKDmEJIfs+9/fHl5NzZzKT2e4959yZ7/v1ymtuZiYzdyb3nvs5n+9yfJZlWWAYhmEYhjGINN07wDAMwzAMEwwLFIZhGIZhjIMFCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGOFigMAzDMAxjHCxQGIZhGIYxDhYoDMMwDMMYBwsUhmEcY9asWfD5fFr3YfHixfD5fFi8eLHW/WAYJjEydO8AwzCMk4wfPx4fffQRRo0apXtXGIZJABYoDMMkFYWFhTjttNN07wbDMAnCIR6GYXDw4EF85zvfQWVlJbKzs9G3b1+cfvrpePfdd7ue87vf/Q5jx45FTk4OiouL8bWvfQ0bN27s8XW/+tWvYvDgwfD7/d0eO/XUUzF+/Piu3y3LwjPPPIOTTjoJubm56NOnDy6//HJ8+eWXMX2W4BDPnDlz4PP5sHXr1m7P/dGPfoSsrCwcOnQIADBlyhSMHj0aH374IU477TTk5uZiwIABeOCBB9DZ2RnTfjAMkxgsUBiGwbXXXos33ngDP/vZz/DOO+/ghRdewLRp01BdXQ0AmD17Nm6++WaccMIJeP311/HrX/8aa9euxaRJk7Bly5awr3vTTTdh586d+Pe//x1w/+eff47//Oc/uPHGG7vuu+WWWzBz5kxMmzYNb7zxBp555hls2LABkydPxv79++P+bN/61reQlZWFefPmBdzf2dmJV155BRdffDFKS0u77q+qqsKVV16Ja665Bn/9619x+eWX4+GHH8b3vve9uPeBYZg4sBiGSXl69eplzZw5M+RjNTU1Vm5urnXBBRcE3L9z504rOzvbuvrqq7vue/DBBy37sNLe3m6VlZUFPMeyLOvee++1srKyrEOHDlmWZVkfffSRBcD61a9+FfC8Xbt2Wbm5uda9994b9Wd5//33LQDW+++/33XfZZddZg0cONDq7Ozsuu8f//iHBcB66623uu47++yzLQDWX//614DX/Pa3v22lpaVZO3bsiHo/GIZJDHZQGIbBKaecgnnz5uHhhx/Gxx9/jPb29q7HPvroIzQ3N+OGG24I+JvKykp85StfwXvvvRf2dTMyMvCtb30Lr7/+OmprawGQc/Hyyy/j0ksvRUlJCQDgb3/7G3w+H771rW+ho6Oj66e8vBxjx45NuCLnxhtvxO7duwNCVi+99BLKy8sxY8aMgOcWFBTgkksuCbjv6quvht/vxwcffJDQfjAMEz0sUBiGwWuvvYbrr78eL7zwAiZNmoTi4mJcd911qKqq6grz9O/fv9vfVVRUdD0ejptuugktLS1YsGABAOBf//oX9u3bFxDe2b9/PyzLQllZGTIzMwN+Pv74464ckXiZMWMG+vfvj5deegkAUFNTgzfffBPXXXcd0tPTA55bVlbW7e/Ly8sBIOJnZRjGObiKh2EYlJaWYs6cOZgzZw527tyJN998Ez/+8Y9x4MCBrtyLffv2dfu7vXv3BuRvhGLUqFE45ZRT8NJLL+GWW27BSy+9hIqKCkyfPj3g/X0+Hz788ENkZ2d3e41Q98VCeno6rr32Wjz11FM4cuQIXn31VbS2tgaIJEGofJeqqioA6HJ8GIZxH3ZQGIYJYNCgQbjjjjtw7rnnYtWqVZg0aRJyc3PxyiuvBDxv9+7d+Pe//42pU6dGfM0bb7wRn3zyCZYuXYq33noL119/fYBzcdFFF8GyLOzZswcTJ07s9jNmzJiEP9eNN96IlpYW/PGPf8S8efMwadIkjBw5stvz6uvr8eabbwbc9+qrryItLQ1nnXVWwvvBMEx0sIPCMClObW0tzjnnHFx99dUYOXIkCgoKsHz5crz99tu47LLL0Lt3bzzwwAP4yU9+guuuuw5XXXUVqqur8d///d/IycnBgw8+GPE9rrrqKtx999246qqr0Nra2i2f5fTTT8d3vvMd3HjjjVixYgXOOuss5OfnY9++fVi6dCnGjBmDW2+9NaHPOXLkSEyaNAmzZ8/Grl278Nxzz4V8XklJCW699Vbs3LkTxx13HP7xj3/g+eefx6233opBgwYltA8Mw8SA7ixdhmH00tLSYn33u9+1TjzxRKuwsNDKzc21RowYYT344INWY2Nj1/NeeOEF68QTT7SysrKsoqIi69JLL7U2bNgQ8FrBVTx2rr76aguAdfrpp4fdl9/97nfWqaeeauXn51u5ubnWMcccY1133XXWihUrov48oap4BM8995wFwMrNzbVqa2u7PX722WdbJ5xwgrV48WJr4sSJVnZ2ttW/f3/rJz/5idXe3h71PjAMkzg+y7IsvRKJYRjGDKZMmYJDhw5h/fr1uneFYVIezkFhGIZhGMY4OAeFYRhPYFlWxHbz6enp2ldTZhjGGdhBYRjGE8yfP79bj5TgnyVLliT0HosXL+bwDsMYAuegMAzjCaqrq7Ft27YenzNixAgUFBQo2iOGYdyEBQrDMAzDMMbBIR6GYRiGYYzDk0myfr8fe/fuRUFBASfEMQzDMIxHsCwL9fX1qKioQFpazx6JJwXK3r17UVlZqXs3GIZhGIaJg127dmHgwIE9PseTAkUkwe3atQuFhYWa94ZhGIZhmGioq6tDZWVlVMnsnhQoIqxTWFjIAoVhGIZhPEY06RmcJMswDMMwjHGwQGEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFIZhGIZhjIMFCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGOFigMAzDMAxjHCxQGIZhGIYxDhYoTMI0NgKPPw5s2aJ7TxiGYZhkgQUKkzCvvQb86EfAz36me08YhmGYZIEFCpMwe/bQ7a5deveDYRiGSR5YoDAJc+gQ3R48qHc/GIZhmOSBBQqTMNXVdHvggN79YBgmPB9/DGzfrnsvGCZ6WKAwCSMEypEjQFub1l1hmIhs3Qq0t+veC7Xs2gWcfjpw0UW694RhoocFCpMwIsQTvM0wprF4MTB8OHDnnbr3RC1ffAH4/cDmzYBl6d4bhokOFihMwggHBeA8FMZs1q2j2xUr9O6HasR52d4O1NXp3ReGiZaYBcoHH3yAiy++GBUVFfD5fHjjjTe6PWfjxo245JJLUFRUhIKCApx22mnYuXNn1+Otra248847UVpaivz8fFxyySXYvXt3Qh+E0YddoHAeCmMyNTV0m2rDjX3iwJMIxivELFAaGxsxduxYzJ07N+TjX3zxBc444wyMHDkSixcvxqeffooHHngAOTk5Xc+ZOXMmFi5ciAULFmDp0qVoaGjARRddhM7Ozvg/CaOFtrbAGRkLFMZkhEDZvz+18qVYoDBeJCPWP5gxYwZmzJgR9vH7778fF1xwAR5//PGu+4YNG9a1XVtbixdffBEvv/wypk2bBgB45ZVXUFlZiXfffRfnnXderLvEaOTw4cDfefBjTEYIFADYuxcYMkTbriiFBQrjRRzNQfH7/fj73/+O4447Dueddx769euHU089NSAMtHLlSrS3t2P69Old91VUVGD06NFYtmxZyNdtbW1FXV1dwA9jBvbwDsAOCmM2doGSSo0FWaAwXsRRgXLgwAE0NDTg0Ucfxfnnn4933nkHX/va13DZZZdhyZIlAICqqipkZWWhT58+AX9bVlaGqqqqkK87e/ZsFBUVdf1UVlY6udtMAgRX7fDgx5iMXaCkUh4KCxTGizjuoADApZdeiu9///s46aST8OMf/xgXXXQRnn322R7/1rIs+Hy+kI/dd999qK2t7frZZejUZ8MG4NZbZev3VIAdFMZLsEBhgcJ4B0cFSmlpKTIyMjBq1KiA+48//viuKp7y8nK0tbWhxj5SgNyXsrKykK+bnZ2NwsLCgB8Teeop4Nlngeef170n6hACJT2dbnnwY0yGBQqfo4x3cFSgZGVl4eSTT8amTZsC7t+8eTMGDx4MAJgwYQIyMzOxaNGirsf37duH9evXY/LkyU7ujnKEe/DFF3r3QyUixCPyoNlBYUwmFQWK3x8YimWBwniFmKt4GhoasHXr1q7ft23bhjVr1qC4uBiDBg3CD3/4Q3zzm9/EWWedhXPOOQdvv/023nrrLSxevBgAUFRUhJtvvhn33HMPSkpKUFxcjB/84AcYM2ZMV1WPVxGDXyqtdyEclOOPB7Zs4cGPMZe2NqCpSf5uaKTYcWpqAHsHBz5HGa8Qs0BZsWIFzjnnnK7f7777bgDA9ddfj3nz5uFrX/sann32WcyePRt33XUXRowYgb/85S8444wzuv7mySefREZGBq644go0Nzdj6tSpmDdvHtJFnMCjCIGybZve/VCJXaC8+Sb1RGlpAWxtbxjGCIKiyinjoAQLEhYojFfwWZb3Vmaoq6tDUVERamtrjcpHGTSIZmU+H9DcDGRn694j97n4YuBvfwOeew64/XZqpb1zJ8CFVoxpfP45Cem0NAp7+HxAayuQmal7z9zlww+Bs84CsrLIRcrNDXSSGEYlsVy/eS0eBxEzNMuii3QqIByU0lKgb1/a5hkaYyLi/Bw0iESJZQH79undJxWI83HECLptbgYaG/XtD8NECwsUh2hvBxoa5O+pEuYRyXclJVKgcKIsYyJCoBQXAwMG0HYqhHmEQBk6VLq6PIlgvAALFIc4ciTw91RJlLU7KP360TYPfoyJCIHSpw8wcCBtp0KirDgf+/Zll5PxFixQHCI4AS8VHJTOTvm5S0qkQGEHhTGRUAIllRwUFiiM14i5iocJTSoKlJoaiuMDZJvz4MeYjDhHe/emH4AFCsOYDAsUhwgWKKkQ4hHhnaIiSjpkB4UxGXZQWKAw3oJDPA5hn50BqeGgCIFSUkK3nCTLmAwLFBYojLdggeIQYvAbP55uDxxI/l4D9goegJNkGbPhJFkWKIy3YIHiEGLwGzqUQh5A8od57BU8ADsojNmEEij79gEdHfr2yW0siwUK411YoDiEffAbOpS2kz3MExziYQeFMRn7OVpWBmRkUEfZqiq9++UmdXXUowlggcJ4DxYoDmEf/IYMoe1kd1CCQzxi8GtsTP7wFuM97OdoejpQUUG/J3MeihAi+fnU4p4FCuMlWKA4xOHDdJuKDooI8RQUcKdKxlzsAgVIjTwUe3jHfsvnJ+MFWKA4BId4aPE1LjVmTKS9Xa4/EyxQUsFBCRYo9fW0UCLDmAwLFIdI5RCPcFAAnqExZmLvUyRaAaSiQOndm3Jv7I8xjKmwQHEI+0JkqeqgAOygMGYizs/CQso/AVJToPh8ckLBAoUxHRYoDhHKQampAWprte2S6wQnyQKpV2q8Zw8nBHuB4PwTAKispNtUEij2bRYojOmwQHGA9nagoYG2+/QBevWSs5RkDfNYlkwMtod4UqnUeOdOcssuukj3njCRCCVQUjFJ1r6dCuco421YoDjAkSNyW8S3kz3MU1cnG1ylqoPyn/+QOF2zRveeMJHoSaDs3UsrcycjLFAYL8MCxQFCxbeTPVFWhHfy8oCcHHl/KjkomzfTbU2NbIbFmEkogVJeDqSlkTjZv1/PfrkNCxTGy7BAcYBQg1+yOyjBPVAEqeSgbNkit8X3wZhJqHM0IyP5m7WxQGG8DAsUB0hlgWIP7wCp6aAAqSHIvEyocxRI/koeFiiMl2GB4gChBr9UCfGEEygHDlAibTJjFyg82JtNJIGSjImyjY1AczNts0BhvAgLFAeI5KAk44U6UoinpUVWNiUjhw9LkQbwYG86qeigiGMyO5sqCwUsUBivwALFAUINfoMH021DQ3LmJ4QL8eTnU+IskNwDoD3/BEjuz5oMpLJA6duXGrQJWKAwXoEFigOEGvxycoD+/Wk7GcM84UI8QGokytrDOwAP9qYTTqAkc7M2cUyKsKtAnJ9cfcaYDgsUBwg3+CVzomy4EA+QGomyLFC8Rao7KHaKi6WjkozubjJx+DDg9+veC32wQHGAcIOfSJRNZoGS6g7KsGF0ywLFbCIJlD17ku9CEE6gpKfL8zYVjtuWFmos6TVWr6bJ3ne/q3tP9MECxQEiOSipFuJJJQfl9NPpNpk/q9cJXorCTv/+5Ca0tyefoA4nUIDUWTDQsoDx44Hhw2VFk1dYuZKaCP7pT7Jrd6rBAsUBOMQTSLI7KJbFAsVLhFqKQpCZSR1lgeQL8/QkUFIlUXbbNmDjRhqLduzQvTexIdY6q60lsZKKsEBxgEghnmRzUCwrtR2UvXtpBeP0dOCUU+i+ZP2syYA4PwsKqHtsMMmaKBuNQLGXyicjK1bIba9NmOz5Qe++q28/dMICxQGE0u0pxJNMvVCamoDWVtruKUnWawNCtNjzT0Sr9Orq5F1wzuuEm0AIkjVRlh2UQIHitc8qrisAsGiRvv3QCQuUBOkpvl1ZSYuRtbQAVVXq980thLLPyqK+J8Eke4hHCJTjjpMOkmVxRYSpRCtQkq2bLAuUwNCI18Yj+3iybBl1Bk41WKAkSKT4thj8kinMYw/v2BtACZI9xGMXKBkZVLYJJO/n9TrsoHR/LBUEit/vbYFid1Da24EPPtC3L7pggZIgYvArLAwd307GRNmeEmSBQAclmUJbArtAAVJjsPcyqShQWluB+nraTlWB8sUXlGAq8NpnFeOsyGVMxTwUFigJEmnwS2aBEipBFpCDX3u7N/sPRIIFireIdI4mY5KsOBYzM4Giou6Pp8Ixa88/AbzroFxxBd2mYh4KC5QEiTT4JWMlT08VPACQmysXJ/PaoBCJ9nbgyy9pmwWKN4jFQUkWx08ci6WlocOwqXDMCoHixc9qz2n7xjfodt265MpljAYWKAmSyg5KuBAPkLx5KNu3U9OkvDxZwZOsnzVZiHSOiv9jW1vy/A97yj+x319dnXwddAVCoJx/Pt16abLU3CwrJUeMAMaNo+1//1vfPumABUqCROugJKNACeegAMlbySPCO8OHU4UW4M0ZWioR6RzNygLKymg7WcI8kQSKmFx0dsrvJ5nw+4FVq2h7xgy69dJYJMbYjAxyo6dNo99TLcwTs0D54IMPcPHFF6OiogI+nw9vvPFG2Ofecsst8Pl8mDNnTsD9ra2tuPPOO1FaWor8/Hxccskl2O3RkSFaB2XnzuTpkxEpxAMkr6sQnH8CsEAxnUjnKJB8eSiRBEpWlsxNScbjdvNmav+QlweceSbd56VeRSL/RFRKnnsu/f7uu8kThoyGmAVKY2Mjxo4di7lz5/b4vDfeeAOffPIJKoR/amPmzJlYuHAhFixYgKVLl6KhoQEXXXQROr1y9NiIxj7OzKSwwJ496vbLTWIJ8Xhp1hINLFC8RzQCJdkqecR5F06g2B9LxuNWhHfGjZNLGXipV5HYT9HC4IwzgOxsOj43bdK3X6qJWaDMmDEDDz/8MC677LKwz9mzZw/uuOMO/OEPf0BmZmbAY7W1tXjxxRfxq1/9CtOmTcO4cePwyiuvYN26dXjXg3VUkQa/9HRg0CDaTpZEWQ7xUIhHkKyfNVkQvYqiESjJ0qwtkoNifyyZBcrEid7sVWR3UAAqPDjjDNr24GUybhzPQfH7/bj22mvxwx/+ECeccEK3x1euXIn29nZMnz69676KigqMHj0ay5YtC/mara2tqKurC/gxhWhmZ8mWKJvKIZ4tW+jW6w7Kxx8DZ58NLF+ue0/cJxUdFBYodDtxIt16zdENdlAAmYfCAiUBHnvsMWRkZOCuu+4K+XhVVRWysrLQJ2i0KCsrQ1WYGqrZs2ejqKio66dSBIwNIBUFSjQhnmR0FZqa5Aw7lEDxUkXEvHnUmfKWW5I7pt3ZKXvxsEAJJFkFSmcnsHo1bXtVoAQ7KIDMQ3n/fUoZSAUcFSgrV67Er3/9a8ybNw++UMX3PWBZVti/ue+++1BbW9v1s8sgHzYagZJMvVBaW+XaQ6nmoGzdSrfFxYGf3YsVEcIFW70aWLhQ7764SU9LUdhJtSRZ+2PJdI4CwOef02SiVy/v9ioK5aCcdBL9XleXGs4n4LBA+fDDD3HgwAEMGjQIGRkZyMjIwI4dO3DPPfdgyNGrdHl5Odra2lATNJIfOHAAZaLWL4js7GwUFhYG/JhCqjko4sRJSwvdoVKQjA5KqARZwJsVEUKgAMDPfuad6oZYEednr16UrB6OZGvWlsoCRYR3xo+XrQC85qCEyvNLTwe+8hXaTpVyY0cFyrXXXou1a9dizZo1XT8VFRX44Q9/iH/9618AgAkTJiAzMxOLbN/wvn37sH79ekyePNnJ3VFCqgqUkhJ58odCDAiHDnkn7BGJcAIF8N5gb69m2LAB+NOf9O2Lm0RzfgKyWVtLi3cqPcLR3i6do1QWKCK8A3jvs4oQj91BAQLLjVOBEMvb9UxDQwO2Cq8bwLZt27BmzRoUFxdj0KBBKAny/TMzM1FeXo4RI0YAAIqKinDzzTfjnnvuQUlJCYqLi/GDH/wAY8aMwTSRBeQROjrkglzRhHj27KFulVlZru+aa0STIAvIsEdHBw2WwSeaF+lJoPTrRyEgrwyA4v/49a8Df/kLMGsWtdQOteCll4lWoOTk0EXs4EFyUXrKrzId8b9NS+v5vPPaRTtaQgmUZHBQAJko+9FHdO0pKFC7X6qJ2UFZsWIFxo0bh3FHe+/efffdGDduHH72s59F/RpPPvkkvvrVr+KKK67A6aefjry8PLz11ltIT0+PdXe0Em18u6yMBkC/3/tljNEkyAJUsy/CHl4ZFCKRLA6KZcmL2M9/ToPg5s3AH/6gd7/cIFqBAiRPoqw4BiO5nF46ZqOlowNYs4a2vSxQwjkow4bRT0cHJbknOzELlClTpsCyrG4/8+bNC/n87du3Y+bMmQH35eTk4Omnn0Z1dTWamprw1ltvGVWZEy3iICoo6Hnm6fMlT6JsND1QBMk2ACaLQKmvl1UAQ4YAP/oRbf/3f1N4IJmIRaAkS6JsNPkn9scPHkyOvBsA+OwzCtMVFgLHHCPv99L5CfQ8zqZSuTGvxZMAsQx+yZKHEm2IB/DerKUnqqvloHHssd0f99IAKP6HubnUCvz228nl27YNeOklvfvmNKnsoEQrUNrbZSm21xHhnQkTAt0jL41FlhXeQQFkHkoqJMqyQEmAVBQo0YZ4gOQqNRYN2gYOBPLzuz/upaql4P9hXh5w3320/fDDchXVZCAegeL1MGy0AiU3Vx7LyXCOAqHzTwD5XdTUmO8S2h3OUBPBc84hV37DBmDfPrX7phoWKAkQy+CXyiEeL1y0I9FTeAfwpoNi/x/ecgswYABdnJ9/Xs9+uQE7KD3jpeM2GsIJlOJi6ajYS+xNRLgnOTk0eQimpIRKqIHkD/OwQEkAMfhFU6GSLA5KPCGeZBj8klGg2F2wnBzgpz+l7V/8ghpdJQMsUHrGS8dtJNragE8/pe1ggZKeLo930ydMoZq0BZMq5cYsUBKAQzw9ww6KmYT7H950Ezl9VVXAb3+rfLdcId4kWS8njaaqQFm/nkRKnz5yvLXjlc8aqs19MCJRdtEibx+rkWCBkgDxhHiqqoDmZtd2yXViCfGkooNy6JD5A0Y4Fywri7rKAsCjj8olDbxMLOfogAF029QU2ELAa6SqQFm5km4nTKAcjWC8kigbjYNy+unkeu7bB2zcqGa/dMACJQFiGfyKi2VTnR073Nsnt4klxJMsDorfH3oVYzv2iojaWjX7FS+hQjyCa68Fhg+n5zz1lNr9coNYztHcXHlcezlRNlUFSrj8E4FXPms0DkpODnDmmbSdzGEeFigJEMvg5/N5P8wjusICsVXxeF2g7N1Ls+qMDOmEBZOTIwWo6QNgTy5YRgbw4IO0/ctfmi+2IhHLOQokRx4KC5TQj3tlPIrGQQFSo9yYBUoCxDr4eb2SRyh7ILrPLAa/6mpvL0YnwjvDhvW84JxXBvueHBQAuPJKYNQoOr6ffFLdfjlNZ6cUWNGeo15v1tbZKS9wqSRQWlqAdeto2+sCJRoHBZB5KIsXm186HS8sUBIgVoHidQdFDHy9e0e3Zou4APr9geLGa0TKPxF4ZbCPlOicnk5dZQESKF5dPM/u/qSKg3L4sMyBSqVuz+vW0UW6tBQYNCj0c7zyWaN1UMaOpc/b0AB88on7+6UDFigJkGoOSiwVPAC5DeIkM31Q6IlkEyjR5BFddhkNgHV1FOrxIuL8zM/v2fmy43WBIo69Pn2i+8xeOWYjESlBFkg+ByUtDZg6lbaTNQ+FBUoCpJqDEkuCrCAZEmVjFSgmf1b7QoE9Cc20NFpIEKBkWZM/UzhiPT8B73eTjSX/xP48rwuUSPkngHc+a7QOCpD86/KwQImTjg5qSQykjkCJ1UEBkqPUOJkclIYGGa+O9H+8+GLg5JMpQfixx9zfN6dJRKB43UGJVaA0NwONje7skwqiESjJ5qAAMlH244+TZz0lOyxQ4sTeJ6F37+j+RoR4qquluPESsfRAEXjBVeiJ9nbgyy9pOxkEinBPwrXRtuPzAQ89RNvPPEPVTF4iHoEikmR37TK/n00oYhUovXoB2dmBf+s1mpupSRsQnUCpqzN7valYHJTBg2nx0s5OYMkSd/dLByxQ4kQMfgUF0SWMArQEuDjovJiHEk+IxyuzlnBs304nf14eUFHR83O9IFBidcGmT6emUC0twCOPuLdfbhCPQBHN2hobvTkjjVWg+HzeOG574tNP6RwtK5P/v1DYk/tN/ax+vzxuox1nk7ncmAVKnMQz+AHeDvPEE+Lx+uBnD++ES74TeOGzxioy7S7K888DO3e6s19uEM85mp8vn+/FPJRYBYr9uSYftz1hD+/0dI7axZipE6baWhIpQHQOCpDceSgsUOIkXoHi5UqeeEI8XndQos0/Abwx0EeTIBvMOefQT1sb8PDD7uyXG8R7jno5DyUVBYq9gicSpn9WMcbm58vQWyTOOYeS2jdu9OYx2xMsUOIkFR2URKp4TB0QIiEEyvDhkZ9r/6ym5i/E44IB0kX53e+AL75wdp/cggVKdHj9HI0mQVZg+oRJJMhG654AdHyLz/7ee87vk05YoMSJOJDidVC8KFASqeIxdUCIRDwOSmuruQvtxSMyAcpDOf98ivWL8mPTiVegeLmbbKoJlMZG4LPPaDsaB8X08SgelxpI3jAPC5Q4SdRBSbUQjxcHPyA2gZKfLytjTP288YR4BEKYvPIK8Pnnzu2TW7CDEh1eFihr1lDORkVF5CR2wPzPGo+DAshE2XffNde9jQcWKHHiRIjHSweS359YmXF1NfWO8RKNjfIiFY1AAcwfAOOdoQHUE+WSS+hYmDXL0d1yhUQFiteSZO1N+FJFoMQS3gGS10GZNIkmR1VVwIYNzu+XLligxIkY/GJVuoMH021dXWAvFdOxZ5fHcvKUlMjMeq+t6bJ1K92WlET/fzZ9sE/EQQGki/Laa3JxNlNJNQflyBE5CUg1gRJNeAcw/7PG66BkZwNnnUXbyVRuzAIlTuId/PLyqF4f8FYeihAX9sZO0ZCeLgWNqbOWcMQS3hGYXsYYb5KsYOxY4BvfoO0HH3Rmn9wi1QSKuOgWFMR2jpp+0e4JUcGT6g4KkJx5KCxQ4iTewQ/wZiVPvMmVgPmDQjgSESimDvaJ/B8FIryzcKG5LqDfL1czjleg1NV5q1mbOObE+RYtph+z4aivl7lQ0Toopo9FsbS5D0bkoSxZQi0BkgEWKHGSiEDxYi+URGbeXh0Ak02gRLtQYCRGjZLH/Z49ie+XG9TWyhyvWM/RggKgqIi2Tf18oYgnQdb+/Pp6s1vAB7N6Nf2PKyulKx0Jk89PILY298GMHk0CrLGR1uZJBligxAk7KNFj+qwlHMkmUBob5cwqEYECAP370+2+fYm9jluI8zMvD8jKiv3vvZgoG69A8UIL+FDEmiALyLGosZEWwTSNRByUtDRg6lTaTpYwDwuUOEk1gZJIbNTki3ZPJJtAESIzOzvyQoGR8IpAief8BLyZhxKvQPH5pGA18bgNRzwCpaBAClYTP2siDgqQfOvysECJg44OuRoxh3gi40UHpbpazmaOPTb6v/OCQCktjbyuUCSSXaB4sVlbvALF/jcmHrfhiLWCB6Dj3uTxKBEHBZCJsv/5j8zB8jIsUOLAnhjYu3fsf29v1uaVXihOhHi8NPgJ96SyMja3weTPmogLFkyyC5RUclDsf2PicRuK2lpgyxbajkWgAOYKlI4OeW2J10GprARGjKAk8fffd2zXtMECJQ7E4FdQIGO3sVBZSUq+qcm8kyQcTiTJeuWzAvGFdwCzB3onEmQFLFDMI5UEyqpVdDtkSOzHs6mf1T7xjVegAMlVbswCJQ4SHfyys4EBA2jbK2GeRGbfJrsK4UhUoDQ1mZeEl2gPFDupIlBSIUnW/jdeOUfjyT8RmOqgiPOzsDC+ia/A3vbe67BAiYNEBz/Ae4myiYR4UslBsTeyM22wd6IHiiBVBAo7KGaSiEAx9bMmmn8imDKFKno2bfKWwA4FC5Q4cEKgeC1R1okk2SNHvNNAKF6B4vOZK8g4xBM9Ikn2yBFzV6a2Y1ksUKLFdAclkfAOQD18TjmFtr3uorBAiYNUc1AsK7EQT58+1PIekBdJk/H7ZQJerAIFMHewdyPE09Bg5gU80XO0sJByzABvNGuzN1lLdoFSUwN8+SVtjx8f+9+bKlCcclCA5Ck3ZoESB6kmUBoapPMRbwMhcVE0bVAIxZ49QHMzxYGF0xULpg72ToZ4CgqA/HzaNtFFceIc9VKYRxxreXnx9bgx9ZgNhVh/55hj4vv/mvpZnXJQgMBEWbHIqxdhgRIHqRbiESdOTk78Db5MHRRCIcI7xxwTX7KaqZ/VSQcFMDvM46RA8UIcP5Hwjv3vvOBwJhLeAVLDQTntNJpAHDxo/qrjPcECJQ7EgeSEg7Jjh/kK1x7eibfBl6mDQijizT8RmCpQnHRQgNQRKF5yUOIVKEK0Hj5M/ThMJlGBYj8/TepD5aSDkpUl+8Ns3Jj46+mCBUocODH4DRhAs/O2NmDvXmf2yy2cuLB5qdQ4kfwTwEyB4tRCgXaSXaB4qZtsogLFPvkQF0pTccpBaWkxK3/KyUaKgBTYXsihCkfMAuWDDz7AxRdfjIqKCvh8Przxxhtdj7W3t+NHP/oRxowZg/z8fFRUVOC6667D3qArcGtrK+68806UlpYiPz8fl1xyCXZ7YRQ4ihODX0aGHABND/M4ERowtbIlFIk6KCaKsaYmmUSZ7ALF75dNr9hBiY70dDlzN+m4DebQIXKdAWDcuPheIz9fhqpNGo+EM++EgwIAFRV0a/oEuCdiFiiNjY0YO3Ys5s6d2+2xpqYmrFq1Cg888ABWrVqF119/HZs3b8Yll1wS8LyZM2di4cKFWLBgAZYuXYqGhgZcdNFF6OzsjP+TKMQJgQJ4J1HWSQfFpAEhHMkY4hH/w6wsmdyaKKYKlLo6ad2zQIkeE4/bYESC7HHHUTltvJj4WZ12UJJBoMScAjhjxgzMmDEj5GNFRUVYFFTX9PTTT+OUU07Bzp07MWjQINTW1uLFF1/Eyy+/jGlHU41feeUVVFZW4t1338V5550Xx8dQixAoiSpdryTKOnHimDgghKK9XZYwJqNAcWKhQIEQKFVVzryeU4jzMzdXNs2Lh1RKkhV/+/nnZh23wSQa3hH060dOjEkTJqcdFNGtPKVCPLFSW1sLn8+H3kdX1Vu5ciXa29sxffr0rudUVFRg9OjRWLZsWcjXaG1tRV1dXcCPTlLNQXEixOMVB2XbNqCzk1wGcQGOFRMFitOzM8BcB8Wp81OEYA8fNm/ZgmBSxUFxSqCY+FnZQemOqwKlpaUFP/7xj3H11VejsLAQAFBVVYWsrCz0CRo9ysrKUBVmKjZ79mwUFRV1/VSKkUMDHR3UFAlIHYHiRIjHxAEhFCK8M3x4/E6D+Kz19ZSIZwJOJ8gCQHk53SarQCkqkuEw02ehLFBiw7QJU1ubTNh1IwfFpGqlWHBNoLS3t+PKK6+E3+/HM888E/H5lmXBF+aKcN9996G2trbrZ5dGz9W+4uRRUyhuvBbiSQUHJdH8E4AubJmZtG3KYO90DxRAOijV1WYtYeCUQPH5vJOHkgoCpaqK/g8+X/wJsgLTxiMR3vH5Er+uCMT52dwceN3yEq4IlPb2dlxxxRXYtm0bFi1a1OWeAEB5eTna2tpQI0aRoxw4cABlZWUhXy87OxuFhYUBP7oQu11QkNiKk4B0UHbtMrv3gJM5KCa5CqFwQqD4fFIImDLYO90DRbyWEGIm5aGIc9SJgd4reSipIFBEguzIkbQoZyKY9lntvbXEsiCJkpsr3RivhnkcFyhCnGzZsgXvvvsuSoJGxAkTJiAzMzMgmXbfvn1Yv349Jk+e7PTuOI5TszOALPLsbMp5MHkAdOLi1ru3FHSmDAqhcEKgAOYNgG6EeHw+M8M8Tp6jXnBQmppkjkwqCJREwzuAeQ6Kk03a7Hg9DyVmgdLQ0IA1a9ZgzZo1AIBt27ZhzZo12LlzJzo6OnD55ZdjxYoV+MMf/oDOzk5UVVWhqqoKbUc94KKiItx8882455578N5772H16tX41re+hTFjxnRV9ZiMk4NfWhoweDBtmxzmcSI84POZ2R8kmGQVKG6EeAAzE2WdPEe90KxNHGNZWXKBw3gw7ZgNxqn8E8C8z+pkm3s7QqCYnkMVjpiDFCtWrMA555zT9fvdd98NALj++usxa9YsvPnmmwCAk046KeDv3n//fUyZMgUA8OSTTyIjIwNXXHEFmpubMXXqVMybNw/pTnlbLuLk4AdQmGfzZkqUtX2txtDcLGdniZ48ffuSkjdl1hJMQ4M8kYcPT+y1TBsA3QjxAMkvULzgoNjDO4mUkJt2zAbjpEBJFQdFlBp71UGJWaBMmTIFVg8pwT09JsjJycHTTz+Np59+Ota3144bAgUwt5JHnDgZGbQEfSKYNigEs3Ur3ZaWJj5QmOYWsYMSH14TKIkg/r66mrrxphm0EMrevXSMpaUBQXPfuLCfn5blXG+geHHbQfGqQDHoEPQGTgsU0yt5nFgoUGD6DM2p8A5g3mdlByU+vJAk65RAEeK1s1N+h6Yg3JNRo+JfUd2O+K7a24Ha2sRfL1HczkHxaoiHBUqMpKqD4sSFzXQHJRUECjsosSEEyqFD5lafOSVQsrJk+3hTjluBkwmyAJCTI/N1TBiP3HJQvB7iYYESI6nmoDg58zbtoh1MsgqUpiZ5cWWBEhvFxVSuCZg7C3VKoNhfw4Tj1o6T+ScCkz4rV/GEhgVKjLjloOzdK1ebNQkncxdS0UEx4bMKkZmZmXj/iGCSXaB4oVlbsgsUy3JHoJg0Hrmdg7JvH+UVeQ0WKDHitEApLaV22pYllxE3iVRxUCwL2LSJtpPNQXFjoUCBECj791Pugm78ftk106lzlAWKXnbvJhGRkQGceKJzr2uSQHHLQSkro8Tizk4zPmessECJEacFis9ndpgnVXJQqqvlhe3YYxN/PTHQ19bqbwPvVgUPQP9Tn4+EgQkXtfp6OVN0WqCYmiib7AJFuCejR8twmxOY9FndclAyMkikAN4M87BAiRF7S2KnMDlRNlVCPCK8M2iQM4OgvWW1cDB04VYFD0ADoPi/mhDmEROI7GznLmbsoOhl9Wq6nTDB2dc1aTxyy0EBvJ2HwgIlRpx2UACzBYobIZ6mJqCxMfHXcxIn808AslXFd6Z7sHfTQQHMykNx4/w0vZtssgsUEfp2wtm0Y0qvouZm+gHcmUSISh5Tk7x7ggVKDHR0kIUMODsApkqIp6CAZraA/kEhGKcFCmDOYO+mgwIkv0Ax2UFpbQXq6mg7WQWKuLCKC61TmJLILlz59PTEm2GGgh2UFMG+ZLVTS2IDZjsoTs6+fT4zB0AgNQQKOyjxYbJAEf/b9HRnxiRTjlk7bgkUU0I89vCOGx1tWaCkCGLwKyiQy8w7gXBQTBQoTs++TRkUgtmyhW6dFCimWMgc4kkMIVD27zevFYA4tkpLnWlNn0oCxZTPKhwUN/JPAA7xpAxuDH6AdFAOHjQrN6O9XdrHTl3cTBkU7Pj97ggUUz4rh3gSo7RUhiZNm4U6mX9ifx2xRo1u6upkWN0tB+XQIb09QpwMo4eCHZQUwS2B0ru3tGdNykMRyt7ncy6kZaKDsmcPJallZgKDBzv3uqYIFLcdlPJyuq2qcuf1Y8GNc9TkZm1uCRT75EQnYtZfVOR8k0FT1h5y20FhgZIiuCVQADMTZcXM214ymyimXLTtiPyTY46hslmnMCUJjx2UxEkVgZKbS40j7a+tE7fCOwCtPSQmXjrPUbcdFPHdHTxoXogyEixQYsBNgWJioqwbM28THRQ3EmQBc8SYyiRZ3WEBFiiJY8pxC7grUAAzxiO3HZTiYhJjgBkuZyywQImBVBUoTip7EwaEYJJZoDQ1yR4LbguU1tbASjcduC1QTOsmywIlMUz4rG47KD6fd8M8LFBiIFVDPE6eOCYMCMEks0ARg19Ghlxe3mlycqRVrjvM49Y5amqzNhYoiWHChMltBwXwbiUPC5QYSFUHhUM88SEG+sOHqcmfDtxcKNCOKXkoHOJJHJMEivi+3RYoJkwi3HJQAHZQUoJUEyhuOyi68xUAWshPfOdOC5SSEikKxCCkGrcreAQsUPSQ7AJFzPjF9+80JiSyu7VQoB0WKCmAihDPkSO0Aq4JuJmD0tICNDQ497rxsm0blRn26iXLZZ0iPV3atroGe7creAQmCBTLkjkwbgmUqioqwTWFVBEoyRzicXOhQIEQKBziSWLcFCj5+fIiIhbH0o0bs+/8fLnKrAkDoAjvDB/uTghEt4WcSg5KfT2JTcD5c7RvX+qTY1nmzEI7OuTsOxkFSns7de8FkjdJ1rLUOCji+zPl2I0WFigx4KZAAWSTMFMEiluzbxNmLQK38k8EugfAVHJQxPmZlSVFsFOkpZkX5hHi0+dLzkT2qiq6gGdmOivA7OgeixobKcwMqHFQWKAkMW4LFBHmMUWguJW8ZcoACKSOQEkFB8V+frrhhpkmUMQxVVLiXCNFQP8xKxDhiP79nVlnKBS6HU7hnmRlyQZ5bsAhniSno0O2fnbbQTGl1Nit8IDuWYsdsQbP8OHuvL7uJLxUCvG4lX8iMFWgOO0umCZQ3ArvAPKzVlfrqbRzeyVjgRAo9fVybSMvwAIlSuwNqJxalyYYk0I8nZ3uxUZNEihCDA4b5s7r6x7sUzHE47ZAMaVZm9sCpblZ7+KlQgi6VcEDyEo7y9JTaaci/wSgHkiiD5LuSrtYYIESJWLw69WLYqJuYJJAOXJElgE7HRvVfdEWdHbKi42TiwTa0f1ZVYd46uv1XdRUCZRkd1B69ZKrN+s8R1U4KBkZeivtVFTwCLwY5mGBEiVuD36AWQJFnDiFhXIdB6cwxUHZt49s3YwMeYF1Gt0CRVWIp6AAyMujbV0zNLfPUdO6ybolUHw+/cctoEagAHrHI1UOCuDNSh4WKFGiQqCIJNkDB+T6KbpwMzRgwuAHADt30u3Agc4mGdrR/VlVhXh8Pv1hnlRzUMQF1Y0KF93HLaBeoKSKg8ICJQkRg5+bB1Lv3jJOqNtFcXPmbYqDIr5jt8I7gN6BvrmZFgsE3HdQgNQRKMJ5041bDor9NVNBoOhMZFfpoHCIJ4lR4aD4fOaEedxcH8KEwQ+Q3/GgQe69h71KwO93731CYV8osLDQ/fdLdoHSrx99l36/GYmGySxQLCs1QjwqHRQO8SQxKgQKYI5AcTM0YB8QdK7HI0I8bjoowrnw++VsSRX2/6GbJYyCZBco6elykDehkieZBUpNjQxzq3JQdIZ4VDooLFCSkFQTKG6GeMSA0N6ud90hFSGezEx5zKgeAFUlyAqSXaAA0m3TfX4CyS1QhHtSUgLk5Lj7XiYkyXIVT2hYoERJqgkUNx2U3FwqZQT0hnlUhHgAfYO9qgRZgVhssapKzfsFo+IcFf1yvvzSvfeIBr9fCtBkFihuuyeAGUmyqqt4TFhJPhpYoESJKoEiKnl0d5N1+8TRnShrWWocFEBfEh47KM4zdCjdbtvm3ntEw+HDMqfJTZczFQSKCUmyKhwUMYFoa1Mfbo4XFihRkmoOitsXN90D4JEjQEMDbbOD4gw6BYplpZaDIo6l3r3daRyp+/zU4aCoFiiqVjIWZGfL8dwrYR4WKFGiWqDs3Us5Grpw++Km20ERArBfP+dXvg1Gt0BR7aAcOiRXaFVFY6Ms/VUhUHQ7KG7mn9hfNxUEivisR46oPW7r6qibNaDGQQG8V8nDAiVKVAmUfv1I6fr9ehtCuR3i0T0Aigoet90TQN9nVR3iKSmhMlwA2L9fzXsKxPmZmSk72rqBCPHs3Kl3AqFKoNTXA62t7rxHT4ixT4VAKS6WqyULUa8CcX7m5ro/SRJ4rZKHBUqUqBIoaWn6KwXsC2e5dXEzxUFxO/8E0O+gqArxpKXJOLfqMI/9/HSzpLq8nKpK/H4pcnXgtkDp3VuKTR2TCOGguLlQoCAtTc85qjL/ROC1Sh4WKFHQ2Ul2HOC+QAH056HU1Um7PFkdlFQSKKocFEBfHorKCYRIZNcZ5nFboPh88rjRKVBUOCiAnkRZlRU8gqQP8XzwwQe4+OKLUVFRAZ/PhzfeeCPgccuyMGvWLFRUVCA3NxdTpkzBhg0bAp7T2tqKO++8E6WlpcjPz8cll1yC3aYscBGCI0fkdu/e7r+f7koeFdajbgeFQzzukOwCBTAjUdZtgWJ/bdXHbWurFNeqBIqO8Uhlgqwg6UM8jY2NGDt2LObOnRvy8ccffxxPPPEE5s6di+XLl6O8vBznnnsu6uvru54zc+ZMLFy4EAsWLMDSpUvR0NCAiy66CJ0iY8gwxODXq5c7GfPB6HZQVFzYdJb2AWodFF19FlSHeIDUEijJ7KDYX1v1cSsuntnZ6sIfOj6ryjb3Aq+FeDJi/YMZM2ZgxowZIR+zLAtz5szB/fffj8suuwwAMH/+fJSVleHVV1/FLbfcgtraWrz44ot4+eWXMW3aNADAK6+8gsrKSrz77rs477zzur1ua2srWm2ZWnUi3qIIlYMfoF+gqLiw6WyOBOgJ8Rw6RPk9KtrOt7RQZQvADorTiETZVHFQVCaOAoHhHRXnCpA6DkrSh3h6Ytu2baiqqsL06dO77svOzsbZZ5+NZcuWAQBWrlyJ9vb2gOdUVFRg9OjRXc8JZvbs2SgqKur6qaysdHK3I5JqAkWFg2IXKKoX0WtpkVUmKkI84nvs6AgMF7qJ+B+mpwNFRWreE0gNgcIhHndRnX8C6Jkw6XRQ9u83Y0XuSDgqUKqO9rguKysLuL+srKzrsaqqKmRlZaFP0Ehif04w9913H2pra7t+dileqUsoXdUCZedO9RdvQE3ylrhod3aqu2gLxOGTn69mcMjOlqsJqxoAVS8UKEglgcIhHncQ6YgqKngEOkLOOhyUvn1p0uL3q28FEA+uVPH4gkZEy7K63RdMT8/Jzs5GYWFhwI9KVDsoAwbQQdTerqcrp4oQT3a2nNmrzkOxh3dUXbxVD4A6EmSB1BAoIsRTXa1nsUvLkueomwJFVxWPTgdFRxWPSgclPV22AvBCmMdRgVJ+9JMHOyEHDhzoclXKy8vR1taGGjGihHiOaagWKBkZcvagI8yj6uKma4amsoJHoPqz6kiQBaRA2b9fdslUgcpztKBAnhs6XJTaWtkkLhkdFB0CRWcfFNXnqJfyUBwVKEOHDkV5eTkWLVrUdV9bWxuWLFmCyZMnAwAmTJiAzMzMgOfs27cP69ev73qOaagWKIDePBRVFzddpcYqE2QFqgdAXQ5KWRm5Up2dapMrVZ+jOhcNFMdQr17UNM4tUkmgpIqDAnirkifmKp6GhgZs3bq16/dt27ZhzZo1KC4uxqBBgzBz5kw88sgjGD58OIYPH45HHnkEeXl5uPrqqwEARUVFuPnmm3HPPfegpKQExcXF+MEPfoAxY8Z0VfWYhhj8VB5IOgWKqgZCugbAVBAoOpq0AeT+9e1LA/2+fSRYVKBaoAwbBixfridRVkX+if31U0mg1NdTEr2bwk+gy0HxUi+UmAXKihUrcM4553T9fvfddwMArr/+esybNw/33nsvmpubcdttt6Gmpgannnoq3nnnHRQUFHT9zZNPPomMjAxcccUVaG5uxtSpUzFv3jykp6c78JGcJ9UcFFWzb90OCod43KF/fylQTjpJzXvqECiAXgdFlUA5fJgqPjJivlrEjt8vL5wqBUpREfW4am+n79ftQtHOTj0TX8BbIZ6YD7kpU6bAsqywj/t8PsyaNQuzZs0K+5ycnBw8/fTTePrpp2N9ey3oFCg6usmqurjpatYmclCS2UHRFeIBSKB8+qm6RFnL0hfiSWYHRVSAibW5VLhhYiVsn0/mM6nA56Pvc+9eGo/cFii1tfS9Ahzi6QleiycKdAgU0e4+mUM8OnoP+P2yzDiZBYpuBwVQJ1CammTSqGoHJZkFSnq6vHiqOm7FRbNfPyArS817ClSeo2KM7dVL/ef0UoiHBUoU6A7x9GBYOU5TE8VggeQM8ezbRxez9HS1MzTVYkxXDgqgXqCI8zMjg3rbqEA4KNu3q+9VpEqg2N9DtUBRGd4RqByPdCwUKPBSiIcFShToECjCYmxqkgezCsSFLTOT1L2b6EjCE+GdgQPVxNQFqRTiEX0WVAuUPn3U9bWprCSR29qqvucLCxR3UDmJEAmyqsM7gHRQDh+Wk1FTYYESgc5OQCz9o1Kg5OTIgV5lmMeu7N0e7HU4KDoqeIDAgV6FI2ZCiCdMY2jH0TGByMyUSdaqE2VZoLiDypw4nQ5K796ySsl0F4UFSgTsbdh791b73joqeVTOvMWAUF2trqmXjgoeQH7WtjYpeN2itRVoaKDtVArxqBQogL5EWRYo7qBywqTTQfH5vBPmYYESATH49epFsyaViERZlZU8Kmfe4uLp98sT1m10VPAAQG6uzI9we7AXIjMtTe1CgQK7QFHhFukSKLoSZZNZoOhYh0egI0lWh4MCeCdRlgVKBHQNfoBeB0XFiZOZKb9XVWEeXSEeQN0AaBeZaRrOcCFQWlrUrFWj20FRGeKxrOQWKOygqMErpcYsUCKQqgJFVWhAdXWLrhAPoG6w15kgC5BbJJwbFWGeVHJQGhtlYiMLFGdRORbpdlA4xJMkpJpAUZ1cqbpZm64QD6DHQdGFyjwU3QJFpYMijp2cHDUl1SoFSlOTzPlL9iRZUxwUFigeJ9UESjI7KEeOyATVZHZQdPZAEaSCQBEhnj171JVr2sM7KkqqVQoU4Z7k5wOFhe6/XzBiLGpqIqfKTXQ7KBziSRJMECg1Ne5XfghUnzgq475C6PXtC+Tluf9+waRKiAdIDYFSWip7BalKZFeZf2J/n+pq9xvS2cM7qvrZ2OnVC8jOpm23z1FdCwUKOMSTJIgDSYdAKSiQFqAqF0VXiEfFDE2Ed3S4J4A6t4hDPGrw+dQnyqoWKELk2he3cwshUHRU8AD0/1Q1YRKTCBNCPCo7lccKC5QI6HRQAPVhHl0hHpUOio78E4AdFLfQeY6qTpRVLVCysmTCs9vHrSgx1pF/IlAxiWhvl4647hBPY6M6dz4eWKBEINUESjI7KKkiUNhBUYfqRFnVAsX+Xm4ftzoreAQqEmXtTpTq5p+CvDz53iaHeVigRCCVBEpbm+xAmow5KLpDPKqqBFIpSday9J6jqrvJskBxFxXjkUgb6N1b7XpgwXihkocFSgRMESgqkvDsHUhVKXuVpX0mOShuxn1TKcTT3EzCGuAQj1ukkkBR8Vl1558IvFDJwwIlAkKg6DqYRLt7FQ6KmHkXF6vrQCpmLIcPAx0d7r6XKQKlpcXdMkaTQjx1dVS26Rbi/ExPd3/17VDYQzwqkg1ZoLiLSgdF5/kJeKOShwVKBExxUFQIFB21+fZVk8WF1Q1aW+XqurpCPPn5chVRtwb7tjagvp62dToohYXUURZw10Wxn586SlPFBKKuTs16UskqUDo75XGiq4oHUJMka5qDwgLFo3R2ygxn3QJl/373m0HpCA2kp0tB5OasZdcuus3L0zdz8fncH+x1hOlC4fOpCfPonkDk5srPqSLMI44bcSFVgQqBsn8/jbfp6UBZmXvvEwkVIWdTHBQO8Xgc0XYZ0DfYFxfLltYiydMtdIUGKivp1s0B3h7e0THTFrg92OsI04UjFQQKoK4XSnOzTGJPNgdFXCTLy0mk6EJFiIcdlOhhgdIDYvDr1YtW3tWBz6cuzKOr/fKJJ9Ltp5+69x66K3gEqhwUneEdQaoIFFWJsuKYycxU2wpepUDRmX8CBIZ43MopMsVB4RwUj2PC4Aeoq+TRdXEbO5Zu16xx7z10J8gK3I5xm5AgKygvp9tUEShuOyiq1+ERpJJAEZ+1tVXmcjmNiQ6K28sYxAsLlB4wYfAD1FXy6Lq4nXQS3brpoJgiUFSFeNhBUYeqXig6EmTt7+emq2CKQMnLkyF1t11O3ZOI8nISuh0d7hYoJAILlB4wYfAD1Id4dDko27a513ZZfHcc4lGHECiiesoNTDhHVYd4dAkUe4t2pzFFoADuJ8qKEI9uByUzUzq6poZ5WKD0gAmDH5D8OSjFxbK0cO1ad95D5KCY4qC4NfiZFOJJNQdl5053e/noEii5ue67CmIdHp0lxgK3E2VNcVAA8yt5WKD0gAmDH6BOoOi8uLmZh+L3yzJjUwRKKjkoyS5QKipoUb2ODnmhdQNdAsX+nm4dtyY5KG7niZnioADmV/KwQOkBEwY/QF5Ud+8mm9UtdF7chEBxIw+lqooamKWnyxNSF6pyUEyYnQmBcvCge8etCedoerrME3MzUZYFihrcdDlbW2UXaRPOUdMreVig9IAJgx9AyUxZWeQEuGXFdXTIz6vjxHEzUVaEdwYM0Ls4F5BaSbKlpfL73r/fnfcw5RxVkSibrAKlrk72dzFBoLjpoAj3JC0NKCpy/vVjhUM8HsaUwS8tTSZ3uhXmsS8BrsN6FA7K+vXUUdJJTKngAeRA39hIjbecxqQQT1qa7ArqVpjHlHNURaLshg2B76US4Ya5Mf6Ii2NRkcx10YmbDoo4P/v00d9IEeAQj6cxZfAD3M9DESeOriXAjzmGSvyam4EtW5x9bVMqeABqsCWa/rkxQzMpxAO4n4diyjnqdjfZgweBL76gstBTTnHnPXpi3Di6XbHC+dc2KbwDuJska1L+CcAhHk8jDibdgx/gvkDRfWFLTwfGjKFtpxNlTangAdxdj8deBmqCgwK4K1CamymmD+g/R912UD75hG5HjtQTGjj5ZLpdvtz5XihCoJhQwQO4G+IxqYIH4BCPpzFldga4303WhBPHrTwUk0I8gHsDoCkLBdpxU6CI8zM9HSgocP71Y8HtbrJCoJx2mjuvH4mxY8n5O3TI+UmSqHwyxUFxM8RjSpt7gRAoBw64W4ARLyxQesBEgeJ2iEfnzNutSh7TBIpbDopwwfr00bvgmh0VAqV3b70LQAIyxHPggEz4dJKPP6ZbXQIlO1uumbV8ubOvbWqIx43Ouaa0uReUlsqQs5sNFeOFBUoYOjulXW6CQHG73b3uEA/gnkAxZaFAgVsCxQSRGYwKgWLC+dm7t9wPp12Uzk79Dgogwzz/+Y+zr2uaQBHnZ0dH4Ir2TmCag5KWJs9RE8M8LFDCYD8wTRgAxex/5053FnYyIcQjclD27nXu4l1bSz9ADwLFrQVGwuCWhWyCyAxGlYNiAm4lyn7+OS1cl58PnHCCs68dCyI5N9kdlOxsuVq00+eoaQ4KYHYlDwuUMIjBr1cvaYHpZMAAUrttbe70lDBh9l1QQNU8gHMuinCcSkvDlDA+8AB5ul984cwbRoHbIR52UPTgVqKsCO+cfLLe0J1wUFaudLYVgGkCBXAvT8w0BwUwu5KHBUoYTBv8MjPlgeRGmMeU2bfTibIRwzu//z19+Pfec+YNoyAVQzz79zvv/Jl2jrqVKGtCeAcAjj+eRH5DA7BpkzOv2d4uJ1ymVPEA7rmcJjsoHOLxEKYNfoC7lTwmhHgA5/NQekyQra6WCsbtpWhtuO2g6P4f2ikrc29Jd9POUbe6yXYlyJ7S6e5iPxFITwfGj6dtp8I8+/ZRhDUzswdhvXYtcM45wOrVzrxpFKSSg5JSIZ6Ojg789Kc/xdChQ5Gbm4thw4bh5z//Ofy26ZNlWZg1axYqKiqQm5uLKVOmYINok2gIpg1+gLuJsqbMvpUKFPuAlwQhHlP+h3bsFx6nwzymnaNuhHjq66m7MgCcuvA+oLIS+L//c+4NYsTeD8UJxKy9oqKHzqpPPAEsXgw884wzbxoFqeSgpFSI57HHHsOzzz6LuXPnYuPGjXj88cfx//7f/8PTTz/d9ZzHH38cTzzxBObOnYvly5ejvLwc5557Lurr653enbgxbfAD3C01NmX2LQTKZ5/JJlyJ0GOIZ9Uquc0Oimu4lYdi2jlqD/E4lXctGqMNGQKUf/JXuvP995158ThwupInqvwTEeNycyXGINzqJmuyg5ISIZ6PPvoIl156KS688EIMGTIEl19+OaZPn44VR3skW5aFOXPm4P7778dll12G0aNHY/78+WhqasKrr74a8jVbW1tRV1cX8OM2pg1+gHsCZd8+ulj6fDRB08mgQVSV0dEBbNyY+Ov16KDYBcoXXyir5hECpa7OGREmMDFJFkgdgTJoEJ1Dzc3OJbKL8M6pJ3cCW7fSLxrdZlHJ8+mnlLCfKBEFypEjVMYEKJ1EuBHiaWoCWlpo2yQHJaVCPGeccQbee+89bN68GQDw6aefYunSpbjgggsAANu2bUNVVRWmT5/e9TfZ2dk4++yzsWzZspCvOXv2bBQVFXX9VCq4ipo2+AHuCZRFi+h2QtFW9CnocPbFY8TnczbME3WIp7Y2cMVEF+ndW1ZjOJmXYWKIB6DVuIHkFyhZWVLgO3Ut7UqQHWLLMtYoUIYOpdl/WxulhiRKRIFijyXt3Kms3akbIR7hnmRk6O98bEd897W1tIipSTguUH70ox/hqquuwsiRI5GZmYlx48Zh5syZuOqqqwAAVUfb1ZWJZU6PUlZW1vVYMPfddx9qa2u7fnbt2uX0bnfDtMEPCEySdXKy/84/SJRMP/Ia1RBqximB0toqL4rdQjx1dcBREY1evehWUR5KWpo7YR4O8ejHyV4olmVLkC38TD6waRNZjBrw+YCJE2nbiTyUiOvwCIUGUG2zgrEfcMdBseef6O58bKegQLZgMM1FcVygvPbaa3jllVfw6quvYtWqVZg/fz5++ctfYv78+QHP8wX9hyzL6nafIDs7G4WFhQE/bmPi4Ccuso2NUo0nit8PLFpEamc63nF+pb44EAIl0V0RBQ+5uSFcBaF+Bg6Utc0ezkNpb5cN6UxzUFJJoDiZKLt9O83gs7KAcc02d7mtTYZ7NOBkomzEdXjsAgVQdo664aCYUikZjM9nbpjHcYHywx/+ED/+8Y9x5ZVXYsyYMbj22mvx/e9/H7NnzwYAlB/1e4PdkgMHDnRzVXRi4uCXm0tlm4BzYZ61a4EDhzORjwZMwkdGCZRPP03MKbKHd7ppXxHeGTdOdofTUMnj1AAoBKvPZ9YxC0iB4vRaHyaeo072QhHuyUknAdlb1gc+qDHM42SibI8hHsuSAkVYGooEini7Q4ec698jzlGT8k8EKSNQmpqakBZUL5aent5VZjx06FCUl5djkUh8ANDW1oYlS5Zg8uTJTu9O3Jg4+AHO56G88w7dnoP3kYV2IwTKCSdQjsbhw4lllovvqMcKnvHj5VXFw6XGJi4UKHDDQWlpkQmHJp2jTvZCCVgg8LOjIR6R0GOAQNm4MbGFES0rgkDZvp1OkMxM4NJL6T5FAkW4kH6/c261qQ4KIL9/0yp5HBcoF198MX7xi1/g73//O7Zv346FCxfiiSeewNe+9jUAFNqZOXMmHnnkESxcuBDr16/HDTfcgLy8PFx99dVO707cpJpAmY6jG2vXOtvHOg5ycoCRI2k7kTwUUWLcYwXP+PHSQfFwiMfUBFkgUKA4lTslzk+fT66bYgJOhni6EmQndsh8qa9/nW4/+yz0Hymgf3+KjPr9gYVwsVJTI0WmmMEHIL6AsWOBUaNoW9E5mpkpx36nXU52UKLHcYHy9NNP4/LLL8dtt92G448/Hj/4wQ9wyy234KGHHup6zr333ouZM2fitttuw8SJE7Fnzx688847KDAotdl0geJEN9mmJuDDD2m7S6A0NQFbtiT+4gniRKJs2Aqe5mY5wI8bl1QOiomzMyFQmpvlCuGJYl8oMGyDLw0IB2X37sTKcFtbZRTytP47KMmoVy/g/PPpTs2NLZ3IQxGz9ZISmpR0QwiUU091b6GjHnA6UdZkByVlBEpBQQHmzJmDHTt2oLm5GV988QUefvhhZGVldT3H5/Nh1qxZ2LdvH1paWrBkyRKMHj3a6V2Jm85OmXBoqkBxwkH54AMaRAdhB47DZlkjaUCYx4lE2bAhnvXr6Z9cWkpTQeGg7N7tbGOSHnBLoJjooOTlSZfDqTCPqROIsjLKFbOsxM7R1avp3OzXDxhSe1SlH388IMbJTZuUldyGwkmBErGCR5NAcStPzEQHJWVCPMnAkSNy27QB0EmBYg/v+AoKgKO9akwSKK6EeOzhHZ+PRqJeveiq4sZCRyFIpRAP4HweiqkCxedzJlG2q0HbqYDv86MdC48/ntR2fj6JE49X8vSYf9LWJs/TU0+V1lRNjbJ+RU53k2UHJXZYoIRAHP/5+RSLNAkn1+MJyD8ZOVKuBGaAQBGVv1u2xNc8yO+PUqAAgVcVxWWMqRDiAVJHoADOJMqGTJAdNYriWSIfQ2OYR/RC+fLL+JsN9lhivHYtuZl9+gDDh9NgLEoYFbW8dzrEY7KDYhcoihpqRwULlBCYPPiJi+3hw4ll0O/ZQ+Obz2dhKt6jQU+ogtWrtR+lZWX0Y1lysbRY2L+fJmFpaSES8OwlxgLFpcbsoCSGyeeoE1q3K0E2WKAAVOYGaBUovXuTbgCAo6uYxEyPDor4Ak45RfYI0DSJSCUHpaUlMIKgGxYoITB58CsspMEBSMxFEVXeJxd/gWLUyPh2WhqdkU43rYiDRPJQhHsyYECQC9beLnt0CwcFUD74idlZTY0zqQQm56AAqSVQEu0mW1VFkUafDzh5fKdci8YggQLIdXniDfNEJVBOPVXep+kcTYUclJwcuV8m5aGwQAmBGPxMPJAAZyp5usI7GUdXRh01irIZR4yg3w0I8ySShxK2gmfjRrKOCwvlgAcod1CKi2X1iZhZJQKHeMwh0euouDaPHg0UVG+naW1OjozvGiJQEs1DMV2gOOlyWpbZDgpgZh4KC5QQmDz4AYknylJ7e9qeXvMabRx/PN2KMI8BAkXsSiICpVsFj8g/OemkwPpUxaXGaWlyoHJihpZqIR5hQ5t4jiaaJGtPkO0K74wYITvwCYGyebMzSwrHib2jbDwR4bBVPDU1su+LsGkATzsoDQ1y+SRTBYoQiixQDMd0gZJoouyaNTTj7pXvx2ltS4DsbOlLi7wMAwSKcFDWro293XTYBFmRf2IP7wCBzdoU5d84OUOL2UERbTwVfdZUclDE+RlvwUlAguzGoxU8IrwDUDuAggK64mnsWXTSSaSZ9u+XCa/R0tIij9luDorooX/MMYGKW5NAceL8FBOI7GwqQzcR4aBwiMdwTB78gMQdFBHe+croA8hER+DszJ4oq5kRI+iEbmiIfUwKG+IJruARDBpEtkZzs7L8G6cESkeHdBSidlAefZSmrq+8ktibR0kqCZReveTFLVYXpbNThkxCJsgClJxiQCVPXp5syxJrmEfM0nNyQvwPQ4V3AClQduxQspqzOD+rqxN/O5F/UlJi1krGdjjE4xFMHvwA5wTKef3X0YYI7wDStti6Faivj+8NHCIjQ7rZsYZ5QgoUv186Q8ECJStLxoMUzdDEgLBuXWKvE/NCgYcPA0cX78R77yX25lEiBEptLWnARDH9HI03zLNhA5XVFxYePS1DCRT77x7NQ7Hnn3S7YIcTKBUVNGPp6IjdsokDu5iIt5RaIBwUU/MaAQ7xeAbTB79EkmQbG4GlS2l7evrRi5NdoPTrRwOBZSV+5XSAeBNlRYgnIAdl61ayY3JyZDKwHcV5KEeXp8L8+YnN0MTg2bs3ibqIPP20FJ+Kmn0VFcl25k64KKafo/H2QhHhnVNOAdJ8VniBYkiibLyVPGETZO0rGAcLlLQ0Z1djjEB6ugyZJupy2h0UU+EQj0cwffATAqWqSi62FS1LllBZ69ChwDG7l9CdwYOfxxNl6+pkyCPAQRHhnbFjQ1/JFS8aeMklFJLZswf417/if52YEmTr6oA5c+TvinIYfD4Hwzx33omafWTDmHqOxuugBCTI7tpFM4qMDHlsCgwRKMJBWbEitjyxsALlyy/pgM7Kkie/HY8mynrBQeEQj0cwXaCUlspEq127YvvbrvLicy34Nh6dndkdFMDIRNlYBIoI75SUUAPKLsLlnwgUlxpnZwPXXUfbzz8f/+vElCD7zDOk3sRM9MAB51bwi4AjAqW1FW3PvIAmP50App6jiTooAQmyxx3XvaW1EChbtmit5DnhBHLGamtjM+PCChThnpx0Ep0gwXg0UdYLDor4X1RVaV/QvgsWKCEwXaD4fPFX8nQJlJNr6MKUni5bQgoMSpQ98US63bEj+oqIkOEdIHwFj0DDgmT/9V90+7e/xX/hjrpJW2Mj8Ktf0fZ//7ccfRWFecrL6TYhgbJpE2r8tPKgD34U9TJkJA0inkPpyBGpSQJKjIMdToASnAsL6UoiSnI1kJkp5zOi+CYawpYYhwvvCDzaTdYLDkq/fhRF6+x0rjldorBACYHpAgWIL1F21y4aANPSgK/0PZpfcswx3WcqQqCsW6ckW74n+vSRQkM0gI1EyARZy5IOir3FvR3FDgpA5tXpp9OgMH9+fK8RdYjnf/6H1MywYcBVVwHHHkv3KwrzOOKgbNiAGtCJWYRapL35RsL75Qb2gpNoZ6Mij+OYY45eGHsSKIZU8gDxJcqGXYfHMIHiVIjHCw5KRoZc7siUMA8LlCA6O8muBLwhUGJJlBXN2U49Fei98+jVPji8A9Ag0KsXdVzdtCmh/XSCWMM8IQXKzp00SmRkyNrIYMTgt39/YgsdxYhwUV54IfZ+L0CUIZ6WFuD//T/avu8++h6Ec+YlgbJ+fZdA6YOawHwagxg4kL7itrboB/uA/BOgZ4ECGJeHEotACRniaW2VLqchAkU4KPv3J/Y6cTkoBw4A3/0u8O9/J/bmMWBaJQ8LlCBqN8sj0QsCJRYHpSu8Mx2hG0AJ0tISWwjHYWJNlA0Z4hHuyejRoWPbAJXBiBFE0YqpAPCNb5Bb/8UXlMQcK1E5KC++SMHlQYNk4osQKIpCPEKgJNRmxuag9MERKkmLd7U6F0lPl+dotNfSgPwTy1bBE2oSARgjUEQlz+rV0a0r5ffLC2CAQPn0U1J0JSXdk4IFIrmnulrOJF1EfPVvvJFY14WY29w3N1MW/f/8D3D//fG/cYyYVsnDAsXOxx+j5sxLAAD5+Va3vDSTiFWgdHba2ttPR+TBz8BE2Wh3JaSDEmoF41AoLjUGKJH36qtpO55k2Yg5KG1twGOP0faPfkQVEoA3Qzx2B6X86Od48snEdswlYlk00F5de9ppoCn7kSM0WTjuuNB/ZIhAOfZYKiNvaYluVw4dIiFjr+wCEHoF42AS6YIXB5ddRjr+0KHEDrOYFgr0+2kSIb6Pzz9X1vHZtEoeFih2+vdHTRuVffTxHdG7LxGINUl29Wo6SQoLj854hIMSTqAYlCgrBMqGDdGlxIQUKJEqeASKS40F3/423f7lL7EvHhgxxPP731MCUv/+wE03yfu9FuJpagK+/FIKlBOOTr//9Cdzpnw2YolGfPEF/d+zs48e72ICccwxsoFMMEKgbN1K4RFNpKUBEyfSdjSJsuJf1a9fUHFSpPwTgcJJREYG8NBDtP3LX8bfsC0mB+X++4H//V/6cnw+EqpO9NuPAg7xmMzgwTj8g0cAAH0adpGvZyji4rt7d3QXbRHemToVyKitlllfI0eG/gN7LxRF6j0csaTEtLXJC2DIEE8kgaLBQQFot8aNo/3/wx9i+9seQzwdHbJr7A9/GHixEw7KwYNK7HIhUA4ejDP3euNGwLJQk0ejaJ9hfYAzz6QX+81vnNtRh4ilF4oI70yYcNTgipR/AtB0t6iI7FHNuWKx5KHEXcEjUJyH8o1v0HBYXy+NyFjw+2XhRUQH5Xe/o2UoAEpKEwO9ov8vh3gMp2bEaQCOJuDdeKPSXIRY6N+fBHZnZ3RqN2T+yaBBdOUPxQknUCC9ulr70ZqWJsuNI+Wh7N5Neio3Vya4oaqKVIvPJ+2YcGhyUACZLPv887Fpwh4dlD/+kT5L377Ad74T+FhhodJS47596ZCyrDiTDo/GD2qKSVj16QPg+9+nx/7nf8hhMYhYeqHEnCAL0PFsSJgnHoESkH9SXS2PQfsKxqFQLFDS0oBf/IK2586NfTisrZXJ7z0KlPfeA265hbYfeIDCPCK8p6iUnEM8hhNQYnzkCPDNb2pthBSOtDRa1BSIXMlTXw8sW0bbAQIlXHgHoJm2eNygPJRIAkWEdwYNsoWxRZhqxIigzm0h0FBqLLj6ahJW69dH31Oio0Mes90clM5OObLefXfoz64wzJOWJssY4wrzrF8PAKjpRQd+nz6gRMKhQyl++fLLzuyoQ8RyHQ1IkAUi54gJDBMo69dH1okhS4zFAT98eGSbQUO/ohkzgDPOoDwbEfKJFpF/kpcXPlqHjRuBr3+dTuirrqI+RYBckkORg8IhHsPpEijTJtAIuHw5cO+9encqDNEmyor29sccc/Tc7qmCx44HE2XtAqWLaMM7gBz8tm9X3k6xd2+yk4Hok2Xtzeu6jev/+780sPXpA9x2W+gX0FTJE5dAEQ5KNqmcPn1Alsxdd9Hjc+bEV6ftEsJBqarq+aLd3CyFdzeBEukcNUSgDBxIjfg6OyOfoyEdlGjDO4AWgeLzAY9Q9B8vvhjb6RIx/+TgQeDCC8lqOf10CvOI2ZVigSIclEOHtKY1dcECJYgugTKwFyUXAsCvfw0sXKhvp8IQrUAJCO8A0c/ODFqTJ1oHRZQYx5UgC9ComZVFik7BiqnBiDDPggXRlTWGXSjQ7wcefpi2v/c9CueEwkuVPMJBASmxrjYAN90EFBRQtYM42A2guFh+7T25nKtW0cS5f/+jruihQzIpMlyOmMAQgeLzRR/mcUygKJ5EnHkmcP759L+aNSv6v+uxgqelBfjqVymVYNgwus7YbRbFIZ7iYlnk58SinonCAiWIgGSmiy6ixEKA8lE05CX0RLSVPN0ESrQOikGVPGPG0CC4f3/P+QsJlRgDNCMXX6yGMM8ZZ9CkqbEReO21yM8PmyD75pt0QS8okA5DKLxSyVNf36U+a9qPVtoJgVJYCNx8M20bVHLs80WXKGsP7/h8kOfnkCGRQ5LiHP7ii9hXDnUYIVAihSe7CRTLkn8UjUCpqKCraEeH8kmEiJi++mr0i72HdVD8frquLFtGM4y//92WOHcU4aB88YWSrt4+n1l5KCxQgujW5v4XvwAmTSL77ZvfNMP3Oko0DsqOHeQOpqcD55wD6pAqbIZIDoqwLb78UkmVR0/k58traU8uSrcQT02NvDpEI1AArYmyPl9gsmwkQvZAsSzpntx5Z88dB70S4jnq+n3e90zs2ktWUcDHuusuSnJ55x3tboKdaBJl40qQFfTvTxc3v98zlTzdqni2biWboavGOgL2SYTic3T8eArDWhbw059G9zdhHZQHHySrNCOD+guEcssGDqTEtPZ2ZQUbQjiaUMnDAiWIbgIlM5OmssXF1LFSOCoGEE27e9Gc7bTTqCIRn39Od/TrFzkZraREZuJGuxCOi0STh9ItxCPck6FDo28NrKnUWHDddXTY/ec/kb/2kBU8b78NrFxJWXkzZ/b8AppKjWMVKG1rPsPDuB9jD72LI0fomhzQbHToULLKAQrJGkI06RJxJ8gCRlXyiF4oW7ZQfUEoGhvlY10OigjvjBsn4wuR0JCHInjoIdLCb74JfPRR5OeHdFDmz5eTiOeeA77yldB/bG/Ul4KVPCxQggi5UGBlpcxHefppUrsGIC7CO3eGzw2MO7wjMDBRNpyD4vf3IFCiyT8RaHRQANKOl15K2y+80PNzu4V4LEuWGdx6a3fLOJiCAllaoyDME49A+eQTYML95+MBPIw2KwszZtDh2E1vCjH28svxd9RymEjdZPfsoSiFvdlZTA4KYIxAKS2Vnzfc6gNiVt6rly0tKpb8E4FGgTJiBHDDDbT9k59EbgnQbaHAxYtlZ8b77qMwT08IgaI4UZYFioGEXcn4wgtlNc9NN2mbXdsZOJAmUK2toVfb7OwE3n2XtmNOkBV4KFH2wAH6LtLSbLOzSCsYh0KzgwLIMM/LL1OVRzi6OSjvv0/Tuuxs4J57onszhWGeWARKQwPl906aBKyv7o9SHMSr//Vv/P3vQTlGgjPOoE5nLS3UF8UAIl1HxbX5xBNt6SaxTiIMESiAbGESLsyTcIKsQKNAASg6k5VFWuO993p+bsBCgZs2Uf/89naKFQkXpSc0lRpziMdAwgoUgA6myZOBujrgiiu056NkZcmDKVQeysqV9Hl697bNzqLpgWLHoERZsSuffx46H1C4JxUVthbasVTwCDQ7KABw7rl0ET5ypOcCsm45KMI9+fa3gxY66QGFlTz2BQN7qgj+5z/puvvUUzRDvS73z9iI43HVzXlhl2mBzycbt/3mN0b0L7InyYaaaXcL79TWyitDtOeoQQIlUh5KN4HS0iInPx4SKIMGkUEJRHZRuhyUrHqa6NbU0D98/nyaTUVCU6kxOyiG0dkpw/AhBUpmJiU1lZTQhe8HP1C6f6HoKVE2oL29KEGNdXYmVMGGDdoH/AEDaBbS2SmNIDvdKngaG+VJHYtAEYNfTU1goxGFpKXJZXN6SpYNCPEsXUpTuszM2Hr3KKzkEdGkjo7Qaw4dPAhccw1wwQUkOIcMAf71v/WY33wFSlEd+bj9xjdIBe3bF10ZlMuIY7GhIXTUqVuCrDg/Bww4mjQWBUKgfPFFz3abAiJV8nQTKGvWkJtgjw9Fg2aBApAwyc8nMdbTqihdDspvf0H/oyFDgL/+lZJfo4FzUBggMEcwbD5lZaXsWDl3LvDnP7u+Xz0RjUDpCu+0tkobP9rZ2ZAhNFC2tckEW03YO9WHijh1EyiffkpTm/795ZUxGvLyqOsUoHUAvPFGEiqLF4fXDgEhHmEX33CDTG6OBoUhnqws6fbYwzyWRafV8cdTCWdaGkWo1q8HppcdjekNGhS+n4v9De64g7affFL7OlI5OfJiHHwotbfLXI24EmQFZWWk3C1L+zk6fjz97/bsCR3G61bBYw/vhLXGQiDEzKFD5GhroF8/adj99KfhW7IcPkzHYMnGD2ks/fvf5RIT0SAclH37lHxWDvEYipgs5+cHrbIZzIwZwI9/TNs336ysRDMU4Sp56upkhvm55x69c8sW8tULC6O3/30+z+ShiBBPV4lxPOEdgcaW94LKSmoMBVBzyVB0OSgHNwL/+heVYIpjM1oUN2sT2k9cwLZtA847j6qXqqvpf/zJJ7R6bH4+uhq0dTkFkfjOd0gZrF4NfPih4/sfK+F6oaxbR4ZH795ykhxzgixgVCVPr15SW4UK83RzUOLJPwFoDBNKV+N6affcQ5PZzz4Lv8hn9R6KRxen11F351j+twCJGjHBUuCiiEtDQ0N0zSLdhAWKDcuiPLuu2UxPPPQQtSWur6d8FE1NksI5KIsXk40+fLjNObWHd2KZrXhEoHRzUBIRKAYkygIyWfall2jGHUyXg7Lg6Gq+11wj9z1ahEA5dCh8faiDiAFw927giSeA0aOpHD47mxZeXr7cljMFyIvu6NHRvUFpKakdwIjGbeF6odivzV2pCLGGYAWGCBSg5zyUbuvwxCtQACPCPL17y/nAgw92j4J3vvJHHGmhUE7J4z8Cpk2L742Ei6JAoBQU0A+gP8zDAsXGscfShEtUvvRIRgblo5SW0kwt2ooJhwknULqFd4D47GPAyERZEb2x002gxFNiLDAgURagZsZlZdQ99+9/D3yss9O2UODiP5Po/MlPYn8Te6mxwkqeu+6i06apCZgyhRyFH/84hHspLrrROigAlf8AFOvX/D8M56B0yz8B4nNQAKMESk+VPAEOysGD8n8TaQXjUBggUACKKPbvTy52QL6YZaHmB7/o+rXPnd+K/00UlxqbEuZhgZIIAwfKfJRnntGSlGdvd2+/YIcUKPHOzuwOiuaY/vHHkzY8ckSGdAQBIZ7WVhkaiKXEWGCIg5KZKXsuBCfL1tTIf0cxDlOnYzHTihWFibJCoDQ1kXv9wgvAv/8td6EbsYZ4ADrGzzuPvqCnnkpofxMlnIPSrYKnsVHGamOdRBgkUOwOin246Oyk6i3g6AVQZNKOGEFWRKwYIlDy8oAHHqDthx6ifyMAYO9eHN5PlkphodVz2kAkUrSShwVKopx/PjXbAai0U1EcXyDyLerrpTu/bRvtRkYGzUy7iNdBGTWKrpShVIFisrPl7tvDPPX10k0YPBh0UevooOTBgKWNo8QQBwWQy8y8/Tawa5e8X4R3inAEmeiIzz0RKEyUnTqV/o+XX06a+eabe4g4HjhAM22fL/bjVmQw/u532hIpgdDX0epq6dZ3mQciwbVv3xCLK0VACJRt23peOlkBJ55IucqHDwd+5v37SaSkpx817BIJ7wDGCBSAjuGhQ+kzzp179M5Vq1ANalBUXBxDSD0ULFCYuPn5z2mpSw35KHl5slmomHyJ9vaTJtmKHjo75YgY60CflSUHQEPzUER4p7iYEvUCwjux5NsIxOC3a5f28urhw0lo+v3AvHny/q4EWRwCvvY1WlExXhQmyp57LiXg/fnPUeRqC0dg6NDIC+cFM306Hev19cCLL8a1r05gP5REHpEwD447ztZkL97wDkBVIaWlZFkIp1QTWVnyHLWHeUS4oH9/EinJJFCysugyAACPPXZ0srhyZZdA6bZQYKzYS40VuNgc4kkmMjKAP/6RBog1a2htBYUE56GEDO9s20Zhj9zcMG04I2B4omzYCp54wjsATfHy80kVRFouWgEiWfbFF2WDs0PrqAymFIeiX7ksHIpXNe7qyxOJWBNk7fh8sv39U0+FrwN1mfJycow6O6UDJq7NAQn5iQgUwNgwjyAg/8Tvj20F41AIgbJ9u7b/rZ2rrqJ/QU0NVaBh1SocBq13FmnZs4gMG0YnTVOTEtWQ1A7Knj178K1vfQslJSXIy8vDSSedhJUrV3Y9blkWZs2ahYqKCuTm5mLKlCnYYMBJlRADBsjBUASXFWEXKB0dsvVyyATZESOOTl9ixNBEWYGjFTwAXdwMyUMBqDt27970OUUS96E/vA0AKOmbHv/nFChe1Thq4sk/sXPttTR93b6dEmY1kJbWPQ8lZIJsvDliAvF3oboYKiaiQBErCubkUEwoHgYOpIt2W5v+KyloWBWtiObMAfb/Z4dzDkpmphyPFIR5klag1NTU4PTTT0dmZib++c9/4rPPPsOvfvUr9LYlQT3++ON44oknMHfuXCxfvhzl5eU499xzUa+76DpRxEVCsctgT5RdsYLO+z59aFmSLmJtcR+MgQ7K1q2yTj9AoHR0SPWSyIXbIAs5N5eutcDRZNlDh1C9jAaq0olxOGLBiJwbRaXGUZOIgwLQF3fLLbStseTYvmig3x/BQYn3HDXIQRF5NStX0ukIBJUYiy9g/PgITad6ID1dDn4GnKMALfJ5yimUKPvI/ptwuCsHxYEXV9hRNmlDPI899hgqKyvx0ksv4ZRTTsGQIUMwdepUHHN0ALQsC3PmzMH999+Pyy67DKNHj8b8+fPR1NSEV1991endUYu4cm7apLTltN1BEeGdadOCjJJEZ2fis+3Yoa39u6BvX5m7sG4d3QaEeDZtojygXr1kbkU8GNCszY4I8/z1r8CBf63GIT+NeiUjY+hKGY6CAtlBTXGid1gsK3EHBQBuv51m2kuXhl9m12XsWnfzZtKAubm2tKGWFnmcJUGIZ8QIOv2amuTQE+CgJJp/IjBoEgGQ8frII7T9LL6L1flnAHDAQQGUJsoefzwVpf7xj66/VY84LlDefPNNTJw4Ed/4xjfQr18/jBs3Ds/b6iO3bduGqqoqTLfFH7Kzs3H22Wdj2bJlIV+ztbUVdXV1AT9G0r8/XT39fjmwKsDeTTZk/gmQ+Oysd285DQy3nLBCgvNQAhwUEd456aToFuMKh0EhHoCc8JNPpkTLl+f7cQhU6RFrwUdYTAvz7NtHV/L09PjLpwHyq7/5TdqeM8eJPYsZey8UEd6ZONFmHmzeTONG795SKMaKvZKnq9ZVD+np0sEVYZ5UECgAValNHbYNbcjG3xunAHDIQVEoUHr3pnqPSZNcf6secVygfPnll/jtb3+L4cOH41//+he++93v4q677sLvf/97AEDV0UL4sqC1UcrKyroeC2b27NkoKirq+qmMZZ0RlWhqCy8EyubNcvDram8PBK7REa9AAYwK8wTnoYQUKInmZRhUaiz49rfp9vllo5wXKIpb3kdEiPxjj6VchUQQJcevvabFt7bnoERMkI2n6gygyZEo6dNcyQN0z0PpEih92+SJm4QCBQB+UflswO9ec1BMwXGB4vf7MX78eDzyyCMYN24cbrnlFnz729/Gb3/724Dn+YJOQsuyut0nuO+++1BbW9v1s8veDMI0NAqUhgZKZh8xIqhQZ88eStbIyEgs5GFQoqx90cD2dpnMNWgQEusga8c++GluUCe48kogP9/CpsZKLMYUAA4NfoDySp6IJJp/YmfCBGoF0NFBTRUVYz+UXEmQFRgU5gknUAbWbqD/Q79+8VUU2jFUoJy6bQG+ioVdvzuag7J9O1VkpgCOC5T+/ftjVNBJdvzxx2Pn0SSB8qP2ZbBbcuDAgW6uiiA7OxuFhYUBP8bS02IxLtG7d+Air2HDO8ceSwX78WKQgyK+5nXrKP/EsmiS3a/U75xAGTKEZrONjdQwzAAKCoArL2wAANSD/ulJG+KJp8V9T4gqu2efVd7MTDgo1dXA2rW07WiCrMAggSISZdeupdOngQ5bDNj+f7QR6wrGoTBRoBw6BOzciYfwAHw+mtg4co6WldFAb1nmnKMu47hAOf3007EpyILavHkzBh9VykOHDkV5eTkWiW5iANra2rBkyRJMnjzZ6d1Rjz32IBpWKEAkswMhBIpTszPx2T77TLuCHz6cBElTE7VJB8g98W37krqGZmcDI0cm9iZZWbSkMGBMHgoA/NeJ/wn4PelDPE4JlEsvpRPl8GG5RIUiCgul0+X3U4Vs14J5QOI9UAQGCZTBg+nYbG8H/vEPuq93byBvtU2gJIoQKHYFpJujIebRx7ZizhwfbrwxaPHLePH5Ui7M47hA+f73v4+PP/4YjzzyCLZu3YpXX30Vzz33HG6//XYAFNqZOXMmHnnkESxcuBDr16/HDTfcgLy8PFx99dVO7456Roygi2NDg1JVL5zSzMyg9vaAc7OzykryKjs6tPdayMiQzv+bb9JtQHjnxBPjL1+0Y2Aeyqk1b+MEyCRsx0I8QqBUV2uv1IJlORviAShz8447aFtDeYJ9kekA96S9XZaOJpFA8flkmOeNN+jW0QRZgBZzEvGT4NUYdSFy4CZMwF130UoL8bSeConCUmMTcFygnHzyyVi4cCH++Mc/YvTo0XjooYcwZ84cXHPNNV3PuffeezFz5kzcdtttmDhxIvbs2YN33nkHBWKNZy+TkSFrBzXkoUyefLTVu51Ee6AINCUBh0Psimhc5miCrMCwSh4A8K1Yjm9DVsY5JlB69ZL127ot5J07SeRnZvawimAcCHtx5Url3UdFmAcIEihbt5Lo79VLOnbxIgTKjh1GOApCoIjqwgF920hI2NVLopgW5hFNSZ0ag+ywg5I4F110EdatW4eWlhZs3LgR3xalB0fx+XyYNWsW9u3bh5aWFixZsgSjnZolmYCGi/jll5OdetddIR50KsQDGCVQRB6KWPooQKDE2+I+GNMclM5OYOVKXIuXUVnehtNOc8Yo6sKUMI9wAEaMcPYDHn88LWDV0KB8kLc7KCETZI8/PvGcjJKSoyvxQbvLCUgNItpCDcg4mns4ciS5H05gmkCxOSiOwwKFSRgNibJnn02Lvl52WdADBw9S0pY9fpkIBlbyCAZVWs47KIY1a8PnnwMNDSjOa8WmzWn4v/9z+PVNqeRxOv9EkJEhjw17H3YFCAfFvgsAnAvBCgwK8wSbJANbjp5HToR3BCYJlJoauR9OTZLsiDGcQzxM3BjkMnTNzgYPppljotg/m8Ik4FAEL+ExOP8QibH09MRW9rVjWohHXFQnTEBuQUZCfehCYkolj9P5J3ZCLRSjAJEoeeaZQaeiUwmyAoMESlmZbQFPAAOqj5YwJatAERO3oUMdqi0Owp4nJpYzT2JYoLiBuHLu3k0XTJ04Gd4ByJrNzqa+Ktu3O/OacVJUFFi9NPjIUcfqhBMSb+wlEA5KVZXy0tSQiIuqU/H7YEwJ8bjloADaBMr48cBHH4XIz3VLoBgQ4gECD9UBO452C09WgeK0gxtMfr7MU0qBMA8LFDcoLJQXNt1t4Z22jzMz5azWAIdIGDo+HzBg50f0i5PWap8+VBsJmDEAui1QTAjx+P1SWLvpoKxZQyvhKuS002SKCADKKRJdnp0SKOJ1DHBQgCCB0rQ5aBEiB7CvI6DZ1e1KkHUj/0SQQnkoLFDcQkMeSkicdlAAo0JY4muuqACy1h5dCM7p2YspibKtrfI7F12wnEY4KIcP048Otm2jrMqcnMDMUqc45hgSnm1tcrVJXYiuoDk5gXZgIggHZedOudy3RgIECvbQxTsjw7k3qKyksG5rK63fpBO3HRQgpUqNWaC4hSkXcacdFMCoRFnhFB9/PNwbHEzJQ1m7lnpmlJQE1qw6SX6+/lJjEd4ZOdLBBhI2fD6ZEKI4zNMNcX6OGOHcZy0ulgsOGhDmOflkMiEH5NegFIecDe8AJHZEnwWdk4i6Oika3BQo7KAwCWOCQKmrkwtguCFQdIsvAOefD7z6KvDcI4co58fn617ekyimOCjiYjpxYuLlqD2hO8zjZoKsQFMeSjeczj8RGJQoW1BARtXKYVcgDZY77p8JeShiPKyslIs2ugELFCZhxEV840bZqEM1Irbdv7/Mo3ACg5KAfT7gqquAoYePxn6HD6cR0UlMcVD+c7TFvVv5JwLdlTxuJsgKWKAoZWBJM8o2LqZfnHZQADMmEW42aLMjBMrWrcqbDaqGBYpbDByovy28G+EdgJKARa6C7hwbgVMLBIbChMEPkBdTt/JPBLoreVQ6KBs20GKQukgRgYJVq2gsDK47dgoTHBQ3G7TZqaykSsq2NuoYnMSwQHELe6hB10XcqRb3oTAozAPA3eQ0IVC2bdM3Y6mvl/9PVQ6KDoHS0SGdPzcdlAEDyFn0+/XlUtmrlZJdoNjX33EjPGmCQFHloKSny3M0ycM8LFDcRPdF3K3BDzAqURaA8y3u7QwcSOXVbW0yp0c1q1bRAnoDB8oESLfQGeLZupW+5/x8mfjoFsKJ0hXm2b2b3JuMDCmCnUIIlN27gdpaZ187HpxcIDAUugVKY6MU1m47KEDK5KGwQHET3QLFrRAPoP+z2amtlfkhbgiU9HRZAqprABT5J26HdwB5sdRRaizyT0aNgvNtcoPQnYcizs/jjnN4QSVQzllFReD76ESVQNHVUPHTT2kC0b+/+xMIIGVKjVmguIm4iIuDVyUtLXL5cTcFyuefy5XAdCFE0uDBDi7tG4TuRFm3G7TZyc+XFzfVYR4V+ScCUwSKGw4nYE6YZ+9eypVwcgXjYHr3pt42gBz3VKKiQZsddlCYhBk5kmZGtbXqk5k2b6YYd58+Qa0rHaKigkrpOjv1D4BuhncEuhNlVQoUQF+YR0UFj0D0Qtm6VU9TulQRKO++S7cTJlCCvVvoDPOoaNBmhwUKkzBZWXKQUB0KsYd33EhK8/nMCfO4WcEj0OmgHDwo1z0SF1W30VXJo9JBKS6WwnPFCvffL5hUEyjTprn7PjoFimoHRYR49uwBGhrUvKcGWKC4ja6LuJsJsgJTEmVVzF50OijCPRkxglZIVIGOSp7WVvl+KhwUQF+Yx7LcrbIDzBAoliUFyrnnuvteuiYRzc1SbKpyUIqLgdJS2ta9sKeLsEBxG10Cxc0EWYEJDkpTkxzok9VBUR3eAfSEeDZvpjLjwkIqA1aBLoFSVQUcOUKJwGI27DRicrJ3L72XDj77jNbHyckBJk929710OShr11Kou18/dcctkBJhHhYobqPbQVEhUD79VN8qomvX0nuXlck1ZNxADH6HD6sf7HUIFB0hHnt4x81W/nZ0CRQxgTjmGLp4u0FREZWl299PNcI9OfNM9z6nQJdAsTu4qo5bQAqUJK7kYYHiNqIt/I4d6i5sHR3yoHUzxDNiBC2d3tior7rl/ffp1u3y2169ZLKxygHQstSWGAuEQKmpAaqr1bynygRZwfjx5GLs3Us/qnA7/0QgXl9XmEdVeAeQAmXbNrUTJlUN2oIRzhs7KEzc9OkjG06p6ij7xRe06m1eHrVFdov0dGDMGNrWFeb5+9/p9oIL3H8vHWGenTspSTYjQzpWKsjLk3a1qjCPygRZQX6+vIirdFFUhGABvXko7e3A4sW07XaCLEBjXXo6tVioqnL//QSqWtwHwyEexhFUh3lEeGfkSPebXelMlD18GPjoI9qeMcP999ORKCsummPGuG+RB6M6zKPDQQH0hHlUJLEDegXKJ59QhUlpqfMrjIciM1Ou86PqHG1tlcetagfFLlBU99lSBAsUFegSKG4PfoDeRNl33iEr94QT3G+LDuhxUFQtEBgKlZU8zc3ye1XpoAB6BIqqEI9OgSLCO1Onuj9REqjOQ1m/npyi4mI1Y5CdYcPoe21oUOsYKYQFigrsyaQqUGUfA3oFigjvXHihmvfT4aCI/BOVCbIClZU8GzfSLLCkhKohVCK+2xUr1MxEDx6kH4BcTjcRAmjfPsonUsmiRXSrIrwjUC1QdCXIArSi8dChtJ2kYR4WKCoQ9uaGDbQQmtuoqOARnHginZj79gH797v/foLOTuDtt2lbRf4JoN5B8ftlAp4OgaIyxKOjgkdw4onUVPHwYTUXNnF+DhlCOTBuUlgo89BUuih1dXL9nWQWKKobtAWT5HkoLFBUMGQIDRRtbXLFS7fw++V7qAjx5OfLbHJVDhFAs91Dh+h7dbu/gkA4KDt3kq3rNps2AfX1VCml4n8ZjD3E47azIC6eqvNPABInYhKhIsyj0uEE9IR5Fi+mScSxx8qFNlWg00HRQZKXGrNAUYHKtvC7dlHZb2am80u4h0NHmOcf/6Db6dOdXwk2HOXlJBb8fjVrK4nwzoQJVMWjGnH8HDni/lo1uhJkBSrzUFTlnwh0CBRV7e2DUSlQ2tupDxOgz0FJ8lJjFiiqUHURF/bxccepu6iJzyYsXRWozj8BSGiqHAB1NGizYy81djvMo6PE2I5KgaIyiR3QK1BU9D+xI87Pffuoy7SbfPYZVfEUFcn3VQ2HeBhHEBay22EQ1fYxIAehf/5TzcJVVVUy9nv++e6/nx3hKqjIQ9EtUAA1lTwNDXIxRN0OyqpVFJpwk2R3UHbvJhHm8wHnnKPmPQV9+sj1qsQx5RZiDBo3Tn3elEAIlG3b1OQ3KoYFiirsDoqb8XyVCbKC8eMp1tzcDLz5pvvvJ5JjJ0ygsItKVCXKtrVJt01HibFARSWPuGCXl1MVjw5GjqR8qsZGeQ65wZEjsmOtqnNUCKH9+9V0BX7vPbqdOJEEg0pUupy6GrTZ6d+fulx3dupZyNRlWKCoYtQoCrkcPkwzDLdQbR8DNChcdRVtL1jg/vvpCO8IVJUar11LIqW4WJ99DKip5NGdfwJQB1JxoXEzzCPOz4oKdStT9+ole3SoWJNHV3hHoEqg6Gpxb8fnS+o8FBYoqsjJkTMmt/JQLEtPiAcArrySbt9+292EyvZ2atAGqCsvtqPKQREXyYkT9dnHgJoQj+78E4GKPBTV4R2BqjCPZelLkBWoECgdHTJcr9NBAZI6D4UFikrcbth24AA1Y7KralWMGkX9JNrbgYUL3XufZcuox0JpKV28VWN3UNwM1ensIGtHRamxCQ4KoEag6HA4AXUCZcMGyhHLzVVX/h+MCoGyaROFtHv1kueILpK41JgFikpEoqxbDooY/IYNowFCNcJF+eMf3XsPUV48YwbZ8qoZMoQEYEOD7AbqBjo7yNoRg31trXv5C6Y5KJ9+StUZbpDsDopwT846izqd6kCFQLEnyKpq4x8ODvEwjuB2qbGu8I5ACJT333dvbQiVqxeHIjsbGDiQtt0aABsapNjULVDy8uTndSPMc+QIsGcPbetoRmdn6FBK0rX3t3AaXQJFiL+VK90tv9XR3j4Yu0Bxy/XT3aDNDod4GEcQDsoXX1CYwml02ceCoUOB006jRmZ//rPzr79jB80A09KoQZsu3M5DWbWKvsMBAyhLXzduVvKIGX1lpbqk0XD4fO6GeRoaZIM/1ZOIcePo/Kyrc8/hbGsDliyhbV0JsgCtaJyWRiEYt5bf0N3i3o5wUA4eVL/eksuwQFFJaamcjboxQ9PtoADuhnn++U+6nTSJqlt04XYljyn5JwI3K3l0trgPhZsCRZyfffvSWKCStDTg1ltp+ze/ccdZ+OQTKtPu2xcYM8b514+WrCy5/pAb56jfD6xeTdsmOCi9elFVGJB0eSgsUFTjZsM2HT1QgrniCpqJfvSR842SdJYX23HbQTEl/0TgZiWPKQmyAjcFyquv0u1ppzn/2tFw001UTbh6NfDxx86/vgjvTJ2qPy/DzTyUzZtJiOXmur8adbQkaZiHBYpq3MpDOXKE2jsDegVK//7AlCm0/dprzr1uS4tsAKUr/0TgdjdZEzrI2lER4tGdICsQ3/nGjc52RW5oAF56ibaFk6GakhLpcP7mN86/vu7+J3bcFCgi/+Skk/Qk6oeCBUp8zJ49Gz6fDzNnzuy6z7IszJo1CxUVFcjNzcWUKVOwQeU6ETpxS6AI92TAAFrhVyduNG1bsoRiygMGUDmzTtwM8Rw6RG2rAT1l1KGwh3icDg2Y5qCUl1MY1u+XFyIn+P3vKf9j+HDgvPOce91Yuf12uv3zn6ktgVPU1krnT2eCrMBNgWJCg7ZgRB4Kh3iiZ/ny5XjuuedwYtAF5fHHH8cTTzyBuXPnYvny5SgvL8e5556L+vp6N3fHDIRAWbeOmv04hQnhHcFll1HX3DVrgM8/d+Y1RXnxBRfobVwGyMFv714STU6yYgXdHncc0Lu3s68dL0KQ1daSgHKKgwflRVJ3BY8d4aKIC26iWBbw9NO0fccdesMfEydSblNbG/Dii8697uLF1G59+HBKUtWNCgfFhARZATsosdHQ0IBrrrkGzz//PPrY1mOwLAtz5szB/fffj8suuwyjR4/G/Pnz0dTUhFdFjDaZGTaMkppaW51Vu6I5mshx0UlJiZwlOpEsa1n6y4vtFBfLihPhdjiFafknAMXaRdKhk2Ee4ZoOHUrr4JiC03ko775LQr1XL+CGG5x5zUQQLsqzzzq3MKJJ4R3APYFid9ZMclCEQNmyhfYxSXBNoNx+++248MILMS3I7tu2bRuqqqow3VYmmp2djbPPPhvLli0L+Vqtra2oq6sL+PEsaWkyROFUmGfVKuBvf6PXvuUWZ14zUUSse8GCxMMCW7ZQvkdmJiXg6ca+IJnTeSim5Z8I3KjkMS3/ROC0QBHuyQ036A+/ApTIXlIC7NxJ44YTmND/xI44P/fsofw1p/jySwrVZWeb5foNGULjY0sLsGuX7r1xDFcEyoIFC7Bq1SrMnj2722NVRxt4lZWVBdxfVlbW9Vgws2fPRlFRUddPpZjNeRWn81Aefphur7pKf9tlwaWXUsXA5s2yJC9eRHjnrLOAgoLE980J3MhDsSzzSowFbiTKmpZ/IhC5P9u2JR7S+vJLKQLuuCOx13KKnBzg5ptp24lk2V27KLSQlgacc07ir+cEJSVyrHCymlC4JyeeSILAFNLT5SQiicI8jguUXbt24Xvf+x5eeeUV5OTkhH2eLyiPwLKsbvcJ7rvvPtTW1nb97PK6QnRSoKxdS+Ednw+4//7EX88pCgqAiy+m7USTZU0pL7bjhoOyaxc1lsrIkMeIKbhRamyqg9K7t/y8IicoXp55hoTn9OnShjeB736XxoxFixIPNYvqupNPNidvyu5yOjmJMKlBWzBJmIfiuEBZuXIlDhw4gAkTJiAjIwMZGRlYsmQJnnrqKWRkZHQ5J8FuyYEDB7q5KoLs7GwUFhYG/Hgau0BJNPwh3JMrrjAjQdaOPcwTb1y0oUF2pzQh/0TghoMi3JPRo/WspdQTTod4LMtcBwVwJszT2CgTUe+8M/F9cpKhQ6Xgf+aZxF7LtPCOwA2BYmL+iYAFSmSmTp2KdevWYc2aNV0/EydOxDXXXIM1a9Zg2LBhKC8vxyJxUANoa2vDkiVLMFnX6peqGT2a7NCDBxNbs+azz4D//V/aNsk9EVxwATkpu3ZR47Z4eO89Whtl2DD1KzT3hBsOiqnhHSAwxONEqXFVFbXlTkszp9mVHScEyiuvUH+iY44xS1wLRLLsvHkkpuLBssxLkBU4LVAsy2wHJQlLjR0XKAUFBRg9enTAT35+PkpKSjB69OiuniiPPPIIFi5ciPXr1+OGG25AXl4err76aqd3x0xyc6XaTSTM84tf0Elz2WV6W0uHIycH+NrXaDveah6Rf3LhhfrLi+0IB2XbNuey5k1NkAXo8/p8zpUai/DOscfScWIadoESjyCzlxbffrv+zqqhmD6dvv/aWtnlNlbWr6dS8bw8fR1yw+G0QNmxg0R1ZqaZrh87KM5w7733YubMmbjtttswceJE7NmzB++88w4KTEmAVEGieSibNsncjgcecGKP3EE0bfvzn2Pv+2JZgf1PTKKyknJFWlupH0qi+P0y38FEgZKT4+yqxiaHdwBaXC89nZwesdpyLCxeTCIsLw+48UbHd88RnFifRzjhZ51FlS0m4bRAEe7JmDHmfVZACpSdO91dsVohSgTK4sWLMWfOnK7ffT4fZs2ahX379qGlpQVLlizBaNMS5dwmUYHyyCN0Ubv4YvMSKu1MnUoZ9QcOAO+/H9vfrlsH7N5NjtPZZ7uzf/GSkQEMHkzbToR5Nm+m8sXcXHMv2k5W8piaICvIy5P/h3jCPE89RbfXX29O4mgobriBxOennwJh2jz0iKnhHSBQoDgRljQ5/wSgBSjFIqpOnKMG9FMx0HdMEYSoiGfRwC++AP7wB9o22T0ByA79xjdoO9Ywj3BPpk41L2kUcDZRVlwEx48n8WMiTlbymO6gAPHnoezYAbz5Jm2bUlocjuJiQITWYy05bm2VCeymJcgCNIHw+Si/5uDBxF/PxBb3wYg8lETDPM3N5Iq98ELi+5QALFB0ITq+ipUxY2H2bOoAOWOGmeGAYEQ1z+uv06AWLSZ1jw2Fk4myJnaQDcapSh7LMt9BAeIXKM88Q7PPqVPNauYVDpEs+7//S2Xu0fLxxxRK6NfPzP9jdrYMSyY6ibAsM1vcB+NEHoplUZ+c//s/4Ec/Aqqrndm3OGCBoouyMlqYzLIolBEt27cD8+fTtunuieDMM2mRv9pa4O23o/ubmhppOc+Y4d6+JYIbDorJAsWpEM+uXUB9PTlFpjQWDIX4X6xYEX2IoKlJzjrvusud/XKa8eMpwbW9HXj++ej/ToR3pk0zMwkYcC4PZc8ecmHS080sSBA4IVBmzya3OyODRGtJiTP7FgeGHlUpQjx5KI89Rsmm06YBkya5sVfOk5YGfPObtB1t07Z33qFZ6KhR1MbZRMTg9+mnsTlDwbS1yWPAxBJjgT3Ek0hMX7gnI0YAWVmJ75dbiGTII0eiF2WvvgocPkzHrEmNBSMhXJT/+Z/ok9lN7X9ixymBIsI7J5xgZrhZkGip8cKFsmXF3LnaOwOzQNFJrAJl1y7Z+OlnP3Njj9xDhHnefDO6kJa9vNhUTj6Zcmw++4zitfF2OF6/ngROnz7SlTGRYcMopl9XF39M/8gR4NFHadvEsICdzEx5jkYT5gkuLU5Pd23XHOcb3wD69qWk9Lfeivz8I0fkd2KyQHHK5TQ9QVZgd1BinUR8+ilw7bW0feedRqzrxgJFJ7Emyj7+ONmwU6ZQ2MRLTJxIg0VTk0wgDIffD/zzn7Rtav4JQKXGb71FwuI//6HY9OLFsb+OyD+ZONGsXi/B5OQktqrxrl3AGWcAH3xADfzuucfZ/XODWPJQPvyQlp7IzQVuusnd/XKa7Gzgv/6LtqNJll28mM7TESPkMWEiTjsoJuefAJQnJvoVHTgQ/d8dOABccglNHqdNA554wr19jAEWKDoRibJr10Ze9nzfPhkf9kruiR2fL7D1fU+sWEEz9MJC4PTT3d+3RDjvPBq8TjqJ9lmc3LHMXkzuIBtMvJU8a9dSnsOGDUBFBV3MTc63EcQiUIR7cu21stzTS9xyC4Vj33sP+Pzznp/rhfAO4JxA8YqDkpMj2x9EG+ZpbaVmnzt30vn9pz8ZU0nIAkUnw4fTbKupKfKM9P/9PzqQTj9de1wwbkTTtn/+k5JgwyHCO9Onm7ViaDiGDqWM92uvJaF5zz30WaOtzvJCgqwgnkqe994j52TvXorhf/yxFOemI/4nq1b1nJuxaxfF7wHzS4vDMXgwcNFFtB1pfR6T+5/YEQJl927g5ZepfDZW9u2jn7Q0bxy3sSTKWhYtHPl//wcUFUlH2BBYoOgkPZ2W7QZ6zkPZvx949lna/tnPzA4D9MQJJ1DeQXu7HMxDYXp5cSjy8qi66umnafbx2mvkGES6kDc2yqRRLwiUWCt5Xn4ZOP98qtqZMgVYutTskEAwI0ZQOKq5mXKNwvHb35I4nTLF7CqPSIhk2fnzaaHOUOzcSbPztDT6vCZTWkoJy5YFXHcdVRN+//s9/y+DEe7JyJFAfr4ru+kosQiUJ56gtZjS0sg5MWnFbbBA0U80eSi/+hUNkKecYv6MJRLCRQnXtG3/ftny3dTy4nD4fDR7fv99KiFfv55Ex9/+Fv5vVq2iWP6AART6MJ1oQzyWReWK111HzsOVV1KJucldVUORlibzDsKFeVpaZPjVK6XF4Zg2jf7HdXW02GEohHtyyik06zYZn48cu4ceAgYNIud2zhyaLJ15Jn3GSK6KFxq02REiI1KI5x//AH74Q9p+8klyrA2DBYpuhGUYzkE5dEjarV52TwQiD+Xf/w69krPokzJhAl3kvcgZZ9CgNnkyJatdfDEwa1bo1tFeCu8AgSGecHk2HR3AbbcBP/kJ/X7vvdT52MT1S6JB5AaFEygLFtB5OmgQ/a+9TFoa/e8AGndC/Y+9Et4RlJUBP/0p5aH84x/AV79K7vXSpRSWjeSqeKFBm51ousl+9hmNxZYFfPvbVLVjIpYHqa2ttQBYtbW1unclcZYtsyzAsvr3D/34T35Cj48fb1l+v9p9c4tTTqHP9PTT3R+74gp67IEH1O+X07S2Wtbtt9PnASzrggss6/DhwOdceSU99otf6NnHWGlutiyfj/Z5//7ujzc0WNZFF9HjPl/o/7HX+POf5TkYjN9vWePG0eOPPqp+39ygpsaycnPpM33wQeBjnZ2W1bcvPbZkiZbdc4Tduy3roYcsa9AgeX4ClnXGGZb18suW1dQkn1tZ6a3Pu3Mn7W9GhmW1tXV//NAhyxo2jJ5z1lk0Tikklus3CxTd1NfLAb+qKvCx6mrLKiigxxYu1LJ7rvDkk/SZJk8OvL+tzbKKiuixjz7SsWfuMG+eZeXk0Oc65hjL+vRT+ZgYKN55R9/+xcrgwbTPS5cG3r9/v2WdfDI9lpNjWa+/rmX3HGf7djngNzcHPrZ0qfy8hw7p2T83+K//os/1zW8G3r9mDd2fn6/8wuYKHR2W9Y9/WNall1pWeroUKn36WNb3vkeiRNxXV6d7b6Ojs9Oy8vJonzdtCnysrc2ypkyhx4YMsayDB5XvHgsUr3HccXTA/Otfgfc/+CDdf+KJdNAlC3v2SFG2fbu8XwwGpaU0cCQTq1bRgADQ4PHqq3RBE4NfsLNiMlOn0j6/9JK8b/NmKbZKSsgZTBb8fukafPxx4GPf/Cbdf/PNevbNLVavlqJs7155/y9/Kd3AZGP3bsv6+c+7uyoAjdFeYuxY2u+33pL3+f2WdcstdH+vXpa1bp2WXYvl+s05KCYQKlG2tpaSuQDqe2LqWhfxUFEBnH02bb/2mrxflBeff763unBGw7hxlPw7fTqVlV99tWz/P3y4UaV9EQmu5Pn4Y1p24csvqeR62TLvLMMQDT5f6H4oe/YAf/kLbZsaw4+Xk06iHKqOjsD1ebzS/yQeBgygsVbkqlx6qRyHvNYYM1QlzzPP0FIGPh8tyWB6J2dwkqwZhEqUffppEimjRlETnWQjVNM2L5YXx0JJCQ18991Hv7/3Ht16JUFWYK/k+etfqS9PdTV1wv3oI5mkl0yEEijPPksX8DPP9EZ/jFixr8/T3k59mD74gO7zSoJsPKSnUwXhG28AO3bQxfyxx3TvVWwEC5R33wW+9z3afvRRzyRzs0AxgeA1eerrqewLoOzzZHJPBF//OvULWb2aTqKdO6ksNy2NurMmK+npwCOPAK+/Tv01AJqpeglRyfP22ySeW1pozaTFi6liIhkRAkUsS9DaCjz3HG17vbQ4HF//OtCvHzXYe/NNEp/NzfQ/PuEE3XunhgEDqDWCxhV948JearxlC6211NlJVUuitNgDJOGVz4MIgfL55zQAPPMMrYh63HHAFVdo3TXXKC2Vs7A//lGuvTNpkjfbhMfK175G5Yu/+Y331m0RDkpdHZVOf/vbNNv0QhOreBECZdMm+tx/+hOtXzJwIJWtJiPZ2fS/Beg4tYd3vN7uINkRLub69eSWHDlCjSOfe85T/zsWKCbQvz+tJOr30wztl7+k+++/P/lyMeyIpm0LFiR/eCcUxx5LPSdMXr49FMOGAb160fbDD1MIwJC1O1yjXz/qc2JZ1OPmqafo/ltvTe7PLtbnef996i4LJHd4J1kQDkp1NYnqgQOpe3dOjt79ihEWKCbg88kY9l13UdOnYcMokTKZufRSOmE2bZIJsqkkULxKdjbFtJcsIRHtoRlZQggXZe5cSni2OwzJSmUlrXILUFIwAEydqm9/mOgoLJSNLvPyKETnwcaXLFBMQYR51q6l2/vvT+6ZGUAn0YUX0nZnJ1X3JGOyYTJy6qnAWWfp3gu1CIHy+ut0e9VV5HwmOyJZFqD1aAYO1LcvTPR85St0Dfn976mK0IOwQDEFIVAAWlX02mu17YpSRJgHIPckVWbjjPcIrrZKttLicEydKkMGHN7xDvPnk+v19a/r3pO4YYFiCnaBct99QGamtl1RygUXyGoWDu8wJmNfi+X0072zeFyi+HzU9uDss1NHlCUDGRmUO+VhkjyG4CFGjCDb3O8HbrhB996oIzcXeOklSg72SG0+k6IUFQEnnkhh2GQtLQ7Hueeye8Iox2dZ4ZYkNZe6ujoUFRWhtrYWhYWFunfHWSyLwxwMYyrr11PH56uv5vOUYeIglus3OyimwYMew5jL6NGeaBHOMMkA56AwDMMwDGMcLFAYhmEYhjEOFigMwzAMwxgHCxSGYRiGYYyDBQrDMAzDMMbBAoVhGIZhGONggcIwDMMwjHGwQGEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFIZhGIZhjIMFCsMwDMMwxuHJ1YwtywJAyzYzDMMwDOMNxHVbXMd7wpMCpb6+HgBQWVmpeU8YhmEYhomV+vp6FBUV9fgcnxWNjDEMv9+PvXv3oqCgAD6fz9HXrqurQ2VlJXbt2oXCwkJHX5uR8PesBv6e1cDfszr4u1aDW9+zZVmor69HRUUF0tJ6zjLxpIOSlpaGgQMHuvoehYWFfPArgL9nNfD3rAb+ntXB37Ua3PieIzknAk6SZRiGYRjGOFigMAzDMAxjHCxQgsjOzsaDDz6I7Oxs3buS1PD3rAb+ntXA37M6+LtWgwnfsyeTZBmGYRiGSW7YQWEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFIZhGIZhjIMFio1nnnkGQ4cORU5ODiZMmIAPP/xQ9y55ng8++AAXX3wxKioq4PP58MYbbwQ8blkWZs2ahYqKCuTm5mLKlCnYsGGDnp31KLNnz8bJJ5+MgoIC9OvXD1/96lexadOmgOfw9+wMv/3tb3HiiSd2ddecNGkS/vnPf3Y9zt+z88yePRs+nw8zZ87suo+/Z2eYNWsWfD5fwE95eXnX47q/ZxYoR3nttdcwc+ZM3H///Vi9ejXOPPNMzJgxAzt37tS9a56msbERY8eOxdy5c0M+/vjjj+OJJ57A3LlzsXz5cpSXl+Pcc8/tWhCSicySJUtw++234+OPP8aiRYvQ0dGB6dOno7Gxses5/D07w8CBA/Hoo49ixYoVWLFiBb7yla/g0ksv7Rq0+Xt2luXLl+O5557DiSeeGHA/f8/OccIJJ2Dfvn1dP+vWret6TPv3bDGWZVnWKaecYn33u98NuG/kyJHWj3/8Y017lHwAsBYuXNj1u9/vt8rLy61HH320676WlharqKjIevbZZzXsYXJw4MABC4C1ZMkSy7L4e3abPn36WC+88AJ/zw5TX19vDR8+3Fq0aJF19tlnW9/73vcsy+Lj2UkefPBBa+zYsSEfM+F7ZgcFQFtbG1auXInp06cH3D99+nQsW7ZM014lP9u2bUNVVVXA956dnY2zzz6bv/cEqK2tBQAUFxcD4O/ZLTo7O7FgwQI0NjZi0qRJ/D07zO23344LL7wQ06ZNC7ifv2dn2bJlCyoqKjB06FBceeWV+PLLLwGY8T17cjVjpzl06BA6OztRVlYWcH9ZWRmqqqo07VXyI77bUN/7jh07dOyS57EsC3fffTfOOOMMjB49GgB/z06zbt06TJo0CS0tLejVqxcWLlyIUaNGdQ3a/D0nzoIFC7Bq1SosX76822N8PDvHqaeeit///vc47rjjsH//fjz88MOYPHkyNmzYYMT3zALFhs/nC/jdsqxu9zHOw9+7c9xxxx1Yu3Ytli5d2u0x/p6dYcSIEVizZg2OHDmCv/zlL7j++uuxZMmSrsf5e06MXbt24Xvf+x7eeecd5OTkhH0ef8+JM2PGjK7tMWPGYNKkSTjmmGMwf/58nHbaaQD0fs8c4gFQWlqK9PT0bm7JgQMHuqlHxjlEtjh/785w55134s0338T777+PgQMHdt3P37OzZGVl4dhjj8XEiRMxe/ZsjB07Fr/+9a/5e3aIlStX4sCBA5gwYQIyMjKQkZGBJUuW4KmnnkJGRkbXd8nfs/Pk5+djzJgx2LJlixHHMwsU0IAzYcIELFq0KOD+RYsWYfLkyZr2KvkZOnQoysvLA773trY2LFmyhL/3GLAsC3fccQdef/11/Pvf/8bQoUMDHufv2V0sy0Jrayt/zw4xdepUrFu3DmvWrOn6mThxIq655hqsWbMGw4YN4+/ZJVpbW7Fx40b079/fjONZSSquB1iwYIGVmZlpvfjii9Znn31mzZw508rPz7e2b9+ue9c8TX19vbV69Wpr9erVFgDriSeesFavXm3t2LHDsizLevTRR62ioiLr9ddft9atW2ddddVVVv/+/a26ujrNe+4dbr31VquoqMhavHixtW/fvq6fpqamrufw9+wM9913n/XBBx9Y27Zts9auXWv95Cc/sdLS0qx33nnHsiz+nt3CXsVjWfw9O8U999xjLV682Pryyy+tjz/+2LrooousgoKCruue7u+ZBYqN3/zmN9bgwYOtrKwsa/z48V1lmkz8vP/++xaAbj/XX3+9ZVlUyvbggw9a5eXlVnZ2tnXWWWdZ69at07vTHiPU9wvAeumll7qew9+zM9x0001dY0Tfvn2tqVOndokTy+Lv2S2CBQp/z87wzW9+0+rfv7+VmZlpVVRUWJdddpm1YcOGrsd1f88+y7IsNV4NwzAMwzBMdHAOCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGOFigMAzDMAxjHCxQGIZhGIYxDhYoDMMwDMMYBwsUhmEYhmGMgwUKwzAMwzDGwQKFYRiGYRjjYIHCMAzDMIxx/H9xJ+OtJ2eU8AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -716,7 +735,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGxCAYAAABIjE2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACbJUlEQVR4nO2dd3gc1dn271UvlmRLsiXLlhsYg7ExLjRTbGJjMDWQhBpKIPkI3ZQUhxCcQDCQBAh2gJeEF9NNSDAvhJBgCDYhBuLeccG9yEW2epfm++Px2TO72pW2zJxzZvf5XZeuHe2udmdXM2fucz/l+CzLssAwDMMwDGMQKbp3gGEYhmEYJhgWKAzDMAzDGAcLFIZhGIZhjIMFCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGOFigMAzDMAxjHCxQGIZhGIYxDhYoDMMox+fzYcaMGVr3YeLEiZg4caLWfWAYJjxpuneAYRhGB88884zuXWAYpgtYoDAMk5QMHz5c9y4wDNMFHOJhmARlxowZ8Pl8WL58OS677DLk5+ejoKAA3/3ud3HgwAEAwE033YTCwkI0NDR0+vtvfOMbOP744/2/v/XWWzjllFNQUFCAnJwcDBkyBDfeeGPA3+zYsQPf/e530adPH2RmZuK4447D7373O3R0dITdz5UrV8Ln8+GFF17o9NgHH3wAn8+Hd99913/fpk2bcPXVVwe8xx/+8Ieovx97iKe1tRV9+vTBtdde2+l5VVVVyM7Oxj333AMAWLBgAXw+H1599VXcc889KC0tRXZ2NiZMmIDly5dHvR8Mw4SGBQrDJDiXXnopjj76aPzlL3/BjBkz8M477+Dcc89Fa2sr7rrrLhw+fBivv/56wN+sW7cOn3zyCW677TYAwOeff44rrrgCQ4YMwdy5c/H+++/jF7/4Bdra2vx/c+DAAYwfPx4ffvghHnroIbz77ruYPHky7rvvPtx+++1h92/UqFEYPXo0XnzxxU6PzZkzB3369MH555/v36+TTjoJa9aswe9+9zv87W9/wwUXXIA777wTv/zlL2P+jtLT0/Hd734Xf/3rX1FTUxPw2BtvvIGmpiZ873vfC7j/Zz/7GbZs2YI//elP+NOf/oQ9e/Zg4sSJ2LJlS8z7wTCMDYthmITkwQcftABYd999d8D9r732mgXAevXVVy3LsqwJEyZYJ554YsBzbrnlFis/P9+qra21LMuyfvvb31oArKqqqrDv99Of/tQCYH355ZedXsvn81kbNmzw3wfAevDBB/2/P/300xaAgOccOnTIyszMtO69917/feeee67Vv39/q7q6OuA9br/9disrK8s6dOhQV19JABMmTLAmTJjg/33VqlUWAOv5558PeN7JJ59sjR071v/7J598YgGwxowZY3V0dPjv37Ztm5Wenm59//vfj3gfGIYJDzsoDJPgXHPNNQG/X3755UhLS8Mnn3wCALjrrruwYsUK/Oc//wEA1NTU4JVXXsH111+PHj16AABOOukk/9/++c9/xu7duzu9z7/+9S8MHz4cJ598csD9N9xwAyzLwr/+9a8u9zEzMxNz5szx3/fGG2+gubnZ71w0NTXh448/xqWXXoqcnBy0tbX5f84//3w0NTXhiy++iPLbkYwcORJjx44NcHLWr1+P//73v51CWQBw9dVXw+fz+X8fOHAgxo8f7/9eGYaJDxYoDJPglJaWBvyelpaGoqIiVFZWAgAuueQSDBo0yJ/HMWfOHNTX1/vDOwBw1lln4Z133kFbWxuuu+469O/fHyNGjMAbb7zhf05lZSX69u3b6f3Lysr8j4ejsLAQF198MV5++WW0t7f79+Pkk0/258FUVlaira0Ns2bNQnp6esCPCAEdPHgw6u/Hzo033ojPP/8cX331FQDgxRdfRGZmJq666qpOzw3+XsV9XX1OhmEihwUKwyQ4FRUVAb+3tbWhsrISRUVFAICUlBTcdttt+Mtf/oK9e/fimWeewaRJkzBs2LCAv7vkkkvw8ccfo7q6GgsWLED//v1x9dVX4/PPPwcAFBUVYe/evZ3ef8+ePQCA4uLiLvfze9/7Hnbv3o358+dj3bp1WLx4cUDeR69evZCamoobbrgBixcvDvkjhEqsXHXVVX4np729Ha+88gq++c1volevXp2eG/y9ivvE98owTHywQGGYBOe1114L+P3Pf/4z2traApqUff/730dGRgauueYabNiwocuk1szMTEyYMAGPPfYYAPgrVyZNmoR169Zh2bJlAc9/+eWX4fP5cPbZZ3e5n1OmTEG/fv3w4osv4sUXX0RWVlaAc5GTk4Ozzz4by5cvxwknnIBx48Z1+olXHPTq1Qvf/OY38fLLL+Nvf/sbKioqQoZ3AApBWZbl/3379u1YtGgRN39jGIfgPigMk+C8/fbbSEtLwznnnIO1a9figQcewKhRo3D55Zf7n9OzZ09cd911ePbZZzFw4EBcdNFFAa/xi1/8Art27cKkSZPQv39/VFVV4fe//z3S09MxYcIEAMDdd9+Nl19+GRdccAF+9atfYeDAgXj//ffxzDPP4JZbbsExxxzT5X6mpqbiuuuuwxNPPIH8/HxcdtllKCgoCHjO73//e5xxxhk488wzccstt2DQoEGora3F5s2b8d5773WZ5xIpN954I958803cfvvt6N+/PyZPnhzyefv378ell16KH/zgB6iursaDDz6IrKwsTJ8+Pe59YBgGXMXDMImKqOJZunSpddFFF1k9evSw8vLyrKuuusrat29fp+cvWLDAAmA9+uijnR7729/+Zk2dOtXq16+flZGRYfXp08c6//zzrX//+98Bz9u+fbt19dVXW0VFRVZ6ero1bNgw6ze/+Y3V3t4e8DwEVfEINm7caAGwAFjz588P+bm2bt1q3XjjjVa/fv2s9PR0q3fv3tb48eOthx9+OIpvp3MVj6C9vd0qLy+3AFj3339/p8dFFc8rr7xi3XnnnVbv3r2tzMxM68wzz7SWLFkS1T4wDBMen2XZPEqGYRKGGTNm4Je//CUOHDjQbf4HANx777149tlnsXPnTs6j6IIFCxbg7LPPxltvvYVvf/vbuneHYRIWDvEwTJLzxRdfYOPGjXjmmWdw8803szhhGMYIWKAwTJJz2mmnIScnBxdeeCEefvhh3bsTN+3t7ejKGPb5fEhNTVW4RwzDxAKHeBiGSSgGDRqE7du3h318woQJWLBggbodYhgmJthBYRgmoXjvvffQ3Nwc9vG8vDyFe8MwTKywg8IwDMMwjHFwozaGYRiGYYzDkyGejo4O7NmzB3l5eQGLdTEMwzAMYy6WZaG2thZlZWVISenaI/GkQNmzZw/Ky8t17wbDMAzDMDGwc+dO9O/fv8vneFKgiCS3nTt3Ij8/X/PeMAzDMAwTCTU1NSgvL48oWd2TAkWEdfLz81mgMAzDMIzHiCQ9g5NkGYZhGIYxDhYoDMMwDMMYBwsUhmEYhmGMgwUKwzAMwzDGwQKFYRiGYRjjYIHCMAzDMIxxsEBhGIZhGMY4WKAwDMMwDGMcLFAYhmEYhjEOFigMwzAMwxgHCxSGYRiGYYyDBQrDMAzDMMbBAoWJm/p64PHHgU2bdO8JwzAMkyiwQGHi5s03gZ/8BPjFL3TvCcMwDJMosEBh4mb3brrduVPvfjAMwzCJAwsUJm4OHqTbAwf07gfDMAyTOLBAYeKmspJu9+/Xux8Mw4Tniy+Abdt07wXDRA4LFCZuhECpqgJaWrTuCsN0y+bNQGur7r1Qy86dwOmnAxdeqHtPGCZyWKAwcSNCPMHbDGMaCxYAQ4cCd9yhe0/U8vXXQEcHsHEjYFm694ZhIoMFChM3wkEBOA+FMZvVq+l2yRK9+6EacV62tgI1NXr3hWEiJWqB8umnn+Kiiy5CWVkZfD4f3nnnnU7PWb9+PS6++GIUFBQgLy8Pp556Knbs2OF/vLm5GXfccQeKi4uRm5uLiy++GLt27YrrgzD6sAsUzkNhTObwYbpNtuHGPnHgSQTjFaIWKPX19Rg1ahRmz54d8vGvv/4aZ5xxBo499lgsWLAAK1euxAMPPICsrCz/c6ZNm4Z58+Zh7ty5+Oyzz1BXV4cLL7wQ7e3tsX8SRgstLYEzMhYojMkIgbJvX3LlS7FAYbxIWrR/MHXqVEydOjXs4/fffz/OP/98PP744/77hgwZ4t+urq7GCy+8gFdeeQWTJ08GALz66qsoLy/HRx99hHPPPTfaXWI0cuhQ4O88+DEmIwQKAOzZAwwapG1XlMIChfEijuagdHR04P3338cxxxyDc889F3369MEpp5wSEAZaunQpWltbMWXKFP99ZWVlGDFiBBYtWhTydZubm1FTUxPww5iBPbwDsIPCmI1doCRTY0EWKIwXcVSg7N+/H3V1dXj00Udx3nnn4cMPP8Sll16Kyy67DAsXLgQAVFRUICMjA7169Qr425KSElRUVIR83ZkzZ6KgoMD/U15e7uRuM3EQXLXDgx9jMnaBkkx5KCxQGC/iuIMCAJdccgnuvvtunHjiifjpT3+KCy+8EM8991yXf2tZFnw+X8jHpk+fjurqav/PTkOnPmvXArfcIlu/JwPsoDBeggUKCxTGOzgqUIqLi5GWlobhw4cH3H/cccf5q3hKS0vR0tKCw/aRAuS+lJSUhHzdzMxM5OfnB/yYyNNPA889B/zxj7r3RB1CoKSm0i0PfozJsEDhc5TxDo4KlIyMDJx00knYsGFDwP0bN27EwIEDAQBjx45Feno65s+f73987969WLNmDcaPH+/k7ihHuAdff613P1QiQjwiD5odFMZkklGgdHQEhmJZoDBeIeoqnrq6OmzevNn/+9atW7FixQoUFhZiwIAB+NGPfoQrrrgCZ511Fs4++2z84x//wHvvvYcFCxYAAAoKCnDTTTfh3nvvRVFREQoLC3Hfffdh5MiR/qoeryIGv2Ra70I4KMcdB2zaxIMfYy4tLUBDg/zd0Eix4xw+DNg7OPA5yniFqAXKkiVLcPbZZ/t/v+eeewAA119/PebMmYNLL70Uzz33HGbOnIk777wTw4YNw1//+lecccYZ/r958sknkZaWhssvvxyNjY2YNGkS5syZg1QRJ/AoQqBs3ap3P1RiFyjvvks9UZqaAFvbG4YxgqCoctI4KMGChAUK4xV8luW9lRlqampQUFCA6upqo/JRBgygWZnPBzQ2ApmZuvfIfS66CPjb34Dnnwduu41aae/YAXChFWMaX31FQjolhcIePh/Q3Aykp+veM3f597+Bs84CMjLIRcrODnSSGEYl0Vy/eS0eBxEzNMuii3QyIByU4mKgd2/a5hkaYyLi/BwwgESJZQF79+rdJxWI83HYMLptbATq6/XtD8NECgsUh2htBerq5O/JEuYRyXdFRVKgcKIsYyJCoBQWAv360XYyhHmEQBk8WLq6PIlgvAALFIeoqgr8PVkSZe0OSp8+tM2DH2MiQqD06gX070/byZAoK87H3r3Z5WS8BQsUhwhOwEsGB6W9XX7uoiIpUNhBYUwklEBJJgeFBQrjNaKu4mFCk4wC5fBhiuMDZJvz4MeYjDhHe/akH4AFCsOYDAsUhwgWKMkQ4hHhnYICSjpkB4UxGXZQWKAw3oJDPA5hn50ByeGgCIFSVES3nCTLmAwLFBYojLdggeIQYvAbM4Zu9+9P/F4D9goegJNkGbPhJFkWKIy3YIHiEGLwGzyYQh5A4od57BU8ADsojNmEEih79wJtbfr2yW0siwUK411YoDiEffAbPJi2Ez3MExziYQeFMRn7OVpSAqSlUUfZigq9++UmNTXUowlggcJ4DxYoDmEf/AYNou1Ed1CCQzxi8KuvT/zwFuM97OdoaipQVka/J3IeihAiubnU4p4FCuMlWKA4xKFDdJuMDooI8eTlcadKxlzsAgVIjjwUe3jHfsvnJ+MFWKA4BId4aPE1LjVmTKS1Va4/EyxQksFBCRYotbW0UCLDmAwLFIdI5hCPcFAAnqExZmLvUyRaASSjQOnZk3Jv7I8xjKmwQHEI+0JkyeqgAOygMGYizs/8fMo/AZJToPh8ckLBAoUxHRYoDhHKQTl8GKiu1rZLrhOcJAskX6nx7t2cEOwFgvNPAKC8nG6TSaDYt1mgMKbDAsUBWluBujra7tUL6NFDzlISNcxjWTIx2B7iSaZS4x07yC278ELde8J0RyiBkoxJsvbtZDhHGW/DAsUBqqrktohvJ3qYp6ZGNrhKVgflv/8lcbpihe49YbqjK4GyZw+tzJ2IsEBhvAwLFAcIFd9O9ERZEd7JyQGysuT9yeSgbNxIt4cPy2ZYjJmEEiilpUBKComTffv07JfbsEBhvAwLFAcINfgluoMS3ANFkEwOyqZNclt8H4yZhDpH09ISv1kbCxTGy7BAcYBkFij28A6QnA4KkByCzMuEOkeBxK/kYYHCeBkWKA4QavBLlhBPOIGyfz8l0iYydoHCg73ZdCdQEjFRtr4eaGykbRYojBdhgeIA3TkoiXih7i7E09QkK5sSkUOHpEgDeLA3nWR0UMQxmZlJlYUCFiiMV2CB4gChBr+BA+m2ri4x8xPChXhycylxFkjsAdCefwIk9mdNBJJZoPTuTQ3aBCxQGK/AAsUBQg1+WVlA3760nYhhnnAhHiA5EmXt4R2AB3vTCSdQErlZmzgmRdhVIM5Prj5jTIcFigOEG/wSOVE2XIgHSI5EWRYo3iLZHRQ7hYXSUUlEdzeROHQI6OjQvRf6YIHiAOEGP5Eom8gCJdkdlCFD6JYFitl0J1B27068C0E4gZKaKs/bZDhum5qosaTXWL6cJns//KHuPdEHCxQH6M5BSbYQTzI5KKefTreJ/Fm9TvBSFHb69iU3obU18QR1OIECJM+CgZYFjBkDDB0qK5q8wtKl1ETwz3+WXbuTDRYoDsAhnkAS3UGxLBYoXiLUUhSC9HTqKAskXpinK4GSLImyW7cC69fTWLR9u+69iQ6x1ll1NYmVZIQFigN0F+JJNAfFspLbQdmzh1YwTk0FTj6Z7kvUz5oIiPMzL4+6xwaTqImykQgUe6l8IrJkidz22oTJnh/00Uf69kMnLFAcQCjdrkI8idQLpaEBaG6m7a6SZL02IESKPf9EtEqvrEzcBee8TrgJhCBRE2XZQQkUKF77rOK6AgDz5+vbD52wQImTruLb5eW0GFlTE1BRoX7f3EIo+4wM6nsSTKKHeIRAOeYY6SBZFldEmEqkAiXRusmyQAkMjXhtPLKPJ4sWUWfgZIMFSpx0F98Wg18ihXns4R17AyhBood47AIlLY3KNoHE/bxehx2Uzo8lg0Dp6PC2QLE7KK2twKef6tsXXbBAiRMx+OXnh45vJ2KibFcJskCgg5JIoS2BXaAAyTHYe5lkFCjNzUBtLW0nq0D5+mtKMBV47bOKcVbkMiZjHgoLlDjpbvBLZIESKkEWkINfa6s3+w90BwsUb9HdOZqISbLiWExPBwoKOj+eDMesPf8E8K6DcvnldJuMeSgsUOKku8EvESt5uqrgAYDsbLk4mdcGhe5obQW2bKFtFijeIBoHJVEcP3EsFheHDsMmwzErBIoXP6s9p+0736Hb1asTK5cxEligxEkyOyjhQjxA4uahbNtGTZNycmQFT6J+1kShu3NU/B9bWhLnf9hV/on9/srKxOugKxAC5bzz6NZLk6XGRlkpOWwYMHo0bf/rX/r2SQcsUOIkUgclEQVKOAcFSNxKHhHeGTqUKrQAb87QkonuztGMDKCkhLYTJczTnUARk4v2dvn9JBIdHcCyZbQ9dSrdemksEmNsWhq50ZMn0+/JFuaJWqB8+umnuOiii1BWVgafz4d33nkn7HNvvvlm+Hw+PPXUUwH3Nzc344477kBxcTFyc3Nx8cUXY5dHR4ZIHZQdOxKnT0Z3IR4gcV2F4PwTgAWK6XR3jgKJl4fSnUDJyJC5KYl43G7cSO0fcnKAM8+k+7zUq0jkn4hKyXPOod8/+ihxwpCRELVAqa+vx6hRozB79uwun/fOO+/gyy+/RJnwT21MmzYN8+bNw9y5c/HZZ5+hrq4OF154Idq9cvTYiMQ+Tk+nsMDu3er2y02iCfF4adYSCSxQvEckAiXRKnnEeRdOoNgfS8TjVoR3Ro+WSxl4qVeR2E/RwuCMM4DMTDo+N2zQt1+qiVqgTJ06FQ8//DAuu+yysM/ZvXs3br/9drz22mtIT08PeKy6uhovvPACfve732Hy5MkYPXo0Xn31VaxevRofebCOqrvBLzUVGDCAthMlUZZDPBTiESTqZ00URK+iSARKojRr685BsT+WyAJl3Dhv9iqyOygAFR6ccQZte/AyGTOO56B0dHTg2muvxY9+9CMcf/zxnR5funQpWltbMWXKFP99ZWVlGDFiBBYtWhTyNZubm1FTUxPwYwqRzM4SLVE2mUM8mzbRrdcdlC++ACZMABYv1r0n7pOMDgoLFLodN45uveboBjsogMxDYYESB4899hjS0tJw5513hny8oqICGRkZ6BU0WpSUlKAiTA3VzJkzUVBQ4P8pFwFjA0hGgRJJiCcRXYWGBjnDDiVQvFQRMWcOdaa8+ebEjmm3t8tePCxQAklUgdLeDixfTtteFSjBDgog81A++YRSBpIBRwXK0qVL8fvf/x5z5syBL1TxfRdYlhX2b6ZPn47q6mr/z06DfNhIBEoi9UJpbpZrDyWbg7J5M90WFgZ+di9WRAgXbPlyYN48vfviJl0tRWEn2ZJk7Y8l0jkKAF99RZOJHj2826solINy4on0e01NcjifgMMC5d///jf279+PAQMGIC0tDWlpadi+fTvuvfdeDDpylS4tLUVLSwsOB43k+/fvR4mo9QsiMzMT+fn5AT+mkGwOijhxUlJCd6gUJKKDEipBFvBmRYQQKADwi194p7ohWsT52aMHJauHI9GatSWzQBHhnTFjZCsArzkoofL8UlOBb3yDtpOl3NhRgXLttddi1apVWLFihf+nrKwMP/rRj/DPf/4TADB27Fikp6djvu0b3rt3L9asWYPx48c7uTtKSFaBUlQkT/5QiAHh4EHvhD26I5xAAbw32NurGdauBf78Z3374iaRnJ+AbNbW1OSdSo9wtLZK5yiZBYoI7wDe+6wixGN3UIDAcuNkIMTydl1TV1eHzcLrBrB161asWLEChYWFGDBgAIqCfP/09HSUlpZi2LBhAICCggLcdNNNuPfee1FUVITCwkLcd999GDlyJCaLLCCP0NYmF+SKJMSzezd1q8zIcH3XXCOSBFlAhj3a2miwDD7RvEhXAqVPHwoBeWUAFP/Hb30L+OtfgRkzqKV2qAUvvUykAiUriy5iBw6Qi9JVfpXpiP9tSkrX553XLtqREkqgJIKDAshE2c8/p2tPXp7a/VJN1A7KkiVLMHr0aIw+0nv3nnvuwejRo/GLX/wi4td48skn8c1vfhOXX345Tj/9dOTk5OC9995DampqtLujlUjj2yUlNAB2dHi/jDGSBFmAavZF2MMrg0J3JIqDYlnyIvarX9EguHEj8NprevfLDSIVKEDiJMqKY7A7l9NLx2yktLUBK1bQtpcFSjgHZcgQ+mlroyT3RCdqgTJx4kRYltXpZ86cOSGfv23bNkybNi3gvqysLMyaNQuVlZVoaGjAe++9Z1RlTqSIgygvr+uZp8+XOImykfRAESTaAJgoAqW2VlYBDBoE/OQntP3LX1J4IJGIRqAkSqJsJPkn9scPHEiMvBsAWLeOwnT5+cBRR8n7vXR+Al2Ps8lUbsxr8cRBNINfouShRBriAbw3a+mKyko5aBx9dOfHvTQAiv9hdja1Ar/tNnL5tm4FXnxR7745TTI7KJEKlNZWWYrtdUR4Z+zYQPfIS2ORZYV3UACZh5IMibIsUOIgGQVKpCEeILFKjUWDtv79gdzczo97qWop+H+YkwNMn07bDz8sV1FNBGIRKF4Pw0YqULKz5bGcCOcoEDr/BJDfxeHD5ruEdocz1ETw7LPJlV+7Fti7V+2+qYYFShxEM/glc4jHCxft7ugqvAN400Gx/w9vvhno148uzn/8o579cgN2ULrGS8dtJIQTKIWF0lGxl9ibiHBPsrJo8hBMURGVUAOJH+ZhgRIHYvCLpEIlURyUWEI8iTD4JaJAsbtgWVnAz39O27/+NTW6SgRYoHSNl47b7mhpAVaupO1ggZKaKo930ydMoZq0BZMs5cYsUOKAQzxdww6KmYT7H954Izl9FRXAs88q3y1XiDVJ1stJo8kqUNasIZHSq5ccb+145bOGanMfjEiUnT/f28dqd7BAiYNYQjwVFUBjo2u75DrRhHiS0UE5eND8ASOcC5aRQV1lAeDRR+WSBl4mmnO0Xz+6bWgIbCHgNZJVoCxdSrdjx1KORjBeSZSNxEE5/XRyPffuBdavV7NfOmCBEgfRDH6FhbKpzvbt7u2T20QT4kkUB6WjI/QqxnbsFRHV1Wr2K1ZChXgE114LDB1Kz3n6abX75QbRnKPZ2fK49nKibLIKlHD5JwKvfNZIHJSsLODMM2k7kcM8LFDiIJrBz+fzfphHdIUFoqvi8bpA2bOHZtVpadIJCyYrSwpQ0wfArlywtDTgwQdp+7e/NV9sdUc05yiQGHkoLFBCP+6V8SgSBwVIjnJjFihxEO3g5/VKHqHsgcg+sxj8Kiu9vRidCO8MGdL1gnNeGey7clAA4MorgeHD6fh+8kl1++U07e1SYEV6jnq9WVt7u7zAJZNAaWoCVq+mba8LlEgcFEDmoSxYYH7pdKywQImDaAWK1x0UMfD17BnZmi3iAtjREShuvEZ3+ScCrwz23SU6p6ZSV1mABIpXF8+zuz/J4qAcOiRzoJKp2/Pq1XSRLi4GBgwI/RyvfNZIHZRRo+jz1tUBX37p/n7pgAVKHCSbgxJNBQ9AboM4yUwfFLoi0QRKJHlEl11GA2BNDYV6vIg4P3Nzu3a+7HhdoIhjr1evyD6zV47Z7uguQRZIPAclJQWYNIm2EzUPhQVKHCSbgxJNgqwgERJloxUoJn9W+0KBXQnNlBRaSBCgZFmTP1M4oj0/Ae93k40m/8T+PK8LlO7yTwDvfNZIHRQg8dflYYESI21t1JIYSB6BEq2DAiRGqXEiOSh1dTJe3d3/8aKLgJNOogThxx5zf9+cJh6B4nUHJVqB0tgI1Ne7s08qiESgJJqDAshE2S++SJz1lOywQIkRe5+Enj0j+xsR4qmslOLGS0TTA0XgBVehK1pbgS1baDsRBIpwT8K10bbj8wEPPUTbzzxD1UxeIhaBIpJkd+40v59NKKIVKD16AJmZgX/rNRobqUkbEJlAqakxe72paByUgQNp8dL2dmDhQnf3SwcsUGJEDH55eZEljAK0BLg46LyYhxJLiMcrs5ZwbNtGJ39ODlBW1vVzvSBQonXBpkyhplBNTcAjj7i3X24Qi0ARzdrq6705I41WoPh83jhuu2LlSjpHS0rk/y8U9uR+Uz9rR4c8biMdZxO53JgFSozEMvgB3g7zxBLi8frgZw/vhEu+E3jhs0YrMu0uyh//COzY4c5+uUEs52hurny+F/NQohUo9ueafNx2hT2809U5ahdjpk6YqqtJpACROShAYuehsECJkVgFipcreWIJ8XjdQYk0/wTwxkAfSYJsMGefTT8tLcDDD7uzX24Q6znq5TyUZBQo9gqe7jD9s4oxNjdXht664+yzKal9/XpvHrNdwQIlRpLRQYmnisfUAaE7hEAZOrT759o/q6n5C7G4YIB0Uf73f4Gvv3Z2n9yCBUpkeP0cjSRBVmD6hEkkyEbqngB0fIvP/vHHzu+TTligxIg4kGJ1ULwoUOKp4jF1QOiOWByU5mZzF9qLRWQClIdy3nkU6xflx6YTq0DxcjfZZBMo9fXAunW0HYmDYvp4FItLDSRumIcFSozE66AkW4jHi4MfEJ1Ayc2VlTGmft5YQjwCIUxefRX46ivn9skt2EGJDC8LlBUrKGejrKz7JHbA/M8ai4MCyETZjz4y172NBRYoMeJEiMdLB1JHR3xlxpWV1DvGS9TXy4tUJAIFMH8AjHWGBlBPlIsvpmNhxgxHd8sV4hUoXkuStTfhSxaBEk14B0hcB+W002hyVFEBrF3r/H7pggVKjIjBL1qlO3Ag3dbUBPZSMR17dnk0J09Rkcys99qaLps3021RUeT/Z9MH+3gcFEC6KG++KRdnM5Vkc1CqquQkINkESiThHcD8zxqrg5KZCZx1Fm0nUrkxC5QYiXXwy8mhen3AW3koQlzYGztFQmqqFDSmzlrCEU14R2B6GWOsSbKCUaOA73yHth980Jl9cotkEyjiopuXF905avpFuytEBU+yOyhAYuahsECJkVgHP8CblTyxJlcC5g8K4YhHoJg62MfzfxSI8M68eea6gB0dcjXjWAVKTY23mrWJY06cb5Fi+jEbjtpamQsVqYNi+lgUTZv7YEQeysKF1BIgEWCBEiPxCBQv9kKJZ+bt1QEw0QRKpAsFdsfw4fK43707/v1yg+pqmeMV7TmalwcUFNC2qZ8vFLEkyNqfX1trdgv4YJYvp/9xebl0pbvD5PMTiK7NfTAjRpAAq6+ntXkSARYoMcIOSuSYPmsJR6IJlPp6ObOKR6AAQN++dLt3b3yv4xbi/MzJATIyov97LybKxipQvNACPhTRJsgCciyqr6dFME0jHgclJQWYNIm2EyXMwwIlRpJNoMQTGzX5ot0ViSZQhMjMzOx+ocDu8IpAieX8BLyZhxKrQPH5pGA18bgNRywCJS9PClYTP2s8DgqQeOvysECJgbY2uRoxh3i6x4sOSmWlnM0cfXTkf+cFgVJc3P26Qt2R6ALFi83aYhUo9r8x8bgNR7QVPAAd9yaPR/E4KIBMlP3vf2UOlpdhgRID9sTAnj2j/3t7szav9EJxIsTjpcFPuCfl5dG5DSZ/1nhcsGASXaAkk4Ni/xsTj9tQVFcDmzbRdjQCBTBXoLS1yWtLrA5KeTkwbBgliX/yiWO7pg0WKDEgBr+8PBm7jYbyclLyDQ3mnSThcCJJ1iufFYgtvAOYPdA7kSArYIFiHskkUJYto9tBg6I/nk39rPaJb6wCBUiscmMWKDEQ7+CXmQn060fbXgnzxDP7NtlVCEe8AqWhwbwkvHh7oNhJFoGSDEmy9r/xyjkaS/6JwFQHRZyf+fmxTXwF9rb3XocFSgzEO/gB3kuUjSfEk0wOir2RnWmDvRM9UATJIlDYQTGTeASKqZ813vwTwcSJVNGzYYO3BHYoWKDEgBMCxWuJsk4kyVZVeaeBUKwCxeczV5BxiCdyRJJsVZW5K1PbsSwWKJFiuoMST3gHoB4+J59M2153UVigxECyOSiWFV+Ip1cvankPyIukyXR0yAS8aAUKYO5g70aIp67OzAt4vOdofj7lmAHeaNZmb7KW6ALl8GFgyxbaHjMm+r83VaA45aAAiVNuzAIlBpJNoNTVSecj1gZC4qJo2qAQit27gcZGigMLpysaTB3snQzx5OUBubm0baKL4sQ56qUwjzjWcnJi63Fj6jEbCrH+zlFHxfb/NfWzOuWgAIGJsmKRVy/CAiUGki3EI06crKzYG3yZOiiEQoR3jjoqtmQ1Uz+rkw4KYHaYx0mB4oU4fjzhHfvfecHhjCe8AySHg3LqqTSBOHDA/FXHu4IFSgyIA8kJB2X7dvMVrj28E2uDL1MHhVDEmn8iMFWgOOmgAMkjULzkoMQqUIRoPXSI+nGYTLwCxX5+mtSHykkHJSND9odZvz7+19MFC5QYcGLw69ePZuctLcCePc7sl1s4cWHzUqlxPPkngJkCxamFAu0kukDxUjfZeAWKffIhLpSm4pSD0tRkVv6Uk40UASmwvZBDFY6oBcqnn36Kiy66CGVlZfD5fHjnnXf8j7W2tuInP/kJRo4cidzcXJSVleG6667DnqArcHNzM+644w4UFxcjNzcXF198MXZ5YRQ4ghODX1qaHABND/M4ERowtbIlFPE6KCaKsYYGmUSZ6AKlo0M2vWIHJTJSU+XM3aTjNpiDB8l1BoDRo2N7jdxcGao2aTwSzrwTDgoAlJXRrekT4K6IWqDU19dj1KhRmD17dqfHGhoasGzZMjzwwANYtmwZ3n77bWzcuBEXX3xxwPOmTZuGefPmYe7cufjss89QV1eHCy+8EO3t7bF/EoU4IVAA7yTKOumgmDQghCMRQzzif5iRIZNb48VUgVJTI617FiiRY+JxG4xIkD3mGCqnjRUTP6vTDkoiCJSoUwCnTp2KqVOnhnysoKAA84PqmmbNmoWTTz4ZO3bswIABA1BdXY0XXngBr7zyCiYfSTV+9dVXUV5ejo8++gjnnntuDB9DLUKgxKt0vZIo68SJY+KAEIrWVlnCmIgCxYmFAgVCoFRUOPN6TiHOz+xs2TQvFpIpSVb87VdfmXXcBhNveEfQpw85MSZNmJx2UES38qQK8URLdXU1fD4feh5ZVW/p0qVobW3FlClT/M8pKyvDiBEjsGjRopCv0dzcjJqamoAfnSSbg+JEiMcrDsrWrUB7O7kM4gIcLSYKFKdnZ4C5DopT56cIwR46ZN6yBcEki4PilEAx8bOyg9IZVwVKU1MTfvrTn+Lqq69Gfn4+AKCiogIZGRnoFTR6lJSUoCLMVGzmzJkoKCjw/5SLkUMDbW3UFAlIHoHiRIjHxAEhFCK8M3Ro7E6D+Ky1tZSIZwJOJ8gCQGkp3SaqQCkokOEw02ehLFCiw7QJU0uLTNh1IwfFpGqlaHBNoLS2tuLKK69ER0cHnnnmmW6fb1kWfGGuCNOnT0d1dbX/Z6dGz9W+4uQRUyhmvBbiSQYHJd78E4AubOnptG3KYO90DxRAOiiVlWYtYeCUQPH5vJOHkgwCpaKC/g8+X+wJsgLTxiMR3vH54r+uCMT52dgYeN3yEq4IlNbWVlx++eXYunUr5s+f73dPAKC0tBQtLS04LEaRI+zfvx8lJSUhXy8zMxP5+fkBP7oQu52XF9+Kk4B0UHbuNLv3gJM5KCa5CqFwQqD4fFIImDLYO90DRbyWEGIm5aGIc9SJgd4reSjJIFBEguyxx9KinPFg2me199YSy4LES3a2dGO8GuZxXKAIcbJp0yZ89NFHKAoaEceOHYv09PSAZNq9e/dizZo1GD9+vNO74zhOzc4AssgzMynnweQB0ImLW8+eUtCZMiiEwgmBApg3ALoR4vH5zAzzOHmOesFBaWiQOTLJIFDiDe8A5jkoTjZps+P1PJSoBUpdXR1WrFiBFStWAAC2bt2KFStWYMeOHWhra8O3v/1tLFmyBK+99hra29tRUVGBiooKtBzxgAsKCnDTTTfh3nvvxccff4zly5fju9/9LkaOHOmv6jEZJwe/lBRg4EDaNjnM40R4wOczsz9IMIkqUNwI8QBmJso6eY56oVmbOMYyMuQCh7Fg2jEbjFP5J4B5n9XJNvd2hEAxPYcqHFEHKZYsWYKzzz7b//s999wDALj++usxY8YMvPvuuwCAE088MeDvPvnkE0ycOBEA8OSTTyItLQ2XX345GhsbMWnSJMyZMwepTnlbLuLk4AdQmGfjRkqUtX2txtDYKGdn8Z48vXuTkjdl1hJMXZ08kYcOje+1TBsA3QjxAIkvULzgoNjDO/GUkJt2zAbjpEBJFgdFlBp71UGJWqBMnDgRVhcpwV09JsjKysKsWbMwa9asaN9eO24IFMDcSh5x4qSl0RL08WDaoBDM5s10W1wc/0BhmlvEDkpseE2gxIP4+8pK6sabYtBCKHv20DGWkgIEzX1jwn5+WpZzvYFixW0HxasCxaBD0Bs4LVBMr+RxYqFAgekzNKfCO4B5n5UdlNjwQpKsUwJFiNf2dvkdmoJwT4YPj31FdTviu2ptBaqr43+9eHE7B8WrIR4WKFGSrA6KExc20x2UZBAo7KBEhxAoBw+aW33mlEDJyJDt4005bgVOJsgCQFaWzNcxYTxyy0HxeoiHBUqUJJuD4uTM27SLdjCJKlAaGuTFlQVKdBQWUrkmYO4s1CmBYn8NE45bO07mnwhM+qxcxRMaFihR4paDsmePXG3WJJzMXUhGB8WEzypEZnp6/P0jgkl0geKFZm2JLlAsyx2BYtJ45HYOyt69lFfkNVigRInTAqW4mNppW5ZcRtwkksVBsSxgwwbaTjQHxY2FAgVCoOzbR7kLuunokF0znTpHWaDoZdcuEhFpacAJJzj3uiYJFLcclJISSixubzfjc0YLC5QocVqg+Hxmh3mSJQelslJe2I4+Ov7XEwN9dbX+NvBuVfAA9D/1+UgYmHBRq62VM0WnBYqpibKJLlCEezJihAy3OYFJn9UtByUtjUQK4M0wDwuUKLG3JHYKkxNlkyXEI8I7AwY4MwjaW1YLB0MXblXwADQAiv+rCWEeMYHIzHTuYsYOil6WL6fbsWOdfV2TxiO3HBTA23koLFCixGkHBTBboLgR4mloAOrr4389J3Ey/wQgW1V8Z7oHezcdFMCsPBQ3zk/Tu8kmukARoW8nnE07pvQqamykH8CdSYSo5DE1ybsrWKBEQVsbWciAswNgsoR48vJoZgvoHxSCcVqgAOYM9m46KEDiCxSTHZTmZqCmhrYTVaCIC6u40DqFKYnswpVPTY2/GWYo2EFJEuxLVju1JDZgtoPi5Ozb5zNzAASSQ6CwgxIbJgsU8b9NTXVmTDLlmLXjlkAxJcRjD++40dGWBUqSIAa/vDy5zLwTCAfFRIHi9OzblEEhmE2b6NZJgWKKhcwhnvgQAmXfPvNaAYhjq7jYmdb0ySRQTPmswkFxI/8E4BBP0uDG4AdIB+XAAbNyM1pbpX3s1MXNlEHBTkeHOwLFlM/KIZ74KC6WoUnTZqFO5p/YX0esUaObmhoZVnfLQTl4UG+PECfD6KFgByVJcEug9Owp7VmT8lCEsvf5nAtpmeig7N5NSWrp6cDAgc69rikCxW0HpbSUbisq3Hn9aHDjHDW5WZtbAsU+OdGJmPUXFDjfZNCUtYfcdlBYoCQJbgkUwMxEWTHztpfMxospF207Iv/kqKOobNYpTEnCYwclfpJFoGRnU+NI+2vrxK3wDkBrD4mJl85z1G0HRXx3Bw6YF6LsDhYoUeCmQDExUdaNmbeJDoobCbKAOWJMZZKs7rAAC5T4MeW4BdwVKIAZ45HbDkphIYkxwAyXMxpYoERBsgoUJ5W9CQNCMIksUBoaZI8FtwVKc3NgpZsO3BYopnWTZYESHyZ8VrcdFJ/Pu2EeFihRkKwhHidPHBMGhGASWaCIwS8tTS4v7zRZWdIq1x3mcescNbVZGwuU+DBhwuS2gwJ4t5KHBUoUJKuDwiGe2BAD/aFD1ORPB24uFGjHlDwUDvHEj0kCRXzfbgsUEyYRbjkoADsoSUGyCRS3HRTd+QoALeQnvnOnBUpRkRQFYhBSjdsVPAIWKHpIdIEiZvzi+3caExLZ3Voo0A4LlCRARYinqopWwDUBN3NQmpqAujrnXjdWtm6lMsMePWS5rFOkpkrbVtdg73YFj8AEgWJZMgfGLYFSUUEluKaQLAIlkUM8bi4UKBAChUM8CYybAiU3V15ExOJYunFj9p2bK1eZNWEAFOGdoUPdCYHotpCTyUGprSWxCTh/jvbuTX1yLMucWWhbm5x9J6JAaW2l7r1A4ibJWpYaB0V8f6Ycu5HCAiUK3BQogGwSZopAcWv2bcKsReBW/olA9wCYTA6KOD8zMqQIdoqUFPPCPEJ8+nyJmcheUUEX8PR0ZwWYHd1jUX09hZkBNQ4KC5QExm2BIsI8pggUt5K3TBkAgeQRKMngoNjPTzfcMNMEijimioqca6QI6D9mBSIc0bevM+sMhUK3wynck4wM2SDPDTjEk+C0tcnWz247KKaUGrsVHtA9a7Ej1uAZOtSd19edhJdMIR638k8EpgoUp90F0wSKW+EdQH7Wyko9lXZur2QsEAKltlaubeQFWKBEiL0BlVPr0gRjUoinvd292KhJAkWIwSFD3Hl93YN9MoZ43BYopjRrc1ugNDbqXbxUCEG3KngAWWlnWXoq7VTknwDUA0n0QdJdaRcNLFAiRAx+PXpQTNQNTBIoVVWyDNjp2Kjui7agvV1ebJxcJNCO7s+qOsRTW6vvoqZKoCS6g9Kjh1y9Wec5qsJBSUvTW2mnooJH4MUwDwuUCHF78APMEijixMnPl+s4OIUpDsrevWTrpqXJC6zT6BYoqkI8eXlATg5t65qhuX2OmtZN1i2B4vPpP24BNQIF0DseqXJQAG9W8rBAiRAVAkUkye7fL9dP0YWboQETBj8A2LGDbvv3dzbJ0I7uz6oqxOPz6Q/zJJuDIi6oblS46D5uAfUCJVkcFBYoCYgY/Nw8kHr2lHFC3S6KmzNvUxwU8R27Fd4B9A70jY20WCDgvoMCJI9AEc6bbtxyUOyvmQwCRWciu0oHhUM8CYwKB8XnMyfM4+b6ECYMfoD8jgcMcO897FUCHR3uvU8o7AsF5ue7/36JLlD69KHvsqPDjETDRBYolpUcIR6VDgqHeBIYFQIFMEeguBkasA8IOtfjESEeNx0U4Vx0dMjZkirs/0M3SxgFiS5QUlPlIG9CJU8iC5TDh2WYW5WDojPEo9JBYYGSgCSbQHEzxCMGhNZWvesOqQjxpKfLY0b1AKgqQVaQ6AIFkG6b7vMTSGyBItyToiIgK8vd9zIhSZareELDAiVCkk2guOmgZGdTKSOgN8yjIsQD6BvsVSXICsRiixUVat4vGBXnqOiXs2WLe+8RCR0dUoAmskBx2z0BzEiSVV3FY8JK8pHAAiVCVAkUUcmju5us2yeO7kRZy1LjoAD6kvDYQXGewYPpdutW994jEg4dkjlNbrqcySBQTEiSVeGgiAlES4v6cHOssECJkGRzUNy+uOkeAKuqgLo62mYHxRl0ChTLSi4HRRxLPXu60zhS9/mpw0FRLVBUrWQsyMyU47lXwjwsUCJEtUDZs4dyNHTh9sVNt4MiBGCfPs6vfBuMboGi2kE5eFCu0KqK+npZ+qtCoOh2UNzMP7G/bjIIFPFZq6rUHrc1NdTNGlDjoADeq+RhgRIhqgRKnz6kdDs69DaEcjvEo3sAFBU8brsngL7PqjrEU1REZbgAsG+fmvcUiPMzPV12tHUDEeLZsUPvBEKVQKmtBZqb3XmPrhBjnwqBUlgoV0sWol4F4vzMznZ/kiTwWiUPC5QIUSVQUlL0VwrYF85y6+JmioPidv4JoN9BURXiSUmRcW7VYR77+elmSXVpKVWVdHRIkasDtwVKz55SbOqYRAgHxc2FAgUpKXrOUZX5JwKvVfKwQImA9nay4wD3BQqgPw+lpkba5YnqoCSTQFHloAD68lBUTiBEIrvOMI/bAsXnk8eNToGiwkEB9CTKqqzgESR8iOfTTz/FRRddhLKyMvh8PrzzzjsBj1uWhRkzZqCsrAzZ2dmYOHEi1q5dG/Cc5uZm3HHHHSguLkZubi4uvvhi7DJlgYsQVFXJ7Z493X8/3ZU8KqxH3Q4Kh3jcIdEFCmBGoqzbAsX+2qqP2+ZmKa5VCRQd45HKBFlBwod46uvrMWrUKMyePTvk448//jieeOIJzJ49G4sXL0ZpaSnOOecc1NbW+p8zbdo0zJs3D3PnzsVnn32Guro6XHjhhWgXGUOGIQa/Hj3cyZgPRreDouLCprO0D1DroOjqs6A6xAMkl0BJZAfF/tqqj1tx8czMVBf+0PFZVba5F3gtxJMW7R9MnToVU6dODfmYZVl46qmncP/99+Oyyy4DALz00ksoKSnB66+/jptvvhnV1dV44YUX8Morr2Dy5MkAgFdffRXl5eX46KOPcO6553Z63ebmZjTbMrVqRLxFESoHP0C/QFFxYdPZHAnQE+I5eJDye1S0nW9qosoWgB0UpxGJssnioKhMHAUCwzsqzhUgeRyUhA/xdMXWrVtRUVGBKVOm+O/LzMzEhAkTsGjRIgDA0qVL0draGvCcsrIyjBgxwv+cYGbOnImCggL/T3l5uZO73S3JJlBUOCh2gaJ6Eb2mJllloiLEI77HtrbAcKGbiP9haipQUKDmPYHkECgc4nEX1fkngJ4Jk04HZd8+M1bk7g5HBUrFkR7XJSUlAfeXlJT4H6uoqEBGRgZ6BY0k9ucEM336dFRXV/t/dipeqUsoXdUCZccO9RdvQE3ylrhot7eru2gLxOGTm6tmcMjMlKsJqxoAVS8UKEgmgcIhHncQ6YgqKngEOkLOOhyU3r1p0tLRob4VQCy4UsXjCxoRLcvqdF8wXT0nMzMT+fn5AT8qUe2g9OtHB1Frq56unCpCPJmZcmavOg/FHt5RdfFWPQDqSJAFkkOgiBBPZaWexS4tS56jbgoUXVU8Oh0UHVU8Kh2U1FTZCsALYR5HBUrpkU8e7ITs37/f76qUlpaipaUFh8WIEuI5pqFaoKSlydmDjjCPqoubrhmaygoegerPqiNBFpACZd8+2SVTBSrP0bw8eW7ocFGqq2WTuER0UHQIFJ19UFSfo17KQ3FUoAwePBilpaWYP3++/76WlhYsXLgQ48ePBwCMHTsW6enpAc/Zu3cv1qxZ43+OaagWKIDePBRVFzddpcYqE2QFqgdAXQ5KSQm5Uu3tapMrVZ+jOhcNFMdQjx7UNM4tkkmgJIuDAnirkifqKp66ujps3rzZ//vWrVuxYsUKFBYWYsCAAZg2bRoeeeQRDB06FEOHDsUjjzyCnJwcXH311QCAgoIC3HTTTbj33ntRVFSEwsJC3HfffRg5cqS/qsc0xOCn8kDSKVBUNRDSNQAmg0DR0aQNIPevd28a6PfuJcGiAtUCZcgQYPFiPYmyKvJP7K+fTAKltpaS6N0UfgJdDoqXeqFELVCWLFmCs88+2//7PffcAwC4/vrrMWfOHPz4xz9GY2Mjbr31Vhw+fBinnHIKPvzwQ+Tl5fn/5sknn0RaWhouv/xyNDY2YtKkSZgzZw5SU1Md+EjOk2wOiqrZt24HhUM87tC3rxQoJ56o5j11CBRAr4OiSqAcOkQVH2lRXy2ip6NDXjhVCpSCAupx1dpK36/bhaLt7XomvoC3QjxRH3ITJ06EZVlhH/f5fJgxYwZmzJgR9jlZWVmYNWsWZs2aFe3ba0GnQNHRTVbVxU1XszaRg5LIDoquEA9AAmXlSnWJspalL8STyA6KqAATa3OpcMPEStg+n8xnUoHPR9/nnj00HrktUKqr6XsFOMTTFbwWTwToECii3X0ih3h09B7o6JBlxoksUHQ7KIA6gdLQIJNGVTsoiSxQUlPlxVPVcSsumn36ABkZat5ToPIcFWNsjx7qP6eXQjwsUCJAd4inC8PKcRoaKAYLJGaIZ+9eupilpqqdoakWY7pyUAD1AkWcn2lp1NtGBcJB2bZNfa8iVQLF/h6qBYrK8I5A5XikY6FAgZdCPCxQIkCHQBEWY0ODPJhVIC5s6emk7t1ERxKeCO/0768mpi5IphCP6LOgWqD06qWur015OYnc5mb1PV9YoLiDykmESJBVHd4BpINy6JCcjJoKC5RuaG8HxNI/KgVKVpYc6FWGeezK3u3BXoeDoqOCBwgc6FU4YiaEeMI0hnYcHROI9HSZZK06UZYFijuozInT6aD07CmrlEx3UVigdIO9DXvPnmrfW0clj8qZtxgQKivVNfXSUcEDyM/a0iIFr1s0NwN1dbSdTCEelQIF0JcoywLFHVROmHQ6KD6fd8I8LFC6QQx+PXrQrEklIlFWZSWPypm3uHh2dMgT1m10VPAAQHa2zI9we7AXIjMlRe1CgQK7QFHhFukSKLoSZRNZoOhYh0egI0lWh4MCeCdRlgVKN+ga/AC9DoqKEyc9XX6vqsI8ukI8gLoB0C4yUzSc4UKgNDWpWatGt4OiMsRjWYktUNhBUYNXSo1ZoHRDsgoUVaEB1dUtukI8gLrBXmeCLEBukXBuVIR5kslBqa+XiY0sUJxF5Vik20HhEE+CkGwCRXVypepmbbpCPIAeB0UXKvNQdAsUlQ6KOHaystSUVKsUKA0NMucv0ZNkTXFQWKB4nGQTKInsoFRVyQTVRHZQdPZAESSDQBEhnt271ZVr2sM7KkqqVQoU4Z7k5gL5+e6/XzBiLGpoIKfKTXQ7KBziSRBMECiHD7tf+SFQfeKojPsKode7N5CT4/77BZMsIR4gOQRKcbHsFaQqkV1l/on9fSor3W9IZw/vqOpnY6dHDyAzk7bdPkd1LRQo4BBPgiAOJB0CJS9PWoCqXBRdIR4VMzQR3tHhngDq3CIO8ajB51OfKKtaoAiRa1/czi2EQNFRwQPQ/1PVhElMIkwI8ajsVB4tLFC6QaeDAqgP8+gK8ah0UHTknwDsoLiFznNUdaKsaoGSkSETnt0+bkWJsY78E4GKSURrq3TEdYd46uvVufOxwAKlG5JNoCSyg5IsAoUdFHWoTpRVLVDs7+X2cauzgkegIlHW7kSpbv4pyMmR721ymIcFSjckk0BpaZEdSBMxB0V3iEdVlUAyJclalt5zVHU3WRYo7qJiPBJpAz17ql0PLBgvVPKwQOkGUwSKiiQ8ewdSVcpeZWmfSQ6Km3HfZArxNDaSsAY4xOMWySRQVHxW3fknAi9U8rBA6QYhUHQdTKLdvQoHRcy8CwvVdSAVM5ZDh4C2NnffyxSB0tTkbhmjSSGemhoq23QLcX6mprq/+nYo7CEeFcmGLFDcRaWDovP8BLxRycMCpRtMcVBUCBQdtfn2VZPFhdUNmpvl6rq6Qjy5uXIVUbcG+5YWoLaWtnU6KPn51FEWcNdFsZ+fOkpTxQSipkbNelKJKlDa2+VxoquKB1CTJGuag8ICxaO0t8sMZ90CZd8+95tB6QgNpKZKQeTmrGXnTrrNydE3c/H53B/sdYTpQuHzqQnz6J5AZGfLz6kizCOOG3EhVYEKgbJvH423qalASYl779MdKkLOpjgoHOLxOKLtMqBvsC8slC2tRZKnW+gKDZSX062bA7w9vKNjpi1we7DXEaYLRzIIFEBdL5TGRpnEnmgOirhIlpaSSNGFihAPOyiRwwKlC8Tg16MHrbyrA59PXZhHV/vlE06g25Ur3XsP3RU8AlUOis7wjiBZBIqqRFlxzKSnq20Fr1Kg6Mw/AQJDPG7lFJnioHAOiscxYfAD1FXy6Lq4jRpFtytWuPceuhNkBW7HuE1IkBWUltJtsggUtx0U1evwCJJJoIjP2twsc7mcxkQHxe1lDGKFBUoXmDD4AeoqeXRd3E48kW7ddFBMESiqQjzsoKhDVS8UHQmy9vdz01UwRaDk5MiQutsup+5JRGkpCd22NncLFOKBBUoXmDD4AepDPLoclK1b3Wu7LL47DvGoQwgUUT3lBiaco6pDPLoEir1Fu9OYIlAA9xNlRYhHt4OSni4dXVPDPCxQusCEwQ9I/ByUwkJZWrhqlTvvIXJQTHFQ3Br8TArxJJuDsmOHu718dAmU7Gz3XQWxDo/OEmOB24mypjgogPmVPCxQusCEwQ9QJ1B0XtzczEPp6JBlxqYIlGRyUBJdoJSV0aJ6bW3yQusGugSK/T3dOm5NclDczhMzxUEBzK/kYYHSBSYMfoC8qO7aRTarW+i8uAmB4kYeSkUFNTBLTZUnpC5U5aCYMDsTAuXAAfeOWxPO0dRUmSfmZqIsCxQ1uOlyNjfLLtImnKOmV/KwQOkCEwY/gJKZMjLICXDLimtrk59Xx4njZqKsCO/066d3cS4guZJki4vl971vnzvvYco5qiJRNlEFSk2N7O9igkBx00ER7klKClBQ4PzrRwuHeDyMKYNfSopM7nQrzGNfAlyH9SgclDVrqKOkk5hSwQPIgb6+nhpvOY1JIZ6UFNkV1K0wjynnqIpE2bVrA99LJcINc2P8ERfHggKZ66ITNx0UcX726qW/kSLAIR5PY8rgB7ifhyJOHF1LgB91FJX4NTYCmzY5+9qmVPAA1GBLNP1zY4ZmUogHcD8PxZRz1O1usgcOAF9/TWWhJ5/sznt0xejRdLtkifOvbVJ4B3A3Sdak/BOAQzyeRhxMugc/wH2BovvClpoKjBxJ204nyppSwQO4ux6PvQzUBAcFcFegNDZSTB/Qf4667aB8+SXdHnusntDASSfR7eLFzvdCEQLFhAoewN0Qj0kVPACHeDyNKbMzwP1usiacOG7loZgU4gHcGwBNWSjQjpsCRZyfqalAXp7zrx8NbneTFQLl1FPdef3uGDWKnL+DB52fJInKJ1McFDdDPKa0uRcIgbJ/v7sFGLHCAqULTBQobod4dM683arkMU2guOWgCBesVy+9C67ZUSFQevbUuwAkIEM8+/fLhE8n+eILutUlUDIz5ZpZixc7+9qmhnjc6JxrSpt7QXGxDDm72VAxVlighKG9XdrlJggUt9vd6w7xAO4JFFMWChS4JVBMEJnBqBAoJpyfPXvK/XDaRWlv1++gADLM89//Ovu6pgkUcX62tQWuaO8EpjkoKSnyHDUxzMMCJQz2A9OEAVDM/nfscGdhJxNCPCIHZc8e5y7e1dX0A3QhUNxaYCQMblnIJojMYFQ5KCbgVqLsV1/RwnW5ucDxxzv72tEgknMT3UHJzJSrRTt9jprmoABmV/KwQAmDGPx69JAWmE769SO129LiTk8JE2bfeXlUzQM456IIx6m4OEwJ4wMPkKf79dfOvGEEuB3iYQdFD24lyorwzkkn6Q3dCQdl6VJnWwGYJlAA9/LETHNQALMreVighMG0wS89XR5IboR5TJl9O50o22145+WX6cN//LEzbxgByRji2bfPeefPtHPUrURZE8I7AHDccSTy6+qADRucec3WVjnhMqWKB3DP5TTZQeEQj4cwbfAD3K3kMSHEAzifh9JlgmxlpVQwbi9Fa8NtB0X3/9BOSYl7S7qbdo661U3WnyB7cru7i/10Q2oqMGYMbTsV5tm7lyKs6eldCOtVq4CzzwaWL3fmTSMgmRyUpArxtLW14ec//zkGDx6M7OxsDBkyBL/61a/QYZs+WZaFGTNmoKysDNnZ2Zg4cSLWijaJhmDa4Ae4myhryuxbqUCxD3gJEOIx5X9ox37hcTrMY9o56kaIp7aWuisDwCnzpgPl5cB//uPcG0SJvR+KE4hZe1lZF51Vn3gCWLAAeOYZZ940ApLJQUmqEM9jjz2G5557DrNnz8b69evx+OOP4ze/+Q1mzZrlf87jjz+OJ554ArNnz8bixYtRWlqKc845B7W1tU7vTsyYNvgB7pYamzL7FgJl3TrZhCseugzxLFsmt9lBcQ238lBMO0ftIR6n8q5FY7RBg4DSL/+P7vzkE2dePAacruSJKP9ExLjcXIkxCLe6yZrsoCRFiOfzzz/HJZdcggsuuACDBg3Ct7/9bUyZMgVLjvRItiwLTz31FO6//35cdtllGDFiBF566SU0NDTg9ddfD/mazc3NqKmpCfhxG9MGP8A9gbJ3L10sfT6aoOlkwACqymhrA9avj//1unRQ7ALl66+VVfMIgVJT44wIE5iYJAskj0AZMIDOocZG5xLZRXjnlJPagc2b6ReNbrOo5Fm5khL246VbgVJVRWVMgNJJhBshnoYGoKmJtk1yUJIqxHPGGWfg448/xsaNGwEAK1euxGeffYbzzz8fALB161ZUVFRgypQp/r/JzMzEhAkTsGjRopCvOXPmTBQUFPh/yhVcRU0b/AD3BMr8+XQ7tmAzeuW1OfviUeLzORvmiTjEU10duGKii/TsKasxnMzLMDHEA9Bq3EDiC5SMDCnwnbqW+hNkB9myjDUKlMGDafbf0kKpIfHSrUCxx5J27FDW7tSNEI9wT9LS9Hc+tiO+++pqWsTUJBwXKD/5yU9w1VVX4dhjj0V6ejpGjx6NadOm4aqrrgIAVBxpV1ciljk9QklJif+xYKZPn47q6mr/z86dO53e7U6YNvgBgUmyTk72P/w7iZIpVW9SDaFmnBIozc3yotgpxFNTAxwR0ejRg24V5aGkpLgT5uEQj36c7IViWbYE2fx18oENG8hi1IDPB4wbR9tO5KF0uw6PUGgA1TYrGPsBdxwUe/6J7s7HdvLyZAsG01wUxwXKm2++iVdffRWvv/46li1bhpdeegm//e1v8dJLLwU8zxf0H7Isq9N9gszMTOTn5wf8uI2Jg5+4yNbXSzUeLx0dwPz5pHam4EPnV+qLASFQ4t0VUfCQnR3CVRDqp39/Wdvs4TyU1lbZkM40ByWZBIqTibLbttEMPiMDGN1oc5dbWmS4RwNOJsp2uw6PXaAAys5RNxwUUyolg/H5zA3zOC5QfvSjH+GnP/0prrzySowcORLXXnst7r77bsycORMAUHrE7w12S/bv39/JVdGJiYNfdjaVbQLOhXlWrQL2H0pHLupwGj43SqCsXBmfU2QP73TSviK8M3q07A6noZLHqQFQCFafz6xjFpACxem1Pkw8R53shSLckxNPBDI3rQl8UGOYx8lE2S5DPJYlBYqwNBQJFPF2Bw86179HnKMm5Z8IkkagNDQ0ICWoXiw1NdVfZjx48GCUlpZivkh8ANDS0oKFCxdi/PjxTu9OzJg4+AHO56F8+CHdno1PkIFWIwTK8cdTjsahQ/FllovvqMsKnjFj5FXFw6XGJi4UKHDDQWlqkgmHJp2jTvZCCVggcN2REI9I6DFAoKxfH9/CiJbVjUDZto1OkPR04JJL6D5FAkW4kB0dzrnVpjoogPz+TavkcVygXHTRRfj1r3+N999/H9u2bcO8efPwxBNP4NJLLwVAoZ1p06bhkUcewbx587BmzRrccMMNyMnJwdVXX+307sRMsgmUKTiysWqVs32sYyArCzj2WNqOJw9FlBh3WcEzZox0UDwc4jE1QRYIFChO5U6J89Pnk+ummICTIR5/guy4Npkv9a1v0e26daH/SAF9+1JktKMjsBAuWg4fliJTzOADEF/AqFHA8OG0regcTU+XY7/TLic7KJHjuECZNWsWvv3tb+PWW2/Fcccdh/vuuw8333wzHnroIf9zfvzjH2PatGm49dZbMW7cOOzevRsffvgh8gxKbTZdoDjRTbahAfj3v2nbL1AaGoBNm+J/8ThxIlE2bAVPY6Mc4EePTigHxcTZmRAojY1yhfB4sS8UGLbBlwaEg7JrV3xluM3NMgp5at/tlGTUowdw3nl0p+bGlk7koYjZelERTUo6IQTKKae4t9BRFzidKGuyg5I0AiUvLw9PPfUUtm/fjsbGRnz99dd4+OGHkZGR4X+Oz+fDjBkzsHfvXjQ1NWHhwoUYMWKE07sSM+3tMuHQVIHihIPy6ac0iA7AdhyDjbJG0oAwjxOJsmFDPGvW0D+5uJimgsJB2bXL2cYkXeCWQDHRQcnJkS6HU2EeUycQJSWUK2ZZ8Z2jy5fTudmnDzCo+ohKP+44QIyTGzYoK7kNhZMCpdsKHk0Cxa08MRMdlKQJ8SQCVVVy27QB0EmBYg/v+PLygCO9akwSKK6EeOzhHZ+PRqIePeiq4sZCRyFIphAP4HweiqkCxedzJlHW36DtFMD31ZGOhccdR2o7N5fEiccrebrMP2lpkefpKadIa+rwYWX9ipzuJssOSvSwQAmBOP5zcykWaRJOrscTkH9y7LFyJTADBIqo/N20KbbmQR0dEQoUIPCqoriMMRlCPEDyCBTAmUTZkAmyw4dTPEvkY2gM84heKFu2xN5ssMsS41WryM3s1QsYOpQGY1HCqKjlvdMhHpMdFLtAUdRQOyJYoITA5MFPXGwPHYovg373bhrffD4Lk/AxDXpCFSxfrv0oLSmhH8uSi6VFw759NAlLSQmRgGcvMRYoLjVmByU+TD5HndC6/gTZYIECUJkboFWg9OxJugEAjqxiEjVdOijiCzj5ZNkjQNMkIpkclKamwAiCblighMDkwS8/nwYHID4XRVR5n1T4NQpxWMa3U1LojHS6aUUMxJOHItyTfv2CXLDWVtmjWzgogPLBT8zODh92JpXA5BwUILkESrzdZCsqKNLo8wEnjWmXa9EYJFAAuS5PrGGeiATKKafI+zSdo8mQg5KVJffLpDwUFighEIOfiQcS4Ewljz+8k3ZkZdThwymbcdgw+t2AME88eShhK3jWryfrOD9fDniAcgelsFBWn4iZVTxwiMcc4r2OimvziBFAXuU2mtZmZcn4riECJd48FNMFipMup2WZ7aAAZuahsEAJgcmDHxB/oiy1t6ftKYffpI3jjqNbEeYxQKCIXYlHoHSq4BH5JyeeGFifqrjUOCVFDlROzNCSLcQjbGgTz9F4k2TtCbL+8M6wYbIDnxAoGzc6s6RwjNg7ysYSEQ5bxXP4sOz7ImwawNMOSl2dXD7JVIEihCILFMMxXaDEmyi7YgXNuHvkduDUloVAZqb0pUVehgECRTgoq1ZF3246bIKsyD+xh3eAwGZtivJvnJyhRe2giDaeij5rMjko4vyMteAkIEF2/ZEKHhHeAagdQF4eXfE09iw68UTSTPv2yYTXSGlqksdsJwdF9NA/6qhAxa1JoDhxfooJRGYmlaGbiHBQOMRjOCYPfkD8DooI73xjxH6koy1wdmZPlNXMsGF0QtfVRT8mhQ3xBFfwCAYMIFujsVFZ/o1TAqWtTToKETsojz5KU9dXX43vzSMkmQRKjx7y4hati9LeLkMmIRNkAUpOMaCSJydHtmWJNswjZulZWSH+h6HCO4AUKNu3K1nNWZyflZXxv53IPykqMmslYzsc4vEIJg9+gHMC5dy+q2lDhHcAaVts3gzU1sb2Bg6Rlibd7GjDPCEFSkeHdIaCBUpGhowHKZqhiQFh9er4XifqhQIPHQKOLN6Jjz+O780jRAiU6mrSgPFi+jkaa5hn7Voqq8/PP3JahhIo9t89modizz/pdMEOJ1DKymjG0tYWvWUTA3YxEWsptUA4KKbmNQIc4vEMpg9+8STJ1tcDn31G21NSj1yc7AKlTx8aCCwr/iunA8SaKCtCPAE5KJs3kx2TlSWTge0ozkM5sjwVXnopvhmaGDx79iRR1y2zZknxqajZV0GBbGfuhIti+jkaay8UEd45+WQgxWeFFyiGJMrGWskTNkHWvoJxsEBJSXF2NcZuSE2VIdN4XU67g2IqHOLxCKYPfkKgVFTIxbYiZeFCKmsdPBg4atdCujN48PN4omxNjQx5BDgoIrwzalToK7niRQMvvphCMrt3A//8Z+yvE1WCbE0N8NRT8ndFOQw+n4NhnjvuwOG9ZMOYeo7G6qAEJMju3EkzirQ0eWwKDBEowkFZsiS6PLGwAmXLFjqgMzLkyW/Ho4myXnBQOMTjEUwXKMXFMtFq587o/tZfXnyOBd/6I7Mzu4MCGJkoG41AEeGdoiJqQOknXP6JQHGpcWYmcN11tP3HP8b+OlElyD7zDKk3MRPdv9+5Ffy6wRGB0tyMlmf+hIYOOgFMPUfjdVACEmSPOaZzS2shUDZt0lrJc/zx5IxVV0dnxoUVKMI9OfFEOkGC8WiirBccFPG/qKjQvqC9HxYoITBdoPh8sVfy+AXKSYfpwpSaKltCCgxKlD3hBLrdvj3yioiQ4R0gfAWPQMOCZN//Pt3+7W+xX7gjbtJWXw/87ne0/ctfytFXUZintJRu4xIoGzbgcAetPOhDBwp6GDKSBhHLoVRVJTVJQIlxsMMJUIJzfj5dSURJrgbS0+V8RhTfRELYEuNw4R2BR7vJesFB6dOHomjt7c41p4sXFighMF2gALElyu7cSQNgSgrwjd5H8kuOOqrzTEUIlNWrlWTLd0WvXlJoiAaw3REyQdaypINib3FvR7GDApB5dfrpNCi89FJsrxFxiOd//ofUzJAhwFVXAUcfTfcrCvM44qCsXYvDoBOzANVIefeduPfLDewFJ5HORkUex1FHHbkwdiVQDKnkAWJLlA27Do9hAsWpEI8XHJS0NLnckSlhHhYoQbS3k10JeEOgRJMoK5qznXIK0HPHkat9cHgHoEGgRw/quLphQ1z76QTRhnlCCpQdO2iUSEuTtZHBiMFv3774FjqKEuGi/OlP0fd7ASIM8TQ1Ab/5DW1Pn07fg3DOvCRQ1qzxC5ReOByYT2MQ/fvTV9zSEvlgH5B/AnQtUADj8lCiESghQzzNzdLlNESgCAdl3774XicmB2X/fuCHPwT+9a/43jwKTKvkYYESRPVGeSR6QaBE46D4wztTELoBlCAlJb6FcBwm2kTZkCEe4Z6MGBE6tg1QGYwYQRStmAoA3/kOufVff01JzNESkYPywgsUXB4wQCa+CIGiKMQjBEpcbWZsDkovVFFJWqyr1blIaqo8RyO9lgbkn1i2Cp5QkwjAGIEiKnmWL49sXamODnkBDBAoK1eSoisq6pwULBDJPZWVcibpIuKrf+ed+LouRN3mvrGRsuj/53+A+++P/Y2jxLRKHhYodr74AofPvBgAkJtrdcpLM4loBUp7u629/RR0P/gZmCgb6a6EdFBCrWAcCsWlxgAl8l59NW3HkizbbQ5KSwvw2GO0/ZOfUIUE4M0Qj91BKT3yOZ58Mr4dc4loFg20V9eeeipoyl5VRZOFY44J/UeGCJSjj6Yy8qamyHbl4EESMvbKLgChVzAOJp4ueDFw2WWk4w8ejO8wi2qhwI4OmkSI7+Orr5R1fDatkocFip2+fXG4hco+evmq9O5LN0SbJLt8OZ0k+flHZjzCQQknUAxKlBUCZe3ayFJiQgqU7ip4BIpLjQU/+AHd/vWv0S8e2G2I5+WXKQGpb1/gxhvl/V4L8TQ0AFu2SIFy/JHp95//bM6Uz0Y00Yivv6b/e2bmkeNdTCCOOko2kAlGCJTNmyk8oomUFGDcONqOJFFW/Kv69AkqTuou/0SgcBKRlgY89BBt//a3sTdsi8pBuf9+4C9/oS/H5yOh6kS//QjgEI/JDByIQ/c9AgDoVbeTfD1DERffXbsiu2iL8M6kSUBadaXM+jr22NB/YO+Foki9hyOalJiWFnkBDBni6U6gaHBQANqt0aNp/197Lbq/7TLE09Ymu8b+6EeBFzvhoBw4oMQuFwLlwIEYc6/XrwcsC4dzaBTtNaQXcOaZ9GJ/+INzO+oQ0fRCEeGdsWOPGFzd5Z8ANN0tKCB7VHOuWDR5KDFX8AgU56F85zs0HNbWSiMyGjo6ZOFFtw7K//4vLUMBUFKaGOgV/X85xGM4h4edCuBIAt73vqc0FyEa+vYlgd3eHpnaDZl/MmAAXflDcfzxFEivrNR+tKakyHLj7vJQdu0iPZWdLRPcUFFBqsXnk3ZMODQ5KIBMlv3jH6PThF06KG+8QZ+ld2/g//2/wMfy85WWGvfuTYeUZcWYdHgkfnC4kIRVr14A7r6bHvuf/yGHxSCi6YUSdYIsQMezIWGeWARKQP5JZaU8Bu0rGIdCsUBJSQF+/Wvanj07+uGwulomv3cpUD7+GLj5Ztp+4AEK84jwnqJScg7xGE5AiXFVFXDFFVobIYUjJYUWNQW6r+SprQUWLaLtAIESLrwD0ExbPG5QHkp3AkWEdwYMsIWxRZhq2LCgzm0h0FBqLLj6ahJWa9ZE3lOirU0es50clPZ2ObLec0/oz64wzJOSIssYYwrzrFkDADjcgw78Xr1AiYSDB1P88pVXnNlRh4jmOhqQIAt0nyMmMEygrFnTvU4MWWIsDvihQ7u3GTT0K5o6FTjjDMqzESGfSBH5Jzk54aN1WL8e+Na36IS+6irqUwTIJTkUOSgc4jEcv0CZPJZGwMWLgR//WO9OhSHSRFnR3v6oo46c211V8NjxYKKsXaD4iTS8A8jBb9s25e0Ue/YkOxmIPFnW3ryu07j+l7/QwNarF3DrraFfQFMlT0wCRTgomaRyevUCWTJ33kmPP/VUbHXaLiEclIqKri/ajY1SeHcSKN2do4YIlP79qRFfe3v352hIByXS8A6gRaD4fMAjFP3HCy9Ed7p0m39y4ABwwQVktZx+OoV5xOxKsUARDsrBg1rTmvywQAnCL1D696DkQgD4/e+BefP07VQYIhUoAeEdIPLZmUFr8kTqoIgS45gSZAEaNTMySNEpWDE1GBHmmTs3srLGsAsFdnQADz9M23fdReGcUHipkkc4KCAl5m8DcOONQF4eVTuIg90ACgvl196Vy7lsGU2c+/Y94ooePCiTIsPliAkMESg+X+RhHscEiuJJxJlnAuedR/+rGTMi/7suK3iamoBvfpNSCYYMoeuM3WZRHOIpLJRFfk4s6hkvLFCCCEhmuvBCSiwEKB9FQ15CV0RaydNJoETqoBhUyTNyJA2C+/Z1nb8QV4kxQDNy8cVqCPOccQZNmurrgTff7P75YRNk332XLuh5edJhCIVXKnlqa/3q83DrkUo7IVDy84GbbqJtg0qOfb7IEmXt4R2fD/L8HDSo+5CkOIe//jr6lUMdRgiU7sKTnQSKZck/ikSglJXRVbStTfkkQkRMX3898sXewzooHR10XVm0iGYY779vS5w7gnBQvv5aSVdvn8+sPBQWKEF0anP/618Dp51G9tsVV5jhex0hEgdl+3ZyB1NTgbPPBnVIFTZDdw6KsC22bFFS5dEVubnyWtqVi9IpxHP4sLw6RCJQAK2Jsj5fYLJsd4TsgWJZ0j25446uOw56JcRzxPX7qveZ2LmHrKKAj3XnnZTk8uGH2t0EO5EkysaUICvo25cubh0dnqnk6VTFs3kz2Qz+GutusE8iFJ+jY8ZQGNaygJ//PLK/CeugPPggWaVpadRfIJRb1r8/Jaa1tior2BDC0YRKHhYoQXQSKOnpNJUtLKSOlcJRMYBI2t2L5mynnkoVifjqK7qjT5/uk9GKimQmbqQL4bhIJHkonUI8wj0ZPDjy1sCaSo0F111Hh91//9v91x6ygucf/wCWLqWsvGnTun4BTaXG0QqUlhXr8DDux6iDH6Gqiq7JAc1GBw8mqxygkKwhRJIuEXOCLGBUJY/ohbJpE9UXhKK+Xj7md1BEeGf0aBlf6A4NeSiChx4iLfzuu8Dnn3f//JAOyksvyUnE888D3/hG6D+2N+pLwkoeFihBhFwosLxc5qPMmkVq1wDERXjHjvC5gTGHdwQGJsqGc1A6OroQKJHknwg0OigAacdLLqHtP/2p6+d2CvFYliwzuOWWzpZxMHl5srRGQZgnFoHy5ZfA2PvPwwN4GC1WBqZOpcOxk94UYuyVV2LvqOUw3XWT3b2bohT2ZmdROSiAMQKluFh+3nCrD4hZeY8etrSoaPJPBBoFyrBhwA030PbPftZ9S4BOCwUuWCA7M06fTmGerhACRXGiLAsUAwm7kvEFF8hqnhtv1Da7ttO/P02gmptDr7bZ3g589BFtR50gK/BQouz+/fRdpKTYZmfdrWAcCs0OCiDDPK+8QlUe4ejkoHzyCU3rMjOBe++N7M0UhnmiESh1dZTfe9ppwJrKvijGAbz+/X/h/feDcowEZ5xBnc6amqgvigF0dx0V1+YTTrClm0Q7iTBEoACyhUm4ME/cCbICjQIFoOhMRgZpjY8/7vq5AQsFbthA/fNbWylWJFyUrtBUaswhHgMJK1AAOpjGjwdqaoDLL9eej5KRIQ+mUHkoS5fS5+nZ0zY7i6QHih2DEmXFrnz1Veh8QOGelJXZWmhHU8Ej0OygAMA559BFuKqq6wKyTjkowj35wQ+CFjrpAoWVPPYFA7uqCP7gA7ruPv00zVCvy34L63EcrropJ+wyLfD5ZOO2P/zBiP5F9iTZUDPtTuGd6mp5ZYj0HDVIoHSXh9JJoDQ1ycmPhwTKgAFkUALduyh+ByWjlia6hw/TP/yll2g21R2aSo3ZQTGM9nYZhg8pUNLTKampqIgufPfdp3T/QtFVomxAe3tRghrt7EyogrVrtQ/4/frRLKS9XRpBdjpV8NTXy5M6GoEiBr/DhwMbjSgkJUUum9NVsmxAiOezz2hKl54eXe8ehZU8IprU1hZ6zaEDB4BrrgHOP58E56BBwD//UouXGi9HMSq7P26/8x1SQXv3RlYG5TLiWKyrCx116pQgK87Pfv2OJI1FgBAoX3/dtd2mgO4qeToJlBUryE2wx4ciQbNAAUiY5OaSGOtqVRS/g/Lsr+l/NGgQ8H//R8mvkcA5KAwQmCMYNp+yvFx2rJw9G3jrLdf3qysiESj+8E5zs7TxI52dDRpEA2VLi0yw1YS9U32oiFMngbJyJU1t+vaVV8ZIyMmhrlOA1gHwe98jobJgQXjtEBDiEXbxDTfI5OZIUBjiyciQbo89zGNZdFoddxyVcKakUIRqzRpgSsmRmN6AAeH7udjf4PbbafvJJ7WvI5WVJS/GwYdSa6vM1YgpQVZQUkLK3bK0n6NjxtD/bvfu0GG8ThU89vBOWGssBELMHDxIjrYG+vSRht3Pfx6+JcuhQ3QMFq3/N42l778vl5iIBOGg7N2r5LNyiMdQxGQ5Nzdolc1gpk4FfvpT2r7pJmUlmqEIV8lTUyMzzM8558idmzaRr56fH7n97/N5Jg9FhHj8JcaxhHcEGlveC8rLqTEUQM0lQ+F3UA6sB/75TyrBFMdmpChu1ia0n7iAbd0KnHsuVS9VVtL/+MsvafXY3Fz4G7T5nYLu+H//j5TB8uXAv//t+P5HS7heKKtXk+HRs6ecJEedIAsYVcnTo4fUVqHCPJ0clFjyTwAaw4TS1bhe2r330mR23brwi3xW7qZ4dGFqDXV3juZ/C5CoERMsBS6KuDTU1UXWLNJNWKDYsCzKs/PPZrrioYeoLXFtLeWjaGqSFM5BWbCAbPShQ23OqT28E81sxSMCpZODEo9AMSBRFpDJsi++SDPuYPwOytwjq/lec43c90gRAuXgwfD1oQ4iBsBdu4AnngBGjKBy+MxMWnh58WJbzhQgL7ojRkT2BsXFpHYAIxq3heuFYr82+1MRog3BCgwRKEDXeSid1uGJVaAARoR5evaU84EHH+wcBW9/9Q1UNVEop+jxnwCTJ8f2RsJFUSBQ8vLoB9Af5mGBYuPoo2nCJSpfuiQtjfJRiotpphZpxYTDhBMoncI7QGz2MWBkoqyI3tjpJFBiKTEWGJAoC1Az45IS6p77/vuBj7W32xYKXPAWic6f/Sz6N7GXGius5LnzTjptGhqAiRPJUfjpT0O4l+KiG6mDAlD5D0Cxfs3/w3AOSqf8EyA2BwUwSqB0VckT4KAcOCD/N92tYBwKAwQKQBHFvn3JxQ7IF7MsHL7v1/5fe93x3djfRHGpsSlhHhYo8dC/v8xHeeYZLUl59nb39gt2SIES6+zM7qBojukfdxxpw6oqGdIRBIR4mptlaCCaEmOBIQ5KerrsuRCcLHv4sPx3FOIQdToWM61oUZgoKwRKQwO513/6E/Cvf8ld6ES0IR6AjvFzz6Uv6Omn49rfeAnnoHSq4Kmvl7HaaCcRBgkUu4NiHy7a26l6CzhyARSZtMOGkRURLYYIlJwc4IEHaPuhh+jfCADYsweH9pGlkp9vdZ020B1JWsnDAiVezjuPmu0AVNqpKI4vEPkWtbXSnd+6lXYjLY1mpn5idVCGD6crZShVoJjMTLn79jBPba10EwYOBF3U2tooeTBgaeMIMcRBAeQyM//4B7Bzp7xfhHcKUIV0tMXmnggUJspOmkT/x29/mzTzTTd1EXHcv59m2j5f9MetyGD83//VlkgJhL6OVlZKt95vHogE1969Qyyu1A1CoGzd2vXSyQo44QTKVT50KPAz79tHIiU19YhhF094BzBGoAB0DA8eTJ9x9uwjdy5bhkpQg6LCwihC6qFggcLEzK9+RUtdashHycmRzULF5Eu0tz/tNFvRQ3u7HBGjHegzMuQAaGgeigjvFBZSol5AeCeafBuBGPx27tReXj10KAnNjg5gzhx5vz9BFgeBSy+lFRVjRWGi7DnnUALeW29FkKstHIHBg7tfOC+YKVPoWK+tBV54IaZ9dQL7oSTyiIR5cMwxtiZ7sYZ3AKoKKS4my0I4pZrIyJDnqD3MI8IFffuSSEkkgZKRQZcBAHjssSOTxaVL/QKl00KB0WIvNVbgYnOIJ5FISwPeeIMGiBUraG0FhQTnoYQM72zdSmGP7OwwbTi7wfBE2bAVPLGEdwCa4uXmkirobrloBYhk2RdekA3ODq6mMphiHIx85bJwKF7V2N+XpzuiTZC14/PJ9vdPPx2+DtRlSkvJMWpvlw6YuDYHJOTHI1AAY8M8goD8k46O6FYwDoUQKNu2afvf2rnqKvoXHD5MFWhYtgyHQOuddbfsWbcMGUInTUODEtWQ0A7K7t278d3vfhdFRUXIycnBiSeeiKVLl/oftywLM2bMQFlZGbKzszFx4kSsNeCkiot+/eRgKILLirALlLY22Xo5ZILssGFHpi9RYmiirMDRCh6ALm6G5KEA1B27Z0/6nCKJ++Br/wAAFPVOjf1zChSvahwxseSf2Ln2Wpq+bttGCbMaSEnpnIcSMkE21hwxgfi7UF0MFdOtQBErCmZlUUwoFvr3p4t2S4v+KyloWBWtiJ56Ctj33+3OOSjp6XI8UhDmSViBcvjwYZx++ulIT0/HBx98gHXr1uF3v/sdetqSoB5//HE88cQTmD17NhYvXozS0lKcc845qNVddB0v4iKh2GWwJ8ouWULnfa9etCyJn2hb3AdjoIOyebOs0w8QKG1tUr3Ec+E2yELOzqZrLXAkWfbgQVQuooGqeFwMjlgwIudGUalxxMTjoAD0xd18M21rLDm2LxrY0dGNgxLrOWqQgyLyapYupdMRCCoxFl/AmDHdNJ3qgtRUOfgZcI4CtMjnySdTouwj+27EIX8OigMvrrCjbMKGeB577DGUl5fjxRdfxMknn4xBgwZh0qRJOOrIAGhZFp566incf//9uOyyyzBixAi89NJLaGhowOuvv+707qhFXDk3bFDactruoIjwzuTJQUZJvLMz8dm2b9fW/l3Qu7fMXVi9mm4DQjwbNlAeUI8eMrciFgxo1mZHhHn+7/+A/f9cjoMdNOoVHRtFV8pw5OXJDmqKE73DYlnxOygAcNttNNP+7LPwy+y6jF3rbtxIGjA725Y21NQkj7MECPEMG0anX0ODHHoCHJR4808EBk0iADJeH3mEtp/DD7E89wwADjgogNJE2eOOo6LUN95w/a26xHGB8u6772LcuHH4zne+gz59+mD06NH4o60+cuvWraioqMAUW/whMzMTEyZMwKJFi0K+ZnNzM2pqagJ+jKRvX7p6dnTIgVUB9m6yIfNPgPhnZz17ymlguOWEFRKchxLgoIjwzoknRrYYVzgMCvEA5ISfdBIlWr7yUgcOgio9oi34CItpYZ69e+lKnpoae/k0QH71FVfQ9lNPObFnUWPvhSLCO+PG2cyDjRtp3OjZUwrFaLFX8vhrXfWQmiodXBHmSQaBAlCV2qQhW9GCTLxfPxGAQw6KQoHSsyfVe5x2mutv1SWOC5QtW7bg2WefxdChQ/HPf/4TP/zhD3HnnXfi5ZdfBgBUHCmELwlaG6WkpMT/WDAzZ85EQUGB/6c8mnVGVKKpLbwQKBs3ysHP394eCFyjI1aBAhgV5gnOQwkpUOLNyzCo1Fjwgx/Q7R8XDXdeoChued8tQuQffTTlKsSDKDl+800tvrU9B6XbBNlYqs4AmhyJkj7NlTxA5zwUv0Dp3SJP3AQUKADw6/LnAn73moNiCo4LlI6ODowZMwaPPPIIRo8ejZtvvhk/+MEP8OyzzwY8zxd0ElqW1ek+wfTp01FdXe3/2WlvBmEaGgVKXR0lsw8bFlSos3s3JWukpcUX8jAoUda+aGBrq0zmGjAA8XWQtWMf/DQ3qBNceSWQm2thQ305FmAiAIcGP0B5JU+3xJt/YmfsWGoF0NZGTRUVYz+UXEmQFRgU5gknUPpXr6X/Q58+sVUU2jFUoJyydS6+iXn+3x3NQdm2jSoykwDHBUrfvn0xPOgkO+6447DjSJJA6RH7Mtgt2b9/fydXRZCZmYn8/PyAH2PparEYl+jZM3CR17DhnaOPpoL9WDHIQRFf8+rVlH9iWTTJ7lPc4ZxAGTSIZrP19dQwzADy8oArL6gDANSC/ukJG+KJpcV9V4gqu+eeU97MTDgolZXAqlW07WiCrMAggSISZVetotOnjg5b9Nv2H9qIdgXjUJgoUA4eBHbswEN4AD4fTWwcOUdLSmigtyxzzlGXcVygnH766dgQZEFt3LgRA48o5cGDB6O0tBTzRTcxAC0tLVi4cCHGjx/v9O6oxx57EA0rFCCS2YEQAsWp2Zn4bOvWaVfwQ4eSIGlooDbpALknvq1bqGtoZiZw7LHxvUlGBi0pDBiThwIA3z/hvwG/J3yIxymBcskldKIcOiSXqFBEfr50ujo6qELWv2AeEH8PFIFBAmXgQDo2W1uBv/+d7uvZE8hZbhMo8SIEil0B6eZIiHnE0c146ikfvve9oMUvY8XnS7owj+MC5e6778YXX3yBRx55BJs3b8brr7+O559/HrfddhsACu1MmzYNjzzyCObNm4c1a9bghhtuQE5ODq6++mqnd0c9w4bRxbGuTqmqF05penpQe3vAudlZeTl5lW1t2nstpKVJ5//dd+k2ILxzwgmxly/aMTAP5ZTD/8DxkEnYjoV4hECprNReqQXLcjbEA1Dm5u2307aG8gT7ItMB7klrqywdTSCB4vPJMM8779CtowmyAC3mJOInwasx6kLkwI0dizvvpJUWYmk9FRKFpcYm4LhAOemkkzBv3jy88cYbGDFiBB566CE89dRTuOaaa/zP+fGPf4xp06bh1ltvxbhx47B79258+OGHyBNrPHuZtDRZO6ghD2X8+COt3u3E2wNFoCkJOBxiV0TjMkcTZAWGVfIAgG/JYvwAsjLOMYHSo4es39ZtIe/YQSI/Pb2LVQRjQNiLS5cq7z4qwjxAkEDZvJlEf48e0rGLFSFQtm83wlEQAkVUF/br3UJCwq5e4sW0MI9oSurUGGSHHZT4ufDCC7F69Wo0NTVh/fr1+IEoPTiCz+fDjBkzsHfvXjQ1NWHhwoUY4dQsyQQ0XMS//W2yU++8M8SDToV4AKMEishDEUsfBQiUWFvcB2Oag9LeDixdimvxCspLW3Dqqc4YRX5MCfMIB2DYMGc/4HHH0QJWdXXKB3m7gxIyQfa44+LPySgqOrISH7S7nIDUIKItVL+0I7mHxx5L7ocTmCZQbA6K47BAYeJGQ6LshAm06OtllwU9cOAAJW3Z45fxYGAlj2BAueW8g2JYszZ89RVQV4fCnGZs2JiC//zH4dc3pZLH6fwTQVqaPDbsfdgVIBwU+y4AcC4EKzAozBNskvRvOnIeORHeEZgkUA4flvvh1CTJjhjDOcTDxIxBLoN/djZwIM0c48X+2RQmAYcieAmPgbkHSYylpsa3sq8d00I84qI6diyy89Li6kMXElMqeZzOP7ETaqEYBYhEyTPPDDoVnUqQFRgkUEpKbAt4AuhXeaSEKVEFipi4DR7sUG1xEPY8MbGceQLDAsUNxJVz1y66YOrEyfAOQNZsZib1Vdm2zZnXjJGCgsDqpYFVRxyr44+Pv7GXQDgoFRXKS1NDIi6qTsXvgzElxOOWgwJoEyhjxgCffx4iP9ctgWJAiAcIPFT7bT/SLTxRBYrTDm4wubkyTykJwjwsUNwgP19e2HS3hXfaPk5Pl7NaAxwiYej4fEC/HZ/TL05aq716UW0kYMYA6LZAMSHE09EhhbWbDsqKFbQSrkJOPVWmiACgnCLR5dkpgSJexwAHBQgSKA0bgxYhcgD7OgKaXV1/gqwb+SeCJMpDYYHiFhryUELitIMCGBXCEl9zWRmQserIQnBOz15MSZRtbpbfueiC5TTCQTl0iH50sHUrZVVmZQVmljrFUUeR8GxpkatN6kJ0Bc3KCrQD40E4KDt2yOW+NRIgULCbLt5pac69QXk5hXWbm2n9Jp247aAASVVqzALFLUy5iDvtoABGJcoKp/i44+De4GBKHsqqVdQzo6gosGbVSXJz9Zcai/DOscc62EDChs8nE0IUh3k6Ic7PYcOc+6yFhXLBQQPCPCedRCZkv9zDKMZBZ8M7AIkd0WdB5ySipkaKBjcFCjsoTNyYIFBqauQCGG4IFN3iC8B55wGvvw48/8hByvnx+TqX98SLKQ6KuJiOGxd/OWpX6A7zuJkgK9CUh9IJp/NPBAYlyublkVG1dMjlSIHljvtnQh6KGA/Ly+WijW7AAoWJG3ERX79eNupQjYht9+0r8yicwKAkYJ8PuOoqYPChI7HfoUNpRHQSUxyU/x5pce9W/olAdyWPmwmyAhYoSulf1IiS9QvoF6cdFMCMSYSbDdrsCIGyebPyZoOqYYHiFv37628L70Z4B6AkYJGroDvHRuDUAoGhMGHwA+TF1K38E4HuSh6VDsratbQYpC6SRKBg2TIaC4Prjp3CBAfFzQZtdsrLqZKypYU6BicwLFDcwh5q0HURd6rFfSgMCvMAcDc5TQiUrVv1zVhqa+X/U5WDokOgtLVJ589NB6VfP3IWOzr05VLZq5USXaDY199xIzxpgkBR5aCkpspzNMHDPCxQ3ET3RdytwQ8wKlEWgPMt7u3070/l1S0tMqdHNcuW0QJ6/fvLBEi30Bni2byZvufcXJn46BbCidIV5tm1i9ybtDQpgp1CCJRdu4DqamdfOxacXCAwFLoFSn29FNZuOyhA0uShsEBxE90Cxa0QD6D/s9mprpb5IW4IlNRUWQKqawAU+Sduh3cAebHUUWos8k+GD4fzbXKD0J2HIs7PY45xeEElUM5ZWVng++hElUDR1VBx5UqaQPTt6/4EAkiaUmMWKG4iLuLi4FVJU5NcftxNgfLVV3IlMF0IkTRwoINL+wahO1HW7QZtdnJz5cVNdZhHRf6JwBSB4obDCZgT5tmzh3IlnFzBOJiePam3DSDHPZWoaNBmhx0UJm6OPZZmRtXV6pOZNm6kGHevXkGtKx2irIxK6drb9Q+AboZ3BLoTZVUKFEBfmEdFBY9A9ELZvFlPU7pkESgffUS3Y8dSgr1b6AzzqGjQZocFChM3GRlykFAdCrGHd9xISvP5zAnzuFnBI9DpoBw4INc9EhdVt9FVyaPSQSkslMJzyRL33y+YZBMokye7+z46BYpqB0WEeHbvBurq1LynBliguI2ui7ibCbICUxJlVcxedDoowj0ZNoxWSFSBjkqe5mb5fiocFEBfmMey3K2yA8wQKJYlBco557j7XromEY2NUmyqclAKC4HiYtrWvbCni7BAcRtdAsXNBFmBCQ5KQ4Mc6BPVQVEd3gH0hHg2bqQy4/x8KgNWgS6BUlEBVFVRIrCYDTuNmJzs2UPvpYN162h9nKwsYPx4d99Ll4OyahWFuvv0UXfcAkkR5mGB4ja6HRQVAmXlSn2riK5aRe9dUiLXkHEDMfgdOqR+sNchUHSEeOzhHTdb+dvRJVDEBOKoo+ji7QYFBVSWbn8/1Qj35Mwz3fucAl0Cxe7gqjpuASlQEriShwWK24i28Nu3q7uwtbXJg9bNEM+wYbR0en29vuqWTz6hW7fLb3v0kMnGKgdAy1JbYiwQAuXwYaCyUs17qkyQFYwZQy7Gnj30owq3808E4vV1hXlUhXcAKVC2blU7YVLVoC0Y4byxg8LETK9esuGUqo6yX39Nq97m5FBbZLdITQVGjqRtXWGe99+n2/PPd/+9dIR5duygJNm0NOlYqSAnR9rVqsI8KhNkBbm58iKu0kVREYIF9OahtLYCCxbQttsJsgCNdamp1GKhosL99xOoanEfDId4GEdQHeYR4Z1jj3W/2ZXORNlDh4DPP6ftqVPdfz8dibLiojlypPsWeTCqwzw6HBRAT5hHRRI7oFegfPklVZgUFzu/wngo0tPlOj+qztHmZnncqnZQ7AJFdZ8tRbBAUYEugeL24AfoTZT98EOyco8/3v226IAeB0XVAoGhUFnJ09gov1eVDgqgR6CoCvHoFCgivDNpkvsTJYHqPJQ1a8gpKixUMwbZGTKEvte6OrWOkUJYoKjAnkyqAlX2MaBXoIjwzgUXqHk/HQ6KyD9RmSArUFnJs349zQKLiqgaQiXiu12yRM1M9MAB+gHI5XQTIYD27qV8IpXMn0+3KsI7AtUCRVeCLEArGg8eTNsJGuZhgaICYW+uXUsLobmNigoewQkn0Im5dy+wb5/77ydobwf+8Q/aVpF/Aqh3UDo6ZAKeDoGiMsSjo4JHcMIJ1FTx0CE1FzZxfg4aRDkwbpKfL/PQVLooNTVy/Z1EFiiqG7QFk+B5KCxQVDBoEA0ULS1yxUu36OiQ76EixJObK7PJVTlEAM12Dx6k79Xt/goC4aDs2EG2rtts2ADU1lKllIr/ZTD2EI/bzoK4eKrOPwFInIhJhIowj0qHE9AT5lmwgCYRRx8tF9pUgU4HRQcJXmrMAkUFKtvC79xJZb/p6c4v4R4OHWGev/+dbqdMcX4l2HCUlpJY6OhQs7aSCO+MHUtVPKoRx09Vlftr1ehKkBWozENRlX8i0CFQVLW3D0alQGltpT5MgD4HJcFLjVmgqELVRVzYx8cco+6iJj6bsHRVoDr/BCChqXIA1NGgzY691NjtMI+OEmM7KgWKyiR2QK9AUdH/xI44P/fupS7TbrJuHVXxFBTI91UNh3gYRxAWstthENX2MSAHoQ8+ULNwVUWFjP2ed57772dHuAoq8lB0CxRATSVPXZ1cDFG3g7JsGYUm3CTRHZRdu0iE+XzA2WereU9Br15yvSpxTLmFGINGj1afNyUQAmXrVjX5jYphgaIKu4PiZjxfZYKsYMwYijU3NgLvvuv++4nk2LFjKeyiElWJsi0t0m3TUWIsUFHJIy7YpaVUxaODY4+lfKr6enkOuUFVlexYq+ocFUJo3z41XYE//phux40jwaASlS6nrgZtdvr2pS7X7e16FjJ1GRYoqhg+nEIuhw7RDMMtVNvHAA0KV11F23Pnuv9+OsI7AlWlxqtWkUgpLNRnHwNqKnl0558A1IFUXGjcDPOI87OsTN3K1D16yB4dKtbk0RXeEagSKLpa3Nvx+RI6D4UFiiqysuSMya08FMvSE+IBgCuvpNt//MPdhMrWVmrQBqgrL7ajykERF8lx4/TZx4CaEI/u/BOBijwU1eEdgaowj2XpS5AVqBAobW0yXK/TQQESOg+FBYpK3G7Ytn8/NWOyq2pVDB9O/SRaW4F589x7n0WLqMdCcTFdvFVjd1DcDNXp7CBrR0WpsQkOCqBGoOhwOAF1AmXtWsoRy85WV/4fjAqBsmEDhbR79JDniC4SuNSYBYpKRKKsWw6KGPyGDKEBQjXCRXnjDffeQ5QXT51KtrxqBg0iAVhXJ7uBuoHODrJ2xGBfXe1e/oJpDsrKlVSd4QaJ7qAI9+Sss6jTqQ5UCBR7gqyqNv7h4BAP4whulxrrCu8IhED55BP31oZQuXpxKDIzgf79adutAbCuTopN3QIlJ0d+XjfCPFVVwO7dtK2jGZ2dwYMpSdfe38JpdAkUIf6WLnW3/FZHe/tg7ALFLddPd4M2OxziYRxBOChff01hCqfRZR8LBg8GTj2VGpm99Zbzr799O80AU1KoQZsu3M5DWbaMvsN+/ShLXzduVvKIGX15ubqk0XD4fO6GeerqZIM/1ZOI0aPp/Kypcc/hbGkBFi6kbV0JsgCtaJySQiEYt5bf0N3i3o5wUA4cUL/eksuwQFFJcbGcjboxQ9PtoADuhnk++IBuTzuNqlt04XYljyn5JwI3K3l0trgPhZsCRZyfvXvTWKCSlBTgllto+w9/cMdZ+PJLKtPu3RsYOdL514+UjAy5/pAb52hHB7B8OW2b4KD06EFVYUDC5aGwQFGNmw3bdPRACebyy2km+vnnzjdK0llebMdtB8WU/BOBm5U8piTICtwUKK+/Trennur8a0fCjTdSNeHy5cAXXzj/+iK8M2mS/rwMN/NQNm4kIZad7f5q1JGSoGEeFiiqcSsPpaqK2jsDegVK377AxIm0/eabzr1uU5NsAKUr/0TgdjdZEzrI2lER4tGdICsQ3/n69c52Ra6rA158kbaFk6GaoiLpcP7hD86/vu7+J3bcFCgi/+TEE/Uk6oeCBUpszJw5Ez6fD9OmTfPfZ1kWZsyYgbKyMmRnZ2PixIlYq3KdCJ24JVCEe9KvH63wqxM3mrYtXEgx5X79qJxZJ26GeA4epLbVgJ4y6lDYQzxOhwZMc1BKSykM29EhL0RO8PLLlP8xdChw7rnOvW603HYb3b71FrUlcIrqaun86UyQFbgpUExo0BaMyEPhEE/kLF68GM8//zxOCLqgPP7443jiiScwe/ZsLF68GKWlpTjnnHNQW1vr5u6YgRAoq1dTsx+nMCG8I7jsMuqau2IF8NVXzrymKC8+/3y9jcsAOfjt2UOiyUmWLKHbY44BevZ09rVjRQiy6moSUE5x4IC8SOqu4LEjXBRxwY0XywJmzaLt22/XG/4YN45ym1pagBdecO51FyygdutDh1KSqm5UOCgmJMgK2EGJjrq6OlxzzTX44x//iF629Rgsy8JTTz2F+++/H5dddhlGjBiBl156CQ0NDXhdxGgTmSFDKKmpudlZtSuao4kcF50UFclZohPJspalv7zYTmGhrDgRbodTmJZ/AlCsXSQdOhnmEa7p4MG0Do4pOJ2H8tFHJNR79ABuuMGZ14wH4aI895xzCyOaFN4B3BModmfNJAdFCJRNm2gfEwTXBMptt92GCy64AJOD7L6tW7eioqICU2xlopmZmZgwYQIWLVoU8rWam5tRU1MT8ONZUlJkiMKpMM+yZcDf/kavffPNzrxmvIhY99y58YcFNm2ifI/0dErA0419QTKn81BMyz8RuFHJY1r+icBpgSLckxtu0B9+BSiRvagI2LGDxg0nMKH/iR1xfu7eTflrTrFlC4XqMjPNcv0GDaLxsakJ2LlT9944hisCZe7cuVi2bBlmzpzZ6bGKIw28SkpKAu4vKSnxPxbMzJkzUVBQ4P8pF7M5r+J0HsrDD9PtVVfpb7ssuOQSqhjYuFGW5MWKCO+cdRaQlxf/vjmBG3kolmVeibHAjURZ0/JPBCL3Z+vW+ENaW7ZIEXD77fG9llNkZQE33UTbTiTL7txJoYWUFODss+N/PScoKpJjhZPVhMI9OeEEEgSmkJoqJxEJFOZxXKDs3LkTd911F1599VVkZWWFfZ4vKI/AsqxO9wmmT5+O6upq/89OrytEJwXKqlUU3vH5gPvvj//1nCIvD7joItqON1nWlPJiO244KDt3UmOptDR5jJiCG6XGpjooPXvKzytygmLlmWdIeE6ZIm14E/jhD2nMmD8//lCzqK476SRz8qbsLqeTkwiTGrQFk4B5KI4LlKVLl2L//v0YO3Ys0tLSkJaWhoULF+Lpp59GWlqa3zkJdkv279/fyVURZGZmIj8/P+DH09gFSrzhD+GeXH65GQmyduxhnljjonV1sjulCfknAjccFOGejBihZy2lrnA6xGNZ5joogDNhnvp6mYh6xx3x75OTDB4sBf8zz8T3WqaFdwRuCBQT808ELFC6Z9KkSVi9ejVWrFjh/xk3bhyuueYarFixAkOGDEFpaSnmi4MaQEtLCxYuXIjxula/VM2IEWSHHjgQ35o169YBf/kLbZvkngjOP5+clJ07qXFbLHz8Ma2NMmSI+hWau8INB8XU8A4QGOJxotS4ooLacqekmNPsyo4TAuXVV6k/0VFHmSWuBSJZds4cElOxYFnmJcgKnBYolmW2g5KApcaOC5S8vDyMGDEi4Cc3NxdFRUUYMWKEvyfKI488gnnz5mHNmjW44YYbkJOTg6uvvtrp3TGT7GypduMJ8/z613TSXHaZ3tbS4cjKAi69lLZjreYR+ScXXKC/vNiOcFC2bnUua97UBFmAPq/P51ypsQjvHH00HSemYRcosQgye2nxbbfp76waiilT6PuvrpZdbqNlzRoqFc/J0dchNxxOC5Tt20lUp6eb6fqxg+IMP/7xjzFt2jTceuutGDduHHbv3o0PP/wQeaYkQKog3jyUDRtkbscDDzixR+4gmra99Vb0fV8sK7D/iUmUl1OuSHMz9UOJl44Ome9gokDJynJ2VWOTwzsALa6XmkpOj1htORoWLCARlpMDfO97ju+eIzixPo9wws86iypbTMJpgSLck5EjzfusgBQoO3a4u2K1QpQIlAULFuCpp57y/+7z+TBjxgzs3bsXTU1NWLhwIUaYlijnNvEKlEceoYvaRReZl1BpZ9Ikyqjfvx/45JPo/nb1amDXLnKcJkxwZ/9iJS0NGDiQtp0I82zcSOWL2dnmXrSdrOQxNUFWkJMj/w+xhHmefppur7/enMTRUNxwA4nPlSuBMG0eusTU8A4QKFCcCEuanH8C0AKUYhFVJ85RA/qpGOg7JglCVMSyaODXXwOvvUbbJrsnANmh3/kObUcb5hHuyaRJ5iWNAs4myoqL4JgxJH5MxMlKHtMdFCD2PJTt24F336VtU0qLw1FYCIjQerQlx83NMoHdtARZgCYQPh/l1xw4EP/rmdjiPhiRhxJvmKexkVyxP/0p/n2KAxYouhAdX8XKmNEwcyZ1gJw61cxwQDCimuftt2lQixSTuseGwslEWRM7yAbjVCWPZZnvoACxC5RnnqHZ56RJZjXzCodIlv3LX6jMPVK++IJCCX36mPl/zMyUYcl4JxGWZWaL+2CcyEOxLOqT85//AD/5CVBZ6cy+xQALFF2UlNDCZJZFoYxI2bYNeOkl2jbdPRGceSYt8lddDfzjH5H9zeHD0nKeOtW9fYsHNxwUkwWKUyGenTuB2lpyikxpLBgK8b9YsiTyEEFDg5x13nmnO/vlNGPGUIJrayvwxz9G/ncivDN5splJwIBzeSi7d5MLk5pqZkGCwAmBMnMmud1paSRai4qc2bcYMPSoShJiyUN57DFKNp08GTjtNDf2ynlSUoArrqDtSJu2ffghzUKHD6c2ziYiBr+VK6NzhoJpaZHHgIklxgJ7iCeemL5wT4YNAzIy4t8vtxDJkFVVkYuy118HDh2iY9akxoLdIVyU//mfyJPZTe1/YscpgSLCO8cfb2a4WRBvqfG8ebJlxezZ2jsDs0DRSbQCZedO2fjpF79wY4/cQ4R53n03spCWvbzYVE46iXJs1q2jeG2sHY7XrCGB06uXdGVMZMgQiunX1MQe06+qAh59lLZNDAvYSU+X52gkYZ7g0uLUVNd2zXG+8x2gd29KSn/vve6fX1UlvxOTBYpTLqfpCbICu4MS7SRi5Urg2mtp+447jFjXjQWKTqJNlH38cbJhJ06ksImXGDeOBouGBplAGI6ODuCDD2jb1PwTgEqN33uPhMV//0ux6QULon8dkX8ybpxZvV6CycqKb1XjnTuBM84APv2UGvjde6+z++cG0eSh/PvftPREdjZw443u7pfTZGYC3/8+bUeSLLtgAZ2nw4bJY8JEnHZQTM4/AShPTPQr2r8/8r/bvx+4+GKaPE6eDDzxhHv7GAUsUHQiEmVXrep+2fO9e2V82Cu5J3Z8vsDW912xZAnN0PPzgdNPd3/f4uHcc2nwOvFE2mdxckczezG5g2wwsVbyrFpFeQ5r1wJlZXQxNznfRhCNQBHuybXXynJPL3HzzRSO/fhj4Kuvun6uF8I7gHMCxSsOSlaWbH8QaZinuZmafe7YQef3n/9sTCUhCxSdDB1Ks62Ghu5npL/5DR1Ip5+uPS4YM6Jp2wcfUBJsOER4Z8oUs1YMDcfgwZTxfu21JDTvvZc+a6TVWV5IkBXEUsnz8cfknOzZQzH8L76Q4tx0xP9k2bKuczN27qT4PWB+aXE4Bg4ELryQtrtbn8fk/id2hEDZtQt45RUqn42WvXvpJyXFG8dtNImylkULR/7nP0BBgXSEDYEFik5SU2nZbqDrPJR9+4DnnqPtX/zC7DBAVxx/POUdtLbKwTwUppcXhyInh6qrZs2i2cebb5Jj0N2FvL5eJo16QaBEW8nzyivAeedR1c7EicBnn5kdEghm2DAKRzU2Uq5ROJ59lsTpxIlmV3l0h0iWfeklWqgzFDt20Ow8JYU+r8kUF1PCsmUB111H1YR33931/zIY4Z4ceyyQm+vKbjpKNALliSdoLaaUFHJOTFpxGyxQ9BNJHsrvfkcD5Mknmz9j6Q7hooRr2rZvn2z5bmp5cTh8Ppo9f/IJlZCvWUOi429/C/83y5ZRLL9fPwp9mE6kIR7LonLF664j5+HKK6nE3OSuqqFISZF5B+HCPE1NMvzqldLicEyeTP/jmhpa7DAUwj05+WSadZuMz0eO3UMPAQMGkHP71FM0WTrzTPqM3bkqXmjQZkeIjO5CPH//O/CjH9H2k0+SY20YLFB0IyzDcA7KwYPSbvWyeyIQeSj/+lfolZxFn5SxY+ki70XOOIMGtfHjKVntoouAGTNCt472UngHCAzxhMuzaWsDbr0V+NnP6Pcf/5g6H5u4fkkkiNygcAJl7lw6TwcMoP+1l0lJof8dQONOqP+xV8I7gpIS4Oc/pzyUv/8d+OY3yb3+7DMKy3bnqnihQZudSLrJrltHY7FlAT/4AVXtmIjlQaqrqy0AVnV1te5diZ9FiywLsKy+fUM//rOf0eNjxlhWR4fafXOLk0+mzzRrVufHLr+cHnvgAfX75TTNzZZ12230eQDLOv98yzp0KPA5V15Jj/3613r2MVoaGy3L56N93rev8+N1dZZ14YX0uM8X+n/sNd56S56DwXR0WNbo0fT4o4+q3zc3OHzYsrKz6TN9+mngY+3tltW7Nz22cKGW3XOEXbss66GHLGvAAHl+ApZ1xhmW9corltXQIJ9bXu6tz7tjB+1vWppltbR0fvzgQcsaMoSec9ZZNE4pJJrrNwsU3dTWygG/oiLwscpKy8rLo8fmzdOye67w5JP0mcaPD7y/pcWyCgrosc8/17Fn7jBnjmVlZdHnOuooy1q5Uj4mBooPP9S3f9EycCDt82efBd6/b59lnXQSPZaVZVlvv61l9xxn2zY54Dc2Bj722Wfy8x48qGf/3OD736fPdcUVgfevWEH35+Yqv7C5QlubZf3975Z1ySWWlZoqhUqvXpZ1110kSsR9NTW69zYy2tstKyeH9nnDhsDHWlosa+JEemzQIMs6cED57rFA8RrHHEMHzD//GXj/gw/S/SecQAddorB7txRl27bJ+8VgUFxMA0cisWwZDQgADR6vv04XNDH4BTsrJjNpEu3ziy/K+zZulGKrqIicwUSho0O6Bl98EfjYFVfQ/TfdpGff3GL5cinK9uyR9//2t9INTDR27bKsX/2qs6sC0BjtJUaNov1+7z15X0eHZd18M93fo4dlrV6tZdeiuX5zDooJhEqUra6mZC6A+p6YutZFLJSVARMm0Pabb8r7RXnxeed5qwtnJIweTcm/U6ZQWfnVV8v2/0OHGlXa1y3BlTxffEHLLmzZQiXXixZ5ZxmGSPD5QvdD2b0b+OtfadvUGH6snHgi5VC1tQWuz+OV/iex0K8fjbUiV+WSS+Q45LXGmKEqeZ55hpYy8PloSQbTOzmDk2TNIFSi7KxZJFKGD6cmOolGqKZtXiwvjoaiIhr4pk+n3z/+mG69kiArsFfy/N//UV+eykrqhPv55zJJL5EIJVCee44u4Gee6Y3+GNFiX5+ntZX6MH36Kd3nlQTZWEhNpQrCd94Btm+ni/ljj+neq+gIFigffQTcdRdtP/qoZ5K5WaCYQPCaPLW1VPYFUPZ5Irkngm99i/qFLF9OJ9GOHVSWm5JC3VkTldRU4JFHgLffpv4aAM1UvYSo5PnHP0g8NzXRmkkLFlDFRCIiBIpYlqC5GXj+edr2emlxOL71LaBPH2qw9+67JD4bG+l/fPzxuvdODf36UWsEjSv6xoS91HjTJlprqb2dqpZEabEHSMArnwcRAuWrr2gAeOYZWhH1mGOAyy/XumuuUVwsZ2FvvCHX3jntNG+2CY+WSy+l8sU//MF767YIB6Wmhkqnf/ADmm16oYlVrAiBsmEDfe4//5nWL+nfn8pWE5HMTPrfAnSc2sM7Xm93kOgIF3PNGnJLqqqoceTzz3vqf8cCxQT69qWVRDs6aIb229/S/fffn3i5GHZE07a5cxM/vBOKo4+mnhMmL98eiiFDgB49aPvhhykEYMjaHa7Rpw/1ObEs6nHz9NN0/y23JPZnF+vzfPIJdZcFEju8kygIB6WykkR1//7UvTsrS+9+RQkLFBPw+WQM+847qenTkCGUSJnIXHIJnTAbNsgE2WQSKF4lM5Ni2gsXkoj20IwsLoSLMns2JTzbHYZEpbycVrkFKCkYACZN0rc/TGTk58tGlzk5FKLzYONLFiimIMI8q1bR7f33J/bMDKCT6IILaLu9nap7EjHZMBE55RTgrLN074VahEB5+226veoqcj4THZEsC9B6NP3769sXJnK+8Q26hrz8MlURehAWKKYgBApAq4pee622XVGKCPMA5J4ky2yc8R7B1VaJVlocjkmTZMiAwzve4aWXyPX61rd070nMsEAxBbtAmT4dSE/XtitKOf98Wc3C4R3GZOxrsZx+uncWj4sXn4/aHkyYkDyiLBFIS6PcKQ+T4DEEDzFsGNnmHR3ADTfo3ht1ZGcDL75IycEeqc1nkpSCAuCEEygMm6ilxeE45xx2Txjl+Cwr3JKk5lJTU4OCggJUV1cjPz9f9+44i2VxmINhTGXNGur4fPXVfJ4yTAxEc/1mB8U0eNBjGHMZMcITLcIZJhHgHBSGYRiGYYyDBQrDMAzDMMbBAoVhGIZhGONggcIwDMMwjHGwQGEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFIZhGIZhjIMFCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGODy5mrFlWQBo2WaGYRiGYbyBuG6L63hXeFKg1NbWAgDKy8s17wnDMAzDMNFSW1uLgoKCLp/jsyKRMYbR0dGBPXv2IC8vDz6fz9HXrqmpQXl5OXbu3In8/HxHX5uR8PesBv6e1cDfszr4u1aDW9+zZVmora1FWVkZUlK6zjLxpIOSkpKC/v37u/oe+fn5fPArgL9nNfD3rAb+ntXB37Ua3Pieu3NOBJwkyzAMwzCMcbBAYRiGYRjGOFigBJGZmYkHH3wQmZmZuncloeHvWQ38PauBv2d18HetBhO+Z08myTIMwzAMk9iwg8IwDMMwjHGwQGEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFBvPPPMMBg8ejKysLIwdOxb//ve/de+S5/n0009x0UUXoaysDD6fD++8807A45ZlYcaMGSgrK0N2djYmTpyItWvX6tlZjzJz5kycdNJJyMvLQ58+ffDNb34TGzZsCHgOf8/O8Oyzz+KEE07wd9c87bTT8MEHH/gf5+/ZeWbOnAmfz4dp06b57+Pv2RlmzJgBn88X8FNaWup/XPf3zALlCG+++SamTZuG+++/H8uXL8eZZ56JqVOnYseOHbp3zdPU19dj1KhRmD17dsjHH3/8cTzxxBOYPXs2Fi9ejNLSUpxzzjn+BSGZ7lm4cCFuu+02fPHFF5g/fz7a2towZcoU1NfX+5/D37Mz9O/fH48++iiWLFmCJUuW4Bvf+AYuueQS/6DN37OzLF68GM8//zxOOOGEgPv5e3aO448/Hnv37vX/rF692v+Y9u/ZYizLsqyTTz7Z+uEPfxhw37HHHmv99Kc/1bRHiQcAa968ef7fOzo6rNLSUuvRRx/139fU1GQVFBRYzz33nIY9TAz2799vAbAWLlxoWRZ/z27Tq1cv609/+hN/zw5TW1trDR061Jo/f741YcIE66677rIsi49nJ3nwwQetUaNGhXzMhO+ZHRQALS0tWLp0KaZMmRJw/5QpU7Bo0SJNe5X4bN26FRUVFQHfe2ZmJiZMmMDfexxUV1cDAAoLCwHw9+wW7e3tmDt3Lurr63Haaafx9+wwt912Gy644AJMnjw54H7+np1l06ZNKCsrw+DBg3HllVdiy5YtAMz4nj25mrHTHDx4EO3t7SgpKQm4v6SkBBUVFZr2KvER322o73379u06dsnzWJaFe+65B2eccQZGjBgBgL9np1m9ejVOO+00NDU1oUePHpg3bx6GDx/uH7T5e46fuXPnYtmyZVi8eHGnx/h4do5TTjkFL7/8Mo455hjs27cPDz/8MMaPH4+1a9ca8T2zQLHh8/kCfrcsq9N9jPPw9+4ct99+O1atWoXPPvus02P8PTvDsGHDsGLFClRVVeGvf/0rrr/+eixcuND/OH/P8bFz507cdddd+PDDD5GVlRX2efw9x8/UqVP92yNHjsRpp52Go446Ci+99BJOPfVUAHq/Zw7xACguLkZqamont2T//v2d1CPjHCJbnL93Z7jjjjvw7rvv4pNPPkH//v399/P37CwZGRk4+uijMW7cOMycOROjRo3C73//e/6eHWLp0qXYv38/xo4di7S0NKSlpWHhwoV4+umnkZaW5v8u+Xt2ntzcXIwcORKbNm0y4nhmgQIacMaOHYv58+cH3D9//nyMHz9e014lPoMHD0ZpaWnA997S0oKFCxfy9x4FlmXh9ttvx9tvv41//etfGDx4cMDj/D27i2VZaG5u5u/ZISZNmoTVq1djxYoV/p9x48bhmmuuwYoVKzBkyBD+nl2iubkZ69evR9++fc04npWk4nqAuXPnWunp6dYLL7xgrVu3zpo2bZqVm5trbdu2TfeueZra2lpr+fLl1vLlyy0A1hNPPGEtX77c2r59u2VZlvXoo49aBQUF1ttvv22tXr3auuqqq6y+fftaNTU1mvfcO9xyyy1WQUGBtWDBAmvv3r3+n4aGBv9z+Ht2hunTp1uffvqptXXrVmvVqlXWz372MyslJcX68MMPLcvi79kt7FU8lsXfs1Pce++91oIFC6wtW7ZYX3zxhXXhhRdaeXl5/uue7u+ZBYqNP/zhD9bAgQOtjIwMa8yYMf4yTSZ2PvnkEwtAp5/rr7/esiwqZXvwwQet0tJSKzMz0zrrrLOs1atX691pjxHq+wVgvfjii/7n8PfsDDfeeKN/jOjdu7c1adIkvzixLP6e3SJYoPD37AxXXHGF1bdvXys9Pd0qKyuzLrvsMmvt2rX+x3V/zz7Lsiw1Xg3DMAzDMExkcA4KwzAMwzDGwQKFYRiGYRjjYIHCMAzDMIxxsEBhGIZhGMY4WKAwDMMwDGMcLFAYhmEYhjEOFigMwzAMwxgHCxSGYRiGYYyDBQrDMAzDMMbBAoVhGIZhGONggcIwDMMwjHH8fw6pNu9iznf9AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGxCAYAAABIjE2TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbJUlEQVR4nO2dd3gc1dn271UvlmRLsiXLlhsYg7ExLjRTbGJjMDWQhBpKIPkI3ZQUhxCcQDCQBAh2gJeEF9NNSDAvhJBgCDYhBuLeccG9yEW2epfm++Px2TO72pW2zJxzZvf5XZeuHe2udmdXM2fucz/l+CzLssAwDMMwDGMQKbp3gGEYhmEYJhgWKAzDMAzDGAcLFIZhGIZhjIMFCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGOFigMAzDMAxjHCxQGIZhGIYxDhYoDMMox+fzYcaMGVr3YeLEiZg4caLWfWAYJjxpuneAYRhGB88884zuXWAYpgtYoDAMk5QMHz5c9y4wDNMFHOJhmARlxowZ8Pl8WL58OS677DLk5+ejoKAA3/3ud3HgwAEAwE033YTCwkI0NDR0+vtvfOMbOP744/2/v/XWWzjllFNQUFCAnJwcDBkyBDfeeGPA3+zYsQPf/e530adPH2RmZuK4447D7373O3R0dITdz5UrV8Ln8+GFF17o9NgHH3wAn8+Hd99913/fpk2bcPXVVwe8xx/+8Ieovx97iKe1tRV9+vTBtdde2+l5VVVVyM7Oxj333AMAWLBgAXw+H1599VXcc889KC0tRXZ2NiZMmIDly5dHvR8Mw4SGBQrDJDiXXnopjj76aPzlL3/BjBkz8M477+Dcc89Fa2sr7rrrLhw+fBivv/56wN+sW7cOn3zyCW677TYAwOeff44rrrgCQ4YMwdy5c/H+++/jF7/4Bdra2vx/c+DAAYwfPx4ffvghHnroIbz77ruYPHky7rvvPtx+++1h92/UqFEYPXo0XnzxxU6PzZkzB3369MH555/v36+TTjoJa9aswe9+9zv87W9/wwUXXIA777wTv/zlL2P+jtLT0/Hd734Xf/3rX1FTUxPw2BtvvIGmpiZ873vfC7j/Zz/7GbZs2YI//elP+NOf/oQ9e/Zg4sSJ2LJlS8z7wTCMDYthmITkwQcftABYd999d8D9r732mgXAevXVVy3LsqwJEyZYJ554YsBzbrnlFis/P9+qra21LMuyfvvb31oArKqqqrDv99Of/tQCYH355ZedXsvn81kbNmzw3wfAevDBB/2/P/300xaAgOccOnTIyszMtO69917/feeee67Vv39/q7q6OuA9br/9disrK8s6dOhQV19JABMmTLAmTJjg/33VqlUWAOv5558PeN7JJ59sjR071v/7J598YgGwxowZY3V0dPjv37Ztm5Wenm59//vfj3gfGIYJDzsoDJPgXHPNNQG/X3755UhLS8Mnn3wCALjrrruwYsUK/Oc//wEA1NTU4JVXXsH111+PHj16AABOOukk/9/++c9/xu7duzu9z7/+9S8MHz4cJ598csD9N9xwAyzLwr/+9a8u9zEzMxNz5szx3/fGG2+gubnZ71w0NTXh448/xqWXXoqcnBy0tbX5f84//3w0NTXhiy++iPLbkYwcORJjx44NcHLWr1+P//73v51CWQBw9dVXw+fz+X8fOHAgxo8f7/9eGYaJDxYoDJPglJaWBvyelpaGoqIiVFZWAgAuueQSDBo0yJ/HMWfOHNTX1/vDOwBw1lln4Z133kFbWxuuu+469O/fHyNGjMAbb7zhf05lZSX69u3b6f3Lysr8j4ejsLAQF198MV5++WW0t7f79+Pkk0/258FUVlaira0Ns2bNQnp6esCPCAEdPHgw6u/Hzo033ojPP/8cX331FQDgxRdfRGZmJq666qpOzw3+XsV9XX1OhmEihwUKwyQ4FRUVAb+3tbWhsrISRUVFAICUlBTcdttt+Mtf/oK9e/fimWeewaRJkzBs2LCAv7vkkkvw8ccfo7q6GgsWLED//v1x9dVX4/PPPwcAFBUVYe/evZ3ef8+ePQCA4uLiLvfze9/7Hnbv3o358+dj3bp1WLx4cUDeR69evZCamoobbrgBixcvDvkjhEqsXHXVVX4np729Ha+88gq++c1volevXp2eG/y9ivvE98owTHywQGGYBOe1114L+P3Pf/4z2traApqUff/730dGRgauueYabNiwocuk1szMTEyYMAGPPfYYAPgrVyZNmoR169Zh2bJlAc9/+eWX4fP5cPbZZ3e5n1OmTEG/fv3w4osv4sUXX0RWVlaAc5GTk4Ozzz4by5cvxwknnIBx48Z1+olXHPTq1Qvf/OY38fLLL+Nvf/sbKioqQoZ3AApBWZbl/3379u1YtGgRN39jGIfgPigMk+C8/fbbSEtLwznnnIO1a9figQcewKhRo3D55Zf7n9OzZ09cd911ePbZZzFw4EBcdNFFAa/xi1/8Art27cKkSZPQv39/VFVV4fe//z3S09MxYcIEAMDdd9+Nl19+GRdccAF+9atfYeDAgXj//ffxzDPP4JZbbsExxxzT5X6mpqbiuuuuwxNPPIH8/HxcdtllKCgoCHjO73//e5xxxhk488wzccstt2DQoEGora3F5s2b8d5773WZ5xIpN954I958803cfvvt6N+/PyZPnhzyefv378ell16KH/zgB6iursaDDz6IrKwsTJ8+Pe59YBgGXMXDMImKqOJZunSpddFFF1k9evSw8vLyrKuuusrat29fp+cvWLDAAmA9+uijnR7729/+Zk2dOtXq16+flZGRYfXp08c6//zzrX//+98Bz9u+fbt19dVXW0VFRVZ6ero1bNgw6ze/+Y3V3t4e8DwEVfEINm7caAGwAFjz588P+bm2bt1q3XjjjVa/fv2s9PR0q3fv3tb48eOthx9+OIpvp3MVj6C9vd0qLy+3AFj3339/p8dFFc8rr7xi3XnnnVbv3r2tzMxM68wzz7SWLFkS1T4wDBMen2XZPEqGYRKGGTNm4Je//CUOHDjQbf4HANx777149tlnsXPnTs6j6IIFCxbg7LPPxltvvYVvf/vbuneHYRIWDvEwTJLzxRdfYOPGjXjmmWdw8803szhhGMYIWKAwTJJz2mmnIScnBxdeeCEefvhh3bsTN+3t7ejKGPb5fEhNTVW4RwzDxAKHeBiGSSgGDRqE7du3h318woQJWLBggbodYhgmJthBYRgmoXjvvffQ3Nwc9vG8vDyFe8MwTKywg8IwDMMwjHFwozaGYRiGYYzDkyGejo4O7NmzB3l5eQGLdTEMwzAMYy6WZaG2thZlZWVISenaI/GkQNmzZw/Ky8t17wbDMAzDMDGwc+dO9O/fv8vneFKgiCS3nTt3Ij8/X/PeMAzDMAwTCTU1NSgvL48oWd2TAkWEdfLz81mgMAzDMIzHiCQ9g5NkGYZhGIYxDhYoDMMwDMMYBwsUhmEYhmGMgwUKwzAMwzDGwQKFYRiGYRjjYIHCMAzDMIxxsEBhGIZhGMY4WKAwDMMwDGMcLFAYhmEYhjEOFigMwzAMwxgHCxSGYRiGYYyDBQrDMAzDMMbBAoWJm/p64PHHgU2bdO8JwzAMkyiwQGHi5s03gZ/8BPjFL3TvCcMwDJMosEBh4mb3brrduVPvfjAMwzCJAwsUJm4OHqTbAwf07gfDMAyTOLBAYeKmspJu9+/Xux8Mw4Tniy+Abdt07wXDRA4LFCZuhECpqgJaWrTuCsN0y+bNQGur7r1Qy86dwOmnAxdeqHtPGCZyWKAwcSNCPMHbDGMaCxYAQ4cCd9yhe0/U8vXXQEcHsHEjYFm694ZhIoMFChM3wkEBOA+FMZvVq+l2yRK9+6EacV62tgI1NXr3hWEiJWqB8umnn+Kiiy5CWVkZfD4f3nnnnU7PWb9+PS6++GIUFBQgLy8Pp556Knbs2OF/vLm5GXfccQeKi4uRm5uLiy++GLt27YrrgzD6sAsUzkNhTObwYbpNtuHGPnHgSQTjFaIWKPX19Rg1ahRmz54d8vGvv/4aZ5xxBo499lgsWLAAK1euxAMPPICsrCz/c6ZNm4Z58+Zh7ty5+Oyzz1BXV4cLL7wQ7e3tsX8SRgstLYEzMhYojMkIgbJvX3LlS7FAYbxIWrR/MHXqVEydOjXs4/fffz/OP/98PP744/77hgwZ4t+urq7GCy+8gFdeeQWTJ08GALz66qsoLy/HRx99hHPPPTfaXWI0cuhQ4O88+DEmIwQKAOzZAwwapG1XlMIChfEijuagdHR04P3338cxxxyDc889F3369MEpp5wSEAZaunQpWltbMWXKFP99ZWVlGDFiBBYtWhTydZubm1FTUxPww5iBPbwDsIPCmI1doCRTY0EWKIwXcVSg7N+/H3V1dXj00Udx3nnn4cMPP8Sll16Kyy67DAsXLgQAVFRUICMjA7169Qr425KSElRUVIR83ZkzZ6KgoMD/U15e7uRuM3EQXLXDgx9jMnaBkkx5KCxQGC/iuIMCAJdccgnuvvtunHjiifjpT3+KCy+8EM8991yXf2tZFnw+X8jHpk+fjurqav/PTkOnPmvXArfcIlu/JwPsoDBeggUKCxTGOzgqUIqLi5GWlobhw4cH3H/cccf5q3hKS0vR0tKCw/aRAuS+lJSUhHzdzMxM5OfnB/yYyNNPA889B/zxj7r3RB1CoKSm0i0PfozJsEDhc5TxDo4KlIyMDJx00knYsGFDwP0bN27EwIEDAQBjx45Feno65s+f73987969WLNmDcaPH+/k7ihHuAdff613P1QiQjwiD5odFMZkklGgdHQEhmJZoDBeIeoqnrq6OmzevNn/+9atW7FixQoUFhZiwIAB+NGPfoQrrrgCZ511Fs4++2z84x//wHvvvYcFCxYAAAoKCnDTTTfh3nvvRVFREQoLC3Hfffdh5MiR/qoeryIGv2Ra70I4KMcdB2zaxIMfYy4tLUBDg/zd0Eix4xw+DNg7OPA5yniFqAXKkiVLcPbZZ/t/v+eeewAA119/PebMmYNLL70Uzz33HGbOnIk777wTw4YNw1//+lecccYZ/r958sknkZaWhssvvxyNjY2YNGkS5syZg1QRJ/AoQqBs3ap3P1RiFyjvvks9UZqaAFvbG4YxgqCoctI4KMGChAUK4xV8luW9lRlqampQUFCA6upqo/JRBgygWZnPBzQ2ApmZuvfIfS66CPjb34Dnnwduu41aae/YAXChFWMaX31FQjolhcIePh/Q3Aykp+veM3f597+Bs84CMjLIRcrODnSSGEYl0Vy/eS0eBxEzNMuii3QyIByU4mKgd2/a5hkaYyLi/BwwgESJZQF79+rdJxWI83HYMLptbATq6/XtD8NECgsUh2htBerq5O/JEuYRyXdFRVKgcKIsYyJCoBQWAv360XYyhHmEQBk8WLq6PIlgvAALFIeoqgr8PVkSZe0OSp8+tM2DH2MiQqD06gX070/byZAoK87H3r3Z5WS8BQsUhwhOwEsGB6W9XX7uoiIpUNhBYUwklEBJJgeFBQrjNaKu4mFCk4wC5fBhiuMDZJvz4MeYjDhHe/akH4AFCsOYDAsUhwgWKMkQ4hHhnYICSjpkB4UxGXZQWKAw3oJDPA5hn50ByeGgCIFSVES3nCTLmAwLFBYojLdggeIQYvAbM4Zu9+9P/F4D9goegJNkGbPhJFkWKIy3YIHiEGLwGzyYQh5A4od57BU8ADsojNmEEih79wJtbfr2yW0siwUK411YoDiEffAbPJi2Ez3MExziYQeFMRn7OVpSAqSlUUfZigq9++UmNTXUowlggcJ4DxYoDmEf/AYNou1Ed1CCQzxi8KuvT/zwFuM97OdoaipQVka/J3IeihAiubnU4p4FCuMlWKA4xKFDdJuMDooI8eTlcadKxlzsAgVIjjwUe3jHfsvnJ+MFWKA4BId4aPE1LjVmTKS1Va4/EyxQksFBCRYotbW0UCLDmAwLFIdI5hCPcFAAnqExZmLvUyRaASSjQOnZk3Jv7I8xjKmwQHEI+0JkyeqgAOygMGYizs/8fMo/AZJToPh8ckLBAoUxHRYoDhHKQTl8GKiu1rZLrhOcJAskX6nx7t2cEOwFgvNPAKC8nG6TSaDYt1mgMKbDAsUBWluBujra7tUL6NFDzlISNcxjWTIx2B7iSaZS4x07yC278ELde8J0RyiBkoxJsvbtZDhHGW/DAsUBqqrktohvJ3qYp6ZGNrhKVgflv/8lcbpihe49YbqjK4GyZw+tzJ2IsEBhvAwLFAcIFd9O9ERZEd7JyQGysuT9yeSgbNxIt4cPy2ZYjJmEEiilpUBKComTffv07JfbsEBhvAwLFAcINfgluoMS3ANFkEwOyqZNclt8H4yZhDpH09ISv1kbCxTGy7BAcYBkFij28A6QnA4KkByCzMuEOkeBxK/kYYHCeBkWKA4QavBLlhBPOIGyfz8l0iYydoHCg73ZdCdQEjFRtr4eaGykbRYojBdhgeIA3TkoiXih7i7E09QkK5sSkUOHpEgDeLA3nWR0UMQxmZlJlYUCFiiMV2CB4gChBr+BA+m2ri4x8xPChXhycylxFkjsAdCefwIk9mdNBJJZoPTuTQ3aBCxQGK/AAsUBQg1+WVlA3760nYhhnnAhHiA5EmXt4R2AB3vTCSdQErlZmzgmRdhVIM5Prj5jTIcFigOEG/wSOVE2XIgHSI5EWRYo3iLZHRQ7hYXSUUlEdzeROHQI6OjQvRf6YIHiAOEGP5Eom8gCJdkdlCFD6JYFitl0J1B27068C0E4gZKaKs/bZDhum5qosaTXWL6cJns//KHuPdEHCxQH6M5BSbYQTzI5KKefTreJ/Fm9TvBSFHb69iU3obU18QR1OIECJM+CgZYFjBkDDB0qK5q8wtKl1ETwz3+WXbuTDRYoDsAhnkAS3UGxLBYoXiLUUhSC9HTqKAskXpinK4GSLImyW7cC69fTWLR9u+69iQ6x1ll1NYmVZIQFigN0F+JJNAfFspLbQdmzh1YwTk0FTj6Z7kvUz5oIiPMzL4+6xwaTqImykQgUe6l8IrJkidz22oTJnh/00Uf69kMnLFAcQCjdrkI8idQLpaEBaG6m7a6SZL02IESKPf9EtEqvrEzcBee8TrgJhCBRE2XZQQkUKF77rOK6AgDz5+vbD52wQImTruLb5eW0GFlTE1BRoX7f3EIo+4wM6nsSTKKHeIRAOeYY6SBZFldEmEqkAiXRusmyQAkMjXhtPLKPJ4sWUWfgZIMFSpx0F98Wg18ihXns4R17AyhBood47AIlLY3KNoHE/bxehx2Uzo8lg0Dp6PC2QLE7KK2twKef6tsXXbBAiRMx+OXnh45vJ2KibFcJskCgg5JIoS2BXaAAyTHYe5lkFCjNzUBtLW0nq0D5+mtKMBV47bOKcVbkMiZjHgoLlDjpbvBLZIESKkEWkINfa6s3+w90BwsUb9HdOZqISbLiWExPBwoKOj+eDMesPf8E8K6DcvnldJuMeSgsUOKku8EvESt5uqrgAYDsbLk4mdcGhe5obQW2bKFtFijeIBoHJVEcP3EsFheHDsMmwzErBIoXP6s9p+0736Hb1asTK5cxEligxEkyOyjhQjxA4uahbNtGTZNycmQFT6J+1kShu3NU/B9bWhLnf9hV/on9/srKxOugKxAC5bzz6NZLk6XGRlkpOWwYMHo0bf/rX/r2SQcsUOIkUgclEQVKOAcFSNxKHhHeGTqUKrQAb87QkonuztGMDKCkhLYTJczTnUARk4v2dvn9JBIdHcCyZbQ9dSrdemksEmNsWhq50ZMn0+/JFuaJWqB8+umnuOiii1BWVgafz4d33nkn7HNvvvlm+Hw+PPXUUwH3Nzc344477kBxcTFyc3Nx8cUXY5dHR4ZIHZQdOxKnT0Z3IR4gcV2F4PwTgAWK6XR3jgKJl4fSnUDJyJC5KYl43G7cSO0fcnKAM8+k+7zUq0jkn4hKyXPOod8/+ihxwpCRELVAqa+vx6hRozB79uwun/fOO+/gyy+/RJnwT21MmzYN8+bNw9y5c/HZZ5+hrq4OF154Idq9cvTYiMQ+Tk+nsMDu3er2y02iCfF4adYSCSxQvEckAiXRKnnEeRdOoNgfS8TjVoR3Ro+WSxl4qVeR2E/RwuCMM4DMTDo+N2zQt1+qiVqgTJ06FQ8//DAuu+yysM/ZvXs3br/9drz22mtIT08PeKy6uhovvPACfve732Hy5MkYPXo0Xn31VaxevRofebCOqrvBLzUVGDCAthMlUZZDPBTiESTqZ00URK+iSARKojRr685BsT+WyAJl3Dhv9iqyOygAFR6ccQZte/AyGTOO56B0dHTg2muvxY9+9CMcf/zxnR5funQpWltbMWXKFP99ZWVlGDFiBBYtWhTyNZubm1FTUxPwYwqRzM4SLVE2mUM8mzbRrdcdlC++ACZMABYv1r0n7pOMDgoLFLodN45uveboBjsogMxDYYESB4899hjS0tJw5513hny8oqICGRkZ6BU0WpSUlKAiTA3VzJkzUVBQ4P8pFwFjA0hGgRJJiCcRXYWGBjnDDiVQvFQRMWcOdaa8+ebEjmm3t8tePCxQAklUgdLeDixfTtteFSjBDgog81A++YRSBpIBRwXK0qVL8fvf/x5z5syBL1TxfRdYlhX2b6ZPn47q6mr/z06DfNhIBEoi9UJpbpZrDyWbg7J5M90WFgZ+di9WRAgXbPlyYN48vfviJl0tRWEn2ZJk7Y8l0jkKAF99RZOJHj2826solINy4on0e01NcjifgMMC5d///jf279+PAQMGIC0tDWlpadi+fTvuvfdeDDpylS4tLUVLSwsOB43k+/fvR4mo9QsiMzMT+fn5AT+mkGwOijhxUlJCd6gUJKKDEipBFvBmRYQQKADwi194p7ohWsT52aMHJauHI9GatSWzQBHhnTFjZCsArzkoofL8UlOBb3yDtpOl3NhRgXLttddi1apVWLFihf+nrKwMP/rRj/DPf/4TADB27Fikp6djvu0b3rt3L9asWYPx48c7uTtKSFaBUlQkT/5QiAHh4EHvhD26I5xAAbw32NurGdauBf78Z3374iaRnJ+AbNbW1OSdSo9wtLZK5yiZBYoI7wDe+6wixGN3UIDAcuNkIMTydl1TV1eHzcLrBrB161asWLEChYWFGDBgAIqCfP/09HSUlpZi2LBhAICCggLcdNNNuPfee1FUVITCwkLcd999GDlyJCaLLCCP0NYmF+SKJMSzezd1q8zIcH3XXCOSBFlAhj3a2miwDD7RvEhXAqVPHwoBeWUAFP/Hb30L+OtfgRkzqKV2qAUvvUykAiUriy5iBw6Qi9JVfpXpiP9tSkrX553XLtqREkqgJIKDAshE2c8/p2tPXp7a/VJN1A7KkiVLMHr0aIw+0nv3nnvuwejRo/GLX/wi4td48skn8c1vfhOXX345Tj/9dOTk5OC9995DampqtLujlUjj2yUlNAB2dHi/jDGSBFmAavZF2MMrg0J3JIqDYlnyIvarX9EguHEj8NprevfLDSIVKEDiJMqKY7A7l9NLx2yktLUBK1bQtpcFSjgHZcgQ+mlroyT3RCdqgTJx4kRYltXpZ86cOSGfv23bNkybNi3gvqysLMyaNQuVlZVoaGjAe++9Z1RlTqSIgygvr+uZp8+XOImykfRAESTaAJgoAqW2VlYBDBoE/OQntP3LX1J4IJGIRqAkSqJsJPkn9scPHEiMvBsAWLeOwnT5+cBRR8n7vXR+Al2Ps8lUbsxr8cRBNINfouShRBriAbw3a+mKyko5aBx9dOfHvTQAiv9hdja1Ar/tNnL5tm4FXnxR7745TTI7KJEKlNZWWYrtdUR4Z+zYQPfIS2ORZYV3UACZh5IMibIsUOIgGQVKpCEeILFKjUWDtv79gdzczo97qWop+H+YkwNMn07bDz8sV1FNBGIRKF4Pw0YqULKz5bGcCOcoEDr/BJDfxeHD5ruEdocz1ETw7LPJlV+7Fti7V+2+qYYFShxEM/glc4jHCxft7ugqvAN400Gx/w9vvhno148uzn/8o579cgN2ULrGS8dtJIQTKIWF0lGxl9ibiHBPsrJo8hBMURGVUAOJH+ZhgRIHYvCLpEIlURyUWEI8iTD4JaJAsbtgWVnAz39O27/+NTW6SgRYoHSNl47b7mhpAVaupO1ggZKaKo930ydMoZq0BZMs5cYsUOKAQzxdww6KmYT7H954Izl9FRXAs88q3y1XiDVJ1stJo8kqUNasIZHSq5ccb+145bOGanMfjEiUnT/f28dqd7BAiYNYQjwVFUBjo2u75DrRhHiS0UE5eND8ASOcC5aRQV1lAeDRR+WSBl4mmnO0Xz+6bWgIbCHgNZJVoCxdSrdjx1KORjBeSZSNxEE5/XRyPffuBdavV7NfOmCBEgfRDH6FhbKpzvbt7u2T20QT4kkUB6WjI/QqxnbsFRHV1Wr2K1ZChXgE114LDB1Kz3n6abX75QbRnKPZ2fK49nKibLIKlHD5JwKvfNZIHJSsLODMM2k7kcM8LFDiIJrBz+fzfphHdIUFoqvi8bpA2bOHZtVpadIJCyYrSwpQ0wfArlywtDTgwQdp+7e/NV9sdUc05yiQGHkoLFBCP+6V8SgSBwVIjnJjFihxEO3g5/VKHqHsgcg+sxj8Kiu9vRidCO8MGdL1gnNeGey7clAA4MorgeHD6fh+8kl1++U07e1SYEV6jnq9WVt7u7zAJZNAaWoCVq+mba8LlEgcFEDmoSxYYH7pdKywQImDaAWK1x0UMfD17BnZmi3iAtjREShuvEZ3+ScCrwz23SU6p6ZSV1mABIpXF8+zuz/J4qAcOiRzoJKp2/Pq1XSRLi4GBgwI/RyvfNZIHZRRo+jz1tUBX37p/n7pgAVKHCSbgxJNBQ9AboM4yUwfFLoi0QRKJHlEl11GA2BNDYV6vIg4P3Nzu3a+7HhdoIhjr1evyD6zV47Z7uguQRZIPAclJQWYNIm2EzUPhQVKHCSbgxJNgqwgERJloxUoJn9W+0KBXQnNlBRaSBCgZFmTP1M4oj0/Ae93k40m/8T+PK8LlO7yTwDvfNZIHRQg8dflYYESI21t1JIYSB6BEq2DAiRGqXEiOSh1dTJe3d3/8aKLgJNOogThxx5zf9+cJh6B4nUHJVqB0tgI1Ne7s08qiESgJJqDAshE2S++SJz1lOywQIkRe5+Enj0j+xsR4qmslOLGS0TTA0XgBVehK1pbgS1baDsRBIpwT8K10bbj8wEPPUTbzzxD1UxeIhaBIpJkd+40v59NKKIVKD16AJmZgX/rNRobqUkbEJlAqakxe72paByUgQNp8dL2dmDhQnf3SwcsUGJEDH55eZEljAK0BLg46LyYhxJLiMcrs5ZwbNtGJ39ODlBW1vVzvSBQonXBpkyhplBNTcAjj7i3X24Qi0ARzdrq6705I41WoPh83jhuu2LlSjpHS0rk/y8U9uR+Uz9rR4c8biMdZxO53JgFSozEMvgB3g7zxBLi8frgZw/vhEu+E3jhs0YrMu0uyh//COzY4c5+uUEs52hurny+F/NQohUo9ueafNx2hT2809U5ahdjpk6YqqtJpACROShAYuehsECJkVgFipcreWIJ8XjdQYk0/wTwxkAfSYJsMGefTT8tLcDDD7uzX24Q6znq5TyUZBQo9gqe7jD9s4oxNjdXht664+yzKal9/XpvHrNdwQIlRpLRQYmnisfUAaE7hEAZOrT759o/q6n5C7G4YIB0Uf73f4Gvv3Z2n9yCBUpkeP0cjSRBVmD6hEkkyEbqngB0fIvP/vHHzu+TTligxIg4kGJ1ULwoUOKp4jF1QOiOWByU5mZzF9qLRWQClIdy3nkU6xflx6YTq0DxcjfZZBMo9fXAunW0HYmDYvp4FItLDSRumIcFSozE66AkW4jHi4MfEJ1Ayc2VlTGmft5YQjwCIUxefRX46ivn9skt2EGJDC8LlBUrKGejrKz7JHbA/M8ai4MCyETZjz4y172NBRYoMeJEiMdLB1JHR3xlxpWV1DvGS9TXy4tUJAIFMH8AjHWGBlBPlIsvpmNhxgxHd8sV4hUoXkuStTfhSxaBEk14B0hcB+W002hyVFEBrF3r/H7pggVKjIjBL1qlO3Ag3dbUBPZSMR17dnk0J09Rkcys99qaLps3021RUeT/Z9MH+3gcFEC6KG++KRdnM5Vkc1CqquQkINkESiThHcD8zxqrg5KZCZx1Fm0nUrkxC5QYiXXwy8mhen3AW3koQlzYGztFQmqqFDSmzlrCEU14R2B6GWOsSbKCUaOA73yHth980Jl9cotkEyjiopuXF905avpFuytEBU+yOyhAYuahsECJkVgHP8CblTyxJlcC5g8K4YhHoJg62MfzfxSI8M68eea6gB0dcjXjWAVKTY23mrWJY06cb5Fi+jEbjtpamQsVqYNi+lgUTZv7YEQeysKF1BIgEWCBEiPxCBQv9kKJZ+bt1QEw0QRKpAsFdsfw4fK43707/v1yg+pqmeMV7TmalwcUFNC2qZ8vFLEkyNqfX1trdgv4YJYvp/9xebl0pbvD5PMTiK7NfTAjRpAAq6+ntXkSARYoMcIOSuSYPmsJR6IJlPp6ObOKR6AAQN++dLt3b3yv4xbi/MzJATIyov97LybKxipQvNACPhTRJsgCciyqr6dFME0jHgclJQWYNIm2EyXMwwIlRpJNoMQTGzX5ot0ViSZQhMjMzOx+ocDu8IpAieX8BLyZhxKrQPH5pGA18bgNRywCJS9PClYTP2s8DgqQeOvysECJgbY2uRoxh3i6x4sOSmWlnM0cfXTkf+cFgVJc3P26Qt2R6ALFi83aYhUo9r8x8bgNR7QVPAAd9yaPR/E4KIBMlP3vf2UOlpdhgRID9sTAnj2j/3t7szav9EJxIsTjpcFPuCfl5dG5DSZ/1nhcsGASXaAkk4Ni/xsTj9tQVFcDmzbRdjQCBTBXoLS1yWtLrA5KeTkwbBgliX/yiWO7pg0WKDEgBr+8PBm7jYbyclLyDQ3mnSThcCJJ1iufFYgtvAOYPdA7kSArYIFiHskkUJYto9tBg6I/nk39rPaJb6wCBUiscmMWKDEQ7+CXmQn060fbXgnzxDP7NtlVCEe8AqWhwbwkvHh7oNhJFoGSDEmy9r/xyjkaS/6JwFQHRZyf+fmxTXwF9rb3XocFSgzEO/gB3kuUjSfEk0wOir2RnWmDvRM9UATJIlDYQTGTeASKqZ813vwTwcSJVNGzYYO3BHYoWKDEgBMCxWuJsk4kyVZVeaeBUKwCxeczV5BxiCdyRJJsVZW5K1PbsSwWKJFiuoMST3gHoB4+J59M2153UVigxECyOSiWFV+Ip1cvankPyIukyXR0yAS8aAUKYO5g70aIp67OzAt4vOdofj7lmAHeaNZmb7KW6ALl8GFgyxbaHjMm+r83VaA45aAAiVNuzAIlBpJNoNTVSecj1gZC4qJo2qAQit27gcZGigMLpysaTB3snQzx5OUBubm0baKL4sQ56qUwjzjWcnJi63Fj6jEbCrH+zlFHxfb/NfWzOuWgAIGJsmKRVy/CAiUGki3EI06crKzYG3yZOiiEQoR3jjoqtmQ1Uz+rkw4KYHaYx0mB4oU4fjzhHfvfecHhjCe8AySHg3LqqTSBOHDA/FXHu4IFSgyIA8kJB2X7dvMVrj28E2uDL1MHhVDEmn8iMFWgOOmgAMkjULzkoMQqUIRoPXSI+nGYTLwCxX5+mtSHykkHJSND9odZvz7+19MFC5QYcGLw69ePZuctLcCePc7sl1s4cWHzUqlxPPkngJkCxamFAu0kukDxUjfZeAWKffIhLpSm4pSD0tRkVv6Uk40UASmwvZBDFY6oBcqnn36Kiy66CGVlZfD5fHjnnXf8j7W2tuInP/kJRo4cidzcXJSVleG6667DnqArcHNzM+644w4UFxcjNzcXF198MXZ5YRQ4ghODX1qaHABND/M4ERowtbIlFPE6KCaKsYYGmUSZ6AKlo0M2vWIHJTJSU+XM3aTjNpiDB8l1BoDRo2N7jdxcGao2aTwSzrwTDgoAlJXRrekT4K6IWqDU19dj1KhRmD17dqfHGhoasGzZMjzwwANYtmwZ3n77bWzcuBEXX3xxwPOmTZuGefPmYe7cufjss89QV1eHCy+8EO3t7bF/EoU4IVAA7yTKOumgmDQghCMRQzzif5iRIZNb48VUgVJTI617FiiRY+JxG4xIkD3mGCqnjRUTP6vTDkoiCJSoUwCnTp2KqVOnhnysoKAA84PqmmbNmoWTTz4ZO3bswIABA1BdXY0XXngBr7zyCiYfSTV+9dVXUV5ejo8++gjnnntuDB9DLUKgxKt0vZIo68SJY+KAEIrWVlnCmIgCxYmFAgVCoFRUOPN6TiHOz+xs2TQvFpIpSVb87VdfmXXcBhNveEfQpw85MSZNmJx2UES38qQK8URLdXU1fD4feh5ZVW/p0qVobW3FlClT/M8pKyvDiBEjsGjRopCv0dzcjJqamoAfnSSbg+JEiMcrDsrWrUB7O7kM4gIcLSYKFKdnZ4C5DopT56cIwR46ZN6yBcEki4PilEAx8bOyg9IZVwVKU1MTfvrTn+Lqq69Gfn4+AKCiogIZGRnoFTR6lJSUoCLMVGzmzJkoKCjw/5SLkUMDbW3UFAlIHoHiRIjHxAEhFCK8M3Ro7E6D+Ky1tZSIZwJOJ8gCQGkp3SaqQCkokOEw02ehLFCiw7QJU0uLTNh1IwfFpGqlaHBNoLS2tuLKK69ER0cHnnnmmW6fb1kWfGGuCNOnT0d1dbX/Z6dGz9W+4uQRUyhmvBbiSQYHJd78E4AubOnptG3KYO90DxRAOiiVlWYtYeCUQPH5vJOHkgwCpaKC/g8+X+wJsgLTxiMR3vH54r+uCMT52dgYeN3yEq4IlNbWVlx++eXYunUr5s+f73dPAKC0tBQtLS04LEaRI+zfvx8lJSUhXy8zMxP5+fkBP7oQu52XF9+Kk4B0UHbuNLv3gJM5KCa5CqFwQqD4fFIImDLYO90DRbyWEGIm5aGIc9SJgd4reSjJIFBEguyxx9KinPFg2me199YSy4LES3a2dGO8GuZxXKAIcbJp0yZ89NFHKAoaEceOHYv09PSAZNq9e/dizZo1GD9+vNO74zhOzc4AssgzMynnweQB0ImLW8+eUtCZMiiEwgmBApg3ALoR4vH5zAzzOHmOesFBaWiQOTLJIFDiDe8A5jkoTjZps+P1PJSoBUpdXR1WrFiBFStWAAC2bt2KFStWYMeOHWhra8O3v/1tLFmyBK+99hra29tRUVGBiooKtBzxgAsKCnDTTTfh3nvvxccff4zly5fju9/9LkaOHOmv6jEZJwe/lBRg4EDaNjnM40R4wOczsz9IMIkqUNwI8QBmJso6eY56oVmbOMYyMuQCh7Fg2jEbjFP5J4B5n9XJNvd2hEAxPYcqHFEHKZYsWYKzzz7b//s999wDALj++usxY8YMvPvuuwCAE088MeDvPvnkE0ycOBEA8OSTTyItLQ2XX345GhsbMWnSJMyZMwepTnlbLuLk4AdQmGfjRkqUtX2txtDYKGdn8Z48vXuTkjdl1hJMXZ08kYcOje+1TBsA3QjxAIkvULzgoNjDO/GUkJt2zAbjpEBJFgdFlBp71UGJWqBMnDgRVhcpwV09JsjKysKsWbMwa9asaN9eO24IFMDcSh5x4qSl0RL08WDaoBDM5s10W1wc/0BhmlvEDkpseE2gxIP4+8pK6sabYtBCKHv20DGWkgIEzX1jwn5+WpZzvYFixW0HxasCxaBD0Bs4LVBMr+RxYqFAgekzNKfCO4B5n5UdlNjwQpKsUwJFiNf2dvkdmoJwT4YPj31FdTviu2ptBaqr43+9eHE7B8WrIR4WKFGSrA6KExc20x2UZBAo7KBEhxAoBw+aW33mlEDJyJDt4005bgVOJsgCQFaWzNcxYTxyy0HxeoiHBUqUJJuD4uTM27SLdjCJKlAaGuTFlQVKdBQWUrkmYO4s1CmBYn8NE45bO07mnwhM+qxcxRMaFihR4paDsmePXG3WJJzMXUhGB8WEzypEZnp6/P0jgkl0geKFZm2JLlAsyx2BYtJ45HYOyt69lFfkNVigRInTAqW4mNppW5ZcRtwkksVBsSxgwwbaTjQHxY2FAgVCoOzbR7kLuunokF0znTpHWaDoZdcuEhFpacAJJzj3uiYJFLcclJISSixubzfjc0YLC5QocVqg+Hxmh3mSJQelslJe2I4+Ov7XEwN9dbX+NvBuVfAA9D/1+UgYmHBRq62VM0WnBYqpibKJLlCEezJihAy3OYFJn9UtByUtjUQK4M0wDwuUKLG3JHYKkxNlkyXEI8I7AwY4MwjaW1YLB0MXblXwADQAiv+rCWEeMYHIzHTuYsYOil6WL6fbsWOdfV2TxiO3HBTA23koLFCixGkHBTBboLgR4mloAOrr4389J3Ey/wQgW1V8Z7oHezcdFMCsPBQ3zk/Tu8kmukARoW8nnE07pvQqamykH8CdSYSo5DE1ybsrWKBEQVsbWciAswNgsoR48vJoZgvoHxSCcVqgAOYM9m46KEDiCxSTHZTmZqCmhrYTVaCIC6u40DqFKYnswpVPTY2/GWYo2EFJEuxLVju1JDZgtoPi5Ozb5zNzAASSQ6CwgxIbJgsU8b9NTXVmTDLlmLXjlkAxJcRjD++40dGWBUqSIAa/vDy5zLwTCAfFRIHi9OzblEEhmE2b6NZJgWKKhcwhnvgQAmXfPvNaAYhjq7jYmdb0ySRQTPmswkFxI/8E4BBP0uDG4AdIB+XAAbNyM1pbpX3s1MXNlEHBTkeHOwLFlM/KIZ74KC6WoUnTZqFO5p/YX0esUaObmhoZVnfLQTl4UG+PECfD6KFgByVJcEug9Owp7VmT8lCEsvf5nAtpmeig7N5NSWrp6cDAgc69rikCxW0HpbSUbisq3Hn9aHDjHDW5WZtbAsU+OdGJmPUXFDjfZNCUtYfcdlBYoCQJbgkUwMxEWTHztpfMxospF207Iv/kqKOobNYpTEnCYwclfpJFoGRnU+NI+2vrxK3wDkBrD4mJl85z1G0HRXx3Bw6YF6LsDhYoUeCmQDExUdaNmbeJDoobCbKAOWJMZZKs7rAAC5T4MeW4BdwVKIAZ45HbDkphIYkxwAyXMxpYoERBsgoUJ5W9CQNCMIksUBoaZI8FtwVKc3NgpZsO3BYopnWTZYESHyZ8VrcdFJ/Pu2EeFihRkKwhHidPHBMGhGASWaCIwS8tTS4v7zRZWdIq1x3mcescNbVZGwuU+DBhwuS2gwJ4t5KHBUoUJKuDwiGe2BAD/aFD1ORPB24uFGjHlDwUDvHEj0kCRXzfbgsUEyYRbjkoADsoSUGyCRS3HRTd+QoALeQnvnOnBUpRkRQFYhBSjdsVPAIWKHpIdIEiZvzi+3caExLZ3Voo0A4LlCRARYinqopWwDUBN3NQmpqAujrnXjdWtm6lMsMePWS5rFOkpkrbVtdg73YFj8AEgWJZMgfGLYFSUUEluKaQLAIlkUM8bi4UKBAChUM8CYybAiU3V15ExOJYunFj9p2bK1eZNWEAFOGdoUPdCYHotpCTyUGprSWxCTh/jvbuTX1yLMucWWhbm5x9J6JAaW2l7r1A4ibJWpYaB0V8f6Ycu5HCAiUK3BQogGwSZopAcWv2bcKsReBW/olA9wCYTA6KOD8zMqQIdoqUFPPCPEJ8+nyJmcheUUEX8PR0ZwWYHd1jUX09hZkBNQ4KC5QExm2BIsI8pggUt5K3TBkAgeQRKMngoNjPTzfcMNMEijimioqca6QI6D9mBSIc0bevM+sMhUK3wynck4wM2SDPDTjEk+C0tcnWz247KKaUGrsVHtA9a7Ej1uAZOtSd19edhJdMIR638k8EpgoUp90F0wSKW+EdQH7Wyko9lXZur2QsEAKltlaubeQFWKBEiL0BlVPr0gRjUoinvd292KhJAkWIwSFD3Hl93YN9MoZ43BYopjRrc1ugNDbqXbxUCEG3KngAWWlnWXoq7VTknwDUA0n0QdJdaRcNLFAiRAx+PXpQTNQNTBIoVVWyDNjp2Kjui7agvV1ebJxcJNCO7s+qOsRTW6vvoqZKoCS6g9Kjh1y9Wec5qsJBSUvTW2mnooJH4MUwDwuUCHF78APMEijixMnPl+s4OIUpDsrevWTrpqXJC6zT6BYoqkI8eXlATg5t65qhuX2OmtZN1i2B4vPpP24BNQIF0DseqXJQAG9W8rBAiRAVAkUkye7fL9dP0YWboQETBj8A2LGDbvv3dzbJ0I7uz6oqxOPz6Q/zJJuDIi6oblS46D5uAfUCJVkcFBYoCYgY/Nw8kHr2lHFC3S6KmzNvUxwU8R27Fd4B9A70jY20WCDgvoMCJI9AEc6bbtxyUOyvmQwCRWciu0oHhUM8CYwKB8XnMyfM4+b6ECYMfoD8jgcMcO897FUCHR3uvU8o7AsF5ue7/36JLlD69KHvsqPDjETDRBYolpUcIR6VDgqHeBIYFQIFMEeguBkasA8IOtfjESEeNx0U4Vx0dMjZkirs/0M3SxgFiS5QUlPlIG9CJU8iC5TDh2WYW5WDojPEo9JBYYGSgCSbQHEzxCMGhNZWvesOqQjxpKfLY0b1AKgqQVaQ6AIFkG6b7vMTSGyBItyToiIgK8vd9zIhSZareELDAiVCkk2guOmgZGdTKSOgN8yjIsQD6BvsVSXICsRiixUVat4vGBXnqOiXs2WLe+8RCR0dUoAmskBx2z0BzEiSVV3FY8JK8pHAAiVCVAkUUcmju5us2yeO7kRZy1LjoAD6kvDYQXGewYPpdutW994jEg4dkjlNbrqcySBQTEiSVeGgiAlES4v6cHOssECJkGRzUNy+uOkeAKuqgLo62mYHxRl0ChTLSi4HRRxLPXu60zhS9/mpw0FRLVBUrWQsyMyU47lXwjwsUCJEtUDZs4dyNHTh9sVNt4MiBGCfPs6vfBuMboGi2kE5eFCu0KqK+npZ+qtCoOh2UNzMP7G/bjIIFPFZq6rUHrc1NdTNGlDjoADeq+RhgRIhqgRKnz6kdDs69DaEcjvEo3sAFBU8brsngL7PqjrEU1REZbgAsG+fmvcUiPMzPV12tHUDEeLZsUPvBEKVQKmtBZqb3XmPrhBjnwqBUlgoV0sWol4F4vzMznZ/kiTwWiUPC5QIUSVQUlL0VwrYF85y6+JmioPidv4JoN9BURXiSUmRcW7VYR77+elmSXVpKVWVdHRIkasDtwVKz55SbOqYRAgHxc2FAgUpKXrOUZX5JwKvVfKwQImA9nay4wD3BQqgPw+lpkba5YnqoCSTQFHloAD68lBUTiBEIrvOMI/bAsXnk8eNToGiwkEB9CTKqqzgESR8iOfTTz/FRRddhLKyMvh8PrzzzjsBj1uWhRkzZqCsrAzZ2dmYOHEi1q5dG/Cc5uZm3HHHHSguLkZubi4uvvhi7DJlgYsQVFXJ7Z493X8/3ZU8KqxH3Q4Kh3jcIdEFCmBGoqzbAsX+2qqP2+ZmKa5VCRQd45HKBFlBwod46uvrMWrUKMyePTvk448//jieeOIJzJ49G4sXL0ZpaSnOOecc1NbW+p8zbdo0zJs3D3PnzsVnn32Guro6XHjhhWgXGUOGIQa/Hj3cyZgPRreDouLCprO0D1DroOjqs6A6xAMkl0BJZAfF/tqqj1tx8czMVBf+0PFZVba5F3gtxJMW7R9MnToVU6dODfmYZVl46qmncP/99+Oyyy4DALz00ksoKSnB66+/jptvvhnV1dV44YUX8Morr2Dy5MkAgFdffRXl5eX46KOPcO6553Z63ebmZjTbMrVqRLxFESoHP0C/QFFxYdPZHAnQE+I5eJDye1S0nW9qosoWgB0UpxGJssnioKhMHAUCwzsqzhUgeRyUhA/xdMXWrVtRUVGBKVOm+O/LzMzEhAkTsGjRIgDA0qVL0draGvCcsrIyjBgxwv+cYGbOnImCggL/T3l5uZO73S3JJlBUOCh2gaJ6Eb2mJllloiLEI77HtrbAcKGbiP9haipQUKDmPYHkECgc4nEX1fkngJ4Jk04HZd8+M1bk7g5HBUrFkR7XJSUlAfeXlJT4H6uoqEBGRgZ6BY0k9ucEM336dFRXV/t/dipeqUsoXdUCZccO9RdvQE3ylrhot7eru2gLxOGTm6tmcMjMlKsJqxoAVS8UKEgmgcIhHncQ6YgqKngEOkLOOhyU3r1p0tLRob4VQCy4UsXjCxoRLcvqdF8wXT0nMzMT+fn5AT8qUe2g9OtHB1Frq56unCpCPJmZcmavOg/FHt5RdfFWPQDqSJAFkkOgiBBPZaWexS4tS56jbgoUXVU8Oh0UHVU8Kh2U1FTZCsALYR5HBUrpkU8e7ITs37/f76qUlpaipaUFh8WIEuI5pqFaoKSlydmDjjCPqoubrhmaygoegerPqiNBFpACZd8+2SVTBSrP0bw8eW7ocFGqq2WTuER0UHQIFJ19UFSfo17KQ3FUoAwePBilpaWYP3++/76WlhYsXLgQ48ePBwCMHTsW6enpAc/Zu3cv1qxZ43+OaagWKIDePBRVFzddpcYqE2QFqgdAXQ5KSQm5Uu3tapMrVZ+jOhcNFMdQjx7UNM4tkkmgJIuDAnirkifqKp66ujps3rzZ//vWrVuxYsUKFBYWYsCAAZg2bRoeeeQRDB06FEOHDsUjjzyCnJwcXH311QCAgoIC3HTTTbj33ntRVFSEwsJC3HfffRg5cqS/qsc0xOCn8kDSKVBUNRDSNQAmg0DR0aQNIPevd28a6PfuJcGiAtUCZcgQYPFiPYmyKvJP7K+fTAKltpaS6N0UfgJdDoqXeqFELVCWLFmCs88+2//7PffcAwC4/vrrMWfOHPz4xz9GY2Mjbr31Vhw+fBinnHIKPvzwQ+Tl5fn/5sknn0RaWhouv/xyNDY2YtKkSZgzZw5SU1Md+EjOk2wOiqrZt24HhUM87tC3rxQoJ56o5j11CBRAr4OiSqAcOkQVH2lRXy2ip6NDXjhVCpSCAupx1dpK36/bhaLt7XomvoC3QjxRH3ITJ06EZVlhH/f5fJgxYwZmzJgR9jlZWVmYNWsWZs2aFe3ba0GnQNHRTVbVxU1XszaRg5LIDoquEA9AAmXlSnWJspalL8STyA6KqAATa3OpcMPEStg+n8xnUoHPR9/nnj00HrktUKqr6XsFOMTTFbwWTwToECii3X0ih3h09B7o6JBlxoksUHQ7KIA6gdLQIJNGVTsoiSxQUlPlxVPVcSsumn36ABkZat5ToPIcFWNsjx7qP6eXQjwsUCJAd4inC8PKcRoaKAYLJGaIZ+9eupilpqqdoakWY7pyUAD1AkWcn2lp1NtGBcJB2bZNfa8iVQLF/h6qBYrK8I5A5XikY6FAgZdCPCxQIkCHQBEWY0ODPJhVIC5s6emk7t1ERxKeCO/0768mpi5IphCP6LOgWqD06qWur015OYnc5mb1PV9YoLiDykmESJBVHd4BpINy6JCcjJoKC5RuaG8HxNI/KgVKVpYc6FWGeezK3u3BXoeDoqOCBwgc6FU4YiaEeMI0hnYcHROI9HSZZK06UZYFijuozInT6aD07CmrlEx3UVigdIO9DXvPnmrfW0clj8qZtxgQKivVNfXSUcEDyM/a0iIFr1s0NwN1dbSdTCEelQIF0JcoywLFHVROmHQ6KD6fd8I8LFC6QQx+PXrQrEklIlFWZSWPypm3uHh2dMgT1m10VPAAQHa2zI9we7AXIjMlRe1CgQK7QFHhFukSKLoSZRNZoOhYh0egI0lWh4MCeCdRlgVKN+ga/AC9DoqKEyc9XX6vqsI8ukI8gLoB0C4yUzSc4UKgNDWpWatGt4OiMsRjWYktUNhBUYNXSo1ZoHRDsgoUVaEB1dUtukI8gLrBXmeCLEBukXBuVIR5kslBqa+XiY0sUJxF5Vik20HhEE+CkGwCRXVypepmbbpCPIAeB0UXKvNQdAsUlQ6KOHaystSUVKsUKA0NMucv0ZNkTXFQWKB4nGQTKInsoFRVyQTVRHZQdPZAESSDQBEhnt271ZVr2sM7KkqqVQoU4Z7k5gL5+e6/XzBiLGpoIKfKTXQ7KBziSRBMECiHD7tf+SFQfeKojPsKode7N5CT4/77BZMsIR4gOQRKcbHsFaQqkV1l/on9fSor3W9IZw/vqOpnY6dHDyAzk7bdPkd1LRQo4BBPgiAOJB0CJS9PWoCqXBRdIR4VMzQR3tHhngDq3CIO8ajB51OfKKtaoAiRa1/czi2EQNFRwQPQ/1PVhElMIkwI8ajsVB4tLFC6QaeDAqgP8+gK8ah0UHTknwDsoLiFznNUdaKsaoGSkSETnt0+bkWJsY78E4GKSURrq3TEdYd46uvVufOxwAKlG5JNoCSyg5IsAoUdFHWoTpRVLVDs7+X2cauzgkegIlHW7kSpbv4pyMmR721ymIcFSjckk0BpaZEdSBMxB0V3iEdVlUAyJclalt5zVHU3WRYo7qJiPBJpAz17ql0PLBgvVPKwQOkGUwSKiiQ8ewdSVcpeZWmfSQ6Km3HfZArxNDaSsAY4xOMWySRQVHxW3fknAi9U8rBA6QYhUHQdTKLdvQoHRcy8CwvVdSAVM5ZDh4C2NnffyxSB0tTkbhmjSSGemhoq23QLcX6mprq/+nYo7CEeFcmGLFDcRaWDovP8BLxRycMCpRtMcVBUCBQdtfn2VZPFhdUNmpvl6rq6Qjy5uXIVUbcG+5YWoLaWtnU6KPn51FEWcNdFsZ+fOkpTxQSipkbNelKJKlDa2+VxoquKB1CTJGuag8ICxaO0t8sMZ90CZd8+95tB6QgNpKZKQeTmrGXnTrrNydE3c/H53B/sdYTpQuHzqQnz6J5AZGfLz6kizCOOG3EhVYEKgbJvH423qalASYl779MdKkLOpjgoHOLxOKLtMqBvsC8slC2tRZKnW+gKDZSX062bA7w9vKNjpi1we7DXEaYLRzIIFEBdL5TGRpnEnmgOirhIlpaSSNGFihAPOyiRwwKlC8Tg16MHrbyrA59PXZhHV/vlE06g25Ur3XsP3RU8AlUOis7wjiBZBIqqRFlxzKSnq20Fr1Kg6Mw/AQJDPG7lFJnioHAOiscxYfAD1FXy6Lq4jRpFtytWuPceuhNkBW7HuE1IkBWUltJtsggUtx0U1evwCJJJoIjP2twsc7mcxkQHxe1lDGKFBUoXmDD4AeoqeXRd3E48kW7ddFBMESiqQjzsoKhDVS8UHQmy9vdz01UwRaDk5MiQutsup+5JRGkpCd22NncLFOKBBUoXmDD4AepDPLoclK1b3Wu7LL47DvGoQwgUUT3lBiaco6pDPLoEir1Fu9OYIlAA9xNlRYhHt4OSni4dXVPDPCxQusCEwQ9I/ByUwkJZWrhqlTvvIXJQTHFQ3Br8TArxJJuDsmOHu718dAmU7Gz3XQWxDo/OEmOB24mypjgogPmVPCxQusCEwQ9QJ1B0XtzczEPp6JBlxqYIlGRyUBJdoJSV0aJ6bW3yQusGugSK/T3dOm5NclDczhMzxUEBzK/kYYHSBSYMfoC8qO7aRTarW+i8uAmB4kYeSkUFNTBLTZUnpC5U5aCYMDsTAuXAAfeOWxPO0dRUmSfmZqIsCxQ1uOlyNjfLLtImnKOmV/KwQOkCEwY/gJKZMjLICXDLimtrk59Xx4njZqKsCO/066d3cS4guZJki4vl971vnzvvYco5qiJRNlEFSk2N7O9igkBx00ER7klKClBQ4PzrRwuHeDyMKYNfSopM7nQrzGNfAlyH9SgclDVrqKOkk5hSwQPIgb6+nhpvOY1JIZ6UFNkV1K0wjynnqIpE2bVrA99LJcINc2P8ERfHggKZ66ITNx0UcX726qW/kSLAIR5PY8rgB7ifhyJOHF1LgB91FJX4NTYCmzY5+9qmVPAA1GBLNP1zY4ZmUogHcD8PxZRz1O1usgcOAF9/TWWhJ5/sznt0xejRdLtkifOvbVJ4B3A3Sdak/BOAQzyeRhxMugc/wH2BovvClpoKjBxJ204nyppSwQO4ux6PvQzUBAcFcFegNDZSTB/Qf4667aB8+SXdHnusntDASSfR7eLFzvdCEQLFhAoewN0Qj0kVPACHeDyNKbMzwP1usiacOG7loZgU4gHcGwBNWSjQjpsCRZyfqalAXp7zrx8NbneTFQLl1FPdef3uGDWKnL+DB52fJInKJ1McFDdDPKa0uRcIgbJ/v7sFGLHCAqULTBQobod4dM683arkMU2guOWgCBesVy+9C67ZUSFQevbUuwAkIEM8+/fLhE8n+eILutUlUDIz5ZpZixc7+9qmhnjc6JxrSpt7QXGxDDm72VAxVlighKG9XdrlJggUt9vd6w7xAO4JFFMWChS4JVBMEJnBqBAoJpyfPXvK/XDaRWlv1++gADLM89//Ovu6pgkUcX62tQWuaO8EpjkoKSnyHDUxzMMCJQz2A9OEAVDM/nfscGdhJxNCPCIHZc8e5y7e1dX0A3QhUNxaYCQMblnIJojMYFQ5KCbgVqLsV1/RwnW5ucDxxzv72tEgknMT3UHJzJSrRTt9jprmoABmV/KwQAmDGPx69JAWmE769SO129LiTk8JE2bfeXlUzQM456IIx6m4OEwJ4wMPkKf79dfOvGEEuB3iYQdFD24lyorwzkkn6Q3dCQdl6VJnWwGYJlAA9/LETHNQALMreVighMG0wS89XR5IboR5TJl9O50o22145+WX6cN//LEzbxgByRji2bfPeefPtHPUrURZE8I7AHDccSTy6+qADRucec3WVjnhMqWKB3DP5TTZQeEQj4cwbfAD3K3kMSHEAzifh9JlgmxlpVQwbi9Fa8NtB0X3/9BOSYl7S7qbdo661U3WnyB7cru7i/10Q2oqMGYMbTsV5tm7lyKs6eldCOtVq4CzzwaWL3fmTSMgmRyUpArxtLW14ec//zkGDx6M7OxsDBkyBL/61a/QYZs+WZaFGTNmoKysDNnZ2Zg4cSLWijaJhmDa4Ae4myhryuxbqUCxD3gJEOIx5X9ox37hcTrMY9o56kaIp7aWuisDwCnzpgPl5cB//uPcG0SJvR+KE4hZe1lZF51Vn3gCWLAAeOYZZ940ApLJQUmqEM9jjz2G5557DrNnz8b69evx+OOP4ze/+Q1mzZrlf87jjz+OJ554ArNnz8bixYtRWlqKc845B7W1tU7vTsyYNvgB7pYamzL7FgJl3TrZhCseugzxLFsmt9lBcQ238lBMO0ftIR6n8q5FY7RBg4DSL/+P7vzkE2dePAacruSJKP9ExLjcXIkxCLe6yZrsoCRFiOfzzz/HJZdcggsuuACDBg3Ct7/9bUyZMgVLjvRItiwLTz31FO6//35cdtllGDFiBF566SU0NDTg9ddfD/mazc3NqKmpCfhxG9MGP8A9gbJ3L10sfT6aoOlkwACqymhrA9avj//1unRQ7ALl66+VVfMIgVJT44wIE5iYJAskj0AZMIDOocZG5xLZRXjnlJPagc2b6ReNbrOo5Fm5khL246VbgVJVRWVMgNJJhBshnoYGoKmJtk1yUJIqxHPGGWfg448/xsaNGwEAK1euxGeffYbzzz8fALB161ZUVFRgypQp/r/JzMzEhAkTsGjRopCvOXPmTBQUFPh/yhVcRU0b/AD3BMr8+XQ7tmAzeuW1OfviUeLzORvmiTjEU10duGKii/TsKasxnMzLMDHEA9Bq3EDiC5SMDCnwnbqW+hNkB9myjDUKlMGDafbf0kKpIfHSrUCxx5J27FDW7tSNEI9wT9LS9Hc+tiO+++pqWsTUJBwXKD/5yU9w1VVX4dhjj0V6ejpGjx6NadOm4aqrrgIAVBxpV1ciljk9QklJif+xYKZPn47q6mr/z86dO53e7U6YNvgBgUmyTk72P/w7iZIpVW9SDaFmnBIozc3yotgpxFNTAxwR0ejRg24V5aGkpLgT5uEQj36c7IViWbYE2fx18oENG8hi1IDPB4wbR9tO5KF0uw6PUGgA1TYrGPsBdxwUe/6J7s7HdvLyZAsG01wUxwXKm2++iVdffRWvv/46li1bhpdeegm//e1v8dJLLwU8zxf0H7Isq9N9gszMTOTn5wf8uI2Jg5+4yNbXSzUeLx0dwPz5pHam4EPnV+qLASFQ4t0VUfCQnR3CVRDqp39/Wdvs4TyU1lbZkM40ByWZBIqTibLbttEMPiMDGN1oc5dbWmS4RwNOJsp2uw6PXaAAys5RNxwUUyolg/H5zA3zOC5QfvSjH+GnP/0prrzySowcORLXXnst7r77bsycORMAUHrE7w12S/bv39/JVdGJiYNfdjaVbQLOhXlWrQL2H0pHLupwGj43SqCsXBmfU2QP73TSviK8M3q07A6noZLHqQFQCFafz6xjFpACxem1Pkw8R53shSLckxNPBDI3rQl8UGOYx8lE2S5DPJYlBYqwNBQJFPF2Bw86179HnKMm5Z8IkkagNDQ0ICWoXiw1NdVfZjx48GCUlpZivkh8ANDS0oKFCxdi/PjxTu9OzJg4+AHO56F8+CHdno1PkIFWIwTK8cdTjsahQ/FllovvqMsKnjFj5FXFw6XGJi4UKHDDQWlqkgmHJp2jTvZCCVggcN2REI9I6DFAoKxfH9/CiJbVjUDZto1OkPR04JJL6D5FAkW4kB0dzrnVpjoogPz+TavkcVygXHTRRfj1r3+N999/H9u2bcO8efPwxBNP4NJLLwVAoZ1p06bhkUcewbx587BmzRrccMMNyMnJwdVXX+307sRMsgmUKTiysWqVs32sYyArCzj2WNqOJw9FlBh3WcEzZox0UDwc4jE1QRYIFChO5U6J89Pnk+ummICTIR5/guy4Npkv9a1v0e26daH/SAF9+1JktKMjsBAuWg4fliJTzOADEF/AqFHA8OG0regcTU+XY7/TLic7KJHjuECZNWsWvv3tb+PWW2/Fcccdh/vuuw8333wzHnroIf9zfvzjH2PatGm49dZbMW7cOOzevRsffvgh8gxKbTZdoDjRTbahAfj3v2nbL1AaGoBNm+J/8ThxIlE2bAVPY6Mc4EePTigHxcTZmRAojY1yhfB4sS8UGLbBlwaEg7JrV3xluM3NMgp5at/tlGTUowdw3nl0p+bGlk7koYjZelERTUo6IQTKKae4t9BRFzidKGuyg5I0AiUvLw9PPfUUtm/fjsbGRnz99dd4+OGHkZGR4X+Oz+fDjBkzsHfvXjQ1NWHhwoUYMWKE07sSM+3tMuHQVIHihIPy6ac0iA7AdhyDjbJG0oAwjxOJsmFDPGvW0D+5uJimgsJB2bXL2cYkXeCWQDHRQcnJkS6HU2EeUycQJSWUK2ZZ8Z2jy5fTudmnDzCo+ohKP+44QIyTGzYoK7kNhZMCpdsKHk0Cxa08MRMdlKQJ8SQCVVVy27QB0EmBYg/v+PLygCO9akwSKK6EeOzhHZ+PRqIePeiq4sZCRyFIphAP4HweiqkCxedzJlHW36DtFMD31ZGOhccdR2o7N5fEiccrebrMP2lpkefpKadIa+rwYWX9ipzuJssOSvSwQAmBOP5zcykWaRJOrscTkH9y7LFyJTADBIqo/N20KbbmQR0dEQoUIPCqoriMMRlCPEDyCBTAmUTZkAmyw4dTPEvkY2gM84heKFu2xN5ssMsS41WryM3s1QsYOpQGY1HCqKjlvdMhHpMdFLtAUdRQOyJYoITA5MFPXGwPHYovg373bhrffD4Lk/AxDXpCFSxfrv0oLSmhH8uSi6VFw759NAlLSQmRgGcvMRYoLjVmByU+TD5HndC6/gTZYIECUJkboFWg9OxJugEAjqxiEjVdOijiCzj5ZNkjQNMkIpkclKamwAiCblighMDkwS8/nwYHID4XRVR5n1T4NQpxWMa3U1LojHS6aUUMxJOHItyTfv2CXLDWVtmjWzgogPLBT8zODh92JpXA5BwUILkESrzdZCsqKNLo8wEnjWmXa9EYJFAAuS5PrGGeiATKKafI+zSdo8mQg5KVJffLpDwUFighEIOfiQcS4Ewljz+8k3ZkZdThwymbcdgw+t2AME88eShhK3jWryfrOD9fDniAcgelsFBWn4iZVTxwiMcc4r2OimvziBFAXuU2mtZmZcn4riECJd48FNMFipMup2WZ7aAAZuahsEAJgcmDHxB/oiy1t6ftKYffpI3jjqNbEeYxQKCIXYlHoHSq4BH5JyeeGFifqrjUOCVFDlROzNCSLcQjbGgTz9F4k2TtCbL+8M6wYbIDnxAoGzc6s6RwjNg7ysYSEQ5bxXP4sOz7ImwawNMOSl2dXD7JVIEihCILFMMxXaDEmyi7YgXNuHvkduDUloVAZqb0pUVehgECRTgoq1ZF3246bIKsyD+xh3eAwGZtivJvnJyhRe2giDaeij5rMjko4vyMteAkIEF2/ZEKHhHeAagdQF4eXfE09iw68UTSTPv2yYTXSGlqksdsJwdF9NA/6qhAxa1JoDhxfooJRGYmlaGbiHBQOMRjOCYPfkD8DooI73xjxH6koy1wdmZPlNXMsGF0QtfVRT8mhQ3xBFfwCAYMIFujsVFZ/o1TAqWtTToKETsojz5KU9dXX43vzSMkmQRKjx7y4hati9LeLkMmIRNkAUpOMaCSJydHtmWJNswjZulZWSH+h6HCO4AUKNu3K1nNWZyflZXxv53IPykqMmslYzsc4vEIJg9+gHMC5dy+q2lDhHcAaVts3gzU1sb2Bg6Rlibd7GjDPCEFSkeHdIaCBUpGhowHKZqhiQFh9er4XifqhQIPHQKOLN6Jjz+O780jRAiU6mrSgPFi+jkaa5hn7Voqq8/PP3JahhIo9t89modizz/pdMEOJ1DKymjG0tYWvWUTA3YxEWsptUA4KKbmNQIc4vEMpg9+8STJ1tcDn31G21NSj1yc7AKlTx8aCCwr/iunA8SaKCtCPAE5KJs3kx2TlSWTge0ozkM5sjwVXnopvhmaGDx79iRR1y2zZknxqajZV0GBbGfuhIti+jkaay8UEd45+WQgxWeFFyiGJMrGWskTNkHWvoJxsEBJSXF2NcZuSE2VIdN4XU67g2IqHOLxCKYPfkKgVFTIxbYiZeFCKmsdPBg4atdCujN48PN4omxNjQx5BDgoIrwzalToK7niRQMvvphCMrt3A//8Z+yvE1WCbE0N8NRT8ndFOQw+n4NhnjvuwOG9ZMOYeo7G6qAEJMju3EkzirQ0eWwKDBEowkFZsiS6PLGwAmXLFjqgMzLkyW/Ho4myXnBQOMTjEUwXKMXFMtFq587o/tZfXnyOBd/6I7Mzu4MCGJkoG41AEeGdoiJqQOknXP6JQHGpcWYmcN11tP3HP8b+OlElyD7zDKk3MRPdv9+5Ffy6wRGB0tyMlmf+hIYOOgFMPUfjdVACEmSPOaZzS2shUDZt0lrJc/zx5IxVV0dnxoUVKMI9OfFEOkGC8WiirBccFPG/qKjQvqC9HxYoITBdoPh8sVfy+AXKSYfpwpSaKltCCgxKlD3hBLrdvj3yioiQ4R0gfAWPQMOCZN//Pt3+7W+xX7gjbtJWXw/87ne0/ctfytFXUZintJRu4xIoGzbgcAetPOhDBwp6GDKSBhHLoVRVJTVJQIlxsMMJUIJzfj5dSURJrgbS0+V8RhTfRELYEuNw4R2BR7vJesFB6dOHomjt7c41p4sXFighMF2gALElyu7cSQNgSgrwjd5H8kuOOqrzTEUIlNWrlWTLd0WvXlJoiAaw3REyQdaypINib3FvR7GDApB5dfrpNCi89FJsrxFxiOd//ofUzJAhwFVXAUcfTfcrCvM44qCsXYvDoBOzANVIefeduPfLDewFJ5HORkUex1FHHbkwdiVQDKnkAWJLlA27Do9hAsWpEI8XHJS0NLnckSlhHhYoQbS3k10JeEOgRJMoK5qznXIK0HPHkat9cHgHoEGgRw/quLphQ1z76QTRhnlCCpQdO2iUSEuTtZHBiMFv3774FjqKEuGi/OlP0fd7ASIM8TQ1Ab/5DW1Pn07fg3DOvCRQ1qzxC5ReOByYT2MQ/fvTV9zSEvlgH5B/AnQtUADj8lCiESghQzzNzdLlNESgCAdl3774XicmB2X/fuCHPwT+9a/43jwKTKvkYYESRPVGeSR6QaBE46D4wztTELoBlCAlJb6FcBwm2kTZkCEe4Z6MGBE6tg1QGYwYQRStmAoA3/kOufVff01JzNESkYPywgsUXB4wQCa+CIGiKMQjBEpcbWZsDkovVFFJWqyr1blIaqo8RyO9lgbkn1i2Cp5QkwjAGIEiKnmWL49sXamODnkBDBAoK1eSoisq6pwULBDJPZWVcibpIuKrf+ed+LouRN3mvrGRsuj/53+A+++P/Y2jxLRKHhYodr74AofPvBgAkJtrdcpLM4loBUp7u629/RR0P/gZmCgb6a6EdFBCrWAcCsWlxgAl8l59NW3HkizbbQ5KSwvw2GO0/ZOfUIUE4M0Qj91BKT3yOZ58Mr4dc4loFg20V9eeeipoyl5VRZOFY44J/UeGCJSjj6Yy8qamyHbl4EESMvbKLgChVzAOJp4ueDFw2WWk4w8ejO8wi2qhwI4OmkSI7+Orr5R1fDatkocFip2+fXG4hco+evmq9O5LN0SbJLt8OZ0k+flHZjzCQQknUAxKlBUCZe3ayFJiQgqU7ip4BIpLjQU/+AHd/vWv0S8e2G2I5+WXKQGpb1/gxhvl/V4L8TQ0AFu2SIFy/JHp95//bM6Uz0Y00Yivv6b/e2bmkeNdTCCOOko2kAlGCJTNmyk8oomUFGDcONqOJFFW/Kv69AkqTuou/0SgcBKRlgY89BBt//a3sTdsi8pBuf9+4C9/oS/H5yOh6kS//QjgEI/JDByIQ/c9AgDoVbeTfD1DERffXbsiu2iL8M6kSUBadaXM+jr22NB/YO+Foki9hyOalJiWFnkBDBni6U6gaHBQANqt0aNp/197Lbq/7TLE09Ymu8b+6EeBFzvhoBw4oMQuFwLlwIEYc6/XrwcsC4dzaBTtNaQXcOaZ9GJ/+INzO+oQ0fRCEeGdsWOPGFzd5Z8ANN0tKCB7VHOuWDR5KDFX8AgU56F85zs0HNbWSiMyGjo6ZOFFtw7K//4vLUMBUFKaGOgV/X85xGM4h4edCuBIAt73vqc0FyEa+vYlgd3eHpnaDZl/MmAAXflDcfzxFEivrNR+tKakyHLj7vJQdu0iPZWdLRPcUFFBqsXnk3ZMODQ5KIBMlv3jH6PThF06KG+8QZ+ld2/g//2/wMfy85WWGvfuTYeUZcWYdHgkfnC4kIRVr14A7r6bHvuf/yGHxSCi6YUSdYIsQMezIWGeWARKQP5JZaU8Bu0rGIdCsUBJSQF+/Wvanj07+uGwulomv3cpUD7+GLj5Ztp+4AEK84jwnqJScg7xGE5AiXFVFXDFFVobIYUjJYUWNQW6r+SprQUWLaLtAIESLrwD0ExbPG5QHkp3AkWEdwYMsIWxRZhq2LCgzm0h0FBqLLj6ahJWa9ZE3lOirU0es50clPZ2ObLec0/oz64wzJOSIssYYwrzrFkDADjcgw78Xr1AiYSDB1P88pVXnNlRh4jmOhqQIAt0nyMmMEygrFnTvU4MWWIsDvihQ7u3GTT0K5o6FTjjDMqzESGfSBH5Jzk54aN1WL8e+Na36IS+6irqUwTIJTkUOSgc4jEcv0CZPJZGwMWLgR//WO9OhSHSRFnR3v6oo46c211V8NjxYKKsXaD4iTS8A8jBb9s25e0Ue/YkOxmIPFnW3ryu07j+l7/QwNarF3DrraFfQFMlT0wCRTgomaRyevUCWTJ33kmPP/VUbHXaLiEclIqKri/ajY1SeHcSKN2do4YIlP79qRFfe3v352hIByXS8A6gRaD4fMAjFP3HCy9Ed7p0m39y4ABwwQVktZx+OoV5xOxKsUARDsrBg1rTmvywQAnCL1D696DkQgD4/e+BefP07VQYIhUoAeEdIPLZmUFr8kTqoIgS45gSZAEaNTMySNEpWDE1GBHmmTs3srLGsAsFdnQADz9M23fdReGcUHipkkc4KCAl5m8DcOONQF4eVTuIg90ACgvl196Vy7lsGU2c+/Y94ooePCiTIsPliAkMESg+X+RhHscEiuJJxJlnAuedR/+rGTMi/7suK3iamoBvfpNSCYYMoeuM3WZRHOIpLJRFfk4s6hkvLFCCCEhmuvBCSiwEKB9FQ15CV0RaydNJoETqoBhUyTNyJA2C+/Z1nb8QV4kxQDNy8cVqCPOccQZNmurrgTff7P75YRNk332XLuh5edJhCIVXKnlqa/3q83DrkUo7IVDy84GbbqJtg0qOfb7IEmXt4R2fD/L8HDSo+5CkOIe//jr6lUMdRgiU7sKTnQSKZck/ikSglJXRVbStTfkkQkRMX3898sXewzooHR10XVm0iGYY779vS5w7gnBQvv5aSVdvn8+sPBQWKEF0anP/618Dp51G9tsVV5jhex0hEgdl+3ZyB1NTgbPPBnVIFTZDdw6KsC22bFFS5dEVubnyWtqVi9IpxHP4sLw6RCJQAK2Jsj5fYLJsd4TsgWJZ0j25446uOw56JcRzxPX7qveZ2LmHrKKAj3XnnZTk8uGH2t0EO5EkysaUICvo25cubh0dnqnk6VTFs3kz2Qz+GutusE8iFJ+jY8ZQGNaygJ//PLK/CeugPPggWaVpadRfIJRb1r8/Jaa1tior2BDC0YRKHhYoQXQSKOnpNJUtLKSOlcJRMYBI2t2L5mynnkoVifjqK7qjT5/uk9GKimQmbqQL4bhIJHkonUI8wj0ZPDjy1sCaSo0F111Hh91//9v91x6ygucf/wCWLqWsvGnTun4BTaXG0QqUlhXr8DDux6iDH6Gqiq7JAc1GBw8mqxygkKwhRJIuEXOCLGBUJY/ohbJpE9UXhKK+Xj7md1BEeGf0aBlf6A4NeSiChx4iLfzuu8Dnn3f//JAOyksvyUnE888D3/hG6D+2N+pLwkoeFihBhFwosLxc5qPMmkVq1wDERXjHjvC5gTGHdwQGJsqGc1A6OroQKJHknwg0OigAacdLLqHtP/2p6+d2CvFYliwzuOWWzpZxMHl5srRGQZgnFoHy5ZfA2PvPwwN4GC1WBqZOpcOxk94UYuyVV2LvqOUw3XWT3b2bohT2ZmdROSiAMQKluFh+3nCrD4hZeY8etrSoaPJPBBoFyrBhwA030PbPftZ9S4BOCwUuWCA7M06fTmGerhACRXGiLAsUAwm7kvEFF8hqnhtv1Da7ttO/P02gmptDr7bZ3g589BFtR50gK/BQouz+/fRdpKTYZmfdrWAcCs0OCiDDPK+8QlUe4ejkoHzyCU3rMjOBe++N7M0UhnmiESh1dZTfe9ppwJrKvijGAbz+/X/h/feDcowEZ5xBnc6amqgvigF0dx0V1+YTTrClm0Q7iTBEoACyhUm4ME/cCbICjQIFoOhMRgZpjY8/7vq5AQsFbthA/fNbWylWJFyUrtBUaswhHgMJK1AAOpjGjwdqaoDLL9eej5KRIQ+mUHkoS5fS5+nZ0zY7i6QHih2DEmXFrnz1Veh8QOGelJXZWmhHU8Ej0OygAMA559BFuKqq6wKyTjkowj35wQ+CFjrpAoWVPPYFA7uqCP7gA7ruPv00zVCvy34L63EcrropJ+wyLfD5ZOO2P/zBiP5F9iTZUDPtTuGd6mp5ZYj0HDVIoHSXh9JJoDQ1ycmPhwTKgAFkUALduyh+ByWjlia6hw/TP/yll2g21R2aSo3ZQTGM9nYZhg8pUNLTKampqIgufPfdp3T/QtFVomxAe3tRghrt7EyogrVrtQ/4/frRLKS9XRpBdjpV8NTXy5M6GoEiBr/DhwMbjSgkJUUum9NVsmxAiOezz2hKl54eXe8ehZU8IprU1hZ6zaEDB4BrrgHOP58E56BBwD//UouXGi9HMSq7P26/8x1SQXv3RlYG5TLiWKyrCx116pQgK87Pfv2OJI1FgBAoX3/dtd2mgO4qeToJlBUryE2wx4ciQbNAAUiY5OaSGOtqVRS/g/Lsr+l/NGgQ8H//R8mvkcA5KAwQmCMYNp+yvFx2rJw9G3jrLdf3qysiESj+8E5zs7TxI52dDRpEA2VLi0yw1YS9U32oiFMngbJyJU1t+vaVV8ZIyMmhrlOA1gHwe98jobJgQXjtEBDiEXbxDTfI5OZIUBjiyciQbo89zGNZdFoddxyVcKakUIRqzRpgSsmRmN6AAeH7udjf4PbbafvJJ7WvI5WVJS/GwYdSa6vM1YgpQVZQUkLK3bK0n6NjxtD/bvfu0GG8ThU89vBOWGssBELMHDxIjrYG+vSRht3Pfx6+JcuhQ3QMFq3/N42l778vl5iIBOGg7N2r5LNyiMdQxGQ5Nzdolc1gpk4FfvpT2r7pJmUlmqEIV8lTUyMzzM8558idmzaRr56fH7n97/N5Jg9FhHj8JcaxhHcEGlveC8rLqTEUQM0lQ+F3UA6sB/75TyrBFMdmpChu1ia0n7iAbd0KnHsuVS9VVtL/+MsvafXY3Fz4G7T5nYLu+H//j5TB8uXAv//t+P5HS7heKKtXk+HRs6ecJEedIAsYVcnTo4fUVqHCPJ0clFjyTwAaw4TS1bhe2r330mR23brwi3xW7qZ4dGFqDXV3juZ/C5CoERMsBS6KuDTU1UXWLNJNWKDYsCzKs/PPZrrioYeoLXFtLeWjaGqSFM5BWbCAbPShQ23OqT28E81sxSMCpZODEo9AMSBRFpDJsi++SDPuYPwOytwjq/lec43c90gRAuXgwfD1oQ4iBsBdu4AnngBGjKBy+MxMWnh58WJbzhQgL7ojRkT2BsXFpHYAIxq3heuFYr82+1MRog3BCgwRKEDXeSid1uGJVaAARoR5evaU84EHH+wcBW9/9Q1UNVEop+jxnwCTJ8f2RsJFUSBQ8vLoB9Af5mGBYuPoo2nCJSpfuiQtjfJRiotpphZpxYTDhBMoncI7QGz2MWBkoqyI3tjpJFBiKTEWGJAoC1Az45IS6p77/vuBj7W32xYKXPAWic6f/Sz6N7GXGius5LnzTjptGhqAiRPJUfjpT0O4l+KiG6mDAlD5D0Cxfs3/w3AOSqf8EyA2BwUwSqB0VckT4KAcOCD/N92tYBwKAwQKQBHFvn3JxQ7IF7MsHL7v1/5fe93x3djfRHGpsSlhHhYo8dC/v8xHeeYZLUl59nb39gt2SIES6+zM7qBojukfdxxpw6oqGdIRBIR4mptlaCCaEmOBIQ5KerrsuRCcLHv4sPx3FOIQdToWM61oUZgoKwRKQwO513/6E/Cvf8ld6ES0IR6AjvFzz6Uv6Omn49rfeAnnoHSq4Kmvl7HaaCcRBgkUu4NiHy7a26l6CzhyARSZtMOGkRURLYYIlJwc4IEHaPuhh+jfCADYsweH9pGlkp9vdZ020B1JWsnDAiVezjuPmu0AVNqpKI4vEPkWtbXSnd+6lXYjLY1mpn5idVCGD6crZShVoJjMTLn79jBPba10EwYOBF3U2tooeTBgaeMIMcRBAeQyM//4B7Bzp7xfhHcKUIV0tMXmnggUJspOmkT/x29/mzTzTTd1EXHcv59m2j5f9MetyGD83//VlkgJhL6OVlZKt95vHogE1969Qyyu1A1CoGzd2vXSyQo44QTKVT50KPAz79tHIiU19YhhF094BzBGoAB0DA8eTJ9x9uwjdy5bhkpQg6LCwihC6qFggcLEzK9+RUtdashHycmRzULF5Eu0tz/tNFvRQ3u7HBGjHegzMuQAaGgeigjvFBZSol5AeCeafBuBGPx27tReXj10KAnNjg5gzhx5vz9BFgeBSy+lFRVjRWGi7DnnUALeW29FkKstHIHBg7tfOC+YKVPoWK+tBV54IaZ9dQL7oSTyiIR5cMwxtiZ7sYZ3AKoKKS4my0I4pZrIyJDnqD3MI8IFffuSSEkkgZKRQZcBAHjssSOTxaVL/QKl00KB0WIvNVbgYnOIJ5FISwPeeIMGiBUraG0FhQTnoYQM72zdSmGP7OwwbTi7wfBE2bAVPLGEdwCa4uXmkirobrloBYhk2RdekA3ODq6mMphiHIx85bJwKF7V2N+XpzuiTZC14/PJ9vdPPx2+DtRlSkvJMWpvlw6YuDYHJOTHI1AAY8M8goD8k46O6FYwDoUQKNu2afvf2rnqKvoXHD5MFWhYtgyHQOuddbfsWbcMGUInTUODEtWQ0A7K7t278d3vfhdFRUXIycnBiSeeiKVLl/oftywLM2bMQFlZGbKzszFx4kSsNeCkiot+/eRgKILLirALlLY22Xo5ZILssGFHpi9RYmiirMDRCh6ALm6G5KEA1B27Z0/6nCKJ++Br/wAAFPVOjf1zChSvahwxseSf2Ln2Wpq+bttGCbMaSEnpnIcSMkE21hwxgfi7UF0MFdOtQBErCmZlUUwoFvr3p4t2S4v+KyloWBWtiJ56Ctj33+3OOSjp6XI8UhDmSViBcvjwYZx++ulIT0/HBx98gHXr1uF3v/sdetqSoB5//HE88cQTmD17NhYvXozS0lKcc845qNVddB0v4iKh2GWwJ8ouWULnfa9etCyJn2hb3AdjoIOyebOs0w8QKG1tUr3Ec+E2yELOzqZrLXAkWfbgQVQuooGqeFwMjlgwIudGUalxxMTjoAD0xd18M21rLDm2LxrY0dGNgxLrOWqQgyLyapYupdMRCCoxFl/AmDHdNJ3qgtRUOfgZcI4CtMjnySdTouwj+27EIX8OigMvrrCjbMKGeB577DGUl5fjxRdfxMknn4xBgwZh0qRJOOrIAGhZFp566incf//9uOyyyzBixAi89NJLaGhowOuvv+707qhFXDk3bFDactruoIjwzuTJQUZJvLMz8dm2b9fW/l3Qu7fMXVi9mm4DQjwbNlAeUI8eMrciFgxo1mZHhHn+7/+A/f9cjoMdNOoVHRtFV8pw5OXJDmqKE73DYlnxOygAcNttNNP+7LPwy+y6jF3rbtxIGjA725Y21NQkj7MECPEMG0anX0ODHHoCHJR4808EBk0iADJeH3mEtp/DD7E89wwADjgogNJE2eOOo6LUN95w/a26xHGB8u6772LcuHH4zne+gz59+mD06NH4o60+cuvWraioqMAUW/whMzMTEyZMwKJFi0K+ZnNzM2pqagJ+jKRvX7p6dnTIgVUB9m6yIfNPgPhnZz17ymlguOWEFRKchxLgoIjwzoknRrYYVzgMCvEA5ISfdBIlWr7yUgcOgio9oi34CItpYZ69e+lKnpoae/k0QH71FVfQ9lNPObFnUWPvhSLCO+PG2cyDjRtp3OjZUwrFaLFX8vhrXfWQmiodXBHmSQaBAlCV2qQhW9GCTLxfPxGAQw6KQoHSsyfVe5x2mutv1SWOC5QtW7bg2WefxdChQ/HPf/4TP/zhD3HnnXfi5ZdfBgBUHCmELwlaG6WkpMT/WDAzZ85EQUGB/6c8mnVGVKKpLbwQKBs3ysHP394eCFyjI1aBAhgV5gnOQwkpUOLNyzCo1Fjwgx/Q7R8XDXdeoChued8tQuQffTTlKsSDKDl+800tvrU9B6XbBNlYqs4AmhyJkj7NlTxA5zwUv0Dp3SJP3AQUKADw6/LnAn73moNiCo4LlI6ODowZMwaPPPIIRo8ejZtvvhk/+MEP8OyzzwY8zxd0ElqW1ek+wfTp01FdXe3/2WlvBmEaGgVKXR0lsw8bFlSos3s3JWukpcUX8jAoUda+aGBrq0zmGjAA8XWQtWMf/DQ3qBNceSWQm2thQ305FmAiAIcGP0B5JU+3xJt/YmfsWGoF0NZGTRUVYz+UXEmQFRgU5gknUPpXr6X/Q58+sVUU2jFUoJyydS6+iXn+3x3NQdm2jSoykwDHBUrfvn0xPOgkO+6447DjSJJA6RH7Mtgt2b9/fydXRZCZmYn8/PyAH2PparEYl+jZM3CR17DhnaOPpoL9WDHIQRFf8+rVlH9iWTTJ7lPc4ZxAGTSIZrP19dQwzADy8oArL6gDANSC/ukJG+KJpcV9V4gqu+eeU97MTDgolZXAqlW07WiCrMAggSISZVetotOnjg5b9Nv2H9qIdgXjUJgoUA4eBHbswEN4AD4fTWwcOUdLSmigtyxzzlGXcVygnH766dgQZEFt3LgRA48o5cGDB6O0tBTzRTcxAC0tLVi4cCHGjx/v9O6oxx57EA0rFCCS2YEQAsWp2Zn4bOvWaVfwQ4eSIGlooDbpALknvq1bqGtoZiZw7LHxvUlGBi0pDBiThwIA3z/hvwG/J3yIxymBcskldKIcOiSXqFBEfr50ujo6qELWv2AeEH8PFIFBAmXgQDo2W1uBv/+d7uvZE8hZbhMo8SIEil0B6eZIiHnE0c146ikfvve9oMUvY8XnS7owj+MC5e6778YXX3yBRx55BJs3b8brr7+O559/HrfddhsACu1MmzYNjzzyCObNm4c1a9bghhtuQE5ODq6++mqnd0c9w4bRxbGuTqmqF05penpQe3vAudlZeTl5lW1t2nstpKVJ5//dd+k2ILxzwgmxly/aMTAP5ZTD/8DxkEnYjoV4hECprNReqQXLcjbEA1Dm5u2307aG8gT7ItMB7klrqywdTSCB4vPJMM8779CtowmyAC3mJOInwasx6kLkwI0dizvvpJUWYmk9FRKFpcYm4LhAOemkkzBv3jy88cYbGDFiBB566CE89dRTuOaaa/zP+fGPf4xp06bh1ltvxbhx47B79258+OGHyBNrPHuZtDRZO6ghD2X8+COt3u3E2wNFoCkJOBxiV0TjMkcTZAWGVfIAgG/JYvwAsjLOMYHSo4es39ZtIe/YQSI/Pb2LVQRjQNiLS5cq7z4qwjxAkEDZvJlEf48e0rGLFSFQtm83wlEQAkVUF/br3UJCwq5e4sW0MI9oSurUGGSHHZT4ufDCC7F69Wo0NTVh/fr1+IEoPTiCz+fDjBkzsHfvXjQ1NWHhwoUY4dQsyQQ0XMS//W2yU++8M8SDToV4AKMEishDEUsfBQiUWFvcB2Oag9LeDixdimvxCspLW3Dqqc4YRX5MCfMIB2DYMGc/4HHH0QJWdXXKB3m7gxIyQfa44+LPySgqOrISH7S7nIDUIKItVL+0I7mHxx5L7ocTmCZQbA6K47BAYeJGQ6LshAm06OtllwU9cOAAJW3Z45fxYGAlj2BAueW8g2JYszZ89RVQV4fCnGZs2JiC//zH4dc3pZLH6fwTQVqaPDbsfdgVIBwU+y4AcC4EKzAozBNskvRvOnIeORHeEZgkUA4flvvh1CTJjhjDOcTDxIxBLoN/djZwIM0c48X+2RQmAYcieAmPgbkHSYylpsa3sq8d00I84qI6diyy89Li6kMXElMqeZzOP7ETaqEYBYhEyTPPDDoVnUqQFRgkUEpKbAt4AuhXeaSEKVEFipi4DR7sUG1xEPY8MbGceQLDAsUNxJVz1y66YOrEyfAOQNZsZib1Vdm2zZnXjJGCgsDqpYFVRxyr44+Pv7GXQDgoFRXKS1NDIi6qTsXvgzElxOOWgwJoEyhjxgCffx4iP9ctgWJAiAcIPFT7bT/SLTxRBYrTDm4wubkyTykJwjwsUNwgP19e2HS3hXfaPk5Pl7NaAxwiYej4fEC/HZ/TL05aq716UW0kYMYA6LZAMSHE09EhhbWbDsqKFbQSrkJOPVWmiACgnCLR5dkpgSJexwAHBQgSKA0bgxYhcgD7OgKaXV1/gqwb+SeCJMpDYYHiFhryUELitIMCGBXCEl9zWRmQserIQnBOz15MSZRtbpbfueiC5TTCQTl0iH50sHUrZVVmZQVmljrFUUeR8GxpkatN6kJ0Bc3KCrQD40E4KDt2yOW+NRIgULCbLt5pac69QXk5hXWbm2n9Jp247aAASVVqzALFLUy5iDvtoABGJcoKp/i44+De4GBKHsqqVdQzo6gosGbVSXJz9Zcai/DOscc62EDChs8nE0IUh3k6Ic7PYcOc+6yFhXLBQQPCPCedRCZkv9zDKMZBZ8M7AIkd0WdB5ySipkaKBjcFCjsoTNyYIFBqauQCGG4IFN3iC8B55wGvvw48/8hByvnx+TqX98SLKQ6KuJiOGxd/OWpX6A7zuJkgK9CUh9IJp/NPBAYlyublkVG1dMjlSIHljvtnQh6KGA/Ly+WijW7AAoWJG3ERX79eNupQjYht9+0r8yicwKAkYJ8PuOoqYPChI7HfoUNpRHQSUxyU/x5pce9W/olAdyWPmwmyAhYoSulf1IiS9QvoF6cdFMCMSYSbDdrsCIGyebPyZoOqYYHiFv37628L70Z4B6AkYJGroDvHRuDUAoGhMGHwA+TF1K38E4HuSh6VDsratbQYpC6SRKBg2TIaC4Prjp3CBAfFzQZtdsrLqZKypYU6BicwLFDcwh5q0HURd6rFfSgMCvMAcDc5TQiUrVv1zVhqa+X/U5WDokOgtLVJ589NB6VfP3IWOzr05VLZq5USXaDY199xIzxpgkBR5aCkpspzNMHDPCxQ3ET3RdytwQ8wKlEWgPMt7u3070/l1S0tMqdHNcuW0QJ6/fvLBEi30Bni2byZvufcXJn46BbCidIV5tm1i9ybtDQpgp1CCJRdu4DqamdfOxacXCAwFLoFSn29FNZuOyhA0uShsEBxE90Cxa0QD6D/s9mprpb5IW4IlNRUWQKqawAU+Sduh3cAebHUUWos8k+GD4fzbXKD0J2HIs7PY45xeEElUM5ZWVng++hElUDR1VBx5UqaQPTt6/4EAkiaUmMWKG4iLuLi4FVJU5NcftxNgfLVV3IlMF0IkTRwoINL+wahO1HW7QZtdnJz5cVNdZhHRf6JwBSB4obDCZgT5tmzh3IlnFzBOJiePam3DSDHPZWoaNBmhx0UJm6OPZZmRtXV6pOZNm6kGHevXkGtKx2irIxK6drb9Q+AboZ3BLoTZVUKFEBfmEdFBY9A9ELZvFlPU7pkESgffUS3Y8dSgr1b6AzzqGjQZocFChM3GRlykFAdCrGHd9xISvP5zAnzuFnBI9DpoBw4INc9EhdVt9FVyaPSQSkslMJzyRL33y+YZBMokye7+z46BYpqB0WEeHbvBurq1LynBliguI2ui7ibCbICUxJlVcxedDoowj0ZNoxWSFSBjkqe5mb5fiocFEBfmMey3K2yA8wQKJYlBco557j7XromEY2NUmyqclAKC4HiYtrWvbCni7BAcRtdAsXNBFmBCQ5KQ4Mc6BPVQVEd3gH0hHg2bqQy4/x8KgNWgS6BUlEBVFVRIrCYDTuNmJzs2UPvpYN162h9nKwsYPx4d99Ll4OyahWFuvv0UXfcAkkR5mGB4ja6HRQVAmXlSn2riK5aRe9dUiLXkHEDMfgdOqR+sNchUHSEeOzhHTdb+dvRJVDEBOKoo+ji7QYFBVSWbn8/1Qj35Mwz3fucAl0Cxe7gqjpuASlQEriShwWK24i28Nu3q7uwtbXJg9bNEM+wYbR0en29vuqWTz6hW7fLb3v0kMnGKgdAy1JbYiwQAuXwYaCyUs17qkyQFYwZQy7Gnj30owq3808E4vV1hXlUhXcAKVC2blU7YVLVoC0Y4byxg8LETK9esuGUqo6yX39Nq97m5FBbZLdITQVGjqRtXWGe99+n2/PPd/+9dIR5duygJNm0NOlYqSAnR9rVqsI8KhNkBbm58iKu0kVREYIF9OahtLYCCxbQttsJsgCNdamp1GKhosL99xOoanEfDId4GEdQHeYR4Z1jj3W/2ZXORNlDh4DPP6ftqVPdfz8dibLiojlypPsWeTCqwzw6HBRAT5hHRRI7oFegfPklVZgUFzu/wngo0tPlOj+qztHmZnncqnZQ7AJFdZ8tRbBAUYEugeL24AfoTZT98EOyco8/3v226IAeB0XVAoGhUFnJ09gov1eVDgqgR6CoCvHoFCgivDNpkvsTJYHqPJQ1a8gpKixUMwbZGTKEvte6OrWOkUJYoKjAnkyqAlX2MaBXoIjwzgUXqHk/HQ6KyD9RmSArUFnJs349zQKLiqgaQiXiu12yRM1M9MAB+gHI5XQTIYD27qV8IpXMn0+3KsI7AtUCRVeCLEArGg8eTNsJGuZhgaICYW+uXUsLobmNigoewQkn0Im5dy+wb5/77ydobwf+8Q/aVpF/Aqh3UDo6ZAKeDoGiMsSjo4JHcMIJ1FTx0CE1FzZxfg4aRDkwbpKfL/PQVLooNTVy/Z1EFiiqG7QFk+B5KCxQVDBoEA0ULS1yxUu36OiQ76EixJObK7PJVTlEAM12Dx6k79Xt/goC4aDs2EG2rtts2ADU1lKllIr/ZTD2EI/bzoK4eKrOPwFInIhJhIowj0qHE9AT5lmwgCYRRx8tF9pUgU4HRQcJXmrMAkUFKtvC79xJZb/p6c4v4R4OHWGev/+dbqdMcX4l2HCUlpJY6OhQs7aSCO+MHUtVPKoRx09Vlftr1ehKkBWozENRlX8i0CFQVLW3D0alQGltpT5MgD4HJcFLjVmgqELVRVzYx8cco+6iJj6bsHRVoDr/BCChqXIA1NGgzY691NjtMI+OEmM7KgWKyiR2QK9AUdH/xI44P/fupS7TbrJuHVXxFBTI91UNh3gYRxAWstthENX2MSAHoQ8+ULNwVUWFjP2ed57772dHuAoq8lB0CxRATSVPXZ1cDFG3g7JsGYUm3CTRHZRdu0iE+XzA2WereU9Br15yvSpxTLmFGINGj1afNyUQAmXrVjX5jYphgaIKu4PiZjxfZYKsYMwYijU3NgLvvuv++4nk2LFjKeyiElWJsi0t0m3TUWIsUFHJIy7YpaVUxaODY4+lfKr6enkOuUFVlexYq+ocFUJo3z41XYE//phux40jwaASlS6nrgZtdvr2pS7X7e16FjJ1GRYoqhg+nEIuhw7RDMMtVNvHAA0KV11F23Pnuv9+OsI7AlWlxqtWkUgpLNRnHwNqKnl0558A1IFUXGjcDPOI87OsTN3K1D16yB4dKtbk0RXeEagSKLpa3Nvx+RI6D4UFiiqysuSMya08FMvSE+IBgCuvpNt//MPdhMrWVmrQBqgrL7ajykERF8lx4/TZx4CaEI/u/BOBijwU1eEdgaowj2XpS5AVqBAobW0yXK/TQQESOg+FBYpK3G7Ytn8/NWOyq2pVDB9O/SRaW4F589x7n0WLqMdCcTFdvFVjd1DcDNXp7CBrR0WpsQkOCqBGoOhwOAF1AmXtWsoRy85WV/4fjAqBsmEDhbR79JDniC4SuNSYBYpKRKKsWw6KGPyGDKEBQjXCRXnjDffeQ5QXT51KtrxqBg0iAVhXJ7uBuoHODrJ2xGBfXe1e/oJpDsrKlVSd4QaJ7qAI9+Sss6jTqQ5UCBR7gqyqNv7h4BAP4whulxrrCu8IhED55BP31oZQuXpxKDIzgf79adutAbCuTopN3QIlJ0d+XjfCPFVVwO7dtK2jGZ2dwYMpSdfe38JpdAkUIf6WLnW3/FZHe/tg7ALFLddPd4M2OxziYRxBOChff01hCqfRZR8LBg8GTj2VGpm99Zbzr799O80AU1KoQZsu3M5DWbaMvsN+/ShLXzduVvKIGX15ubqk0XD4fO6GeerqZIM/1ZOI0aPp/Kypcc/hbGkBFi6kbV0JsgCtaJySQiEYt5bf0N3i3o5wUA4cUL/eksuwQFFJcbGcjboxQ9PtoADuhnk++IBuTzuNqlt04XYljyn5JwI3K3l0trgPhZsCRZyfvXvTWKCSlBTgllto+w9/cMdZ+PJLKtPu3RsYOdL514+UjAy5/pAb52hHB7B8OW2b4KD06EFVYUDC5aGwQFGNmw3bdPRACebyy2km+vnnzjdK0llebMdtB8WU/BOBm5U8piTICtwUKK+/Trennur8a0fCjTdSNeHy5cAXXzj/+iK8M2mS/rwMN/NQNm4kIZad7f5q1JGSoGEeFiiqcSsPpaqK2jsDegVK377AxIm0/eabzr1uU5NsAKUr/0TgdjdZEzrI2lER4tGdICsQ3/n69c52Ra6rA158kbaFk6GaoiLpcP7hD86/vu7+J3bcFCgi/+TEE/Uk6oeCBUpszJw5Ez6fD9OmTfPfZ1kWZsyYgbKyMmRnZ2PixIlYq3KdCJ24JVCEe9KvH63wqxM3mrYtXEgx5X79qJxZJ26GeA4epLbVgJ4y6lDYQzxOhwZMc1BKSykM29EhL0RO8PLLlP8xdChw7rnOvW603HYb3b71FrUlcIrqaun86UyQFbgpUExo0BaMyEPhEE/kLF68GM8//zxOCLqgPP7443jiiScwe/ZsLF68GKWlpTjnnHNQW1vr5u6YgRAoq1dTsx+nMCG8I7jsMuqau2IF8NVXzrymKC8+/3y9jcsAOfjt2UOiyUmWLKHbY44BevZ09rVjRQiy6moSUE5x4IC8SOqu4LEjXBRxwY0XywJmzaLt22/XG/4YN45ym1pagBdecO51FyygdutDh1KSqm5UOCgmJMgK2EGJjrq6OlxzzTX44x//iF629Rgsy8JTTz2F+++/H5dddhlGjBiBl156CQ0NDXhdxGgTmSFDKKmpudlZtSuao4kcF50UFclZohPJspalv7zYTmGhrDgRbodTmJZ/AlCsXSQdOhnmEa7p4MG0Do4pOJ2H8tFHJNR79ABuuMGZ14wH4aI895xzCyOaFN4B3BModmfNJAdFCJRNm2gfEwTXBMptt92GCy64AJOD7L6tW7eioqICU2xlopmZmZgwYQIWLVoU8rWam5tRU1MT8ONZUlJkiMKpMM+yZcDf/kavffPNzrxmvIhY99y58YcFNm2ifI/0dErA0419QTKn81BMyz8RuFHJY1r+icBpgSLckxtu0B9+BSiRvagI2LGDxg0nMKH/iR1xfu7eTflrTrFlC4XqMjPNcv0GDaLxsakJ2LlT9944hisCZe7cuVi2bBlmzpzZ6bGKIw28SkpKAu4vKSnxPxbMzJkzUVBQ4P8pF7M5r+J0HsrDD9PtVVfpb7ssuOQSqhjYuFGW5MWKCO+cdRaQlxf/vjmBG3kolmVeibHAjURZ0/JPBCL3Z+vW+ENaW7ZIEXD77fG9llNkZQE33UTbTiTL7txJoYWUFODss+N/PScoKpJjhZPVhMI9OeEEEgSmkJoqJxEJFOZxXKDs3LkTd911F1599VVkZWWFfZ4vKI/AsqxO9wmmT5+O6upq/89OrytEJwXKqlUU3vH5gPvvj//1nCIvD7joItqON1nWlPJiO244KDt3UmOptDR5jJiCG6XGpjooPXvKzytygmLlmWdIeE6ZIm14E/jhD2nMmD8//lCzqK476SRz8qbsLqeTkwiTGrQFk4B5KI4LlKVLl2L//v0YO3Ys0tLSkJaWhoULF+Lpp59GWlqa3zkJdkv279/fyVURZGZmIj8/P+DH09gFSrzhD+GeXH65GQmyduxhnljjonV1sjulCfknAjccFOGejBihZy2lrnA6xGNZ5joogDNhnvp6mYh6xx3x75OTDB4sBf8zz8T3WqaFdwRuCBQT808ELFC6Z9KkSVi9ejVWrFjh/xk3bhyuueYarFixAkOGDEFpaSnmi4MaQEtLCxYuXIjxula/VM2IEWSHHjgQ35o169YBf/kLbZvkngjOP5+clJ07qXFbLHz8Ma2NMmSI+hWau8INB8XU8A4QGOJxotS4ooLacqekmNPsyo4TAuXVV6k/0VFHmSWuBSJZds4cElOxYFnmJcgKnBYolmW2g5KApcaOC5S8vDyMGDEi4Cc3NxdFRUUYMWKEvyfKI488gnnz5mHNmjW44YYbkJOTg6uvvtrp3TGT7GypduMJ8/z613TSXHaZ3tbS4cjKAi69lLZjreYR+ScXXKC/vNiOcFC2bnUua97UBFmAPq/P51ypsQjvHH00HSemYRcosQgye2nxbbfp76waiilT6PuvrpZdbqNlzRoqFc/J0dchNxxOC5Tt20lUp6eb6fqxg+IMP/7xjzFt2jTceuutGDduHHbv3o0PP/wQeaYkQKog3jyUDRtkbscDDzixR+4gmra99Vb0fV8sK7D/iUmUl1OuSHMz9UOJl44Ome9gokDJynJ2VWOTwzsALa6XmkpOj1htORoWLCARlpMDfO97ju+eIzixPo9wws86iypbTMJpgSLck5EjzfusgBQoO3a4u2K1QpQIlAULFuCpp57y/+7z+TBjxgzs3bsXTU1NWLhwIUaYlijnNvEKlEceoYvaRReZl1BpZ9Ikyqjfvx/45JPo/nb1amDXLnKcJkxwZ/9iJS0NGDiQtp0I82zcSOWL2dnmXrSdrOQxNUFWkJMj/w+xhHmefppur7/enMTRUNxwA4nPlSuBMG0eusTU8A4QKFCcCEuanH8C0AKUYhFVJ85RA/qpGOg7JglCVMSyaODXXwOvvUbbJrsnANmh3/kObUcb5hHuyaRJ5iWNAs4myoqL4JgxJH5MxMlKHtMdFCD2PJTt24F336VtU0qLw1FYCIjQerQlx83NMoHdtARZgCYQPh/l1xw4EP/rmdjiPhiRhxJvmKexkVyxP/0p/n2KAxYouhAdX8XKmNEwcyZ1gJw61cxwQDCimuftt2lQixSTuseGwslEWRM7yAbjVCWPZZnvoACxC5RnnqHZ56RJZjXzCodIlv3LX6jMPVK++IJCCX36mPl/zMyUYcl4JxGWZWaL+2CcyEOxLOqT85//AD/5CVBZ6cy+xQALFF2UlNDCZJZFoYxI2bYNeOkl2jbdPRGceSYt8lddDfzjH5H9zeHD0nKeOtW9fYsHNxwUkwWKUyGenTuB2lpyikxpLBgK8b9YsiTyEEFDg5x13nmnO/vlNGPGUIJrayvwxz9G/ncivDN5splJwIBzeSi7d5MLk5pqZkGCwAmBMnMmud1paSRai4qc2bcYMPSoShJiyUN57DFKNp08GTjtNDf2ynlSUoArrqDtSJu2ffghzUKHD6c2ziYiBr+VK6NzhoJpaZHHgIklxgJ7iCeemL5wT4YNAzIy4t8vtxDJkFVVkYuy118HDh2iY9akxoLdIVyU//mfyJPZTe1/YscpgSLCO8cfb2a4WRBvqfG8ebJlxezZ2jsDs0DRSbQCZedO2fjpF79wY4/cQ4R53n03spCWvbzYVE46iXJs1q2jeG2sHY7XrCGB06uXdGVMZMgQiunX1MQe06+qAh59lLZNDAvYSU+X52gkYZ7g0uLUVNd2zXG+8x2gd29KSn/vve6fX1UlvxOTBYpTLqfpCbICu4MS7SRi5Urg2mtp+447jFjXjQWKTqJNlH38cbJhJ06ksImXGDeOBouGBplAGI6ODuCDD2jb1PwTgEqN33uPhMV//0ux6QULon8dkX8ybpxZvV6CycqKb1XjnTuBM84APv2UGvjde6+z++cG0eSh/PvftPREdjZw443u7pfTZGYC3/8+bUeSLLtgAZ2nw4bJY8JEnHZQTM4/AShPTPQr2r8/8r/bvx+4+GKaPE6eDDzxhHv7GAUsUHQiEmVXrep+2fO9e2V82Cu5J3Z8vsDW912xZAnN0PPzgdNPd3/f4uHcc2nwOvFE2mdxckczezG5g2wwsVbyrFpFeQ5r1wJlZXQxNznfRhCNQBHuybXXynJPL3HzzRSO/fhj4Kuvun6uF8I7gHMCxSsOSlaWbH8QaZinuZmafe7YQef3n/9sTCUhCxSdDB1Ks62Ghu5npL/5DR1Ip5+uPS4YM6Jp2wcfUBJsOER4Z8oUs1YMDcfgwZTxfu21JDTvvZc+a6TVWV5IkBXEUsnz8cfknOzZQzH8L76Q4tx0xP9k2bKuczN27qT4PWB+aXE4Bg4ELryQtrtbn8fk/id2hEDZtQt45RUqn42WvXvpJyXFG8dtNImylkULR/7nP0BBgXSEDYEFik5SU2nZbqDrPJR9+4DnnqPtX/zC7DBAVxx/POUdtLbKwTwUppcXhyInh6qrZs2i2cebb5Jj0N2FvL5eJo16QaBEW8nzyivAeedR1c7EicBnn5kdEghm2DAKRzU2Uq5ROJ59lsTpxIlmV3l0h0iWfeklWqgzFDt20Ow8JYU+r8kUF1PCsmUB111H1YR33931/zIY4Z4ceyyQm+vKbjpKNALliSdoLaaUFHJOTFpxGyxQ9BNJHsrvfkcD5Mknmz9j6Q7hooRr2rZvn2z5bmp5cTh8Ppo9f/IJlZCvWUOi429/C/83y5ZRLL9fPwp9mE6kIR7LonLF664j5+HKK6nE3OSuqqFISZF5B+HCPE1NMvzqldLicEyeTP/jmhpa7DAUwj05+WSadZuMz0eO3UMPAQMGkHP71FM0WTrzTPqM3bkqXmjQZkeIjO5CPH//O/CjH9H2k0+SY20YLFB0IyzDcA7KwYPSbvWyeyIQeSj/+lfolZxFn5SxY+ki70XOOIMGtfHjKVntoouAGTNCt472UngHCAzxhMuzaWsDbr0V+NnP6Pcf/5g6H5u4fkkkiNygcAJl7lw6TwcMoP+1l0lJof8dQONOqP+xV8I7gpIS4Oc/pzyUv/8d+OY3yb3+7DMKy3bnqnihQZudSLrJrltHY7FlAT/4AVXtmIjlQaqrqy0AVnV1te5diZ9FiywLsKy+fUM//rOf0eNjxlhWR4fafXOLk0+mzzRrVufHLr+cHnvgAfX75TTNzZZ12230eQDLOv98yzp0KPA5V15Jj/3613r2MVoaGy3L56N93rev8+N1dZZ14YX0uM8X+n/sNd56S56DwXR0WNbo0fT4o4+q3zc3OHzYsrKz6TN9+mngY+3tltW7Nz22cKGW3XOEXbss66GHLGvAAHl+ApZ1xhmW9corltXQIJ9bXu6tz7tjB+1vWppltbR0fvzgQcsaMoSec9ZZNE4pJJrrNwsU3dTWygG/oiLwscpKy8rLo8fmzdOye67w5JP0mcaPD7y/pcWyCgrosc8/17Fn7jBnjmVlZdHnOuooy1q5Uj4mBooPP9S3f9EycCDt82efBd6/b59lnXQSPZaVZVlvv61l9xxn2zY54Dc2Bj722Wfy8x48qGf/3OD736fPdcUVgfevWEH35+Yqv7C5QlubZf3975Z1ySWWlZoqhUqvXpZ1110kSsR9NTW69zYy2tstKyeH9nnDhsDHWlosa+JEemzQIMs6cED57rFA8RrHHEMHzD//GXj/gw/S/SecQAddorB7txRl27bJ+8VgUFxMA0cisWwZDQgADR6vv04XNDH4BTsrJjNpEu3ziy/K+zZulGKrqIicwUSho0O6Bl98EfjYFVfQ/TfdpGff3GL5cinK9uyR9//2t9INTDR27bKsX/2qs6sC0BjtJUaNov1+7z15X0eHZd18M93fo4dlrV6tZdeiuX5zDooJhEqUra6mZC6A+p6YutZFLJSVARMm0Pabb8r7RXnxeed5qwtnJIweTcm/U6ZQWfnVV8v2/0OHGlXa1y3BlTxffEHLLmzZQiXXixZ5ZxmGSPD5QvdD2b0b+OtfadvUGH6snHgi5VC1tQWuz+OV/iex0K8fjbUiV+WSS+Q45LXGmKEqeZ55hpYy8PloSQbTOzmDk2TNIFSi7KxZJFKGD6cmOolGqKZtXiwvjoaiIhr4pk+n3z/+mG69kiArsFfy/N//UV+eykrqhPv55zJJL5EIJVCee44u4Gee6Y3+GNFiX5+ntZX6MH36Kd3nlQTZWEhNpQrCd94Btm+ni/ljj+neq+gIFigffQTcdRdtP/qoZ5K5WaCYQPCaPLW1VPYFUPZ5Irkngm99i/qFLF9OJ9GOHVSWm5JC3VkTldRU4JFHgLffpv4aAM1UvYSo5PnHP0g8NzXRmkkLFlDFRCIiBIpYlqC5GXj+edr2emlxOL71LaBPH2qw9+67JD4bG+l/fPzxuvdODf36UWsEjSv6xoS91HjTJlprqb2dqpZEabEHSMArnwcRAuWrr2gAeOYZWhH1mGOAyy/XumuuUVwsZ2FvvCHX3jntNG+2CY+WSy+l8sU//MF767YIB6Wmhkqnf/ADmm16oYlVrAiBsmEDfe4//5nWL+nfn8pWE5HMTPrfAnSc2sM7Xm93kOgIF3PNGnJLqqqoceTzz3vqf8cCxQT69qWVRDs6aIb229/S/fffn3i5GHZE07a5cxM/vBOKo4+mnhMmL98eiiFDgB49aPvhhykEYMjaHa7Rpw/1ObEs6nHz9NN0/y23JPZnF+vzfPIJdZcFEju8kygIB6WykkR1//7UvTsrS+9+RQkLFBPw+WQM+847qenTkCGUSJnIXHIJnTAbNsgE2WQSKF4lM5Ni2gsXkoj20IwsLoSLMns2JTzbHYZEpbycVrkFKCkYACZN0rc/TGTk58tGlzk5FKLzYONLFiimIMI8q1bR7f33J/bMDKCT6IILaLu9nap7EjHZMBE55RTgrLN074VahEB5+226veoqcj4THZEsC9B6NP3769sXJnK+8Q26hrz8MlURehAWKKYgBApAq4pee622XVGKCPMA5J4ky2yc8R7B1VaJVlocjkmTZMiAwzve4aWXyPX61rd070nMsEAxBbtAmT4dSE/XtitKOf98Wc3C4R3GZOxrsZx+uncWj4sXn4/aHkyYkDyiLBFIS6PcKQ+T4DEEDzFsGNnmHR3ADTfo3ht1ZGcDL75IycEeqc1nkpSCAuCEEygMm6ilxeE45xx2Txjl+Cwr3JKk5lJTU4OCggJUV1cjPz9f9+44i2VxmINhTGXNGur4fPXVfJ4yTAxEc/1mB8U0eNBjGHMZMcITLcIZJhHgHBSGYRiGYYyDBQrDMAzDMMbBAoVhGIZhGONggcIwDMMwjHGwQGEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFIZhGIZhjIMFCsMwDMMwxsEChWEYhmEY42CBwjAMwzCMcbBAYRiGYRjGODy5mrFlWQBo2WaGYRiGYbyBuG6L63hXeFKg1NbWAgDKy8s17wnDMAzDMNFSW1uLgoKCLp/jsyKRMYbR0dGBPXv2IC8vDz6fz9HXrqmpQXl5OXbu3In8/HxHX5uR8PesBv6e1cDfszr4u1aDW9+zZVmora1FWVkZUlK6zjLxpIOSkpKC/v37u/oe+fn5fPArgL9nNfD3rAb+ntXB37Ua3Pieu3NOBJwkyzAMwzCMcbBAYRiGYRjGOFigBJGZmYkHH3wQmZmZuncloeHvWQ38PauBv2d18HetBhO+Z08myTIMwzAMk9iwg8IwDMMwjHGwQGEYhmEYxjhYoDAMwzAMYxwsUBiGYRiGMQ4WKAzDMAzDGAcLFBvPPPMMBg8ejKysLIwdOxb//ve/de+S5/n0009x0UUXoaysDD6fD++8807A45ZlYcaMGSgrK0N2djYmTpyItWvX6tlZjzJz5kycdNJJyMvLQ58+ffDNb34TGzZsCHgOf8/O8Oyzz+KEE07wd9c87bTT8MEHH/gf5+/ZeWbOnAmfz4dp06b57+Pv2RlmzJgBn88X8FNaWup/XPf3zALlCG+++SamTZuG+++/H8uXL8eZZ56JqVOnYseOHbp3zdPU19dj1KhRmD17dsjHH3/8cTzxxBOYPXs2Fi9ejNLSUpxzzjn+BSGZ7lm4cCFuu+02fPHFF5g/fz7a2towZcoU1NfX+5/D37Mz9O/fH48++iiWLFmCJUuW4Bvf+AYuueQS/6DN37OzLF68GM8//zxOOOGEgPv5e3aO448/Hnv37vX/rF692v+Y9u/ZYizLsqyTTz7Z+uEPfxhw37HHHmv99Kc/1bRHiQcAa968ef7fOzo6rNLSUuvRRx/139fU1GQVFBRYzz33nIY9TAz2799vAbAWLlxoWRZ/z27Tq1cv609/+hN/zw5TW1trDR061Jo/f741YcIE66677rIsi49nJ3nwwQetUaNGhXzMhO+ZHRQALS0tWLp0KaZMmRJw/5QpU7Bo0SJNe5X4bN26FRUVFQHfe2ZmJiZMmMDfexxUV1cDAAoLCwHw9+wW7e3tmDt3Lurr63Haaafx9+wwt912Gy644AJMnjw54H7+np1l06ZNKCsrw+DBg3HllVdiy5YtAMz4nj25mrHTHDx4EO3t7SgpKQm4v6SkBBUVFZr2KvER322o73379u06dsnzWJaFe+65B2eccQZGjBgBgL9np1m9ejVOO+00NDU1oUePHpg3bx6GDx/uH7T5e46fuXPnYtmyZVi8eHGnx/h4do5TTjkFL7/8Mo455hjs27cPDz/8MMaPH4+1a9ca8T2zQLHh8/kCfrcsq9N9jPPw9+4ct99+O1atWoXPPvus02P8PTvDsGHDsGLFClRVVeGvf/0rrr/+eixcuND/OH/P8bFz507cdddd+PDDD5GVlRX2efw9x8/UqVP92yNHjsRpp52Go446Ci+99BJOPfVUAHq/Zw7xACguLkZqamont2T//v2d1CPjHCJbnL93Z7jjjjvw7rvv4pNPPkH//v399/P37CwZGRk4+uijMW7cOMycOROjRo3C73//e/6eHWLp0qXYv38/xo4di7S0NKSlpWHhwoV4+umnkZaW5v8u+Xt2ntzcXIwcORKbNm0y4nhmgQIacMaOHYv58+cH3D9//nyMHz9e014lPoMHD0ZpaWnA997S0oKFCxfy9x4FlmXh9ttvx9tvv41//etfGDx4cMDj/D27i2VZaG5u5u/ZISZNmoTVq1djxYoV/p9x48bhmmuuwYoVKzBkyBD+nl2iubkZ69evR9++fc04npWk4nqAuXPnWunp6dYLL7xgrVu3zpo2bZqVm5trbdu2TfeueZra2lpr+fLl1vLlyy0A1hNPPGEtX77c2r59u2VZlvXoo49aBQUF1ttvv22tXr3auuqqq6y+fftaNTU1mvfcO9xyyy1WQUGBtWDBAmvv3r3+n4aGBv9z+Ht2hunTp1uffvqptXXrVmvVqlXWz372MyslJcX68MMPLcvi79kt7FU8lsXfs1Pce++91oIFC6wtW7ZYX3zxhXXhhRdaeXl5/uue7u+ZBYqNP/zhD9bAgQOtjIwMa8yYMf4yTSZ2PvnkEwtAp5/rr7/esiwqZXvwwQet0tJSKzMz0zrrrLOs1atX691pjxHq+wVgvfjii/7n8PfsDDfeeKN/jOjdu7c1adIkvzixLP6e3SJYoPD37AxXXHGF1bdvXys9Pd0qKyuzLrvsMmvt2rX+x3V/zz7Lsiw1Xg3DMAzDMExkcA4KwzAMwzDGwQKFYRiGYRjjYIHCMAzDMIxxsEBhGIZhGMY4WKAwDMMwDGMcLFAYhmEYhjEOFigMwzAMwxgHCxSGYRiGYYyDBQrDMAzDMMbBAoVhGIZhGONggcIwDMMwjHH8fw6pNu9iznf9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -802,7 +821,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.5" + "version": "3.12.7" } }, "nbformat": 4, diff --git a/Performance/Differential Equation Check.ipynb b/Performance/Differential Equation Check.ipynb index 7f290b7..05ed380 100644 --- a/Performance/Differential Equation Check.ipynb +++ b/Performance/Differential Equation Check.ipynb @@ -10,7 +10,8 @@ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", - "from CyRK import __version__, cyrk_ode, nbsolve_ivp\n", + "from CyRK import __version__, nbsolve_ivp, pysolve_ivp\n", + "from CyRK.cy.cysolver_test import cytester \n", "\n", "from performance import diffeqs\n", "del diffeqs['Lorenz-ExtraOut']" @@ -21,7 +22,7 @@ "id": "522b323f", "metadata": {}, "source": [ - "## CyRK - cyrk_ode" + "## CyRK - pysolve_ivp" ] }, { @@ -32,7 +33,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHFCAYAAABSEJsFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACe3ElEQVR4nO2dd3xb1dnHv9reduzEcZwdCElIgAQChB12WYVSSlsoo3l5CwUKlJaX0QF0kFIopYWyOoCySxtmWYFAwiYkJMwsyHCG4xVva5/3j6srybZsa9wrydLz/Xz8kSzL9x7bj8/5nWcdi1JKIQiCIAiCkCasmR6AIAiCIAj5hYgPQRAEQRDSiogPQRAEQRDSiogPQRAEQRDSiogPQRAEQRDSiogPQRAEQRDSiogPQRAEQRDSiogPQRAEQRDSiogPQRAEQRDSiogPIed54IEHsFgsfPjhhylf6/PPP+eGG25g06ZN/b42f/58Zs2alfI9zGLSpEmcf/754c+3b9/ODTfcwKpVqzI2plxh06ZNWCwWbr311kwPpd/fWRCyEREfgpAAn3/+OTfeeGNM8THc2L59OzfeeKOID0EQ0o6ID0EQDKWnp4eBjozq7u5O82jMRSlFT09PpochCMMOER+CEOKtt97i6KOPprS0lKKiIg4++GD++9//hr/+wAMP8K1vfQuAI488EovFgsVi4YEHHhjwmk899RRFRUVccMEF+P1+3G43P/nJT5g9ezbl5eVUVlZy0EEH8cwzz/T6vjlz5nDYYYf1u14gEGDs2LGcfvrp4ddaWlq4+OKLGTt2LE6nkylTpvCzn/0Mj8cz4LjeeOMN9t9/fwC+//3vh3+WG264IfyeDz/8kK9//etUVlZSUFDAnDlz+Ne//tXrOnpI65VXXmHBggWMGjWKoqIiPB5POAy1bNkyDj74YIqKiliwYAEATzzxBMcddxxjxoyhsLCQGTNmcM0119DV1TXgmJMlGAxyxx13MHv2bAoLC6moqGDevHk8++yzAPzP//wPlZWVMYXRUUcdxcyZM8OfWywWLr30Uu655x5mzJiBy+XiwQcfjHlfn8/HeeedR0lJCc8//3zc43W73Vx77bVMnjwZp9PJ2LFjueSSS2htbe13/f/7v/+jpqaGoqIiDj30UD744IOY16yvr+fCCy9k3LhxOJ1OJk+ezI033ojf7497XIJgKEoQcpz7779fAWr58uUDvueNN95QDodD7bfffuqJJ55QTz/9tDruuOOUxWJRjz/+uFJKqYaGBnXTTTcpQP3lL39R7777rnr33XdVQ0ODUkqpI444Qs2cOTN8zdtuu03ZbDb161//Ovxaa2urOv/889VDDz2klixZol566SX105/+VFmtVvXggw+G3/enP/1JAWrdunW9xvnCCy8oQD377LNKKaV6enrU3nvvrYqLi9Wtt96qXnnlFfWLX/xC2e12deKJJ/b63okTJ6rzzjtPKaVUW1tb+Pfy85//PPyz1NXVKaWUWrJkiXI6neqwww5TTzzxhHrppZfU+eefrwB1//339/vdjh07Vv3gBz9QL774ovr3v/+t/H6/OuKII1RlZaUaP368uuOOO9Trr7+uli5dqpRS6te//rX64x//qP773/+qN954Q91zzz1q8uTJ6sgjj4zrb5oI55xzjrJYLOqCCy5QzzzzjHrxxRfVb3/7W/WnP/1JKaXU6tWrFaD++te/9vq+zz77LPy31tF/1r333ls9+uijasmSJerTTz9VGzduVIC65ZZblFJK7dq1Sx155JGqpqZGffjhh3GPNRgMquOPP17Z7Xb1i1/8Qr3yyivq1ltvVcXFxWrOnDnK7XaH33veeecpi8WirrrqKvXKK6+o2267TY0dO1aVlZWF/85KKbVjxw41fvx4NXHiRHXvvfeqV199Vf36179WLpdLnX/++cn8SgUhZUR8CDlPPOJj3rx5qrq6WnV0dIRf8/v9atasWWrcuHEqGAwqpZR68sknFaBef/31ftfQxUcgEFCXXnqpcjqd6uGHHx50bH6/X/l8PvU///M/as6cOeHXm5qalNPpVNddd12v95955plq9OjRyufzKaWUuueeexSg/vWvf/V6380336wA9corr4RfixYfSim1fPnyfmJCZ/r06WrOnDnh++icfPLJasyYMSoQCCilIr/bc889N+bvA1CvvfbaoL+DYDCofD6fWrp0qQLU6tWrB31/IixbtkwB6mc/+9mg7zviiCPU7Nmze732wx/+UJWVlfWyCUCVl5erlpaWXu+NFh8bN25Ue+65p9pzzz3Vpk2bEhrvSy+9pAD1+9//vtfrTzzxhALUfffdp5RS6osvvlCA+vGPf9zrfY888ogCev2dL7zwQlVSUqI2b97c67233nqrAtRnn32W0BgFwQgk7CLkPV1dXbz//vucccYZlJSUhF+32Wycc845bN26lbVr18Z1LbfbzWmnncYjjzzCK6+8wtlnn93vPU8++SSHHHIIJSUl2O12HA4Hf//73/niiy/C76mqquKUU07hwQcfJBgMArBr1y6eeeYZzj33XOx2OwBLliyhuLiYM844o9c99GqH1157LaHfBcCGDRtYs2ZNeOx+vz/8ceKJJ7Jjx45+v49vfvObMa81YsQIjjrqqH6vf/XVV5x11lnU1NRgs9lwOBwcccQRAL1+D7GIHo/f7x8wvwTgxRdfBOCSSy4Z9JqXX345q1at4u233wagvb2dhx56KBw2ieaoo45ixIgRMa+zcuVK5s2bx+jRo3n77beZOHHioPfty5IlSwD6Vat861vfori4OPz3fP311wH62deZZ54Ztg2d559/niOPPJLa2tpev7cTTjgBgKVLlyY0RkEwAhEfQt6za9culFKMGTOm39dqa2sBaG5ujutaDQ0NvPzyyxx00EEcfPDB/b6+aNEizjzzTMaOHcvDDz/Mu+++y/Lly1mwYAFut7vXexcsWMC2bdtYvHgxAI899hgej6fXwtTc3ExNTQ0Wi6XX91ZXV2O32+MedzQ7d+4E4Kc//SkOh6PXx8UXXwxAU1NTr++J9bsb6PXOzk4OO+ww3n//fX7zm9/wxhtvsHz5chYtWgQwZAJn3zENlHMB0NjYiM1mo6amZtBrnnrqqUyaNIm//OUvgJbL0tXVFVO0DPSzAixevJidO3dywQUXUFFRMeg9Y9Hc3IzdbmfUqFG9XrdYLNTU1IT/nvpj35/LbrdTVVXV67WdO3fy3HPP9fu96bksff+WgpAO7EO/RRBymxEjRmC1WtmxY0e/r23fvh2AkSNHxnWtCRMmcNttt/GNb3yD008/nSeffJKCgoLw1x9++GEmT57ME0880UswxEoOPf7446mtreX+++/n+OOP5/777+fAAw9kzz33DL+nqqqK999/H6VUr+s1NDTg9/vjHnc0+vdce+21vRJbo5k2bVqvz/uKn8FeX7JkCdu3b+eNN94IezuAfgmVA7F8+fJen0+ePHnA944aNYpAIEB9ff2gosFqtXLJJZdw3XXX8Yc//IG77rqLo48+ut/PCQP/rABXXXUVX375Jeeeey5+v59zzz03jp8oQlVVFX6/n8bGxl4CRClFfX19OElYFxj19fWMHTs2/D6/399PcI4cOZK9996b3/72tzHvqQtsQUgn4vkQ8p7i4mIOPPBAFi1a1GvXHQwGefjhhxk3bhx77LEHAC6XCxh8d37cccfx8ssvs2zZMk4++eReFRwWiwWn09lrAauvr+9X7QKRsM/TTz/Nm2++yYcffhiuFtE5+uij6ezs5Omnn+71+j//+c/w1wdioJ9l2rRpTJ06ldWrVzN37tyYH6WlpQNedyj0n12/v869994b1/f3HUvfnX40emjh7rvvHvK6F1xwAU6nk7PPPpu1a9dy6aWXxjWeaKxWK/feey+XX345559/flz3jUb/ez388MO9Xv/Pf/5DV1dX+Ovz588H4JFHHun1vn/961/9KlhOPvlkPv30U3bbbbeYf0sRH0ImEM+HkDcsWbIkZnOwE088kYULF3Lsscdy5JFH8tOf/hSn08ldd93Fp59+ymOPPRZeMPUOpvfddx+lpaUUFBQwefLkfgvgoYceymuvvcbXvvY1jjvuOF544QXKy8s5+eSTWbRoERdffDFnnHEGdXV1/PrXv2bMmDGsX7++39gWLFjAzTffzFlnnUVhYSHf/va3e3393HPP5S9/+QvnnXcemzZtYq+99uKtt97ipptu4sQTT+SYY44Z8Pex2267UVhYyCOPPMKMGTMoKSmhtraW2tpa7r33Xk444QSOP/54zj//fMaOHUtLSwtffPEFK1eu5Mknn0z01x/m4IMPZsSIEVx00UVcf/31OBwOHnnkEVavXp30NQfisMMO45xzzuE3v/kNO3fu5OSTT8blcvHRRx9RVFTEj370o/B7KyoqOPfcc7n77ruZOHEip5xyStL3/cMf/kBpaSkXX3wxnZ2dXHXVVXF937HHHsvxxx/P1VdfTXt7O4cccggff/wx119/PXPmzOGcc84BYMaMGXzve9/j9ttvx+FwcMwxx/Dpp59y6623UlZW1uuav/rVr1i8eDEHH3wwl112GdOmTcPtdrNp0yZeeOEF7rnnHsaNG5f0zyoISZHZfFdBMB+9ImOgj40bNyqllHrzzTfVUUcdpYqLi1VhYaGaN2+eeu655/pd7/bbb1eTJ09WNputV7VI31JbpZT69NNPVU1Njdp3331VY2OjUkqp3/3ud2rSpEnK5XKpGTNmqL/+9a/q+uuvVwP9Ox588MEKUGeffXbMrzc3N6uLLrpIjRkzRtntdjVx4kR17bXX9irLVKp/tYtSSj322GNq+vTpyuFwKEBdf/314a+tXr1anXnmmaq6ulo5HA5VU1OjjjrqKHXPPff0+93GqiSK9fvQeeedd9RBBx2kioqK1KhRo9QFF1ygVq5cOWD1TSoEAgH1xz/+Uc2aNUs5nU5VXl6uDjrooJh/2zfeeEMB6ne/+13MawHqkksu6fd631JbnVtuuUUB6pe//GXc4+3p6VFXX321mjhxonI4HGrMmDHqhz/8odq1a1ev93k8HvWTn/xEVVdXq4KCAjVv3jz17rvvxvw7NzY2qssuu0xNnjxZORwOVVlZqfbbbz/1s5/9THV2dsY9NkEwCotSg6SKC4Ig5BE/+clPuPvuu6mrqxs0nCMIQmpI2EUQhLznvffeY926ddx1111ceOGFIjwEwWTE8yEIQt5jsVgoKirixBNP5P777+/X28MIhmplbrVasVqlBkDID0R8CIIgpIHBSnQBzjvvvEHPCRKEXELCLoIgCGmgb3+SviTTk0UQhivi+RAEQRAEIa1IgFEQBEEQhLSSdWGXYDDI9u3bKS0tHTJGKgiCIAhCdqCUoqOjg9ra2iGTp7NOfGzfvp3x48dnehiCIAiCICRBXV3dkF1zs0586GdG1NXV9WsTLAiCIAhCdtLe3s748ePjOvsp68SHHmopKysT8SEIgiAIw4x4UiYk4VQQBEEQhLQi4kMQBEEQhLQi4kMQBEEQhLSSdTkfgiAIgpDNBAIBfD5fpoeRERwOBzabLeXriPgQBEEQhDhQSlFfX09ra2umh5JRKioqqKmpSakXl4gPQRAEQYgDXXhUV1dTVFSUd40wlVJ0d3fT0NAAwJgxY5K+logPQRAEQRiCQCAQFh5VVVWZHk7GKCwsBKChoYHq6uqkQzCScCoIgiAIQ6DneBQVFWV4JJlH/x2kkvci4kMQBEEQ4iTfQi2xMOJ3IOJDEARBEIS0IuJDEARBEIS0IuJDEARBEIS0IuJDyGkCQUUwqDI9DCGDBIMKXyCY6WEIGSQYVHj8gUwPQ4hCxIeQs/gCQb5733scevMS2nrysxuhAFc8sYp9bnyFjU1dmR6KkCGu+vfHzPnVYtbUt2d6KBlj3Lhx3HXXXb1ee+eddygqKmLz5s1pH4/0+RBylgfe3sQHm1oAWLquka/vU5vhEQnp5q31TTy7ejsAT35Yx/99bXqGRySkm+2tPfxn5VYAbn15HX87b65h11ZK0ePLjEel0GFLqOpk3rx5LF++PPy5UoorrriCK664gokTJ5oxxEER8SHkLH9766vw82UiPvKS+96MsoH1jSI+8pB/r9gafr5sXSNNnR5GlrgMuXaPL8Cev3zZkGslyue/Op4iZ/xL+Lx583jggQfCnz/00ENs2bKFa6+9FoDnn3+en/zkJwSDQa6++mouuOACo4fcCwm7CDlJY4eHne2e8OfL1jWilOR+5BNKKT7Z2hr+/NNt7dS3uTM3ICEjLFnTEH7uDQRZXdeaucFkkHnz5vHFF1/Q2dlJd3c31113Hb/5zW8oLS3F7/dz5ZVXsmTJElauXMnNN99MS0uLqeMRz4eQk3yxQ4vtjq0opLHDQ0OHh627ehhfKd0J84WGDg+7un1YLTCxqpiNTV18saOdmvKCTA9NSBNKKTY0dAIweaRmA9sNFKCFDhuf/+p4w66X6L0TYe7cudhsNlauXMmrr75KVVUVCxYsAOCDDz5g5syZjB07FoATTzyRl19+me9+97uGj1snYc/HsmXLOOWUU6itrcVisfD000+Hv+bz+bj66qvZa6+9KC4upra2lnPPPZft27cbOWZBGBJdfMweX0F1meZibejwDPYtQo6h28CUUSVMrNJEZ0OHeD7yiR1tbjo9fuxWC/OmaOex7GjtMez6FouFIqc9Ix+JdhktKChgn332YdGiRdx6663cdtttWK2aBNi+fXtYeICWnLpt2zbDfk+xSFh8dHV1sc8++3DnnXf2+1p3dzcrV67kF7/4BStXrmTRokWsW7eOr3/964YMVhDi5fPQwjNjTCnVpZr4aBTxkVesqe8AYHpNxAYa2sUG8on1UV6PCSGv5448Dr3NmzePP//5zxxzzDEcffTR4ddjhaTNbiOfcNjlhBNO4IQTToj5tfLychYvXtzrtTvuuIMDDjiALVu2MGHChORGKQgJsja08MwYU8Yn29oAaJRdb16xJixAy+jxahUJ4v3KL9bv1OaB3atLqK3Qwm3bDfR8DDdmz56N3W7nlltu6fX62LFje3k6tm7dyoEHHmjqWExPOG1ra8NisVBRUWH2rQQB0FT8lpZuQNvxjBLPR16ysVmzgd1GFTM6HHoTAZpP6PkeU6tLGFOuHQWfz56PRx55hIsvvphp06b1ev2AAw7g008/Zdu2bXR0dPDCCy9w/PHm5rKYmnDqdru55pprOOussygrK4v5Ho/Hg8cTWRTa2/O3CYxgDLu6fXSHdrq1FYVUl2o7Htn15hfbdmk73HEjigDNhSw2kF/ojeWmjCphTCjRuL7NTTCosFrz43TaYDBIY2Mjf//731m7di1PPfVUv/fY7Xb+8Ic/cOSRRxIMBvm///s/qqqqTB2XaeLD5/Pxne98h2Aw2K+rWjQLFy7kxhtvNGsYQh6iLzqjSl0UOGzi+chD3L4ATZ3a33tsRSHeUHt1yfnIL7a36QK0kJryAiwWrdy2pdtrWK+PbGfZsmUcddRRTJ8+nUWLFlFeXh7zfV//+tfTmp9pStjF5/Nx5plnsnHjRhYvXjyg1wPg2muvpa2tLfxRV1dnxpCEPGLrLs3dPrZCc7OGE047ZeHJF7aF4vrFThsVRY5eScfS7yU/CARVuK9LbUUhDpuVUSHBsaM1f0Iv8+fPJxgM8vnnn5uex5EIhns+dOGxfv16Xn/99SFdNy6XC5crPxSokB70hWfcCE18jJJKh7xD936NHVGIxWIJ24A3EKS128eIYmcmhyekgaZOD76Awma1hMVnVYmLhg4PLd3eDI9OSFh8dHZ2smHDhvDnGzduZNWqVVRWVlJbW8sZZ5zBypUref755wkEAtTX1wNQWVmJ0yn/8IL5bO0V64+Ij6ZOT17FevMZXYDq3i+XXfOAtHb7aOjwiPjIA3QbqCkrwG7TnPylBdqS1+GWgyYzTcLi48MPP+TII48Mf37llVcCcN5553HDDTfw7LPPAlpJTzSvv/468+fPT36kghAn4bBLyPOhx3b9QcWubi9VeRLrzWd0G9AFKMCoEhet3T6aOz1AaYZGJqQLvaRWL7EFKAuLD39GxiRESFh8zJ8/f9CYqcRThUyzLRTPHRfa9TpsVkoL7HS4/bT1+ER85AHRYRedEn3h8cjCkw9ExEfEBkoLHIB4PrIBOVhOyDn0qha9rTpAiUtbeDpl4ckL9F4OY6LOcQnbgOx684LtrZFkU51S8XxkDSI+hJwiEFS0dGniI7qUTsRHfqEL0NFlEfGhLzxdXrGBfEDP+agt728DIj4yj4gPIafY1e0lGIr8VUYlFRbLrjev2Nmu7XqjxYcuQGXhyQ8aYtiAHnZpl7BLxhHxIeQUemOpEUUOHLaIeesLj+x6c59Oj5+uUIdbvcQSogSoeL/ygoZw+FU8H9mIiA8hp2ju1Or3+3YvjIRdAmkfk5BedK9HqcseFhz65wBdIj5ynmBQRXK/ogSoJJxmDyI+hJxC93xUlfTu4yBhl/xBFx+jyvoI0AKxgXxhV7cXfyj+Gr0REc9H9iDiQ8gp9N1OX89HONlQdr05TzjZtLSg1+u6AJVS29xHD7lUFTtx2iPLnPT5yB5EfAg5RdMAYZdilw2QeH8+EEk2HSD0JgtPzqOLj1GlfTch+Rt2GTduXL9DXt955x2KiorYvHlz2sdj2qm2gpAJmjtjTzolLm3SEfGR++xs719mC1Jqm0/olS7VA9hAh9uPUgqLJcWjFpQCX3dq10gWRxEkMP558+axfPny8OdKKa644gquuOIKJk6caMYIB0XEh5BThHM++pzdUaJ7PmTXm/PsHGDhCQtQsYGcpyFGsilEPB/+oMLtC1LotKV2I1833FSb2jWS5brt4CyO++3z5s3jgQceCH/+0EMPsWXLFq699loAvvGNb/DGG29w9NFH8+9//9vo0fZDwi5CTjFw2EV2vflC4wAudz30JjkfuU/Y89HXBpw29HMl8y30Mm/ePL744gs6Ozvp7u7muuuu4ze/+Q2lpdo5R5dddhn//Oc/0zYe8XwIOYXu+RjZL+wiiWb5QtgG+lQ8lYrnI28YyPNhsVgocdlpd/tpd/upLkvxRo4izQORCRxFQ78nirlz52Kz2Vi5ciWvvvoqVVVVLFiwIPz1I488kjfeeMPgQQ6MiA8hZ1BKRfX56Bt2kWqXfEH3fo3q2+slFO/v8QUIBBU2a4rxfiFraQrnfhX0+1ppgYN2t98Yz4fFklDoI5MUFBSwzz77sGjRIu677z6ee+45rNbMBT8k7CLkDO1uP95AEIjRZExKbfMCrz9IW4+2qPQ9vVgPu4AkHuc6TQNsQiC/e33MmzePP//5zxxzzDEcffTRGR2LiA8hZ9B3OyUuOwWO3olk0uMhP2jp0hYdm9VCRaGj19dcdhvOUMt9ER+5TaTZoKvf1/LZCzp79mzsdju33HJLpoci4kPIHZo6Ysf6ofeEo5RK67iE9BFd7WSNEVYRD1ju4/YFwl6NvqE3IFzh4vbn31ELjzzyCBdffDHTpk3L9FAk50PIHZq7Yle6QER8BJUW8y9yiunnIoPteEGzg5Yub1663PMF3fvlsFkoK+z/f+6ya+KjxxtM67gyRTAYpLGxkb///e+sXbuWp556Kub7jj/+eFauXElXVxfjxo3jqaeeYv/99zdtXDIDCznDQOe6ABQ5bVgsWk+gTo9fxEeOMlisH+Rk23wg4v1yxWwiFvZ8+PLD87Fs2TKOOuoopk+fzqJFiygvL4/5vpdffjmt45IZWMgZmgY41wVCJXZOOx0eP51uP9Wl6R6dkA6aOwe2AZBmc/mAXvEWaxMCUOjQsg168kR8zJ8/n2Aw+7w8kvMh5AyNAzQY0wk3GvPkx6STjwzU40NHT0TOl11vPtI4hAAVG8gORHwIOUPzAA3GdHR3a77sePKRgTrc6oQXnjxMNswXhvZ8iPjIBkR8CDlDuLHQAJOOK3S0tkw6uctQCaeRhSf73NCCMUTmgdg24HLIJiQbEPEh5AxN4R2PuFvzlaESTgscIkBzneZBEs8hdQEqpfrG/A5EfAg5Q9OQsd7QwuOXXW+uMlTCqS5APSI+cpahQm/JJpw6HFrTuu7u7hRGlxvovwP9d5IMUu0i5ATdXj/dXm0yGSrZUBae3CQYVIP2eoHonA8RoLnKUKG3sA14E5sHbDYbFRUVNDQ0AFBUVBSzlDeXUUrR3d1NQ0MDFRUV2Gy2ob9pAER8CDmBnmTmslvDDcX6UmCXhSeXae3xEQhq7uCBXO4FkveT84TDr8UDhF1S6HBaU1MDEBYg+UpFRUX4d5EsIj6EnCC6vG6g3YgedhHPR26ih1wqihw4bLEjyi7J+8lpgkFFS5d+ou0ACafhDqeJ24DFYmHMmDFUV1fj8xlwKu4wxOFwpOTx0BHxIeQEg53roqNPOrLw5CaNUee6DESBVLvkNLu6vYScX1QO5flIwQZsNpshC3A+IwmnQk4wVKwfoisdZOHJRYZKNASpdsl19HlgMO+X9PnIDkR8CDnBYK3VdaTUNrcZqtIFJO8n12mKy/slAjQbEPEh5ASDHSqn45LuljnNUK3VQQRorhOP96tQmoxlBSI+hJwgMZe77HpzkeYEbECSjnOTuLxfIj6yAhEfQk7QNMS5LhDlcpdJJycZqr8DSMJprpOY9yso3UoziIgPISdIZNLxSLw/J2kcorU6RHe5FQGaizQPccQCRKpdQOaCTCLiQ8gJpNJBGOpUY5By61wnntwvvdEciB1kEhEfwrDH6w/S1qM1/Ikn1usRl3tO0jxEZ0uQsEuuE88mxG6z4rBpjQgl7yNziPgQhj0todp+m9VCReHABx257OJyz1W6vf7wQiLer/wlnvArRCWdJtHlVDAGER/CsCe6tt9qHfigJymzzF2aOjQBWuCwUuQcuPNkdN6PJBvmHhHv18ACFMQDlg2I+BCGPY1xVDmAlNrmMk1dQ5/tA5FFByTZMNfo5f0aJO8HpNdHNiDiQxj2xHOuC0iyYS4TT5UDSLJhLhN9snXxIN4vkH4v2YCID2HYo5/nMGpIz4eIj1wlXOkySLIpaMmG9lBoTjxguUU8J1vriOcj84j4EIY9Yc/HEK7W8G5H3O05hy5AByux1BERmps0x9HnRUe6nGYeER/CsCeew6RAkg1zmXi6m+roIlQWntyiOSEbkITTTCPiQxj2xFPbD5JsmMvE0+NDR3J/cpOw9ysOG5CwS+ZJWHwsW7aMU045hdraWiwWC08//XSvryuluOGGG6itraWwsJD58+fz2WefGTVeQehHPOe6gCQb5jLNXUMfKKYjVU+5STLeL0k4zRwJi4+uri722Wcf7rzzzphf//3vf89tt93GnXfeyfLly6mpqeHYY4+lo6Mj5cEKQiya4oz12m1WbJJsmJPofT4SyvmQZnM5RSI5H/r5LtJkLHPYE/2GE044gRNOOCHm15RS3H777fzsZz/j9NNPB+DBBx9k9OjRPProo1x44YWpjVYQ+hAIKloS2fXarXR5A+L5yDF0z8dQzaUgus2+2EAu0dQZ/zwQDr2JAM0YhuZ8bNy4kfr6eo477rjway6XiyOOOIJ33nkn5vd4PB7a29t7fZiB2xfg2/e+y2l/eVsWnhxiV7eXYCh3tDKOWK/senMPTYAmUukgYZdcJNLrJZ68H80GvJL7lTEMFR/19fUAjB49utfro0ePDn+tLwsXLqS8vDz8MX78eCOHFMZmtfD+xhZW1bXKwWI5hD7hjChy4LANbc6S5Z57tCYqQCXhNCdJxPvlFPGRcUypdunb4EUpNWDTl2uvvZa2trbwR11dnRlDwm61oB/74QnIpJMrJOJqBXDJwWI5h17lMKLIgT0hASo2kCsk6v1yhuzEGxDxkSkSzvkYjJqaGkDzgIwZMyb8ekNDQz9viI7L5cLlim/hSAWLxYLTbsXtC4rnI4eIZLgPPeFAZNcrpba5QyJVDhAlQMUGcoZo79eIOLxfuudD5oHMYajnY/LkydTU1LB48eLwa16vl6VLl3LwwQcbeaukcMnCk3M0diTm+ZAj1XOPRHp8gHg+cpGmBMOvEnbJPAl7Pjo7O9mwYUP4840bN7Jq1SoqKyuZMGECV1xxBTfddBNTp05l6tSp3HTTTRQVFXHWWWcZOvBkcIXVrkw6uUJzV3wNxnRk4ck9Eg29RXI+ZOHJFRLpbgoiPrKBhMXHhx9+yJFHHhn+/MorrwTgvPPO44EHHuD//u//6Onp4eKLL2bXrl0ceOCBvPLKK5SWlho36iTR3a1icLmDfq7LqCEajOlEyizFBnKFRKocQLxfuUhTAt1NQXI+soGExcf8+fMHPRfDYrFwww03cMMNN6QyLlPQDU7CLrlDvOe66OjeLym1zR0SqXKASPhVFp7coTlB75d4PjJPXp3tIjkfuUe857roSNgl92hK0PMhC0/ukaj3S/p8ZJ78Eh8Sdsk5muM810VHJp3cI7LrFfGRryRytg9E2YB4vzJGXomPSNhFdr25gFIq7nNddGThyT3Cp5mKyz1vaUzgbB8Apy0UehMbyBh5JT5ckmyYU7S7/eGdS9w7Hl2Ayo4nZ2hOMPTmkmTDnCPRvB8RoJknv8SHNJbJKfRk0xKXPZzLMRQy6eQWbl+ATo8fkJyPfCaRE20BHDat3bWsBZkjL8WHV8IuOUGiEw7IwpNr6ALUabNS6oqveE9sIPdIus+HeL8yRl6JD2mpm1sk2lwKZOHJNaKrHAY6P6ovEnrLLXq8Abq82oYy3o2IJJ5nnrwSH1Jqm1skJT4k3p9ThGP94v3KW8LeL7uVkni9X5JwmnHyTHzIpJNL6N1NE1l4xAZyi3CPjzgTDSFafEj4NRcIH7FQnID3S8IuGSevxIcYXG7RlOC5LiC73lwj0eZSIPNArpFovgdEbCAQVASCA3fsFswjv8SHTRaeXEL3fMTbYAxk4ck1Em2rDTIP5BqpCFAQO8gU+SU+JOE0p9BjvaMSmXRskveTSzQneKAYDBF6a62DgN+QsQnpoSnB7qYQEaDQxw62vA9/3As+e8qw8QmxyUvx0cvY3voj3Dcf/nUetGzMzMCEpIic6ZFi2GXjMnjodLhjLqz5r6FjFMylKQWXey8bcLfBf/4Xbp8F//2xoWMUzCUZz4fe5wPAE4jK/fnHcdC2BRZdaNj4hNjkl/joW+mgFCy9BbZ/BJ8/Dcv/lrnBCQmTlMs91sLz6g3w5WvQvB5WPGjkEAWTSbS9PgwQenv9JvjkX9rzDa8ZNj7BfMJVbwkkHVsslv5zQdP6yBsCHm19EEwjr8SHo2+Wu7sNfF2RN7R8lYFRCcmQTG0/DFBq21oXed68wZDxCekhlZwPX0AR1JMN6z+JvKFzJwR8ho1RMJdkPB8Q1WZfFx8rHuj9hvbtqQ5NGIS8Eh/9jK2vcYn4GDboux1XArX9EMPzEfBBV2PkDa2bJeY/TAgGFS1dKSYb6iK0Y0fUhf0Sgh1GJBN6g4gd+AIhAbptZe831H+c8tiEgckr8dHP3aqLD2eJ9tiyEYKSiDgcaIza8cZb2w8xkg076gEFFhvYXNrC07rZ6OEKJtDu9uEPeS4qE0g47Sc+lArZAeAs1R6b18f4TiEbCff5SNDz0W8jom9CysdrjztEfJhJfoqPsOdjm/Y4/gCw2rU4n/6akNUkc64LxBCg+o63rBaqdteeiwdsWKDne5QW2MPdi+OhX6WDpwN83doLkw8LXVzEx3Ag2vuVSOgNoueCUBheFx+7Hak9iufDVPJLfAwUdqmYACMmac9l4RkWJNNaHQaxgdIxULWb9lzyPoYFyeR7QCjZMNoOdK+HqxzG7BO6uIiP4UBbjy/cJGxEUYIbEf2MH39QC7+6W7Uv7HaU9rjzM6OGKcQgv8RH3z4fupejbCxUTtGei/gYFoQbjCW72/HH8nzo4uNLQ8YomEsyPT50etmBbgOloyPeL/F8DAv0TUh5oaNXOC0eetlAd7P2osUKNXtrzzt2SMWLieSl+IjpchfxMayIJJklH3ZRSkU8H2W1UBkSHy0iPoYDzUnaAPSZC3TPR2kNjJyqPRfxMSxoSrLSBfqIDz3kUlSlzQUAfnfEGyIYTn6Kj74udxEfw45kznWBGMmG4V1vVNhFKh2GBY1JNJnT6RV26dTFx5hIsmFPC/g9hoxTMI/mJLqb6vQqu+9q0l4sHgWOQigo1z7v2GnIOIX+5Jf46Bfvjwq76JOO1HYPC5I51wViJBu2R3m/SkZrzzsbDBmjYC7hnI8Uwi4efx/PR+EIsDq0z8UOsp5kE8+hr+dDFx8jtceSGu1RF6aC4eSV+HBFu1q9XVqTMdB2PCXV2vPong9C1hJJOE0uyQz0eH9UwqluA74uzT6ErCa88CQoQGGAnI+SGrBYouYCER/ZTjj0lkB3Ux1XzLBLSHyUhjYi4vkwjbwSH70mHF14WGzgKo0o3s4GSTIaBkTaaic26VitlvC5Dr3crSWjtX4v9kLtc9n1Zj26yz2ZhaeXy11fYEpDu93iUdqj2EDW02hEzkcgCN1RYRfQNiMgng8TyV/x4enUXnSVarud4tBuJ+ABT3uGRijEg9cfpK1Ha3+dUqzXF9B6PEDEDsQDNmxItq02DFDpEHa5S/htuNCcZHdT6BOG1//fdfGh20CHiA+zyC/xETI2f1ARdIcEhivU0dBZFOl0qu+GhaxED7k4bBYqCh0Jf3+4rbK7Ewh5uVyhv70uPmThyXoakwy9QR/x4Q1tRJxiA8MNvdx6VAo24OmV81GlPepeMBEfppFf4iOq0sHfEwq76OIDxN06TGiM6vFhtcbfWl1HtwN/T0iAWqzgKNKe6x6wTon1ZjNuX4AOt3YGz6jSgoS/3xXd3TLaCwpR4kNsINtJyfMRM+G0j+dDbMA08lZ8+Hqi3O06kmg2LNDFx6gkEg0hYgcB3fvlDIVcAEpCk4+EXbIa3QacditlBfEfLKjTK/TmDc0FYc9HaOGReSDrCYfekql4smkt+bWcj1DorUj3fIRyPsTzYRr5JT6iKh0CuudDn3BAPB/DhIbQwlOdrPgI2UEwLECjbUBc7sMB3QZGJXiwoE5YgHq7QYVK73U7kHlgWNDjDdDh0bxfKVc8eft4v/Swi3g+TCOvxEf0mQ79cj5Akg2HCal7PrQdj3KL92u40tjhBqC6LDXvl3J3Rl50FGuPknA6LNDngQKHlVJXEt6vXuIjVFrv7GMD3s5IUrpgKHklPiBicEF3H6ULsusdJjR2agvPqCTivBC18Hj6uNtBkg2HCY1Rno9k0DchKjrZ1BqaDkV8DAvC80Bpct4vPe/H5/NHiY/QXOAqiYhRsQNTyFvxoWJ6PiTePxxoaA8tPGWJJxoCuPouPCJAhx26+EjV82HpW+kCkXnA2wHe7qTHKJiLPg9UJ5FwDIT7/Sh/D+GqN93zAZH8j55dyQ5RGIT8Ex963kffDHeILDwiPrIavcQyVc+HxRMj50NCb8OCSM5HcguPbgNWb4zQm6sM7KHrSsw/a0l5HrDpAlTvZmyJNBkEKKrUHvVkVMFQ8k986BUvXr3SQVzuww2jql0iu94Y5dbeTtn1ZjGG20C0ALVYIm22u1uSHqNgLmHPR9LeLy33y+IL/Z87iyOhN4h4PkR8mELeig9LTM+HhF2yHaWUYdUulpi73lKwhcr2ZNLJWlK1AT30ZvP1ifXrFI3QHntEfGQrDR3G5H5Z/X2STXVEfJhK/okPW98dT9TCUxiacLyd4PemeWRCPLS7/eFTiVPd9Vr1hafvrrcw5G6VhSdrMcrzYdMXnuh5ACI2IJ6PrMWovJ+IABXxkU7yT3yEF54Yu96CCq3bJUiSUZaiTzilBXYKHLakrhGZdGIIUIiIULGBrCQYVOEW+8YtPH08H2IDWU9DqgI0tBG1+6PCLtGI+DCVvBUfMRceq1UTICCTTpaiu1qTdbdDxAbsvhiVDhCVaCa73mxkV7cXf1CrTkjmRFuIXnhieL8gYgPi/cpawp6PJKtd9FJbe0AXHzIPpJO8Ex9hg/MN5G6VWG82k6q7HWItPGIDwwm9ymFEkaPXkQmJoCcbOgIDeT5k4clmAtHerxRDb47AUJ4PsQEzyDvx0W/hEbU7rIiIj+R2OxARoI4hxYd4v7KRVPs7QGThceou9742EPZ8iA1kIy1dXoJKS9GqTOJcF4gWHz2hFyTskk7yT3zYrdgIYNcNzlXW+w2y8GQ1jSlWOUD0pDOUABUbyEYM8X7p4iM4gMtdvF9ZjR5+rSp2Ybcl6f0KfZ9zwLCLiA8zyUvxUYw78kLfWK9UOmQ1RoZdwpPOQJUOYgNZSWOK7naIZQMSdhlOpJpsCtECNLQeDOT56GmBYDDp+wixyT/xYbNSQsjrYXOCvY/xiucjqzFk4QlNOq4BxYfYQDYTbq+fgg3oobeCgTwfknCa1RjpAXWpgXI+QjagguBuTfo+QmwMFx9+v5+f//znTJ48mcLCQqZMmcKvfvUrglmiHJ12KyUWPeRS2v8NkvOR1Rix8GiTjsI11MIjNpCVhNtqG7HwBIcSoK1J30MwDyM9oK6BPB82B7jKtecyFxhO4ucQD8HNN9/MPffcw4MPPsjMmTP58MMP+f73v095eTmXX3650bdLGKfdShGa4YZPLYxGdr1ZjVELTyEerIQEcT+Xu9hANtPYETnNNFl08VGkBsr5CAlQTzsEfNpCJGQNRng+dO9XodITTkv6v6loBHjaQnkfuyd9L6E/houPd999l1NPPZWTTjoJgEmTJvHYY4/x4YcfGn2rpHDarRRYQt1LHYX93yALT9biCwRp6dL+dilVOtisFBLVwbavCJWcj6zGkHi/rc/C08/zUQFYAKXNBfq5T0JW0GCgAC1kAM8HaHkfuzZJ0qkJGB52OfTQQ3nttddYt24dAKtXr+att97ixBNPjPl+j8dDe3t7rw8zcdmsFIQ9HzEWMHG5Zy16Xb/daqGiMPmdqNNuxYVP+8Tm7H2YFPQus8yScKEQIdXmUhBZeMJzgbOo9xusNigIudxlI5J1GGkDxWEbiOUJl5JrszDc83H11VfT1tbG9OnTsdlsBAIBfvvb3/Ld73435vsXLlzIjTfeaPQwBsRpt1KgLzyOov5vEM9H1qJPOCNLXFitlqSv44r2ftljTF66Daig5nYvrEj6XoKxuH0BOtx+wKC8H33hsQ/gBXW3ykYkC2lI8VwXiHi/iiy65yNG2EXWA9Mw3PPxxBNP8PDDD/Poo4+ycuVKHnzwQW699VYefPDBmO+/9tpraWtrC3/U1dUZPaRe6PF+YICFR1zu2UqqB0np9PJ8xLIBuysSihE7yCp0G3DarZQVJL93ctqs2AlgQ2vTPqgXVGwgq1BKRRLPkzzRFsBus2K1EGm9ENPzIeLDLAz3fFx11VVcc801fOc73wFgr732YvPmzSxcuJDzzjuv3/tdLhcuV2qLSSI4bdE5H4N4Pvxu8PXEzgsRMkI4wz2FCQfAabNRwCCeD9AWnrYurdFYZUq3EwykISrR0GJJ0fsVnfcz6EZEFp5sossboMcXAFLzfkGoAMESj/gQAWo0hns+uru7sfaJodtstiwqtbVFkg1j7XZcpWANaTJxt2YVRiQaQh/PRywbgEioRRaerMKIShfoYwMwePhN5oGsoqFds4Fip41iV2r7Z6ctqulkzGoXEaBmYbjn45RTTuG3v/0tEyZMYObMmXz00UfcdtttLFiwwOhbJYUzescTy6thsWg7nq4GTe2Wj03vAIUBMaK8DvpUPPVtMqcj4besxFAbCM0DyjaAF0XCLllJJPyafLKpjtNmpcg/WMKphF3MwnDxcccdd/CLX/yCiy++mIaGBmpra7nwwgv55S9/afStkkJbeAZJMgPN4LoaxOCyDCMaC4E24bjCYZdBbABk15tlGGoDFs3zoewFxAzgSIv1rKTBoPArQLE9iCOghXCk9UJ6MVx8lJaWcvvtt3P77bcbfWlDcNqiq10GWHik3DYrMaK2H/pUPA3k+RB3a1YSWXhS2/XabVYKQ94vJTYwrAgL0BQTzwFK7X70+oMBK55ADpk0gbw728UVXe0ykPgQtZuVRLqbprbwuOxWXIM1mgMJu2QpRlU8AZTYtB2vsg2U9yPzQDZipOejxKqVbSsssTciYgOmkXfiY8icD5CFJwtRShka73cN5fmQSScrMdTlbtMWnqBtCBsQD2hWoXtAjRCgvWwgVt6PbgPeDq3NvmAY+Sk+LEPF+yu0R1l4soYOjx+3T6uYMjLnIziQDUjoLSsx1PMR2vUGBvJ8SNglKzGiu6lOsU0TFAPaQEE56BlBcsigoeSf+LDF4fkILzwy6WQL+oRTWmCnwGFL6VrROR9BqzP2m6S+P+sIBlW4xX6qAhSidr1iA8MKo5KOAYpDSccB6wDX6tVmX+zASPJPfMQVdpFJJ9sIdzQ0YMJxRuV8DLjjkQZTWceubi/+oNaRtKrYgIXHqi08/qFswO8Gb3fK9xOMwajwK0CR7vkYSICCeMBMIi/FR2HcyYZibNnCzlBjoRoDavvtVguFIc+Hf6BJR7xfWYee71FZ7AwfCpYKhXrYZSAbiG44KHNBVuALBGkOnWxtxEakyKLPA4NcS/K/TCH/xEd02EXi/cOG+pD4GG2A+LBYLBRah3C36hOOpw0C/pTvKaSOkTYAUGQdYuHRGw6CeEGzhOiTrSuLBvFWxIkuPnzxiA9ZDwwl78RH71JbKbEbLtS3mbTwWAaYwAoqIs/drYbcU0iNnW2698uYs6AK9YVnIBsAWXiyDH0eqC5N7WRrHX0TEpf4kPXAUPJOfGjx/jhjvT0toFSaRiYMRiTsYvDCM9CkY7NHEs1k4ckKdM9HTblBAjSeXa+0WM8qwpsQg2xAD7/6LIOJDwnDm0Feig/d8zGgwelKN+gHT0eaRiYMhtELT0K7Xll4soKdBoddCuKyAVl4sol6A3O/gHDbBZ/FMfCbxPNhCvknPqJyPgbc8TiLIqdcisFlBTsNDrtEFh7Z8QwX6ttMWniQsMtwwehNiG4D3kHnAdmEmEHeiQ+t0iFkcIjBDQeCQRWudDBs0gm5W73x7Hhk4ckK6kPl1ka53F3x2ECR7HqziZ1GC9DQWuCJR4CKDRhK3okPAl6sFi2Pwy273mFBU5cHf1BhsRjTVhvi3PFIvD+rMLLcGqIXnjjmARGgWYHRng9dgA4qPqTPhynkn/jwRZoFeQaL9Uq5bdaws03b8Y4scWG3GWOykUlnMM+H2EC24PEHaAn1dzBKfIQ9H4PagOx6s4mduvfLIBtwKvF8ZIo8FB+acvYrK97gIG265XyXrMHoJDMAp7hbhxV6h1un3UpF0SBiIQF0G3DLrndYoJQyPO/HFSo+GNQGwuFXsQEjyT/x4e8BNGPzBgYpo5WwS9ZgdHMpAJe+41GDxfvFBrKFaAFqiXX6aBJEdr3i+RgOtPf46fEFAOPCLgnZgJxsayj5Jz58mvjowYk3EBz4fTLpZA3hJLNyY/I9IDLpxLXjERvIOEbveCFiAz0qnlJbCb1lGl2Alhc6Uj5cUsehNM/HoDYgJ9uaQh6KD82APTjx+gcRH5LzkTWYEXZx6C73wTwfsvBkDeEeHwbteCFeG4gSoNJwMKPo88AYI20gqAvQQWyg18m2shExijwUH1rCaY9yDS4+ZNebNRjdXArinHTCNtBq2H2F5Kg3uLU6gCMYivcr+8Bv0jch0nAw4xjd6wcino/u4BB5RNJ6wXDyT3z4NQN248AzqPiQXW+2sNPg8jqCAexoh8UNKj6KpM9HtmBG3o89FHbpHszl7iiUhoNZghkeUHtIgHYPNg+AbEZNIP/ER8jz4Zacj2GD0YfK6QIUhtjx6Dbg6wK/x5h7C0lhuAAl4vnoCQ7i+QDZ9WYJ9SaE3uxhGxhCfEjyueHkn/jw665WyfkYDvR4A7S7NS+FYeLDFyU+BnO5u8rBEvoXkUkno5ix67WFQm9Du9xl4ckGjO5uCmALiY+ueMMush4YRh6KDz3h1BFfzoe7FYKDvE8wle1tWnVSsdNGWcEQO9R4CdmAV9nwBAYp27RaoaBCey4LT8YIBpXhzaUAbAHNDrri9nyIDWSSSHdT4/J+xAYyRx6KD20S08RHYOD36camguBpS8PAhFjsaA1luFcUGtbfISJAh/B+gex4soDmLi9efxCLxdiwi+756BzS5S42kA0YHn4FrIGQDQQk5yPd5KH4iFp4Bsv5sLvAUaw9l0knY2xv1TwfRpbXRScdDyk+JNabcXaEvF/VpS4cBrXXJ+DHqrRwXncg3l1vqzH3FhLG7QvQHGqvX1teaNh1rSHPx9DiQ+YBo8lf8aESWXhazR2TMCB62GVshXETTq9eL4MJUJBkwyxgu+79MnDRiU467oxbfIgNZArd61HosBnWXh+ixYfYQLrJQ/ERHXYZauGp0B7F4DLGDhMXnrgEqOx4Mo7u/TJUgCYkPsQGMo1uA7UVxrXXRyksITvoCAzRMVXCLoaTh+IjknDqGXLXK5NOptE9H2MqjAy7aNeUnI/hgR52MSP05lF2PIOkfgFiA1nA9pDno9ZIARrwYVHa/3+7344arIOtiA/DyUPxkYjnQyadTGPOrlc/ydIxdNhFcj4yjh52MXThSWQeEBvIOGHPh6Ee0J7wUw9OfIMdNCoheMPJQ/Gh73ji2PXKpJNRlFLsaDP+PAf9cEG3cg7e5RYk1psF6N6vWiO9X74o71fceT8yD2SKSNjFeAEaVBZNhMbTdNLTLifbGkQeio8kPB+y8GSE9h4/3V7NJ25szkcyNtBq3P2FhDBz4YnPBuSohUyjh10MDb+GBagDsAxuB/rBciBzgUHkofiIajImOR9Zjb7jrSx2Uug05ghtIOxudSeS8yE2kBF8gSANHZpQMFaARrxfCdmANBzMCGYmHWvig8HtQE62NZw8FB+S8zFcMKXHB/S2gXhzPsQGMkJ9mxulwGm3UlU8yAFwidJnExJXsqEKam53Ia0opUzyfkVK7mEI8QHiATOYPBQfyfT5EKWbCUzJcIdeOR/i+chuonN+rFaDSiwh3OvFrS88g4lQRwE4irTnYgdpp3f41ciKJ20T4rXoNjBE2ZPMBYaSh+JD3/VKg6lsZ0c4w91Ez0e8ux1/T1i0COnDPO9XZBMC8ex6ZeHJFNtCNlBV7KTAYWT4VbMBXyjsEn/yudiAEeSh+Ijq8yENprKa8MJjtOcjOudjKAHqKgVLaMITO0g7kUoXo22gj+dDXO5Zyw4zev1AeBPiC3k+RHyklzwUH0nkfLjbIOA3eWBCX0wLuyRiAxaL5P5kEL3DraH9HSCy67XEEXaBqG7HrcaOQxgSU3p8QH8biDcML/OAIeSh+EiktfaIyHO3nGybbvQdj+Fhl0RyPkByfzKIKYmGEM758Ma78IgAzRjbzGgyBxHPhzVBG5B5wBDyUHwkUOlgs4OrTHsu7ta0Egyq8GFSxoddetvAoJUOILk/GcSU/g4Q3oT4E931ysKTdnaY0WQOwjYQsLoAER/pJg/FR9SJpvHsesXgMkJTpwdfQGG1wOhSl7EXjzrbBeJxucvCkylM6e8AEZd7aOGRTrfZi2neL118xB16k7XASPJQfESd65GI+BB3a1rRM9xHlxVgtxlsplGeDxCXe7bS7fXT1qO1sjar2iVgFQGa7Zhytg+A36s9xB12kaRjIxniLOkcJOpsF/9QEw6IuzVD1O3SxMf4EUXGXzwq5wPE5Z6tbA3ZQGmBndICh7EXD+V8+MXlntUEgor6dnOTjoM2sYFMkF/iI+CHoFa14sFBIKGwi6jddLJ1VzcA4yoNnnCgX4ld/JUOYgPpRLcBUwRo2POheVSk0iE72dnuJhBU2K0WRhkeftXmAT3nwxN32KXV2HHkKaaEXbZt28b3vvc9qqqqKCoqYvbs2axYscKMWyVGwBN+GleZJYi7NUPUtWi73nGmLDzatQNx73jkOO1MoNvAeFMEaEh82KTSIZupa9EE6NgRhdiM7HAL/TwfHl+cHU7lZFtDMNzzsWvXLg455BCOPPJIXnzxRaqrq/nyyy+pqKgw+laJ44+IDy8OgqFKB4tlEKOWeH9GiOx6zfN8JOxuFRtIK/rCY6bnI2gLeT6k23FWYmr4te88EK8HFLSNSMko48eURxguPm6++WbGjx/P/fffH35t0qRJRt8mOUITjrI6CIacPt5AEJd9kJa9Eu/PCHq83xTPh6+3y33ISgexgYxQpwvQSvNsQCXj/QoGwZp/ufqZICxATfR+KXucNqCfbOtu0+YCER8pYfh/0LPPPsvcuXP51re+RXV1NXPmzOGvf/2r0bdJjpCxYY/EDuN3t8qOJ10Eg4ptu8x3uYcnHSmxy0oiAtQ8Gwh7PuJuOKjA3Wr8eISY6ALUnPBryBMerwAFmQsMxHDx8dVXX3H33XczdepUXn75ZS666CIuu+wy/vnPf8Z8v8fjob29vdeHaejGZo+U7cW/4xFjSxcNHR68gSA2q4WaMoNLLCGy8NjjXXiiSuyGakgmGEZk12te2EUXoEMmG9qd4CzRnstckDa2hvN+zLeBxMSHbEZTxXDxEQwG2XfffbnpppuYM2cOF154If/7v//L3XffHfP9CxcupLy8PPwxfvx4o4cUIWRsFnsB9lDyUty73m6ZcNKFvtuprTChxwdEJp1Ecz4CXvB1Gz8eoR9tPT7a3VplmpmeDxWvAAWpdsgAdWnI/bLY48z7gchGRPK/UsbwmX3MmDHsueeevV6bMWMGW7Zsifn+a6+9lra2tvBHXV2d0UOKEPZ8uHDaQzkfEu/POvQd77gKE3Y7wYAmIiDsARvSBpzFYA31mZBJJy3oCcdVxU6KnCZ0BPDpIdhkxIfYQDrw+APhHh9mej5IxPNRVKU9ig2kjOH/1Ycccghr167t9dq6deuYOHFizPe7XC5cLoPrtwfCH5lwnHYr3d5A/Lteb4fWEc/uNHeMQjjWb06+R6TiSdvxuIfe8Vgsmgjt3KmJ0AoTvXMCEFVqbcaiAxE7cCQjPmQjkg62t7pRCgodNqqKTZh3k7EBXXx0Nxs/njzDcM/Hj3/8Y9577z1uuukmNmzYwKOPPsp9993HJZdcYvStEifa8xFy5w9Z6VBQDoRKcSXRLC2ko8QSSHLhkR1POjC11BrCvV4s4VLbIXo8gJRcp5mwB3RE4eDtEJIlKgwPceT9gIgPAzFcfOy///489dRTPPbYY8yaNYtf//rX3H777Zx99tlG3ypx+ng+II44n15eBTLppIlwlYOJlS5Y7djtcZ7tApJ4nGZMTTaFSLzfmciuV872SCemllpD2AasuvjwJWADshakjCnt1U8++WROPvlkMy6dGsnkfIBmcO5WWXjSRJ2ZbbVD57pgLwzbQFw7Htn1phVTy2whLEKtjkKgQ1zuWUi4w63ZNuBMIOFUt4GuJnPGlEfkV6ecaM+HLQHxIS73tOEPBNnRpv2dTK3tt7twhprLJbTrFfGRFkwVoFFJxxaHtrAltPCI+EgL6fJ82MLh1zhCb8UjtUexgZTJM/ERWXhcCXk+ZNJJFzvatIOknDYr1UYfJAXhWD+OwsQEaHjSkR2P2Silos51MVGAAlZHnF1uAYpCNiC73rSwtcXEBmPQ3/Mha0FayTPxkUTOB8ikk0b03c7YEYVYjT5IClIIvcmkky5aurz0+AJYLFqvF8OJSjq2JbLwFOs2IN6vdFBnZtUbRDwfziS8Xz27NA+akDR5Kj4SXHiKZeFJF6bH+qNyPsLer3gqHUSApg190RldWjD4uUvJEpV07HDGeaotRAlQsQGz6fL4aenSQmPmhV00O7Dr4iOREDxKms2lSJ6Jj0h79YRc7rLwpA3zXa1Jej4k7JI2TD1MDHonHduS8IB2N0ubfZPRNyHlhQ7KChzG30ApCGhzgT0R75fNEVX9KJvRVMgz8dHf8xFXpYMkGaWNOtOrHJLM+ZCE07RharIppB56C/q1k00F0zBdgEbl/dhdCXg+QEKwBpFn4iPK85FQpYO4W9PFxqYuACZVFZtzg1gLT6J5P7LrNZVwd9M0CNCEEs8dBZHD5WThMRXzBWgk70cXH3ElHYOID4PIM/ER5flIKuwixmY2m5pD4mOkSZNO2OUeSTqOa9LRvV8BD3g7zRmbAMCmkACdmG0CFKI8YDIXmImp1U4Q5fmw4HQkcLYLiPgwiDwTH9Gej2QSTsXzYSat3V5au31AOjwfCeb9OIrCh5BJ7o+56AJ08iiTbKBXzkcCHlDonfchmMbmkA1MMDnZFHsBrtDBhXGF4EFswCDyTHxEPB+6u9WXiMvd1w1eOVLdLPSQy+gyF8UuU5rvRrncExSgFkvUpCN5H2bR4w2Em8xNTqfnI9FdrwhQU9Hngikj02ADUZsQFU9IVbxfhpBn4iOG5yMe8eEqBVvoVEUxONMIh1zMWnQgeRsA8YClAd0GKoocjDDjJFPonXScSOgNpOopDfgCQbaEEk5N837F6Pmk3Tse8SFhFyPIM/GRZHt1i0WSTtPAxqbQhGPWbgd65XwklGwIsutNA5vMTjiG2LveuF3usvCYzdZdPfiDikKHjdGlJjSZg5jdrkHa7KeTPBMf/d2t8Wc4S9Kp2YQXHjPFR7I5HyCx3jTwVcgG0iVAkw+7iA2YRSThuMicLscQcyMK0u04neSZ+IjRXj1ud6t4PswmPWGXGDkfcYddxOVuNpvSIT6iBGjC3i/p+WM6ugCdYlbIBXptRK1WC/aQyBHxkT7yTHyk4m6VLqdmopQKJ5mla+FJfNcbSjSTXa9pbEyL9ysFASrhV9PZ2KSVsps7D0Q2okCUJzyeoxbkjB8jyDPxEcvzEefhQLLjMZXmLi8dbj+guVtNI9rlLmGXrCNcZpuupOOQDQSCikAwnmRDsQGz2RTO/Sox7yZRlY9Agp1uQ5sQTzv4vWaMLi/IM/GRSomduNzNRHe3j60opMBhwmFiOjE8H1LpkB20u300dWqTuWlN5iBmzgck6HIX75dpRDygJtpAICQaQp4PVyJzQUEFWEJzlIjQpMkv8RGr0iHRzoYy6ZhCxN1u4oQDMcssJfSWHegCdGSJi1IzDhPTiSFAIcGGg96OXueDCMbg9gXY1qr9j2bE8xHPXGC1RjYiXQ1mjC4vyC/xMUBjmbiQXa+ppCXZFGKW2Elb5ezA9MZSOv7IJsRutWAJFVR4AnGEYGXXayr6PFBe6GBEUXoEKIArdNaXxxfvelCtPXY1Gj2yvCHPxEcK1S6y6zWVTeno8QGptdbWBajEek0hfd6v0MLjKMBisaTQ80fEh9FEl9tbLCaV2UK/hFNXIgmnEJkLOkV8JEv+iI+AH1TIsJLp8yEJp6Zi+mm2OqkcKlZQAZbQv4zYgeGkpc8L9Aq/QoLJhhDlcpeNiNF8lTbvV2QegARzPgBKdM+HhF2SJY/EhxfKxmkejOhKh0Tj/e5WCPjMGWOeopSKOs02TS73qJyPuCsdrFYo1M91kIXHaDY2a96v9C08vXe9CZfbivgwnI2NaSi3h36eDz3J3e2L1/MxSnvsFPGRLCad3pWFOIvgys8in9q1CSju3U5hBWABlFbfXTra8CHmK40dHrq9AawWE0+x1Inh+QDNDgqdcVTZFI/UhIcsPIailGJjo9bfIW0CVPd8JJr/VRL635ddr+GkpdcPRM0D2vlByXs+JOySLPnj+ehDwq5Wqy1qxyMGZyT6hDN2RGEvQWAKPn3HU5h4W2WQScckdnX7aNf7vFSmaeFxJBl20W2gc6fRI8t7wn1e0pj7BRHPhyduz4duAyJAkyVvxUfCrlaQOJ9JpK3SBXqV2DlskYS2uCodIGrSkYXHSHQBWlteEJ8HKhVSzfkIiw8RoEbS1hPd5yVdYZckcz70sItsQpImb8VHwpUOEDXpiPgwkrQlmQWDENB3vYVapUPCC0/I5S7iw1DS0lZdZ6Ayy7gXHhGgZqAnHFeXuihxmZwRoIsPR2/PR9w5HyUiPlIlf8VHoosOyMJjEmmrcghENYXSdzwJx/tl12sGabMBGLDMMv6FR58HZBNiJGnL94Co8GsSHU4hqs9Hk7apERIm78WHP6gIxlPpAOL5MIkv05XhrrvbIRzrdTkSTTQTAWoGaWswBlG73t6VDvHbgL7rlXnASNIqPvokHSde7RKqflQB6JED5pIhb8WHKyqxMfGFRyYdo/D4A+Fd77SaUnNvprvbLTawaW5d3eUe/65XBKgZfNmYhpNMdfqVWSbp+ehqhGCc3yMMSXrFR++k44Q9HzZHpOxe5oKkEPFBMu5W2fUaxcamLvxBRWmBnZqyAnNvFtXjQyey8EilQ6bwBYJh8WG6AIX+LvdEd71FIwELqKAcq24gXzWlUYD2qXZJ2AZAChBSJG/Fh91mxW7Vqh3c8bbUlV2v4ayt7wBgj9Gl5rZThn5dDSHK3Rq3DYQEaHez1jVXSJlNTV34Aopip42xFYVDf0MqKBXJ/dE9H7r3K+5drz1Sdi8i1BACQcX6nZr42GN0GgRoqh1OIarRmOR/JUPeig+IjvNJvD9TpHXC6bPbgSTq+4uqQi3WlXQ5NYi1O0MCtCYdAtQdea673BMNu4A0GjOYTc1dePxBCh028xsNQj8vqMuR4MFyEFVuKzaQDHkuPhKcdPQM554WOVjMIPSFZ9poE4/P1onp+Uhwx2O1Re14RIQawbp63QbSseONEh99PR+JLDwl0l7bSNaFPaAlWK0mC1DoF3or0Cue4vWAgjQcTJG8Fh8JJxsWjgBrqP5cDM4Q1u2MhF1MJ1bOR6I2ANLd0GDWptMG9EXHYtOSBkliEwLiBTWYNfVptAHoX26diudDwi5JkdfiI+FkQ6tVGgwZSI83wJYW7TCxPdKRaDhYzkdCu16xASNZtzONyaZ9Fh1IotQW5GAxg9Fzv9JiA9C/3Dolz4fYQDLkufhIMNkQJOnUQDY0dKIUVBU7GVniGvobUiVGzkdK8X6xgZTp8QbC7fXT4/3qvehAVOhNbCBj6B7Q6TVl5t9MKYM8H7IWpIKID5KddGTXmyq6u31qOvI9wATPh0w6qaIL0MpiJyNLnObfcBDPh+x6M4PbFyVAa9KY+wWp5XzI+S4pkefiI8GwC8jCYyDrd6Yx0RAGz/lIaOERAWoUkXyPEvMrXaBfoiEkm3Aq84BRrN/ZSTAkQEelwwPqj+p0nEq1S/T5LirOLtlCmPwWH8kkG8rCYxjRJZZpIYbnI7mwiyw8RrEu7QK0v/hIygYk98sw1kbZQFoFqMUaLiCIVL0lYQMBL7hbDRxgfpDf4iOprnYiPoxiXboz3GP1+Uhl1ysu95QJN5nLUKIhJFH1BlHN5log4DNqdHnJ2vp2IAPJpvZCCImd8MnGicwDjgJwhXJUuqTnT6LktfgI73gSOtlWdr1G0OH2sb1NmwT2qM6c5yO1ZEMRoKmSDZ6PpMKvRZVauS5KFp4UWZPhSheIsoFEPB8gPX9SIK/FR3KeD9n1GoFeXllTVkB5kSM9N415tksKyYbutogLV0iYth4fO0ICdGravF+DldomYANWW+RkU5kLUiIsQNMlPsIe0P7eL19AEYj3lHOA0jHaY/sOo0aXN+S3+EjK5S4ldkawLt2VLjCo5yMhGyioAFuoMkMWnqTRE45rywsoL0yXAB2k2iURGwDxghpAa7eXne3a/2X6Goz1PtsH+p5ynoAILQuJj47tRowsr8hv8ZFKsqG3EzydJowqP0i7ux0GPdslIRuwWKTG3wDSnnAMUeIjVov9RF3uknSaKnrIZdyIQkpc9vTcNIYHtJf4SESEiucjaUwXHwsXLsRisXDFFVeYfauEScrd6iwBR+jgI9n1Js26jCw8Mapdkkk2BNn1GkBaz3TRCcf7oxeeZD0f4gVNlUhzsczOA9GnnCfU6basVnsUz0fCmCo+li9fzn333cfee+9t5m2SJimXu8UiC48BrK1P42m2OjFzPpKwAZCkUwNI65kuOr6BPR8JC9DSkA10yK43WdJ+pgvE9IBCkl5Q8XwkjWnio7Ozk7PPPpu//vWvjBgxwqzbpERSxgay8KRIS5eXpk5t9zG1OtM5H0l4vyAiQDvqjRhZ3qGUSv95HtC7zDKEnvvlDyr8gUR2vWO1x3bZ9SZLZm2gd0MzPfSSnOdDxEeimCY+LrnkEk466SSOOeaYQd/n8Xhob2/v9ZEukmoyBrLwpIjuah1fWUhxuuK8METOR4KeD33hEXdrUjR1etnV7cNigd3TKkBjeT5s4edJLTwiPpJCKRUOvaXlTBedGKE3SNHz0bEDggnOIXmOKeLj8ccfZ+XKlSxcuHDI9y5cuJDy8vLwx/jx480YUkxcybrcwzuebQaPKD9Ys0MTmGnr76EzWJ+PRD0fsvCkhC5AJ1UV91r8TSdmzkdkGkxo4REbSIntbW46PH7sVguTRxan78Yxyq0hSc9HaQ1ggaAfuqXfSyIYLj7q6uq4/PLLefjhhykoKBjy/ddeey1tbW3hj7q6OqOHNCBJ9XiAiPhoE/GRDKu3tgGw17jy9N54sLNdEhagoYVHbCApIrH+NHo9IGbOh9VqwWlPouGgPg907pQup0mgdzbdbVRJ+PefFvz9+3xA5HyXhASozRHxhIsITQjDfd4rVqygoaGB/fbbL/xaIBBg2bJl3HnnnXg8Hmy2yE7H5XLhcqXhMKEYJO1yL5dYbyqsqmsFYPb4ivTeeNBTbRMUoOXjtEexgaRYHbKBmbXpFqD9cz5A2/V6/cHE7KBoJFgdEPRpIdiK9HltcwE96Tyt+R4QmQccBng+QAu9dO4M5X3MTn18eYLh4uPoo4/mk08+6fXa97//faZPn87VV1/dS3hkGv0Y5YRaa0NU2GWrwSPKfVq7vWxs0o7P3mdcRXpvHrOzoWYDerKh3RbnDkz3fHjawNMBrjRPoMMcXYDOmVCR3hvHEKCgidAOtz8x8WG1ak2mWrdoIlTER0J8sSPNZ7roxJgHIIWqp7Ja2LFKNiIJYrj4KC0tZdasWb1eKy4upqqqqt/rmSbpXW9YfISSjKx53astIfSQy6SqIkYUO9N783C8vyj8UnS+gdsfpCRe8eEq1Q6V8rRrk86oaUaONKdp7vSwpaUbgL3TLUBjhN4ghZLrsrEh8SHht0T5qG4XkIFNSIwut5BCz5/opFMhbvJ61YzkfCTqZtOTjHzQ1Wj8wHKYVVtagQyEXCCy4zEi2RAk8ThJdK/HbqOK09dWXSdGzgdEcn8S94JK0mkyNHZ4qGvpwWKBvcdnKPTWJ+xS5NRsoCdhG5BeH8mQljrHN954Ix23SZik3Ww2hyZAOnZoC4/ebEgYktVbWwHYJyPiQ9ttR3s+9GTDhOP9oC08jV/IwpMgkZyfDPT/CdtA7+qKSL+XJBOPxQYSQreBqdUllBVkSoD29n4VhsRHtzdRz4d0OU2GvPZ8FEaFXZRK4CRDkF1vEiilMpdsGvBp5XDQ3+VuT9blLhUvyZCxfA+I6f2CVOL9Mg8kw0dbtJDLnEwI0AGajBUlKz7E85EUeS0+9NKqoNKOUk4IWXgSZuuuHlq6vDhsFvasTWNTIYjseKGX5wOMqHgRG4iXYDCDAhQGER/Jlt2L5yMZPgqFXzMiQAdoMlbk1AIBPV5/YtcTz0dS5LX40Hc7kMSkIwtPwnwUWnT2HFMWTu5KG/qiY7FpYbMokm6xLgtPwnzV1EmH20+Bw5rew8R0YoTeIJL7k3zDQbGBeAkEVTj8OmdCJkJvsatddE940p4Pdxt4uwd/rxAmr8WH02bFoh1kmFy8H0R8JEBmk02jFh39jx4i+UoHsYFE0Xe8e40tj7+s2Uj0hccZ2/vVk/DCE3W2RzDB781T1tZ30O0NUOqyp/dsJ50Bql3CCaeJ2oCrLJJDJBUvcZPX4sNisURlucuOx2wym2wa290OqZRci/crUSL5HhnY8QaDUaW2vcVHse5yT+aQSYsNVEBOuY6TcInt+AqsVssQ7zaBAeaCpHM+LJaovA9ZD+Ilr8UHRHa9CU86ethFcj7iwhcI8uk2rcdHNsX6IeJuTbzELrTrdbeBpzOV0eUNGc330IUH9F94XJoNdHkSjPdbbaHSe2ThiZOM5ntAxAvq7F3xVBgSoN2JzgMgvT6SIO/FRyTJKFl363Y5zTAO1uzowOMPUlZgT+8hUjoDxPqB8Mm63Z4EbaCgDJyhvAVZeIakxxsIn+mSUQEK/cosk971goTfEiRc6ZIp8aHnZQzg+Ug44RTEBpJAxEfI4LoSNbiSGrBYtfLNLnG3DsWqqJCLxZI9rlZIwQYg6pwfmXSG4pNtbQSCiupSF2PKhz500nB0AWov6NeVWN+EdKe08IgAHYq2bh9fNmrHK2SkzwtEzQV9PR8pCFDdE96avoNRhzsiPkK73q5Ed702uyZAQEIvcaAnm87JxI4XBvd8hBeeVHa9svAMxaq6yI432wRocViAJmMDIkDjRd+ETKoqojLdxyvo+DTx08/zkWzSMUDFRO2xdUsqI8sr8l58FIfVrux6zSSjyaYwuOcj2Xg/iLs1ATLa2RQGFaBF4dCbeD7MJBJyyZANRDcb7FPxVJTKJmSELj42pzK6vCLvxYducAl7PkB2PHHS7vbxZaOWkJmRWD9ELTz93f2peT6k4iVePspkqTXEFXqTnA9zWZnpZFNvV+R5HxFamMpGtGKC9ti6BRLtlp2n5L34KHGlYHAiPuLi47o2lILxlYVUlbiG/gYz8MUusQSDPB8SehuUne1udrS5sVpg73FpPkhMxxc70RBSFKDico+LYFCxKpNt1aFPs8HeYZ+kD5YDKB+v5QD63dC5M9VR5gV5Lz6SzvmASNilbauBI8o9wiGXdB+dHc2g8f5UFp7x2qO4WwdF93rsMbo0XF2UdgYToKkkHY+YpD22b48cWib046umLtr17rZjMtDdFgZtNqjbgC+g8AUSrGC0OSKbURGhcZH34iOlnA99x7Nrk3EDykEy7m6HweP9KS08k7XHXZul5HoQMnqYnM5gAjTZcmuAoipwlgBKFp5B0PM99h5bgSMT3W0hqsdH/3lAD7tAih6wXbIRiYe8Fx/hnI9kFp5KfeHZZNyAcozok2xzcuEpH6e5cAMeaTA0CHqlS0YFqB7vd/TvM5NSvN9iiXg/ZC4YkI+yYR4YoMcHaMdt2EIdV5OreNHzPjYlObj8Iu/FR7Ge85HMwqMr3Z5d0NNq3KByiO1tbpo6PditFmbWZijWD4PG+1PyfNgckdCLLDwxCQQVH2/Vu9tmKNYPcYfeVDIJgyI+hiTjnU0hah7oL0AtFku43DYpETpCPB+JkPfiIyXPh6sEiqu157s2Gjiq3EHv7zF9TGn4DJWMMEi8P+z5SGa3A1ELj9hALNbt1A4SK3HZ2T0TB4npDCZAQ5sQf1DhTTTeDyI+hqDL42dtfTuQwTJbGNQGIMVGY5J4nBB5Lz7Cno9kFx499NIiC08ssiLZFOLrcJpMtQtE5X1sSu77cxw97Lb3uPKwWzsjDJZwGiWMk3K5i/gYlNVbWwkqqC0vYHRZBrrb6gxwqrFOShUv0usjIfJefET6fKS68Ij4iMWqbEg2BfM6nIII0CHIHhsYWIDabVacdm06TKrLqQjQQYmEXDLo9YCovJ/Y4qMwpcq3UM5H21YIJjmX5BF5Lz5k4TEPrz/IJ6GTbDMa54X4Opx6/RLvN4GPsiHZFAYVoBBV+ZbMRiTaBqTJVD+yIt8DBvV+QYqHy5WOAatD66AqvZ+GJO/FR/TCkxSy4xmQlVt20eMLUFXsZMrIDMb6IS7Ph1Lg9iUT7xfv10C09fhY3xDqbps1C0/seH8k/yvZfi8W7dyQrqYkB5ibaBVvGT7JVsc3uOcjpU63VltU3x/J+xiKvBcfxam0VwfZ9Q7C0nWNABw2dSTWTMb6YdCFpzAq3p9Sk6nuZnC3JzG43OWdDU0oBbuNKqa6NIOxfhgy2bAolXJbuyvSZErmgl7UtfTQ1OnFYctwxRvEnfORtCdcen3ETd6Lj5STDfWwS9tW8HsMGlVusCwkPg7fY1SGR8Kg4sNqtYQFSFIl1wVlWqMpkIWnD7oAPWKP6gyPhKFd7qn0e4Govj/iAYvmrQ2aJ2ivseWZrXiDQft8QMT7lVTSMUT1+hDxMRR5Lz70MkuPP4g/mRK74lGhmnHpbhhNY4eHz7ZrXoDDpmaD+Bgi3p9y+G2S9igLTxilVER8TMsGGxg87FKcSr8XiOrzsCm5789R3ljbAMD8adkgQAfu8wEpltqC9PpIgLwXH0XRLXWTKa+yWCTpNAZvbdAWnZm1ZYwqzdBhctHEueNJyuUOkvsTg/UNnexoc+OyWzlwcmWmhzOkAE151ysh2H54/UHeDnk+5meFAB1iHtA9oL4k5wHp9RE3eS8+XPZIS92k3a0y6fRj2TptwsmKkEswAH491hs78TUSfkvRBkSAhlm6VhOg86ZUZd7dDnHnfCSVcAoiQGPw4eYWurwBRpY4mZXpfA8Y9GwXiK52kYaDZpP34sNisaTWXhvE4PoQDCreXB/K98iGkIu3M/J8APER6XKaYu6PLDxhIvkeWWADAJ6QHQxoAymU2oJsQmKgC9DD9xiV+aRzGDLvpzDVAoSq3bXHjh2SfD4EeS8+AEqMSjSTXS8An+9op6nTS7HTxn4TM9xUCCKNhax2rSohBilnuUu5bS+6vX4+2NgCZEm+B0REqGsg71doHkgm/AoR8dG+HXzu5K6RY7wREh9Zke8BQ4ZfSws0G+j0+JK7fmEFlIzWnjetT+4aeYKID1I8WAxk4emDvuM9aLeqcNfIjBLe8RZrOToxKE6lxwNEFp7WOggkaUc5xHtfNeMNBBk3opApI2Mn96UVpSLiY4jQW9Kej6IqcJYiyeca21t7WLuzA6sFDp86MtPD0Rgi4VQXH+09KfwPj9xDe2xam/w18oAsWBkyj6Eu92ASFTM5xrJsc7d7O7RHZ+mAbylK1eVeOgZsLlABaKtL7ho5hO5uP2KPUVgGEHxpxe/ROk/CkJ6PpAWoxQJVU7TnzbLr1b0es8dXUFHkzPBoQgyR91NW4ACgI1nPB0SJj3XJXyMPEPGBAcmG5ePBYgO/W4v15TGdHj8rNmvdDLMi2RQiYZcBFh0wwPNhtUJlaOGRSSf78j3iyvtJocmYzqjp2mPDF8lfI0fIqhJbHc/gobeyQm0e6HCnYgPTtMdGmQcGQ8QH0ee7JGlwNgdU7aY9b1xj0KiGJ+9+2Yw/qJhYVcTEqixwt8OQiYZggOcDoHqG9pjnC8+mpi42NXdjt1o4ePcscbd7Qt4vR5HWBjsGRakmG0JEfOT5PJB1JbY6uh24ymJ+uTTk+WjvMcLzIWGXwRDxQaSzYUqTjiw8QFRX02yoctHxRuV8DEDKng+I2ECeLzzLQpVOcyeNCCdzZ5wh8j0gknjeaYgAzW8byLoSW9BC4kPYgZ7z0eFO8pBJiHg+WjaC35vcNfIAER9EnWaZiru1ek/tMd/Fx/osaqmuE97tDJzzUWzEwhN2uX+e/DVygEi+Rxa62wcRoLrLvS2VXa++8DSty+tj1cMltlOzpMQWQofKhQTFAHOBnvPhD6rkDpkELf/LWarlf7V8ldw18gARH0QWng4jFp7G/BUfm5q62NzcjcNm4aDdqjI9nAh6zscgu96yAgMWHl2ANq7L28Rjjz/AO182A1mU7wFx5f2UFxrgcq+YBPZCCHjyut+HnmyaNWXWEBGgFuugjeb0ppPt7iTtwGKBkVO15xJ6GRARHxg06YQ9H2vyduHRvR77TcwidzvEFXbRbSAl8VE5Wat48fdA66bkrzOM+XDTLnp8AUaVupgxZmBPU9qJo+JJ3/WmZANWK4wKxfzz1Avau8Q2i8RHuM9L6YAl9xaLJTx3dSQrPkCSTuNAxAdGLTxTwObUXHtt+Vnjn1Wn2EYzRIY7RGygI6WFxxZJNsvThSe6yiUrSmx14rGBIs0GPP4g7mQbjQGM0nN/8tsG9hlfwYjiLCmxBfCEOo4OIkAhEn5rT6XiRZJOh0TEB5GFp7U7hYXHZoeRIbWbhwuP1x/k3ZC7Pat2OxDl+Rh40tEXnpQEKOR94nF0f4+sIp6EU6c9vCFO2uUOkV1vniadhktssynnB6IE6ODio9RlZMWLeD4GQsQHBnk+IK8Xnrc2NNLl1dzte46JXcaWMYZoqw29bSDpLHeA6vwttYx2tx+aLSW2OnF4PqxWSzj0kloIVvd85N+uVyux1TYhR07PMgEaTjwf2Aagd8VL0oQTj9fnbRh+KER8AGWGiY/8bTD01EfbAThl79rsyW7XiaPSQRcf/qBK/nwXyOuqp2dXazYwd2JldrnbISrnY/CFJyJCDUg+z8OKlw83tdDp8WdXia2ONz7Ph74epCQ+RkwGq0PrqNq+Nfnr5DAiPoAKw1zu+bnwdLh9vPJZPQDfmDM2w6OJQRzVLoUOGw6bJppSK7WMWnjy6IwXpRRPrdwGwGnZaANxNJqDqHh/ShUvEyMVL3l22OTTqzQbOHr66CzchMQnQMPnu6QSerPZoxpPSuglFiI+iEo2dPsJBFNxuYfcrU1r82rhefmznXj8QXYbVcyssVkWcoHIrneQHY/FYjEm/FYxUeuiGfDm1UGDn+9oZ+3ODpw2KyftNSbTw+lPHKW2YFAINrriJY+STnu8AV74RNuEfHO/cRkeTQyG6G6qEz7fJRXxAVJuOwQiPohMOJDijqd8gnZaYsCbV81lnv4otOOdPTa7Khx04t71GrXw6AmH+dNsTLeBo2dUh5N3s4o4Ek4hsvCktOuFqIqX/Mn9eeXzejo9fsZXFjJ34ohMD6c/6cz5AKieqT3Wf5radXIUER+Aw2YNHy6X8sJTnV/Nxna2u3n7S+0Mh1NnZ6G7HaLCLoOfNWNY4vGo/GqxHQgqnlml5XtkZdgN4upyC1E2kErlG0Tlf+WHDQD8e4WW23D6nHHZF3KB+HM+jEg6Bqidoz1uX5nadXIUw8XHwoUL2X///SktLaW6uprTTjuNtWuz3+1UYfjCkx/i49lV21EK5k4cwYSqokwPJzZxVLuAkVVP+SVA397QREOHhxFFjuw6wTSaeD0fheL5SIb6Nnf4ILnT981WARqfDRjm+aidrT02ro3cWwhjuPhYunQpl1xyCe+99x6LFy/G7/dz3HHH0dXVZfStDMW4ihddfOSHy/2pj7I4yRC03Juw+Bg8+96QTrcQSTzemV82cPLetTjtWepMjaPUFgwUoKNDLvfGNeDrSe1aw4CnV20jqGD/SSOy5zTrvuhNxoYMuxhQ7QJQWgOltYCC+o9Tu1YOYngP7JdeeqnX5/fffz/V1dWsWLGCww8/3OjbGYbhvT7yIM63tr6Dz3e047BZsjPJECITDkDB4IlmhtlAzV7aY/N6zd0/hJt3ONPl8fPSp6FKp2zd8QK427THgsEFqGGbkPJxUFwNXQ2w42OYcGBq18tilFL8Rw+57JuFiaY64U3IEAmnhQZUu+jUzoG122H7RzDx4NSvl0OYvk1pa9P+6SsrK2N+3ePx0N7e3usjExi28OhxvpYvobslxVFlN3pZ3fxp1dnX10GnZ5f26CwB2+CJkIbZQGkNlI8HFdQmnRzm5c/q6fEFmDyymDnjKzI9nIFxt2qPQ4kPvcwylT4foJ0dMm6u9nzbh6ldK8v5dFs76xs6cdqtnLR3lm5CIO5SWz3nI6WO1zpj9byP3J4HksFU8aGU4sorr+TQQw9l1qxZMd+zcOFCysvLwx/jx483c0gDYlivj6JKqAqVWG3N3UknGFQ8E3K3Z22SIUQtOhVDvtUw8QEwdj/tcevy1K+VxTyV7ZVOAD43+N3a8yHswBwbyN15AOA/KzWvx3F7jg4v3FlJnEnHVSXaRqqly5tat2OISjoV8dEXU8XHpZdeyscff8xjjz024HuuvfZa2trawh91dXVmDmlADJ10xu2vPebwwvPBpha2t7kpddk5anqWJhlC3O52iEo2NNQGVqR+rSxlZ3skyXBYCFAscbjcDUo4hbzwfHj9wXBn26zs7RFNT6v2WFgx6Nuqil0AeANBOjwpesDGhMRH84bIXCQAJoqPH/3oRzz77LO8/vrrjBs3sFG6XC7Kysp6fWQCw0rsIDLp5LD40Ps6nLjXGAoctgyPZhDinHDARAGa6u4pS3kmlGSY1ZVOELGBgnKtHH4QDJ0HaucAFmjdAp2NqV8vC1m6rpGWLi+jSl0clm3n+USjVCQEWzh4D5JCp43iUOuF5k5vavctroKKCdrz7atSu1aOYbj4UEpx6aWXsmjRIpYsWcLkyZONvoUpGLrwjD9Ae9y2IicPFXL7Avz3kx1AFle56CQRdmk1wgbG7A1Wu5Zw2Lol9etlIYtC7dSzOtEUIjYQhwCtCuUudXj8ePwpnstSUB453TRHvR96oulps2ux27K00gm0M1aCof/rIcQHQFWJ5v1o7vSkfm8JvcTEcGu55JJLePjhh3n00UcpLS2lvr6e+vp6enqyu9ysokibdHZ1p6h0QavxdxRrlRY52Fr3lc930uH2M6a8gAMnx04kzhoSCLuMDMV6U97tADgKI1UvObjwfLGjnTX1Wjv1k/eqzfRwBifs+agY8q3lhY7wGT9NRthBOPSSe+G31m4vr63ZCWR5lQtEvB42p3b8wRDoeR+G2ICIj5gYLj7uvvtu2tramD9/PmPGjAl/PPHEE0bfylBGhpRuoxFK12aHsftqz3Ms9KKU4t6lXwLw7f3HZ2cnw2gSCLuMKikANO9XyrteiAq95J74+Oe7mwA4anqWtlOPRhegcdiAxWIJzwVNHQbMBTmcdPrc6u34Aoo9x5QxY0wWnukUjS4+Ciq0SqQh0PM+mrvE82EWpoRdYn2cf/75Rt/KUKrLQuKj3QBjg5zN+3hzfROfbW+n0GHjvIMmZXo4Q5NA2KWs0I4z5Do2ZMczNjdtYGe7m/+s0EIuFxw2DMKqCdgAwKjS0FxghPgIez5W5lQINhBU/OPtTQCcke2JphC1CYnvzBlDvaBj9tEeWzfnfPuFRMjiIF16qQ5NOB0ePz1eI3a9obyPHNvx3BPyenzngPHZ29sjmuhkwyGwWCzhhaeh3Z36vfWFZ8fH4DdI1GYBf39rI95AkP0njWDupCwPu0FCNgAwykgvaPVMsBeCp02reMgRXvhkBxubuqgocvDt/TPTHiEh4kw21akKiw8DbKBwBFRO0Z5vk3NedER8hChx2SlwaL8OQ3c8DV/kTInV6rpW3vmyGbvVwgWHTcn0cOIjAZc7wEgjd72VU6CwEgKenOl429bt45H3NgNw8fzdMzyaOEkg4RQwNuxis0fO+MiR3B+lFH95XRNS3z94MsUuwxtlG0+i4iMUdmnqMsDzATA+1OF281vGXC8HEPERwmKxUF2qxfwbOgzY9ZZUQ8VEQOWM2tW9Hl/fp5axFYUZHk2cJOhy1z1ghux6o7tc5kjo5cF3N9HlDTBjTBnzp43K9HDiI4GEU4gKuxhhA5BzeR+vfdHAmvoOip02zj94UqaHEx9h8VER19sN9XwATD5Ce/zqDWOulwOI+IjC0Fgv5FTC4VeNnbz0mXaGx4VH7Jbh0SRAoi5302zgA2Oul0G6vX7uf3sjAD+cv1v2djTtS4KeD9NsYPM7xlwvgyiluDPk9fjeQROzP9lYJ2wD8eZ86KW2Bnk+poTEx/ZVESGU54j4iELf9TYYNenkkKvtvmVfoRQcPb2aaTXD6KC0RBeeEoMXngkHaY8blw37hMMnltexq9vHxKoiTpxVk+nhxE+Cno9w2MWwXe/hYLFC4xfQts2Ya2aId79sZlVdKy67lQsOHSahV0g+58OosEtZbajni4JNw389MAIRH1GEkw2NCLsATJmvPW5+B7xdxlwzA+xsd4cbSv1w/jDyegT8kYWnKL7ui6PMEKDOEuhqHNbHanv9Qf667CsAfnD4lOxuKNWXBBcewz0fRZVQGyq9/3KJMdfMELrX49v7jw//noYFSeZ87Or24g8YtGmQ0EsvhtEMYj7VRk86I6dqrXUDXtj4pjHXzAD/CFU3zJ04TKobdLqbAaXtOoviG7fhC4/dGZl0NrxqzDUzwDOrtrG9zc2oUhffzPaGUn3patAeS+I7g8hwGwDY/Wjt8cvXjLtmmlm5ZVc44fwHhw8jrwf07vMRByOKHFgsWlf2FiMaT0JkM/rVUmOuN8wR8RFFJOHUoEnHYoHdj9Web1hszDXTTFuPj0fe19qDDyuvB2jeBoCiKrDGd/6MqQvPMBUfwaAKJxtfcOjk7D7Lpy8Bf6S3QnF8CbK6DXR5A3R7UzxYTGc3XXy8DkEDSvkzwF0hr8dpc8YybkQWn+UTi+7EPB92mzW8Gd3RapAnfNKh2kaoef2wD78ZgYiPKCI9HgxceKaGxMf6xcPygLGH3t1Ep8fPHqNLOHJaFp9eGwt9xxvnogO9ezykfJy2ji4+6j6IhIGGEa98vpMvG7soK7Bz1oETMj2cxOjl/aqK61uKnTZjy+5Bq3hxlWs5SMOw0+UXO9p59YsGLJZhuAmBhL1fQFhgbd1l0NEghRWRbqcbxfsh4iMKw+P9oCWb2Zxad7th1mSood3N3W9oO94fzt8t+1up96VLO+49IfERsgGvP0irESebAoyYBFVTQQWG3aTjCwT5wyva+UTnHjSJ0oJhUt2goy86CXi/LBYLY8q1UvLtRu16bfZIxcOG4Rd6uWPJegBOnDWG3UaVZHg0CRIMRLygJaPj/ja9ncC21m7jxhLO+xhe84AZiPiIYky5FnZp7vLg9hnkGnUWw8SDtefrh1fo5XcvrqHLG2Cf8RWcuk+Wn1wai87EPR8FDltYgNTtMnDS0T1gwyz08sDbm1jf0EllsZP/HS6N5aLRF53ixLx24yu1XW9di4E2MEzzPt7e0MQLn9RjtcClRw2TxnLRdDeDCmrer+L4Es8Bxo3QxIdhng+Iyvt4Y1h6wo1ExEcUlcVOSlx2lIKtRi48wzDvY/mmFhZ9tA2LBX719ZnDz+sBUQtPYs2wJoQWni1mLDwbXhs2k87Odje3v7oOgGu+Nn349HSIplO3gfgXHYAJldrCY6gN6HkfW5cPm14PXn+QXz6jdec9Z97E7D9ALhad2sm7FI2M2/sFkbDLNiPFx/gDwV4AnfVQ/4lx1x2GiPiIwmKxhBeezc0m7Ho3vQ1eA69rEoGg4pfPfAbAd/Yfzz7jKzI7oGTRwy4liYmPiWbYwMRDtEmnfRs0rjHuuiZy0wtf0OUNMHt8xfA4PCwWScT6wSQBWjEeRk7TduHDxO3+t7e+4svGLkaWuLjyuGmZHk5y6OIjgZALwFgzPB+OAtj9GO35Z08Zd91hiIiPPkys0iadTUYuPCP3gPIJ2hkfG5cZd12TePT9zXyxo53yQgdXHT8908NJniQSTgEmhGxgi5E24CjUst0B1r1k3HVN4t0vm3lm1XYsFvj1qbOGp+cLkg67mCI+ILIRWfO8sdc1gW2tPdzxmpandt2J0ykvHIaeL4iEXxPchETCLt3GJZ8DzDpde/z0P8PGC2oGIj76MLGqGIAtzQY2BbNYYI/jtedZrnZburzc+ormav/pcXtQORxOrh2IFBeezS0GN4abfpL2+PGTxl7XYHyBINc/q7nazz5wAnuNi681fVaSZNjFlJwPgJmhheeL58HTYey1DeZXz31Gjy/AAZMr+cacYZjzpZOs5yOUcNrlDdDWY1DyOcAeXwNHkVaEsD03zv1KBhEffdA9H5uNnnT2/rb2+MWz4Ok09toGcsvLa2jr8bHnmDLOOnBipoeTGp3J5XzoNlDXYqC7FWDmN7TKp4bPsjre++A7m1i3s5MRRQ5+Olxd7TpJhl108dHc5aXTY1CvD4Cx+0LlbuDvgTX/Ne66BvP62gZe/mwnNquFX586a/ic4xOLzuRsoMBhC7faNzT04izWBAjAp4uMu+4wQ8RHH/R4v6Eud9BON63cDXzd8MVzxl7bIJas2cljH9QBcOOpM7ENV1c7aM2lOnZoz8sT27VNqNS8X9vbevD4DWwIVTgiMumsfty46xrIl42d/CHk+br6a9OpKBrGni+A9pANlCZ2Fk1ZgYOKUIKtod4PiyWyEfn4CeOuayAdbl84yXTBIZOG11lOsQiLj8Q8HwDjQ4nHhuZ/QST08tnTw/7Mp2QR8dEHPd5ft6ubQNDAeJzFAvt8V3u++lHjrmsQDe1ufvqkdvbI9w+ZxP7DqY16LDp2aH01rI6Ewy4jS5wUOW2hqieDvR/7fEd7/OTfWdfp0u0LcOmjH9HjC3DwblWcOXd8poeUOm2amKY88eZopuV97P0t7fGrN6Bjp7HXThGlFNc99Sl1LT2MrSjk8mP2yPSQUqdDO4070XkAYGq11tNk7U6DQ2S7HwvOUmjfmhMnXieDiI8+jCkvxGmz4gsotrcavPDsfab2uPFNaK0z9topEAwqfvyvVbR0edlzTBnXnDCMk0x12rZqj+VjwZqYmUdXPX3VaHDex+7HQmGlVmqXZQdM/e7FNXyxo53KYid//Pbs4ZtkqtPTCp527XmC3i+AKSM1D9h6oxeeyikw7gCt6uXT/xh77RR5Ynkdz63ejt1q4Y6z5lDismd6SKnTph0PQUXiYnp6jVZavGZHu5Ej0qpe9BywPA29iPjog81qYbeQ2v3caIMbMREmHgoo+ORfxl47Be5d9hVvb2im0GHjz9+dg8s+jM7uGIjwjje53fueoX4Gn2832AbszojLNYtCL4s/38kD72wC4A/f2ofRZQWZHZAR6DZQVKXF2RNkz1rNBj4z2gYgshHJotDL2voObnhOK7H/6fHT2HdCfOegZDUBf+QclYrEc9imh0JOhns+AGZ9U3v89N/gM6iT7jBCxEcMZumTzrY24y+uu91XP54VZVYfbdkVbp9949dnsnv1MGudPBCpio/wwmOGDYTCb2uyo+JhR1sPV/17NaAdHHfk9GF2hs9AhL1fydnAzFqtysfwTQhoycdWO+xYBTs/M/76CdLjDXDpoytx+4IcsccofjAcu9nGon2rFn61uZLK+dDzXba0dBt3yKDObkdpttndnFWb0XQh4iMGemnhp2bsePY8FeyF0LQONr1l/PUTYFtrDxc+tAJ/UHHy3mP41txh2kgqFnpYqzy5n2nWWM0GTNn1jt1PO+vF1w0fPWz89ROg2+vnoodW0NrtY6+x5fzf13Ig5Kaj20AS7naIeL82N3fT7jaw1BK00t9pJ2rP3/2LsddOEKUU1y76mPUNnVSXurjtzH2Gf8hNpzUq5JJg+BWgqsTFyBIXSsG6nQZXKdrscMAPtOfv3Z0Vm9F0IuIjBvqO5xMzPB8FZTD7LO35W7cZf/04aXf7WHD/cho6PEwbXcpNp+81vMvp+qLvepNdeEKej22tPezq8ho1Kg2LBQ66WHv+zp3gN/j6ceIPBLnssY9YvbWNEUUO7jxrDk57Dk0Jeqw/Sc/HiGIntaHzntbsMMFDdcjl2uPH/8roEeu/f3ktT6/S8jz+9J05VIXKS3OCXZu1xyRCLjp66MXwvA+Afc8FRzE0fJ51OWBmk0MzjXHsOaYMq0U7Truh3YRY3CGXgcUGXy7JyPHaXn+QHz68grU7O6gudXH/9/enbLidVjoU+o4nSc9HWYEj3O/DFO/HPmdpbuD2rVrMN80opbjhuc949YsGXHYrfztv/3CDvZyhNbXQG8CetboHzISNyLi5Wg5Y0Afv3WX89ePgn+9uCp9cvfD0vThot6qMjMM0wp6PxKuddHTxYcpmtLAC5pytPX/vbuOvn8WI+IhBodMWzn0wxeBGTIK9ztCev5le70cwqLh20Se8vaGZYqeNf5y/P7WhTn45Q8AHLV9pz6uSP4VzVq0efjPBBhwFMC/k/Xjr9rTX+t+z9Csefm8LFgv86Tuz2W9iDiQX9qVZW1SpnJz0JXQP2MdbTbABiHg/VjygVeekkZc+ref6Z7V8k58cuwffyoXS6r60hjwfI5L3fOw/WWs78N5XzUaMqD8HXgRYYP3L0LTenHtkISI+BmCfcRUAvL+xxZwbHPpj7fGL56BxnTn36EMgqLjuqU/4z8qt2KwW7jx733BuQ07RslHbTTqKoSz5PJY5EyoAeOdLkyaduQvAVQ5Na2HtC+bcIwZ/e/Mrbn5JO9zuFyftyddmjUnbvdNGMKDlVQGMSj6PZV5o4XlrQ5Ox53voTD0WqvcEbyd8+A/jrz8Ar69p4LLHP0Ip+O4BE7j0qORFelajL+Yjkheg8yZXYbHAl41d5njCq3aLNB9M82Y0k4j4GIDD9tBaci9d22jODapnhBLOFLz1R3PuEYU/EOQn/1rF48vrsFrgljP25shpOVLV0JcmrXqHUXsklWSmc0TIBt7/qhm3z4SGYAVlsP//aM/fvDUt3o87l6znN//9AoCL5+/GgkOTn5Szml2btIMc7YUpudz3mzSCAoeVxg6POeWWFkvE+/HuX8Btkoclihc+2cEPHvoQrz/IcXuO5tenzsytfC+dYDBygvTomUlfprzIEU4+ftcs78fhP9UeVz8G21eZc48ovmzsNL6Ld4KI+BiAw3YfidWi1Xcb3mwsfJOfaI+rH4NtK8y5B1qOx2WPfxROKvvzd+dw+r45VNnSF33CSWHHC7B7dQljygvw+IPmecDm/VDz0Gz/CFY9Ys490HI8fv/SmvChgVceuwdXHT/Mz20ZjAZNYDFyKliT71vjstuYN0XLg3hzXZMRI+vPrG9q1U/dTfD6QnPuEeLfK7Zy6aMr8QUUp+xTy1/O3he7LUeXgV0btYoye4HW2C0FDgrZgGmhl3FzYa9vAQpevs7UypcVm1v45t3vcN79H9BidDJ9AuSo1aXOiGIn+4yvAGDpOpO8H+Pmhs55UPD8laa0227u9PC9v73PC5/U47RZuevsfTl571rD75NVNOqej9QWV4vFEvZ+mOYBK6mG+ddoz1+9HrqNFzluX4CfPLmau0KJhT87cQaXHT01N3e7OroArZ6R8qUOm6rZwLL1JtmAzQEn/l57/sF9pvT9UEpx55L1/PTJ1QQVfGf/8dz+7dk4clV4gFZBAto8kIIABcKJuMvWmRR+Azj6ek0obX7btPO/XvhkB2f99X1au32UFTrM+1niIIctL3Xm76GFJZasaTDvJsf9Rov771gFy/9u6KU/397O1+98mw82tVDqsvO38+Zy3MzEDtgaloR3vanv7HXxsWTNTvP+Uef9EEbN0JoNLfm1oZeub3Pz7XvfZdHKbdisFn5z2iz+9/AcaSA1GGHvV+o2cPjUkYCW/9XabdJOcbejYMbXtYZYL1xl6M63y+Pn4kdWhr1eFxw6mYWn7zW8D46Mh50h8VGdfMhF5+DdRlLisrOttYflm3alfL2YVIyHg3+kPV/8C/B7DLu0PxDkdy+u4eJHVuLxBzlmRjWP/e+BGS2rFvExCMfN1Drivb6mwZxEI9B2vkf/Qnu+5NeGHDSllGLRyq188+532Nbaw6SqIp665GAO3yOxo+WHJZ6OyI6ndk7Klztsj1EUO21sau42L95rc8BJt2rPP7zfsBDce181c8qdb7F6axsVRQ7+ueAAvjcv+az/YcXWD7XHmr1TvtTu1SXMGFOG1x9k0UoT+3Ec/1stR2Xz21rvDwP4srGT0+96hxc/rcdhs/C70/fi5yfvmdteL52d2sm8Rni/Cp02TtxL27j9e4WJ53IdcgWU1Gg5S6/9ypBLNnV6OPcfH3DPUs3zueCQydzzvf0ocmb23B4RH4MwY0wZcyeOwB9UPPrBFvNuNHeBtlB62uGZi1MKv+zq8nLJoyu58l+r6fEFOGzqSJ655FB2rx7mx2LHy7YV2oFd5ROgLPUqjhKXndPmaIeSPfze5pSvNyCTDo2E4Bb9ANzJ9xZx+wL89r+f892/vkdjh4c9Rpfw7CWHcsjuI40bbzbT2aDF+7HAuP1TvpzFYuGsA7Wk1Uc/2GKeB6xiAhweygN74aeRUuEkCAYVD7y9kZP+/CZrd3YwqtTF4z84iO8ckHzy7bBCKdjynvZ83FxDLnnGflop8guf1NPjNelEalcJnHK79vzdO2HdKyldbvHnOznxT2/yzpfNFDlt3HnWHH55yp5ZkeeT+RFkOeccpO0UH31/C76ASdUIVht8/U4t3rfhVXjjdwlfQinFy5/Vc/zty3jhk3rsVgs/PW4P7j9/f8qLcqyB2GDUhY6nHn+AYZfUvQWvfLaTnWZ5wACOX6iVBjdvgKd/mJTr/aMtuzj1zrf565sbUaHY/qKLD2FCqGFaXqAvOtUztCZOBnDa7FqKnDY2NHTygVnJx6DtfCccpG1EnjgHvIlXJNS1dHPOP97nhuc+x+0LcujuI3n+R4fmZi+XgWj+EroatDNdavc15JL7TxrBhMoiOj1+c70f004I9f4Anr4I2nckfInWbi9XPP4R//vPD2no8LDbqGKeueSQrMr3E/ExBCfMGsPIEhcNHR4eX26iwdXMglP+rD1f9ntY89+4v/XLxk7Ou385Fz60ImxoT118CJceNTUrFG5a0Ree8QcadsloD9ifXzOxCVBxFZz5T7A5tUPn3r497m9t7PDw0ydX84273mHtzg5Gljj527lz+d03986NY9EToe597dFAGygtcHDqbG3i/v3LawkGTfJ+2Bxwxv1QXA0Nn8F/r4xbhHZ7/dz68lqOvm0pb29opsBh5VenzuSfCw7IjVOKE2Hz29rjuLlaQz8DsFgs/E+oNP32V9cbf95PNMf+Cmr20vLA/nNB3Pkf/kCQh97dxFF/WMrTq7ZjtcCFR0zhv5cdxtTR2eX9zrOVKXGcdiuXHLkbAL9/cQ31bSbufPf5dkTxLroQdnw86Nvr29z88plP+drty1i2rhGnzcqlR+7O8z86LHw4Xl7h7YbN72jPJx5s6KV/cpyWuPjI+1tYsdnEne+4/eCEUOXDa78aMuu9w+3jz6+t56hb3+DfK7TzbL657zhevuJwjtkz8VM8c4Ivl2iPBtvAj46aSpHTxorNu3jSzJ1v2Rg44x9gsWpl+MtuHfTtXn+Qxz7YwtF/WMqdr2/A69e8HS9efjjnHjQpdw6JSwT90M6Jhxh62bMOnMCUUcU0d3n5y+sbDL12L+wuTYQ6imHzW/Cf/4HAwKfqKqV49fOdnPCnN/nFM5/R0uVlanUJ//7hwVx7wgwKHKlV+5iBiI84OPegScweX0GHx8/Pn/7U3PKk436j/cN4O+DBU2Ke/VLX0s0Nz37G4be8zj/f3YwvoDhy2ihe+fHh/PT4aRQ6s8/Q0sKXr4G/R4udp9BUKBYH7VbFt/bTeqNcu+gTc5qO6ex3vnbglArCk+fD58/0e8uuLi93LlnPoTe/zm2L19Hh8bPX2HL+88OD+cOZ++TW4WCJ0LRBSzi22mH3Ywy9dG1FIVceuwcAC83eiEw+DI77rfb89d/EFCBuX4BH3t/Mkbe+wbWLPmFHm5vxlYXce85+PPQ/BzB5ZI6d1RMvfg+se1l7PmW+oZd22Kz87EQtgfUfb200r+8HaD1qvvOI5gn94jl45pJ+jQgDQcV/P97BiX9+iwv++SHrGzoZUeTgV6fO5IXLD2PfCdkbarOoTBb6xqC9vZ3y8nLa2tooKyvL9HDCrK3v4OQ73sQXUJx30ESuP2WmeTsKdxs8/E3Yulwrwz3nKYK1+/LeV808+O4mFn++E93ru/+kEfz4mD04aLeq/MhgH4xFP4CPn4B5l8DXbjL88ru6vBx921JaurwcNnUkfz13rnk7ioBfy/v45F/aIYRn/B1mfoPPtrfxz3c28/SqbXj82kS026hiLjt6KifvXZv75ZND8dYf4dUbYMqRcO7Thl/eHwhyyp1v88WOdqaMKubx/51HtZkhjTf/EKl6OOrncNhPqdvVw8Pvb+aJ5XW0dmuu/+pSFxcdsRtnHTghK3e5aWXNC/D4d6F0DPz485S6HMdCKcUlj67khU/qKS2w8+RFBzG9xsS1as1/tfwfFdAOpDzldprc8K8P63j0/S1s3aU1wSx22vjeQRO5+IjdM5bnl8j6LeIjAR7/YAvXLPoEgG/PHc9vvjHLvCY97nbUI9/CUvceXmshC20/4P6OSAz7sKkjufDw3ThkdxEdgCbYbpupeYy+/6LhLned975qZsEDy+n2Bjh4tyruPWc/Ss06ETgYgKcvho8fR2Hh4YLvcn3riQRDDss9x5Rx4RFTRHToKAV3H6x5Pk66LdK63mDqWrr5zn3vsa21h91GFfPgggMYN8LEhN5lt4b7vywrOIoftJ6DG82zNW5EIf9z6GS+e4CIjjD/XgCf/kc7uPFr5nSMdfsCfO9v7/Ph5l1Ul7r4y9n7sv+kSlPuBcDHT6Ke+gEWFWSDaybf67yU+oAWWi8vdHDewZP4/sGTGFHsNG8McSDiw0T+s2IrV/1b6xI4tbqEX56yZ7gDohG0u318uKmFZeuaeOeLTfy8cyGH2zTB8291NJ/sfR3fO3Ra1iUPZZy3/6w15hk1HS5+TzszwySWb2rh/H98QJc3wKhSF9d8bTrfmDPWME+Y2xdgVV0rb61vYsnn2/lu852cY38VgDeDe/P87jdyxuGzmTtxhAjPaNa/Co98U4uTX/kZFJrnct7S3M2373uXHW1uChxWLjt6KhccOgWn3ZjNiD8Q5PMd7by1oYklXzSwz7ZHudb2CHZLkDXB8fy99kaOO/xQjppeLcIzml2b4Y59IeiHH7xhSK+fgWjt9nLmve+ybmcnFovWP+Oyo6Ya5nVQSvFlYxdvrW/kjXWN2L96jdusf6bM0s12VckdFVcz57CTOGXv2qwJtYv4MJmXPq3nuqc+CffFnzW2jJP2quXoGdVMGVkcd4VJa7eXjU1dfLGjg0+3t/Hx1lY+395OdCJ9gR1+P/IlTml9CAsKKnfT1Pwex5vxow1PvN1w51xo3wZfv0PLlzCZVXWt/PiJVWxs6gJgfGUhp+xdy/Eza5hWUxr3LrTL42dTcxdrdnTw2fZ2PtnWyuq6NrxRZd1WC1xZvZKLOu7EHnRDUZXWinnO91JuG50zKAUPnKwl55m4442mrqWbn/xrNR9s0hKQK4udnLTXGE7cawyzxpbF7RFz+wJs3dXNmnrNBj7d1sbKzbvo6tNL4syRm7nBeytF3matLP/QH2uH0jkKDf/Zhi3P/1g7HXjKfDi3f66U0bT1+PjN85/zZCjZ22W3hm1g9oQKRsaZe+UPBNne6mZNfTtr6ztYvbWNlVt29Tt75dARu/iT+j1V7lDPoTnnaJUxRSZ6XRJAxEcaaOvRqgwefGcT/ii14LRb2X2UdiBZWaGDEpcdhcLnV7j9AVq6vDR2eNjR5qatJ3ap1qSqIuZNqeKo6dUcOnWk1onuy9fhqQuhM9QBdfdj4ehfwpjUOzgOe175ObxzB5SNhR+tNKy0big8/gD3v72JO5dsoNMTyUS3WS1MGVlMbUUh5YUOygq1Uld/QOHxB2np8tLc5aG+zUNTZ+wSuupSFwdOqeKo6aOYv0e15k7d+bnmUm4MtY8fMxuOuUGbaPPdA7LqUS1HxuaCH63QWlWnAaUUT320jZtfWsPO9t5/y0lVRYyvLKK80EF5oQOLRUsQ9PiDtHb7aOnysrPdTX27O2Y1bWmBnQMmVTJ/ejVHTa9mbEUhdNRr88BXb2hvqpgIR/0CZn4DbHlWUt2XrSvg78dquRHn/1dr3JcmlqzZye9fWsua+t4nH4+tKKS2ooBRpS7KC53oTiq3L0hbj4+2Hi872tzsaHMTiFG+7bJb2XfCCOZPG8X8adXsMboEi6cdFv8SVjygvaloJBxymdas0pVZj7iIjzTS3Onh5c928sInO1ixeRc9CVZBjC5zscfoUmbWljNrbBlzJ1ZSUz7A4ulu13qAvHcPBEPCZfLhcNClWmZ/Pu6C178Kj35Lqww5618Z8Qh1e/0sWdPAs6u288GmlnASYLxUFjvZfVQJe9aWMbO2jLmTKplUVRQ7pBLwwQd/hTcWao2oAEbvBQddoi1AaRJeWUXDGvjHcVrez9HXw2FXpn0I/kCQt79s5pmPtvHuV83sSLASpthpY/fqEvasLWfP2jL2mzCCaTWlsUMqSsHnT8PLP9O8fQDl4zWPz+zvmhpuylq6W+Bvx0DLlzDzdPjW/WkfglKK1VvbePLDOj7Y2ML6hs6Evt9ps7J7dQnTa0rZs7aMfSeOYFZt+cChvM3vwvNXRM4xKhwBB1wIc87WKv4ygIiPDBEMKup2dbO2voOWLi8dbj8dbh8WiwWn3YrLbqWy2ElViYvRZS4mVBYl11+/aQO8/lutBFOFxE7JaNjzNG0BGrd/fuyC1i/WssD9PTD7e3DaXzI9IpRS7Gz38EV9O00dHtp6fLS7/VgAh02zg4oiJ1XFTqpLC5hQpe2ME6azEZbdAh89pB0bDuAshRkna5Pv5MPzQ4js/AweOh066zW7//5LWWH7LV1evtjRTkOHm9ZuX9jLabNYsNusjChyUFnsZGSpi4mVRVQWOxPP3/F0wnt3wwf3QlfoxF2rA6YeC7O+qW1IDOrwmtV0NsDDp0P9J1BaCz98OyvCEG09PtbsaKex0xOaC/wotOXWabeGPWI1ZQWMG1FEdakr8byxgE87B+jNP2jCS2fSYbDXtzRbKEtfV9OsEB933XUXt9xyCzt27GDmzJncfvvtHHbYYUN+33AWH2mntU6beFY+BO7WyOuuMs3lOOkwGLuf1j3VmUM1/x074c1btePHAaYeB995VOsOmW90t8CK+2H5P6B9a+R1mwsmHAiTj9C6PNbsnRUTsmF4OrW//xu/g4AHqvfUXO259DPGi68HVj+uecQaPou8brFqrcWnHKEJs9o5UJpDp1oHfPDJk5oHqKdF6wp73nNQPT3TI0s/wYDmDVvxAGx8E4ha1qv31OaB2jkwZh+tf4hJXvKMi48nnniCc845h7vuuotDDjmEe++9l7/97W98/vnnTJgwuDtIxEcS+L3w1evw6SJY96Lmfu6FRTO4kXtA1e5QtZsWKy6r1WrhXSUZGXZCtG2Duve0mvc1/wV/yK29//9qjdnyYZc/GMEgbP1AKzH84jnoiHEeRMVErRpIt4ERE7U8mbJaTbBme95Id4vW+2bti9pE2xM62nzqcXDa3VCcJwfnDcbOz+HTf2s20LSu/9dLarTFuWp37WPEJO3vXzZOE27ZbgOeTtixSmsi9tlT0BbqNDt6Ly3UMnJqRoeXFbTWaf2B1r4YOt25zxLvKNJat4+ZrZ2obmCeSMbFx4EHHsi+++7L3XffHX5txowZnHbaaSxcOHgWuoiPFAkGYMdq2PSm1mp8x+rYC1E0zlItXlhQrrlpC8qhoCL0vAIKyrQue3aX9jjYc11Rh81KDfy5v0fbtfl6tNCB/ujp1A6F6mzQSudavoy4lXXG7Q9HXge7HZXqbyz3UAqa1sPGpVqb6R2rtCO6B8NRFLGB6L99tA2E/84usIcebY7Q61GvWaJj1FHTS9+pRgU1EanbgD/KFjwd0L4d2rZqeQ1t27TQSjSVu8HhP4V9vpv9i2YmaNum2cDGNzUbaFyj/c4HwuYM2UBF1N9/xADzQNTfO/zoinzdEmfJsQqG/vbu0Bzgjjz3dGpzV/v20Mc2TWxE/wzFo7Rcl4Mu1cYh9Ka7RTtuYOty2L5KC035tAo9HMVwbZ2hXpCMig+v10tRURFPPvkk3/jGN8KvX3755axatYqlS5f2er/H48HjiWSJt7e3M378eBEfRtKxUzO65g3aQt78ZWRS9yaWFJUxLDatZfqUI7TclrH7yYKTCD27IjbQ/KX22FoHHdsjHoThQNXuWjhxxslaF9N8TLJOFm+X5hlpWheyg/WaDbRv18T+cKFsrNZEcPpJsMfXpNQ4EYIB7f9/xypNmMy7yNDLJyI+DM/MampqIhAIMHp070OtRo8eTX19fb/3L1y4kBtvvNHoYQjRlI7WPqbGOOvC3a6V77rboKdVyx1xt4aet4U+b4eAV/vwe7RYa8CjhXsC3qjnnt6727A4sMT+3FEY9VEUeXQWazua4lFQPk4LEYzcI7fyVtJN4QgtCXXy4f2/5u3WvArRNhC2hdBrnvbQ394beQx4I3/36K/1dfPSRyRG24G9IIYNFGp/69IaLRxQPlZbcCon52clh1E4i2H8/tpHX/wezdPobtXEaF876NmleaOi/85+T+///UFtYCAskb+5XbeDgpAtFGlh4bLa0MdYLUxUmqcHJhqB1Qaj9tA+MoxpaeF9M7eVUjGzua+99lquvDJSGqd7PoQ0UVCmfQj5i7MIKqdkehRCJrG7Qr1RZO4V0oPh4mPkyJHYbLZ+Xo6GhoZ+3hAAl8uFy5WnJ3AKgiAIQh5i+KloTqeT/fbbj8WLF/d6ffHixRx8sDmHfQmCIAiCMHwwJexy5ZVXcs455zB37lwOOugg7rvvPrZs2cJFFxmb3CIIgiAIwvDDFPHx7W9/m+bmZn71q1+xY8cOZs2axQsvvMDEiRPNuJ0gCIIgCMMIaa8uCIIgCELKJLJ+G57zIQiCIAiCMBgiPgRBEARBSCsiPgRBEARBSCsiPgRBEARBSCsiPgRBEARBSCsiPgRBEARBSCsiPgRBEARBSCsiPgRBEARBSCsiPgRBEARBSCumtFdPBb3hant7e4ZHIgiCIAhCvOjrdjyN07NOfHR0dAAwfvz4DI9EEARBEIRE6ejooLy8fND3ZN3ZLsFgkO3bt1NaWorFYjH02u3t7YwfP566urq8ODdGft7cJt9+Xsi/n1l+3twm135epRQdHR3U1tZitQ6e1ZF1ng+r1cq4ceNMvUdZWVlO/KHjRX7e3Cbffl7Iv59Zft7cJpd+3qE8HjqScCoIgiAIQloR8SEIgiAIQlrJK/Hhcrm4/vrrcblcmR5KWpCfN7fJt58X8u9nlp83t8m3nzearEs4FQRBEAQht8krz4cgCIIgCJlHxIcgCIIgCGlFxIcgCIIgCGlFxIcgCIIgCGklb8THXXfdxeTJkykoKGC//fbjzTffzPSQTGPhwoXsv//+lJaWUl1dzWmnncbatWszPay0sXDhQiwWC1dccUWmh2Ia27Zt43vf+x5VVVUUFRUxe/ZsVqxYkelhmYLf7+fnP/85kydPprCwkClTpvCrX/2KYDCY6aEZwrJlyzjllFOora3FYrHw9NNP9/q6UoobbriB2tpaCgsLmT9/Pp999llmBmsAg/28Pp+Pq6++mr322ovi4mJqa2s599xz2b59e+YGbABD/Y2jufDCC7FYLNx+++1pG18myAvx8cQTT3DFFVfws5/9jI8++ojDDjuME044gS1btmR6aKawdOlSLrnkEt577z0WL16M3+/nuOOOo6urK9NDM53ly5dz3333sffee2d6KKaxa9cuDjnkEBwOBy+++CKff/45f/jDH6ioqMj00Ezh5ptv5p577uHOO+/kiy++4Pe//z233HILd9xxR6aHZghdXV3ss88+3HnnnTG//vvf/57bbruNO++8k+XLl1NTU8Oxxx4bPgdruDHYz9vd3c3KlSv5xS9+wcqVK1m0aBHr1q3j61//egZGahxD/Y11nn76ad5//31qa2vTNLIMovKAAw44QF100UW9Xps+fbq65pprMjSi9NLQ0KAAtXTp0kwPxVQ6OjrU1KlT1eLFi9URRxyhLr/88kwPyRSuvvpqdeihh2Z6GGnjpJNOUgsWLOj12umnn66+973vZWhE5gGop556Kvx5MBhUNTU16ne/+134NbfbrcrLy9U999yTgREaS9+fNxYffPCBAtTmzZvTMyiTGehn3rp1qxo7dqz69NNP1cSJE9Uf//jHtI8tneS858Pr9bJixQqOO+64Xq8fd9xxvPPOOxkaVXppa2sDoLKyMsMjMZdLLrmEk046iWOOOSbTQzGVZ599lrlz5/Ktb32L6upq5syZw1//+tdMD8s0Dj30UF577TXWrVsHwOrVq3nrrbc48cQTMzwy89m4cSP19fW95i+Xy8URRxyRV/OXxWLJWc8eaAeqnnPOOVx11VXMnDkz08NJC1l3sJzRNDU1EQgEGD16dK/XR48eTX19fYZGlT6UUlx55ZUceuihzJo1K9PDMY3HH3+clStXsnz58kwPxXS++uor7r77bq688kquu+46PvjgAy677DJcLhfnnntupodnOFdffTVtbW1Mnz4dm81GIBDgt7/9Ld/97nczPTTT0eeoWPPX5s2bMzGktOJ2u7nmmms466yzcubgtVjcfPPN2O12LrvsskwPJW3kvPjQsVgsvT5XSvV7LRe59NJL+fjjj3nrrbcyPRTTqKur4/LLL+eVV16hoKAg08MxnWAwyNy5c7npppsAmDNnDp999hl33313ToqPJ554gocffphHH32UmTNnsmrVKq644gpqa2s577zzMj28tJCP85fP5+M73/kOwWCQu+66K9PDMY0VK1bwpz/9iZUrV+b83zSanA+7jBw5EpvN1s/L0dDQ0G83kWv86Ec/4tlnn+X1119n3LhxmR6OaaxYsYKGhgb2228/7HY7drudpUuX8uc//xm73U4gEMj0EA1lzJgx7Lnnnr1emzFjRs4mUF911VVcc801fOc732GvvfbinHPO4cc//jELFy7M9NBMp6amBiDv5i+fz8eZZ57Jxo0bWbx4cU57Pd58800aGhqYMGFCeP7avHkzP/nJT5g0aVKmh2caOS8+nE4n++23H4sXL+71+uLFizn44IMzNCpzUUpx6aWXsmjRIpYsWcLkyZMzPSRTOfroo/nkk09YtWpV+GPu3LmcffbZrFq1CpvNlukhGsohhxzSr3R63bp1TJw4MUMjMpfu7m6s1t5Tlc1my5lS28GYPHkyNTU1veYvr9fL0qVLc3b+0oXH+vXrefXVV6mqqsr0kEzlnHPO4eOPP+41f9XW1nLVVVfx8ssvZ3p4ppEXYZcrr7ySc845h7lz53LQQQdx3333sWXLFi666KJMD80ULrnkEh599FGeeeYZSktLw7um8vJyCgsLMzw64yktLe2Xz1JcXExVVVVO5rn8+Mc/5uCDD+amm27izDPP5IMPPuC+++7jvvvuy/TQTOGUU07ht7/9LRMmTGDmzJl89NFH3HbbbSxYsCDTQzOEzs5ONmzYEP5848aNrFq1isrKSiZMmMAVV1zBTTfdxNSpU5k6dSo33XQTRUVFnHXWWRkcdfIM9vPW1tZyxhlnsHLlSp5//nkCgUB4/qqsrMTpdGZq2Ckx1N+4r8ByOBzU1NQwbdq0dA81fWS22CZ9/OUvf1ETJ05UTqdT7bvvvjlddgrE/Lj//vszPbS0kcultkop9dxzz6lZs2Ypl8ulpk+fru67775MD8k02tvb1eWXX64mTJigCgoK1JQpU9TPfvYz5fF4Mj00Q3j99ddj/r+ed955Simt3Pb6669XNTU1yuVyqcMPP1x98sknmR10Cgz2827cuHHA+ev111/P9NCTZqi/cV/yodTWopRSadI5giAIgiAIuZ/zIQiCIAhCdiHiQxAEQRCEtCLiQxAEQRCEtCLiQxAEQRCEtCLiQxAEQRCEtCLiQxAEQRCEtCLiQxAEQRCEtCLiQxAEQ7nhhhuYPXt2pochCEIWI03GBEGIm6FO3TzvvPO488478Xg8OX8mhyAIySPiQxCEuIk+XfWJJ57gl7/8Za9D7goLCykvL8/E0ARBGEZI2EUQhLipqakJf5SXl2OxWPq91jfscv7553Paaadx0003MXr0aCoqKrjxxhvx+/1cddVVVFZWMm7cOP7xj3/0ute2bdv49re/zYgRI6iqquLUU09l06ZN6f2BBUEwBREfgiCYzpIlS9i+fTvLli3jtttu44YbbuDkk09mxIgRvP/++1x00UVcdNFF1NXVAdDd3c2RRx5JSUkJy5Yt46233qKkpISvfe1reL3eDP80giCkiogPQRBMp7Kykj//+c9MmzaNBQsWMG3aNLq7u7nuuuuYOnUq1157LU6nk7fffhuAxx9/HKvVyt/+9jf22msvZsyYwf3338+WLVt44403MvvDCIKQMvZMD0AQhNxn5syZWK2Rvc7o0aOZNWtW+HObzUZVVRUNDQ0ArFixgg0bNlBaWtrrOm63my+//DI9gxYEwTREfAiCYDoOh6PX5xaLJeZrwWAQgGAwyH777ccjjzzS71qjRo0yb6CCIKQFER+CIGQd++67L0888QTV1dWUlZVlejiCIBiM5HwIgpB1nH322YwcOZJTTz2VN998k40bN7J06VIuv/xytm7dmunhCYKQIiI+BEHIOoqKili2bBkTJkzg9NNPZ8aMGSxYsICenh7xhAhCDiBNxgRBEARBSCvi+RAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa2I+BAEQRAEIa38P9usoiM2pP6RAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHFCAYAAABSEJsFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgDElEQVR4nO2dd3hb5fm/b21bnrEzHGcDIQkJIxBKWGVDWS2llLZQRlO+PyhQoLSUAh3QQUqhlJZZaAu0jFLaQFkFAoGETUgIM2SRnTi2E+8ha7y/P47OkWTLssY5kiw993X5kiwrR6+Tk3M+7zM+j00ppRAEQRAEQcgS9lwvQBAEQRCE4kLEhyAIgiAIWUXEhyAIgiAIWUXEhyAIgiAIWUXEhyAIgiAIWUXEhyAIgiAIWUXEhyAIgiAIWUXEhyAIgiAIWUXEhyAIgiAIWUXEh1DwPPDAA9hsNt57772Mj/Xpp59y/fXXs2HDhgE/O/LII5k1a1bGn2EVkydP5vzzzze+37ZtG9dffz0rVqzI2ZoKhQ0bNmCz2bjllltyvZQB/86CkI+I+BCEFPj000+54YYb4oqP4ca2bdu44YYbRHwIgpB1RHwIgmAqPT09DDYyqru7O8ursRalFD09PblehiAMO0R8CEKY119/nWOOOYaKigq8Xi+HHHIIzz77rPHzBx54gK9//esAHHXUUdhsNmw2Gw888MCgx3ziiSfwer1ccMEFBAIBent7+eEPf8h+++1HVVUVNTU1HHzwwfz3v/+N+XOzZ8/m8MMPH3C8YDDIuHHjOP30043Xdu3axcUXX8y4ceNwu93stttuXHfddfh8vkHX9eqrr3LggQcC8J3vfMf4Xa6//nrjPe+99x5f/vKXqampoaSkhNmzZ/Ovf/0r5jh6SuvFF19k3rx5jBo1Cq/Xi8/nM9JQS5Ys4ZBDDsHr9TJv3jwAHnvsMY4//njGjh1LaWkpM2bM4Cc/+QldXV2DrjldQqEQt99+O/vttx+lpaVUV1czd+5cnnrqKQC++93vUlNTE1cYHX300cycOdP43mazcemll3LPPfcwY8YMPB4PDz74YNzP9fv9nHfeeZSXl/PMM88kvd7e3l6uueYapkyZgtvtZty4cVxyySW0trYOOP6Pf/xj6urq8Hq9HHbYYbz77rtxj9nQ0MCFF17I+PHjcbvdTJkyhRtuuIFAIJD0ugTBVJQgFDj333+/AtTSpUsHfc+rr76qXC6XOuCAA9Rjjz2mnnzySXX88ccrm82m/vnPfyqllGpsbFQ33nijAtSdd96p3nrrLfXWW2+pxsZGpZRSRxxxhJo5c6ZxzFtvvVU5HA71q1/9ynittbVVnX/++eof//iHWrRokXr++efVj370I2W329WDDz5ovO+Pf/yjAtTq1atj1vncc88pQD311FNKKaV6enrUPvvso8rKytQtt9yiXnzxRfWzn/1MOZ1OddJJJ8X82UmTJqnzzjtPKaVUW1ub8ffy05/+1PhdNm/erJRSatGiRcrtdqvDDz9cPfbYY+r5559X559/vgLU/fffP+Dvdty4cer//b//p/73v/+pf//73yoQCKgjjjhC1dTUqAkTJqjbb79dvfLKK2rx4sVKKaV+9atfqT/84Q/q2WefVa+++qq655571JQpU9RRRx2V1L9pKpxzzjnKZrOpCy64QP33v/9V//vf/9RvfvMb9cc//lEppdQHH3ygAHXffffF/LlPPvnE+LfW0X/XffbZRz3yyCNq0aJF6uOPP1br169XgLr55puVUkq1tLSoo446StXV1an33nsv6bWGQiF1wgknKKfTqX72s5+pF198Ud1yyy2qrKxMzZ49W/X29hrvPe+885TNZlNXXXWVevHFF9Wtt96qxo0bpyorK41/Z6WU2r59u5owYYKaNGmS+vOf/6xeeukl9atf/Up5PB51/vnnp/NXKggZI+JDKHiSER9z585Vo0ePVh0dHcZrgUBAzZo1S40fP16FQiGllFKPP/64AtQrr7wy4Bi6+AgGg+rSSy9VbrdbPfTQQwnXFggElN/vV9/97nfV7Nmzjdebm5uV2+1W1157bcz7zzzzTDVmzBjl9/uVUkrdc889ClD/+te/Yt530003KUC9+OKLxmvR4kMppZYuXTpATOhMnz5dzZ492/gcnVNOOUWNHTtWBYNBpVTk7/bcc8+N+/cBqJdffjnh30EoFFJ+v18tXrxYAeqDDz5I+P5UWLJkiQLUddddl/B9RxxxhNpvv/1iXvve976nKisrY84JQFVVValdu3bFvDdafKxfv17ttddeaq+99lIbNmxIab3PP/+8AtTvfve7mNcfe+wxBah7771XKaXUypUrFaB+8IMfxLzv4YcfVkDMv/OFF16oysvL1caNG2Pee8sttyhAffLJJymtURDMQNIuQtHT1dXFO++8wxlnnEF5ebnxusPh4JxzzmHLli2sWrUqqWP19vZy2mmn8fDDD/Piiy9y9tlnD3jP448/zqGHHkp5eTlOpxOXy8Vf//pXVq5cabyntraWU089lQcffJBQKARAS0sL//3vfzn33HNxOp0ALFq0iLKyMs4444yYz9C7HV5++eWU/i4A1q5dy2effWasPRAIGF8nnXQS27dvH/D38bWvfS3usUaMGMHRRx894PXPP/+cs846i7q6OhwOBy6XiyOOOAIg5u8hHtHrCQQCg9aXAPzvf/8D4JJLLkl4zMsvv5wVK1bwxhtvANDe3s4//vEPI20SzdFHH82IESPiHmf58uXMnTuXMWPG8MYbbzBp0qSEn9ufRYsWAQzoVvn6179OWVmZ8e/5yiuvAAw4v84880zj3NB55plnOOqoo6ivr4/5ezvxxBMBWLx4cUprFAQzEPEhFD0tLS0opRg7duyAn9XX1wOwc+fOpI7V2NjICy+8wMEHH8whhxwy4OcLFizgzDPPZNy4cTz00EO89dZbLF26lHnz5tHb2xvz3nnz5rF161YWLlwIwKOPPorP54u5Me3cuZO6ujpsNlvMnx09ejROpzPpdUezY8cOAH70ox/hcrlivi6++GIAmpubY/5MvL+7wV7v7Ozk8MMP55133uHXv/41r776KkuXLmXBggUAQxZw9l/TYDUXAE1NTTgcDurq6hIe8ytf+QqTJ0/mzjvvBLRalq6urriiZbDfFWDhwoXs2LGDCy64gOrq6oSfGY+dO3fidDoZNWpUzOs2m426ujrj31N/7P97OZ1OamtrY17bsWMHTz/99IC/N72Wpf+/pSBkA+fQbxGEwmbEiBHY7Xa2b98+4Gfbtm0DYOTIkUkda+LEidx666189atf5fTTT+fxxx+npKTE+PlDDz3ElClTeOyxx2IEQ7zi0BNOOIH6+nruv/9+TjjhBO6//34OOugg9tprL+M9tbW1vPPOOyilYo7X2NhIIBBIet3R6H/mmmuuiSlsjWbatGkx3/cXP4leX7RoEdu2bePVV181oh3AgILKwVi6dGnM91OmTBn0vaNGjSIYDNLQ0JBQNNjtdi655BKuvfZafv/733PXXXdxzDHHDPg9YfDfFeCqq65i3bp1nHvuuQQCAc4999wkfqMItbW1BAIBmpqaYgSIUoqGhgajSFgXGA0NDYwbN854XyAQGCA4R44cyT777MNvfvObuJ+pC2xByCYS+RCKnrKyMg466CAWLFgQs+sOhUI89NBDjB8/nj333BMAj8cDJN6dH3/88bzwwgssWbKEU045JaaDw2az4Xa7Y25gDQ0NA7pdIJL2efLJJ3nttdd47733jG4RnWOOOYbOzk6efPLJmNf//ve/Gz8fjMF+l2nTpjF16lQ++OAD5syZE/eroqJi0OMOhf6765+v8+c//zmpP99/Lf13+tHoqYW77757yONecMEFuN1uzj77bFatWsWll16a1Hqisdvt/PnPf+byyy/n/PPPT+pzo9H/vR566KGY1//zn//Q1dVl/PzII48E4OGHH45537/+9a8BHSynnHIKH3/8Mbvvvnvcf0sRH0IukMiHUDQsWrQorjnYSSedxPz58znuuOM46qij+NGPfoTb7eauu+7i448/5tFHHzVumLqD6b333ktFRQUlJSVMmTJlwA3wsMMO4+WXX+ZLX/oSxx9/PM899xxVVVWccsopLFiwgIsvvpgzzjiDzZs386tf/YqxY8eyZs2aAWubN28eN910E2eddRalpaV84xvfiPn5ueeey5133sl5553Hhg0b2HvvvXn99de58cYbOemkkzj22GMH/fvYfffdKS0t5eGHH2bGjBmUl5dTX19PfX09f/7znznxxBM54YQTOP/88xk3bhy7du1i5cqVLF++nMcffzzVv36DQw45hBEjRnDRRRfxi1/8ApfLxcMPP8wHH3yQ9jEH4/DDD+ecc87h17/+NTt27OCUU07B4/Hw/vvv4/V6+f73v2+8t7q6mnPPPZe7776bSZMmceqpp6b9ub///e+pqKjg4osvprOzk6uuuiqpP3fcccdxwgkncPXVV9Pe3s6hhx7Khx9+yC9+8Qtmz57NOeecA8CMGTP49re/zW233YbL5eLYY4/l448/5pZbbqGysjLmmL/85S9ZuHAhhxxyCJdddhnTpk2jt7eXDRs28Nxzz3HPPfcwfvz4tH9XQUiL3Na7CoL16B0Zg32tX79eKaXUa6+9po4++mhVVlamSktL1dy5c9XTTz894Hi33XabmjJlinI4HDHdIv1bbZVS6uOPP1Z1dXVq//33V01NTUoppX7729+qyZMnK4/Ho2bMmKHuu+8+9Ytf/EIN9t/xkEMOUYA6++yz4/58586d6qKLLlJjx45VTqdTTZo0SV1zzTUxbZlKDex2UUqpRx99VE2fPl25XC4FqF/84hfGzz744AN15plnqtGjRyuXy6Xq6urU0Ucfre65554Bf7fxOoni/X3ovPnmm+rggw9WXq9XjRo1Sl1wwQVq+fLlg3bfZEIwGFR/+MMf1KxZs5Tb7VZVVVXq4IMPjvtv++qrrypA/fa3v417LEBdcsklA17v32qrc/PNNytA/fznP096vT09Perqq69WkyZNUi6XS40dO1Z973vfUy0tLTHv8/l86oc//KEaPXq0KikpUXPnzlVvvfVW3H/npqYmddlll6kpU6Yol8ulampq1AEHHKCuu+461dnZmfTaBMEsbEolKBUXBEEoIn74wx9y9913s3nz5oTpHEEQMkPSLoIgFD1vv/02q1ev5q677uLCCy8U4SEIFiORD0EQih6bzYbX6+Wkk07i/vvvH+DtYQZDWZnb7XbsdukBEIoDER+CIAhZIFGLLsB5552XcE6QIBQSknYRBEHIAv39SfqTjieLIAxXJPIhCIIgCEJWkQSjIAiCIAhZJe/SLqFQiG3btlFRUTFkjlQQBEEQhPxAKUVHRwf19fVDFk/nnfjYtm0bEyZMyPUyBEEQBEFIg82bNw/pmpt34kOfGbF58+YBNsGCIAiCIOQn7e3tTJgwIanZT3knPvRUS2VlpYgPQRAEQRhmJFMyIQWngiAIgiBkFREfgiAIgiBkFREfgiAIgiBklbyr+RAEQRCEfCYYDOL3+3O9jJzgcrlwOBwZH0fEhyAIgiAkgVKKhoYGWltbc72UnFJdXU1dXV1GXlwiPgRBEAQhCXThMXr0aLxeb9EZYSql6O7uprGxEYCxY8emfSwRH4IgCIIwBMFg0BAetbW1uV5OzigtLQWgsbGR0aNHp52CkYJTQRAEQRgCvcbD6/XmeCW5R/87yKTuRcSHIAiCICRJsaVa4mHG34GID0EQBEEQsoqID0EQBEEQsoqID0EQBEEQsoqID0EQBKEo6OkLopTK9TIERHwIgiAIRcCaHR3s+8sX+eUzn+Z6KTlh/Pjx3HXXXTGvvfnmm3i9XjZu3Jj19YjPhyAIglDwLNvYQl8gxOtrmk07plKKHn/QtOOlQqnLkVLXydy5c1m6dKnxvVKKK664giuuuIJJkyZZscSEiPgQBEEQCp7mTh8A21p7UEqZ0i7a4w+y189fyPg46fDpL0/A607+Fj537lweeOAB4/t//OMfbNq0iWuuuQaAZ555hh/+8IeEQiGuvvpqLrjgArOXHIOkXQRBEISCp6lDEx9dfUHaeopvKNzcuXNZuXIlnZ2ddHd3c+211/LrX/+aiooKAoEAV155JYsWLWL58uXcdNNN7Nq1y9L1SORDEARBKHiaO/uM51tbe6j2ujM+ZqnLwae/PCHj46T72akwZ84cHA4Hy5cv56WXXqK2tpZ58+YB8O677zJz5kzGjRsHwEknncQLL7zAt771LdPXrSPiQyh4ev1BLnpoGXMmjeDSo6fmejlCFmnv9XPfks/58r71TB1TkevlCDlEj3wAbG3pYWZ9VcbHtNlsKaU+cklJSQn77rsvCxYs4N577+Xpp5/GbteSH9u2bTOEB2jFqVu3brV0PZJ2EQqed9fv4tVVTTz4VvYruoXc8tSKbdy+aC23vbQm10sRcoxe8wFa3UcxMnfuXP70pz9x7LHHcswxxxivx2s/ttpGPmXxsWTJEk499VTq6+ux2Ww8+eSTxs/8fj9XX301e++9N2VlZdTX13Puueeybds2M9csCCnxWUM7AF2+QI5XImSb7W3aTWZrkd5shAgxkY8iPR/2228/nE4nN998c8zr48aNi4l0bNmyhbFjx1q6lpTFR1dXF/vuuy933HHHgJ91d3ezfPlyfvazn7F8+XIWLFjA6tWr+fKXv2zKYgUhHVZu7wCguy9IKCQGQ8VEc4eW529s783xSoRc0usP0hG1+djWWpznw8MPP8zFF1/MtGnTYl7/whe+wMcff8zWrVvp6Ojgueee44QTrK1lSTlZdeKJJ3LiiSfG/VlVVRULFy6Mee3222/nC1/4Aps2bWLixInprVIQMmDl9nbjeY8/SJlneORohczRQ+2NHT5CIYXdLhNJi5HoqAfAliKKfIRCIZqamvjrX//KqlWreOKJJwa8x+l08vvf/56jjjqKUCjEj3/8Y2pray1dl+VX4ba2Nmw2G9XV1XF/7vP58PkiJ0Z7e3vc9wlCOvQFQqxt7DS+7/IFRHwUEU1h8REIKXZ19zGy3JPjFQm5oKkzVnwUU83HkiVLOProo5k+fToLFiygqip+oe2Xv/zlrGYpLL0K9/b28pOf/ISzzjqLysrKuO+ZP38+N9xwg5XLEIqYtY2dBKJSLV19uXEjFHJDc9SOd0d7r4iPIkU/DybWeNm0q5umDh+9/iAlKbarDkeOPPJIQqFQrpcxAMu6Xfx+P9/85jcJhUID/OSjueaaa2hrazO+Nm/ebNWShCJELzbVkaLT4kEpFePtsEPqPooWPfKx55hywx+joU3Oh1xiSeTD7/dz5plnsn79ehYtWjRo1APA4/Hg8chuRLCG6HoPEPFRTLT3BugLRnZ8O9p9Cd4tFDJ6zceoCg/11SWsa+pia2sPk0eW5XhlxYvpkQ9deKxZs8ZwUROEXPFZQ0fM992Sdika+hcZSuSjeNELj0eVexg3wgsUb7ttvpBy5KOzs5O1a9ca369fv54VK1ZQU1NDfX09Z5xxBsuXL+eZZ54hGAzS0NAAQE1NDW535na2gpAKeuSj3OOk0xegUyIfRUNzZ3/xIZGPYkUXoiMrPIyrLgE0l1Mhd6QsPt577z2OOuoo4/srr7wSgPPOO4/rr7+ep556CtDMTKJ55ZVXOPLII9NfqSCkSGNHL82dfdhssM/4Kt5ct5PuPhEfxUJ/8SFeH8WLXvszqtxDe3UpUFwdL/lIyuLjyCOPjGvFqpPoZ4KQTT4Lm4tNqS2jNtzl0OWTtEuxoHc4eN0OuvuC7OgQ8VGsREc+evzaNWBbm4iPXCKzXYSCRU+5zBhbSblHq3CXgtPiQe9wmDFWK3iXtEvxElPzEY58SNolt4j4EAoWvdh0xtgKY/Kk+HwUD7q1+sx6TXw0d/oIBPPP70Cwli5fwCg017pdwmmXtl4Zt5BDRHwIBYse+ZheV0mZW4t8SM1H8dBseDtU4LDbUIoY3w+hONBTLqUuB2UeJ3VVJdhtmvtxc5dEw3KFiA+hIPEFgoat+oz6SsNSXbpdigddfIypLGF0hVbzI+22xYeRcgmfAy6HnTGVWsdLsQ6YywdEfAgFybrGLgIhRWWJk/qqErxh8dEtBadFgx7lGFnuZnT4ZiPio/gwik3LI1YP9VL3kXNEfAgFiZFyGVuJzWaLFJxK2qUoUEpF3XQ8jNEjHx0SZi82+kc+AKPotJjabcePHz9g1Mmbb76J1+tl48aNWV+PjPcUChJ9pste4U4Ho+BU0i5FQbS1+qgKjxFmF6+P4iPaWl3HiHxkKj6UAn93ZsdIF5cXbLak3z537lyWLl1qfK+U4oorruCKK65g0qRJVqwwISI+hIJkZdjjY3pdBQBlYfEh9urFgb7brfA4KXE5GFMpNR/Fit5yHT3ReNwIk8SHvxturM/sGOly7TZwJz+bZu7cuTzwwAPG9//4xz/YtGkT11xzDQBf/epXefXVVznmmGP497//bfZqByBpF6Eg0SMfusdDWTjtIgWnxUFzlKkUEFXzIWmXYqMp3HIdm3YpPov1uXPnsnLlSjo7O+nu7ubaa6/l17/+NRUV2gbtsssu4+9//3vW1iORD6Hg0G3V7TatzRIwul0k8lEcRHa7WpHhGCk4LVriRj6qteFyGbucurxaBCIXuLwpvX3OnDk4HA6WL19uDH2dN2+e8fOjjjqKV1991eRFDo6ID6Hg0FMuk0eWURr29/C6xeG0mGjuiL3h6GmXRik4LTqa49Z8aGK0tdtPly9gbE5SxmZLKfWRS0pKSth3331ZsGAB9957L08//TR2e+6SH5J2EQqOz3Rb9bpK47Xy8MXFFwiJy2UREGmzDYuPCu1ms6urD19Aol/FglLKiHyMiop8VJS4qCzRrgnF1PEyd+5c/vSnP3HsscdyzDHH5HQtIj6EgiMy06XCeE3vdgGxWC8G+rdXVntduJ3a5a5R6j6KhvbeAH2BSNdTNKZ1vAwj9ttvP5xOJzfffHOulyLiQyg8IjNdIpEPt9OOy6G1pYnFeuHT3C/Pb7PZolIvUvdRLPTveopmXBGKj4cffpiLL76YadOm5XopUvMhFBbRturTo8QHaEWneo5XKGziuVqOqShh864e6XgpIpr6dT1Fo7fbFnraJRQK0dTUxF//+ldWrVrFE088Efd9J5xwAsuXL6erq4vx48fzxBNPcOCBB1q2LhEfQkGxtrEzxlY9mjK3Lj4k7VLoGDUfUTcd6XgpPprj1HvoFIvF+pIlSzj66KOZPn06CxYsoKqqKu77XnjhhayuS8SHUFB8ppuLhW3VozE6XiTtUtAMVmQ42jAak8hHsRDP3VQnYrFe2GL0yCOPJBTKvyJ7qfkQCgq92HSvfikXiHh9SOSjsOnwxS8yFIv14qO5c2D6TacYC07zCREfQkGhF5vqturR6C6nUnBa2Oi73fJ+RYaGxboUnBYNiSIf48M1Hw3tvdJ+nwNEfAgFg1Iqqs12YORDb7cVi/XCpjlOsSlEvD4k7VI8NHUMdDfVGVXuweWwEQwpmXacA0R8CAVDU4ePnV2xturR6EZj3ZJ2KWj0YtP+u93RUnBadAx2LgDY7TbGVqXe8aKUMmdxwxgz/g5EfAgFw8qGgbbq0UjBaXHQ3+NDR0+7dPQGJPVWJCSKfEDEZj2ZjheXywVAd3e3Sasbvuh/B/rfSTpIt4tQMCRKuUB0wanceAqZwW445R4nXreD7r4gje0+Jo+Uy18hEwopdnYNXvMB+oC5XUkVnTocDqqrq2lsbATA6/UO6KgrdJRSdHd309jYSHV1NQ7HwE1essj/PqFgiMx0GZhyAc3nA8RevdAZLPKhuZyWsL65ix3tvUweOTwGggnp0dbjxx/U0gO1cbpdAMbpkY8k0y51dXUAhgApVqqrq42/i3QR8SEUDPo028EjH+FuF4l8FDSG+KgYeMMZXeHRxIcUGBY8utdLVakLjzP+Dj1Vl1ObzcbYsWMZPXo0fr/fnIUOM1wuV0YRDx0RH0JB4A+GWNcU31ZdR0+7dErBaUHTpBcZxsnzi9dH8dCcoM1Wp746PYt1h8Nhyg24mJGCU6Eg2NnZRyCkcNhtjK0sifseveBUig0Lm+YE8zwMrw8RHwVPUwKDMZ3KEq1gUowHs4+ID6Eg0EPttWVu7Pb4RWBS81H4DGatrhOZ7yJpl0InYjAWfzMC2rRrAF9ATMayjYgPoSBoGqTIMBrpdil8oq3V450LMlyueEgkQnV08dEXkA1JthHxIRQEO8N5/sGq2kEKTouB5ihr9XheL0bNhxScFjzNHfpk48GvCW6HRD5yhYgPoSBINDpbxytpl4JHd7QcLM8fXfMhTpWFTTKRD48e+QiG5HzIMiI+hIIgUZGhTnlU2kUuNIXJUI6Wo8P5/+6+IB0SAStompK4JuhpF6UgEJJrQjYR8SEUBDu7wmmXssFDrN5w2iUQUvTJFMuCZDCDMZ1St4PKEk2ESrttYZNMNFQXH4BRKyRkBxEfQkEw1E0HwBs1Xl1a6woT44aTYLcrHS+FTzCk2Bk+F0Yninw4RHzkChEfQkGQTIjV6bBT4tJOeel4KUySEaHS8VL4tHT3EVJgs0FNgmio02HHEW7Nl2hodhHxIRQEetolkaEQRLw+uqXotCBpSqLDYbRRdCqRj0JF34zUeN04HYlvc3r0QyIf2UXEhzDsCYUUuwzxMfiOFyJ1H50S+ShIkvF7kchH4TNU4XE0YjSWG0R8CMOelu4+guFK9UQhVoiOfIj4KESak7jpjAmn5ho7RHwUKsnU/uhExIdEQ7OJiA9h2KN7O4zwunANEWKNuJzKhabQUEoZN51ERYZScFr4NCUxVE5H0i65QcSHMOzRq9prkwix6sPlpOC08Oj0BYzQeaLIx2hJuxQ8zUkMldMxjMZEfGQVER/CsCeZ6ZU6utGYpF0KD323W+Z2xLVW19FdThvbfWI2V6CkFPmIcjkVsoeID2HYE7HUTibyIRbrhYpxHgxxw9FvSH3BEK3dfsvXJWSfVK4Jbol85AQRH8KwZ2cSHQ46+nA5SbsUHsk4WgJ4nA6jMHmHFJ0WJKlEPiTtkhtSFh9Llizh1FNPpb6+HpvNxpNPPhnzc6UU119/PfX19ZSWlnLkkUfyySefmLVeQRhAKvldKTgtXJIxGNORotPCpimNbhdJu2SXlMVHV1cX++67L3fccUfcn//ud7/j1ltv5Y477mDp0qXU1dVx3HHH0dHRkfFiBSEeqYRYy8K1AFLzUXhEXG6HFqHR022FwsIfDNHSnULaxSE+H7nAmeofOPHEEznxxBPj/kwpxW233cZ1113H6aefDsCDDz7ImDFjeOSRR7jwwgszW60gxCG1tIt2yovJWOGRUuQjPN1WhssVHru6+lAKHHYbI7xDC1Gp+cgNptZ8rF+/noaGBo4//njjNY/HwxFHHMGbb74Z98/4fD7a29tjvqzAFwhy1eMfcPk/3xczmQJDj3zUJpF2KQ0Pl+uRgtOCQ7dWTybUPkYs1gsWw1q9zG3MbUmE26ldEyTykV1MFR8NDQ0AjBkzJub1MWPGGD/rz/z586mqqjK+JkyYYOaSDGzYeHzZFv67Yhu9fjnJCgWlVFKW2jqS3y1cUol8iNdH4dKUZOGxjpiM5QZLul1stli1qZQa8JrONddcQ1tbm/G1efNmK5aEyxH5fDnJCocOX8D495Q5DsVNWgWnHRL5KDSSmXAdjaRdckPKNR+JqKurA7QIyNixY43XGxsbB0RDdDweDx5PcidJJthsNtxOO32BkOx6C4id4ZTLUMZSOvouxy/nQEGhlIq0VyYlPsJplzaJfBQaybZc6xittkFJxWYTUyMfU6ZMoa6ujoULFxqv9fX1sXjxYg455BAzPyotPHpVs19OskLB2O3KLqeoibFWT6LbparUBUBHr5iMFRqpeHyA+HzkipQjH52dnaxdu9b4fv369axYsYKamhomTpzIFVdcwY033sjUqVOZOnUqN954I16vl7POOsvUhaeD22kHn+T7C4lkpphGI+KjMGmOioDpLraJkNqfwiXSej+0CAW5JuSKlMXHe++9x1FHHWV8f+WVVwJw3nnn8cADD/DjH/+Ynp4eLr74YlpaWjjooIN48cUXqaioMG/VaSInWeHR3BXudClL7kLjkZtOQZJyBMxIvylCIYU9ia4IYXjQFHatTTbyYRScyjUhq6QsPo488siEw5hsNhvXX389119/fSbrsgQJrxUezSkWl7mksr0gaUoxAuZxReqD+oIhSuxD1wsJwwM98pF0t4sUoeeEoprtIpGPwiOVDgeQc6BQScViHyK7XZCbTqGRas2HiI/cUJTiwyfhtYJhp7HLSe2mI+KjsGhO8YYjrfeFiS8QpK1HKyJOVXzIeZBdikt8yI2n4NB3vLWpRj5EgBYUTSnM94FI6z3IuVBI6JsRl8NmdDQNhdwXckNxiQ9RuAVH2mmXYChh7ZIwvEj1PIBI671cDwoHPeVSW+YZ1NiyP3JfyA1FJj7Ew7/Q2JliW53HoZ0DSkEgJOKjUEi14BTkplOINIbPg9GVKYhQiYDlhOISH7LTKSh6/UE6wtNpU027gJwHhYThaplknh9EfBQiuggdncJ54AlvSuU8yC5FJT4irbbicFoI6Dcct8NOZUlyXeMiPgoPpVTKltoQnYKT60Gh0Gh4fJQk/WdEhOaG4hQfEl4rCKKdDJPN7zrsNnQ/KTkPCoOuvqAxqToZa3Ud/XrgkynXBUNjil1PIEXouaKoxIco3MJiZ4qdLjpyHhQWeqjdm6S1uo603hceje2pp13ciWZ+tWyEHZ+YsjYhFlOn2uY7ctMpLFI1ltJxO+z0+mW6caGwo10LtddVJh9qB6kBK0R0a/WUxEe8yEf3Llh8Eyz9i1adfuWnUFFn6lqLneKKfDgG2elseANWv5CDFQmZ0Jyit4OOWwrMCgpdfKQSaoc4m5F1i+CWabDqeVPXJ2QPo+A0BSE6wOHU3wN3HwLv3AOhAKgg7Fyb4AhCOhSX+IgX+VAKHv0mPPotTe0Kw4ZUh4npyIyfwkIPtY9JNfLRX4SueQk6G+CTBaauT8gOSimaOtNPuxjnQfs26NgODjeMmKK91rnD1LUKIj7A1659qSC0bsrRyoR00CMfyU601ZECs8JCj3yMScHbAeJMM/V3aY9Nn5m2NiF7tHT78Qc1756UzOb6Gw/6e7QflFRD/WzteYeID7MpSvERYzLW0xp53tGQ3QUJGZHqPA8dyfUXFnqHQ6qRjwERMP2m07QaQnJuDDf0NtsRXldMS/1Q6D4fhvGgfh64SiN1Hp1ybzCb4hIf8W46va2R53KCDSt2dqXuagngcmq9tiI+CgM98pFKnh/iiI++cOQj0ANtm01bn5AdIp0uqabf+nn/+Lu1b1xeKB+jPZfIh+kUlfjwuOIUGkrkY9hipF3S6HYBsdkvFIzIR5oFpz7ddFDf8QI0rTJlbUL2aErDWh3iiI+AJmZxlUbEh9R8mE5xiY/+OV6AnpbI847tWV6RkC6BYIiW7nS7XbTzwC81H8MepVRUzUd6O95I2qU78kOp+xh2pGMwBprxoCPsPOiLiXyUQoWID6soKvERt+A0Ou0iobVhw66uPpQCuw1GeFMtOJVW20Kh0xegu0+LXKS84+3feq+nXUAiH8OQiLV6aucB9EvJR9d8lIdrPiQqbjoiPmLSLhL5GC7oKZeaMrexa0mWAV0OwrBlRzjPX1HiTMndFOJFPqLSLs0iPoYbxkTbFGs+oN+cn5jIR1h89OyCQJ8p6xQ0ikt8xDMZi0m7iLodLkTcTVPf5YjPR+HQmGbKBYZKu6zS2h+EYUNTGtbqOjGdkH695sMLpSPA7tK+72o0ZZ2CRnGJj6HSLl2NEJIJl8OBTMSH2OwXDjs60vP4gCHEh69dIqHDjMY0rNV14qZdnCVgs0nHi0UUpfgwqtshNu2iQtDVlN1FCWmxM2qibaq4HOFWW0m7DHv0tMuYdELt/dNvfXq4vUx7lKLTYUU61uo6Hle0+IhqtYWoolOJjJtJUYqPQSMfILudYUJzmhNtYRCzOWFYkq7HB/RrvQ8FIaidU4zdV3tsWm3KGgXr6fIF6AoXHmdUcBrsV3AKUnRqEUUlPuLm+qNrPkBCa8OEpkzSLg7tpiOttsOfyFyXNGp/ov1eolMuuqW2RD6GDXqxqdftoNyT+rD2mHtDQBcf4chH+WjtsVNqPsykOMVHME63i7dWe5TIx7Agk7SL1HwUDul6fEC/80BPuWCLinxIx8twQS88TqfeA/oXnPaLfIjFuiUUlfjQd7xx0y6jZmiPElobFlhacLrjE2jbkvbahOyxI5MiQ+cgef7R07XnEvkYNmTSZguDnQvhY0nBqSUUl/jof9MJBaG3TXuuX3Ak8jEssKzVduc6uPdIeOiMTJYnZAHN3TS9oXLQr/U+2tuhdipg07wduprNWq5gIXqx6ag00m8wmMmYXnAqkQ8rKErxEQgpQiEVER4Ao8LiQ2x08x6lVCTtUpFG2iWRydgnT0CwTzOZksmmeU1bj98QkGkVGcZLu7i92teISdr3Ev0YFhjW6mlsRiAq7RK34FRqPqygKMUHhG88esrFVQbVE7XnEvnIe9p6/NroazSH01QxWm3jRT5WPqU9qtDATighr9BvONVeFyXhzpVUiIiP4MD2ylGSehlOGB4f6UY+okcu9I986N0unTtkQ2IixSU+HJFf1+cPRYpNS6sjoTWp+ch79JRLZYkTjzOdm472Zwa02rZsgO0fRL7v3wkl5BVGsWmmef5gaKD4GLmn9ihFp8OCpgxrPmJSsdEmYxCOfNggFNBScYIpFJX40He8AL5gMHJzKamOqNuuJggGsr84IWmaOvSUS2Yh1gGttiufjv1exEdeo9d7pLvb1W84Pn+U+HCHDcaMyIeIj+FAYwbW6pCg+BjA4YrqhpTNqVkUlfiw2WyxClcPq5eOgLKRYHOIy+kwYGdX+sWmkKDb5dOnYr/vll1OPpNJmy30a73viyo4BREfwwzd9yfttItRBxYcWPMBkY4XqQk0jaISH9DvxhOddrE7olqqpO4jn2nu0MVH6vUeMEjBafs22PKu9ly/8UiINa+JDJVL94YTnefvX/MRTrt0NkgELM/pC4TY1aVFQ9MtOI2JggX0wXJR4sOwWJeiU7MoOvERs9uJTrtA1Akm6jafaTYMxjK70MREPlY+oz1OOAhGhz1f5KaT12TSZgtDhNo9FVA5TnsuNut5jV4D5rTbGOFNc0MSt/4nSnyU1miPck0wjaITHzH93EbapVp7rBirPUrkI6+xJO3y6X+1xxlfjlxoJO2S10QMxjITH4GQQvm6wi96I28YNU17bJbUSz5jtNlWeLDbbUO8Oz76fSHg79MKS6Gf+BihPYr4MI3iEx+DpV1AOl6GCXrBaW2aaRdX/7RLZxNselN7PuNU8Oq7HBEf+Uwmc10gtvU+2Ncv8gFS9zFMyNRaHaLOhb6oGT/R54KID9MpbvGhRz70tItMLxwWZOJuCnEiH589oxUaj91PM5eSyEfeEwopw9sh7bRLVOt9UI98uOJEPsTrI6+JRD7SOw8gck1Q+lA5mx0cUZsbER+mU7TiwxcT+QifWBL5GBZknHbpH/nQjcX2+rL2KBeavKeluw9/UDOaS8fdFGJb71VfnLTLSF18SOQjn2mKSruki+EXFG0wZotK4cg1wXSKT3w44omPau1Raj6GBc0d6U+0hf6ptxZYv0T7wYyvaI+Sdsl79GLTkeVuI42WKtGt96G4aZew+GjbDL7OtNcqWEtkqFzmaRdbf4MxHREfplN84iO6qtlIu0jkY7jQ5QvQ4w8CJnW7rPqfVmA2eiaM3EN7g5F2kQtNvpJpsanOgFx/tPjw1kTMpVo2ZPQ5gnU0ZWitDpHzwB6IinxEI+LDdIpOfHiiPfz1E6l/wam4nOYter1HqctBmceZ1jFiBOin/VIuIJGPYYBRZJjBDQciQjTicNrvpuMdqT3KTSdvaczQWh0iEXFbII7BGIj4sICiEx+GtXafD/rCoVS94NQbdjlFQZeYyeQjzRlMs9XRLzSloS7UukXaizOixId+oenrhEBf2p8jWIfh8ZFp5MPRT3zIjnfYkam1OkREqD0Yx2AMIudBbxuEgml/jhChaMVHzMTSkirt0W6PSr1I3Uc+okc+asvSv9C4wufA0fYV2II+qN0jYiwG4fMhXGwmN528ZEeG7qY6kVy/iI/hSCikjGuCGWkXx6Diozr8RGkCRMiYohMfnvBOx+4Ln0CeSnBEhe8Ni3VxOc1HMm2zhchu90B7uIVyzy/FVrbbHZGLjaRe8hIj1J5mm62O5PqHNy3dfQRCWtdTJhsSQ3wMlnZxuMBdoT2Xc8EUTBcfgUCAn/70p0yZMoXS0lJ22203fvnLXxIKhYb+w1nAuNj09/jQkY6XvGZnOO0yKoO0i95i6bVpNzBtZHY/xOsjr2nMcKiczoAuh/41HyI+8hpdhNaUuWNM41JF35A4Q3rkwzvwTcaGpDXtzxEipFexl4CbbrqJe+65hwcffJCZM2fy3nvv8Z3vfIeqqiouv/xysz8uZQzxoUc+jHBaGOl4yWvMSLvYbDbcTjsewvUc/dvqQCs63bVOIh95yo4M3U119JuOIyiRj+GIGW22AB6XLj7CG5L+kQ/Q7hVtm+VcMAnTxcdbb73FV77yFU4++WQAJk+ezKOPPsp7771n9kelhaFwhxIfnSI+8pFI2iX9yAdo6TdPyK99E098yCCpvCUYUsYI9UwjHx6nAxuhqFx/f/FRrT3KeZCX6BGwTAzGIE7kI+41QYSomZiedjnssMN4+eWXWb1amwT5wQcf8Prrr3PSSSfFfb/P56O9vT3my0r0yIerLyw+BqRdJPKRz0S6XTIvNPSQSHyELzSSdsk7dnb5CIYUdhvUlmUmQt1OO6VEdTRJ2mVYoYtQs/xe3EbkI17aRc4FMzE98nH11VfT1tbG9OnTcTgcBINBfvOb3/Ctb30r7vvnz5/PDTfcYPYyBkX3+XAFwiJnQORDaj7yGTPSLqBdbEr84ZuOa5C0C0jaJQ9pbI8UHTvTdDfV0cSHL/KCczB/h9aMPkewBv1cyDjyoW9KQ73aljxu2kVvt23N6LMEDdMjH4899hgPPfQQjzzyCMuXL+fBBx/klltu4cEHH4z7/muuuYa2tjbja/PmzWYvKQZD4fp18TEi9g3S7ZLXNBtzHDLb8bocQ0U+pOA0X9lhUrEphMWHXnjsLNXa7aOR3W5e02RWzYdD25QaUTCJfFiO6ZGPq666ip/85Cd885vfBGDvvfdm48aNzJ8/n/POO2/A+z0eDx5PZidOKujiw6OLj8G6XbqaIOjXWqyEvKAvEKK9V3OezaTVFsKRj4QFp3KhyVfMKjYFrfbHuOH0T7mA3HDynEYTrNUhcl8oseniI0HkQ84FUzA98tHd3Y293+7B4XDkXatt6WBpF28t2J2Agk5xOc0n9Gm2TruNypLMRKE72ciHXGjyjh2Gtbo5kQ8vidorwzccfxcEfAN/LuQUM6zVIUp8kKjbRcSHmZge+Tj11FP5zW9+w8SJE5k5cybvv/8+t956K/PmzTP7o9JCNxkrCXZoL/RPu9jtUF4H7Vu0otOqcVleoTAY29v0YWIe7HbbEO9OjNtpj+xynHF2TVJwmrfou91MrdUhLD5sCYoMPZVgs4MKT8GuGJPxZwrmYVbaxWG34bDbotIuIj6sxnTxcfvtt/Ozn/2Miy++mMbGRurr67nwwgv5+c9/bvZHpYXez+3VxUf/tAtoF5j2LdJum2dsbdG8GMaPiHOTSJGYbpd4FxopOM1bzEy7uB1R6bd454Hdrl0jenZpNx0RH3lDpy9Ad582ZyXTglPQ5ruUKhEf2cJ08VFRUcFtt93GbbfdZvahTUEfIFQW0iMf1QPfVBZ2vJS0S16xtVUTH+NGxLkwpIgnpuYjXuQjquBUqVj7dSGnmFlw6nHZ8eqhdndZ/DeVjoiIDyFv0D0+ytzpT7iOxu20UxKQgtNsUXyzXcKttmWhfhNto/FKvj8f0SMf46ozFx9uuy2q5iNB5CPkh76ujD9PMI8dJrVXArgdjki3S7wbDshNJ08xa76PjhYF0zufhjAZU8qUzyxmilB82HHjx6OfZP1rPqJfk5B7XrGlRZs8akbko9QRxG4LX0DiRT5cXnCEX5fzIG/wB0NG4bFprbaJigxBxEee0thhngiFfoZziSIfoQD0dZrymcVM8YkPl50q9J2sTSso649cbPISI+1iQuTDaw9Evol307HZpOg0D2nu9KGUViCYqbsp6N0uSaRdQK4HeYaedsm02FQnxvMl3jXBVRqJiMi5kDHFJz6cDqpsesqlaqCpEERC7t1yguULSqlI2sWEyIfXoYkPhQ0cg9zEpOg079AdLc3oeIIkbjgg813yFN1a3bTIh2OIyAeIEDWRIhQfUZGPeCmX6NflBMsb2nr8dIUr282JfGj1HgG7e/BiUnE5zTvM9PgA3WRMaj6GI02GEDXpXIiedB1v5ALIuWAiRSc+SlwOqmy6+KiO/6ZS2fHmG1vCUY+R5W5KXI6Mj+e1hcWHLcGuSVxO844d4Tz/GCvy/JJ2GVY0muTxoVPiUHhs4XSsCFHLKTrx4XHaqSZBpwvICZaHmFnvAVHiw56gbkBcTvOORhPbbEG7HniHTLvI9SAfMctaXafCMUQdGMi5YCKm+3zkO1rNhxb5CJVUx1dfXvF4yDfMrPcAKAmnXfy2ROJDCk7zjYjHh3mRj5Bhry6Rj+GEWdbqOuUOf+SbeK22IPU/JlJ8kQ+X3RAfQU9V/DcZLVXi8ZAv6JEPM9xNAUpIQnxIwWneoXt8mObtENNeKbvd4YIvEKS1W/s/bFbBaZkeDXWUJKgDk3PBLIpOfLgdkYJTv3sQ8SEeD3mHmQZjACXhC01fopoPSbvkHWa6m4J2PTDSLvGm2kLUDafVlM8UMqe5UxOMLoeNEV5zJo+X2bVjBuwJzi0RH6ZRdOLDbrdRYw+LD1ccjw+I9XiQkywvMLvmwxOe4dBnS3Dh8kq3S76hh9rNTLtEJpkOkXbxtUEwEP89QlbRa39GlXuwmZQW94bFh9+eaEMiQtQsik58AFTbNafMvsEiHyA3njzDTHdTAE848uEjiZoPiX7lBb5AkF1d2g3CjIm20M9kbLC0S3Rhem+bKZ8rZIbhbmpSBAzAa9PFh0Q+skFxio9w2sXnHCTyAXKS5RHdfQFawvld08RH+IbTl1B8iADNJ/Tx6W6HnWqTQu0x3S6Dtdo6nBEnZLke5AVmt9kClOriwybiIxsUpfjQHU57HRWDv0l2vXmDXu9RUeKkssSkm0644LSXJNIuvW0QCpryuUL6RIpNzQu1ux2OyHTjwbwdQLoc8owmk+e6AHjRU7HJREPlPMiUohQfleHIR09S4kNOslyzxeR6DwB3uObDp5K40KAk3J4HmO3xAVr325BpF5DrQZ7R1GHuXBeIRD76kqr5kPMgU4pPfChFhdIiH92OBGkXme+SN+iRj/EmpVwAXCHtQtOTKPLhcEXC7ZJ6yTk7TB4kBuC224y0S9CZKPIhN518otFka3XAKDz2kUTaJdAL/h7TPrsYKT7x4e/BhVax3mUvH/x9crHJG8zudAFwhUOsvaEh0jhGuF3ER64xrNVNjHy49agHQ7Vdy/Ugn7Ci5kMXH72J0i7ucrCHvTnlXMiI4hMf4RMmoOx0J1S4YjCVL5jtbgrgCmkXmoSRD5Ci0zyiMarmwyzcoV7jeZ8UGg4bzLZWh0j7fcIOOLFhMI3iEx+9rQC0UYYvoAZ/n5xgeYPZ7qYAzvCFpmeoyIdXjMbyBf2GY1abLYAzqJ1bvcqFL8HlQK4H+UMwpAyTMTMLTt0qvCFRQxxTzgVTKD7xETaHaVXl9AYSdDCIz0feYLa7KYBTj3yoIcYbSQQsbzDb3RTAFs7b9+ChLxAa/I1yw8kbWrr7CIYUNhuMLDcz8qFHQ0V8ZIMiFB/aCdNOGT6/XGzynb5AiB3hHa+ZaRdnuOC0K9nIh4jQnKO32prlbgqAXzOv6xbxMWzQ0281Xjcuh3m3MJfSrjM9aqhUrJwLZlB84qNP63TpUKX4El5sosLtKlE8VrCShrZelIISl53asgS52BRxBLULTXdwqMiH+L3kA73+IG09mjeLWUPlAEN89Cr3ENcDueHkC3r6zcyUC0Q64LoTtd+DnAsmUXziI6CduD7c+BKlXfQTTAXB156FhQnx0G3V66tLTTOWArAnG/mQ4XJ5gb7bLXHZqSwZQjCmQp9EPoYbRqeLmSKUSORDxEd2KELxofdyuxLvdFwlEcdDCbnnDCsMxgAcQe086A65CIUSRLYk7ZIX6Km3MZUlporQSNqlhL6giI/hQJMFbbYALj0aKmmXrFCE4kOPfLgS13yAnGR5gBUGYwD28IWmF9cQNx0pOM0HjGJTEztdgJi0S1KRj95WCA1x3RAsxQprdQBnuO26MySRj2xQhOIjHPlQrsTdLiA3njzACoMxAFtQj4C58ScSH97whUacbnPKDgs8PoDkC071ybYqJGnYHNNogbU6ROrAuoIiPrJBEYqPVCIf1dpjuD1XyD5WGIwB2MLnQa9yJZnrFwGaS6yY6wIYNR89eJJPw8pNJ6dYYa0OEfHRGRqqCL1ae5TzICOKUHxEdrwJC05B8v15QCTyYZ7BGIAt6jxIKu3i7wZ/7+DvEywl4vFhTeSjR3kSnwcgO948IVJwau65YA9o15qOpCMfraZ+frFRhOIjKvKRaKcDcrHJMaGQYnubNTUfhC80vQyR6y+pAptDey7nQc6IeHxYU/PRjQeff6g0rFwPco1SyrK0i14H1h6UgtNsULziQyUjPqTmI5c0dvjwBxVOu838m05U11NC8REzy0HOg1yxw7jhWJV2GSICBnLTyQM6fQF6w+lyswtOI5EPJyqRt5N+HvR1QqDP1DUUE0UoPqJabWWnk9dsbdVuDHVVJTjsJrZXgjEOOykRKum3nGPFUDnAOA96VEliEQqS688D9JRLuceJ122i3wvRdWBu/MEE4sNTBYSvR+FZYULqFKH4iKRdeuWmk9dssWCmCwDBgGYeRzjtIjvevKbLF6DTFwCsSLt0AeHIR9Jp2FZz1yAkjV6AXldl8nkQChnio4ch6n/sdhGiJlCE4kMiH8OFLRZ1uuj1HqCdB35Jv+U1+m63zO2g3GPubjdph1OQ60Ee8HmTNh5jysgycw8cdU1ITYjKuZAuRSg+IqG1oU8wuenkEr3TZbzZkY+wAIVwzcdQkQ+JgOUUK6bZGki3y7BifbMWqdptlMniwx8RH0MWoYOcCyZQhOIjSXt1kBMsx1jl8aELUD9OFPYULjQiPnKBLj5Mr/eAiPiQyMew4POw+Nh9ZLm5Bw6Lj17lQmEf2oZBzoWMKULxkeRgOYjseHtaITTEewXTscrjQ/fr6LNpN7MhbzpeGS6XSxqtarMF46bTPZTJGMgNJw/4vEkTH1Msinz4bJrHhwhR6ylC8RFd8zHECaZbKqOgt83SZQmxKKWsj3zoF5pkw+1isZ4TLE279Gk3s17lFvGR5/T6g8aGZDezaz70GT9oGxI5F6ynCMVHxOdjyNkuTje4K7TncpJllZZuPz3hguCxZle2G+Ij2QuN1P7kkh0WTTEFYqfayg0nr9HrPSpLnNSUDeFCmirhyIcRDZX6H8spPvHhj7Ta+oOKYKJx6iAnWY7Qox6jKzyUuBzmHjwsPgL2JEOsUnCaU6wtOI2kXVK64SQyoRIsIVJsWo7NZrbvjyZCfTbtHBMhaj3FJz6ifD4gmRuPHnKXG0820Q3GTE+5gCFAA3Ztl5Nwqi1I5CPHWDZUTikj7dKj3PQlW2QY8ht/Tsgeeput6Z0uMDAVK54vllOE4iMyUAyQquY8xTKDMUg98lE2Unvs3gWhId4rmIpSKmqui8lpl4AP0CIYSXW7uLzgCIf75XqQdfROF9PrPSCSdrEnGfnQ6wHlPEib4hIfSg1QuJLvz0+MThcrIh/hcyBkT7bbpVZ7VEGxU84yHb6AUftj+lyXcKgdknC1hH5zfuSmk230TpfdRpncZgvGuRDQxYfUfFhOcYmPoB99p2NzhosNh+p4kZMsJ+iRD9MNxsAQH0GHdg70DOV063Bp020BuprNX48wKHrKpbLESanb5NqfcOokZHcRxDG0CAW5HuQIpZR17qZgRD78yUY+5DzIGEvEx9atW/n2t79NbW0tXq+X/fbbj2XLllnxUakRvukA4NROsiE7XqTYMCdY1mYLxoVGhQVod18SHi7ecOqlq8n89QiDsiMLHh9Bp+YjM2QUFOSmkyN2dfXR3qvN97FSfOh1YEmn43vbxAMqTUwelAAtLS0ceuihHHXUUfzvf/9j9OjRrFu3jurqarM/KnWibLW1yIdPIh95imUGYxA5D5yasOlJRnyUjYJd66BbIh/ZxNpOl3Dkw5HkbhfkepAj9HqPcdWl5ne/QUSIJnsu6IPlUFrRaVmt+WsqcEwXHzfddBMTJkzg/vvvN16bPHmy2R+THnrkw+HBEz6Bh1a4UvORbTp9Adp6/IC1NR969Kt7qLQLRIpOJe2SVfTIhzUeH9oNJ+TSBK6Ij/xlfZNFM1109JqPsPgYMgrmcGlFp72t2oZExEfKmJ52eeqpp5gzZw5f//rXGT16NLNnz+a+++4b9P0+n4/29vaYL8swdrwleJy6+JDIR76hp1yqSl3mTzEFQ3zYXNqFpqcvMPSf0YtOu3eavx5hUDbuDO94rRCh4Ym2KhwBk7RL/rKuOdxma0XKBSJCNHwuDFlwClA+WnuUVGxamC4+Pv/8c+6++26mTp3KCy+8wEUXXcRll13G3//+97jvnz9/PlVVVcbXhAkTzF5SBGPH68Hj0n71pOe7SM1H1jA8PqwoNoUB4qPLl0rkQy402WT1jg4Apo6pMP/g4bQLLu2GltQNRw+3i/jIKsZMF6vERyAsPlJJwZWN0h47G61ZU4FjuvgIhULsv//+3HjjjcyePZsLL7yQ//u//+Puu++O+/5rrrmGtrY242vz5s1mLylCVOSjRI98JF3z0WrduoQY9MjHeCt2u2CYjDncWrg9ubRL+EIjaZesoZRiTaO2491zjBXtleEx6m5Ju+Q70e6mlmAUoaciPiQVmwmmi4+xY8ey1157xbw2Y8YMNm3aFPf9Ho+HysrKmC/LiBP5GLLbRa/58LVBMInwvJAxW6z0+ADjPHC4U0m76EZjcqHJFjvafXT0BnDYbdbseHWXUlc41J6S+Gg1fz1CXALBkJF+syzyYdT/pHAuGBsSiYamg+ni49BDD2XVqlUxr61evZpJkyaZ/VGpE1Vo6HGG0y5DTratijwXg6mssNVKd1OIEh/a8ZNqtdULyrqk5iNb6CmXSbVeo0bLVMI3HJs7lbSLRD6yzdbWHvxBhcdpt+6aoBvOhduukzoXRHxkhOni4wc/+AFvv/02N954I2vXruWRRx7h3nvv5ZJLLjH7o1LHSLt4ki84dTgjAkTqPrKC3mZrWdolLD6cnhRabcXnI+sYKZfRFtR7gHHDsYfTLsGQIpDsnB+JgGWN6HoPu93kgXI6egouHPkYclMKUgeWIaaLjwMPPJAnnniCRx99lFmzZvGrX/2K2267jbPPPtvsj0qdeJGPodIuILudLBOJfFjg8QFGzYdLr/lI1ucDtG4Xme+SFdaEIx+W1HuAkXaxeyKh/CF3vOVjtMeuZjkPssQ6K51NdQzxkaS9OkgdWIZY0McIp5xyCqeccooVh84MPfLhKol0uySjcEtroGWDeH1kgV5/kMYO7d/J6poPV4kmPnr8QUIhlXhX1X++i94FJViGHvnYw4pOFzBuOI5o8REI4XUn+DP6blcFteuB/r1gGZFiU+vFhy0Vz5cyabXNhOKa7RIT+Ugy7QIS+cgi29u0f6NSl4MRXpc1HxI+D9wlEXEzZOGx0w0eme+SLZRSRs2HZZGPcKut3e1F151D3nQcrkjqpXOHNesSYoikXSw6D2BA/U9S9wWp+ciIIhMfUTUferdLMm2W4vWRNaJnuthsFuV3dfERteNNLvUiHS/ZwvJOF4hqtS3DbaRhkzGXCqdexN8hK2Qn8qHX/6RgMqZfD3ztRipXSJ4iEx8S+ch3LDcYA0OE2t0llIZt9pOb7yJ9/dliTaPFnS5gOJziKsXt0C6FyTlbyo43W3T5AjSE5/tY5m4Kxr3Bbni+JHE9KKkCezg6KxuSlCky8RHd7ZJKwanMd8kWlhuMQWSX4izFGx7TntJkW7nQWM7qHRZ3ukCMw6k7LHBSyvVL2sVy9KhHTZmb6oTFOBmglBH5cHhSqPmw2ST1kgFFJj7idbtI5COfsNxgDGLM5krD4qMrGaMxw+tDxIfVrG3UbdWtz/Pj9hrXg6RuOpJ2yRr6NNtsRD0gSnwkEwEDiYZmQJGJj+iajyTt1UFqPrKI5QZjELnYuCKRj+TSLtJaly30yIclM110otMuKdV8yG43W3yezTZbwBlOuyR1XwCJfGRAkYmP8EkmPh95i+UGY9Av8qF1m0vaJX+I7nSZOtrKyIcuPsoiNR+SdskrLJ/pApHzwO7C7dZSO8lHPkR8pEuRiY9I5KMkHPnoTdbnAyTyYTHBkKIh3GprmcFYKAjBPu25sxSvS6/5SCbtIiHWbNDYEel0yUaHA65So/utL5iECDXSLnLDsRq9zdba80CPhHqNCFhSIhQiUTBJwaVMkYmPNB1Oy6N2OkpZtDhhR3svgZDC5bAxusJjzYfoAhTA6Ukt7eKVmo9sYPlMFx097eJOMfJhpF3khmMlSikj7WJpzYd/YPotafEhqdi0KTLxEa/bJYUCs5Bfoh8WsiVc7zG2qtS6GQ5RxWU4S4yC09Qs1uVCYyVr9HoPK1MuUR0O0Tve5MylopwtQ0mcN0JaNHX46OoLYrfBxFqLIqEQM9fFk0rXE0jaJQOKTHyk6fPhdEd2vZ0NFi1OyI7HR/gcsDvB4YxEPpIxmzNMxmS+i5XoHh97WllsGuzTLNIh9R1v2UjABiokmxELWRdOuYwfYXEELJ4IlZoPyyky8THQ4TSptAtAxVjtsWO7BQsTINbd1DL8kaJjAK9RcJpEzYcuQEMBbb6LYAl6p8se2Sg2hdi0SzI3HYcr0gEnqRfLyIqzKUR1v5XEpN9UMil2qQNLmyITH3FqPpJtqdJTLx1S4W4VeqdLNtxNI+IjhbSL0wOeSu15904rVlf0KKWiptlmoc3W7gSHK7LjTbrFUjperCZS72GhCIW4kQ8AfzAZ8REV+ZB6wJQoUvER3e0ikY98YUs23E2jBCiQWsEpyE7HYho7fLT3BrDbsjPLA5f2GUbaJdlwu1GELuF2q9ANxqZYHfmIqfmI3BKTiorr7fchP/S2WbC4wqXIxEdk15tSwSlARZ322CE1H1axNZvupi5NfKTk8wHi9WExerHp5Noya/P8Pi26gkfbVafkcAoR8SFpF8vQ0y67W9npAjHiQ0+7QJLngqskEg2VDUlKFJn4iF9wmlRuTxcfUnBqCUoptukGY1Z5fMCgkY+kaj4gKvIhO14rMMzFrLRVB+jTRA5uXXyk2uUgaRcr6QuE2LRLi05lLfLh1LrsnOFOu9SNxkSIpkKRiY+BBaeQ5EkmkQ9L2dnVR68/hM0GdVUl1n2QfzDxkWraRWo+rEDvdJlq5UA5iIp8aJ8jaZf8YnNLN8GQwut2UFdp4fUAYiIfQAZeH3IupEKRiY+BBaeQrNeHiA8r0TtdxlSUxBR9mU6/yEepK0XxIWkXSzE8PqyOfPjCkY9w2iUlkzGQtIvF6M6mU0aWYbNZ5PmjE1VwCmmk4CQamhZFJj4iNR9uhx39nE6qwj068iFVzaaTlXoPGFDzobfaSsFp7ome6WJppwtAXzjyEU67pGQyBlFpFxEfVpCVgXI6g0Q+kj8XxOU0HYpHfCgVs+u12WyGwk2q40VcTi1lS0sWDMZggM+H4XDqT7Lmwyu7HKtoiup0sfymY6RdtGLB1Gd6iPiwkqwMlNMxIh/aNSHlFJykXdKieMSHPkwMNL8GEJfTPCIrBmMQFfnQPiftVlvx+TCd1VGdLnorvGUMknZJ2nRQFx/dzWKxbgHGQLlsRD6Ma4KWdkk5BSfiIy2cuV5A9rDBl27STrTwjSel4XKgeX1079S8PsbMtGqhRUlWDMYgZogUZFJwKiFWs8lapwsM6HZJOfLh7Wexrg+bE0zh82y5m0KctEsKm1KQa0KaFI/4cLph7kUxL0Us1lNwOd3xsRSdWsCWbEU+otrqIJJ26fEHUUoNXdwWXXCqFFhdDFdErGnUB8pZXO8BAyMfqYbaHU4tEtrdrLXbivgwjfZeP82dWn1edmo+YgtOJQWXHYon7RIHI+2SrKWy4XIq4sNs9MjHBMvFR2zapSxccKoU9CZzHui7HJnvYjprshn58LVrj+Gaj5Q7HEA6XixCT7mMqvBQUeKy/gP7RT48knbJCkUuPlJNu0i7rRU0d/ro6NUKPuuzlnbRdjmlUbUFSRmNRc93Ea8P01BKZTfyMcBkLA3xod90xOvDVNY36zNdshD1gAHR0EgULNlUbPg86G2FQF/CtwoRilp8ROa7pGixLgWnprJ8YwsAe44pN1pfLaPfLsdut1ESTr8l7/URLjwWrw/TaOrw0dbjt36mi06maReIdMCJy6mpGMWm2TgPYGDkI1UhWlINtvAmRgrRk6aoxYdEPvKDZZs08XHApBHWf1gg9kIDUV4fyQ4ZFFMh08lqpwsMdDh1pGivDpJ2sQij2NTqabY6hvhIs+bDbpdrQhqI+CCVglMRH1agRz72n5gF8eEfKD701EuXL1WvD4l8mIVuq77H6CzdcIy0S6y9etLXApC0i0VkP/IR2wGX0bkg4iNpilx8pNhSJS6nptMXCPHBFm0UdVYiH3HER/peHyI+zEKPfFjubKrTb6ptyrtdkLSLBYRCyqj5yEqnCwxwPTZ8PlJJwUm7bcoUt/jQW22TDbeLy6npfLKtjb5AiBFeV3atlJ0DxYcMl8sdaxuz2OmiVJy0Sxq73XLZ7ZpNQ3svvf4QTruNCTUWTrfWUWrQVtukuyBBJtumQXGLj1TDa+JyajrLNkbqPSwfIAXx0y6GxXqKw+XkpmMK2kyXLHa6BHpBhf+tB5iMpeBWKvNdTEdPuUys8eJyZOH2FOzTjOJg4FTblCIfev2PXBOSpajFh17YlnTkA6K8PrZbsKLiY3m42HT/bKRcYMAuB6KHyyVZ8yFpF1PJWacLDGy1TafbRSzWTcNos812vQekX3AKknZJg6IWHylHPiBywZGi04xRSkUiH9koNoUB+V2IinxI2iUn6P4ek7LV6aJPtHWVaZ0KpOnz4a0lYrEu54IZrGvK4kA5iERCbQ5waIZmKZuMgRScpkGRi48UC05BXE5NZGtrDzvafTjtNvYZX52dD40X+XClKD68EvkwE2OmS7Y6XfrVe0BktxtSEEjVYh0k9WIS+jTbrBWb9muzBfC40mi7FvGRMkUuPlL0+QDx+jARPeoxs77SiD5YTpyajzKPnnZJY7icdD1ljOFsmo1iUxhgMAYR8QFiNJZLPs+Vu2nU9SC9bhddfMiGJFmKW3y40qhqFpdT0zD8PbJV7xEKagVmELPTSTntokc+Qn7obTNzhUWJPtMla222/azVIXLDgRSvB9LxYhq9/qAxYHJK1t1NI2nYzGo+mmRDkiTFLT7SSrtI5MMsdGfTOZNqsvOB+oUGwBm52Ohplx5/kgWnrhLDnEpy/ZmR9U4XiJt2cTrs2MPNVml1OUjaJWM27epGKajwOBlV7snOh+r1P+6BKbjUTMbC4iPQGzm/hIQUtfjQZ3r0ptLtIi6nptDlC7Byu/afdP9J1dn50EHER8qRD4CycK5fwqwZ0dSZ5U4XiCs+IF2jMV18SNolUz5vCpuLjSrLTts9xK//caSRjneXaQXMIFGwJClq8ZFx5EPCa2nzwZZWgiHFuOpSxlZZPMlWRy82dZYaXQ4QabXt8qVwsRGvD1NYsyPLnS4QN+0C6RqNib+DWURmumRJhEJU/c/AyEdKIhSiUnCyIUmGIhcfaShccTk1hWUbslzvAXHbbCHKXj3ZtAtECsyk4yUj1mS70wUGjXyk1+UgaRez+DzbbbaQsPMppfQbSMdLihS3+HClsdOJdjkVo7G0MSbZTqzO3ofGabMFSbvkktXZ7nSBuN0ukGaXQ7mID7Mw0i5ZjXzEzviBDCIfIj5SorjFh552SaW6HSJeH9LxkhahkDI6XQ7IVrEpxG2rgzQGy4FMtjWJrHe6QNwiQ0jTaMxIu4j4yBTd4yNrtT8Avnbt0VNpvJTWeQDicpoiRS4+0ki7gLicZsi6pk7aewOUuhxMH5vFm06coXKQxmA5EIt1E4judNkjq2mXQSIf6VwP9LRL906xWM+Alq4+Wrr9QJYjH30Daz7SstoHiXykiOXiY/78+dhsNq644gqrPypl9MhHb7qRDxEfaaGbi+07oSo7w6N0Bol8lLq0gtPUxId0OWRKdKfL7jnO80MG/g42u1isZ4hebDq2qsQoAM8K+rkQ4/mSRu0PyGTbFLH0yr906VLuvfde9tlnHys/Jm1KXGlGPiok8pEJ0ZNss8qQaZcUCk6rJ2qPLRvNWFlRsjYXnS4wZLdLSjcduyPKYl2EaLro9R5ZTblA4oLTtMWHREOTwTLx0dnZydlnn819993HiBFZvskkSVqttiCTbTPEKDbNuviIX3Dq9YTTLv4gKtn26RGTtce2LRD0m7TA4kKf6ZLVlAsMmXZJPdwuRaeZ8nm2Z7romNlqWybt96lgmfi45JJLOPnkkzn22GOt+oiMSavbBaIs1mWnkyq7uvqMlrrZE7IsPgZttdXCvEqlcC6Uj9GMylRQEyBCyuidLntms9MF4hYZQppTrkG8Pkxgvd5mOzL354J+HvSmGhEvk/MgFSxJrv3zn/9k+fLlLF26dMj3+nw+fD6f8X17e7sVS4qLfpIFQ4pAMIQz2foDcTlNm/fDUY/dR5Uxosyd3Q8frNU2KuTf3RdMLgVgt0P1JGheBS0boGaKiQstDtZm21ZdZ7C0S9rmUlL/kyn6QLmszXTRidNqWxbejPiDir5AKGboYEIM759dEAxoU4+FQTE98rF582Yuv/xyHnroIUpKSoZ8//z586mqqjK+JkyYYPaSBkVPu4C4nGaLnNV7wKA1Hw67zRCi3anUfeipl5YNma+tyFBKsboxbDCW9cjHYGmXDAsNJe2SFsGQYsNObWOwe7YjH3G6XaInbKfWfl8D2AAFPWJAORSmi49ly5bR2NjIAQccgNPpxOl0snjxYv70pz/hdDoJBmP/Ma+55hra2tqMr82bN5u9pEHxRCna1Oa7iMtpuuSF+HAOFMVptdvq4qNVik5Tpbmzj9buHHS6BPogGI609u92ScdkDCLXAwm3p8W21h4twuCwM25ElkYt6AxScOpyaLNlulNxPY4uPpZzYUhMjwsdc8wxfPTRRzGvfec732H69OlcffXVOByxIW2Px4PHk6UJhv2w2224HXb6gqH0XE67d2pFp7rbpZAQfzDEB1tagVxHPrwDfuR1O2np9qcnPiTykTK6udjEGm9uOl1ggMmY4fORauu9pF0yYl2T3vXkxWHP0kA50ISoXgfWLwVX6nLgDwZSm/cEWhSsu1mLgo2ZadJCCxPTxUdFRQWzZs2Kea2srIza2toBr+cDHmca4gO0jpfunWGX0/z7vfKRldvb6fWHqCp1Zb+wDAZNu0C0xXoqaZdJ2qOIj5TRO12mZtPZFCI7XWfJgJx8xFwqjRsOQKfsdtMhJ86mECtE+0XByjxO2nsDqaVdQOt4aULabZOgqB1OIbrjRVxOrUZPuew/sRp7Nnc4OoHBxUdaFusS+UibNfpMl6y32Q40ldLxpB350NMuUvORDnr325Ssd7roQrQUHK6YH+mbka5UNiMgRmMpkJVy3FdffTUbH5MWGc93EfGRNLr4mDM5i/NcokkU+XClUfNRHY589LRATyuUVme2viJizQ69zTZHnS6egZ9b7tEuh52+FG84Rqtts3Q5pEHOIh+DON1CpOMl5chH1XjtUcwHh0QiH+n29ovLacosNyIfOTKdG6TVFtKMfHjKIzsdKTpNmnzsdAGoLNV2v+29KZrGeWs1i3WUWKynge5uunsetNnqeNONfNTurj3u+jyTlRUFRS8+0homBeJymiLbWnvY1taLw25j3wlVuVlEgsiHbjSWUs0HRKVeRHwkS846XWDQibYAlaXaOdDek+I5YHdETTmWcHsqdPcF2NamFX1mPe2SIApmdL+lWnBao4uPdZmsrCgoevGhV9qnPlxOXE5TYXnYXGyvsZXZHRwVzSBTbSHqYpNKyzVI3Uca5KzTBRKG2qvCkY+2njTs8qXjJS02NGvRyGqvi5psmw4O4nQL4PWkuRmp2U17bNkoYxeGoOjFhyfdyIe4nKbEexty6O+hkzDykUbaBSJ1HyI+kkYvNt0j286mkDjtUpJm2gWk4yVNPt2uCYDdsj3TBRIKUa9LT7ukERF3lmpjF1o3ZbrCgkbEhyvdglNxOU0FPfKxf56Kj1Ij7SKRD6vR22yzPtMFBrVWh0wjH9Lxkg6LPtMiRYftMTL7H56g86nMk2bBqd0eiX7slNRLIkR8pD1MSlxOk6W7L8An27QdTk4jH0m02or4sJ6cdbpAVKg9Xs1HOPLR409+urFOuVisp4ovEGTxKi1SdOxeY3KwgMFrPtJutQWoDYsPKTpNiIiPdNMuusspSNHpEHy4pY1gSFFXWUJ91dDzfiwjibRL2gWnrZsglOI5VIREd7rskW2PD0h4w9EjHyGVRrhdn2gq4iNp3v58F119QUZXeJhVn4Mi9ISttmmmYSES+ZCi04SI+NB9PlKNfECk46VT6j4SET3PxWbLgbkYaKmxBK22pelGPirrwe7SImDt2zJdZcET3emSE/GRIO3icdqN+S4pp14q67XHti2ZrK6oeOlTLeVyzIwxuTEdNKJgA88FPQ2bsgiFSMeLpF0SUvTioyTscJrSYDkdcTlNCsPfI6cpF1/keYLBcqnneB1QPVF7Ll4fQ7KmMYedLpDQ28Fms0W126YoPmr30B53rslkdUWDUoqXV2ri47i9RudmEUar7cBulzKj1TadtIu02yZD0YsPUyIfknYZFKUUyzblQ6dLd+R5XIfTNFvrQOo+UkCv98hJpwskTLtApO4j5ciHLj66mqQGLAk+3d7OtrZeSlx2Dtk9B8WmkLjbxZNmATpEIh+tm7ThdUJcRHzos11S7XaBKJdT6e0fjM+bu2jt9uNx2tlr7MAdRtbQ6z3srgFzHCCDglOQAXMpkNNOF0hoMgZR7bapig9POVSGrbV3rk13dUXDS59qtTGHTx2VmwgYJNVqm9ZmpKJOS+2qkLTbJkDER7oFpyCRjyTQ6z32HV9tuMnmBKPYdGC9B0SlXdJJv0nkI2mMgXK5Eh8JfD4gUnTa3pvGTWfkVO2xaVU6KysqXg632B43IwddLjoJWm29ngw2IzabFJ0mgYiPjNIu4nI6FHlR7wFRbbbxu23SLjgFER9JopQy3E2n5iztMvhuFzJIuwCM3FN7bF6dzsqKhoa2Xj7c0obNBkdNz1G9B0QJ0TgOp+n6/uiI18eQiPhI1+cDxOU0CaI7XXJKgjZbyGCKJYj4SJKdXX20dPux5arTBRJ2uwBUlqRZcAqRyEezFJ0mQo967DehmlEVntwtJIHnS1m6rfc6MmBuSIpefERmu6STdhGX00S0dfuNMPv+E6tzu5gEbbYQ6/ORssGULj66miK7KWEAuhCdXFuWmzx/KBg5DwaJfGTkciqRj6R4eaVW73FsLlMuSiXsfIqYjGUY+ZC0y6AUvfjILPIhLqeJWL5Zu9lMGVlGbXkOdzgAfm1yZrw2W4hcbEIqjXOhpApKw5EdKTAblGc/1Gqjjs5VqF2/2cCQaZe05ruMmqY9tmyIbe0WDLr7Ary+thmA43LhaqoT6NXmr8AgkQ8tAtYXCBEIpnFvEK+PIRHxYXS7pKFwxeU0IcvzJeUCSUQ+IpN200q9yIC5hPT6g7wU9nU4ZZ+xuVmEnnKxu8AZXwwbBac9aYTby8do9QMqCLvWp7vKgua1Nc30BUJMqCllaq5SbxAlRG3gGjjUTt+MQBqTriGSdmnbLO22gyDiI5OCUxCX0wTkTb0HDFnz4bDbjG6ctOY5SN1HQl75rJHuviDjqkvZb0J1bhYxRKcLZNBqC1qXg1H3IamXeOjGYsfOGJM7t2OILTy2D7wNepx2HGHX1W5fmgaUrrJwu62YD8ZDxEcmaRcQl9NBCARDrNjcCuSJ+Bii2wUycDkFER9D8MxHWmTwlH3G5u6m40vs8QHRrbZpiA+IqvuQdtv+BEPKqPfIaYstRIpNByk8ttls6c970g4gHS9DIOIjE58PiEQ+ZK5HDJ81dNDdF6SixMkeo3IYXtUZwucDoo2FRHyYSXdfgEXhm87JuUq5QMRgbJB6D8CwV0+r4BSk4yUBKza3srOrj4oSJwdOqcntYoZwuoUMjQcharqtiI94iPgI33DScjiFSG6v6TOTVlQYLA9bqu8/cURuhkb1Z4i0C4jXh1Us+qyRHn+QiTVe9h6Xg+mlOlanXUA6XhKg1/wcOW00LkeObz1D+L1ApOg0fa8PKTpNRNGLD32wXNqRjzGztMeGj01aUWHw3oY8qveAIQtOIVJ02uPPoOajdaO0XffjmQ+0lMvJuUy5wJAeHxBJu3T1BdPrcjDExxo5D/oRqffIobGYToI2W51Iu614fVhB0YsPo+A03chHXVh87FwT2V0L+VVsCkO22kKGkY+q8WCzay184nhr0OkL8MoqLeWSsy4XnSR2uxUlka6ntCzWR0wBm0MTOtIBZ7BxZxerd3TitNs4cs88EB9JpOAyMh4E8foYAhEfmRacVoyF0hqtqllSL4Bmn7y1tQe7DfbNVWdDf5KKfGQgPhwuTYCApF6ieHnlDnyBEFNGluV2sCAktdt1OuyUezJwOXW6IzcdSb0YvBSu+Tlwcg1V3oGDHbOOcS4Mfk4akQ9fmpEPPe3StkV8X+Ig4iMsPvqCIUKhNMKkNlsk+iGpFyBS7zG9rtK4kOecJGo+Mt7pSN3HAJ75MA+6XHSMtEviuTK6xXr6Rafh1EuTiA8dI+WSS2OxaJKp+chkuBxA+WgtxadCck2Ig4iPKJvnvnRyvABj9tYed4j4gDxMuUBSrbYZpV1AxEc/Onr9LF7VBOS4y0UniRsOZOhyCuL10Y+2bj/vrNccoPOi3gMSTrTVKXVlWHAaM91W6j76I+Ijasx7WvNdAMbM1B4l8gHkqfhIptXW8PlIM8wq4iOGhZ/uoC8YYo/R5Uwbk6MpttEk0e0CGU62Bel46cerqxsJhhRTR5czqXagm2hOSKLVNhL5SPN6AOL1kYCiFx8uhx13uO2rM93cnp522fFx0Ve49/qDfLKtDchX8WFRqy2I+OiHPsvl5L3zIOUCSXW7QHS7bZrXg+iOFyEySC5fUi6QcKKtjjfTVluI6ngR8dGfohcfADVlbgB2daXpwT9qOtid0NsK7VvNW9gw5KOtbfiDilEVHsaPGPxGn3V08eEcfE3ecJg17UmWhvgQO+W2bj9L1mgpl5x3uegkccMBM1xO99AeO7bFDrMrQvzBkNHtlNMptv1JouA0I4dTHfH6GBQRH8DICk18NHemWZHs9ER2O0WeejFSLhNH5MduVyeJyEfGaZfqydpjx7ZIa2+R8uKnDfiDimljKpiaDykXSCrUDia4nJaOgLJwbUORRz+Wrt9FR2+AkeXu3M30iUff0Cm4jB1OISryIYMG+yPiA6gt0yZcNndkMH1QNxvb8ZEJKxq+5GW9ByTVaptx2sVbE+mkaN2U3jEKBL3LJS8KTXWSTLtEJtumKT5AUi9hFoa7XI6aNtoY1JYXJFF8rKddutIZLKej13y0bS76DUl/RHwAI8vD4qMrg15sKTpFKcXysPjYP+/ERwqRj3QLj202qfsAWrr6eGNtM5Bn4iMJnw+I1HykHfmAqI6X4h0wp5QyLNXzqt4DUmy1zSDtUjYqvCFRRX1NiIeID2BkeTjtkknkwyg6/cSEFQ1PNu7sZmdXH26nnVnjcmwo1Z9AeNeRhPjIKMw6YpL2WMQXmhc+aSAQUswYW8nu+TBUUMdIuyQ+NyOtthncdEZN0x6LuONlTWMnm3f14HbaOXzqyFwvJ5akWm1NuB7YbDJgbhBEfBCJfOzMKPIR9vrYtQ76uk1Y1fBDT7nsM67KsK3PG4y0S6JuFxOq2yXywbMfRYzF8galspx2kem2Cz/Voh6H7l5rpDDyglAoquZjcCFa5tGvBxmIUIgUnYrXRwwiPoDa8gwLTgEqxmghNhWCxpUmrWx4sWxTntZ7BP0QCl9ArCw4hdgBc0XIzk4fb67bCeSZ+OjrAsJt8EOmXTKwV9fRaz52roNghjevYUreuZrq6MIDEqZdMq4B0xGvj7iI+CAq8tGZQdoFInUfRVp0mvf1HpC41daUtMtk7bFIIx/Pf9JAMKTYe1xV/hhKQSTMbrMnLDoGjNkjabfaAlSO1861kL8ohWhTh4/3N7cCcMz0PBMf+rlgd2mdioNQZkYkFMTrYxBEfBBVcJpJ5AOiOl6Kr+6jvdfPqh3af+r9J+ar+LAlvNh4M53tArHiowgN5575IA+7XCB2rssQLeDRBacq3X9Duz3i91GEdR+vfNaIUrD3uCrqqgYfaZATottsE5wLpvh8QJTXh6RdohHxQaTgdFdXH8F0hsvp1IXrPoqw42XFplaUgkm1XkZVDH6DzwnRbbbJXGz8wfRvOlUTAJt2gevemd4xhimNHb28s177nU/eO8/ER5KdLhApOPUHFb3+NOc9QVHbrBtdLvlkLKaT5Iwf/XrQ6w9ldl/QIx/tW2KjsEWOiA8iDqchBS3dZnh9fFJ0u95oc7G8w+h0SbwD03O8wZBKf8igqwQq67XnRZZ6eeHjBkIK9p1QzYSaxKmNrJNEd4NOmdtheFJklHop0um2vf4gr63RWq2P3StPBslFYzjdJu56KouayJ1R9MNbG/msIrsmJELEB+B02BkRzvNmVPcxck8tj+hrKzqTqeWb8rTeA6BHW9tQFxtv1ITj7kyMhYq07uPpsLHYqfmWcoGoUPvQbqs2m80oOjXH66O4xMeb65rp8Qepryphr7F51nIPkZbrIYSox2k3AqUZpWKjp9tK0amBiI8wptR9ON2R/v4iqvsIhhTvb2oF8rDTBSJCsHpCwrc5o4YMdqdrNAZR4qN4LJV3tPeydIM2Nv3EfEu5QNITbXXMabeN8voookjoS+FBcsfMGJNfIxZ0kky72Gw2o+g07XlPOlJ0OgARH2FMabeFqNRL8dR9rGrooNMXoNzjZM98meMRjSE+Jg751lIz222LaMDccx9tRynYf2I146rzaKCgjh5qTyLtApG6j4wiH7W7AzZt4GRXc/rHGUaEQip/W2x1khQfgDkRMBCvjziI+AgTiXxk2G6rO502FE+7re7vMXtidX7Nb9DRWx2rJw35VlPabauLz+X02Q91Y7H6HK9kEJIwlYom48m2oHnK6IK3SFIvH29rY0e7jzK3g7m71eR6OfFJQXzUhDelOzPdlEraZQAiPsJEvD4k8pEqhr9HPhabQlqRD/H6SJ5trT28t7EFmw1OyseUC6ScdtHbbdt7MmyzLLKOl5fCrqZf3HNU/rkc6/QlLz70oaM7uzLclNZK5KM/pouP+fPnc+CBB1JRUcHo0aM57bTTWLUq/4crjTQr7aK32+5aH7ngFTChkOLd9VquPy/rPSAl8RFxOc1AfIyapplZtW2Gti3pH2eY8FzYTv3ASTX55+mgk6S1uk5lqUnh9iKbbqvXe+Rli61OCpGPWiPykaH40NMu7VuLdvxGf0wXH4sXL+aSSy7h7bffZuHChQQCAY4//ni6urrM/ihTMS3tUjYSyscAqihs1l9auYOtrT2UuR352ekSCkYEQDLiw2WCq2FpNYw/UHu+9qX0jzNMeObDPDUWiyaFGw5EDZfLWHwUz3Tbra09fLq9HbsNjpqehy22OqmIjzKT0i7eGiip0p4XSUR0KEwXH88//zznn38+M2fOZN999+X+++9n06ZNLFu2zOyPMpVas9IuEJV6Key6D6UUf1qk7ejOO2Qy5Z48Gh6l07Fdm+tid0LF0DdHrxljtAH2OFZ7LHDxsXlXNys2t2KzwYl71+V6OYOTqvgoMaHgFIoq7aIXms6ZVGN4J+UlvuTbrvX7wq5M0y7R7bbS8QJkoeajra0NgJqa+MVHPp+P9vb2mK9cEEm7ZHiSQVTRaWHXfbyyqpGPt7bjdTu44PDdcr2c+Ogpl6rxYB86B22kXTJptYWI+Ph8sTbYrkDRUy4HTalhdEWeplwg5bSLKQWnEBEfrZsLPtweabHN46gHpGQ4p0c+mjMVHxBlsy7iAywWH0oprrzySg477DBmzZoV9z3z58+nqqrK+JowIbEXg1VE+3ykba2tMyZc91HAXh9KKf748loAzpk7KX93OinUewCUmpF2ARi7n+Zs6GuHze9mdqw85tmP8rzLRSfttEuGEbCykVBSDaiC3vF29Pp5a53uaprH9R6QtMMpRGo+dnWZEBEXr48YLBUfl156KR9++CGPPvrooO+55ppraGtrM742b95s5ZIGRT/JfIEQnb4MLzjGdNtPIJTBbIg8ZsmaZj7Y3EqJy56/UQ/QdpyQtPgwpdUWtMFiux+jPV+7MLNj5Skbd3bx4ZY27Db40qw8TrlAGt0uJhWc2mwR48ECTr28tqYZf1Cx28gydh+V3N9xzkip5sOkiecQuS9seKOoTOcGwzLx8f3vf5+nnnqKV155hfHjxw/6Po/HQ2VlZcxXLvC6ncaNJ+MTbeRUcLi1lq4CHKetlOJPL2u1HmcfNCn/BslFk4LHB0SJj0wFKMDU47THAq370KMeh+w+0ogc5i3RU22TwLS0C0QVnRZux4s+SC7vUy4QO9V2CKK7XTKOiO9+tHZf2LUOmj7L7FgFgOniQynFpZdeyoIFC1i0aBFTpkwx+yMswxSLdQCHC0ZN154XoN/HW+t2smxjC26nnQu/mMdRD0g97RI12TZjdj8asGmGcx0NmR8vz3h2OHS56Bih9iw6nOoUeNFpIBjilc+GQYutThqRj76gCRFxT0X4mgCsfDqzYxUApouPSy65hIceeohHHnmEiooKGhoaaGhooKcn/0cJm1t0Wrh1H38MRz2+deAERlfmcZEhpCw+TPH50CkbCfX7ac/Xvpz58fKI9c1dfLKtHYfdxpdm5nnKRamUOhwgEvno9AUIZTJOHQp+uu3yTa20dPup9rry1+tHJ+iPTLlO4lwodTvMi4gDzDhVe1z5VObHGuaYLj7uvvtu2traOPLIIxk7dqzx9dhjj5n9UaZTa1bkAyLttgVms/725zt5Z/0u3A47Fx25e66Xk5gUPT4ASt16wakJaReAPQoz9fLsh9sAOHSPkYzI12JjnUAvqLCYTNZkLNxqqxR0ZLrj1cXHzjXaOVlg6CmXo6aNxunIc9NsPeoBSafgjNSLGUWne56oGRA2fFT0fh+WpF3ifZ1//vlmf5TpRCzWTSwuKrC0y+1hX4+vzxnP2Ko8HCAWTUcDhPxJe3wAeF0mFZzq6C236xYV1I1HNxY7JV/t1KOJdhpOUny4nXZKw+dCxkZj1ZM0g6lAL2x6K7Nj5SG6+BhWKRdnKTiS8yWqMbPotKwWJh2qPV/5TObHG8bkuUzNLqZZrEMk7dKyAXpz411iNu9t2MUba3fitNv4Xr5HPSBljw8wOe0CMO4A7cbT2wpb89toL1nWNnbwWUMHLoeNE/I95QKxE23tyV/yTLNYdzhh+ina848XZHasPGNdUyefN3Xhctj44p4jc72coUmx5RpgpO5yaobXB8CML2uPRV73IeIjCiPyYUZ4zVsDFWHvgwKxWf/TIs3X44wDxjN+hDfHq0mCFOs9wKTBctE4nJEiswJJvehRj8P2GEmV15Xj1SRBigZjOpHhciYUnc48XXv89L8QNCmllwforqZzd6ulomQYnAtpiI9asybb6kw/WXvc/E5BFqIni4iPKPSTrLnDJIWrO50WgM36is2tLFndhMNu4+Ij98j1cpIjDfFRFraIz9jhNJoCs1rXu1zy3lhMJ0WPDx1T2213OwJKa6C7GTa8lvnx8oRhMUgumhTabHVqzJpsq1M1DsbNARR89qw5xxyGiPiIwmi1NSPyAVFFp8O/7uP2cIfLV2ePY2LtMIh6QMoeH4CR5zet4BQiZmNbl0NXs3nHzQGrGjpY09iJ22HnuJnD5IaTxm4XTHQ5Ba39Xu90+KQwUi8tXX28t0GbaD0s/D0gJXdTnZFmTbaNZkY4DVfEqRcRH1EYNR8dZomPwig6/XhrGy9/1ojdBpccNUyiHpBW5EPf7bZ0+QkETXKnrRwbttxXsO4Vc46ZI/Quly/uOcpIS+Q9aaZdqsz0+gCYFU69rHy6IOb9LHh/KyEFM8ZWDo80LGSWdjFrUwowPSxEN7wGPS3mHXcYIeIjCj3y0d4bwBcwIexueH18Oqxt1nU30y/vW8+UkWU5Xk0KpCE+xlWX4nU76AuG2LCzy7y17KFbrQ/f1ItSKtLlMhyMxXTSjXyELdZNSbsATDoMykZpN5vPXzXnmDlia2sPt764CoCzD0r+/1fOSdHvBUzudtEZuQeM3kubuL36BfOOO4wQ8RFFVakLp90GmDBCGbQphs5S8HdBwweZHy8HfLqtnRc/3YHNBpcePYyiHml4fADY7Tam1WkXppXbO4Z4dwpE130MUyG6cnsHnzd34Xba8394WDQpTDGNxlSXU9CKj/f6ivZ8GHe9KKX46RMf0dUX5MDJIzjrC8NJfKR+LtSa3e2iYxiOFWfqRcRHFDabzdyiU4cTpp+kPX/vb5kfLwfc8YoW9Th577HsMTq1nWNOScPjQ2d6nZYPXtVgoviYcJBmatTdPGyF6LMfaSmXo6aNotyTnEdCXtCX+m4XogpOzRIfEOl6+exZCJgYxs8iT32wjVdWNeF22Jl/+j7Ywxu2YUE6rbbhiHhLV1/mbrfR6OJj7UvQZ2KUdZgg4qMfphedfuH/aY8fPg7du8w5ZpZY1dDBcx9prWDfP3pqjleTInrKpXJc0h4fOtPDkY/PGkz0Z3G6tY4HgDXDL/Wyva2Hf7ylFfAOmy4XnTS7XfSaFtMiHwATD9bEsK9tWFru7+rq44anPwXgsmP2YI/ReT7Btj9GwWny4mNEmXYeBELKvBQcaA0J1ZM087lhnI5NFxEf/TAs1s0qOp1wkFb7EeiBFQ+bc8wscccrmq/HibPqjFTEsCGNeg+d6VakXWDY1n2EQoof/usD2nsD7Duhmi/NGgbGYtEYJmNpdrv0mtj5ZLfDXqdpz4dh18svn/6EXV19TK+r4MIjhoHRYH/SiIJ5nA4qwvU/psz90rHZolIvxed2KuKjH0ZblVn5PZstEv1Y+pdhY7G9trGTZ8KdDcOq1kPHEB/Jt9nq6GmXra095u509LqPLe8Oqwr3v72xnjfX7aTU5eC2b+yHK9/nd/QnzbSL7nBqatoFIl0vq/4H/vwfuKnzyqpGnlyxDbsNbvraPsPvPIC0i4/1iLgptYDR6G6nq5+HgMnHznOG4dljLSPNjnwAzDoDSqo1q/Vhsuu965W1KKWZB82sr8r1clLH8PhIPfJR5XVRX6VN6zW17qN6IoycBio0bLodVm5v53fPa10NPz91r+HV7aSTT2kXgPEHQtUETRStWWjusS2i0xfgugWaWeK8Q6ew74Tq3C4oXdIUHzVlJo7eiGb8gVA+RovOrV9i7rHzHBEf/TA98gHg9sL+52jP3/mzece1iA3NXTy5Yiug5XWHJRmkXQCmj9WiH59tN3kuzzByO+31B7ninyvoC4Y4dsYYvnnghFwvKT0y9PkwNfoFWjR05mna82GSern5+c/Y1tbLhJpSrjx+z1wvJ33SaLUFmFij+Zis3mFyKtZuj8z9WfmUucfOc0R89KM23NNtusKd813AButehua15h7bZO58ZS0hpXU17DO+OtfLSY9MxYde92Fm5ANgqi4+XtbmtecxN7+wilU7OhhZ7uGmr+2NzTaMuhqiydDhtNcfMsf3Jxq962X1C3nf6bBs4y7+/rYWSZz/1X3wuodRp1N/jFbb1M6F2ROrAXh/U6u564GI2+lnzw6btLwZiPjox8gKXXyYnH+rmQJ7nqA9X/oXc49tIpt3dbPgfS3q8f1jhlmHi06aHh/RWBb5mHiI5v3SsR12fGLusU3k9TXN/PX19QD87oy9jULsYUma4qPC40TXW6ZYrEdTPxtGTAZ/t5bvz1N8gSBX/+cjlIKvHzCew6YOg8m1iUij2wVg9oQRALy/qcXcdluAyYdrk6+7m7Vhc0WCiI9+GBbrZkc+AL7wf9rjiocj4b88465X1xIMKQ6fOpL9J47I9XLSIwOPD50Z4cjHqoYOcy82rhKYcrj2PE9TL63dffzw8RUAfHvuRI6ePowMxeKRZtrFbrdREfYzMb3Q0GaLRD/y2HDszkVrWdvYychyDz89ea9cLyczlEpbiE4fW4HHaae9N8DnzSZHqhwumBb2gyoiwzERH/2Irmo2XeHudrTmeuprhw8fM/fYJrC1tYd/L9MiBpcP16gHxHp8ONILEU8eWYbbYaerL8iWFpM7EvY4TnvMQ/GhlOLaJz5iR7uP3UaVcd1Jw/yGA1E3nNQ9KfTOp/c3WdCdpHe9rFkIvSZH2Ezgs4Z27np1HQC//MpMqrzDZJbPYAR6QYXTGimKD5fDzj7jtcJ7S86FaLfTPE/HmoWIj37oVc3BkKLV7Cp3uz3SdvvufXl3kt396lr8QcUhu9cyZ3JNrpeTPhnWe4B2sdENlEw1G4OI38emtyM3xjxhwfKtPPdRA067jdu+sR+l7tQM2vKOQB8Ew1GLFG84AHN30/4fvPX5TjNXpTFmFtROhaBPa7vNI4IhxdX/+YhASHH8XmM4cbh5u8TD+L9mA3fqXVt6JPj9za3mrUln96PB5YW2zbB9hfnHz0NEfPTD5bBTHVb4O61Ivez3LXCVQdNK2PC6+cdPk/8s28JDb2s37WHnZtqfDDw+opk+Vnc6NVkg1O4OI6ZoqaE8aq/bvKubXzyl1aH84Lg9h2+xcTR9UenNFIsMAebuXgvAW+t2oszeLNhskehHnnW93P/Gej7Y3EqFx8kvvzJr+BYbRxOdcknj97G06NRVGumEK5LUi4iPOOiplyYrxEdJFez7Te35u/eaf/w0eP7jBn78nw8B+M6hkzk4fMEdtmTg8RHNjHDI3fTIB8DUcOolT3wegiHFlf9aQacvwJxJI7hoOLpXxkMvMHSWpJWC23/iCNxOO40dPvNz/RCp+1j7ct4Yz23e1c3vX1wNwDUnzaAu7Hkz7Emz3kNndjjysaqhnU6fyQXIEDEcKxK3UxEfcdCnGDa09VrzAXrh6WfPRroycsTra5q57NH3CYYUZxwwnp8N96Iy0EKXkLH4MCIfZtusQ5TfR3603N6zeB1LN7RQ7nHyh2/sh2M4DQtLRJq+DjolLgf7h3e8b62zIPUyenp4tLpfux7kGL3mp8cf5KApNcPX2yUeaU431hlTWUJ9VQkhBR9uaTVvXTp7Hg92FzSvgqZV5h8/zxDxEYe9x2mFRa+tabbmA0bP0NqrVBDeu9+az0iCZRtb+L+/v0dfMMSJs+r47el7D68JlYNhQs0HRIoN1+/soqfP5P77yYeBww1tm6B5jbnHTpGPtrTxh4XaTveGL89kQthQqSBIs9MlmoN309pL37ai7gPyquvlP8u38tqaZjxOO7/92jCbWDsUvW3aY5pCFGD2JL3lttWEBfWjpAp2O1J7XgSpFxEfcTghXFz18sod+IMhaz5ELzxd9gD4LYqwJODTbe185/536fEHOXzqSG775n44h+Oshv6EQtBqTuRjVIWHkeVulLLA2dBdBpMO1Z6vzV3qpacvyOWPvU8gpDh577Gcvv+4nK3FEtK0Vo9GLzp9+/Nd5td9QKTu4/NXocsigZMETR0+fvWMNrH2imP3HJ5W+onY9Jb2WJt+SnF22FbeEvEBEcMxER/Fyf4TRzCy3E17b8C63c60k7RW0O5m+PRJaz5jED5v6uTcv71De6+W3//zOQfgcQ7zrgadzsw9PqKZbmXdh556yWGnw43PreTzpi7GVHr4zVcLpLAwGsNUqjLtQ+w3sRqP005zp4+1jRb489TuDnX7aJHQHFlsB4IhfvrkR7T1+JlZX8n/HT4lJ+uwDKUif7d6W2sa6HUf729qsUaITjsZsGkdL3oEt0AR8REHh93GcXtpxkovfNJg0Yc4Yc487XkWC0+3tvbw7b+8Q3NnH3uNreSv5x84vO2S+2OCx0c003SbdSvqPqadCDY7bHgNPnzc/OMPwSufNfKPsG3277++H9Ved9bXYDkmpF08TgdzJms3HUtabiGnXS8dvX4u+Pt7vPDJDhx2Gzd9bZ/CiIJGs/0D7drgLIXdj0n7MDPrK3E5bOzs6mPzLgsmEpePgkmHaM/zoAbISgrsDDOP42dqqZcXP9lhvtmYzv7naXn/rctgyzJrPiOKpg4f5/zlHba19bLbqDL+/t0vGMOzCgaT6j109BkvlkQ+aneHL/5Ye/7sldrU4yyxdMMufvj4B4A2pXTY22YPxqawXXXV+IwOc/BukZZbS5j5Ve1xw+vQ2WjNZ8RhS0s3Z9z9Fq+uaqLEZefOs2Yza9wwnGI9FHoaY+qx2qDPNClxOdgrPOX7/c0WdSdFG44VMCI+BuGQ3Wsp9zhp7PCxworKZtBUrl5stvQ+az4jTFuPn3P/9i6fN3cxrrqUh757kNFSXFAYbbaZeXzozNBnvDR0WBNm/eJVMOEgLT3wn/+DoAUtfFEopfjb6+v51r1vs6urj73HVfHjL02z9DNzRl83fPpf7fmsr2V0KL39/J31u6zZjIyYDOMOABWKrNli3t/Uwml3vsmqHR2MqvDwrwsP5kuzMk9V5iX6jXzGVzI+1P5W+n1AZMrtxjezKkSzjYiPQfA4HRw1fTRgYeoFIoWnH/8HuqzprunuCzDvgaWs3N7OyHIPD11wEPXVpZZ8Vs4xOfKxx+hy7DZo7fbT2GGB74vDCaffp9UkbHkXltxs/meE6e4LcMVjK/jlM58SCCm+vG89j104lxJXgdT79GfVc9DXoZ0LEw/O6FB7j6um1OVgV1cfqxstcqXVNyJZKEJ/9sPtfPPet2nu9DFjbCX/veTQwjCVi0fTKq191e7S2lkzJLruwxKqJ8DY/QAFb/zRms/IA0R8JOCEmVrdx4uf7LBm1wsw/gCo31+zgF7+oOmH9wWCXPiPZSzb2EJliZN/fPcLhVfFHo3J4qPE5WC3UVq9wEqzJ9zqjJgEp/xBe77kd7DxLdM/YkNzF6ff9Sb/XbENh93Gz0/Ziz9+c7/Cqvfpzwf/1B73+YY22iAD3E57pO7DqtTL3l/X2i13fAz/vcQS/xelFHe+spZLHlmOLxDi6Omjefyigwt3MwKRQtPdj9L+fjNE73j5ZFs7vX6TW/B1DrtCe3zrDnj/IWs+I8eI+EjAkdNG43baWd/cxRorqtx19OjH0r+ZGnb3B0Nc/ugKXlvTjNft4IF5XzDSCAWLyeIDous+LJzDsvcZsM83tbD7gv8HPa2mHfrllTs49Y7X+ayhg5HlHh654CDmHTal8DpboulshHWLtOf7fNOUQx68u8V1HxVj4Mx/aJ1aH/8bXrnR1MP7AkF+9PiH3PyCZmA179Ap3HfuHMo9BSxAAT7NvMslmvEjShlZ7iEQUny8tc2UYw5g5le1lCzA01fk1SgOsxDxkYByj5PD9tAK8V742MLUy8yvgrcW2rfAanPaLt9c18xJf3yN5z9pwO2wc+85c4zBSAWLiR4f0Rh1H1ZFPnROulnL/bdt0gpQM9z5BkOKW19cxXcffI+O3gD7T6zm2csO46Ddhrl9fjJ89G+tdXXcHBi5hymH1ItOLav7ANjtCDg1HGpf8jtY8agph23p6uOcv7zLf5ZvwWG38avTZvHzU/cqHCfbwWjZAA0fal1l+tj6DLHZbNbXfQAcea12bwj54bFvw851phxWKcVDb2/k/jfWm3K8dBHxMQR66uWFTy0UH64SrfMF4J0/Z3TT2d7WwyWPLOes+95hTWMnNWVu/nzOAYXbzRCNyR4fOnrk48Otbdal3wBKKuH0v4DNodUA6WmDNGjt7mPeA0v506K1AJx38CT++f8OZkxlgczpGIoPw393+5oT9QDN+bjM7aCtx89KK7qfdGZ/Gw77gfb8qe9nvOtd19TJV+96g3c37KLC4+Rv5x/IOXPNKcjOe/Q5KZMOhTLzroFG3YdVHS+gpQpPu1srRO5pgUfOzHj+z7bWHs7927v89MmPmf/cZ6y3Yl5Rkoj4GIJjZ4zBboOPt7azpaXbug+aM0+76Wx4DZ6+POX0S18gxN2vruOY3y/m2Q+3Y7fBuQdP4pUfHmkUzhY8Jnt86Ow7oRq3087nTV38/a2Nph03LhMOhCOv0Z4/96O0djsfb23j1DteZ/FqrX3yD9/Ylxu+Mgu3s0j+uzeu1Hwd7M5IEacJOB12DpyiuZ1alnrROfrnsNdpmpj+59nQvDatw7y+ppmv3vkGG3Z2M35EKf+5+BCO2HOUuWvNZwxjsS+belh9wu3yja3WbkhcpfDNR6FyPOxcC/86F4L+lA+jlOLfy7Zwwh+WGPb5PzlxOpNyOEqhSK5G6VNb7mHOZO2C88InO6z7oOoJcPItWnhw+YPwz29FrKGH4LU1TXzpj0u46fnP6O4LcsCkETz9/cP45VdmUeUtMB+PRFhQ7wHalONrT5wOaI6gplut9+fwK2HiIZpB1oL/S/pi0xcI8Y+3N/K1u99k864eJtZ4WfC9Q/nq7Mw8LoYdesRo6vFQZm6KSU+9LLFq7pOO3Q5fvUdLG/W2wiNfT9p6XSnFW+t2cs5f3+Hbf9WcjPefWM2TlxzKnmPSn2sy7OhogM1hnxfdttwk9hlfhdtpp6G9l3uXfG7qsQdQMQbOekwzylu/JKWUbDCkeO6j7Xz5jjf40eMf0OELsN+Eap67/HDmHTYlp7N7RHwkwQlhw7HH39tMe2/qqjNp5syDbzykufCteREeODlhn/fW1h6+99Ayzvnru3ze1MXIcje///q+/Puig5lZX4BGQUNheHyYKz4AzjtkMkfsOQpfIMRlj76PL2BRlTuA3QGn36tV5m9dBq/+NuHbd3X1cfvLazj0pkX87MmP8QVCHDVtFE9fehh71Rd4gXF/QiH4KOwWa2LKReeIaVrUYMnqJv74ksUDAV2l8K1HtfN51+da3j8weLu3UopFn+3gjHve4lv3vc1ra5px2G2cddBEHvm/uYXp65OIz8Ipl/EHQmW9qYf2up1cE96Q/Pb5z6y1YwComwVn/C28Of271gWTgL5AiH+9t5nj/rCYix9ezkdb2yhx2bnqhGn8+6KD2X1U+o6/ZiHiIwlO3nssZW4HnzV0cNqdb1ibJ5t+Mpz3tFaAun0F/OXYAVNPfYEgdyxawzG/f5X/fdyAw27jO4dO5uUfHsnXDhhf2F0MibAo8gFakdnNX9+HmjI3nzV0cMsLFo+8rp4Ap9ymPX/t93Hz/mt2dHDNgg85eP7L/H7hapo6fIyp9PDTk2fw1/MOLK6ol86G16B9qybc9vyS6YefXlfJtSdpN50/vLSaO19JLx2SNOWj4azHNR+YTW9qNSD9dr3BkOKZD7dx0p9eZ94D77FsYwtup51z5k7i1R8dyY1f3btwvVwSYXKXS3/OP2Qy58ydhFJwxT9XWNf5orPnCXD8b7TnL/4MPntuwFu6+wL87fX1HHHzK/z43x/yeVMXlSVOLjt6D978yTFcctQeeWOdb1OWJqxSp729naqqKtra2qiszJ9d20db2vh//3iP7W29VJY4ufPs/Tl8qoW5053r4KGvQct6KB1B8BuPsjS0J//7aDv/+7jBMLz6wuQabvjKzMJvoU2Gv39Fmwx62t2w31mWfMRLn+7ggr+/B8BD3z3I+kLeJy+BFQ9pdSzfewNVUs2SNc389fX1LFndZLxt73FVfPewKZy099jiqe2IxxPfgw8egQPOj3SNWMBdr67ld89rAvQnJ07noiPSn5SaFOsWwUNnaB08R14LR16NPxjiife3cs+r6/g8vCEqczv49txJfPewKYwuluLieHTvgpv30P6+Lnsfanaz5GMCwRDzHnyPJaubGFPp4b+XHEZdlYV/70ppaZf3/gauMpj3PIzdh7ZuPw++tYH731hPS7cWnR9d4eGCw6dw1kGTstZOncr9W8RHCjR29HLhP5bx/qZWHHYbPz15BucfMtmySEOgvZGeB8+gYucH+HBxed8lPB/6AqCNe7/upBl8Zb/64o109OdPs7Xw9PnPwuTDLPuY6574iIff2cSYSg/PX/5FRpRZOJDN1wl//iLsWkdLxTRuDH6bx3dpNzq7DY7fq47vHj6FOZNGyHnQ1w23TNVqZb7zPEzKzNV0KO5YtIZbXlwNwHUnzeD/vmjNDc5g2QNaMTqweNaNXLt2BltbteFmVaUuzj9kMt85dHJhDghMlfcf0ozaxuwN37PWI6O918/X7nqTNY2dzKyv5F8XHkyZlTf7oB8e/jp8/gqBsrHcNfVe/ry8m64+LRU8qdbLhV/cndP3H5f1iJeIDwvxBYJcu+Bj/rN8CwDfmDOBX54207SR9H2BEG+sa+b5jxp48dMGero7ud11B8c5lhHCxlN1l1J55Pc5dI+Rpn1mQdC6WRMfIT9c8ZElqRednr4gJ9/+WrjOxsOX963n9P3HMbO+0jQB0OkL8MHmVpZvbGHnmne4suEqKtG6rV5X+/LJXj/kpOOOY0IOq9Xzjg8fhwUXaHN9Lv8AsiDGbntpNbeFaz9+fspezDvM/FH0O9p7eWvdTt7+fCf7fvZ7vuV/Ep9y8mP//+Ot0iP57hf34Oy52dvdDgse+Qasft6IElnN5l3dnHbnG+zs6uO4vcZw+7dmm37jV0qxaVc3b3++kxVrNvL/1lzEFLWFT0KTuNb/XXxjZnPxUXtw0qy6nKVWRHxYjFKKv76+nhufW0lIwQGTRvCNAycwZWQZk2q9jCr3JLwJKaVo7uxja2sPW1t62NrazdaWHra09PDuhl109EbabGvK3Hxpr5Fc2nsf9Wse1l6cewkc/+uMLaMLhsaV8I/ToWMb1E6FS97RijYt5NNt7Zx//7sx816mji7n9P3Hc9rsesZWJW9XrZRifXMXyze1snxTC8s3trB6RwfRPlY1tHNt+dN8NfgCDhUAbJpt+NHXWSq0hhX/OB3WvQxHXA1HXZu1j731xVWGn8oJM8dw4OQa9ptQzaxxVWndgJo6fLz9+U7e+nwnb6/baaRUAGyEuNv1R77kWApAqHoS9oMvhdlng7uAxyakgq8DfrebNrLi4rdh9IysfOyyjS1867636QuE8DjtzN2tli/uOYoj9hzJ7qPKU96YKKXYuFMTG9rXLhraIzN/Jth28F/3z6mxad13atKh2A69AqYelxXhHQ8RH1nilVWNXPbI+3T4Yj05ytwOJtWWMXmkl0m1ZZS6HGGR0cO2Vu3RFwgNetxRFR6+NLOOE/eu4wuTazQVq8JDhl76hfam3Y/WumP2OE4zKStWNr2jme/0tsLIaXDOgozHpyeLPxhi8aomnnh/KwtX7qAv/G9qs2ktmTPrK/EHFYFQCH9A4Q+G8IcU/kCIQChEX1Dh8wdZvaPDyNNGM666lAMmjWD/idXsP2kEM+urcLSuh5d/BZ8s0N7kcGv2/If/ELw1Wfm985KOBrh1hmZP//3lUGtxDUYUSilueXEVd74S68nitNvYq76S2ROqmT1xBKMrPLT1+I2v1qjn7eHHXV19bGnpiTmOzQYz6ys5eLdaDt69lgPHe6lYege8ey/07NLeVDoCDrxAOxfKi8TXZzA++jf857tQuwdc+l5Wb8QvftLAL576hO1tsYMB66tKOGLaKA7bYxSlbjsdvQE6fQE6w4/R33f1ad9vb+thR3tsd5PLYWO/CdXM3a2WubvVckBFKyVv3Qof/kuL+gKM3gsOuUyb5OzMbgpOxEcW+bypkwff3MC6pi427OxiW2sPyTgv22wwpqKEcSNKGVddajxOr6tg9sQRg9sef/RveOKiyInmroDpJ2lmSrsfnfWTLaeseh4ePx8CPTD+C1ovfI5uwG09fv730XYWvL+Vd9fvSvnPu5129hlXxf662Jg4InHB4NblmhBdv0T73lMFh/8ADrpIa9EsNt68A168TjsPLliYkyUs39SihcQ3tbJ8UyvNnelPQZ4xNiI2vjC5Jn7nUl83rHgY3rpTK0wHcHi0FuNDvg8jp6b9+cOaf50Hnz6pucQee33WP14pxeodnSxZ3cSSNU28s36XsTFJFZfDxuwJI5i7Ww1zd6tl9sQRlLrjRNPatsI7d8N7D2iTnEErUp97MRxwHniy4+8i4iOH+AJBtrT0sKG5iw07u9nQ3IUvEKS+OiIyxld7qasqSb8roXGlVlD1yRNaW6FOSRVMP0UTIrsdAY4CbrV8/+Fw22FQM5P6+oPgzo/6h827unn2o+3s6urDabfhcthxO+3Gc5dDf7TjdNiYWONlZn1V6ueDUrD2ZU2E7PhYe61yHBx8CUyYC2NmFkdUrKMB/vFVaPwUTv69FgHIMUoptrb28P6mVu1rcwsdvQGqSl1Ul7qoKnVRGX6M+fK62GNUeWpFzKGg5mnxxp9g63uR16edpO2AJ87NWRg+qygF296HB04Bfxf83yswbv9cr4qeviDvrN/J4tVNLN2wC7vNRrnHqX2VOKkIP5Z5Is/LPS5GeF3MrK+KLzYG/bBWWHY/vH03dIZNMUuqwlGxCzXDMgvJC/Fx1113cfPNN7N9+3ZmzpzJbbfdxuGHHz7knxvu4iOrhEKwZakWgv/kSW22iU7pCK2/feZXoX42lFQXxgWof/pp32/Bl28vbKE1FKEQfPQvWPRraNsced3u1EKw9bO1i3D9bO37Qvi7al6j3XBXPhO54Trc8MNVxZt+Ugo2vQ1v3g6rngPCl/baPWDMLK32YfQM7RwYMcXUEQQ5pW0LfPiY5mzbrHUfMWKK1mJbCNe8dAj4tL+TN/4EO8M+UQ63JkQnHqw9jj/Q9IhIzsXHY489xjnnnMNdd93FoYceyp///Gf+8pe/8OmnnzJxYuLiOBEfaRIKaheeTxbAp/+FrqbYn3sqtcLEqgnao/E1QesOKB2Rn/9RgwGtkLR1k/a1/jXNxwG0Xd1xv8zPdecCf6/Wjrn2Jdi2HLrj2HE7PJpbYv1s7at2Dyit0f79S0fk7w0pFNJ+p8+egc+ejdxkdMbN0UaQTzPfWGxY0rxGc8Fc8SgE46R/HG6tRmr0dE2QjAoLk+qJlhdrm4KvA1Y+DR88ql0TdKHlLNGMGo/4CYzaM6dLzAtCIW1S+uu3wZZ3Y39mc8BVa00V6zkXHwcddBD7778/d999t/HajBkzOO2005g/f37CPyviwwSCAdj4hiZEVr8AHduH/jPucu3CUz5aM69xlWi1Ay7vII9Rz52l2m5aKUBpRX8q/Jjw+37v79kVERmtmzS79LatWmqlP8f/WstrC/FRStsRbns//LVce+wdwoXRUwml1WExEiVKvOHnngqwu7Soit0RfnQO8v0g7wkFINCriaVA1Ndg33fugDULYyN7dhdM+aJ2o5l2ElSaN8W4oOjepdUHNa3U0rWNK6HpM/AnGJLprtAmLHsqB3+Mfu5wabbfNrv272uzaze2mO8H+5lNex7waf4sfV3al68z9vvo5z0tWq1TIKowd9JhWq3LXl/R1iUMpGkVbHxT26Ruekv7+7/sfVM/Iqfio6+vD6/Xy+OPP85Xv/pV4/XLL7+cFStWsHjx4pj3+3w+fL6IMm9vb2fChAkiPsykr1sLx7du1m7o+s29bbP2qOcG8xWHOzZiM/0U2PP4XK9q+KGUVphoCJIV2jnQ0zK0KMkH3BVaG+H0k7XHkiKcX2QGoRC0bYqIkcaVmjhpWh0/SpKv1O6hCY69z4QRk3K9muFHb7vpQi0V8WF6jLW5uZlgMMiYMbGFLWPGjKGhYeDwnfnz53PDDTeYvQwhGrcXRk3TvuLh79F2ya2boKtZ21H4e7TdkT/e8zg/C/rDuxpbZDeDLeq1/t/bYr/Hpv1HMNJBk8JfE6F8jHiamIHNptlM1+ymteFFEwpqxWo9LVFfuyLPu8PPfR1a5CIU0P6M8TygRaj6v9b/+2BAS+04SyJfrpLE37vLYNKhMOVwcBbZcDQrsNthxGTta9qJkdeDgfC/cbsmRn3t2g1qwGNb5Htfh/Z/X4W0r1Aw/Dz8GAr1+z765yryvatEi766y6K+yvs917/3wtj9YNwBknLNhBxHiCxL8PY3VFFKxTVZueaaa7jyyiuN7/XIh5BFXKVaW16xtuYJWgi2rNb0EfTCMMLhhPJR2pcgWIzp4mPkyJE4HI4BUY7GxsYB0RAAj8eDxyO7GUEQBEEoFkyPZbvdbg444AAWLow1+lm4cCGHHHKI2R8nCIIgCMIww5K0y5VXXsk555zDnDlzOPjgg7n33nvZtGkTF110kRUfJwiCIAjCMMIS8fGNb3yDnTt38stf/pLt27cza9YsnnvuOSZNkopkQRAEQSh2xF5dEARBEISMSeX+Lf2LgiAIgiBkFREfgiAIgiBkFREfgiAIgiBkFREfgiAIgiBkFREfgiAIgiBkFREfgiAIgiBkFREfgiAIgiBkFREfgiAIgiBkFREfgiAIgiBkFUvs1TNBN1xtb2/P8UoEQRAEQUgW/b6djHF63omPjo4OACZMmJDjlQiCIAiCkCodHR1UVVUlfE/ezXYJhUJs27aNiooKbDabqcdub29nwoQJbN68uSjmxsjvW9gU2+8Lxfc7y+9b2BTa76uUoqOjg/r6euz2xFUdeRf5sNvtjB8/3tLPqKysLIh/6GSR37ewKbbfF4rvd5bft7AppN93qIiHjhScCoIgCIKQVUR8CIIgCIKQVYpKfHg8Hn7xi1/g8XhyvZSsIL9vYVNsvy8U3+8sv29hU2y/bzR5V3AqCIIgCEJhU1SRD0EQBEEQco+ID0EQBEEQsoqID0EQBEEQsoqID0EQBEEQskrRiI+77rqLKVOmUFJSwgEHHMBrr72W6yVZxvz58znwwAOpqKhg9OjRnHbaaaxatSrXy8oa8+fPx2azccUVV+R6KZaxdetWvv3tb1NbW4vX62W//fZj2bJluV6WJQQCAX76058yZcoUSktL2W233fjlL39JKBTK9dJMYcmSJZx66qnU19djs9l48sknY36ulOL666+nvr6e0tJSjjzySD755JPcLNYEEv2+fr+fq6++mr333puysjLq6+s599xz2bZtW+4WbAJD/RtHc+GFF2Kz2bjtttuytr5cUBTi47HHHuOKK67guuuu4/333+fwww/nxBNPZNOmTblemiUsXryYSy65hLfffpuFCxcSCAQ4/vjj6erqyvXSLGfp0qXce++97LPPPrleimW0tLRw6KGH4nK5+N///senn37K73//e6qrq3O9NEu46aabuOeee7jjjjtYuXIlv/vd77j55pu5/fbbc700U+jq6mLffffljjvuiPvz3/3ud9x6663ccccdLF26lLq6Oo477jhjDtZwI9Hv293dzfLly/nZz37G8uXLWbBgAatXr+bLX/5yDlZqHkP9G+s8+eSTvPPOO9TX12dpZTlEFQFf+MIX1EUXXRTz2vTp09VPfvKTHK0ouzQ2NipALV68ONdLsZSOjg41depUtXDhQnXEEUeoyy+/PNdLsoSrr75aHXbYYbleRtY4+eST1bx582JeO/3009W3v/3tHK3IOgD1xBNPGN+HQiFVV1enfvvb3xqv9fb2qqqqKnXPPffkYIXm0v/3jce7776rALVx48bsLMpiBvudt2zZosaNG6c+/vhjNWnSJPWHP/wh62vLJgUf+ejr62PZsmUcf/zxMa8ff/zxvPnmmzlaVXZpa2sDoKamJscrsZZLLrmEk08+mWOPPTbXS7GUp556ijlz5vD1r3+d0aNHM3v2bO67775cL8syDjvsMF5++WVWr14NwAcffMDrr7/OSSedlOOVWc/69etpaGiIuX55PB6OOOKIorp+2Wy2go3sgTZQ9ZxzzuGqq65i5syZuV5OVsi7wXJm09zcTDAYZMyYMTGvjxkzhoaGhhytKnsopbjyyis57LDDmDVrVq6XYxn//Oc/Wb58OUuXLs31Uizn888/5+677+bKK6/k2muv5d133+Wyyy7D4/Fw7rnn5np5pnP11VfT1tbG9OnTcTgcBINBfvOb3/Ctb30r10uzHP0aFe/6tXHjxlwsKav09vbyk5/8hLPOOqtgBq/F46abbsLpdHLZZZfleilZo+DFh47NZov5Xik14LVC5NJLL+XDDz/k9ddfz/VSLGPz5s1cfvnlvPjii5SUlOR6OZYTCoWYM2cON954IwCzZ8/mk08+4e677y5I8fHYY4/x0EMP8cgjjzBz5kxWrFjBFVdcQX19Peedd16ul5cVivH65ff7+eY3v0koFOKuu+7K9XIsY9myZfzxj39k+fLlBf9vGk3Bp11GjhyJw+EYEOVobGwcsJsoNL7//e/z1FNP8corrzB+/PhcL8cyli1bRmNjIwcccABOpxOn08nixYv505/+hNPpJBgM5nqJpjJ27Fj22muvmNdmzJhRsAXUV111FT/5yU/45je/yd57780555zDD37wA+bPn5/rpVlOXV0dQNFdv/x+P2eeeSbr169n4cKFBR31eO2112hsbGTixInG9Wvjxo388Ic/ZPLkyblenmUUvPhwu90ccMABLFy4MOb1hQsXcsghh+RoVdailOLSSy9lwYIFLFq0iClTpuR6SZZyzDHH8NFHH7FixQrja86cOZx99tmsWLECh8OR6yWayqGHHjqgdXr16tVMmjQpRyuylu7ubuz22EuVw+EomFbbREyZMoW6urqY61dfXx+LFy8u2OuXLjzWrFnDSy+9RG1tba6XZCnnnHMOH374Ycz1q76+nquuuooXXngh18uzjKJIu1x55ZWcc845zJkzh4MPPph7772XTZs2cdFFF+V6aZZwySWX8Mgjj/Df//6XiooKY9dUVVVFaWlpjldnPhUVFQPqWcrKyqitrS3IOpcf/OAHHHLIIdx4442ceeaZvPvuu9x7773ce++9uV6aJZx66qn85je/YeLEicycOZP333+fW2+9lXnz5uV6aabQ2dnJ2rVrje/Xr1/PihUrqKmpYeLEiVxxxRXceOONTJ06lalTp3LjjTfi9Xo566yzcrjq9En0+9bX13PGGWewfPlynnnmGYLBoHH9qqmpwe1252rZGTHUv3F/geVyuairq2PatGnZXmr2yG2zTfa488471aRJk5Tb7Vb7779/QbedAnG/7r///lwvLWsUcqutUko9/fTTatasWcrj8ajp06ere++9N9dLsoz29nZ1+eWXq4kTJ6qSkhK12267qeuuu075fL5cL80UXnnllbj/X8877zyllNZu+4tf/ELV1dUpj8ejvvjFL6qPPvoot4vOgES/7/r16we9fr3yyiu5XnraDPVv3J9iaLW1KaVUlnSOIAiCIAhC4dd8CIIgCIKQX4j4EARBEAQhq4j4EARBEAQhq4j4EARBEAQhq4j4EARBEAQhq4j4EARBEAQhq4j4EARBEAQhq4j4EATBVK6//nr222+/XC9DEIQ8RkzGBEFImqGmbp533nnccccd+Hy+gp/JIQhC+oj4EAQhaaKnqz722GP8/Oc/jxlyV1paSlVVVS6WJgjCMELSLoIgJE1dXZ3xVVVVhc1mG/Ba/7TL+eefz2mnncaNN97ImDFjqK6u5oYbbiAQCHDVVVdRU1PD+PHj+dvf/hbzWVu3buUb3/gGI0aMoLa2lq985Sts2LAhu7+wIAiWIOJDEATLWbRoEdu2bWPJkiXceuutXH/99ZxyyimMGDGCd955h4suuoiLLrqIzZs3A9Dd3c1RRx1FeXk5S5Ys4fXXX6e8vJwvfelL9PX15fi3EQQhU0R8CIJgOTU1NfzpT39i2rRpzJs3j2nTptHd3c21117L1KlTueaaa3C73bzxxhsA/POf/8Rut/OXv/yFvffemxkzZnD//fezadMmXn311dz+MoIgZIwz1wsQBKHwmTlzJnZ7ZK8zZswYZs2aZXzvcDiora2lsbERgGXLlrF27VoqKipijtPb28u6deuys2hBECxDxIcgCJbjcrlivrfZbHFfC4VCAIRCIQ444AAefvjhAccaNWqUdQsVBCEriPgQBCHv2H///XnssccYPXo0lZWVuV6OIAgmIzUfgiDkHWeffTYjR47kK1/5Cq+99hrr169n8eLFXH755WzZsiXXyxMEIUNEfAiCkHd4vV6WLFnCxIkTOf3005kxYwbz5s2jp6dHIiGCUACIyZggCIIgCFlFIh+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGQVER+CIAiCIGSV/w9Ar/J7vCOoJwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -42,7 +43,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHFCAYAAAD/kYOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyMUlEQVR4nOydd3hb1fnHv1fbU94rtmNnOztkJ4QsMtmjBQIByigQKISU0gb6KylQUkYhpSGEkTBToIwwk5AQsvfeO3HseMR7D1nS/f1xdK5kW7Y17pJ8Ps/j58rSvUfHsnT0nvf9vu/L8TzPg8FgMBgMBiOI0Cg9AQaDwWAwGAyxYQYOg8FgMBiMoIMZOAwGg8FgMIIOZuAwGAwGg8EIOpiBw2AwGAwGI+hgBg6DwWAwGIyggxk4DAaDwWAwgg5m4DAYDAaDwQg6mIHDYDAYDAYj6GAGDoOhIB9++CE4jhN+dDodUlNT8bvf/Q55eXmyz2fjxo3gOA4bN270+trs7GxwHIcPP/xQ9HkFE/Q1/uqrr5SeCjiOw4IFC5SeBoMhCTqlJ8BgMIAPPvgAffr0QX19PTZv3oyFCxdi06ZNOHLkCMLCwpSeHoPBYAQczMBhMFRA//79MWzYMADAxIkTYbPZ8MILL+Dbb7/FnXfeqfDsGGJgs9lgtVqVngaD0WlgISoGQ4WMGjUKAHDx4kUAAM/zWLJkCQYPHoyQkBBER0fj1ltvxfnz55tdN2HCBPTv3x979uzBuHHjEBoaim7duuGf//wn7HZ7s3NPnjyJ6dOnIzQ0FHFxcXj44YdRXV3dai4ZGRm49957W90/YcIETJgwod2/495770VGRkar+xcsWACO45rdx3EcHnvsMXzwwQfo3bs3QkJCMGzYMOzcuRM8z+PVV19FZmYmwsPDMWnSJJw9e7bd5/aFxsZGPP/888jKyoLJZEJsbCwmTpyI7du3AwAmT56MPn36oGWPYp7n0aNHD1xzzTUAnOG6V155BS+++CIyMzNhNBqxYcMGt89bVVWFadOmITExEbt37/Z4vmVlZZgzZw66dOkCg8GAbt264dlnn0VjY2Or8R988EHExsYiPDwc06dPx+nTp92OeebMGcyaNQsJCQkwGo3IysrCW2+95fGcGAy1wDw4DIYKoV/e8fHxAICHHnoIH374IR5//HG8/PLLKCsrw/PPP48xY8bg0KFDSExMFK4tLCzEnXfeiT/+8Y947rnnsHLlSsyfPx8pKSm4++67AQCXL1/G+PHjodfrsWTJEiQmJmLFihV47LHH5P9jXfjxxx9x4MAB/POf/wTHcfjzn/+Ma665Bvfccw/Onz+PxYsXo7KyEvPmzcMtt9yCgwcPtjKUfMVqtWLGjBnYsmUL5s6di0mTJsFqtWLnzp3IycnBmDFj8MQTT+CGG27A+vXrcfXVVwvXrl69GufOncObb77ZbMw333wTvXr1wmuvvYbIyEj07NkT2dnZzc65dOkSZs6cCYvFgh07dqBbt24ezbehoQETJ07EuXPn8Pe//x0DBw7Eli1bsHDhQhw8eBA//fQTAGJ83Xjjjdi+fTv+9re/Yfjw4di2bRtmzJjRaszjx49jzJgxSE9Px7/+9S8kJSXh559/xuOPP46SkhI899xzXr6qDIaC8AwGQzE++OADHgC/c+dOvqmpia+uruZ//PFHPj4+no+IiOALCwv5HTt28AD4f/3rX82uzc3N5UNCQvinn35auG/8+PE8AH7Xrl3Nzu3bty8/bdo04fc///nPPMdx/MGDB5udN2XKFB4Av2HDBuG+rl278vfcc0+ruY8fP54fP3688PuFCxd4APwHH3wg3HfPPffwXbt2bXXtc889x7dcfgDwSUlJfE1NjXDft99+ywPgBw8ezNvtduH+RYsW8QD4w4cPtxrbVz7++GMeAP/ee++1eY7NZuO7devG33DDDc3unzFjBt+9e3dhjvS16N69O2+xWJqdu2HDBh4A/+WXX/IHDhzgU1JS+HHjxvGlpaVezXfp0qU8AP5///tfs/tffvllHgC/du1anud5fvXq1TwA/t///nez8/7xj3/wAPjnnntOuG/atGl8amoqX1lZ2ezcxx57jDeZTHxZWZlXc2QwlISFqBgMFTBq1Cjo9XpERETg2muvRVJSElavXo3ExET8+OOP4DgOd911F6xWq/CTlJSEQYMGtcp4SkpKwogRI5rdN3DgQCHcBQAbNmxAv379MGjQoGbnzZo1S7K/0RMmTpzYTFSdlZUFAJgxY0YzTw293/Vvcofr62W1WluFllxZvXo1TCYT7rvvvjbP0Wg0eOyxx/Djjz8iJycHAHDu3DmsWbMGc+bMaeVNuv7666HX692O9fPPP2PcuHG46qqrsG7dOsTExLT7t7Tk119/RVhYGG699dZm99Nw4vr16wFACIu11HK1/F83NDRg/fr1uOmmmxAaGtrsdZs5cyYaGhqwc+dOr+bIYCgJM3AYDBXw8ccfY8+ePThw4ADy8/Nx+PBhjB07FgAJJ/E8j8TEROj1+mY/O3fuRElJSbOxYmNjW41vNBpRX18v/F5aWoqkpKRW57m7T05afskbDIZ2729oaGhzrOzs7Fav16ZNm9o8v7i4GCkpKdBo2l8W77vvPoSEhGDp0qUAgLfeegshISFuDaPk5OQ2x/n2229RX1+PRx55BEajsd3ndAf9H7Y0qhISEqDT6VBaWiqcp9PpWr0vWv6vS0tLYbVa8Z///KfV6zZz5kwAaPVeYzDUDNPgMBgqICsrS8iiaklcXBw4jsOWLVvcfhH68uUYGxuLwsLCVve7u89kMrUSrQLkyy4uLq7d52nvWqlJSUnBnj17mt3Xu3fvNs+Pj4/H1q1bYbfb2zVyzGYz7rnnHrz//vt46qmn8MEHH2DWrFmIiopqdW57+qA33ngDX3zxBWbMmIGVK1di6tSpHf9RLsTGxmLXrl3geb7Z8xQVFcFqtQr/m9jYWFitVpSWljYzclr+r6Ojo6HVajF79mw8+uijbp8zMzPTqzkyGErCPDgMhsq59tprwfM88vLyMGzYsFY/AwYM8HrMiRMn4tixYzh06FCz+//73/+2OjcjIwOHDx9udt/p06dx6tSpDp8nIyMDRUVFuHz5snCfxWLBzz//7PWcvcVgMLR6rSIiIto8f8aMGWhoaPCoUCEV3d56662oqKjwSZxtMpnwzTff4Nprr8X111+P7777zqvrJ0+ejJqaGnz77bfN7v/444+FxwHyvwaAFStWNDuv5f86NDQUEydOxIEDBzBw4EC37zV33kEGQ60wDw6DoXLGjh2L3//+9/jd736HvXv34qqrrkJYWBgKCgqwdetWDBgwAI888ohXY86dOxfLly/HNddcgxdffFHIojp58mSrc2fPno277roLc+bMwS233IKLFy/ilVdeETK82uO2227D3/72N9x+++3405/+hIaGBrz55puw2WxezVcO7rjjDnzwwQd4+OGHcerUKUycOBF2ux27du1CVlYWbr/9duHcXr16Yfr06Vi9ejWuvPLKVlomT9Hr9fjss8/wwAMP4NZbb8XHH3+MO+64w6Nr7777brz11lu45557kJ2djQEDBmDr1q146aWXMHPmTCHLa+rUqbjqqqvw9NNPo7a2FsOGDcO2bdvwySeftBrz3//+N6688kqMGzcOjzzyCDIyMlBdXY2zZ8/ihx9+wK+//urT38lgKAEzcBiMAOCdd97BqFGj8M4772DJkiWw2+1ISUnB2LFjWwmKPSEpKQmbNm3CE088gUceeQShoaG46aabsHjxYtxwww3Nzp01axby8/OxdOlSfPDBB+jfvz/efvtt/P3vf+/weTIzM/Hdd9/hmWeewa233ork5GTMmzcPxcXFHl0vJzqdDqtWrcLChQvx2WefYdGiRYiIiMCgQYMwffr0VuffdtttWL16td+p9RqNBsuWLUNERATuuusu1NbW4oEHHujwOpPJhA0bNuDZZ5/Fq6++iuLiYnTp0gVPPfVUs3RujUaD77//HvPmzcMrr7wCi8WCsWPHYtWqVejTp0+zMfv27Yv9+/fjhRdewF//+lcUFRUhKioKPXv2FHQ4DEagwPHtpRUwGAwGwy233HILdu7cKYiZGQyGumAeHAaDwfCQxsZG7N+/H7t378bKlSvx+uuvM+OGwVApzIPDYDAYHpKdnY3MzExERkZi1qxZWLx4MbRarejP01HPKo1G02E6O4PR2WEGDoPBYKgIakS1x3PPPYcFCxbIMyEGI0BhISoGg8FQEe7q97g7h8FgtA/z4DAYDAaDwQg6WBCXwWAwGAxG0NEpQ1R2ux35+fmIiIhot5Q6g8FgMBgM9cDzPKqrqz3qG9cpDZz8/HykpaUpPQ0Gg8FgMBg+kJubi9TU1HbP6ZQGDu1Hk5ubi8jISIVnw2AwGAwGwxOqqqqQlpbWbl85Sqc0cGhYKjIykhk4DAaDwWAEGJ7IS5jImMFgMBgMRtDBDBwGg8FgMBhBBzNwGAwGg8FgBB2dUoPDYDAYDIaasdlsaGpqUnoaimAwGETptcYMHAaDwWAwVALP8ygsLERFRYXSU1EMjUaDzMxMGAwGv8ZhBg6DwWAwGCqBGjcJCQkIDQ3tdMVoaSHegoICpKen+/X3MwOHwWAwGAwVYLPZBOMmNjZW6ekoRnx8PPLz82G1WqHX630eh4mMGQwGg8FQAVRzExoaqvBMlIWGpmw2m1/jMAOHwWAwGAwV0dnCUi0R6+9nBg6DwWAwGIyggxk4DAaDwWAwgg5m4DAYDAaDwQg6mIHDYDAYaoHnAUut0rNgMIICZuAwGAyGktjtQO5uYO3/AW8OAV5KAQ59ofSsGAyvSU1NxZIlS5rdt337doSGhuLixYuyz4fVwWEwGAwl+ex24MzPze/b8i9g4G+BTp5NwyCVjeub/EuX9pUQvdarjKZRo0Zhz549wu88z2Pu3LmYO3cuunbtKsUU24UZOAwGg6EU5ReJccNpgH43A72mAz88AZScAi5uBzLGKj1DhsLUN9nQ928/d3yiBBx/fhpCDZ6bCaNGjcKHH34o/P7JJ58gJycH8+fPBwD8+OOP+OMf/wi73Y4///nPeOCBB8SecjNYiIrBYDCU4uSP5Nh1LHDrMmDgb8gPAOxdrty8GAwfGDVqFE6cOIGamhrU1dXhmWeewYsvvoiIiAhYrVbMmzcPv/76K/bv34+XX34ZZWVlks6HeXAYDAZDKU44DJw+1zrvG3YfsO9D4Ph3QM0/gfB4RabGUAchei2OPz9Nsef2hmHDhkGr1WL//v345ZdfEBsbi/vuuw8AsHv3bvTr1w9dunQBAMycORM///wz7rjjDtHnTWEGDoPBYChBTRGQs4PcznIxcJIHAV2GAnn7gIMrgCvnKjI9hjrgOM6rMJGSmEwmDBo0CN988w3effdd/PDDD9BoSKAoPz9fMG4AIkjOy8uTdD4sRMVgMBhKcPInADyQcgVgTm3+2DCy68W+D0iWFYMRIIwaNQpvvvkmrr76akyePFm4n+f5VudK3ZKCGTgMBoOhBCd+IEdX7w2l382A0QyUZwPnN8g6LQbDHwYPHgydTodXX3212f1dunRp5rG5dOkSkpOTJZ0LM3AYDAZDbuorgAubye2s61s/bggFBju0Cfs/km1aDIa/rFixAnPmzEHv3r2b3T9ixAgcPXoUeXl5qK6uxqpVqzBtmrTaosAI7DEYDEYwcWYtYG8C4vsAcT3dn9P/FmDXUuDiDlLhmNXEYagUu92O4uJiLFu2DKdOncLKlStbnaPT6fCvf/0LEydOhN1ux9NPP43Y2FhJ5yWLB2fJkiXIzMyEyWTC0KFDsWXLlnbP37RpE4YOHQqTyYRu3bph6dKlrc6pqKjAo48+iuTkZJhMJmRlZWHVqlVS/QkMBoMhHie+J8c+bsJTlKQBAKcFaouAqnx55sVg+MDmzZuRnJyMTz/9FN988w3MZrPb866//nqcPn0aZ8+exe9//3vJ5yW5B+eLL77A3LlzsWTJEowdOxbvvPMOZsyYgePHjyM9Pb3V+RcuXMDMmTPx4IMP4tNPP8W2bdswZ84cxMfH45ZbbgEAWCwWTJkyBQkJCfjqq6+QmpqK3NxcRERESP3nMBgMhn9Y6oCz68ntrOvaPk8fAiT0BS4fAfIPAOYubZ/LYCjIhAkTYFehGF5yA+f111/H/fffL1QsXLRoEX7++We8/fbbWLhwYavzly5divT0dCxatAgAkJWVhb179+K1114TDJzly5ejrKwM27dvh16vBwBFykAzGAyG11zaAzTVAZFdSEp4e6QMdho47sTIDAajTSQNUVksFuzbtw9Tp05tdv/UqVOxfft2t9fs2LGj1fnTpk3D3r170dTUBAD4/vvvMXr0aDz66KNITExE//798dJLL8Fmc9+vo7GxEVVVVc1+GAwGQxEuHyPHlCEd62pShpBj/gFp58RgBCGSGjglJSWw2WxITExsdn9iYiIKCwvdXlNYWOj2fKvVipKSEgDA+fPn8dVXX8Fms2HVqlX461//in/961/4xz/+4XbMhQsXwmw2Cz9paWki/HUMBoPhA0UOAyexX8fnuho4buqIMBiMtpFFZNyymA/P8+0W+HF3vuv9drsdCQkJePfddzF06FDcfvvtePbZZ/H222+7HW/+/PmorKwUfnJzc/35cxgMBsN3qAcnoW/H5yb2AzR6oL4MqMiRdl4MRpAhqQYnLi4OWq22lbemqKiolZeGkpSU5PZ8nU4npJQlJydDr9dDq3X2ycjKykJhYSEsFgsMBkOz641GI4xGoxh/EoPBYPiO3QYUnSS3PfHg6IzkvIKDxIsTzbSGDIanSOrBMRgMGDp0KNatW9fs/nXr1mHMmDFurxk9enSr89euXYthw4YJguKxY8fi7NmzzVTbp0+fRnJycivjhsFgMFRDeTZgrQd0JiCmm2fXMB0Og+ETkoeo5s2bh/fffx/Lly/HiRMn8OSTTyInJwcPP/wwABI+uvvuu4XzH374YVy8eBHz5s3DiRMnsHz5cixbtgxPPfWUcM4jjzyC0tJSPPHEEzh9+jR++uknvPTSS3j00Uel/nMYDAbDd2h4Kr4PoPGwUzM1cAoOSjIlBiNYkTxN/LbbbkNpaSmef/55FBQUoH///li1apWQ1l1QUICcHGdsOTMzE6tWrcKTTz6Jt956CykpKXjzzTeFFHEASEtLw9q1a/Hkk09i4MCB6NKlC5544gn8+c9/lvrPYTAYDN8pOk6OnoSnKC2FxqyiMYPhERzvrsVnkFNVVQWz2YzKykpERkYqPR0Gg9FZ+GI2qWI89R/AmMc8u8bWBLzUBbA1Ao8f8Dy0xQg4GhoacOHCBaHyf2elvdfBm+9v1myTwWAw5ELw4HiQQUXR6oGk/uQ20+EwGB7DDBwGg8GQg6Z6oOw8uZ3gRYgKYEJjBsMHmIHDYDAYclB8EuDtQGgsEJ7g3bWCgXNQ9GkxGGKRmpqKJUuWNLtv+/btCA0NxcWLF2Wfj+QiYwaDwWAAuOwITyX09V4oTEXJxafEnRND/fA86V2mBPpQr96ro0aNwp49e4TfeZ7H3LlzMXfuXEX6RTIDh8FgMOTAlwwqChUW1xYBjdWAMUK8eTHUTVMd8FKKMs/9TD5gCPP49FGjRuHDDz8Ufv/kk0+Qk5OD+fPnAwBuuukmbNy4EZMnT8ZXX30l9mxbwUJUDAaDIQfetGhoickMhMaR21THw2CojFGjRuHEiROoqalBXV0dnnnmGbz44ouIiCAG+eOPP46PP/5YtvkwDw7DyeH/AZZaYMhsQMveGgyGqFz2osmmO2K7A3UlQOk5IHmQePNiqBt9KPGkKPXcXjBs2DBotVrs378fv/zyC2JjY3HfffcJj0+cOBEbN24UeZJtw77FGIS8/cA3D5Lbhz4Hbn6X9b1hMMSitoSEl8CRKsa+ENMdyN3FPDidDY7zKkykJCaTCYMGDcI333yDd999Fz/88AM0GuUCRSxExSBs+Zfzdu5OYOmVwOEvlZsPgxFMUO9NdAZgDPdtDKrDYQYOQ8WMGjUKb775Jq6++mpMnjxZ0bkwA4dBFt+TPwLggDu/AtJGAo1VwDcPAMe+VXp2DEbgU+zoIO6L/oYSywwchvoZPHgwdDodXn31VaWnwgwcBpzem743AD2nAPeuAobcRe47wrw4DIbflF0gx9juvo9BPTil5/yfD4MhEStWrMCcOXPQu3dvpafCNDidnpIzwNFvyO2rHB3btTpg6H3AgU+BC5sBm5WJjhkMf6hwFDmLSvd9DNdU8YYqwMT66DHUgd1uR3FxMZYtW4ZTp05h5cqVbs+bNm0a9u/fj9raWqSmpmLlypUYPny4ZPNi31qdna1vAOCBXjOApAHO+1MGAyHRQH05kLcXSB+l1AwZjMCn3GHgRGf4PgZNFa8rAcovsEwqhmrYvHkzJk2ahD59+uCbb76B2Wx2e97PP/8s67xYiKozU5EDHP6C3KbeG4pGC3SbSG6f+1XeeTEYwQTPu3hw/MxMpCEuFqZiqIgJEybAbrfj+PHjGDlypNLTEWAGTmfm5E+A3Qp0vRJIHdb68e6TyPHsennnxWAEE3VlgKWG3PYnRAWQVHEAKGMGDoPREczA6czk7ibH7hPcP04NnPz9ZJFmMBjeU5FNjuFJgN7k31hCqvgF/8ZhMDoBzMDpzFxyNEVLHeH+cXMXUpSMtwMXNsk3LwYjmBD0NyIUzoxlmVQMhqcwA6ezUlUAVOYCnAbockXb53V3FGpiOhwGwzfE0t8ArNhfJ4HneaWnoChi/f3MwOmsUO9NQt/2OxMLOpxfiViSwWB4h5genJap4oygQq/XAwDq6uoUnomyWCwWAIBWq/VrHJYm3lm55NDfpHZQg6DrGEBrBKoukZo58b2knxuDEUyI6cFxTRUvO0/KOTCCBq1Wi6ioKBQVFQEAQkNDwXGcwrOSF1pTJzQ0FDqdfyYKM3A6K5f2kmNaG/obiiEU6DoaOL8ROLeeGTgMhreI6cEBnF3FO6OBk7sb0BqC+u9OSkoCAMHI6YxoNBqkp6f7bdwxA6czYrUA+QfI7Y48OADR4ZzfSHQ4ox6RdGoMRlBhtxOtGyCOBwdw6SreiYTGDZXA6r8Ah/5LPMp/2AdEpSk9K0ngOA7JyclISEhAU1OT0tNRBIPBIEoXcmbgdEYuHwGsDaRScWyPjs/vPglY939A9lbA1gRo9dLPkcEIBqoLAJsF4LRAZBdxxuxsqeLZW4GVjwCVOeR3WyOw821g+kvKzktitFqt3xqUzg4TGXdGaHgqdTjgiQswsR9gCAea6jrPospgiAHV35hTxevn1plSxbO3AR9eS4ybqK7AxL+S+/d9yGpzMTqEGTidkVwPBcYUjgPiepLbJaelmRODEYyIrb8BXDw4ncDAOfApAB7oOQ14ZBtpKZPYH2iqBfYuU3p2DJXDDJzOiFDgz4surnEOcTEzcBgMzxEzg4pCx6otBprqxRtXbdhtwOk15PaYP5ByFhwHjH2C3LfrneD++xl+wwyczkZNkWPR5YAuQz2/TvDgnJFkWgxGUCKFByckGtCHkdtV+eKNqzZydwP1ZYApCkgf5by/302AOZ0YeIc+U2x6DPXDDJzOBg1PJWQBpkjPr2MeHAbDewQPToZ4Y3Ic0fQAzgytYOT0anLsObV5YoNWD4x+lNze/h/i6WEw3MAMnM5G3j5ydNc9vD1iXTw4rKIxg+EZUnhwABcD55K446qJUw4Dp/eM1o9dMZt4ssrOAyd+kHdejICBGTidDeqBSRzg3XUx3UjfqsZKEuZiMBjtY7UAVXnktpgaHIA0wgWC18ApOUvWKo0e6DG59eOGMOCKu8ntU6vknRsjYGAGTmeDGjhxHtS/cUVvci7SLEzFYHRMZS4AHtCZgPAEccc2O4rcBauBQ8NTGVeS9hTu6DqWHAsOyTMnRsDBDJzOhK3JWccmzoeWC0yHw2B4jqC/Sfes3pQ3BHuISghPzWz7nORB5FhyGrDUSj8nRsDBDJzORPlFwN4E6EOBiBTvr2eZVAyG51Q4Ku+KHZ4CnFWRg9HAqSsDcnaQ272nt31eRBIQngTwdqDwqDxzYwQUzMDpTJQ6DJPY7oAvfT6YB4fB8Bxq4IgtMAacHpyqvOAT/Z9ZS4yWxAHE+9UetOlmwUGpZ8UIQJiB05kQ9Dc+dgSn15UyDw6D0SG0Ro1YPahcoWM21QH15eKPryRn15Njr2kdn0vDVEyHw3ADM3A6EzS0RFO+vYUaOBW5gKVOnDkxGMEKzaCSwsDRm4Awh3A52GrhFB4mx7QRHZ+bPJgc8w9KNRtGAMMMnM4ENXDifDRwwmKBkBgAfOfog8Ng+ENVATlGJkszvpAqnifN+ErQ1OBcpxL7d3w+9eAUn2RtGxitYAZOZ6LUTwMHYDocBsMTeF7aEBUQnJlUxScB3kaK+EV6kAgRmQKExZNrLh+Tfn6MgIIZOJ2FujKgrpTcjvWyBo4rLJOKweiYhkrS8RoAIqTy4NBaOEEUorrsyIZK7O9Zaj3HuYSpDkg2LUZgwgyczgI1SCJTSRVQX2EeHAajY6od4SlTFGAIleY5gjFVnKZ7J3lRaZ0JjRltwAyczoIY4SmAGTgMhidIKTCmuKaKBwuuHhxPYanijDaQxcBZsmQJMjMzYTKZMHToUGzZsqXd8zdt2oShQ4fCZDKhW7duWLp0aZvnfv755+A4DjfeeKPIsw4yhBRxfw0cGqI6C9jt/o3FYAQrgv5GovAUEHztGngeKDxCbid5YeDQEFXRCcDaKPq0GIGL5AbOF198gblz5+LZZ5/FgQMHMG7cOMyYMQM5OTluz79w4QJmzpyJcePG4cCBA3jmmWfw+OOP4+uvv2517sWLF/HUU09h3LhxUv8ZgU/JWXL0tQYOJaoroDUA1nqgKkgWVgZDbIQMKh8qhnsK9eBUFwA2q3TPIxdVeUBDBaDRAfF9PL/OnEqyO+1WJjRmNENyA+f111/H/fffjwceeABZWVlYtGgR0tLS8Pbbb7s9f+nSpUhPT8eiRYuQlZWFBx54APfddx9ee+21ZufZbDbceeed+Pvf/45u3bpJ/WcEPtSD44/AGAC0OiCme/MxGQxGc+QIUYXFk27bvN2p+QlkqP4mrhegM3p+HcexMBXDLZIaOBaLBfv27cPUqVOb3T916lRs377d7TU7duxodf60adOwd+9eNDU1Cfc9//zziI+Px/3339/hPBobG1FVVdXsp1NhawLKaZNNP0NUrmOwTCoGwz3U4JAqgwog7VbMQSQ0vuwITyX28/5aJjRmuEFSA6ekpAQ2mw2JiYnN7k9MTERhYaHbawoLC92eb7VaUVJSAgDYtm0bli1bhvfee8+jeSxcuBBms1n4SUtL8+GvCWDKs4n7Vh/mW5PNljChMYPRPlLXwKEEkw6n0AeBMYVVNGa4QRaRMdeingHP863u6+h8en91dTXuuusuvPfee4iLi/Po+efPn4/KykrhJzc3iOpGeEKJn002W0I9OKVn/R+LwQhGhBCVhB4cwGlABYMejmZQeSMwptAQVdFxwGoRbUqMwEYn5eBxcXHQarWtvDVFRUWtvDSUpKQkt+frdDrExsbi2LFjyM7OxnXXXSc8bndk8+h0Opw6dQrdu3dvdr3RaITR6EVMN9jwt8lmS4Jp18hgiE1TvbMBppQiYyB4qhlbaoFSR/uXRC9q4FCiupKaQw0VQPEJZ8iK0amR1INjMBgwdOhQrFu3rtn969atw5gxY9xeM3r06Fbnr127FsOGDYNer0efPn1w5MgRHDx4UPi5/vrrMXHiRBw8eLDzhZ88gXpaxNDfAM174Di8awwGwwENT+lDyZeulASLgVN0EgBPhNMR7je/7cJxzsyrUtYnj0GQ1IMDAPPmzcPs2bMxbNgwjB49Gu+++y5ycnLw8MMPAyDho7y8PHz88ccAgIcffhiLFy/GvHnz8OCDD2LHjh1YtmwZPvvsMwCAyWRC//7NXZhRUVEA0Op+hoPybHKMzhRnvIgUABxgawRqS4DweHHGZTCCAWrgRCR71m7AH4LFmyoIjP1Yw6MzgNydzvWO0emR3MC57bbbUFpaiueffx4FBQXo378/Vq1aha5duwIACgoKmtXEyczMxKpVq/Dkk0/irbfeQkpKCt58803ccsstUk81eKlwvL5R6eKMpzMA4YlATSGJ/TMDh8FwUi1DDRxKsGRRFfqhv6FEk+8UVFz0fz6MoEByAwcA5syZgzlz5rh97MMPP2x13/jx47F//36Px3c3BsOBzeoUPNIFQAzMqcTAqbwEpAwRb1xG8NJYDRSfAroMld6zoSRy1MCh0OdoqCCvrzFC+ueUgqIT5OivBwdgHhyGAOtFFexU55MUca0BCE8Sb1xXHQ6D0R51ZcDGfwJv9AfenwzsWKz0jKRFqGIscQYVAJgiAZOZ3A7kz2LZeXL0pxCpYOAwDw6DwAycYIeGp8xp4qSIU4TYfydLuWd4x76PgEUDgI0LiZcBALb/J7h7BsnpwXF9nup8eZ5PbCx1zrnH+FGVPsrhoa7MDY7WFQy/YQZOsEN3M2LpbyhC/Y0A3jUypKWhClj1FGCpIaGHW5YRgXrNZeBo695yQYOryFgOIhye2Wr3xVNVD62ybooCQmN8HycimXiq7Va2LjEAMAMn+BFbYEwJlvRUhnScWQvYLEBsT+DhrcCAW4GRvyePbV8cvCUG5BQZA05DqipAPTg0POWP9wYgHmq6zjGhMQPMwAl+6AddTIExwDQ4jI45/h059r3eKSoeei9pGVJ0DDi/UamZSYetyelJkStERQ2cQPXgiGXgAExozGgGM3CCHcGDI7aB49DgVBeQRZ3BcMVSB5z9hdzOclYdR0g0MOQucjsYxcY1lwHwgEZHitbJgRCiCtCO4mIaOHSdY0JjBpiBE/xIZeCExpF4N/jAXVgZ0nFuPdBUR0IGtBEiZdQjAKchBhBNDw4Wqly6iIsp6m8PGgoL1M8h8+AwJIIZOMGMrckpthNbg6PROF3wTIfDaMnx78kx6/rWNW9iMoE+15LbwebFETKoZNLfAIEvMi5ziIxFMXCoByfb/7EYAQ8zcIKZyksAbwd0JiA8QfzxmdCY4Q5rI3B6Dbmddb37c0Y/Ro5Hvgqu7s/VLh4cuXDV4Nht8j2vGDQ1ONcPMT04TGTMgEyVjBkKUeGSIi5F5dh2DJyLpbX49/ozOFtUg7hwIxIjjbhuUArGdI8Tfx4MdXF+E9BYRQpLpg53f07aCKLHqS8HLh8Fulwh7xylgnpRIkQsqtkRYQkk5MfbSG84X5pVKkXFRQA8YIgAwkRYG6iBU1sMNNYAxnD/x2QELMzACWak0t9Q3ISoqhqa8Pra01ix6yKabM3TgD/bnYv7xmbi6em9YdJrpZkTQ3lO0PDUtW3rUDiOtGw4+wuQty94DJyay+QYLqORodURI6emkBTMCyQDR9DfZIqzCTOZST2dhgqy/iX2bfbwsfxK/HP1SeSW1YEHEB1qwJwJ3TGlbyK4YG4f0klhBk4wI1WRPwr14Dh0B002O37/8V7sPF8GALiqVzxuH56Gyvom7LtYjq/2XcLybRew/VwJPv/9KESFGqSZF0M57Hbg1Cpyu63wFCXlCmLg5B+Qfl5yoYQHByBtIWoKA0+HI7Ro6C7emNEZQMFBosNxGDgNTTb8e/0ZvLv5PGx258brYmkdfv/JPlzZIw4v3TQA6bGh4s2DoTjMwAlmpCryR2kRonrhx+PYeb4MYQYtls4einE9nWmyd4xIx8wBSXj6q8M4WViNJz4/iA/uHQ6Nhu2agoryC0BdKdF9dR3T/rldhpJj3j7p5yUXSnhwAIcO50DgZVKJmUFFie7qNHAAlNY04rZ3d+JsUQ0A4JqBybhndAY0HPDrySK8v+UCtp4twR3v7cS3j45FfIRRvLkwFIWJjIMZauCIXeSP4hKi+mx3Dj7ecREcByy6fUgz44YyqU8iPr5vJEx6DTadLsai9WekmRdDOQqPkGNCFqDVt38uDUsVnyJtHYIBxQwch8eoihk4rkJjm53H3C8O4mxRDeIjjHhn9lC8NesKjMiMwbCMGDw9vQ9+mTceXWNDkVdRjwc/3ouGpgATajPahBk4wUyFTCGqhgr887u9AIA/TumFKX3bXtz7pkRi4c0DAABvrj+DX09elmZuDGW4fJQcE/t3fG54AmBOB8CTHXegY7UQ7xUgf4gqIkBr4Uhh4EQ5U8UX/3oWW86UwKTX4NP7R2Jav9b/l/TYUHxw73CYQ/Q4mFuBef87CLs9SNuIdDKYgROsWBudi11UhjTPYYoEb4wAAMTZS3DNgGQ8OrFHh5fdNCQVd48mi9Cfvz6COgvr/Bs0FDoMnKSBnp1PvTjBEKaqLSJHjQ4I8aNppC8EYjVjq8XpZZbAg1N7+RwWrT8NAPjHjQPQOymizUu6xYfj3dlDoddyWHWkEF/tZ6UvggFm4AQrFbnkqA/zr0NvB1TqibcmK6QSr9w60ONMhGevyUJaTAiKqxuxbMsFyebHkBkaokrywIMDBJeBQ8NTYQnyVTGmRAZgP6rKXFKnSx8qbkjPYeBoKnPA8zxuH56GW4amdnjZyG6xeGpqbwDAqz+fQm0j23gFOszACVZcm2xKlP7Y0GTD8bpIAMDtvTUIM3quWTfqtMJi8s7m8yipaZRkjgwZqSsDqhw738R+nl0jCI2DIJOq2mHgKJGmLRT7CyAPjmt4Ssw1ypwGHhxC0IgR8VYsuN7D9yKAe8dmoGtsKIqrG/H2xnPizYmhCMzACVak1t8A+Gx3Di5YogEAo2LrvL7+uoEpGNDFjJpGK/7DBMeBz+Vj5BiVTuqReELyYFKkrupSYHkf3FHjmH+4zPobwGng1JWS8HQg4FoDR0SK6u3I52MBAH8aYfKq5pZRp8X8GVkAgPe2nEdeRb2oc2PICzNwghWJi/zVW2x4a8M5YSHR1Xi/c9RoOMyf0QcAsGJXDrJLakWdI0NmLnupvwFIpdl48h5A3n7x5yQnNQ4NjhRtUToiJBrQOtKbA8VQlEJgDODtjeeQy5MszmGRlV5fP61fIkZmxqDRasfLq0+KOjeGvDADJ1ih1YXNHceefeHjHdkoqWlEY5hj51iZ69M4Y3rEYXyveFjtPN5kXpzAhupvPMmgciVYdDhKFfkDSIgn0ITGtMlmtHgenILKeqzYlYMcOzEyObrR8wKO4/B/1/YFxwHfH8rH2aJq0ebHkBdm4AQrEho41Q1NWLqJxKfHDR3seL48n8ebN6UXAOCHw/koqm7wd3oMpfBWYEwJloJ/StXAoUQGWKq4BHW6Fv96FharHTwNzfvYVbx/FzOuziL/x4+2s8adgQozcIIVanBIYOB8ufcSyuua0C0+DGOpgVOVB/C+1Y4YlBaFIelRaLLx+GyXb54ghsLYmoBihzs/aYB316Y4PDj5+31+D6kCauAo4cFxfd5ACFHxvNPAMYujE8wtq8MXe8j6MXTwEHKnH13FfzcmAwDw9f5LqKxv8nd6DAVgBk4wYreRpnuAs9qwSPA8j8/3kIXpd2MzoYtyjG9tcBY584F7HYvJp7suwmK1+ztNhtyUnAFsFsAY6b3uK7Ef0Y80VDp1GYFItcIeHCo0rspX5vm9ob4caHJo7kTahP3n1zOw2nmM6xmHHr0cXkQfPTgAMLp7LHonRqDOYsOXe9nGKxBhBk4wUlME2K0ApxV9N3kgtwKnL9fApNfghsEpgM7oXNB91OEAwIz+yUiIMKK4uhGrjwaIi53hRNDf9PM+5VerB5IHkduBGqbieeVDVBEBVAuHem/CEwG9ye/hSmsa8e0BYtjNvbqX02iqLiANYH2A4zjcOzYDAPDRjuxmTToZgQEzcIIRR3dvRCQDGs9TJD3h891kYbpmQAoiTY5eQzT278fO0aDT4K5RZOf/4fZsf6bIUILLPgqMKVRoHKidxevKALsjjKFEFhUQWLVwhPBUmijDfbXvEiw2OwammjG0azQxnDgN2ejVFvs87o2DuyAqVI/csnr8erJIlLky5IMZOMGIIDAWNzxV3dCEHw6RxfP2ES4LU7g4sf87RqTDoNXgQE4FDuZW+DUWQ2aEFg1e6m8oNFW89Kw485Eb6r0JiSZeTSWIDCADh3p7RajTZbfz+K9j43XnSMd4Wh2pKA04w/U+EGLQ4vbhZMwPtrGK64EGM3CCEerBEVl/88OhAtQ32dA9PgzDukY7H6BhsBr/GmfGRxhx7UCySH+yg2UuBBS0yJ+3GVSUWEcPs4A1cBQs8kcJxBBVlP8enG3nSnCxtA4RRh2uG5TifIAafH52WJ89uis0HLD9XClySr0vaMpQDmbgBCMSeXC+cIiLbx+e3rznlIjZG3eOIrul1UcLWC+YQKGhytloMq6Xb2NQA6f8ImnCGGgo2aaBQj+HlhryP1EztFeeCCGqFTvJunTzFV0QanBpF0M7rFf5XsICALpEhWBsjzgAwHcH/RuLIS/MwAlGBANHnPg2ABzPr8KhS5XQazncfEULw4mKKv304ADAFenRyIgNRZ3Fhp+PBcBOlAGUO1z3oXGAse2Oze0SkUQaw/I2v1J7FUNpgTEAGMIAo6NFhtq9OJXiVFq/XNWAdSfIaz9rZIuxRAzZ3TiYrHkrD+aBD+RSBp0MZuAEIxKEqKj3ZmrfJMSGt9AYiFhBleM43HwFyYD4Zj/bLQUEtCKtPz2FOA6I7U5uB2KYSg0GDuDyWVR5qrhIIar/7cmFzc5jWNdo9E5qYVxHiBOiAoBp/ZNg0mtwvrgWR/K8b//AUAZm4AQjQpE/cQycRqsNKw+QMW8b7mZBoot6tf8eHAC4aQiZ97ZzJchnze7UD6014m/J/UDW4SjZpsGVyADQ4TRUkh/ALy+zzc7jMyouHuVGrCxUdvbf2As36jClL/nf0rWQoX6YgRNsWC3O3WSkOAW0tp0tQVWDFYmRRlzpiEU3g+6UaotIkUE/SYsJxYjMGPA88C2LeaufchE8OEBgGzhCo02lPTgBkElF9TchMaTZqo9sPFWE/MoGRIXqMaN/cusTRPTgAMBNQ4jB9MOhAlhtrBhpIMAMnGCjugAATyrDhrkxRnxg1RGyG5zRPxkajZsibmHxADiAtwO1JaI8560uYSpVxrztdqDkLHDyJ6DG9zobQYFYTRMFA+ecf+MogZBFpbSB4/AgifSlLglCirh/4akv9xKt4a1XpMKkd1PvS+TeXON6xiMmzICSmkZsO+d71XaGfDADJ9gQ9Dcp3leUdYPFasfaY9TAacP9rtU5jBw4F3o/mTEgCUadBmeLatQV867MAz6+EfhnOrB4KPD5LPKjRiNMLqgHJzrDv3EC2YNTrXAfKkpEADTcFCGDqrKuSSi8d8vQNjzV1MBprAIaa3x+LopeqxHKWHzLwlQBATNwgg2Rm2zuOF+KqgYr4sKNGJYR0/aJEeLqcCJMekzrR74svt53SZQxRWH7f4DzGwBLNaAzkXYYl3YDl/YqPTNlsFqcWXt+h6gcIuPqAlG+kGTDUkveD4B6PDiqNnAcWXJ+ZFCtOloAi82OPkkRyEqOdH+SMQIwOITHIr0eNzr0gT8fK0SdhZWxUDvMwAk2qPtXJANn9RGyMEzvnwitu/AUhRY4E8mDA0BIR//hsEpi3tZG4PDn5PZN7wLz84BBt5Pfdy1Vbl5KUplLQpP6UP+/3EOinJ7AQPLiUM2bLsT3NHmxEMIyKhYZixCiokJfanC0SaS4DUiHpEUhLSYEdRYbNp3q5KHpAIAZOMGGiCniVptdqEUz052IzxXBgyPewnpljzhEh+pRVmvBzvNloo3rMyd/JF2QI7sAA24lobkRvyePHf9W3boHqShzCU+JEBINyDCVa5E/MV4Df3Atuuljk0nJEVLEfWvTcKm8DrsvlIHjgOtdKxe7Q2TRNcdxgqB5DavTpXqYgRNsiJgivutCGcrrmhATZsCIzHbCU4AkZeJ1Wg2mOxaTHw+roK7H/o/JcchdziamKYOB9NGkqd++DxSbmmKUiyQwpgi1cAJIaKyGNg2U8EQAHGn8WadSIayfGpzvDpK1YFRmLFKiQto/OVKcasau0ND5ryeK0Gj1P2tUVGpLgU9vAf4zDHitN9EKbl2k9KwUgxk4wUaVQw8hQor4Kkd4amrfROi0HbxVRKxm7Mp1A527pSYlw1Tl2cD5jQA4YPCdzR8b+RA57l1OwlidCVoDx1/9DSUQPThCirhCXcRd0eqdYT416nAsdUCdI9PShxAVz/NCeOqmjsJTgOip4gAJUyVEGFHdaMV2tWVT7XobOPsLUHqGGN4NlcCmV5x1hzoZzMAJNkTy4NjsvBCemjGgg/AUIGo/KldGdotFXLgRFXVN2HpWnBR0nzjwKTl2mwBEtxBH9rmWhK1qi4FjK2WfmqKUiZRBRQlEA0ctRf4oahYaU/2NMRIwRXl9+bH8KpwtqoFBp8H0AR683iKnigOARsMJXpyfj6ooTGVtBPZ9SG5PfRF4aDMQ3wdoqgUOrFB0akohi4GzZMkSZGZmwmQyYejQodiyZUu752/atAlDhw6FyWRCt27dsHRpcwHne++9h3HjxiE6OhrR0dG4+uqrsXv3bin/hMDAUgfUO7Qqfmpw9mSXoaTGAnOIHmO6x3Z8gSAyFteDo9VwmOlYyH48pNCCbbc5F4gr7m79uFYPDL+f3O5sYmPRQ1QutXACJfVeLW0aKBJ8qYuGa3jKB70STc+ekpWISJO+4wsixBUZU6Y7SmasPX4ZNrtK3qfHviWbrIgUYOTDQPIgp0Zwz3vq1WRJiOQGzhdffIG5c+fi2WefxYEDBzBu3DjMmDEDOTk5bs+/cOECZs6ciXHjxuHAgQN45pln8Pjjj+Prr78Wztm4cSPuuOMObNiwATt27EB6ejqmTp2KvLxOXpuAfogN4YDJ7NdQNHtqSt9E6DsKTwHNRcYifzFd4/AgrT1eqEzM+/xGUu49JAboc437c664FwAH5B8QLVVe9fC8+CGq6EwAHNBYKVrRSMlRm4EjkTdVFIQUce/DUzY7j+8OkTWuw+wpiogNN10ZkRmDKEcCxJ5sFSRAAMDud8hx+H1k0wWQLE+jGSg7T0JXnQzJDZzXX38d999/Px544AFkZWVh0aJFSEtLw9tvv+32/KVLlyI9PR2LFi1CVlYWHnjgAdx333147bXXhHNWrFiBOXPmYPDgwejTpw/ee+892O12rF+/Xuo/R91Q929kF7+yOex2HqsdrteZnriBAefibm8C6sT9wA/PiEFipBHVDVZsOa3Al97F7eTYewagM7o/JywWiO9Nbufvl2deSlNzGWiqAziNeJ3r9Sbnl1+ghKnUUuSPIpHXQhRozSQf3i/bz5WguLoRUaF6jO8V79lF1JNdcxmwiVe3Rq/V4OossuatUUOY6tI+IG8foDU4NlsODGHAFbPJbWoAdSIkNXAsFgv27duHqVOnNrt/6tSp2L59u9trduzY0er8adOmYe/evWhqanJ7TV1dHZqamhAT4z7Tp7GxEVVVVc1+gpIqcYr8HcgtR1F1IyKMOox113vKHToj8XAAotbCAUjMe+YABbOp8hxF/FKHtX9el6GO8zuJgUP1N+ZUQGcQb9xA0+GopU0DRYKMRtEQDBzv1ygqLr52YDIMOg+/usLiSTFO3k565YnIdKrDOVaofDuZ3e+SY7+bgfAWxt/wBwBwxINTckb2qSmJpAZOSUkJbDYbEhObf/ATExNRWOj+w1dYWOj2fKvVipIS97v3v/zlL+jSpQuuvvpqt48vXLgQZrNZ+ElLE2m3qTZEEhjT3lNX902EUeemx0tbSOgav3Yg0RWsO34ZDU0yhqnsdqfB0qUDAydlCDl2Fg+OWF3EWxJIBo7N6gylqc2DI0IXbdHx0cCps1gFQa9H2VMUjVay/lxX9oxDqEGLgsoGHLqkYJZSXRlw7Btye+TvWz8ekwn0mk5u735PvnmpAFlExlyLcAnP863u6+h8d/cDwCuvvILPPvsM33zzDUwmk9vx5s+fj8rKSuEnNzfX2z8hMBAhRZzneUF/02bvqbaQKFUcIKmZKWYTai02bJSzgmjJadLLRh8KJPRt/9wuV5Bj3r7AEcj6g1g9qFoSSAZObTEAnoTpQj0Q48tBpIo9OFW+hajWHb+MWosNaTEhuCI92rvnlMjgM+m1mNiblAZYq2TRv4vbAJuFZExRL3JLaBLEyZ/km5cKkNTAiYuLg1arbeWtKSoqauWloSQlJbk9X6fTITa2+QLy2muv4aWXXsLatWsxcODANudhNBoRGRnZ7CcoEcGDc+hSJfIrGxBm0OIqT+PcFAk9OBoNh2sGKhCmouGplCGkcnF7JPYHNHpS7Zh6N4IZGqISS2BMCaRifzQ8FZbgLP6oNPQLvbYYsLkP6yuC3ebUBXm5RtHsqZsGd2l3c+wWkds1uDK1H/keW3dcwcSC3F3kmD667XPSRxMjvOqSOg1fiZDUwDEYDBg6dCjWrVvX7P5169ZhzJgxbq8ZPXp0q/PXrl2LYcOGQa93pgW++uqreOGFF7BmzRoMG9ZB6KCzIEKbBuq9mZSVCJPeywVbQg8O4AxTrT9RJF+ju0t7yLGtnZErOiOQ1J/c7gxhKqGnkG8l99uEenDKzqs/tZUW+YtQif4GIFo4jWOtVNOXWU0RqfjNab2q+lxS04jNZ0gY8AZvwlMU2mFdAgNnQu8E6DQczhTVILukVvTxPSLXUSIlbUTb5xjDgfgscrsTNQaWPEQ1b948vP/++1i+fDlOnDiBJ598Ejk5OXj44YcBkPDR3Xc7a4s8/PDDuHjxIubNm4cTJ05g+fLlWLZsGZ566inhnFdeeQV//etfsXz5cmRkZKCwsBCFhYWoqQmgDsRS4GcncZ7nseooMXBmehueAkTv+9KSgalmpMWEoL7Jhl9PiisYbJNL+8gxdbhn53cmoTF9v4lQNbsZkankS9DWKJmxLBrVKhMYA4BGo06hMdXfRCR37A114afDBbDZeQxKNaN7fLj3zytRqjgAmEP0GNmNJFco4sWxNgL5B8nttJHtn5tK1yZm4IjGbbfdhkWLFuH555/H4MGDsXnzZqxatQpdu5JqsAUFBc1q4mRmZmLVqlXYuHEjBg8ejBdeeAFvvvkmbrnlFuGcJUuWwGKx4NZbb0VycrLw45pK3uloqAQs1eS2jx6cY/lVyC2rR4heiwm9fSg7L9TCkeaDznEcrhlAdmOyFP2z1AJFx8jtjjKoKCkOHU7+AWnmpBbsNqemQYS+Z83Q6pxj0ropakVtNXAoQrhYRULjKt8Exh53Dm8LCT04ACk6CJA6XbJTcJhsBEJjgZhu7Z9LkyQ6kQfHczPaD+bMmYM5c+a4fezDDz9sdd/48eOxf3/bO+Ds7GyRZhZE0N1RSAxgCPVpCNp7akLveIQYfNATCNWMpfugXzswGUs3ncOGU0WoabQi3CjhWzj/AEkvjUhxVoftCCo0zj9IjAC16DLERgg3aKRpMhnVlXSdrsgB0keJP75YqK1NA0WNQmMhg8pzQ+VCSS0O5lZAq+GEELXXSOjBAUi26YIfjmPfxXKU1jQiNryNWllSQPU3aSM7rn1GN2n5B4J7bXKB9aIKFvwUGPM8Lxg4HvWecoerB0eiLKJ+KZHIjAtDo9WO9Sckdglf8rD+jStxvQB9GOn/UnxKmnmpAar38jLc4DFRjn5fzIPjGxKHi33ChxD6yv3EKLqyRxziI3w0HKgHRyLPcmp0KPomR8LOA+vlCp1TBAOnHf0NJb4PqXJvqQnutckFZuAEC36miJ8srEZ2aR0MOg0m9fGxKzLdyVvrSWq1BHAch2sd2VQ/SB2m8rTAnysabeeoh0N34372PGsTKlyucN/SRTWo1sCRpvaLXwiV1j1bo+x2Hl/vJ0bRrUP90HnRLu+WahJ2loApfRXIpuL55h6cjnBdmzqJDocZOMGCnx4cmj01vle872EfQyjpEgxI2o+JpotvPl2MynoJ02C9FRhTutBFJIgNnCpxikq2SaAYOGpr00CJaN5ws6zWgu3nSnA8vwpFVQ3KVN71stL6zvOlyKuoR4RJJxgQPmGMAHQh5HaNNB4WOr8tZ4pRb5GpEGlFDjGwNTqn4dIRNAmik+hwZNHgMGTAzxTxVd72nmqLiCTivakpBOJ7+TdWG/ROjECPhHCcLarBuuOX/dvdtUVVARFoclogebB31wpC4yA2cPzM2OuQQDBweN7Fg+Oj11MqHAZXU0UeXvzuKL7Ym4uGJmfKfbf4MDw9rTem9Uvyvq6Mr3ipwflqHzn/+kEp3pescIXjyP+n4iIxcMSu2wQSOu8SFYK8inpsPVvin0HmKTQ9PHkQoA/x7Brqjc7bJ82cVAbz4AQLfvR4OXO5GmeLaqDXcpic5ecHk7rqJRQ3uoapvj8kUZZI8QlyjOnmvWibCo0Lj5I0zmBEhKrZ7SIYOLlEEKlGGipIBgsgjdDaHxyi+IayPHy04yIamuxIMZsQF26AhgPOF9fi4U/349alO3CpvE76+TQ1OKo+w6MqxtUNTULJClE2MBLX6OI4ziVMJZOwm4anUj3Q31BoJlXRcaAx+MuqMAMnWPDDg0M7h4/rGY9Ik76DsztAwmrGrtwwmPydW88Uo7haAiOi+DQ50g7h3hDVlWSz2ZuIkROMiNT3rE0iU4jr3d6krkwgV2h4ymQmXdBVxHfniLcmgqvH5G5hWPHASGz7yyTs/esUHHpuKv4wqQdMeg32XSzHb5buwNmiamknRNcnfSgQ0nGrhdVHCtHQZEf3+DAMTovy//mph03CukrUwFl/ogg2uwwhwEseFPhrSWQyCV/ydqDgoCTTUhPMwAkGeN6vL5xVvvaecofEOyVKZhxZ+Oy8RF6cEoeBE+dDmI3jnDHxy0fEm5OakFpkrNE6vZFqDVMJ4Sl1eW82nCrCvO/OoYYnRteym1MxtkecEIqKMOnxx6m98cu88eiREI6Cygb8ZukOHL5UId2kXN8vHoTEaHjq1qFp4oTQhHVJuiynEZkxiDTpUFprwf6ccsmeBwBpwXH5OLntSZV1V1I7jw6HGTjBQG2Jw1XOOcWFHnK+uAYnC6uh03DixI1lWEgotKsw7VMjKiV+eHAAIK4nOQZCPyVvsVqcX+5SaXAA9etwVKi/OZRbgTmf7ofNzqPW6JhXG6niqdGh+N9DozEo1Yzyuibc+f4unCuWKGzhhcA4u6QWu7PLoOG87BzeHvR/VCvduqTXajDRkYEqeTZV2QXi3dSHed24VAhTdYJMKmbgBANUDxGeCOgMXl1Kw1NjesQhKtS7a90iw0JCuXZgMnQaDkfyKsV3sdM6EdRQ8ZYYR8PIsvPizEdNVBcA4AGtAQiNk+551G7gqKzIn9Vmxx+/PIT6Jhuu6hWP+BRHLaF2auHEhBmw4sFRGNo1GtUNVjz48V5UNUiQmeiFwPhrR+2bcT3jkWQWKfQnhKikXZdc08UlzVQrPkmO8b1Iaw5voELjS8EvNGYGTjDgR3hqtT+9p9wh00ICALHhRox3dDxfKaYXp77caaD5EqICgFhH2fRg9OAIeq8U7xdXbxCK/WVL9xz+oLIaOJ/vycXZohpEh+rxnzuGQBPZPFW8LcKNOiy9ayiSzSacL67Fk58fhF1sDYlg4LTvbbBY7fhsN6mX85thInoHZQqdj+8VD72Ww4WSWum8YQBQQjdgPniYkwaSY3U+afETxDADJxjwUWCcU1qHo3lV0HAQL61RpoWEctMVNEyVL96iXHKGHCO7kBoavkD7wpRfQHZxNf7+wzH87oPdmL5oM65fvBXvbzmPslqLOPOVG6mabLZE7R4cFRk41Q1NeGMdCas+MbknzCF6rwT/8RFGvDN7KIw6DdafLMIbv5wWd4IearZWHy1ASU0jEiONmNZPRM+YTKHzCJMeo7sTr+ZaKcNU1MPsSwjdFOl8PUrPijcnFcIMnGDAxxTxH48Qce6obrHi9U8Jc3hw6sqIEE5irs5KRIRRh7yKeuzJLhNnUCE85UcdH3M6eI0OsDbgnn9/iw+2ZWPDqWKcLKzG4UuVePGnExj10nr8a+0pZYqu+UOVd/VMfEbw4KjUwFFRiGrJxnMorbWgW1wY7hzleN1ouwYPm0wOTI3CP28ZAABYvOEsdp4vFW+CHmpwPtqeDQC4c2RX6LUifj25ZlFJ/HmTpaqxYOD08e362B7kGIweZheYgRMM+OjB+f4gWfiuH+RjEzt3hMaQ4njgifhZYkx6LWY4ihOKFqYq8d/A2XepGrk8WVRT7AUY1zMOC28egA9/Nxwv3Ngf/btEwmKz4z+/nsUzK4/Kk1YqFpX+FZX0GOrBqbykzlo4KvHgXCqvw7KtFwAA82dmOQ0DoR+V52n2Nw1JxW3D0sDzwB//dwjVYuhxeN6jTdiRS5XYn1MBvZbD7SO8FM52BN142SykfpGE0O7iB3MrUFTdIP4T2G3+J0FQA4d6q4MUZuAEAz506T1ZWIWThdUwaDWY0d/H5pru0GiBMIfwVAahMUAWZQD46UgBGppE+CKkH3ofKzHvzynH3ct24YyVLHTzR+jx8X0jcMeIdEzonYDZo7rixz+Mw8u3DICGAz7bnYMnvziIJpu9g5FVgtRtGigRSYBGT7qWq6lpJEUlBs5rP5+CxWrHqG4xuDrLJaNLMHC8K6Pwf9f1RVoMqcr79x+O+z/BhkrS4BFo1yj+0OG9uWZAMhIiRK4rpDeRekWA5GGqJLMJg1LN4HlSE0d0KnIAawOgNQLRGb6NIXhwWIiKoXYEkbHnu57vHN6bCb3jYQ71s7hfS2QUGgPAyMwYpJhNqG6wCqJpvyj2XcB3LL8S9y7fjVqLDRZzBgBgYEiJ21oetw1Px5t3DIFOw+H7Q/n49y8BspuqlLiKMcW1Fk65yrqKN9U7BZoRyhk4BZX1+OEwec8/O7Nv8/dZpIsHx4uwTLhRh9d/OxgcR+rRrPH3M0XfL6GxbVYFL61pxA+HyZp095gM/56vLWTUB0oaphJqdPUknxFfEMpYMAOHoWbsNufu1sOQgd3OC+EpWhFYVGQWGms0HO4YQcIZH+/w84uwqYH0rAG8dv+eLarG7GW7UdVgxfCMaEweM4o80E6q+LUDU/D6bYMBAG9vOoejeQGQ1SCXBwdQr9CYvre1RsAUpdg0Pt+dC5udx4jMGAxINTd/kH4ObRaSGegFwzNi8PB4Uupg/jdH/Au1eBBC/3xPLixWOwammjFEjMrF7pCxRteUviRsvvVsCWobreIOLqSI+xieApprcAJNA+gFzMAJdKoLAd5Gytp7WHBsf0458irqEWbQYnKWBEXKwuT14ADA7SPSoddyOJBTgSOX/DASSs+SMuYmMxAW7/FlRdUNuOv93SirtWBgqhnL7h0OQ4Jnxf6uH5SCGf2TYLPzePqrw+oOVTXVA3UO8anUGhwAiFap0Ji+t8MTParMKwVWmx2f7yGvy50j01ufoDMSrwngsdDYlSev7oWs5EiU1zXhL18f8V0MX0nSvtvyMNc2WvHBNqIhumd0hnTNP2Vo10DplRiO9JhQWKx2bDxVLO7gfniYBaK6Eq1kU606w78iwQwcEWlosmHb2RIczauEVa4vKbo7ikjx2F1Jw1PT+if516W3LWQOUQEkzXXmAOKS/3hHtu8DCe7f3h5/cVltdjzx2UEUVjWgR0I4PvrdCNLTK9ZR7K/8Qoci2b/f0A9RoXocL6jCu5tVXByw0rueQn6jVg+OkEGlXHjqlxNFuFzViNgwA6a3VceKVjb3oZ+XQafBotsGw6DT4NeTRUJ9Gq/poE7XRzuyUVJjQdfYUFw/WMSEh5bI6FnmOE5offPTEZFbyfiTIk7RGZz6nSAWGjMDR0QuVzXgzvd34dr/bMXwf/yCP315SPqeJF4KjJtsdvzk6D11oxThKUD2EBXl7tEZAIDvDuWj3NcaM0J2gucC4zd+OY0d50sRZtBi6V1DER3mqAhtTiPVfm0WpyHaBgkRJvzt2r4AgH//cga5ZTJ0ePYFIRyaIo/nQkgVV5kGRwUC4xW7yGvy2+FpMOra2KgItXB8+5LtnRSBp6eRL9IXfjyO7JJa7wdpJ4Oqsr4J72wiBv3cq3uKmxreEpk3XtcOJMbaryeLUCNWmIrn/U8Rp3QCoTEzcETEZufRKzEckSYdyuua8OW+S7jl7e14ec1JWKwSeXS8TBHfeqYEZbUWxIUbMKZ7rDRzEto1iOya7YAr0qNI+rXVji/2+rjb9NL9++vJy3hrAwlBLbxlIHokhDsf1GiduyQP6k3cNKQLxnSPhcVmxzubVVqfQvBciJh51x5q9eBQA0ehGjjZJbXYcqYEHAfMGuEmPEWJ9D5VvCX3jc3E6G6xqG+y4cn/HfTeO93OGrVs6wVU1jehR0I4rh8kcchT5o1X/y6RyIgNRUOTHetPiPScVfmApZqEl2gxUV/pBEJjZuCISLf4cKx9cjz2/98U/PfBkbhhcAp4Hnh74znctGSbNLtyL9s0fLmPfPFfOzAFOql2SzLGul3hOE7w4nyy46JvtWWoIJjubtohr6IeT35xCABw9+iu7usJ0UWorGODheM4/GESWXT+t/cSiqsbPZuznFAPjtwGTuUlwCayWNMfqMGgkAfns93E4BvfKx5pMe4zkwC4pIr7rrPQaDi89ttBiDDpcCCnAq+uPeXdAG1ocMpqLVi2hXze5k3pBa1GYo+gzB4cjuMEL84Ph0TSudAaXbHdve472AoaQmcGDsMbdFoNxnSPw79vH4Kld12B6FA9juVXYdb7O5FfUS/uk3Ug4HOlqKoBa48Ro+O24SIX0nJFAZEx5fpBKYgK1SOvoh4bTvrw/OXZ5BiT2e5pNjuPuZ8fQGV9EwalmvHsNVnuT6RNN0s909WM6haDIelRsFjtgvBSVchdvTc8iYT5eJvPYRZJUDBE1Wi14X8OD+WdI7u2fzL9P1X59wXbJSoEr9xCehi9s+k81h7z0CNktzmfu8UmbPGvZ1FrsaFfSiSmi9mWoS1kzKKiXOfY9Gw+XYzKehGKJoqhv6GwEBXDX6b3T8aqJ8YhIzYUuWX1uOO9nSisFLG6pRchqv/tzYXVzmNo12hkJUeKN4eW0J1SQwVgldcLYdJrBePtnc3nvMv8qC93VjmNav+LY/GvZ7EnuxzhRh3+c8cVbWsgYj334ABk1/eIIz33kx0Xpens7A9ye3A0Gqd2o8LHsKMUKBii2ny6BOV1TUiMNGJSnw6yIAWRsf8ehBkDknH/lcTw/+OXh5BT6oFHuqYIsDeRkEq487Xadb4UH2wnBvyfpvWGRmrvDeDSRqZEtsrYvZMi0DMhHBab3XOjsD2oh5lunPwh1hGiKr8IWAO0L14HMANHBpLNIfjvg6OQFhOCi6V1mPX+Tt9FsC3xMERls/NCFoTblFIxCYkmFWgBRbw4947JgFGnwZ7scu8qidJicuGJbRYkA4C92WX493oiRn7xxv5Ij20nRCB4cDzX1FydlYieCeGobrRixU6VaU+U6L9EDRwqVlUD1dSDI0GZhQ5Y5UgSuGZASsdhHUFkLE6I5C8z+mBo12hUN1jxyIp9HVcOd+08r9WRqTQ04Y9fHgLPA78dlooJvWV6DcPiAE5DykDI0EaGQr04Px4W4X/goYfZIyKSAEM48Y7ScYMMZuDIREpUCP77wCikmE04X1yLxz8/4H8qubXR2Q6hg6qyG08VIa+iHlGheiGdWjI4zkVoLL+Bk2wOwe/GkgXg5TUnPdfi0A95O+XPK+ub8MTnB2HniSj4xiEdeM6EVPFsj3eNGg0nFFlbtvWCOO0nxEJuDw7gDL9WqsSDY7c539fh8npwGpps+MVRHfeagR48d6TDg1NTJIqGSa/VYPGsIYgJM+BYfhUeXbEfjdZ23p/0f+biYX7hx+O4VF6PtJgQ/O26fn7PyWM0WiDU0UZGRn3gtQPJZ2XrWZLg4RdljrB1tAgGDse56HCCM1WcGTgykhYTiuW/G45QgxZbzpTglZ+9FOu1hBbv0plIk8t2WLGLeAJ+MzRVmto3LVGgFo4rj0zojqhQPc4U1eDrfR7u/DswcHiex1NfHkJeRT3SY0Lx/A0eLM6RXYiGxN7k1Rf09YNTkGw2oaSmEb+IlYHhLzyvkAdHZQZObQnxAoDzqhikGGw5U4LqRiuSIk0YkuZBHaLQOJfmt+J8FpPNIVg8awiMOg3WnyzC7z9ux5PTIkX8q32X8L+9l8BxwL9+MxjhRp0oc/IYBXQ43eLD0S8lEjY7jzVH/QhT2e3Ocgm+9qBqiUOHs+/AHrz680nM/+YIvtp3CXUWFQn6/YAZODLTJykSr946CADw7ubz+O6gHx2wXfU37dQkuVRehw2nyAd6VkeiRLFQqBYOxRyix2MTyYf39XWnUW/xwAtSTndHGW4fXrrpPNYdvwyDYxcbYfKgh5dG69xteRGm0ms1uPkKsuv12ECTmoZKwOoQyXfmEBV9T4fFCWEXuaDhqZkDkj3TrWg0ogmNXRnTPQ4f3DscIXotNp0uxv0f7XH/GXMJoX+0PRtPfUmyDh8e3x0jMtvflEmCQhmeNJvq+0N+rPfVBaSmlkYnShXxy1UN+LmQlLU4fewg3tpwDp/tzsFTXx7C8Bd/wV+/PSJ+mwmZYQaOAlwzMBlzJhDX4J+/PoyThVW+DeSh/ubTnTngeeDKHnHIjAvz7bm8he5sa+SthePK7NFd0SUqBIVVDYKgsV3a8eBsP1eCV38mPWAWXN8PA1OjPJ8IdQO305PKHbdcQb7YN58pQVGViMJ0X6HeG1MUoA+R73nVJjIWMqhUHp6iiJAq7o4xPeLw4e+GI8ygxbazpbhu8VasPlLQXNjv8Lqtzzfgue+PASAauT9NFSELyBcU2nhdPzgFGg7Yeb4M54trfBuEbsCi0v0yrHmex9JN5zDxtY34KZ8YOEPCSnD36K54aHw3dI0NRa3Fhk935mDW+7v8D6spCDNwFOKPU3tjfK94NDTZMWfFft8qXQrx7bb1N2W1FnziaF1w92iZvDeA4h4cADDqtHhqGqlIvGTDOVzoqAprGwZOXkU9Hv/sAOw8MTruGOFlij2theOFBwcgru0r0qNgs/P41h9Pn1goob8BmtfCUUNjQIXaNHgdnqKILDR2ZWS3WHx8/0hEh+pxtqgGj6zYj+sWb8U7m87hkx3ZKMgl7/nPThG94ROTe+K56/rKkzXlDoVC512iQgQxNa1h5DUeaAQ7wm7n8ddvj+Kfq0+izmKDMZFkUvXRXcbzN/TH/BlZ2PjUBHx03whEhepxKLcCv1m6HXlilzeRCWbgKIRWw+GN2wYjKZKIjp9d6UMzO6Grc9sGzrubzwu1Jqb0lXFBVsgV3JIbBnXBsK7RqGm04qFP9rbtcrVZnR4ClwWkuLoRs9/fhZIaC/okReDFG/t73wyQZjz40G7glqHkf/v1vjzfmx2KhRL6G8AplG2q9bortiQo5MGh4akZA5K8MxAixUsVd8fQrtHY+KeJeHxSD4QZtDiaV4WFq0/i/747Bl0NWaOsEV3w6q0D8eSUXtI10/QEBTdetOL0V/su+ZY44KeBY7Pz+Ms3h7FiVw44Dnjhhn545aGbyYO1RSQEDVKqYnyveHz18GikmE04V1yL2e/v8izMrzKYgaMgMWEGLJ41BFoNh+8O5nvfzK6DEFVJTSM+2p4NgFQKlXVhUahdQ0s0Gg5L7rwCCRFGnL5cgz99dci9oVB1iaRLao3CF1dlXRPuXr4b50tq0SUqBMvvHY4Qgw8CbTP1QHgfYrl2YAoMOg1OXa7GsXwfQ5lioZQHRx/iDHmqQWhcI3+KuGt4imbleIzgwRGhDksbmEP0mDe1NzY/PRFPTO6Jm4Z0wXV9YxDPkffssj/ciN8Mk7C4qKcomPwwsU8CUswmlNc14WdfauKUta8RbA+bnccf/3cQ/9t7CVoNh0W3Dcbs0RngTGZnx/kW7VB6JETgq0fGkE14SS1eXnPS+zkrDDNwFGZYRgz+5Ghmt+CHYzhyqdLziwWRsXsPzjubzqG+yYZBqeaOC4KJjQpCVJSESBPevusK6LUcVh0pxJKNbkJFwu6oK6DRoKi6Afd8sBsnCqoQF27Epw+MREqUj7oTPzQk5hC94Hn7SmmxsVIeHMAlk0oFQmMFXoft53wMTwFOg7RK+krQseFGPDmlF964bTD+c41jzdGHQhumgKDYHQquS1oNh9uGk82OT/WthDXK+xTxf64+gW8P5kOn4fCfO4bgBtdGy+30e0uJCsHLt5IK1h9uz8aOc6VeP7eSMANHBfx+XDdM7pMAi9WOhz7Zi5IaD6v/ttNJvKiqAR/vICERRdzCQrsGZT04lKFdY/D36/sDAF79+RSeXXkE1a5Vgl3cv5tOF2Pmv7fgYG4FIk06fHL/CP/E2dTAaagAGqu9vvxWh9j4+0P50jVt9QSlPDiAuoTGdPcvY5uGXx1tR67um+C9fkUQGUvnwXGLawhdybCUKwqkibty2/A0aDUcdmeX4cxlL9cCH0NUX+27hPe2EO/PG7cNbl0HrYOGtuN7xQu6wz99dSigMquYgaMCNBoOr982GN3iwpBf2YA5K/ajqaMigJZaZ1sBNymDr/58Co1WO65Ij8L4XvLW6gDgdAVbqslcVcCskel4xJG9tmJXDqa9sRnfHczDiYIq1F8mXp2NRWG4Z/luQXPzzZyx/re1MEUCJjO57YMHYlzPOMRHGFFWa8G2s/JVYG2Fkh6cKN/DfKJTI2+jTZ7nseEk2Sj45IkVDByZe3nR97oIKc2iQdelxkqgSX7hbJLZJPwP/+uN2LixmrSYAIiX2UP2XSzDM98cAQA8PrmnUFW5GdQ72s7m4dlr+qJLVAguldfjNW+brSoIM3BUgjlEj3fvHopwow67L5ThxR+Pt38B1d8YI8kXqAs/HyvEl/tIMa35M7OUEfUZIwCdI6Sj0G7JHX+e3gf/fXAk0mJCkF/ZgCc+P4gZ/96C9Tt2AwA2l5C0ybtGpePbR8eiR0K4OE/sR4hFp9VgWj/yZbr2uMy7cFcEA0dBD47SISqed7ZpkCmL6vTlGuRV1MOo02B0tzjvB4h0/L8aKgGLB/2jxKKy4yQI2TGZic4OUGxdoq1yvvamoB713oTEODdLHVBQWY+HPtkPi82Oaf0SMXdyT/cn0r577SRBhBt1WHjzAABkc6iKshUewAwcFdEjIQKLbhsMAPhox0W8v6WduiluSqADJOtnvsNi//1V3TA8Q6HYN8cB4Q7PkcJC45aM6R6Hn+dehYfGd0Pf5EhEh+qRxpHFrnfWAPz4hyvx4o0DxK347Gc13mmObsvrjl/2vPWEmPC8S4hKCQ0ONXAU9uA0VjuLHcrkwaHhqdHdY30TuRsjAb2jX1qNjAYy/V+pycDhOOf/TaF16aqe8egaG4qqBqsgI+gQL3tQWax2PPLpfpTUNKJPUgRe/+3gtkObHYSoKON6xmFY12hYrHa8u9m7ml5KwQwclXF130RBdPziTyfw7uY2aqe4SRHneR5/+fowympJeGXelF5ST7d9VCQ0bkmoQYf5M7Kw6olxOPC3qRgYRtKPb5syDv27eLZD8go/NSSjusUi0qRDSY0F+3MUSJWuKyPtJgBZtScCahEZ0/eyIQIwyFM0c4PDwPE5UYDjJKlm3CEt2jSoBoVLWGg0HP4wiXhTlm46hypXLWBbeJlB9Y+fjgsawndnD0NYey0xojzbfHEch8cmkerwK3bloNRTraiCMANHhcyZ0B1PONyJL606iSUbz7Y+qUWKuN3O44UfT2D9ySIYtBosun0wjDoZek61R5g6auF0SH0FOFpfxYv4tldE+fcFrddqMDnLEabyJcXUX6j3JjQO0Bnkf35q4NRcJk1mlULmIn+VdU3Y5zBoJ/rTdZt6emXIpBKgHgGzCtLDXVFBja6bhnRBj4RwVNQ14f0t/lVZb8l3B/PwkcMz9MZtg5EeG9r+BfT/U1/eYRLE+F7xGJhqRn2TDcu2ejBvhWEGjgrhOA5PTumFJ68mHphX1pzC018dam4xV1EBXyosVjvmfnEQy7eRN9xz1/dFnyQ/hbFiEK6uTKo2oYtHWLx0u3IRQixTHeniPx+7LH/RPyX1NwBpJks1XUp6cWQu8rfpTDFsdh49E8KRFtPBF1V7CAaOTK8dzzv/T1FqNXCU0wZqNRz+6PCwL9tyvuN2CB4aOCcLq/CXr4lE4Q+TegibonYxRQIhjtIDHXiYOY4Tevx9vOMiKurU3caBGTgq5omrewrhqv/tvYRJ/9qEj3dko6i6AXw52R3tqwrHb97Zge8PkRoHb9w2CHfK1VCzI1QcomqGsBCnS/ccIoRYxveOh1GnQU5ZHU4Wep9u7hdK6m8AEmbx0wsmCjK/Dn6Hpyi0lIRcr11tiUOrxLXbSkYRVLIuTe+fhP5dIlFrseFtd156V4RGwG1rcEprGnH/h3tR32TDlT3iMPdqLyQKQiZVx5ldV2clok9SBGoavdAQKQQzcFTOoxN74MuHRyMrORKV9U3423fHMOIf63HpAqkquXB7HQ7lViDUoMWye4fjpiEqWkxUKjJuhQctL/yGLiBV+aQthA+EGnQY15O8pmuPybw4K5kiTlGD0FjG18Fm57HxFDFwJvpt4NDXTqaeZpWOL8qIZGVCmu2hAg8OQLwhTzmajn684yLy2+r3ZLe5tJFxv3m1WO14ZMV+5FXUo2tsqFAh32M8FBoDREP08HhSbuPz3TnKJD14iCwGzpIlS5CZmQmTyYShQ4diy5Yt7Z6/adMmDB06FCaTCd26dcPSpUtbnfP111+jb9++MBqN6Nu3L1auXCnV9BVneEYMfnhsLJ6/oR/SYkKg52xIAqko2RSZjicm98Qv88YrU++mPVSyU+oQD5qW+k14IqDRk3YQfvQEouniPpV69wc650g3dTTkQg2p4jIWOzx0qQLldU2IMOkwtKuX1YtbQt/bcoWo6Bey2sJTgKrWpfG94jEiIwaNDpmB1V39s5rLRODPaYGI1p8/nufx3PfHsPtCGcKNOrx/9zBEhXppVNJU8UrPavNM75+ESJMO+ZUNytbm6gDJDZwvvvgCc+fOxbPPPosDBw5g3LhxmDFjBnJy3L+QFy5cwMyZMzFu3DgcOHAAzzzzDB5//HF8/fXXwjk7duzAbbfdhtmzZ+PQoUOYPXs2fvvb32LXrl1S/zmKodNqcPfoDGx5ehKO/2kQ9JwNvEaPb56+GU9O6eV7GwEpUdFC0i5yZHtoNKKECSZnJULDAccLqpBbJmNNk2p5i9u5xY+eXqJBX4dI6Q2czaeJ53NczzjotX4u1XKHqIQUcWbgtAfHcfjnLQOE+mevrT3d+iShYGIKoG2eDcXzPF75+RQ+200aaP7njiHomRjh/US88OAAgEmvxY1DyHvqi70qKL7ZBpIbOK+//jruv/9+PPDAA8jKysKiRYuQlpaGt99+2+35S5cuRXp6OhYtWoSsrCw88MADuO+++/Daa68J5yxatAhTpkzB/Pnz0adPH8yfPx+TJ0/GokWLpP5z2qepHsg/AFzYLOnT6B27MC4qDVqtwplS7UEbJNYUE9GhWpErndXPWjgAadA6IpPUNvrlhIwLNP0yUEOISsl2DTJ6cLaeITtjGpb0C/ra1ZfLU+yPflGq0oPjEqJSwbrULT4cL99C+j0t3XQO61t+roVstObrEzVu3nb01vv79f18D2VGea7BofzW0Tx13bHLKO9IJK0Qkho4FosF+/btw9SpU5vdP3XqVGzfvt3tNTt27Gh1/rRp07B37140NTW1e05bYzY2NqKqqqrZjyQUnwLenQB8db8041NoxUkpRbFiQBcSa71PPZhko4Ou7KIhgoEDAJP7kB3oxlMyapuE7CEFPThKi4x5XjYNTnVDEw7kVgAAruzhQ/XilpjMpHYP4NScSUmFij04tHyFtQFolOi7wEuuGZiMe8dkAACe/OIgThS4zEvYgDlfS4vVjhd+PNHMuLl7dIbvExA8OJ6vTf27mNEvJRIWmx3fHpRJ2+Ulkho4JSUlsNlsSExsvigmJiaisNC9hqCwsNDt+VarFSUlJe2e09aYCxcuhNlsFn7S0iT60NE3YG0R0CRhKWthd6RyA8cQBhgcrQ5U1K6hGbYm565c6sVYJA/E+N5kR7/zfCkammz+zqpjeF4dBo6rBseuQNPRxiqgyeH9kDhNfOf5MtjsPDJiQ/1LD3dFCFPJ4AGjz6HGNcoQSqo7A6pal56ZmYXBaVGoarDihre2YfnWC7Db+VYe5jOXq3HTkm1CWZC/X98P9ziMI5+ha19diVe9A6kX54s9ufKXrvAAWUTGLXsh8Tzfbn8kd+e3vN+bMefPn4/KykrhJzdXog94aIyzJLqUuyTBwFFJOnh7UC9OrXoWkmZU5QPgSX+aUBF2yu0hkki2Z0I4UswmNFrt2HG+VISJdUBDBWBzuKDD/czm8YeIFAAcYGt0Nh6UE+q9MZnJl6SEbD1DvHNX9hTxPSlnJpWaPTiAKor9tcSg02DZPcMwqU8CLFY7nv/xOO58fxcuXiDNLQ9UheORT/fhmv9sxbH8KkSF6rHkziv8N24AICQKMDoquHuxAbthcAoMOg1OFlbjaJ46vGGuSGrgxMXFQavVtvKsFBUVtfLAUJKSktyer9PpEBsb2+45bY1pNBoRGRnZ7EcSOM5ll+5Fp1hvCSgDRz2CPrcIu6MuRAgsJSKFWDiOw3hHVdtNcoSp6C7XFAXojNI/X1voDE7tixJCYxn1N1scmSlX9hAxM1Io9iexgdNQSbp1A+rU4ACqXZdiw41Yds8wvHBDPxh1Guw4X4q6omwAwL/3NmD10UJYrHZM7B2PtXOvwswBIr4Xo7wX8UeFGoQ+ef9TodhY0hXdYDBg6NChWLduXbP7161bhzFjxri9ZvTo0a3OX7t2LYYNGwa9Xt/uOW2NKSty9MwJFA0O0FxorEboYh8psf4GaK7B8dOdO8ERpqJ1UiRFDeEpipJCY5n0N/kV9ThfXAsNRxpsioZIGrAOof+b0FjZ+nV5jUpq4biD4zjMHp2BVU+Mwx8m9UBXXRkAICSuK/4wqQe+f2wslt87HAmRJnGfWNDheFe879ah5DO5+miB6mritNOBSxzmzZuH2bNnY9iwYRg9ejTeffdd5OTk4OGHHwZAwkd5eXn4+OOPAQAPP/wwFi9ejHnz5uHBBx/Ejh07sGzZMnz22WfCmE888QSuuuoqvPzyy7jhhhvw3Xff4ZdffsHWrVul/nM6xsPGZT5jszpdzIFg4Kh0pyQgZzor/XK21JCwT4jvtU3G9oiDTsMhu7QO2SW1yIiT8Iukmho4CoanKOZU4NJuZYTGMnlwaPbUoLQomEP04g0saHAk9uCotQeVK8K6pD4Dh9I9Phx/vCoZ2F4DAHj70RsAow8p4J4iZFJ59901pnsszCF6lNRYsCe7DKO6iWiU+4nkGpzbbrsNixYtwvPPP4/Bgwdj8+bNWLVqFbp2JeGVgoKCZjVxMjMzsWrVKmzcuBGDBw/GCy+8gDfffBO33HKLcM6YMWPw+eef44MPPsDAgQPx4Ycf4osvvsDIkSOl/nM6hn6oyyUqYV2VR4rFaY3q2FF3hOoNHBk7HutDnDofPz0Q4UYdhmUQA2nTaYm9Y2pIEadIvYFoD5k8ODQ8NU6M7ClX5ApRCQJjNRs46vXgNIOuT6YoaY0bwOtaOBS9VoMpjj55q4/I2K3eAyT34ADAnDlzMGfOHLePffjhh63uGz9+PPbv39/umLfeeituvfVWMaYnLrQZmpduPo9xrS8htWZEDNTerkGuFHGKuQsRyFblA8kD/RpqQu8E7Dxfho2nisQRGraFqkJUCqaKy+DBsdt5oTLsWLENHFeRO88TzaAUCB4cFXuY1b7xorhJEZcMPwzgmQOS8NW+S1h9tBDPXdcPGm/aREhIAHxDBhjUwJHKgxMoKeIUtS8kcnpwAGep9ep8v4eiOpwdUqeL012uWkJUQNB6cI4XVKGs1oJQgxZD0v1sz9AS+gXWVEcK/klFIHhwwtSXReUWIYQuw/pEn6PK+7VpbI84RBh1KKpuxP4cCd9bXsIMHLGhmU3VBdLUwgkkgTHgspCo1BUs5w4JcPZy8mERaUnvxAgkRZrQ0GTHrgtlfo/XJjUqaNNAMfumExAFGTw4Wx3em1HdYmHQibw8603OEKmkSRAqTxEHAi9EJYex6Lo22b3bMBl1WlxNw1RHZe6T1w7MwBGbsDhHLRxeml1mwHlw1FUWvRkNVc50VjmyqABnD6Mq/2PVHMcJDVYlzaZSowenvsyrgmR+I1MVYyowFqV6sTuEXbqEOpxA8OBQY7222Osvc1mR04MTnghodETj6YNna0Z/8rlYfaRANUX/mIEjNhwnbZgqkGrgAM4vRXuTtG5xX6CLvCkKMIbL85wiCz1pVWP6xSgJggZHBSLjkChnFVo5CtZR6stdih1K48lqaLJhdzbxxI0Ts8CfK1J3ZLfUOfV2at6EhcUB4MiXeZ2E3k9/kTOErtE6vZM+eJiv6hWPMIMW+ZUNOHSpUuTJ+QYzcKSAGh8V2eKPHWgGjs5IKr8C6hMayx2eApxu4Gpxsg3GdI+FhgPOFNWgoLJelDGbYWsC6hzVktUQogJcvqQlLKbZEvr/Co2VrNjhnuwyWKx2JEYa0SNBIoNbagOHjmuIIBsHtaLVk/8loG4djrBGyWQs0vXJh/eHSa8Vmn2qJZuKGThSEO0wPsT24NianDt/Ne+OWqJWobGc7l9KhHgaHIBUEh2QGgVAIi8ONUo1Or/q9oiK1F/S7pBDf3PGWb24vVY2fiF1qng56Y+E6AzpsrTEQliX1KMZaYbN6lwn5FqjhPeHb+sTray85lihKsJUzMCRAiFElS3uuJWXAN4O6Ezq0EN4ilqLarm2aZALqsFprBKtw/pVjnDGFikMHKo7CUtQT1kCJYTGMuhv6P9PsvAUIH2xv7Lz5BiTKc34YiLoA1XmWaZUF5AQmkYvn/dUEBr79v4Y3yseBq0GF0vrcK64RsSJ+YZKVqwgQwhRiezBcRUYq3135IrQrkFtBg6tgSOjB8cY4dSQiCA0BoBxPR06nLMlpPuwmND/WYRKwlOAwh4caQyckppGHC8gzQpFr3/jitR1hMocHpyAMHBU6lmmyNknj+LnZyvMqMMoR3uRX04ov94zA0cKpApRBVoGFUWtC4kSGhzA711SS4akRyHMoEVZrUX4khQNNRX5oyhR7E/w4EgToqLF/fokRSA+QsKGpnTtqMojIW+xoSGqmG7ijy02ak8VV0Qj6F+ICgCuziKv6/oTyq/3zMCRAurBaagA6ivEG5e6fwNFYEwJV6sHRwENDiC60Fiv1QhNGUUPU6kpRZwitGuQU2QsbYhqqxzhKYAYqjoTCX1IYSDSNSqaeXD8hr6/5VyfRNBoTXIIjfddLEd5rUWMWfkMM3CkwBju0nNIRC9O6VlyjOsp3phyINScUJGBY7c7dyly1cChRIjrwQGcYaotZ0TWE6ipyB/FteKqXDVMqDEqQao8z/NCgb8rHf9HyWhWxiJb3LHtNqfXmoWo/EfuKuuAU6NVXUhEzj6QGh2KPkkRsPPAxtPKrvnMwJEKKcJU1MCJ7SHemHKgxoWktojU5uE0kneHboUQohIvlfJKx85/b3Y56i0ifumrMUQVkQxwWsBudXpWpEbCnmXnimtRUNkAg1aDERkxoo/fCimTIOxNgNYg/6bBFwImRCWjgRMW71exP8rVWWS9UFqHwwwcqRBbaGy3AaXnyO1AM3AEkbGKshXo4hGRAmhl6TnrJNL3Ylpt0S0uDF2iQmCx2bHrQqlo4zpDVCoycDRa5xeoHDocq8W52EeK/2Wz1eF1G5YRjRCDVvTxWyEYOBfEHZeOF9WV/I/Ujho3Xq4okQSh0YriYZ7s0OFsPlWMJptdjJn5BDNwpELsasaVlwBbI9kdBarIWE1l0QX9jQI7TfrlLELDTQrHcYJ+Q1Qdjho9OIC8TTerCwDwgNboqIArLs7wlMT6G4pUHhwhRTwABMaA04PTUAFYGxWdiluogSG3N0yEJIhBqVF44YZ++OnxcdBrlTMzmIEjFUKIKluc8UrPkGNMt8DYHbmixrLoSuyOKH6UQ28PIV1cLAOH59UpMgacRr7YpRjcQb1EkSmil2dostmx87yjPUMPifU3FMkMnABKEQdI4UqNntxWW5jKUksML0B+A0eEWkkaDYfZozOQHhsq0qR8nIeizx7MiB2iKglQ/Q3gKIvu0BaoRWisRHybQhes2mJRd45juseC44BTl6txuUqETvaN1UBTHbmtNgOHbiAqZMikqpLOGN5/sRw1jVbEhBnQLyVS9PHdIpWBE0gp4gAxVtVahJRufgwRgEmm9wVF6mrXMsIMHKmgH/KyCz6r0ZtBPTiBlkFFUVu8WwhRKdDxODSGhDsAUUWy0WEGDOxC+n6JEqaii74hAjCE+T+emFAPjhQNbVsioTG8xaV7uEYjU/FOoYxFpbgNcKkHJxBSxCmC0Fgl6xLF1WsoN8zAYXSIOQ3QhZCsAjG8OIGaQUVRWzVjYQFRQIPDcZIIjQHXMJUIgm666KupijElSgEPjgTvlc2O/9NVvWQKTwGAIdS54RDLi8PzLiGqAPHgAOrbeFGEHlQKrE9St/OQEWbgSIVGA8Q5jJHiU/6PJ4SoAt2DoxIDR8Kwg0dIIDQGnEJVUdo2qEhgzPM8LpTU4su9udh4qghVJoeBWJlLahpJiUQp4mW1FhzJqwQgQ4G/logdpqopAppqSdmFQEqCUGuquGBUK+HBEbchsJLInB/byYjrBRQeAUpOA5jp+ziWWqDK4XEI2BCVilzBTfXOLtlKGTgSCY2vSI9GqEGLkhoLThRWoV+K2ffBBANHOf2N1WbH4g1n8eXeS8irqBfu18KG0yYNtDYLKUYo5RcB/eyJnCK+9WwJeJ60Z0iMNIk6dodEZwC5u8QzcKj+xpwK6AzijCkHqvXgUANHCY2g4zlrHMX+5C6jISLMgyMlcb3JseSMf+PQ9MuQaKdYN9CgX5K1KqiFQ40KfRh5TZVAgmJ/AGDQaTC6m0htGxT24JTVWnDPB7ux6JczyKuoh17LYVjXaGTGhcEGLfLt5O98/4eNqLOIoHNrC4m6zm8+rUB4iiK2BycQ9TeAujZerghV1hXw4ITFk+wy3i5aOxmlCFzTLBCg3pYSP0NU1EAK1PAUoK6dkmsNHKW6skso5BvXMw7rTxZh65kSPDy+u+8DKZgifjSvEg99sg95FfUINWjx9+v74ZqByQg1kCWrtKYRlUvTgJpiHD12BL8tS8NnD45ChEkv7kQsdU4hrogaHJ7nhbYasoenAAkMHFoDJ9AMHJWFzikSVs7uEI2GaAQrcsj6FKVAIoZIMA+OlMRTD85pIsLzlUDtQeWKmmLdStbAoUgkMgac/Yx2Z5f517ZB8OBI02CyLc5crsZv39mBvIp6ZMSGYuWcsfjNsDTBuAGA2HAjuvXoCwDoZSzD0bwqPPLpflisIutxqAFqiABMfoT7WnD6cg0uVzXCpNdguBztGVoitoETaCniFDVtvFxRqsgfRYSu4mqAGThSEtMdAEfSMf35Yg/0DCoACFOTgaNgDRwKLYcuQS+l7vFhSDGbYLHasTvbj8KKCoSo6ixWzFmxH3UWG0ZkxOC7x65E76QI9yc7auHc3tOOUIMWW8+W4OmvDvkvrnbFNTwlorePem9GZsbCpFegcCc1cCpyxSljEUhdxF1x3Xj5swkVk2ZF/hQIUQFOjWCAh6iYgSMlepOzIFnJad/HEUJUAWzg0C/JulLA1qTsXGiISgkBHyXC4RWpLhB9YSVtG0RIF6+WX2T83HfHcKaoBvERRrx15xUwh7QTcnJk68Q0FeLtu4ZCp+Hw7cF8LN5wVrwJSbST3nRawfAUQLxyWiOpLl4lQj+vQEwRB5zvbWs9KWypBpoV+RPPa+gVQZJJxQwcqRGExj7qcHg+OEJUoTEkhRQ8UCtiryRfUDpFHHAaOPYmYvSJDE0X33zax9fabgPqHNfK5MH5at8lfLnvEjQc8O/bByM+wtj+BS7F/sb3isdLNw8AALy5/gyO5VeKMykJBMYNTTbsvkA8a+OVEBgDRGchVjuZ+gqg3uEppJ6hQMEQRgwJQB3eZUDZIn8UZuAwPEIQGvuYSVVTBDRWAeACb3fkikbrLPandLsGNYSotHrn6yGBG/jKHnFC24aCyvqOL2hJbQnJouA0kjSYbMnZomr837dHAQBPTO6FMd09eE5a7K8qD7BZ8ZuhqZjRPwlWO4+nvjwsThfjSvFTxHecL0Wj1Y5kswk9EsJFG9draDjJ3yxPqr8JTwSMCv49vqK2TColi/xRWIiK4RFUaOxrsT/qvYlKB3Qd7GjVjhqExjyvDgMHcKmFI/4iEh1mwJC0KADAxlM+hKnoYh8WL3lzV57n8bfvjqG+yYaxPWLx2CQPQ7ERSSSd1W4FqgvAcRyev6E/okP1OFFQhSUbzvk/uSrxs1nWnyCv7aQ+CeCUyuID/F+bKMWO8HuMHxl7SqI2obGSKeKUIGnXwAwcqYnrRY6+7pICvQeVK2oQGteXOxtIKpWhQJF4lzSxN3m9N5z04fWWMUX815NF2H6uFAadBv+8eSC0nvZk0midKayOdijxEUYsuL4fAGDxhjM4UVDl3+REzrjjeR7rT5DX9uoshStEJ2SRY/FJ/8a5TDxvSOrv3zhKoaYaXYBkhSW9gmZ5VheqR3ztA8zAkRpq4FRdAhprvL++6ETzcQIZNeyUqPcmLJ6IwJXEVWgsARP7kIV769kSNFq9TBevcWR3Say/abLZ8Y9V5D3+u7EZSIsJ9W4AqsNx6Ul1/aAUTO2biCYbj7//cAy8rws0z4teUfZYfhUKKhsQotdidPdYUcb0mfg+5EjXGF+5fIwcE/v5N45SqGFdckUNHhxaGsJmkUQjKBfMwJGa0Bgg1KEnKPXBi5O3jxxTrhBvTkqhhhCVWsJTgHMBk8jA6ZcSiYQII+osNuy54GXXaJlSxD/bnYPzxbWICTPg0Yk+ZAlSHY5LV3GO4/C36/rCoNNg5/ky/OqLBwsg5R0sjk2JSF82vzjCU+N6ximTHu4KDVHVlfgn/KcenMQA9+CoxcCpVLgGDkDabVCPewCHqZiBIwe+hqmsFqDgMLndJYgMHCVFxkp2EW8J9eBIoMEByBf9hN5EyLzhlJevuQwhqsr6Jryxjug3nry6JyJ9qULsxoMDAKnRobhvLBHRvrTqBKy+CI7peyUkhnTgFgEhPNVX+QamMIQ5Xz9fw1Q1xQ7DgHN6hAINtVUzlkD35ROR0mkE5YIZOHKQ4PjgFx727rqiY4CtETBFBXYGFUUNC4nQpkEF5ccjpPXgAH7ocGSoYrxkw1mU1zWhR0I47hjhYwdqoWBdTquH5kzsjuhQPc4V1+LzPbnejy3yF01hZQOO5FWC44jAWBXEO3Q4voapihzhqZjMwMygAtQVolJDkT8K3QRWB26qODNw5KDLMHK8tNe762h4qstQ5XomiQlNi1ZyIVFDDRyKoMERv5ox5cqecdBpOJwvqUV2Sa3nF0pc5K+gsh4fbMsGADwzsw90Wh+XIqEWTnarhyJNesy9mnhPF/1yGtUNXhaYFDlFfP1J8poOSYtCXLhKMiLp5svXTCpBfxOg4SlAHaFzihqK/FGELE9m4DDaI3U4OeYf8K6Kb95+cuwyVPw5KYEqPDgq1ODUFktW3TnCpBd6HW30JkwlsQbn3c3nYbHZMSIzRvAy+QT1bFblAU2t6/3MGpmOzLgwlNRY8O7m896NLbIx/Mtx8ppOVjp7ypV4PzOpCgNcfwM0X5fsIvcy8xZB1K6w9wZgISqGh8T2INa4tcEpyPMEVw9OMEB3Sg0VgLVRmTmoycAJiSF1XMBL6tWa2Id4zn71ph6OoMER/8u4tKYRn+0mIaXHJvbwrxZMaCxgNAPgne0CXNBrNXh6GhHTLt96AWW1Fs/HFrGKcZ3Fim3nSDbKFDXobyhUaOxriEoQGAdoBhXgKGTJkbYV9X70bhMDJbuItyQIauEwA0cONBqnF8fTMFVDldNtHAwCYwAIiXZ8oUOZmhM2q1PvogYDR6ORXGgMOPUeO8+Xos7iQWNFSy1gcfTlkSBE9cG2bDQ02TEw1ex/LyaOA2IdXpwy94X9pvdPQr+USNRabHhnkxfF/6jBJEL7gS1nSmCx2pEWE4KeSlYvbok/mVQ2q9PzE8gGjlZPDGVAeR2OGlLEKUFQzZgZOHIhGDh7PDu/4CAAHjCny9rsUFI4zvm3SKg7aZPqAtJ+QKN3pkAqjQyLSPf4cKRGh8BitWPbWQ9qWlDvjT4UMLbRydtHqhqa8NGObADAnAl+em8otIJuqXvjheM4/HEq0eJ8tCMbRdUNno1LDSYRBP4/Hib/3ylZScpWL26JIcyZau9tmKr0LKmTYohwjhGoqEVoXKWiLE/Bg8MMHEZHpFKhsYcGDvX0BIv3hiKDsLZNXJvYaVTy1pe42B9AvuBp1dzVRzx4nhoXgbHIX8af7LiI6gYreiSEY6pYoZpYh4HThgcHINlkg9Oi0NBkx9sbPfDi1Fc4C5z5aeDUNlqx7jh5v98wWAU785Yk+JhJJYSn+qrn8+QrahEaCx4cNRg4js1XY6VvRWpVQIC/KwMIqqMpOw/UerCLDjb9DUVJt6egqVBBijhF4mJ/lGsGktd93fHLHVc1lkhgXG+xYflWEvaZM6E7NJ62ZOgIwYPTtojY1YuzYmdOxw1IqbEUnui3F2vd8ctoaLIjIzYUA1MVzoxxh689qYJBf0NRiwdHDUX+KMYIZ6f1AA1TMQNHLkKinQX/8jzQ4QRbBhVFSQ9OlYoExhSZXo+h6dFIjDSiutGKrWc60FpIVOTviz05KK21IDU6BNcPEtGT4YEHByAd1kdkxMBis2Pxr2fbH5MaSyI0kPz2IPnSumFwF3WFpyi+ZlIFeosGV1TjwVGRyBhwbsACVGgsqYFTXl6O2bNnw2w2w2w2Y/bs2aioqGj3Gp7nsWDBAqSkpCAkJAQTJkzAsWPHhMfLysrwhz/8Ab1790ZoaCjS09Px+OOPo7KyUso/RRxSR5BjR2GqqnxSXInTAMmDpJ+XnKghRKUqA4cuINLWmtBoOMzoT7w4P3UUppLAg2Ox2oU07YfHd/e97o07aAipuoAIpNvA1Yvzv725yC2ra3vMMoeBE+tfeKq0phFbHAbl9WoMTwHOWjheh6iCoAYORQ0eHDUV+aMEeKq4pAbOrFmzcPDgQaxZswZr1qzBwYMHMXv27HaveeWVV/D6669j8eLF2LNnD5KSkjBlyhRUV5Osjvz8fOTn5+O1117DkSNH8OGHH2LNmjW4//77pfxTxMFTHQ713sRnBW510LZQRYhKJbsjQFaDb+YAD8NUdC4iVjH+9mAe8isbEB9hxK1DRTYwQ2OIhxRwGiZtMLJbLK7sEYcmG4///NpO6xRBYOyfB2fVkQLY7DwGdDGje7xKP8txvQGNjmRSuakI7Za6MueuPqGvdHOTCzUYOGoq8kcRqq0HZrE/yQycEydOYM2aNXj//fcxevRojB49Gu+99x5+/PFHnDrlPtbL8zwWLVqEZ599FjfffDP69++Pjz76CHV1dfjvf/8LAOjfvz++/vprXHfddejevTsmTZqEf/zjH/jhhx9gtXqQAqskQibVPsDezheMoL8JMoExoBIPTufT4ADAsK7RSIgworrBim1n2wlTiRyistl5Qdj74LhMaZpMdpBJ5co8hxfn6/15uNBWdedScTKovj1IvhhUKS6mGEKBlCHkdvY2z66h3puoroApUpp5yYkaQlRqKvJHiZTHwywVkhk4O3bsgNlsxsiRI4X7Ro0aBbPZjO3bt7u95sKFCygsLMTUqVOF+4xGI8aPH9/mNQBQWVmJyMhI6HQ6t483Njaiqqqq2Y8iJGQBhnBSY6Stgn88D5z4ntxOHyXf3ORCFR4cNYWoHAZfY5XkmQokTEWe76fD7RiYIoeoVh8twIWSWphD9LhzpETpxB7qcADgivRoTOqTAJudx79/Oe3+JDpOrO8enNyyOuy7WA6OA64TU3MkBV3HkmP2Vs/OD6bwFKAOD06lGg0cFqJyS2FhIRISWu8AExISUFjofnGl9ycmNl9YExMT27ymtLQUL7zwAh566KE257Jw4UJBB2Q2m5GWptAOXqMFuk8ktw986v6c7C2kvoQhHOh7g3xzkwtq4NSXyVvNuLHaJb6tohCVMYL8rwGZw1SFsFjbKEsvogeH53m8tYEYC78bm4Ewo/tNiN94kEnlyrwpxIvz3aF8nLlc3fzBujKgvtwxru8enJUHyBfWmO6xSIw0+TyOLGSMI8eLHho4NMyeFCwGjuO9Xl+uXJV16iVRUwg9wBtuem3gLFiwABzHtfuzdy/JEnKXMcDzfIeZBC0fb+uaqqoqXHPNNejbty+ee+65NsebP38+KisrhZ/cXB86C4vFMIdW6OBn7nfse5eT48Dfil5kTRWERANaA7ktZ5iK7o6MZvW51GX0ag3LiEF8hBFVbYWp7HagVrw2DRtPFeNEQRXCDFrcOybD7/HaxAsPDgD072LGtH6J4HngjZZeHKrjiUgmhfB8oNFqwyc7LwIAfjNURSHRtkgfCXBa0rSUejrbwtYEnF1HbnefJPnUZEHpKuuAuor8UQK84abXBs5jjz2GEydOtPvTv39/JCUl4fLl1u6+4uLiVh4aSlIScZ+39NYUFRW1uqa6uhrTp09HeHg4Vq5cCb1e3+acjUYjIiMjm/0oRuZ40pvKUg0c+V/zx2qKgBM/kNvD7pN/bnLAccrocNQYnqLIUOyPonUNU7nLpqovA+wOLZufHhye57F4A0nHvmtUV0SFGvwar12op8UDDQ7lySm9wHHAqiOFOHypwvlAmf8p4j8eKkBxdSMSI42C10zVGCOAlMHkdkc6nJydQEMlaW9AdYWBDscpH6ZSU5E/Cg2X1RRJ1hBYSrw2cOLi4tCnT592f0wmE0aPHo3Kykrs3r1buHbXrl2orKzEmDFj3I6dmZmJpKQkrFu3TrjPYrFg06ZNza6pqqrC1KlTYTAY8P3338NkUrn71xWNxunF2f0+0dxQ9n9MvlxShwNJA5SZnxwoocNRYw0cioxCYwC4xvGFu+ZoIWoaWwjz6eIeGkt69PjBtrOl2HexHEadBvdfmenXWB1CPTi1RaSPmwf0SYrEjYPJl8mC74/Bbnd8FgWBsW9z5nkeyxwFDe8enQGDLkDKjQk6nC3tn3dqNTn2nEbC7sGC0kJjNRo4oXHOhsBKJIb4iWSfvKysLEyfPh0PPvggdu7ciZ07d+LBBx/Etddei969ewvn9enTBytXrgRAQlNz587FSy+9hJUrV+Lo0aO49957ERoailmzZgEgnpupU6eitrYWy5YtQ1VVFQoLC1FYWAibrYMKrWph8CxAFwIUHSO7IYBkVe37iNweFgAp7/6gqAdHRYsHRebXY0RmDLrFh6Gm0YqV+1uEI0QSGPM8j0WO0M+skelIkFqDYjKTxRjoMFXclT9P74NQgxb7cyqEgnz+Cox3nC/F8YIqhOi1uHNkuk9jKELGleR4sR0PDs8Dp1aR272nSz8nOVHag6PGNUqjCeimm5JuLVasWIEBAwZg6tSpmDp1KgYOHIhPPvmk2TmnTp1qVqTv6aefxty5czFnzhwMGzYMeXl5WLt2LSIiiB5l37592LVrF44cOYIePXogOTlZ+FFUW+MNIVHAwN+Q27vfIQLYU6uByhzAFAX0u1HBycmAEh8YVYeo5E3F5DgOs0eRbKZPdl4E7+pFFElgvP1cKfZeLIdBp8HD4/2vBuwRXupwACDJbMIfJvUEACxcfRLVDU0uHhzf5k3bUdwytIu0YTmxSR9FiouWnW/7vVhyGii/QHR0waK/oSjpwVFjkT9KAKeKS5TSQIiJicGnn7aRLeSg2eIKsvguWLAACxYscHv+hAkTWl0TkAy7n4Skjq0kP5TBdwL6EOXmJQeKenBUKPhU4PW4+YpUvLLmFE5frsGuC2UY1S22+Rz8KPLXzHszIl2+DKKY7kDuLo8zqSj3XZmB/+3NxYWSWixefwbz/fDgXCipxfqT5Avyd2MlDsuJjckMJA0ECg4SHQ7dhLlCw1MZ44IvCUJJD45Q5C8cMKosCSIycIXGARIcDkJSBrdOAw+JBkY8qMh0ZIV5cJojvB7yLSDmED1uHEJc4TTbB0DzTuI+sv1cKfZkE+/NIxNk8t4AToOkpI3aNm1g1Gnxt2tJNd5vth8hAloAiPbeQHllzUnwPDCpT4J6Kxe3Bw1TtaXDoQZO7xnyzEdOBA+OEgaOS5NNtfUrC+BqxpJ6cBgd8NuPAasF4O3kR2sAtJ3gXyK3x8Jub76AqA26Q6ouJBoHmRa42aO64rPdOfj5aCGKqhqITob+TyJ88+Ao5r0BnE0fLx9r/zw3TOyTgEl9ElB+irRv4CNTwBlCvRpj46kirD5aCK2Gw5+m9e74AjWScSWwYzFwZh3Q1ADoXf5/tSXAJUfSSK8g098ALh4cBUJUaizyRwngEBXz4CiNzkAWEUNo5zBuAKfHokYmA6e2GLBZAHDqXEBoOMhmIUXmZKJvSiSGdY2G1c7js90O/ZqfIuOfjxUK3hvZtDcUWlW35JRPxdr+dm1f9NKTL7cc3jsDr6HJhue+J4bVvWMykJWssjCDp2SOJzv26nxg51vNHzuzlmzEkgYAUSoM9fqLGkJUahIYUwK4mjEzcBjyQ70DDZWApZ2OzmJBU8Qjkv1OfZYEncGZASRzpsLs0URs/N/dF9Fks7t4cLyv3dLQZMOLP5GO1A9d1Q1JZpnLN5hTiY7EbgWK3fe7a4+MuDA80Jfo+7aVm/EdzarygHc2ncfF0jokRhox9+qeXj+3ajCEAlP+Tm5v/lfzLzWaPdUrCMNTQHORsdw6TzV7mAM4RMUMHIb8GCMBvcP9L4cXR43ply1RKBVzev8kxIUbcLmqEd/sv+RXiOq9zedxqbweyWaTvNobCscBiY76UW31euuAnjqye8/mk/Dnrw/jWH5lB1cAB3LK8dZGUtDwr9f0RYRJhUa0Nwz4DZA6AmiqBdb/nRR4W/OMswhpn5nKzk8qqIHTVAdYpO0L1wo1GzhCiKpAfsPPT5iBw5AfuasZq1lgTIlUxsAx6rRCKGnx6oPkSw3wOkRVUFmPJY6O4X+Z0QehBoXCrbRAZqFvBg5NEQ9L7o2GJjt+//E+5FfUt3n6kUuVuHv5blisdkzsHY9rBwZA1eKO4Dhgxj/J7UOfAe9f7QxXjXvK2Xk82DCEAQZHZpjcOhw1Fvmj0M2XrVHWELoYMAOHoQxyeiwCwcBRInXewT1jMtAjIRy6eseibggHjN5lAP3jpxOob7JheEY0rleyczZt/lh42PtreR4oIzVs7rv+anSNDUVeRT2mLdqMlQcutSpPsT+nHHct24XqBiuGZ0TjrTuv6LDPXsDQZSgpWQGQtHFDBPDbT4DJ/6fotCSHenHk/hyq2cusMwBh8eR2ledhWzXQSVStDNWhiAdHxcJImYv9uaLXarDgun74z3LSIboxJB5GL67/at8l/Hi4ABoOeO66fsp+yVOh8eWj3mek1ZUCjSQkFZHcA5/c1x1/+PwADuVW4MkvDmHlgXwM6xqNmDADfjycj53nyW52SHoUPvjdCOW8VlIx+W9A9laia7plGRDfS+kZSU9EEikUKacnVc1F/igRySRZo7oASB6o9Gw8Jsg+kYyAQQkPjhrdvxQFPTgAcGXPOJzuagcKgbP14ejL8x4ZKqcKq/HXb48AAOZe3Qv9u5ilnmr7xPchXbHry4mx6M2OuISkiCMyFdCHID0W+Prh0Vi66RwW/XIGm08XY/NpZ6dprYbDzAHJePHG/gg3BuFSGpEEPH4guPpNdYQiffJUXOSPEplCvKIBlioehJ9KRkDANDjNUaDYX0tu6aUHCoFz9eE4uDsHd47s2u75tY1WPLJiHxqa7BjXMw6PTewh00zbQW8C4noBxSeIF8cbAydvLzkmDxLu0mk1eGxST0ztl4Q1RwuRW1aHwqoG9O9ixl2juqJLVJBXHe9Mxg2gTEq0mov8UQK0Fg4zcBjKEOFS3E5KrI2kwzSgbgMnUqbXox3M1lIAQBEfhX98exQajsMdI9w3i6ysb8KcFftwvrgWSZEmLLptMDQalSzOSf2JgVN4BOg1zfPrch1F7NKGt3qoV2IEeiUGWWsCRmuUSIkWBMYqDU8BAZsqzkTGDGWgBg71rkhFhaOAnT4UCI2V9rn8QSh+WETScpWgmqRIp6ZngueB+d8cERpHunKxtBY3L9mGbWdLEWrQ4q07hyA23BvVjsS46nA8hedJHysASBsp/pwYgYESHhxaxViNAmOKa6p4AME8OAxloN6UqnzSSkEjka1dkU2OUV3V6/4FSKE/jY4UqaspUmaxc+gOpo0cjIdSu+Gdzefx/I/HseZoIa7qFYe0mFBsOFmEdccvo9ZiQ1KkCcvuHYZ+KQrrbloiZFJ5YeBU5JAKthpd8KZBMzpGEQ+OimvgUAK04SYzcBjKEJkCgHPUVijxq7lju5Q7GklGt68nURyNhrRsqHIU21PCwHGUqOcikoRaNm/8chq7s8uwO7t5/YtBaVF4d/ZQeXtNeUqSI8uj9CzJUDGEdXwNDU8lDwL0Qa6rYbSNEn3hqlTch4oSoCEqZuAwlEGrJ2GZ6nygMlc6A6fCYeBEqdzAAcjiWnXJsYgMlf/5HSEqRCSB4zg8cXVP3DSkCzadKcaW08XILa/H2O6xmDEgCUPSotWjuWlJeAIQlkC0V0UngNRhHV/DwlMMoEVfuFIgLE765wyEJAhqfDVUer5pUAHMwGEohznVYeBcIoXFpCBQPDiAsqniljqhBoxrFeP02FDMju2K2aMC4PVzJak/cO5XIjT2ysAZIe28GOqGFrWrLSbhGKkNHJ536gTN7gX9qsAUSdLYLTVEhxOngoxJD2AiY4Zy0B2LlELjQPLgRCgY56Y9wXQhpLBboENTvXN2dnxuY41TkJzKDJxOD/VWyFELp6ECsFST22r24ACqKGXhLczAYSiHHAZOQHlwFEwVF8JTieoWY3tK98nkePYXImJvj7x9AG8nla7VnMnCkAc5q4pT701oHOnkrmYCsBYOM3AYykFbJ1TmSjN+YzVQ7xDHBpIHR4kdEvXghHvfRVyVpI8i/ZPqSoD8A+2fK9S/Yd4bBuRtfBsI+hsKM3AYDC+Q2oNDvTch0SSGrHaULPbn6sEJBrR6oPtEcvvM2vbPZQJjhiuCB0eGxpJ0cxel4j55FGbgMBheILWBE0j6G8BFg6NAMS26W6VzCAZ6TiXH9gwcux24RJqMMg8OA4C8xf4qcshRzQJjipIaQR9hBg5DOaiBU1sMNNWLP34g6W8A5wLS6EjFlBNHDRzXDKqAp+cUcszfT4onuqP0DBF66kOdFZAZnRtZGwHTDKoACFEJxVklrj4vIszAYShHSDSgd9RTkGJXEGgeHGOE8/WQO0xFny8iSDQ4APlbaDbV2fXuz6HhqS5DSViLwZAzFEO914EQohI87jKE7kSCGTgM5eA4lw+NBELjQPPgcJxyJdGD0YMDdBymYvVvGC2hHpyGCmk8y64INXACwMChrSTqSqR/XUSCGTgMZZFShyN4cDLEH1sqlBLyBaMGB3AaOOfWAzZr88cstU7PDqt/w6CYzCRkCUj7OWxqINW2ASAqADQ4UnvcJYAZOAxlkcrA4fnA8+AAQCSNc8voBrY2AvXl5HYwhagAEnoKiSYl5qmYmLLpFWLYmdOBbuOVmR9DfXCcPDocuubpQ8l7VO1wnLNOlJS1y0SEGTgMZZGqFk5dKdBU2/w5AoFIGVNUKTQ8pTUExkLrDRot0ONqcnvnEmfRv6ITwI7F5PbMV1iDTUZzhM+hlAaOS3gqUIprRjIDh8HwHKk8ONR7E5EM6FXY8botlAhRVbvobwJlofWGYfcBnBY48T2w6ili5Pz0R8BuBXpfA/SeofQMGWpDjqKbgVQDh2JWwMPsB8zAYSiLVAZORTY5BkoGFUWJBYS64YNNYEzpOga4+V0AHLB3GfDRtcDFbSQ0MONlpWfHUCNy1MIJJIExRcqkEAlgBg5DWVxjujwv3riBqL8BnB4cOVMxaYgq2PQ3rgy4FbhuEbl9cRs5jv9zYO2eGfJBqxnL4cEJhBo4lABLFWcGDkNZaEzX2kB0M2IRaDVwKM1SMRvkec5grIHjjqH3AtNeIrcTBwCjH1V0OgwVI4cHR6iBEwAZVJQA0+DolJ4Ao5OjM5LQSM1lsqMJixNn3ED14IREAzoTMfiqC4CYTOmfM9gabbbH6EeBHlOI55AV9mO0heDBkTJERds0BJAXkc61Ko943FWu2WMeHIbySKHDCVQPDsc5d0ly6XAED06QanBaEt8LMIQpPQuGmnHtKE4z78TEbnN+vgMpTEpD6JYaUnpB5TADh6E8Yhs4dptTwBdoHhxA/kwqwcAJsiJ/DIavhCcBnIZk2lGNmphUF5KxOW1geU4NoUBoLLkdAGEqZuAwlEeohSPSB6a6ALA3ARqd0xsSSMjtwaGveyC+VgyGFGhd1g4pMoZcP3PaAFOKyL0++QEzcBjKQw2c8mxxxqP6G3MqKfQWaAiZZTIsIJZa0nPH9XkZDIZT/Eu1MmISiDVwKFIVZ5UAZuAwlCe2OzmWnRdnPGooBZr+hiJrN2OHEWWIID14GAwGga4fVM8nJoEoMKbIuQHzE2bgMJSHGjil58QR9JWcIse4Xv6PpQRyuoCrHK5y5r1hMJpDPTjlEhg4NEQVSDVwKAGUKs4MHIbymNMBjR6wNTq/cP2h+DQ5xvf2fywlkNXAcXiJqNeIwWAQWIjKPQHUroEZOAzl0eqc9V5Kz/o/XvFJcgx0A6e2mHT6lhLqZmYCYwajOVIaOIHYpoESQO0amIHDUAexPcmx9Jx/4zTVOzU48X38G0spQmNIsT9A2kJjgEuIKgBd5QyGlFADpzJX3Fo4PO80mgKpijFF8OBIVCNIRCQ1cMrLyzF79myYzWaYzWbMnj0bFRUV7V7D8zwWLFiAlJQUhISEYMKECTh27Fib586YMQMcx+Hbb78V/w9gyIegw/HTg1NyBgBPKgKHxfs9LUXgOPl6UjEPDoPhnsgupE6NzSJuLZyay0BTLamzE4iJEEKNoCagtkjp2bSLpAbOrFmzcPDgQaxZswZr1qzBwYMHMXv27HaveeWVV/D6669j8eLF2LNnD5KSkjBlyhRUV1e3OnfRokXgVF4qmuEhsT3I0W8Dx6G/ieut+jLi7SLocCTOpKJxdCYyZjCao9U5Pxdihqmol9qcBugM4o0rF1qds5WFyoXGkhk4J06cwJo1a/D+++9j9OjRGD16NN577z38+OOPOHXqlNtreJ7HokWL8Oyzz+Lmm29G//798dFHH6Gurg7//e9/m5176NAhvP7661i+fLlUfwJDTsQycAJdf0MRUsXl8uCwEBWD0QopUsXLHAYO9VoHIubAyKSSzMDZsWMHzGYzRo4cKdw3atQomM1mbN++3e01Fy5cQGFhIaZOnSrcZzQaMX78+GbX1NXV4Y477sDixYuRlNRxmevGxkZUVVU1+2GoDGrgVOT4J6wVDJwA1d9Q5MikaqgELA7PKPPgMBitEYTGIho41IMTE8gGjgT9AyVAMgOnsLAQCQkJre5PSEhAYWFhm9cAQGJi86Z/iYmJza558sknMWbMGNxwww0ezWXhwoWCDshsNiMtLQCV68FOeAIpNsfb/atoXOzwDgaNB0fCEBUd2xTFmk8yGO6QIpMqGDw4AVILx2sDZ8GCBeA4rt2fvXv3AoBbfQzP8x3qZlo+7nrN999/j19//RWLFi3yeM7z589HZWWl8JObq/70tk4Hx/kvNLZanNWQA97AkcGDwwTGDEb7SGLgXCDHmG7ijSk3rhlmKsbrLl+PPfYYbr/99nbPycjIwOHDh3H5cmvleXFxcSsPDYWGmwoLC5Gc7OxsXFRUJFzz66+/4ty5c4iKimp27S233IJx48Zh48aNrcY1Go0wGo3tzpmhAmJ7AAUHHZlQPlB2nnToNYQH/pe2HFlUrIoxg9E+Yhs4PO/chAVyiCo6gxzF6h8oEV4bOHFxcYiLi+vwvNGjR6OyshK7d+/GiBEjAAC7du1CZWUlxowZ4/aazMxMJCUlYd26dRgyZAgAwGKxYNOmTXj55ZcBAH/5y1/wwAMPNLtuwIABeOONN3Ddddd5++cw1EQcrYXjowfHVWAcyBlUgDPGXVtEPFNSZFswDw6D0T6CgeOohaPxU9VRXQA01ZH08+gATBGnUAOn7AIx2lS63krWpz0rKwvTp0/Hgw8+iHfeeQcA8Pvf/x7XXnstevd2hg/69OmDhQsX4qabbgLHcZg7dy5eeukl9OzZEz179sRLL72E0NBQzJo1CwDx8rgTFqenpyMzM1OqP4chB0ImlY/F/qj+Ji7Aw1MAEBoLaI2kfUV1vnNBEROWIs5gtE9ECqDRkZov1QX+f1bo2haVDmj1/s9PKaLSAXCknk9tCRCuzppjktbBWbFiBQYMGICpU6di6tSpGDhwID755JNm55w6dQqVlZXC708//TTmzp2LOXPmYNiwYcjLy8PatWsREREh5VQZasBfDU5JkAiMAbIjol4cKUrFA06BIEsRZzDco9U5PZxifA6DQWAMADqj83VRcZhKMg8OAMTExODTTz9t9xye55v9znEcFixYgAULFnj8PC3HYAQoNCZdW0RSmE1m764XMqgCPEWcEt2VLIjlFwEpnJPMg8NgdExUOkkTr8gBuo72b6xgSBGnRGcQHV95NpA2XOnZuIX1omKoB1MkEO4QoHsbprJZneLkYPDgAC5FxiTw4PC8SydxZuAwGG0i5ueQCowD3YMDADEZ5Fh+QdFptAczcBjqwlcdTsVFolfRmQKzgZ07pCgyRqkvJ2JHgBk4DEZ7iPk5DDYPDqDqEBUzcBjqwlcdjiAw7glotOLOSSlolkW5BAYODU+FxgJ6k/jjMxjBglip4na709sREwQJMdGOv4EZOAyGh8Q6UsWLT3h3XbC0aHAlKoMcpfDgsBRxBsMzokXqR1WdD1gbSFZWIHYRbwnz4DAYXpJC6h/h0l7vrgumFHEKXVirC/zrz+UOocgfy6BiMNpFqNp7iWj9fEVIEe9KsrMCHerBqcoHmhqUnUsbMAOHoS66XEGKYFXledfnhHp8gkVgDDjCR44eURUil0RnHhwGwzMiUgB9KKmS7o+gNlhSxCmhMaR/IHjpSln4CTNwGOrCEAYkDSC3c3d7dk1jNVB4lNxOHiTNvJSA41zi/9nijs1SxBkMz9BonBunouO+jxNMAmOArE8qD1MxA4ehPtJGkqOnBs7F7QBvI67fQC5/7g6phMZCijgLUTEYHRKfRY5FJ30fI5hSxCnC+pSt6DTaghk4DPWRRnqXIXeXZ+ef30SO3cZLMx8lkaoWTiVrtMlgeEyCI3nB2+QHVwQPTgB3EW8JzQZTaS0cZuAw1Af14BQeBix1HZ9/YTM5ZgahgSNWBocrrMgfg+EdCX3J0VcPjt3mNAKCyoOTQY7Mg8NgeIg5lQj77FYg/0D759aWAJePkNvBaOBESRCiqi0hRRHBARHJ4o3LYAQrtPxE6RnAavH++spLgM0CaPTBFRZmBg6D4SUc53mYinpvEvqptqOtX0hRzZimiIcnADqDeOMyGMGKOZVkDNmtzmwobyh1tJGJzgiOFHGKa7E/FfaEZAYOQ514KjS+4NDfZF4l7XyUgoao6kqBxhpxxqS7rWBpacFgSA3HOXU4RT7ocPIPkiPNEA0WzGkApyFtX2qKlJ5NK5iBw1AngoGzq/2dAfXgBKPAGCAd1U1R5LZYQmMqdqR9vxgMRsfE+2PgOELtXa4Qbz5qQGdwhtxUGKZiBg5DnSQNII0z68vabrxZkUtSLzkt0HWsvPOTE7GFxsFWj4PBkIMER6q4L5lU1MChldqDCRWnijMDh6FOdAYgxbHbaUuHQ8NTXa4ATJHyzEsJxBYaCxVVgyhdlcGQmgQfa+FUX3YU1uSCqxApRRAaqy9VnBk4DPXSkdA4mNPDXRGrmzGFhagYDO+hxf7KznvXe4l6b+J7A8YI8eelNLQWThkzcBgMz6E6nNM/A5ba5o/xvLPAX7AKjCl0hyRGiKq+AqgrIbeDqeAYgyE1EUlEE8fbnFlRnpC/nxyDMTwFOEPdJaeVnYcbmIHDUC/dJxHvRU0hsO3N5o+VnCb360xOQyhYETNERcNT4YnBuZtkMKSC43xr2SDob4JMYExJ7EeOxScBu13ZubSAGTgM9aI3AVNeILe3/dvZXsBuAzb8g9xOG0nOC2ZcRcb+1poodfTDYQJjBsN7vBUa8zyQF+wenG5ko9lUpzodDjNwGOqm7w1A+hjAWg/88neyYKx6Cjj+HakKOv5ppWcoPVSD01gFNFT4N1bpWXIMpnLxDIZcCEJjDw2cykskJKzRAUn9pZuXkmi04nRblwBm4DDUDccB018CwAFH/gd8fT+wdzn5/eZ3gYwrlZ6h9OhDgLAEctvfVEwhg4oZOAyG13hbC4fqbxKyyOc4WElwhKkuH1N2Hi1gBg5D/aQMAQbfSW4f/Zocr3kN6H+zcnOSm7ie5Fjsp5CP1cBhMHyHNt0sz/asEXCw628oiczAYTB8Z/L/AYZwcnvCM8DwB5Sdj9zQnaMvRcYoPM9SxBkMfwiPB8KTAPAd98kDnPqbYKtg3JJE2m2dhagYDO+JSALu/g649YPOobtpia9FxlypKwUaK8ltWruCwWB4R4+ryfHM2vbP43lnD6pgFRhTaIiq7DzQVK/sXFxgBg4jcEgdRsJSHKf0TORHDA8O9d5Epga3HoDBkJJeU8nx9M/tn1d2nmwotEZnaCtYCU8AQmMB3k7SxVUCM3AYjECAGjjlFz2L/buDZVAxGP7TbSLJ4Cw713afPMCpv0kaAGj18sxNKTjOacSpSIfDDBwGIxAIjyc7JPC+VwxlGVQMhv+YIoGuo8nt9rw4nUV/QxGExurR4TADh8EIFGgVVV9dwCyDisEQh57TyPFMGwYOzwPn1pPbwZ5BRaEenCLmwWEwGN6S4GUNjpaUsQwqBkMUek0nx+xtQGN168fP/Uo2IoZwoM9MeeemFImOQobMg8NgMLxGEBqf8v5anne2aWAhKgbDP+J6kBYF9ibg3IbWj+9cQo5D7iINOjsDCX0AcEBtEVBTrPRsADADh8EIHPzJpKouBJpqAU7jbN7JYDB8p60wVfEp4OwvADhg5EOyT0sxDGFAdAa5rZIwFTNwGIxAgdbC8SWTioanoroCOoO482IwOiM0XfzMuuZdtKn3ps81xMvTmVCZ0JgZOAxGoBAWB4TGgWRSeRmmYiniDIa4dB0L6MOAmstA9mZyX20pcOhzcnvUHOXmphQqExozA4fBCCSEZn9eZlKxDCoGQ1x0RqCXI0z1yc3Az88CO/4DWBuA5EFA1zHKzk8JaMuGwqPKzsOBTukJMBgML0joA1zc6n2qOOtBxWCIz4xXAJsFOPkjsGOx8/7Rj3XOiuupw8mx8DDQUKm4wJp5cBiMQEIQGnth4PA8kO8oOkZ1PAwGw3/C44HbVwB3fgVEO/q7RaQAfW9UdFqKYU4luiPeTlLoFYYZOAxGICE03fQik6oyF6guADQ6oMtQaebFYHRmek4B5uwEbnoXmL2ycwv5M8eT44XNys4DzMBhMAIL6sGpuAhYaj27JmcXOSYNBAyh0syLwejs6E3AoNucBTk7K92ogbNJ2XmAGTgMRmAhZFLB84J/uTvJMX2UNHNiMBgMSsY4ciw6DtQUKToVZuAwGIEGDVN52rWXenDSRkozHwaDwaCExQGJA8hthcNUkho45eXlmD17NsxmM8xmM2bPno2Kiop2r+F5HgsWLEBKSgpCQkIwYcIEHDvWeiHfsWMHJk2ahLCwMERFRWHChAmor6+X6C9hMFQEzVTI3tLxuQ1VzpoUzIPDYDDkQCVhKkkNnFmzZuHgwYNYs2YN1qxZg4MHD2L27NntXvPKK6/g9ddfx+LFi7Fnzx4kJSVhypQpqK52NjTbsWMHpk+fjqlTp2L37t3Ys2cPHnvsMWg0zCHF6AR0n0iO5zaQDKn2uLSHZDREdQUikqSfG4PBYGReRY7nlTVwJKuDc+LECaxZswY7d+7EyJHENf7ee+9h9OjROHXqFHr37t3qGp7nsWjRIjz77LO4+eabAQAfffQREhMT8d///hcPPUT6ejz55JN4/PHH8Ze//EW4tmfPnlL9KQyGukgbCehDSVO7y8eApP5tn5vrCE8x7w2DwZCLrmOAXjOAzHGA3QZotIpMQzKXx44dO2A2mwXjBgBGjRoFs9mM7du3u73mwoULKCwsxNSpU4X7jEYjxo8fL1xTVFSEXbt2ISEhAWPGjEFiYiLGjx+PrVu3tjmXxsZGVFVVNfthMAIWnZGUiQeAc7+2f26OQ2DM9DcMBkMujBHArM+B0Y8qZtwAEho4hYWFSEhIaHV/QkICCgsL27wGABITE5vdn5iYKDx2/vx5AMCCBQvw4IMPYs2aNbjiiiswefJknDlzxu24CxcuFHRAZrMZaWlpPv9dDIYq6D6JHM9vaPscmxXI20duMw8Og8HoZHht4CxYsAAcx7X7s3fvXgAA56ZUNc/zbu93peXjrtfYHV1bH3roIfzud7/DkCFD8MYbb6B3795Yvny52/Hmz5+PyspK4Sc3N9fbP5vBUBfUwLm4HWhqcH9O0THAUgMYzUA8q2DMYDA6F15rcB577DHcfvvt7Z6TkZGBw4cP4/Lly60eKy4ubuWhoSQlERFkYWEhkpOThfuLioqEa+j9ffv2bXZtVlYWcnJy3I5rNBphNBrbnTODEVDE9wYikkmF4pwdTuGxK0J6+HCACfAZDEYnw2sDJy4uDnFxcR2eN3r0aFRWVmL37t0YMWIEAGDXrl2orKzEmDHuu6xmZmYiKSkJ69atw5AhQwAAFosFmzZtwssvvwyAGE8pKSk4dap5kbP/b+/+g6KqGz2OfxaSBWJZBYWVQXygywiBP6G6KWVNxdXUdLzTL7VwaJxhwmRlhjStpO51LZv4wyh9sMl/0iszFWV/NCOTxUoNySUps5KhSFCvl2lygERkYM/9gyvP5eqtp9uyR768XzM7eL7sLJ/9zsj5cPZ7zmlpadHixYv/6NsBxiaHY+goTvP+oXU41yo4Hay/ATB+jdqfdZmZmVq0aJHWrVunhoYGNTQ0aN26dVq6dOmIM6gyMjJUU1MjaeijKa/XK5/Pp5qaGn3zzTdau3atoqOjtWrVquHnlJWVadeuXXrnnXfU2tqq5557Tt9//72eeOKJ0Xo7wPUn7b9Lzf+1DocL/AEYx0btNHFJ2r9/vzZs2DB8VtQDDzygysrKEc85deqUurq6hreffvppXbp0SU8++aQuXLig2267TYcPH5bL5Rp+jtfrVV9fnzZu3KhffvlFs2fPVm1trW666abRfDvA9SXtrqGv508MXRI95n8s6j/z71L3GckRLiXn2hIPAOzksKzfu1KYebq7u+V2u9XV1aXY2Fi74wD/f3vyhgrOyr3SrIeGxgYHpL13S+e/lmY9Iq38q70ZASBI/sj+m5WHwFj2D/cOff34X6Tu/xj697GqoXITOVHK/1fbogGAnSg4wFh2+1NSXJrU1S69/c/Sf34rfbJ96Hv3vSDFTLE3HwDYhIIDjGU3xkuP1UgxiUPXvalaOHTtm2n/KM193O50AGAbCg4w1k36i7T6HckZKw32S2E3SEsruPYNgHGN34CACabOkh79N2lKhvRPPikxy+5EAGCrUT1NHEAI/SVPKv7C7hQAcF3gCA4AADAOBQcAABiHggMAAIxDwQEAAMah4AAAAONQcAAAgHEoOAAAwDgUHAAAYBwKDgAAMA4FBwAAGIeCAwAAjEPBAQAAxqHgAAAA41BwAACAcW6wO4AdLMuSJHV3d9ucBAAA/L2u7Lev7Md/y7gsOD09PZKkadOm2ZwEAAD8UT09PXK73b/5HIf199QgwwQCAZ07d04ul0sOhyOor93d3a1p06apo6NDsbGxQX1t/A3zHBrMc2gwz6HDXIfGaM2zZVnq6elRUlKSwsJ+e5XNuDyCExYWpuTk5FH9GbGxsfznCQHmOTSY59BgnkOHuQ6N0Zjn3ztycwWLjAEAgHEoOAAAwDgUnCBzOp3atm2bnE6n3VGMxjyHBvMcGsxz6DDXoXE9zPO4XGQMAADMxhEcAABgHAoOAAAwDgUHAAAYh4IDAACMQ8EJojfeeEOpqamKjIxUTk6Ojh49anck4+zYsUO33HKLXC6XEhIStGLFCp06dcruWMbbsWOHHA6HvF6v3VGMc/bsWa1Zs0bx8fGKjo7WnDlz1NTUZHcsowwMDOjZZ59VamqqoqKilJaWphdffFGBQMDuaGOa3+/XsmXLlJSUJIfDoffff3/E9y3LUnl5uZKSkhQVFaW77rpLJ0+eDFk+Ck6QVFdXy+v1auvWrTp+/LjuuOMOLV68WO3t7XZHM0pdXZ2Ki4vV0NCg2tpaDQwMKD8/XxcvXrQ7mrEaGxtVVVWlWbNm2R3FOBcuXNCCBQs0YcIEffTRR/r222/16quvauLEiXZHM8rLL7+sPXv2qLKyUt9995127typV155Ra+99prd0ca0ixcvavbs2aqsrLzm93fu3KmKigpVVlaqsbFRHo9H99133/D9IEedhaC49dZbraKiohFjGRkZ1ubNm21KND50dnZakqy6ujq7oxipp6fHSk9Pt2pra62FCxdaJSUldkcyyqZNm6y8vDy7YxhvyZIlVmFh4YixlStXWmvWrLEpkXkkWTU1NcPbgUDA8ng81ksvvTQ81tfXZ7ndbmvPnj0hycQRnCDo7+9XU1OT8vPzR4zn5+fr888/tynV+NDV1SVJiouLszmJmYqLi7VkyRLde++9dkcx0qFDh5Sbm6sHH3xQCQkJmjt3rvbu3Wt3LOPk5eXp448/VktLiyTpq6++Un19ve6//36bk5mrra1N58+fH7FfdDqdWrhwYcj2i+PyZpvB9vPPP2twcFCJiYkjxhMTE3X+/HmbUpnPsiyVlpYqLy9P2dnZdscxzsGDB/Xll1+qsbHR7ijG+vHHH7V7926VlpZqy5YtOnbsmDZs2CCn06nHH3/c7njG2LRpk7q6upSRkaHw8HANDg5q+/btevTRR+2OZqwr+75r7RdPnz4dkgwUnCByOBwjti3LumoMwbN+/Xp9/fXXqq+vtzuKcTo6OlRSUqLDhw8rMjLS7jjGCgQCys3Nlc/nkyTNnTtXJ0+e1O7duyk4QVRdXa23335bBw4cUFZWlpqbm+X1epWUlKSCggK74xnNzv0iBScIJk+erPDw8KuO1nR2dl7VXhEcTz31lA4dOiS/36/k5GS74xinqalJnZ2dysnJGR4bHByU3+9XZWWlLl++rPDwcBsTmmHq1Km6+eabR4xlZmbq3XfftSmRmcrKyrR582Y98sgjkqSZM2fq9OnT2rFjBwVnlHg8HklDR3KmTp06PB7K/SJrcIIgIiJCOTk5qq2tHTFeW1ur+fPn25TKTJZlaf369Xrvvfd05MgRpaam2h3JSPfcc49OnDih5ubm4Udubq5Wr16t5uZmyk2QLFiw4KrLHLS0tGj69Ok2JTJTb2+vwsJG7u7Cw8M5TXwUpaamyuPxjNgv9vf3q66uLmT7RY7gBElpaakee+wx5ebm6vbbb1dVVZXa29tVVFRkdzSjFBcX68CBA/rggw/kcrmGj5q53W5FRUXZnM4cLpfrqnVNN954o+Lj41nvFEQbN27U/Pnz5fP59NBDD+nYsWOqqqpSVVWV3dGMsmzZMm3fvl0pKSnKysrS8ePHVVFRocLCQrujjWm//vqrWltbh7fb2trU3NysuLg4paSkyOv1yufzKT09Xenp6fL5fIqOjtaqVatCEzAk52qNE6+//ro1ffp0KyIiwpo3bx6nLo8CSdd87Nu3z+5oxuM08dHx4YcfWtnZ2ZbT6bQyMjKsqqoquyMZp7u72yopKbFSUlKsyMhIKy0tzdq6dat1+fJlu6ONaZ988sk1fx8XFBRYljV0qvi2bdssj8djOZ1O684777ROnDgRsnwOy7Ks0FQpAACA0GANDgAAMA4FBwAAGIeCAwAAjEPBAQAAxqHgAAAA41BwAACAcSg4AADAOBQcAGNOeXm55syZY3cMANcxLvQH4Lrye3caLigoGL7hZ3x8fIhSARhrKDgAritX7i8mSdXV1Xr++edH3JAyKipKbrfbjmgAxhA+ogJwXfF4PMMPt9sth8Nx1dj//ohq7dq1WrFihXw+nxITEzVx4kS98MILGhgYUFlZmeLi4pScnKy33nprxM86e/asHn74YU2aNEnx8fFavny5fvrpp9C+YQCjgoIDwAhHjhzRuXPn5Pf7VVFRofLyci1dulSTJk3SF198oaKiIhUVFamjo0OS1Nvbq7vvvlsxMTHy+/2qr69XTEyMFi1apP7+fpvfDYA/i4IDwAhxcXHatWuXZsyYocLCQs2YMUO9vb3asmWL0tPT9cwzzygiIkKfffaZJOngwYMKCwvTm2++qZkzZyozM1P79u1Te3u7Pv30U3vfDIA/7Qa7AwBAMGRlZSks7G9/syUmJio7O3t4Ozw8XPHx8ers7JQkNTU1qbW1VS6Xa8Tr9PX16YcffghNaACjhoIDwAgTJkwYse1wOK45FggEJEmBQEA5OTnav3//Va81ZcqU0QsKICQoOADGpXnz5qm6uloJCQmKjY21Ow6AIGMNDoBxafXq1Zo8ebKWL1+uo0ePqq2tTXV1dSopKdGZM2fsjgfgT6LgABiXoqOj5ff7lZKSopUrVyozM1OFhYW6dOkSR3QAA3ChPwAAYByO4AAAAONQcAAAgHEoOAAAwDgUHAAAYBwKDgAAMA4FBwAAGIeCAwAAjEPBAQAAxqHgAAAA41BwAACAcSg4AADAOBQcAABgnP8Cff7ixke6Y6EAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHFCAYAAAD/kYOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr5UlEQVR4nOydd3hUZfbHv9Myk94rJCT00BGUJtKk2suuyordlUVXkXVV1N/KqitrXdZFZK2s3V0VVEQEFRDpHemdUBLSe5nMzP398c57Z5JMkim3zeR8nifPDJN777wZZu6ce873fI9OEAQBBEEQBEEQIYRe7QUQBEEQBEFIDQU4BEEQBEGEHBTgEARBEAQRclCAQxAEQRBEyEEBDkEQBEEQIQcFOARBEARBhBwU4BAEQRAEEXJQgEMQBEEQRMhBAQ5BEARBECEHBTgEoSJLliyBTqcTf4xGIzp37ow777wT586dU3w9a9euhU6nw9q1a33e99SpU9DpdFiyZInk6wol+Gv8+eefq70U6HQ6zJs3T+1lEIQsGNVeAEEQwHvvvYfevXujrq4OP//8M+bPn49169bh119/RWRkpNrLIwiCCDoowCEIDdCvXz8MHToUADBu3DjY7XY8++yzWLZsGX73u9+pvDpCCux2O2w2m9rLIIgOA5WoCEKDDB8+HABw+vRpAIAgCFi0aBEGDRqE8PBwxMfH48Ybb8SJEyea7Dd27Fj069cP27Ztw+jRoxEREYGuXbvi73//OxwOR5NtDx06hClTpiAiIgJJSUmYOXMmqqqqWqwlOzsbd9xxR4vHx44di7Fjx7b5d9xxxx3Izs5u8fi8efOg0+maPKbT6fDAAw/gvffeQ69evRAeHo6hQ4di8+bNEAQBL730EnJychAVFYXx48fj2LFjbT63PzQ0NOCZZ55Bbm4uLBYLEhMTMW7cOGzcuBEAMGHCBPTu3RvNZxQLgoDu3bvjiiuuAOAq17344ot47rnnkJOTA7PZjDVr1nh83srKSkyePBmpqanYunWr1+stLS3FrFmz0KlTJ4SFhaFr16548skn0dDQ0OL49957LxITExEVFYUpU6bgyJEjHo959OhRTJ8+HSkpKTCbzcjNzcXrr7/u9ZoIQitQBocgNAj/8k5OTgYA3HfffViyZAkefPBBvPDCCygtLcUzzzyDkSNHYs+ePUhNTRX3LSgowO9+9zv86U9/wtNPP42lS5di7ty5yMjIwG233QYAuHDhAsaMGQOTyYRFixYhNTUVH330ER544AHl/1g3li9fjl27duHvf/87dDodHnvsMVxxxRW4/fbbceLECSxcuBAVFRWYM2cObrjhBuzevbtFoOQvNpsNU6dOxfr16zF79myMHz8eNpsNmzdvRl5eHkaOHImHHnoI11xzDX788Udcfvnl4r7fffcdjh8/jtdee63JMV977TX07NkTL7/8MmJiYtCjRw+cOnWqyTZnz57FtGnTYLVasWnTJnTt2tWr9dbX12PcuHE4fvw4/vrXv2LAgAFYv3495s+fj927d+Pbb78FwIKva6+9Fhs3bsRf/vIXXHzxxdiwYQOmTp3a4pgHDhzAyJEjkZWVhVdeeQVpaWn4/vvv8eCDD6K4uBhPP/20j68qQaiIQBCEarz33nsCAGHz5s1CY2OjUFVVJSxfvlxITk4WoqOjhYKCAmHTpk0CAOGVV15psu+ZM2eE8PBw4dFHHxUfGzNmjABA2LJlS5Nt+/TpI0yePFn892OPPSbodDph9+7dTbabOHGiAEBYs2aN+FiXLl2E22+/vcXax4wZI4wZM0b898mTJwUAwnvvvSc+dvvttwtdunRpse/TTz8tND/9ABDS0tKE6upq8bFly5YJAIRBgwYJDodDfHzBggUCAGHv3r0tju0v77//vgBAeOutt1rdxm63C127dhWuueaaJo9PnTpV6Natm7hG/lp069ZNsFqtTbZds2aNAED43//+J+zatUvIyMgQRo8eLZSUlPi03sWLFwsAhP/+979NHn/hhRcEAMKqVasEQRCE7777TgAg/POf/2yy3d/+9jcBgPD000+Lj02ePFno3LmzUFFR0WTbBx54QLBYLEJpaalPayQINaESFUFogOHDh8NkMiE6OhpXXnkl0tLS8N133yE1NRXLly+HTqfDrbfeCpvNJv6kpaVh4MCBLTqe0tLScMkllzR5bMCAAWK5CwDWrFmDvn37YuDAgU22mz59umx/ozeMGzeuiag6NzcXADB16tQmmRr+uPvf5An318tms7UoLbnz3XffwWKx4K677mp1G71ejwceeADLly9HXl4eAOD48eNYuXIlZs2a1SKbdPXVV8NkMnk81vfff4/Ro0fjsssuw+rVq5GQkNDm39Kcn376CZGRkbjxxhubPM7LiT/++CMAiGWx5lqu5v/X9fX1+PHHH3HdddchIiKiyes2bdo01NfXY/PmzT6tkSDUhAIcgtAA77//PrZt24Zdu3bh/Pnz2Lt3L0aNGgWAlZMEQUBqaipMJlOTn82bN6O4uLjJsRITE1sc32w2o66uTvx3SUkJ0tLSWmzn6TElaf4lHxYW1ubj9fX1rR7r1KlTLV6vdevWtbp9UVERMjIyoNe3fVq86667EB4ejsWLFwMAXn/9dYSHh3sMjNLT01s9zrJly1BXV4c//OEPMJvNbT6nJ/j/YfOgKiUlBUajESUlJeJ2RqOxxfui+f91SUkJbDYb/vWvf7V43aZNmwYALd5rBKFlSINDEBogNzdX7KJqTlJSEnQ6HdavX+/xi9CfL8fExEQUFBS0eNzTYxaLpYVoFWBfdklJSW0+T1v7yk1GRga2bdvW5LFevXq1un1ycjJ++eUXOByONoOc2NhY3H777Xj77bfxyCOP4L333sP06dMRFxfXYtu29EH/+Mc/8Nlnn2Hq1KlYunQpJk2a1P4f5UZiYiK2bNkCQRCaPE9hYSFsNpv4f5OYmAibzYaSkpImQU7z/+v4+HgYDAbMmDED999/v8fnzMnJ8WmNBKEmlMEhCI1z5ZVXQhAEnDt3DkOHDm3x079/f5+POW7cOOzfvx979uxp8vjHH3/cYtvs7Gzs3bu3yWNHjhzB4cOH232e7OxsFBYW4sKFC+JjVqsV33//vc9r9pWwsLAWr1V0dHSr20+dOhX19fVeGRVy0e2NN96I8vJyv8TZFosFX375Ja688kpcffXV+Oqrr3zaf8KECaiursayZcuaPP7++++LvwfY/zUAfPTRR022a/5/HRERgXHjxmHXrl0YMGCAx/eap+wgQWgVyuAQhMYZNWoUfv/73+POO+/E9u3bcdlllyEyMhL5+fn45Zdf0L9/f/zhD3/w6ZizZ8/Gu+++iyuuuALPPfec2EV16NChFtvOmDEDt956K2bNmoUbbrgBp0+fxosvvih2eLXFTTfdhL/85S+4+eab8ec//xn19fV47bXXYLfbfVqvEtxyyy147733MHPmTBw+fBjjxo2Dw+HAli1bkJubi5tvvlnctmfPnpgyZQq+++47XHrppS20TN5iMpnwySef4J577sGNN96I999/H7fccotX+9522214/fXXcfvtt+PUqVPo378/fvnlFzz//POYNm2a2OU1adIkXHbZZXj00UdRU1ODoUOHYsOGDfjggw9aHPOf//wnLr30UowePRp/+MMfkJ2djaqqKhw7dgzffPMNfvrpJ7/+ToJQAwpwCCII+Pe//43hw4fj3//+NxYtWgSHw4GMjAyMGjWqhaDYG9LS0rBu3To89NBD+MMf/oCIiAhcd911WLhwIa655pom206fPh3nz5/H4sWL8d5776Ffv35444038Ne//rXd58nJycFXX32FJ554AjfeeCPS09MxZ84cFBUVebW/khiNRqxYsQLz58/HJ598ggULFiA6OhoDBw7ElClTWmx/00034bvvvgu4tV6v1+Odd95BdHQ0br31VtTU1OCee+5pdz+LxYI1a9bgySefxEsvvYSioiJ06tQJjzzySJN2br1ej6+//hpz5szBiy++CKvVilGjRmHFihXo3bt3k2P26dMHO3fuxLPPPounnnoKhYWFiIuLQ48ePUQdDkEECzqhrbYCgiAIwiM33HADNm/eLIqZCYLQFpTBIQiC8JKGhgbs3LkTW7duxdKlS/Hqq69ScEMQGoUyOARBEF5y6tQp5OTkICYmBtOnT8fChQthMBgkf572Zlbp9fp229kJoqNDAQ5BEISG4EFUWzz99NOYN2+eMgsiiCCFSlQEQRAawpN/j6dtCIJoG8rgEARBEAQRclARlyAIgiCIkKNDlqgcDgfOnz+P6OjoNq3UCYIgCILQDoIgoKqqyqu5cR0ywDl//jwyMzPVXgZBEARBEH5w5swZdO7cuc1tOmSAw+fRnDlzBjExMSqvhiAIgiAIb6isrERmZmabc+U4HTLA4WWpmJgYCnAIgiAIIsjwRl5CImOCIAiCIEIOCnAIgiAIggg5KMAhCIIgCCLk6JAaHIIgCILQMna7HY2NjWovQxXCwsIkmbVGAQ5BEARBaARBEFBQUIDy8nK1l6Iaer0eOTk5CAsLC+g4FOAQBEEQhEbgwU1KSgoiIiI6nBktN+LNz89HVlZWQH8/BTgEQRAEoQHsdrsY3CQmJqq9HNVITk7G+fPnYbPZYDKZ/D4OiYwJgiAIQgNwzU1ERITKK1EXXpqy2+0BHYcCHIIgCILQEB2tLNUcqf5+CnAIgiAIggg5KMAhCIIgCCLkoACHIAiCIIiQgwIcgiAINbF3TDM3gpAbCnAIgiDU4tAK4NkkYOcHaq+EIAKmc+fOWLRoUZPHNm7ciIiICJw+fVrx9ZAPDkEQhFoc+Y7dbl4EXDRD3bUQmkQQBNQ1BtYu7S/hJoNPHU3Dhw/Htm3bxH8LgoDZs2dj9uzZ6NKlixxLbBMKcAiCINSi+Bi7LTwAFB0Gknupux5Cc9Q12tHnL9+r8twHnpmMiDDvw4Thw4djyZIl4r8/+OAD5OXlYe7cuQCA5cuX409/+hMcDgcee+wx3HPPPVIvuQlUoiIIglCLkmOu+/uXqbYMgpCC4cOH4+DBg6iurkZtbS2eeOIJPPfcc4iOjobNZsOcOXPw008/YefOnXjhhRdQWloq63oog0MQBKEG9RVATaHr3/uXAmMfU289hCYJNxlw4JnJqj23LwwdOhQGgwE7d+7EDz/8gMTERNx1110AgK1bt6Jv377o1KkTAGDatGn4/vvvccstt0i+bg4FOARBEGpQcpzdWmIBay1QdBAoPASk9FZ3XYSm0Ol0PpWJ1MRisWDgwIH48ssv8eabb+Kbb76BXs8KRefPnxeDG4AJks+dOyfreqhERRAEoQY8wEnpC3SfwO4fWKbacghCCoYPH47XXnsNl19+OSZMmCA+LghCi23lHklBAQ5BEIQacP1NYjegz7Xs/v6lqi2HIKRg0KBBMBqNeOmll5o83qlTpyYZm7NnzyI9PV3WtSgS4CxatAg5OTmwWCwYMmQI1q9f3+b269atw5AhQ2CxWNC1a1csXry4xTbl5eW4//77kZ6eDovFgtzcXKxYsUKuP4EgCEJaeICT1APoNRUwhAFFh4DCg+quiyAC4KOPPsKsWbPQq1fTjsBLLrkE+/btw7lz51BVVYUVK1Zg8mR5tUWyF/Y+++wzzJ49G4sWLcKoUaPw73//G1OnTsWBAweQlZXVYvuTJ09i2rRpuPfee/Hhhx9iw4YNmDVrFpKTk3HDDTcAAKxWKyZOnIiUlBR8/vnn6Ny5M86cOYPo6Gi5/xyCIAhpKDnKbhO7A+FxQLfxwJGVrJsqJVfNlRGETzgcDhQVFeGdd97B4cOHsXRpy0yk0WjEK6+8gnHjxsHhcODRRx9FYmKirOvSCZ4KYxIybNgwXHTRRXjjjTfEx3Jzc3Httddi/vz5LbZ/7LHH8PXXX+PgQddVzMyZM7Fnzx5s2rQJALB48WK89NJLOHToEEwmk89rqqysRGxsLCoqKhATE+PHX0UQBBEAggDM7wxYq4H7tzL/mz2fAkvvA5J6AQ9sVXuFhArU19fj5MmTYsUjWFi7di3Gjx+P3r1747333sOwYcMCOl5br4Mv39+ylqisVit27NiBSZMmNXl80qRJ2Lhxo8d9Nm3a1GL7yZMnY/v27WhsZDNbvv76a4wYMQL3338/UlNT0a9fPzz//POw2z27PTY0NKCysrLJD0EQhGpUX2DBjU4PxGezx3iZqvgwlamIoGLs2LFwOBw4cOBAwMGNlMga4BQXF8NutyM1NbXJ46mpqSgoKPC4T0FBgcftbTYbiouLAQAnTpzA559/DrvdjhUrVuCpp57CK6+8gr/97W8ejzl//nzExsaKP5mZmRL8dQRBEH7C9TdxWYDRzO5bYoFuzq4TEhsTRMAoIjJu3gomCEKb7WGetnd/3OFwICUlBW+++SaGDBmCm2++GU8++WSTMpg7c+fORUVFhfhz5syZQP4cgiCIwBA7qLo3fbzvdex2/zJWxiIIwm9kFRknJSXBYDC0yNYUFha2yNJw0tLSPG5vNBpFQVJ6ejpMJhMMBpfLYm5uLgoKCmC1WhEWFtZkf7PZDLPZLMWfRBAEETitBTi9pjQtU6X2UX5tBBEiyJrBCQsLw5AhQ7B69eomj69evRojR470uM+IESNabL9q1SoMHTpUFBSPGjUKx44dg8PhELc5cuQI0tPTWwQ3BEEQmoOb/DUPcCyxQPfL2X0y/SOIgJC9RDVnzhy8/fbbePfdd3Hw4EE8/PDDyMvLw8yZMwGw8tFtt90mbj9z5kycPn0ac+bMwcGDB/Huu+/inXfewSOPPCJu84c//AElJSV46KGHcOTIEXz77bd4/vnncf/998v95xAEQQROsVuLeHPcTf+oTEUQfiO7D85NN92EkpISPPPMM8jPz0e/fv2wYsUKdOnSBQCQn5+PvLw8cfucnBysWLECDz/8MF5//XVkZGTgtddeEz1wACAzMxOrVq3Cww8/jAEDBqBTp0546KGH8NhjNKiOIAiNY7cBZSfZfU8BTq+pgMEMFB8BCg8AqX2VXR9BhAiy++BoEfLBIQhCNUqOA/+6CDBagCfyAb2HRPontwCHVwCXPQqMf1L5NRKqEKw+OFITFD44BEEQRDO4/iahm+fgBnDrpqIyFUH4CwU4BEEQSuI+ZLM1ek5hZaqSo6xMRRCEz1CAQxAEoSSttYi7Y4lxdVOR6R9B+AUFOARBEEriPkW8Lcj0jyACggIcgiAIJfEmgwM4Tf+cZaoL++VfF0EESOfOnbFo0aImj23cuBERERE4ffq04uuRvU2cIAiCcGKtASrPsfvtBTjmaKDHRODQclamSusn//oI7SEIQGOtOs9tigDaGKvUnOHDh2Pbtm3ivwVBwOzZszF79mzRGkZJKMAhCIJQitIT7DY8HohIaH/7PteyAOfAMmD8Uz592RAhQmMt8HyGOs/9xHkgLNLrzYcPH44lS5aI//7ggw+Ql5eHuXPnAgCuu+46rF27FhMmTMDnn38u9WpbQCUqgiAIpfC2PMURy1THgAv75FsXQUjA8OHDcfDgQVRXV6O2thZPPPEEnnvuOURHRwMAHnzwQbz//vuKrYcyOARBEErha4DTpEy1DEjrL9vSCI1iimCZFLWe2weGDh0Kg8GAnTt34ocffkBiYiLuuusu8ffjxo3D2rVrJV5k61CAQxAEoRStDdlsi77XuXQ4VKbqeOh0PpWJ1MRisWDgwIH48ssv8eabb+Kbb76BvjUzSwWgEhVBEIRStDVkszV6TmZjHUqPAwW/yrMugpCI4cOH47XXXsPll1+OCRMmqLoWCnAIgiCUQBBYyzfgW4BjjnaZ/h1YJvmyCEJKBg0aBKPRiJdeekntpVCAQxAEoQi1pUB9Bbuf0NW3fWk2FREkfPTRR5g1axZ69eql9lJIg0MQBKEIXGAc0xkI8028iZ5TnGWqE6xMlT5A+vURhJ84HA4UFRXhnXfeweHDh7F0qefxIpMnT8bOnTtRU1ODzp07Y+nSpbj44otlWxcFOB0Zay1Qld/20D+CIKTBmyGbrWGOYt1UB79hWRwKcAgN8fPPP2P8+PHo3bs3vvzyS8TGxnrc7vvvv1d0XVSi6sgsnw386yJg14dqr4QgQh9fW8Sbw8tUB5ZRmYrQFGPHjoXD4cCBAwcwbNgwtZcjQgFORyZvE7v99hGg8JC6ayGIUMfbIZut0WOyW5lqr3TrIogQhQKcjkpjHVB+ht231QGf38keIwhCHgLN4JijgB6T2P39njUOBEG4oACno1J6EoAAhEUBkSlA4QFg5eNqr4ogQhOHw83kLwDNW99r2e3+ZVSmIoh2oACno8KvJpN7Ade/CUAH7FgC7PtSzVURRGhSeRawNwB6ExCb5f9xekwGDGFA2Umg/LR06yM0hdDBg1ep/n4KcDoq7oZj3cYBo+ewf3/zkDO7QxCEZPALioQcwBBA86o5CojtzO5XqjSfiJANk8kEAKitrVV5JepitVoBAAaDIaDjUJt4R6X5TJyxTwCnNgBnNjM9zl2rAGOYeusjiFDCnxlUrRGdwYTGFOCEHAaDAXFxcSgsLAQAREREQNfBZo9xT52IiAgYjYGFKBTgdFSaCx4NRuCGt4HFlwLndwE//hWY/Df11kcQoUQgHjjNiUlntxTghCRpaWkAIAY5HRG9Xo+srKyAgzsKcDoqnob+xWUC174BfHoLsGkhkHMZG/RHEERgiAGOny3i7sRksNuq/MCPRWgOnU6H9PR0pKSkoLGxUe3lqEJYWJgkU8gpwOmI1JYCdaXsfvMryt7TgGEzgS2LgaUzgZm/ALGdlF8jQYQS/kwRb41oZ4BTeS7wYxGaxWAwBKxB6eiQyLgjwvUAMZ2AsMiWv5/4DJA+kAVBX94L2G3Kro8gQglbA1Cex+5LEeCIJSrK4BBEW1CA0xERO6ha0QMYzcCN7zGPnNMbgJ9fVG5tBBFqiJ5T0UBUSuDHi6YSFUF4AwU4HRFvHFUTuwFXLmD3170InPxZ9mURREjiLjCWoiPGXYPjcAR+PIIIUSjA6Yh4K3gc8Btg8K0ABOCLe4HqItmXRhAhR6AjGpoTlQro9IDDBtTQZ5IgWoMCnI5IsQ8n3KkvAsm9geoCYNlMumIkCF+ROsAxGNl4FQCo6sCt4o11wObFQOFBtVdCaBQKcDoaDgdQ6sNMnLBIpscxWoBjPwCb/iXv+ggi1OCifn+niHuCl6k6qheOtRb45GZg5WPAij+rvRpCo1CA09GoPAfY6tlMnLgu3u2T2geY+gK7/+MzwNnt8q2PIEKN9kT9/tCRAxxrLfDJTcCJtezfPENGEM2gAKejwU+2vs7Eueh2oO91rO6/4Z/yrI0gQo26cpdOJkHCACfa2Sre0TqprDXAx79lTQ/GcPZYVT5rxSeIZlCA09HwdyaOTgcMuInd554eBEG0DS8HR6UClhjpjitmcDpQgNNQDXz0G+DUetZyf9tXgCmC/a7irLprIzQJBTgdjUAEjx31qpEg/EXKIZvuxHQwN+OGKuCjG5kvlzkGmLEUyBoGxGWx35efVnd9hCahAKejEYhlPD+pVhcC9o45I4UgfELKIZvudKSLjfpK4MMbgbxNgDkWmLEMyLyY/Y7rCMsowCFaQgFORyOQDE5EEhMnQwCqL0i6LIIISaRuEefEOOfDhXqJqr4S+PAG4MxmwBIL3LYM6DzE9Xsxg0Nlc6IlFOB0JBrrXScCf1pW9XogOo3dD/UTK0FIgZRTxN3h86isVSwICEXqK4APrwfObgUscUxz0+mipttQgEO0AQU4HYky50wccwwQmezfMXiA0xFS4wQRCIIgnwYnLJKVa4DQ/CzWlQMfXAec3QaExwO3fw1kDG65HQU4RBtQgNORkGImTkeq/RNEIFQVANZqNlYhPlv644eqF05dGfDBtcC5HUB4AnD7N0D6QM/bUoBDtAEFOB0JUWAcQLo8VE+qBCE1/IIirgtgDJP++LxMFUqfxdpS4P1rgPO7gIhEFtyk9W99ey4yri5gJXiCcEORAGfRokXIycmBxWLBkCFDsH79+ja3X7duHYYMGQKLxYKuXbti8eLFrW776aefQqfT4dprr5V41SGIFOlyyuAQhHfIJTDmRPOp4iES4DTWseAmfw9raLh9OZDWr+19IhIAUyS7T144RDNkD3A+++wzzJ49G08++SR27dqF0aNHY+rUqcjL85xSPHnyJKZNm4bRo0dj165deOKJJ/Dggw/iiy++aLHt6dOn8cgjj2D06NFy/xmhgRQtq5TBIQjvkDvACTWzv6OrgYK9rCx1x3I2IqY9dDog3pnFIS8cohmyBzivvvoq7r77btxzzz3Izc3FggULkJmZiTfeeMPj9osXL0ZWVhYWLFiA3Nxc3HPPPbjrrrvw8ssvN9nObrfjd7/7Hf7617+ia9eucv8ZoQEf0xDI0D8SGROEd5T4MNTWH0KtRFV2kt12Gw+k5Hq/H5n9Ea0ga4BjtVqxY8cOTJo0qcnjkyZNwsaNGz3us2nTphbbT548Gdu3b0djo8tc7plnnkFycjLuvvvudtfR0NCAysrKJj8djtpSoLaE3Q9kJo6YFi8IfE0EEcrwDI6UU8TdCbUSFTfri/dyCDCHhMZEK8ga4BQXF8NutyM1NbXJ46mpqSgo8PwFWVBQ4HF7m82G4uJiAMCGDRvwzjvv4K233vJqHfPnz0dsbKz4k5mZ6cdfE+SUnmC30emAOcr/44j+G9Wh679BEIFib3RlJKhE5R08QOEBi7dQgEO0giIiY12zlmRBEFo81t72/PGqqirceuuteOutt5CUlOTV88+dOxcVFRXiz5kzZ3z8C0KAQEY0uBPq/hsEIQXleYDDxiZe80yL1PAAp6YQsFnleQ4l4SWmOMrgENJglPPgSUlJMBgMLbI1hYWFLbI0nLS0NI/bG41GJCYmYv/+/Th16hSuuuoq8fcOhwMAYDQacfjwYXTr1rQEYzabYTabpfiTghcpBY8x6UBRBav9J/cK/HgEEWq4C/r1Ml1HRiQChjDAbmVt0r5mPrSEILgCFCpRERIhawYnLCwMQ4YMwerVq5s8vnr1aowcOdLjPiNGjGix/apVqzB06FCYTCb07t0bv/76K3bv3i3+XH311Rg3bhx2797dMctP3iBlgEOt4gTRNnIN2XRHp3N9FoO9TFV9AbDVM1PEmM6+7St64VxgreYE4UTWDA4AzJkzBzNmzMDQoUMxYsQIvPnmm8jLy8PMmTMBsPLRuXPn8P777wMAZs6ciYULF2LOnDm49957sWnTJrzzzjv45JNPAAAWiwX9+jX1RoiLiwOAFo8TbkgpeIwOse4NgpAauVvEOTEZrLRTeU7e55Ebnn2JzvDdFDE8HgiLZnO5Ks7KJ+omgg7ZA5ybbroJJSUleOaZZ5Cfn49+/fphxYoV6NKFRd35+flNPHFycnKwYsUKPPzww3j99deRkZGB1157DTfccIPcSw1dHA5pZ+JwoTF1UhGEZ5QKcEIlm+pvBxXAMllxWUDhfnYcCnAIJ7IHOAAwa9YszJo1y+PvlixZ0uKxMWPGYOfOnV4f39MxCDeqzgO2OkBvlKZOHyonVUI5ys8ApgggMlHtlSiDeEEh85dtqBhvlp9it74KjDk8wCEvHMINmkXVEeAdVPE5gMEU+PFC5aRKKEN1EbBoBPDeFCYmDXWsNa6SkZwaHCB0PouBZHAAEhoTHqEApyMgdbqcMjiEL5zdyvQRxUeAwoNqr0Z+ePYmPIHNSpKTUPks+uuBw6EAh/AABTgdAakt4/lVY/UFwG6T5phE6JK/x3X/5M/qrUMplNLfAKGTwfHXA4dDAQ7hAQpwOgJSzKByJzIZ0BkAwQHUFElzTCJ0yd/rut8hAhwJBf3twQOcqvzgLf857K5J4FSiIiSEApyOgNRXlHoDEOU0agyVOTiEfLhncE79EvpZPyU8cDhRzuG3dqtr1lywUXmOuT7rTa6Sm6/wwKimkLxwCBEKcEIdW4PrqkbKK8qYEDEYI+SlutAZBOuYV0lDBVCwp93dgholS1TGMJZRBYK3TMXPT7Gd2cWTP1jiAHNM0+MRHR4KcEKd0pOslBQW7cq6SEGoiBsJeeHlqcTuQM5l7H4ol6kEQfqScHu4l6mCkUA7qACXFw5AAQ4hQgFOqOOeLm9jwKnPhIq4kZCX/N3sNn0g0HUMu39inWrLkZ3aEqC+gt1P6KrMc/JhnsHqZhyowJgjBjjkhUMwKMAJdeRKl1MGh/AGrr9JH+jK4ORtZqXTUIR/3mIzAVO4Ms8Z7OViKTI4AGVwiBZQgBPqyJUu9zLAya+ow4ebT6O+0S7t8xPBgXuAk9wbiExhrtpnt6u7LrlQUmDMEUtUQZpNFT1wKMAhpIUCnFBHrpZVL64a66x2zHhnK55atg//t2yftM9PaJ+6Mle5IH0AK5GKOpwQLVMpKTDmRAd5uVjyElXrAU6d1Y5GuyOw5yGCBgpwQh25riij2xc2PrN8P44VVgMA/rfjLFbuC9IUOuEfBb+y27gubOIzEPpCYzUCnGAuUdkaXIFZwCUq5/6tBDilNVZc/uo6jPr7TziYXxnYcxFBAQU4oUxducuIT64MTkMl0FDd4tff7DmPT7aegU4HTOidAgB4/MtfcaGyXtp1ENpFLE8NcD3GA5yz29jMplBDSZM/TkwndhuMJaqKswAEwBjuanf3F57BqSny+N56ZdVhnCuvQ2FVA255azP2nasI7PkIzUMBTijDT7ZRaYA5Wtpjm6NZ6znQIotzprQWT3zJrt7vH9sdb9w6BH0zYlBe24hH/rcHDkeQOq4SvuGuv+Ek5LAvIocNOL1JnXXJhcMh/VgUb+B6uPqK4AsaxfJUVuBdnuFxgDnWedwzTX514HwlPtnKMjtdkyNRXtuI6W9txu4z5YE9J6FpKMAJZeROl4upcdeVY6PdgT9+sgtVDTYM7RKP2Zf3QJhRj3/ePAhmox7rjxbj/U2n5FkPoS3EAGdQ08dDVYdTWwLYnd1hsZnKPa8lBgiLYveDrUwlVQcVx4MORxAE/PWb/XAIwBX90/HV/aMwtEs8KuttuPXtLdhxulSa5yY0BwU4oYzYQSVTgBPttImvKhAfemXVEew+U44YixELbh4Eo4G9xbqnROOJabkAgPnfHcLRC1XyrInQBg3VQLHz/eeewQGAHKcfTqgFODyTGZkMGEzKPnewdlJJJTDmePDCWfFrAbacLIXZqMfcab0RbTHhP3ddgmE5CahusGHGO1ux5USQjrkg2oQCnFBG7gxOdNOT6vqjRVi8jqXoX7xxADrHRzTZ/LYRXTCmZzIabA489OluWG3UzRCyXNgHQGDlk6iUpr/jGZz8vUBtCF09V19gt3w+lJJEt8ymBgU80yJTBqfOasfzKw4CAO4b0008J0WajVhy5yW4tHsSaq123P7eVmw4VizNGgjNQAFOKKNYiSofRVUNePgzVpL43bAsTOnXcmieTqfDSzcOQHyECQfyK/Hq6iPyrItQHz6ioXn2BmCZv6ReAATg9AZFlyUrPIMTrUKAE6zO4mVuGhwpaBbgvPnzCZwrr0NGrAV/GNNUFxUeZsDbtw/F2F7JqG904K4l27DuSJE06yA0AQU4oUoTwaNMM3GcGRyh8jzm/Hc3iqsb0Cs1Gv93ZZ9Wd0mJsWD+9ayr5t8/H6fUcKjiSWDsDs/ihNLYhipnBidawplv3hKs86ikLlHFu1rFz5XX4Y117CJv7rRchIe1HORpMRnw7xlDcHluKhpsDtz7n+348eAFadZCqA4FOKFKVT7QWAvoDNKlf5vjzOAUnj+J9UeLYTHpsXD6YFhMbU8EntIvDb8d2hmCAMz57x5U1jfKsz5CPXiAkzbA8+/5XKpQ8sMRMzgts5eyE4wlKmuNy8ZC8hLVacxfcRD1jQ5ckp2AKwe0/n9iNhqw6HcXYWq/NFjtDsz8cAdW7itodXsieKAAJ1Th5an4bPkEj86TqqOCnVSfvqoveqR6147+l6v6IishAufK6/D0V/vlWR+hDo31QBHTPbSawekyCoAOKD7cRKQe1PC/g0pU3sFbuc2xLiPIQOHda7Ul+GnvSeh0wF+u6gNdOy3oYUY9/nXLYFw1MAONdgH3f7wT3+wJoteS8AgFOKGKXDOo3KgKY8ZcySjHlf1ScfPF3rfGRpmN+MdNg6DXAUt3naOTSShReID53IQnALGdPW8TkeAyAAyVLE61M8BRQ2QcjCWqcon1NwAQHgfBwrxwOumKcfPFWejXKdarXY0GPRbcNAjXD+4Eu0PAQ5/uwtJdZ6VbG6E4FOCEKjI7qgqCgKd+KIRd0MGoc+D5yWntXiU1Z0iXeDwwjq3vyaW/Ir+iTo6lEkrjrr9p6z0Rau3iYgZHjRKVM8CpvgDYbco/vz9I7YHDD2tir38PcykemdTTp30Neh1e+s1A3DQ0Ew5nCf2/28+0vyOhSSjACVVknmr8v+1n8dXeQhSDXR3FNPrXffDHCT0wsHMsKutt+NN/yeU4JGhPYMzJCSEdjsPhahNXo0QVmQzojYDgtg6tI7XAGEBFbSN2V8UAAGb0AhKjzD4fw6DXYf71/XHr8CwIAvDYF3txqIBmVwUjFOCEKtxkTYYOqmOFVXj6a6ab0Ym1f/9S4yaDHv+4aRDCTQZsPF6CdzeclGqZhFoUtNEi7k6XEexLuTwPKA3y//faElaWg66l748S6PWuzFGwlKnKpc/g/PPHozhpSwQAXJLQckaet+j1Ojx7TT+M65UMQQC+2k0l9GCEApxQxGZ1nTwkLlHVN9rxwMe7UNdox6Xdk5Cckc1+EYCDatfkKDx1JXM5fnHlYbpaCmbsjUDBPna/vQAnLBLofDG7H+xZHNHFOEl5F2NOsHVSlUmbwTlWWIX3N53CGYFpAw0VgZWWdDodbhjCNGQrfs2HIFB2OdigACcUKTvFUtVhUZKny59fcRCHCqqQFBWGV28aCJ141RhYJ8z0S7IwoXcKrHYHZn+6G/WNdglWSyhO8RE2jyksGojPaX97cS5VkAc4apanOB5mw2kaCUXGbN7UAdgcAhI7ObPWbvOo/GV87xRYTHqcLqnF/vN04RVsUIATivAOqsRugU/odWPT8RK8v4mdlF757SCkRFuauBkHgk6nwws3DkBSVBgOFVTha0oJByei/mYAK5u0h7sOJ5ivkHkGR40OKk5MJ+daguCzU1fOpp8DkgQ4PxwsxPqjxQgz6HHDhBHswbLTbe/kBRFhRozvzUqO3/4aJKU/QoQCnFBEphEN/9vBUr43X5yJMT1ZGrj5PKpASIoy485R7Kr/a2obD068FRhzOg8FjOFATSFQdEi+dcmNmh44nGhpLjYUgWdXIpIAc1RAh2qw2fHctwcAAHePzkFGF2fnVF0p0BD4UN9p/dnrSmWq4IMCnFBEDHCkExg32OxYfYCl4XldGoBkGRzOVQNYwLTxeDEKq+olOSahIL4GOEYzkDWc3Q/msQ1aCHCCyexPQoHxu7+cwumSWqREm3H/uO6AJRawxDmfJ/AWbypTBS8U4IQiogeOdC3iG44Vo6rehpRoM4ZkubmOSpjBAYCsxAgMyoyDQwBW7A2CK1HChcMBFPzK7nsb4AChMbZBCwGOqIcLggBHoiGbhZX1WPgTK8k/NqU3oszGpseVQIcTEWbEuF5UpgpGKMAJRfiHOj5bskN+u5edwKf2S4Ne76br4Rmc+grAWivJc109kAVNVKYKMkpPANZqVnLyJXvIhcanfgEcQSour1bR5I/jbtmg9VKKRB44f195CDVWOwZlxuG6wZ1cv5AwwAGAKwZQmSoYoQAn1LDbXCnq1mzyfcRqc2D1AXYC5/VoEXMMYIpg9yXy37hyQDp0OmBnXjnOlEoTNBEKkL+b3ab1AwxG7/dLH8TmETVUuI4RbFSpOKaBw4MrWx1QV6beOrxBvAjzP8DZd64CX+48BwCYd3Xfphde/OKuPHChMUBlqmCFApxQo7oAEOzMQC0qVZJDbjhejMp6G5KjzRiandD0lzqd5AZjKTEWDM9hZl3LqUwVPLQ3Qbw19AYg+1J2PxjLVGq7GHNMFjb/C9C+2Z8EHjifbWP6misGpGNQZlzTX0qcwaEyVXBCAU6oUeEcDheTwb44JIBrYab2S4NB76HtPEA3Y09cPYjKVEGHrwJjd4LZD0dtF2N3eKu4ljupBCHgElWDzY5v9rJzg8chv2KAI00GB6AyVTBCAU6owQOcWGkm9DbaHVjl7J5qUZ7iyCBunNovDSaDDgfzK3GsMPBWT9koPgYsmxX8owYCRRCkCXBObwJsDdKtSwm04GLMEbsaz6m7jraoKQYaawHogDgPwYkXrDlUhPLaRqTGmDGyW1LLDSTO4ABUpgpGKMAJNbg9uUT6mw3HilFR14ikKDMubl6e4kjcKg4AcRFhuKwH89rRtOnft3OA3R8Bm15XeyXqUp4H1JcDehOQkuv7/im5bGCkrQ44u13y5cmKFjqoOMEwj4oHHdHpzCbAD77cyS7krh3cyXNWOdYZONWVAfXSBCNUpgo+KMAJNcqlDXBWOD/IU/qlej6RAJK3inPcy1SaTAnn7wVOOr1bLuxXdy1qw7M3Kbn+fWnpdMFbpqrWgMCYI5aoNHxRUH6K3fopMC6tsWLN4UIAwPWDWznPWWKAcKedRYAzqdwh07/gggKcUEMsUQUe4HhVngJcV64BzqNqzuW5qbCY9DhVUotfz1VIemxJ2LTQdf/Cfu235sqJtxPE20IMcILM8E9LGZxgmEcVoAfO8r3n0WgX0DcjBr3SolvfkMpUHR4KcEINMcDxr7btzqbjJSivbURSVBiGObuaPCKDyBgAIs1GTMhlnWDfaE1sXHEO2PeF8x861uIs4ZVi0BGI/obD51Kd3QZYawJfk1JUacADhyNmUzVcQglQYMxbw6+/qJ2LOH58CQOcSLOrTLWCylSahwKcUIMHOH6K99zhH+DJfVvpnuK41/0djoCf1x1u+rd8bz4cDg1lSLYsZp0zXS4FUvuyxzpymUoMcAb5f4z4bCaOd9iAvE1SrEoZxABHGluGgAiGcQ0BeOAcL6rG7jPlMOh14rmhVWTI4ACubPa3WitT1VcCmxYBtaVqr0QzKBLgLFq0CDk5ObBYLBgyZAjWr1/f5vbr1q3DkCFDYLFY0LVrVyxevLjJ79966y2MHj0a8fHxiI+Px+WXX46tW7fK+ScEB/UVLJMAuGrxftJod+D7/a2Y+zUnOg2ADnA0spZZCRnbKxnRFiPyK+qx7ZRGPrj1lcCOJez+yAfcApx9qi1JVaoKmA+MTu96LfzBXYcTTHOpeLZECxkcXqKqKwUa69RdS2sE4IGz1Jm9GdMzGcnR7Wi9+PHLTvn8PG0xvncKzEYNlqk2LwK+nwss+4PaK9EMsgc4n332GWbPno0nn3wSu3btwujRozF16lTk5XmOqk+ePIlp06Zh9OjR2LVrF5544gk8+OCD+OKLL8Rt1q5di1tuuQVr1qzBpk2bkJWVhUmTJuHcOQ23RipBhfPvD48PeELvlhOlKKttREJkGIbltNI9xTGYWAcMILnQ2Gw0YEpfpm3QjCfOrg+Ahko2jqDHZMrg8OxNUk8gLCKwYwXjXCotmPxxLHFsVAagzTKVw+Eq5fqowXE4BCzdxctTXlzAyZTBiTQbMb63BstU53aw2yMrXfc7OLIHOK+++iruvvtu3HPPPcjNzcWCBQuQmZmJN954w+P2ixcvRlZWFhYsWIDc3Fzcc889uOuuu/Dyyy+L23z00UeYNWsWBg0ahN69e+Ott96Cw+HAjz/+KPefo20kbBH/1q08ZTR48TbhV44SC40B4CpnKnrFr/lotEtbAvMZuw3Y7Mwojrgf0OuB1H7s3x09wAlEf8PJHu06ZjCk2h0ObYxp4Oh0smniJKEqH7BbAZ3B5yzzlpOlOFdeh2iLEZfnelEOlCnAATRapuKDbgFg7QvqrUNDyBrgWK1W7NixA5MmTWry+KRJk7Bx40aP+2zatKnF9pMnT8b27dvR2NjocZ/a2lo0NjYiIcFzpqGhoQGVlZVNfkISMcAJTH9jcytPXdFeeYoTLV/3xshuiUiKCkNZbSN+OVYs+fF94uBXQEUeEJEEDLyZPcYDnJJj2i0LyImUAU5MOhCfA0BoesLWKrXFbDSKFlyMOVrW4fBgI7azb/PK4PK+uXJAOiwmL1zauQ6xvpyV7yVEc2WqmmJXxk5nAI5+D5ylLI6sAU5xcTHsdjtSU5tG26mpqSgo8HylX1BQ4HF7m82G4mLPX26PP/44OnXqhMsvv9zj7+fPn4/Y2FjxJzMzcAGuJpGoRXzLyVKU1lgRH2HC8K7tlKc4MhqMGQ168YpJ1W4qQQA2/ovdv+RewOQsBUSlsIBHcABFh9Rbn1pIGeAAQEIOuw2GrjSevYlMVt/FmCODs7hk8A4qHwXGdVa7WA5qt3uKY452zeYql/a9pLkyFb8YSOgKDLiJ3V/3d/XWoxEUERnrdE07cARBaPFYe9t7ehwAXnzxRXzyySf48ssvYbFYPB5v7ty5qKioEH/OnAmCE6c/SNQi7nN5CpD9qpF3TKzafwH1jXZZnqNdTm8Ezu8CjBbg4ntcj+t0HVeHU1vqCkTS+ktzTP7+lfhLSRa01EHF0XKJyk8PnFUHClBjtSMzIRxDu8R7v2O89K3iHE2Z/vEGh7T+wGWPOLM4q4LPFVxiZA1wkpKSYDAYWmRrCgsLW2RpOGlpaR63NxqNSExs6sXy8ssv4/nnn8eqVaswYEDrE4zNZjNiYmKa/IQkEmRw7A4B3+/zsnvKHZkt4i/KikenuHBUN9iw5lChLM/RLjx7M/AWNnfInY6qw+HZm4SugCVWmmPy0kIwZHCqNeSBwxEDHA02XYgeONk+7fYF974Z3LnNi+MWyKjD4WWqU1ooU/EMTmp/ILGbq3y+tmNncWQNcMLCwjBkyBCsXr26yeOrV6/GyJEjPe4zYsSIFtuvWrUKQ4cOhcnkSgG/9NJLePbZZ7Fy5UoMHTpU+sUHIxJkcLacLEFJjRVxESaM6NaGuV9zZJhH5Y5er8OVzmm+qnRTFR8FjnzH7o+4v+XvO2qrOA9w0lq/wPAZGQzaZEMUGGsog6PleVR+eOBcqKzHL0eLAADXDfbR/kKGqeIcTZn+FbhlcABXFufYauDMNvXWpTKyl6jmzJmDt99+G++++y4OHjyIhx9+GHl5eZg5cyYAVj667bbbxO1nzpyJ06dPY86cOTh48CDeffddvPPOO3jkkUfEbV588UU89dRTePfdd5GdnY2CggIUFBSgurpa7j9Hu9htrvJQABkc0dyvTxpM3panAEVOqryb6sdDhaiq9yw4lw0+TLPnVCCpR8vf8wCnYF/HGtkgtf4GcCtRBUOAoyEPHI44j0qDAY4fHjhf7T4HhwAM6RKP7KRI355P5mD5igEaKFPZGoDiw+x+mjOTnNCVZZoBYO18ddalAWQPcG666SYsWLAAzzzzDAYNGoSff/4ZK1asQJcu7I2Xn5/fxBMnJycHK1aswNq1azFo0CA8++yzeO2113DDDTeI2yxatAhWqxU33ngj0tPTxR/3VvIOR1U+6+bQm/y+mrQ7BKzcxzw9pvb3seU12t1grN6v52+Pvhkx6JocCavNgVX7L8jyHB6pKQb2fMLuj/yj522SezOju7pSWVrlNYscAQ4vUVWeAxwq6a28pUpDHjgcnk2tLtDW62dvBCq507r3GhzXaAY/zEtlzOAAGilTFR1i7t/h8U1b7y/7E8viHP8RONMxjXB969Pzk1mzZmHWrFkef7dkyZIWj40ZMwY7d+5s9XinTp2SaGUhBC9PxWQwbxY/2HqyFMXVDYgNN2FU96T2d3AnPJ6Jb231LNjinTASotMxe/YFPxzF13vO44Yh0kxMb5dtb7O/K2Mw0MVzaRUmCzP+Kz7MdDgxGrqil4v6SqD0OLsvZYATnQ7ojeykXVUAxAbmyi0rYgZHQwFOZAoLth02oKZIO2urOMs6DQ1mry/CDpyvxKGCKoQZ9LiyfzujGTwhowYHcJWpVu4vwIpf89Gvk0Q6NF8Q9Tf9WMMDJ6ErMOgWYNeHLIszY6nya1MZmkUVKlT4fmXUnO/2sZP1pD6pvpWnAPbBUrBM9cuxYpTWWGV7HpHGOmDrm+z+yD82PYE0p6PpcPiJNaZzS9F1IOjdTOC0XqbS0iRxjsHoMh3UkhcO/7+My/L6Iox731zeJwWxEX604fNyZ30FUFfu+/5eoHqZStTfeNDBjX6EXSwc/wnI26LsujQABTihQoAuxnaHgO9499QAP7MPChiMdUuOQt+MGNgdgjLCvj2fsvlasVlA7jVtb9vRWsUL9rJbKbM3HB6oa7mTyuFwG9OgsYxdjAaFxj564NjsDizbzc4l1w/2M1trjmIeVYBs7yX3MtWBfBXKVPxCg+tv3EnI6dBaHApwQoUAW8S3nypFUVUDYixGjOrm59W4Qt0b3BNH9m4qh8MlLh4+s33n1Y7WKi6H/oYjc2lBEtxdjCM14mLMkdFZ3G98FBivP1aM4uoGJESGYUyvZP+fV6EyFQB8u1fhgFIQgAs8wGnFh+oyZxbnxBogb7Nya9MAFOCECgFmcHg2ZGKfNIQZ/Xxb8DS9zCLbK50BzrZTpcivkHE0wtHvgZKjgDkWuOi29rfnGZziw4BNgfKZ2ogBjoQt4pxg6KRq4mKsiJzRe8ROKg0FOOW+mfxxcfHVAzN8L5m7o0CwPE2tMlXFGVZ+05uApF6et4nPBgZNZ/c7WBaHApxQIYAMjsOtPHXFgAC0BArNwOkUF46Ls+MhCMDyPTJeMW1cyG6H3M5s39sjtjMzu3PYgOIj8q1LC1hrXWMpZMngBIHZnxZdjDnOElVlUR5Gzv8RN76xET8fKVLXcdcHD5zK+kascs7Du8Hb0QytwQOcMnk6qQBgglplKq6/Se4NGMNa345rcU6sBU5vUmRpWoACnFAhAJO/HXllKKxqQLTFiEu7B5AKVtBgTPYy1bmdwOlf2Elh2Ezv9tHpOk6ZqvAA64iJTJZHfxIM4xq06IHDiWafjzOnjuF8RT22ny7Dbe9uxfVvbMQ6tQIdH0pU3/2ajwabAz1SotCvU4DO8wpkcFQrU7Wlv3Envgsw6HfsfgfK4lCAEwrUVwANzqsGPzI4/AM5sU+q/+UpQNEpxlP7p8Og1+HXcxU4WVwj/RMcWMZu+1zrW5tyR+mkyt/NbtMHtt1Z5i/uImOtGidWa9ADh+PM4FjqLiDMoMfvhmXBbNRjV145bn93K65btBFrDxcqF+g01rnGWsRnt7u5OJrhIh9HM3hCIWdsVcpU7elv3OFanJPr2Fy9DgAFOKEAz96EJwBhvjl9svIUC3Cm9QvwSlTM4BTI/qWUFGXGSOcoCVkmjJeeZLedL/Ztv47SSSWnwBhwakh0zH+opkie5wgUnsGJ0l6A0xDB1pSmK8U9l2bjb9f1x/rHxuGeS3NgMemx+0w57nhvG65dtBFrlAh0eCYuLIp5ZrXBmdJabD1ZCp0OuHawH943zVFIsD6hdwosJlam2nO2QtbnEnH3wGmPuCxg8K3sfgfJ4lCAEwoEoL/ZmVeGC5UNiDYbMbpngF4m/ErW3gDUlQV2LC/gZaqvdp+T/gTt7tnhC2KJKtQzODK2iANMT8ADZq2WqbTogePkP/saAACRugbcP5JphFKiLXjqyj5Y/+h43DuaBTp7zpTjzve24drXN2DNIRkDHfHz1KXdjN+yXSx7M7JbItJjwwN/bv4ZbpDPCwdgZaopfdl7gfv3yEp9JVB2it33JoMDAKP/xATJJ38GTm2QbWlagQKcUICfPPzQ36z4lZ2kL++TCrPRENg6jGYgwjmgU4Ey1eR+aYgIM+B4UQ1+knrCuL8BTnJvADpWvqjWaOYhUGxWpsEB5AtwALcylUY7qcQAR1sanAuV9Viw7hwqhAgAQGRD089GcrQZT17BAp3fX9YV4SYD9pytwJ1LtuGGNzaipLpB+kWVn2K37QiMBUHAl7tck8MlISyCacUA2bM41zsF0V/vOY8Gm8xjMniWOKYTEJHg3T7uWZz1oT/aiAKcUMDPDE6T8lR/iU7STnGjEkLjGIsJt43IBgAs+OGodFefDVVsphTge4BjjnKNqShsWqZqtDtwvlzGtnalKDoE2K2sY8yHoYk+E6fxVnGNdlG98N0h1FrtKDc6v9SrPF9sJEeb8cS0XKx/bBzucwY6O/PK8dgXe6XP5HgpMN51phwni2sQbjJgSj8JM2MKlalGdU9CaowZ5bWNWHNI5gucAh/0N+5cfA+7PbtD2vVoEApwQgFxTINvGZxdZ8qRX1GPKLMRo3tIZLUfo6zB2L2jcxBuMuDXcxXSZXH4STA8HrD40cHhQYdzuqQGU/+5HqNe+An/267Rkou3cP1N2gB5BMYcLXdSadTFeGdemZgBiU/LZg+281lMijJj7rRcfDlrJMKMevxwsBAfbpE4EPDSA4eXdqb2S0OkWUJvIZmHbnIMeh2uHcyaEmQvU13wQX/jDr8Aa6hgDSohDAU4oYCfGRxu7jchNwUWU4DlKY6CreIAkBhlxm0j2VXhP3+UKIvjo+NqC5q1im85UYJrX9+AY4XVEATgyaX7sCtPfo2SbPArRznLU4C2vXA06GLscAj469fsPfebIZ0Rk8Knsnv3WcxNj8HjU3oDAJ5bfgDHCqukW5wXHjgNNju+cfpaXR+o901zFHTG5qW1NYcL5Z2X528GJyySNaQA2rx4kBAKcEIBPzxw6hvtopjvCqnKU4CireKc349m6fW9Zyuw5rAEWRx/9Tcct1bx/24/g1vf2YKy2kYM6ByLcb2SYbU7MPPDHSisrA98rWrA328yTIxvgpbHNfAAXkMuxl/sPIs9ZysQZTbiz1N6udyMWylReeKOkdm4rGcyGmwO/PGT3dLpSLy4aPhwcx4q6hqRFmPBCGeHpGQo+F7qlRaNfp1i0GgX5OnwBAC7DSg8yO77GuAA2r54kBAKcIIdu811AvMhg/PNnvMoqbEiI9aC8b0lvAJ1bxVXiMQoM24bwU6ckmhxJApwbAUHMffzXWi0C7hiQDo++/0I/Gv6ReiREoULlQ2478Md8gsR5YD7mcjdHh3Lv5Q06IVTpS0PnKr6Rryw8jAA4I/juyMl2uLXPCq9XoeXfzMACZFhOJhfiZe/Pxz44rzQtB0vqsaLK5kz9gPju8Ogl7j0qZAXDodncWQrU5UcYxYKpkgg3o8LDS2XfyWEApxgp+o8c5TVm7xOlQuCgCUbTwEAZozIhjGQOS/NEQMcZWfg3HuZK4uz9nCA4j5x6nG2X7tXR3RGvc4Co2BFtq4AD03ogYW3DEZ4mAFRZiPeum0oYixG7Morx1+W7VfXPt8flPpy5wG7tQqoL5f3uXxFdDHWRoCzcM0xFFc3ICcpEneOcn7h+ZlNTYm24KUb2Xyxt9afxPqjgX6e2ta02ewOzPnvHjTYHBjdIwm/G+bnhUVbuAc4Cnzerh6UAaNehz1nK6Qt9XG4DUVaP0Dvx/lbIU2S2lCAE+yI5alOXr/Rt58uw/7zlTAb9bj5Yt9by9tEFBkrO1U3qUkW50hgQYOPQwHdOVtWixsXb8YBO/tyfuFSPR6e2LOJG2t2UiT+Nf0i6HXAZ9vP4P1NQXSSEQSXuDZK5u6hJu29GrvS1JCL8cniGrz7CzOmfOqKXJcbeYz/HY0TclMxYzj7PP3pv3sC05K0U576988nsOdMOaItRrx444DAnYs9wUsyDZWKBMtJUWaMdU5A567MklLg9KHyVWDMiaUSFREM+KG/WbLhFADgusGdEB/ZxoA2f+Bt4rXFgE0GP402uNfN0yOgLE6ZmymZD+zMK8O1r2/AoYIqnDKwq+ihFs9Xz2N6JuMxp6DzmeUHsOl4if/rVZLaUsDRyO7LHeAA2p0qrqE5VH/79gAa7QLG9ExuWm7mn8WaIr8+i09My0X3lCgUVjUE1jouZkRbfp4OnK/Egh/YYNq/Xt1XGmM/T5jCXRlupcpUTqH0sl3nYHdInDXiQzb90d8AbhYMFOAQXlJR14g31h7H/7afUU5AyiNwLwOc8+V1WOmc0nvHqGzp1xORABjM7L6COhyAXTXN4Fkcfzuq6spZ+yTgU9v9V7vP4eY3N6O42orc9BiMHzuO/aKgdUfj31/WFVcPzIDdIeD+j3fibFmt7+tVGq6/CU9oe3qxVGhVDMnf20oEeW2w7kgRfjhYCKNeh/+7sk/T7EeAn8XwMAP+efMghBn0WH3gAj7e6mdg0EoGp8Fmx5z/7kajXcCkPqm4brAPM9/8QYGp4u5MyE1BjMWI/Ip6bD4h8QWMvx1UHMrgEL5SUt2AF1Yewp8/34tLnv8RVy/8BZ9tk/lqwccW8Q83n4bdIWBE10T0TgtwSq8ndDpX2l6hVnF3fn9ZV9GCfu0RP7I4/OouIsmruV4Oh4BXVx3GQ5/uhtXmwOW5qfh85gjEZQ9mG7Qxk0qn0+GFGwagb0YMSmus+P37O1Bn1bjoWOnxBFoVQ2rAxbjR7sAz37D31+0js9E9JarpBjqdq2Ts52exb0YsHp3SCwDw7PIDOFZY7ftBWhHtv/bjURwqqEJCZBiev76/PKUpdxTuyjMbDbjKOU7mix0Sio2rLgA1hYBOD6T08e8Y/LWoKWKDUEMUCnAkJCLMiBsu6oyBmXEAgL1nK/DYF79i8brj8j2pDwFOfaMdnzivwmTJ3nAU9sJxh2lxsgH42VHVRjrdE/O/O4jXfjoGALjvsq7494whzKCMt4pXnm1zLld4mAFv3jYUiZFhOJBfiT9/vkfbomOl9DccURyqMZ2SBuZQvb/pNI4X1SAxMgwPTujheaPowG0b7hqVg9E9klDf6MBDn+7yvfPPg2h/Z14Z3ljLzovPX9cPSVFmv9fnNSrYDvAy1Xf7ClDTYJPmoNzgL6Eb06n5Q3g868ACXN8hIQgFOBKSFmvBK78diK/uH4WtT07ArLHdAAB//+4Q/uPsWpIcfmXrRYDz9e7zKKttRKe4cFyeK+MXlEpCY869o11ZnHW+ZnF8aBH/avc5vLWeiTv/fn1/zJ2W62pvtcS62pwvHGjzOJ3iwvHGrUNg1OuwfG8+Fq874dualUTpL3YtlqgcdtVFxiXVDaJ25c+TeyE23OR5QwmcxVnr+EDER5iw/3wlXl11xPudBaFFiarOascj/90Dh8B0gFP6KZQFUyHAuSgrDjlJkahrtGPlPolK9oHqbwCW3dOyz5REUIAjEynRFjw6pTf+OL47AODpr/fjv9skPkkLgtcaHEEQ8O4G9mV8+8gu0vtMuCPOo1K2VZyTHG0WO0B8zuJ4GeDsP1+Bx75gnQz3j+uGmy/xsL2HkQ2tcUlOAp6+mm3/4veHpDEslAOlMzhaLFHVlqjuYvzyqsOoqrehb0YMfjO0jc9+AJ1U7qTGWPDCDax1/N8/n8CGY8Xe7VhXxtr8ATFYfWHlIZworkFajAXzruob0Lp8Il5ZLxyAlaGvd2qLvpDKE0fU3/jZQcXR4sWDxFCAIzNzJvbE3ZeyjprHvtyLr6V0tqyvAKzOmng7GZwtJ0txqKAK4SYDbhoqg8+EOypncADg95d1g8Wkx25fszheOK6W1Vhx3wc7UN/owGU9kzFnYi/PG7o5GnvDrcOycMslmRAE4MFPduFEkR96B7lRK4NTVwo0aOT1UNnFeN+5CnzqvFiad3Xfti9WJChRcSb1TcN0p0fNnP/uRmGVF40UvDwVlQqYwrHxeLHowfXCjQMQG9FK5kkOFPbC4fDZVJtOlOCcFMN2RQ+cAYEdR4sXDxJDAY7M6HQ6PHVFLqYPy4IgAA9/thur9kuUquS104jEdmuxYmv4RZ3kP6moqMHhJEebceswP2ZUlbfdIm53CHjw0104W1aHrIQIvHbzoNa/YHzI4ADsvfLXq/thSJd4VNXbcO/721FV3+jdupVC6QyOJZb9ANq50lTZxfi5bw9AEICrB2bg4uyEtjcWLzak8WJ56opcdE2OxIXKBox/eR1eXX0ElW29R90uGKrqG/Hn/7Gs5/RhWRjTM1mSNXlNE+NI5YZMZiZEYFhOAgQB4ngcv2msA4qdJUJ/PXA4lMEhpECn0+G5a/rh+sGdYHcIeODjXb5rQzzhpcD4bFktVh1gQdWdI7MDf972kCgtHii/H8O0OLvyyvHzUS9S6oLQrsj4pe8PY/3RYoSbDPj3jCGIi2ijVZqfgAoPsOnTXhBm1OONWy9CWowFx4tq8PBnu+GQ2kMjENQQ17qPbNACKnrgnC+vw+YTpdDrgMen9m5/h1hpdRYRYUa8OWMI+mbEoLrBhtd+PIrRL6zB62uOodbqQUTr9nl6bvlBnCuvQ2ZCOJ6YlivJenzCFA6YncEyD9QV4oYhrtENATURFB5kzvURSYF/BimDQ0iFXq/DizcOwLT+abDaHbjvg+3YEqg3gpf6mw82n4ZDAC7tnoQeqdGBPac38A9eZb6qM4RSoi1iFscrd+O6sjZLft/uzRc74l64cQBy09tps0/oChgtQGMtUHbSp3X/e8YQhBn1+OFgIT6Xa56NryjpYuyOeKWpETGkGOQp74Hzs/PCaFBmHDLivDDF4wNRq/IlawfunhKN5X+8FG/8js1Vq6hrxEvfH8ZlL67BO7+cRH2jW5eVM4Nzyp6Ez7afgU4HvHzjQESZVRpQyv/PFA5wpvZLg8Wkx/GiGuw5G0D2yF1/E2hbPdcZUgaHkAKjQY8FNw3G+N4pqG904K4l27Arr/UW4napaL+Dqs5qx6db2XZ3KJG9AVxXtrY61WcI/X5MV5iNLIuzvr0sTjO9gDuHC6rw58/3sGM6DfraxWAEkp1X2V6WqTgDM+PELrzvflU3EybSUMWCNUDZDI7Wuj2q1fPA4Q7dY3p6KW4Oj3dlLcpOSbYOnU6Hqf3TsXL2ZfjHTQPRJTECxdVWPLv8AMa+tBYfbTmNRrtDDOzfP8y+jO8elYNhXSWeFO4LPDCvUjbAibaYMLkv+8wENIAzUIM/d/iFceV5NrQ5BKEAR2HCjHos+t1FGNktETVWO25/dyv2n/czoveiRLVs9zlU1DUiKyEC46ScGt4WpnB2YgVUFRoDzizOcC+zOK0IjCvqGnHfB9tRa7VjVPdEPDq5FVGxJ3iZyscABwCmOttnNxwv8Zz+Vxp+1RsW7ZUJomRoLZWukgdOo90hdi/xOUftotMBCdnsfqn3WURvMeh1uG5wZ/wwZwzmX98f6bEWFFTW48ml+zDhlXWoyWd6kV9rk9A9JQqP+PLZkQP+f1YtkQ7SB25weuJ8vec8rDbvStYt4ALjVP8DnDOltZj46jqM+Nc+NMIICHb848u1+Pe64/hq9zlsPVmKM6W1vvsdaRCV8oQdG4vJgLduG4rb3t2KHafLcNs7W/HfmSPQLTmq/Z3daWcOlSAIorj4thEyt4Y3JzqDlXyqzgOpfrptSsR9Y7riw82nsdOZxbmsNXGjhxZxh0PA7E934VRJLTrFheNft1zk2/R1Hzup3OmZGoXO8eE4W1aH9UeLxStA1VCrNKM1MSTX4EQp+/+xK68cVQ02JESGoX+nWO93jM8B8vf4VCb1FZNBj1suycJ1gzvhk615eH3NceSXVsJiPgfogDxdOt767UBYTAbZ1uAVYgZH+QBnVPckpESbUVjVgJ8OFWJKPx/fPw5HwB44FXWNuHPJNtGR+lxYIrL1F7Bp525sFVrOK0uMDEPnhAj89eq+GOQ0sA0mKIOjEpFmI96782L06xSDkhorbntnK/IrfKyRtxPgbDpegsMXqhARZmjbK0MONNAqzkmJtuB33nRUeZgivuCHI1hzuAhmox7/njEECb4OJw0gwNHpdKIh448HlU2pe0TU3ygcaGmtRKVSF9VapzfS6B5J0PtyscJ1OBKWqFrDYjLgzlE5+PnRsXhmdCQMOgHVggU3jx2CAZ3jZH/+dolSR4MD8GwXaxn3q0xVfpp1gBnCgKRWnKvboNHuwP0f7cSxwmqkxVjwyb3DEZ3G3hszcvW4dlAGhuUkIDsxAmbnRPqSGiv2nCnH898e9H29GoACHBWJsZjwnzsvQdekSJwrr8OMd7aitMbq3c72RteVZCslqvecfhM3XNS5dadTuRBbxZW/UvLETKcWZ8fpMvzSmkkZ/wJ1dlB9v79AHMMw//r+6OfLVTOHBzhlp5iGxUd4gPPToUL1u6nUyuDwTqDqC0CjQkNsW6OJi7GyGhzeeel1eYoT7wxwZChRtUZEmBG3dGPnMn1SN8ye2FOx524TcU6eOuclPrphzeFC78/1HK6/SckFDL6dzwVBwF++2odfjhUjIsyAd+4YihHdEpGYwYxor+pix4KbB+Oz+0Zg7Z/H4dCzU7Dr/ybi85kjYDLosPVUaWB6UZWgAEdlEqPM+OCeYUiPteBYYTXufG8rqr2ZWVKVz9oFDWHMcKwZZ0pr8YPzqv92pcTF7ogBjjpuxs1JiXFlcV5ceRifbs3D+5tO4e31J/D6mmP4x+ojKD57FACw5IADj32+F3/6LxMV3zEyWzwx+UxkkivjUej7VdAlOQmINhtRXG3F7rPl/q1BKrhuQekMTkQCYHL6PEnk5+I3TVyMlfNxKayqx/7zlQCA0T18fF4xg6NcgAMAKGUdhxFpPeUfpOktKmZwAKBXWjT6dYpBo13AN76avgagv3lr/Ql8svUM9DrgX7cMRt8M58UaL/82m/Wm0+kQHxmGodkJuGYQyzq9vV7h948EUICjATrFheODuy9BfIQJe85W4L4Ptrcv8OKCy5hOgL7lf+P7m05BEIDLeia3nDKsBBoqUXF4FufXcxV4/Mtf8Zev9uO5bw/ipe8P458/HkFELTvhvHdAwGfbz6C6wYZLchLw5BUBenYEUKYKM+pxmfOKXfUylViaUTiDo9O5CY1VLlOJ+psURV2Mfz7Cso79O8X6PpiSD7ksO80yUEpR4hwynNhduedsDzGDo95n6frBLk8cn/Czg2rlvgLM/+4QAOCpK/pggvscwtj29W33ju4KAPhuXz7ySmp9em61oQBHI3RPicaSOy9BZJgBG46VYPanu2FvqyTRRgdVTYNNtHJXxNjPEyrPo/JESowFz1/XH5f1TMaE3imY2i8N1wzKwG+GdMbvL4pBhK4BAnS4fuww/HlyL/ztun54746LYfJFVOyJNP87qQDg8lzW/fbDAZXnU6mVwQG0o8PhpQ0lfYAQQHkKcF4EmQBHo7IZMGcGBwndlHvO9uD/bw0VkvkC+crVgzJg1Ouw52wFjhX6ULYWBcbeOxjvPVuO2Z/tgiCwRpM7R2U33SCu/Q7FXmnRuKxnMhwCxHmGwQJ1UWmIgZlxePO2objzvW34bl8Bnlz6K+Zf399zepdH3M2GQgqCgI+35KGq3obsxAjl7dA5GszgAMxRlLuKNuHsduAAoItOx0OTA7RAb04AreIAMK5XCgx6HQ5fqMKZ0lpkJrQ9lkM21MrgANrppKpS3gPH7hCw/ij3v/Hj86w3MF1ZyTGmw2lnkKxklJxgt4kaCnAsscx801bPylQ8u6UgSVFmjO2VjB8OFuLLnefw6BQvHKnrylxGl16OaDhXXoe7/7Md9Y0OjOmZjL9c2afld4mYwTnLurQ8VAMA4Peju+LnI0X47/YzmH15j7Yd3DUEZXA0xqjuSXjtlkHQ64BPt53BCysPe96wWQan0e7A13vO49pFG/G3FUzrcduIbN+6LaSEZ3BqipggWuu0M6IhINxnUvnh7BwXEYYhXZiv0A9qlqnUzOBoxQtHBQ+cPWfLUV7biBiL0f9W3XiFdTiNdUCl8xylpQyOTqea2Z87XNO3dNe5tjP1HH5xFJsFhMe1u3lVfSPuXrINRVUN6JUajYXTB3u2t4jpBEAH2BvYuboVRnVPRG56DGqtdny0RSPdjF5AAY4GmdIvHfOvZ3XWxeuO49/O8QBNcAY4teHp+Pe64xjz4ho8+Mku7DlTjjCjHjOGdxEN7lQhIpGlxSGoJujzCQ8eOJKR2IO9Fg2VfmcgJort4iqVqRrrXAMKVcngaKVExedQKRfgrHO6F4/ukeybB5M7CQp3UvHnscQykbiWUNHsjzO+dwpiLEbkV9Rjszcje3zQ39jsDvzxk104VFCFpCgz3rljKKItrXRdGcNc2cg2zk06nQ6/v4y9h5ZsPBU0JoAU4GiUmy7OEofpzf/uED7b1vTEbi1l//7jiiLM/+4QzlfUIykqDA9f3hMbHx+PZ6/thzCjiv+9en3TmVRapxUXY0kwhgHJTgdXP8tUE5w6nM0nStqe3iwXPEg1mAFLnPLPr5W5OdXKe+CsPRJAeYoTr5wXDoCm+hutdFBxopyO7ipmcCwmA65yjnv5whuxsQ/6m2eXH8Daw0WwmPR45/ah6BzfTkk7zjsB/5UDMpAWY0FRVQO+2q0dbWVbUICjYWaO6Yb7xjAF+9wvf8XKffnYdqoU972/DdYS9oV8sjEevVKj8eKNA/DLY+Px0OU9fO+ykAuNtYq3iZwZHMBVpirwvZMKALomR6FrciRsDkEcuKgo7vobNb6wtDI3R+FJ4qU1Vux12gOM8UdgzFG6VbyE+UdpSn/DiVI/gwO4ylQr9xWgpj1rkIK97LadDM6SDSfxn03su+Efvx2Egd6UNL3opAKYWzUXKb+9/kRgU9EVggIcjfP4lN64aWgmHAIw88Od+M3iTdh04ASidMzw7LnbpmLl7NH47dBM9W3Qm6NRobFHlApw/GgV51yuZplKTf0NwHQThjDmQaNmwMwDPYW6qNYfLYIgAL3TopEaY/H/QKLZ3ym/dGA+U6LBDipOtPoaHAC4KCsOOUmRqLXa8fsPtqOitpXMrL0RKGJt3m0JjD/fcRbPLD8AAHhsSm9M7e9lEC6Wf9vPjt4yLAtRZiOOXKgWO/u0jCIBzqJFi5CTkwOLxYIhQ4Zg/fr1bW6/bt06DBkyBBaLBV27dsXixYtbbPPFF1+gT58+MJvN6NOnD5YuXSrX8lVFp9Phb9f1wxTnHCKzUY+7+zvrqRFJGJnbWTsmWs3RYKu4RxyOFi7GkuMuNPYTd1djm93PYX3+omYHFcBKntwSQS0djgouxlx/E1D2BnC9rxsqWEeO3JRqsIOKo5EMjk6nw7PX9EOE0xrkukUbcKKouuWGZacAuxUwRXosoTfY7Hhq2a945H974BCAm4ZmYqYz8+8VPnQoxlhMuPlitv1b6094/xwqIXuA89lnn2H27Nl48sknsWvXLowePRpTp05FXp7nk9TJkycxbdo0jB49Grt27cITTzyBBx98EF988YW4zaZNm3DTTTdhxowZ2LNnD2bMmIHf/va32LJli9x/jioYDXr8a/pgLLnzYmyaOwEPDQ1nv2hjirgmCJYMTk0h6yLQ6Z1dBTLAr7xKjwNW/8yyLsqKQ1yECRV1jdhxWmHbdLUzOID6nVQ1xSyDpNMr4mLscAj42dkePrZnSmAHM4W7gjIlhMaiyZ8GAxwNmP1xLu2RhC/+MBKd4sJxorgG1y3aiI3NR8m4d8w2a+POr6jDTf/ejA83s+/Thyb0wPOtWYu0Rqz3GRwAuPPSHBj0Omw4VoJ95yq8fx4VkD3AefXVV3H33XfjnnvuQW5uLhYsWIDMzEy88cYbHrdfvHgxsrKysGDBAuTm5uKee+7BXXfdhZdfflncZsGCBZg4cSLmzp2L3r17Y+7cuZgwYQIWLFgg95+jGiaDHmN7pbBhj22Y/GkKMYOj8QCHC4xjOvk848VrolJZZ5ngcKWbfcRo0GNcL6fpn9Lt4mpncAD1vXB4kBeZrIiL8f7zlSiutiIyzCDaBASEUq3iDdWu10qLJSqVxzU0Jzc9BsvuH4XBWXGoqGvEbe9uxUdb3EYncHPG2KYXXxuPFePK137B7jPliLEY8e4dQ/HwxJ4w+GoN4uPnqlNcOK5wlr/e1ngWR9YAx2q1YseOHZg0aVKTxydNmoSNGzd63GfTpk0ttp88eTK2b9+OxsbGNrdp7ZiK0VANnPwZOPydvM/D34itTBHXDOKVksYDHFF/I2NbvU4HJDtHPnABph+opsPRQgaH//80m5ujGAp74Kw7wv6PR3ZPkqYjUqlWcV6eikj0yrNFcfj/X02RuoJ1N5Kjzfjk3uG4ZlAGbA4BTy7dh79+s5+VoiucAY4zuywIAhavO45b39mCkhorctNjsPyPozG+t58XH/xCuaESqCv3ahc+vuGbvfk4X66OI7Q3yBrgFBcXw263IzW16QufmpqKggLP9c+CggKP29tsNhQXF7e5TWvHbGhoQGVlZZMfWSg9DvznKuDrP8pzfA5PJWo9gxPjzOBU5isjbPQX/oUpt8MrvwKr9F+TdFnPJJgMOpworsFxT/V6uahSvj26BWqXqMQ5VEoFOAGMZ/CEUhkcLY5ocCciEdAZAAhtmtspjcVkwIKbBuGRSWzy+nsbTuGe97fDWua8AIvtjKr6Rsz8cAf+/t0hOATghos648s/jERWYgDu5mGR7DUBvM7i9O8cixFdE2F3CFiy8ZT/zy0zioiMm9cDBUFos0boafvmj/tyzPnz5yM2Nlb8ycyUKfPBT8A1RfLOOeElqjitZ3CcNf/GGnZ1oFXkdDF2h78eAQQ40RYThndlJyNFh2+KGZwOXKJSMMirqGvEzrxyAMBlvk4Pbw2lMjha1t8AbHQF11CpLDRujk6nwwPje2DR7y6CxaTH2sNF2L2PdUYVIBHXLNyA7/dfgMnAmk9e/s0AhIdJ0D3rx8XD7y9jWZyPt+Sp483lBbIGOElJSTAYDC0yK4WFhS0yMJy0tDSP2xuNRiQmJra5TWvHnDt3LioqKsSfM2dkOkGGxzOlO+AKQuQgWDQ4YRHMyRTQttBY7hZxTow0XWUTenMdjkJlKruNCWwBdTM4otmfc26O0ijogbPhWDHsDgHdkiOlmz2mlNmfllvEORppFW+Naf3T8d/7RiA1xozYRvY5f/KnMpworkF6rAX/vW8Efjesi3QdtH5cPIzpmYweKVGobrDhs60qG3C2gqwBTlhYGIYMGYLVq1c3eXz16tUYOXKkx31GjBjRYvtVq1Zh6NChMJlMbW7T2jHNZjNiYmKa/MiCTue1K6Tf2BtdJ1qta3CA4BAalylUooqWpqtsglOHs/1UKcpqrIGuqn1qCgEILK0fkST/87VGdAZbg92qjkC0WjmhNW8PH9srwO4pd3gGp+q8vBlmXqJK9KFVWWk00ireFgM6x+Gr+y9FZ0MpAOBUYxxGdkvE8j9eisFZEojO3Yn1fRSKXq/DPaPZe+rdDSfRqLR1hRfIXqKaM2cO3n77bbz77rs4ePAgHn74YeTl5WHmzJkAWHbltttuE7efOXMmTp8+jTlz5uDgwYN499138c477+CRRx4Rt3nooYewatUqvPDCCzh06BBeeOEF/PDDD5g9e7bcf077iKZJMgkhK88DEJhlvppfNt6idaGxw+5W8pO5RBUjTbCXmRCB3mnRcAjA2iMKZHG4uDYqpdVpw4pgMLpeQzXKVAplcARBEPU3AY1naE54PGB2ZlTLZBRqUwZHMtLMVkQKzFbilstH4P27LkGiHE71fl6YXzOoE5KizMivqMe3e7V3jpf9bHXTTTdhwYIFeOaZZzBo0CD8/PPPWLFiBbp0YV8m+fn5TTxxcnJysGLFCqxduxaDBg3Cs88+i9deew033HCDuM3IkSPx6aef4r333sOAAQOwZMkSfPbZZxg2bJjcf077iJ0eMmVwxPJUJ3W/bLwlJnBhraxUFQCORkBvlL/0IAY4BSywCgDeTfXDAQUCnGpl3XvbJFbmDGlbKNRFdfhCFQoq62Ex6XFJjoSDKnU6l85MLqFxfQVQ6yxnalWDAwRFBgeAq0XcEot7JvT3f9hqe3g5rqE5FpMBd4xk76m3NDi+QX4zBwCzZs3CrFmzPP5uyZIlLR4bM2YMdu7c2eYxb7zxRtx4441SLE9axBOITFdIFUHSQcURO6k0GuCUu3vgyPxxiExhJnGCHagudBkh+sGE3BQsXHMM644UwWpzyDtYVeH26DaJywLyNiof4Dic/2eA7F1Ua53lqRFdE6Ufv5KQw+YaySU05tmbqFTAHC3Pc0hBkGRwXC3iMp/v4/zvUPzdsC54fc1x7D9fiU3HSzCyu3YqC0GQAggy5PbqEAMcmfUiUqH5AEfmEQ3uGIyuLEiAQuOBneOQFGVGdYMNW06WSLC4NtBSBketTioFXYzF8QxSlqc4creKcw8cLZenALcMjsYDnEq3jL2c8AxObbHPTuvxkWH4zVAWgL2pMeM/CnCkRvYMTpB0UHHEEtU5ddfRGkp1UHEkEhrr9Tqxm0p20z8tZXDU8sLh+huZXYyrG2zYfpqJSiUVGHPkbhUvCQKBMeB6L2s+wHFeCMk1QoYTHg+ERbH7fnQA331pDnQ6ln08Vlgl8eL8hwIcqeEZnNpi5mwsNUEX4ATu/SIrYgdVtjLPJ5HQGAAu78MyKqsPXJC39q2pDI7v3R6SUK2MB87GY8VotAvokhiB7KRI6Z9A9gxOEAiMgabjGjSmG2lChecxDZKj07npcHz/bHVJjMR4Z0C+4lft6JoowJGa8DiX94scJ+GgC3CcH8zaYqCxXt21eEIpF2OOWLILPKN1afckmI16nCuvw+ELMl41aSmDI3rhnFH2i0mhDipZuqfc4Rmc8ryAhe4e4WNItCwwBlhHIMAsB5SYru4vvEQltwYHCEiHAwCT+7Lzg+Jz8tqAAhw5kKtVXBDcApwg8MABWOrTaGH3tdgqrnSAI1GJCgDCwwwY5RT0yVqmEjM4GghweMDcWAvUlir3vFXyZ7Hc28MlG8/QnJhOgN7EvtjlyKoGQ4s4ABjN7NwEuAJ4LSKKjDPkfy4/O6k443qnQKcD9p6tQEGFNi5mKcCRgziZdDh1ZYDVWfaSO2UpFTqdpGUZSbHbXCcQJUTGgGRuxhzeLr76gExXTQ6HogZ37WKyuIIMP1LpfqNABud4UQ3OltUhzKAXx3FIjt4gX6t4bSlQX87uJ2hcgwNov1VcENwmiWs/g5McbcagzDgAwI+HtJHFoQBHDuKz2a3UJSqevYlMBkzh0h5bTrTqhVN1nnXGGMKUy05ImMEBWLs4AOw5W47CKhmumupKAYdz4nKkDKJXf1BDh6NAmY5nby7JSUBEmIyWBfz8JLXQmGdvojPYmBato/VW8boylqkEgiKDA7guuGRvfPASCnDkQK5W8WDT33Ak1J1ICs+wxWYqZ5roHuxJoCFJjbFgQOdYCAKw5pAMJxX+xR6RCBjDpD++P6jRSVWtXIAjW3mKI5fQWBzRoPHyFEfrGRx+voxIVOaCVvze8v9zNdHZ+PDLsWLUWm1SrCogKMCRA7laxYM+wNFYBkfpFnHA1VUm4YT1Cb2drsZyXDWJU8Q1oL/hqOGFI3MGp85qx+YTzM9INoExR65Wca1PEW+O1jM4SrWIc/jnquo8m3noBz1SopCVEAGrzYH1R4slXJx/UIAjB+4ZHCk7PUSTvyARGHOiNZrBUVpgDABhka55QBKVqS7vw0pH648Wob5R4s6YKg3pbzhKl6jcXYxl0uBsPlkCq82BTnHh6J4SJctziMidwdG6wJijdbM/pS9oI1NYuV5w+H0xqtPp3MbIqP+6UoAjBzwSbqiUtgWRMjjSoqSLsTs8iyOR0LhPegwyYi2ob3Rg43GJr5q4uFZLGRxx8rFCGRwFXIy5e/FlPZOh0+lkeQ4RMYNzStoLsGDN4Gg1wOEXhEplcPR613dLQDocdsH106FC2B3qegxRgCMHYZGuE6GUOpxgm0PF0XqAI/cU8eZILDTW6XSYkCtTmUpLHVScOP8NyfxCdDFOYV1IMiC7/407XGTcUCHdBZggBE+LOEccm6JRDY6SLeIcCfRtF+ckINpiREmNFbvPqOsxRAGOXMjRKh5sHjgcfgVSfYG1ZmuFMhVKVIDr9ZAogwO4uql+PCixq3GVBjU4/P1fX8F+5EbmIO90SQ1OFtfAqNdhVHeZ2sPdMYW7gmypylQ1RYC1CoDOFUBpHa2XqJRsEedIoG8zGfQY53Q1lkUX6AMU4MgFL3tIpROwWV1fNsEW4EQmA3ojq+1q5WRis7oCDKUzODKMrxjRLRGRYQZcqGzAvnPSiJcBaDODY44CwhPYfSXKVDJ74PDszZAu8Yi2mGR5jhbESyw05tmb2EzmVRQM8Pe0tVqesTqBwi9olSpRAW7l38C+t/gYGbV1OBTgyIXUreJV5wEIgMEMRGpnHL1X6PVuQmONlKkqz7KAy2hx2bYrhcQlKgAwGw0Y3YOVN1YfkDDlrsUMDqBsJ5XMHVTi9HC528PdSZBYaCy2iAeBwR/HHA2YnPO+tHLhxREE17lSSVNX0ewvsABnTM9kdE2OxOgeyWi0OyRYmH9QgCMXUreKuwuM5RYhyoHWvHDcW8SVfj0ldjPm8KumVVJdNQmCNjM4gLJeODIGeQ02OzYeZ+3hY3sqGGiLZn+npDlesOlvONEa1eHUlgD2BgA618WhEkhg9gcAseEm/PSnsfjLVX1gMqgXZlCAIxdSZ3CCtYOKo7Wp4mp44HDEYE/a0RUTeqdArwMOFVThTGlt4AesrwBsTndkzWVwZDLT9ISMGZxtJ8tQ12hHcrQZuenRkh+/VaRuFRczON2lOZ5SaNXsj5/vo1KUNdgUM6Nn2ZiWIIcCHLlw9+qQQlhbdLjpcYMN0cFXIxkctQTGgOuKrKaQaYEkIj4yDBdnM22KJLOpePbGHKM9630lS1Sii7H0Ghw+eXmMEu3h7kht9ldygt0GS4s4R6tmf0q3iHNiOjE7BLuVnZ+CHApw5CI+mxm62eqBgr2BH+/YanabPTrwY6mB1lrF1WoRB5j1ut4pJpX4ypFbpUsS4IilGY2VpwB1SlQSl+kcDgHf7WNZvCl9Fc6Q8QxO1XmgsS6wYwlC8Jn8cbTaScVbxJUeqmwwuQJ5JUehyAQFOHKhNwBdRrD7pzcEdqzK80DBrwB0QPcJAS9NFTQb4KiQwdHrZREaA8CkPuyEvfVUKcprA8wOifobjZWnAMnEkO3isLu9DtJmcHbkleFCZQOizUaM7qlw40BEAsvMAYG/hlX5bCikzqC8aWagaNXsr1KFDipOrMI+UzJCAY6cdBnFbk/9EthxjjqzN52GBF8HFUcG75eAEMc0qHRCltjNmJOVGIFeqdGwOwSsORxgilnLGRwemNYWA1YJ9EatUVPMuu1kcDH+di8Lbif2TYXZKI+BYKvodNJNFecC47gslgEIJrRq9lehUokKcLt4oAwO0RbZl7Lb05vYlaC/HF3FbntODnxNauEurFVbvGZrcHmbqHXFKZPQGJCwTKXlDI4lDghjotzTJw9La27ojkwuxnaHgBW/smNfOUAef512kapVPNimiLsTpdUMjkolKkCyTiotQAGOnKQNYGnghgpnickPbFbgxFp2v8dEyZamOFGp7CrY0ciuutWEX5mYIpgeRg1kHEDKA5x1hwMcvqmhDE5FXSN2nC7FJ1vz8Mw3BzDj3a041hgPAPi//3yHV1YdkeeJZeqg2n6qFIVVDYi2GHFpdwX9b9yRyuwvWFvEAdf/q9YyOKLIWIWu2RDK4BjVXkBIYzACWcNZBubUL0DGIN+PkbeROW1GpgBpAyVfomIYTOxvqC5gH16lzfXccS9PqeUpJJaopM/g9O8Ui9QYMy5UNmDT8RKM6+3na61SBqe81ooVvxbgaGEVjl6oxtHCKlyobGix3SlTIrob8tBZV4w31h3HtP7p6JMRI+1iquUJcL51Zm8m901DmFGl60xeogo4gxOkHVSAS2RcV8ouJpVsyW4Nh8OV2VUlg+Ms/1IGh2gXsUzlp9CY6296TGLi1GBGK0JjNQXGHJlExgCg1+vELE5Apn8qZHAabHZcv2gjnlj6K97bcAq/HCsWg5v0WAsu65mMuy/NwQs39MeAvv0BAJel1MHuEDD3y73STy+WIYPDylPsuFeoVZ4CpGsVD7Yp4u5EJLh1NGqkTFVTyDLdOr06/lPuGRy5Sr8KQRkcueniFuA47L7X8bn+JpjLU5yYDOD8Tg0EOCp64HBkFl1P7JOGDzfn4YeDF/A3Rz/o9X5kqlTI4Hy4OQ8nimuQEBmG6wd3Qo/UKPRIjUaPlKiWc5qs3YFDwJjUekSXGrHnbAU+2HQKd4zKkW5BVdJ74Gw9WYri6gbEhpswqpuKTQO8RFV+2r9zE8CyDTwDFIwlKp2OBfCVZ9n7nX+5qwkXGEensyqA0nAzWWsVUF8OhMcrvwaJCPKUQBCQPhAIi2KusBf2+7Zv6Umg+AgbVNltnDzrUxKtmP3xDI6aLa0xbhkcGa6ShndNQJTZiKKqBuw5W+77Aay1QINzaKdCGZyKukb866ejAIBHJ/fCU1f2wU0XZ+GirFaGUDrFkOE15/DY1N4AgJe+P4zz5QH6urgjQxbr219ZUDu5b6p65SmAfZHpTczUzd+LjspzzOtLbwq+IcAcrY1rULNFHADCIoEIZ+Ad5DocCnDkxmAEspx+OL62i/PyVNYIwBIr7brUQMbOIZ9Q08WYwzMC9gagtlTyw5uNBnF4o1/dVFx7YrQo9t57Y+1xlNc2okdKFG4c4oW4UhzXcAbTL8nCkC7xqLHa8Zev9kvXVSXxJHGb3YGV+3h5SsEZQ57QG1yfgbJT/h2j5Bi7jc9WJ9sgBVoz+xNbxFV8fyjpFC4jFOAoQbaffjhHv2e3oVCeArSXwVHLAwcAjGZXB5dMZapJgbSLc+v6qFRFhNjnyuvw7gZW6nh8am8YvRnQx0/CVfnQOxox//r+MBl0+OHgBXy/X6KrcYnLdKw8ZUVchAkju6nUwedOoK3iwdwiztGa2Z/YIq7i3EElncJlhAIcJeDjFU5v8N4DxloLnFzP7vcIYv8bd7QgMm6sc81YUXuuV7S8Ga2xvVJg1OtwtLAap4prfNtZpu6h1nh11RFYbQ4My0nAeG+7viKTWYYJAlB5Fj1To3HfZeyL9i9f7UdlfWNgi2riYizN67D8V9doBjWnLIsE2irOZ1AFo/6GozWzP7XmULkTFxqdVBr4hHUA0gcCpkgm2Cr0Uodzaj0rX8RmAcm9ZF2eYrhPFFdLnc+zN2HR6ovneMAnUwYnNtyEYV39HL7pnsGRmQPnK/HlLqY7mDst1/uhkzpdiyvNB8Z3R05SJAqrGvDSysOBLaymSFIX46blKRW7p9yRLIPTVZr1qIHWzP7UmkPlTqxCo1BkhgIcJTCYmB8OAJzysl38iFt5Si2vFqnhGQtbHVBXps4a3AXGar+u7gGfTEzM5e3iPl6dKpjB+fvKQxAE5ug7KDPOt52baQUsJgP+dl0/AMCHW05jx+kA9E38il4iF+PNJ0pRWmNFfIQJI7pqoDwFBD6uIZhN/jhaM/tT0+SPo9SsN5mhAEcpuB/OqfXtbysILoFxMI9naI7J4tKdqFWm4mJKtctTgFuJSsYAxzmlesfpMpRUtzTLaxWFMjjrjxbh5yNFMBl0+PNkPzKVHq40R3ZLwo1DOkMQgLlf/gqrzc/RIBJ74PDuqSn90r3TGClBfAAZHLvN9XkKZg2OljI4dptL2K6FDA6VqAivEA3/Nravwyk6zCa5Gswu/U6ooLYORwsmfxwZ3Yw5neLC0TcjBg4B+PGQD8M3FcjgOBwC5q84BAC4dXgXdEmM9P0gvHybv7fJw09Oy0VCZBiOXKjGW+tP+LfAauk8cBrdylOqzZ7yBM/g1Ff43s1XcYYZ0hnM6mYbAoW/x6sLA5sZKAXVBawsqjeyzKFa8AxObQlg9VG/pyEowFGKjMFs9lFdKVB0sO1tefdUzmggLEL+tSmJ2lPFtdBBxVGobd6v4ZtiBke+AOerPedwIL8S0WYj/ji+h38H6Xwxuz27rYmuKz4yDP93ZS4A4J8/HsVJX0XWgFsGJ/As1qbjJSirbURiZBiG5SQEfDzJCItw/R/7msXh+puErsHtsh6ZAkAHCHb2ha4moslfhrqvqdswW1ScVW8dARLE78ogw2ACMoex++21i4vjGUKoPMVRPYOjAQ8cTrS8ImMOD3DWHy1CndXLK9Rq6b7cPVHfaMfL37MBmX8Y1w0JkX7OAEofCBjC2ADXZl/Q1w7qhNE9kmC1OfDk0l9998aR0APn273O7ql+adopT3H8HdkQzCMa3DEYgUinsZ3aOhw1p4i7o9OFxNBNjX3SQhxRh9NGgFNfAeRtYvdDxf/GnRj5pmh7BT+J89S8mvASVV0Za1+XiT7pMegUF476Rgd+OebFJHeb1XUlK1MG54NNp3GuvA7psRbcFchoBaMZSBvA7p/Z1uRXOp0Of7u2PywmPTYeL8EXO318z1VJ0yLeaHdg5X6NdU+5I+pwTvm2X4lbBifYiXIrU6mJFlrEOaIOJ3iFxhTgKIm7H05rV5PH1wAOG5DYw3VlFUooIKxtldpS1qoPaOOkbIkDjOHsvoyvh06ncytTeXGFyn2C9EaXKFxCymut4kiGhyf2hMUUYIdS5iXs9uzWFr/KSozAQxN6AgCe+/aAb0LrYmebeYCGaxuOFaOirhFJUWEYlqOR7il3/G0VDwWTP06UU+9SrXIGRwst4hzK4BA+kTGYfaHVlgBFhzxvE4rdU+6oWaLiV5zRGdrQNul0igiNAVeZ6seDhe1P3OaZi8gUWXQAi9YeR2W9Db1So3HDRRKIU911OB64Z3QOeqdFo7y2EX/7th39G6fyPFB6gnng8OP7CS9PTe2XDoM/Q0/lRjT7O+XbfqHQIs7RSqu4OIdKA6LtEOikogBHSYxhQFYbOhyHI7Smh3tCHNegQoBTqsGUuvh6yBvgXJKTgBiLESU1VuzMa8eDSEb9zZnSWizZcAoA8Pi03tJ84fMMTsE+jx0fJoMef79hAHQ64Mtd57D+aFH7x+R+VWkDAprFZbU5xLERmixPAf5lcOyNLsF+SGRwNNIqThkcSaEAR2m6tOGHU7CHlQfCooCskcquSyl4xqKhEqivVPa5S53twlpyXeUCVpmFxiaDXhyB0G43VZV07dHNeXX1EVjtDozsloixPQN3BwbAgsTodNYFc36Xx00GZcbh9hHZAICnlu1DfWM7YuvTzgsQrpvzkw3HilFZb0NytBkXZ2uoe8odrkerPA801nu3T9lp9nqbImR5nyiOZjI4WtLgBP+4BgpwlEYUGnvQ4fDyVNexLNsTipijAbPziljmskwLtJhSV8DNmDOxDzuJrz5woe2Oomp5TP72navA0l3sBD53qg8jGdpDp3OVkc601OFw/jSpJ1KizThdUou3fm7HG+eUNAHOcmd5alq/NG2WpwCmswqLBiC4ugzbwz0bqrYjuBRoIYNjs7pEzmoO2uS4DbOFPcC5bioha4BTVlaGGTNmIDY2FrGxsZgxYwbKy8vb3EcQBMybNw8ZGRkIDw/H2LFjsX+/a35TaWkp/vjHP6JXr16IiIhAVlYWHnzwQVRUVMj5p0hHp4ucOpxiZujnjjieYZLy61IStXQ4WhRFKii6HtMrGWEGPU4W1+B4UXXrG0rs4Auwz/X875j+5ZpBGejf2f+yj0dEofH2VjeJtpjw5BXMG2fhmmM4U1rrecOqAqDkGAAdkDXC7yU12OziiIwrBmT4fRzZ0emAhGx239tW8VBpEedoIYNTlQ9AYMaJMoj7fSYyhVkwCA71ul4DRNYAZ/r06di9ezdWrlyJlStXYvfu3ZgxY0ab+7z44ot49dVXsXDhQmzbtg1paWmYOHEiqqqqAADnz5/H+fPn8fLLL+PXX3/FkiVLsHLlStx9991y/inSYTQDmc6rzdNuOpyaYuDcDnY/VPU3HDUCHEHQ5uRjhUTGABBlNmJEN3biXNVWmUqGDM7PR4ux4VgJwgx6PDJJhuGxnd06qdrITl09MAPDchLQYHPg2eUHPG90mutv+gPhcX4v6ZejxaiqtyEl2oyhXVQe7Noevo5sKDnGbrX0WQoE9wyOWoOAxfJUhjayYnq9K5MUpDoc2QKcgwcPYuXKlXj77bcxYsQIjBgxAm+99RaWL1+Ow4c9T/kVBAELFizAk08+ieuvvx79+vXDf/7zH9TW1uLjjz8GAPTr1w9ffPEFrrrqKnTr1g3jx4/H3/72N3zzzTew2Wxy/TnSwtvF3YXGx34EILCTaoyGr/akQMGyjEhtCdDgzPJpwQOHo5DImOOVq7HEGRy7Q8D8FSx7c9uILshMkKGDLX0goDexCeBt+LnodDo8e20/GPQ6rDpwAWsOe/A9kag8xbunpvVPh16r5SlOgo9eOFrMhgYCf6/b6pkXmRqIAmMNlKc4Qd5JJVuAs2nTJsTGxmLYsGHiY8OHD0dsbCw2btzocZ+TJ0+ioKAAkya5SjRmsxljxoxpdR8AqKioQExMDIxGo8ffNzQ0oLKyssmPqrgb/vGrhaMdpDwFuH2pK5j25ALjmE7aaBHnRLtlcBSYg8MDnN1nylFY1YqgVOIMzsdb83CooAoxFiPuH9ddkmO2wGQB0p2Gf620i3N6pkbjzpHZAIB5X+9vKTjmHVRdRvm9nPpGuxhEamr2VGvE++hmrMVsaCCYwl3aQLXM/sQWcQ0IjDlB3kklW4BTUFCAlJSWw8JSUlJQUOC5zskfT01temJNTU1tdZ+SkhI8++yzuO+++1pdy/z580UdUGxsLDIzM739M+Sh0xDAaGFXm8VH2QTZYz+y34XieIbmqFGi0qrralQq81oR7Oz9IDOpMRYM7BwLQWCeOC1w2F0neAkyOMXVDXhpJfN8+tOkXoj3dySDN4hlqrYDHAB46PIengXH1YVOgz8d0MX/Tsb1R4tR1WBDWowFF2VpvDwF+NYq3ljvuqIPlQwOoL7Zn5ZaxDl8Zl+Quhn7HODMmzcPOp2uzZ/t25nQz1OXhCAI7XZPNP99a/tUVlbiiiuuQJ8+ffD000+3ery5c+eioqJC/DlzRuVo1Gh2dX2cWg+c284cdsPjgc5DVV2aIqjhhaPVlLrBbWqwQq9Hm2Wq2hIWbEEnyTTjv393CJX1NvTNiMGtw2UecJrZficVx11w/PpaN8Ex19+k9gUi/G/r/nYv+78MivIU4KbBOc38uNqi7BQAgXVeRUrU6q8FRKGxSp1UWmoR5/ASVXlwBjieazpt8MADD+Dmm29uc5vs7Gzs3bsXFy60fKMUFRW1yNBw0tLYG6ygoADp6a60bmFhYYt9qqqqMGXKFERFRWHp0qUwmUytrsdsNsNsNre5ZsXJvpQFN6c3uKa1dpsA6AO0rQ8G1JhHpcUWcU5MBrtqVKhtfmKfNLy86gh+OVaMmgYbIs1upwGuv4lMYsFXAGw7VYrPd7D3Nte9yAq/aLiwD7DWtluKvHpgBj7ekoctJ0vx7PIDePO2oa7yVAD6G/fylGbN/ZoT04mN5rA3sHJ5bCZgjmKeXGGRLOPMLzLFi4UQaRHniEJjtTI4zu8BLWlw+FDiIC1R+XwGS0pKQlJSUrvbjRgxAhUVFdi6dSsuuYSljrds2YKKigqMHOk59ZuTk4O0tDSsXr0agwcPBgBYrVasW7cOL7zwgrhdZWUlJk+eDLPZjK+//hoWi8XXP0N93HU4kU7RdaiOZ2gOD3DqSlm626TA/58WXYw5MRnA+Z2KZXB6pkahS2IETpfU4ucjRZja3+1LWNTfBFaestkd+L9l+wAAN1+cqUyZJjaTrbu6gBn+ZbetodHpdHjmmn6Y9tp6UXA8jguMA9DfrDtShBqrHRmxFgzOjPP7OIpiMLJyROlx4BMPF7A6Awt2zFGA3coe0+LFQiCo3SrOP/9aajLhGpyKsyyzJ8PoFjmRbbW5ubmYMmUK7r33XmzevBmbN2/GvffeiyuvvBK9ernaRHv37o2lS5cCYCec2bNn4/nnn8fSpUuxb98+3HHHHYiIiMD06dMBsMzNpEmTUFNTg3feeQeVlZUoKChAQUEB7Hb5RZqS0Wko8zuovsCuOKFjGZyOgCWOOaACsjv4AmBCbi6e1FqJCnAJjRUKcHQ6HSbmtlKmEjuoAhMYL9l4CocKqhAfYcJjU3oHdCyv0elcZSoPgzc90SvNJThe8NVGoMg5qyqAACeouqfcGfMo6+KMz2GlJ5NbBkywsy7EynMurViAM7o0h5pmf431zBsN0FaJKjqDBbeORvUHkfpBYDnodvjoo4/w4IMPil1RV199NRYuXNhkm8OHDzcx6Xv00UdRV1eHWbNmoaysDMOGDcOqVasQHR0NANixYwe2bNkCAOjevWlHxsmTJ5GdnS3jXyQhJgs7QXAvnM5DgUgNmDspgU7HvtRLj7MvdbmzKjXFbDQEdC6tgZZQ0AuHM7FPKt7+5SR+OlwIm90Bo8F5rcNPYgFkcC5U1mPBD2xa+GNTessrLG5O50uAg9+0afjXnIcu74Gv95xHevlWIAxASh+/P4v1jXb8cDDIylOcgTezH3ccdjbfy1rNbhuq2K1OD2QO83ycYEXNDA4v15simBZTKxiMLOCqyGNlKi1ll7xA1gAnISEBH374YZvbNLeM1+l0mDdvHubNm+dx+7Fjx7ZtMx9MZF/qCnA6QveUOzEZrgBHbnh5KrazMuUwX1HQzZgzpEs84iNMKKttxLZTZaIBoCiwDCCD89y3B1HdYMPgrDj8dqjCHYvc0fiM0/DPC40IFxyXfv4mAKA6bRii/Hz6tYcLUWu1o1NcOAYFS3mqLfQGwBLDfkIdNTM47gJjrema4jKdAU6ea1h0kBBcBbVQw10jEOruxc1R0gtHqy3iHH5VpGAGx2jQY3xvD2WqADM4G44V45s956HXAc9e00/5Ek36QCaWrSn0fq4SmOB4vOUIAOCjC/4HZd+I5ak06WZtEcrAMzhqBDhabBHncKFxELaKU4CjJp0vAVL6ApnDgbQBaq9GWZT0wtGywBhwey2UHT7K28VXHSiAze5sDQ4gg9Ngs+P/vmLC4hnDu6BfJ4nnTXmDKdz1WTrTvh8OR1dXhi42ptN683Q61npyOG6FOqsd/9t+Btct2iDqbzQ9e4rwDM/g1FcAjXXKPrdo8qehDipObPCa/VGAoyYmCzBrI3D390GnTg8YRQMcp5GbFgXGgEtkbK0C6pVz2b6sZxIiwgw4W1aH297diuLqhoAyOG+vP4kTRTVIijJjjhzzprwl03vDP5HTzCm9yJKNEsRi3tf70WBru2nhcEEVnv5qHy55/gf8+fO92JVXDqNehztHZWOg1MNECfmxxLLGD0D5LI6mMzjB64XTwb5VCc2gSolKowGOOQowOzUOCpapIsKMWHDTIESGGbDxeAmuem09HH52UZ0tq8W/fmLC4iem9UZseOu+VLLT2bdOKgDi/KnY3HFIjjbjVHOHYyd1Vjs+33EW1y/agMkLfsZ/Np1GVb0NmQnheHRKL2ycOx5PX9WXylPBiE7net8rbfYntohrMcDhJargy+DIKjImiFZRqiwjCNrP4ADs9SiqZCe6ZOWyH5P6puGrB0bh9x/sQHHRBegtzONEiEqFL1/Rz3xzAPWNDlySk4DrBqt8kuYBTsGvrNRgCm9/H6fYP6zbaDzVJRcPfbobC9ccw7WDO6FzfAQOF1Thk615+HLnWVTWs6G+Rr0OE/ukYvqwLIzqlhRcLeGEZ6LSWKZC6ZZoLboYc9xLVF4K97UCBTiEOvAAp/oCYG8EDDJd8VcXshZX6LQ1Rbw50elA0SFFMzic7inR+Or+UXj146+BPKBCiMCzy47guWv7wWJq31l7zaFCrDpwAQa9Ds9e00/97EVcFtNTVF9ghn/tzZSqKwMKmHYIXS7F1VEposPxQ5/uBgDsOF0mbp6ZEI6bL87Cb4Z2Rkq0BrvyCP9RK4MjuhhrMcDpDEAH2OqY5UZU8IznoBIVoQ4RSYDeBECQ13dCbBHPZDPAtIoa4yvciLaY8JcxrFW8UIjH5zvO4oY3NrpmNLVCfaMdT3+9HwBw16hs9EqLln2t7aLTuZWpvNDhnN4EQAASewDRqaLDsUGvw47TZdhxugxGvQ5T+6Xh/bsuwbpHxuH+cd0puAlFuPZMyQyOtYbNIgS0mcExml0dZkHWSUUBDqEOer3L4E5OobFYntJoBxVHdDNWPoPD0TmFlckZWUiIDMP+85W4auEvWHek9Snni9YeR15pLdJiLHjo8p5KLbV93P1w2oMP2HSzbeiVFo0npuWif6dY/HlyL2x8fDzeuHUILuuZTKWoUEaNDA4XGJs17DcUpEM3KcAh1EMJobHWBcYcFdyMW+C8ao1LzsTyP16KgZlxKK9txB3vbcW/fjwKh6Opweap4hosXsde3/+7sg+izBqqeLtncNozBj21nt1mj27y8N2X5uCbP17KsjUxlK3pEKiRwRFbxDWYveEE6dBNCnAI9VCiVVycfKz1AIcHe8q5GbfAzQMnIy4c/71vOKYPy4IgAK+sPoJ739+OirpGAMyB/Omv98Nqc2B0jyRM6x/YcE7JyRjMDP+qL7R91VlfwcTIQEDzp4gQQQ2zPy23iHPEoZsU4BCEdygR4JQ4S1Raz+BEayeDw69izUYDnr+uP168cQDCjHr8eKgQVy/8BQfzK/H9/gKsO1KEMIMef71ag23RpnA2OBJoW4eTtxkQHOz9ERNks6MI6YlKYbdKlqi03CLOETM4VKIiCO/gH2i5Joq7t4hr1cWYI3aVFbKuMjUQMzhNszG/HZqJL/8wEp3iwnG6pBbXLdqAp5axrqPfX9YVXZP9ndwkM529MPwTy1OUvSHgKlHVFAF2mzLPGQwlqlgqURGEb0TLLDKuvgA0Oicfa7lFHFCuq6wtxAxOS5O/fp1isfyPl+Kynsmob3SguNqKTnHhuH9cd4UX6QNch9OW0PiUU2Dc5VL510Non8gkdr6AwIIcJQimElV5XvuaNg1BAQ6hHnLrTkrcW8TD5HkOqdDr1S9TtZLB4cRHhuG9Oy7GQxN6oGtSJF76zQCEh7Xvk6Mamdzwb6/n2UL1lUD+HnafMjgEwKanRzrLVEoJjbVs8sfhXVTWKldLexBAAQ6hHu5TtB1tz/3xi2ARGHOUaJtvDWsNO3kBHjM4HINeh4cn9sRPj4zFyG5JCi3OT+K6sC8rh80VyLhzZgsg2Fl2L1aDQw4JdVC6VVzM4Gj4PRgWwbLMQFCVqSjAIdQjKpWlgx02edLBwdIizlEzg8PLYqYIwKwBsz4p0Ona9sNxzp9CNpWnCDeUbBWvr3BdWGg5gwME5dBNCnAI9TAYXScTObxwgkVgzFHTzZi3xUalBtWsmXZpa/AmD3BIf0O4o2QGh2dvwuNZlkTLBOHQTQpwCHWRs1U8GIZsuqOmm7E4RVxjfjaBIgqNmxn+NVSzOVUA6W+IpiiZwRFbxDVcnuK4D90MEijAIdRFrqniTVrEgyTAcdckKY17BieUEA3/CppeeXL9TVyW68qUIABXBqe6UP7nqtTwkM3mxHVht+Wn1V2HD1CAQ6iLXGWZqnygsRbQGYD4LtIeWy6UMD5sjVDN4IRFAKn92H13PxwqTxGtwYN8JewaeImKf/a1TBC6GVOAQ6iLXF/qXGAclwUYTNIeWy7cfYGU9poI1QwO4CY0dgtwxAGbFOAQzYhScFxDMLSIc4Jw4CYFOIS6yOWFE2wCY8AV4NgbgLoyZZ87VDM4QEuhsbUGOLeD3Sf9DdEcsUR1Qf4LDR4saLlFnMMzOHVlTMMWBFCAQ6iLXCWqYPPAAQCTBQhPYPeVLlOFcgaHBzj5e4HGetYy7rCxK9K4IClfEsrBPwN2q7wXGoIAFB5k95N6yvc8UmGJZT9A0JSpKMAh1MW9RCXl1VKweeBwxPlcCguNQzmDE58NRCYDjkZm+MfLU11GhVZLPCENRjNr2wbk1eFUXwBqi5kXWEqufM8jJUE2dJMCHEJd3MsytaXSHTfYWsQ5argZ26xAnfO1jwrBAEencxu8udXN4I/KU0QrKNEqXsAG1iKxB2AKl+95pCSWAhyC8B6jmV1dA9KVqRyO4NTgAPIPIPUEL0/pTUBEgnLPqySdh7Lbkz+76W9IYEy0ghJmfxd+Zbdp/eR7DqkJsk4qCnAI9ZF6REFVPmCrZy3iweZxInrhqBDghJqLsTu8k+roaqatiM4A4nPUXROhXZTM4KT2le85pIZKVAThI2InlUQZHC4wju8SPC3iHLmMD9tC1N+EoMCYkzGYBbxw6ryyLw3dYI4IHCXM/i7wAKe/fM8hNUHmZkwBDqE+UnvhBKvAGGCZBUBZkTG/Sg1F/Q0nLLJpKYD0N0RbyG3211gPFB9l94OqREUZHILwDakDnGBsEeeoITLmOoNQzuAALqExQA7GRNtEuXnhyEHRITYqJDzBVaIPBniAU1PIgjSNQwEOoT5Sl6hKgmwGlTv8ZFdXCjTWKfOcHSGDA7j8cKJSgzP4JZSD2yXIlcHh5am0fsFVKg2PB0yR7H7FWXXX4gUU4BDqI3kGJ0g7qAB2AjFa2H2lylQdJYPT52pg4HRgyvzg+lIhlEfucQ0FQai/AdjnRixTaX/oJgU4hPpIOa7B4QDKTrL7iUEY4Oh0yguNO0oGxxQOXPcG0O8GtVdCaB0e7Fur5RlL4J7BCTaCqFWcAhxCfbjuxFoN1FcGdqzKc6xFXG90mVIFG0oLjTtKBocgvMUc7SrFSJ3FEQSgwOmBkxqMAU7wCI0pwCHUJyzSNeMk0CyO2CKeDRiMgR1LLUShscTzuTzhsDPBIBD6GRyC8IVomTqpKs8B9eXsIiy5l7THVoIgahWnAIfQBlIJjYO5RZwjuhkrkMGpKQYEBwCdy1GaIAj5zP64/iapF3NyDzaoREUQPiKV0DhYZ1C5Iw7cVKBVnJ+8I5ODN+NFEHIQlcJupTb7C8YRDe7EdWG3VKIiCC+ROsAJxg4qToyCGRzS3xCEZ+RqFQ/GEQ3u8BJVVT5gb1R3Le1AAQ6hDSQvUQVxgKOkyLijdFARhK/IZfYnjmgI0gxOZDJgMLPSthI6wQCgAIfQBlJkcBx2txbxYC5RuQ0fdTjkfS7K4BCEZ+TI4FhrXBdhaUHmgcPR6106HI2XqSjAIbRBtAQBTsVZNinaEOZKowYjUakAdIDDBtQUyftclMEhCM/IkcEpPAhAACJTXBqfYCRIOqlkDXDKysowY8YMxMbGIjY2FjNmzEB5eXmb+wiCgHnz5iEjIwPh4eEYO3Ys9u/f3+q2U6dOhU6nw7Jly6T/Awjl4BmcQIS1XH8Tnw3oDQEvSTUMJrdhfzILjcVJ4hTgEEQT5MjgFAS5wJgTJF44sgY406dPx+7du7Fy5UqsXLkSu3fvxowZM9rc58UXX8Srr76KhQsXYtu2bUhLS8PEiRNRVVXVYtsFCxZAR5broQEPcOrKAGutf8coDQH9DUcpoTG/Oo2iEhVBNIFnNetKAZtVmmNecF6sB6v+hhMkreKyBTgHDx7EypUr8fbbb2PEiBEYMWIE3nrrLSxfvhyHDx/2uI8gCFiwYAGefPJJXH/99ejXrx/+85//oLa2Fh9//HGTbffs2YNXX30V7777rlx/AqEklliXc6i/4tpgHrLZnGgJMlreIGpwKINDEE2ISAD0JnZfqjKVOKIhSPU3nNgOnsHZtGkTYmNjMWzYMPGx4cOHIzY2Fhs3bvS4z8mTJ1FQUIBJkyaJj5nNZowZM6bJPrW1tbjllluwcOFCpKW1f2JuaGhAZWVlkx9CYzSZweSnMp9ncIJxBlVzxAyOjAGOvdEVTFKAQxBN0elcmU0pPoeCEEIZnA4e4BQUFCAlpaWIKiUlBQUFnmua/PHU1Kbp8tTU1Cb7PPzwwxg5ciSuueYar9Yyf/58UQcUGxuLzMwgFqCGMoF2UoWCizFHiYGbRYcBRyNgjgFiOsv3PAQRrPBMS57ni3KfKD8NNFSyJoikHoEfT014iaryHOte1Sg+Bzjz5s2DTqdr82f79u0A4FEfIwhCu7qZ5r933+frr7/GTz/9hAULFni95rlz56KiokL8OXNG23XDDksgXjgOO1B2it0P5hZxjhIlqvzd7DZ9IGv9JAiiKd3GsdsTawM/Fjf4S+7NGgmCmeh0NkvLYZPeCFFCfPZmf+CBB3DzzTe3uU12djb27t2LCxda1i2LiopaZGg4vNxUUFCA9PR08fHCwkJxn59++gnHjx9HXFxck31vuOEGjB49GmvXrm1xXLPZDLM5CGd+dDQCKctUnGHZCEOYK1AKZpQQGefvYbfpA+V7DoIIZrqOZbenNwGNdYAp3P9jBbvBnzt6AzvPlp9mZapYbZ5zfQ5wkpKSkJSU1O52I0aMQEVFBbZu3YpLLrkEALBlyxZUVFRg5MiRHvfJyclBWloaVq9ejcGDBwMArFYr1q1bhxdeeAEA8Pjjj+Oee+5psl///v3xj3/8A1dddZWvfw6hJQIpy/DyVHxOcLeIc6TwBWoPCnAIom2SerLPYtV5IG+zK6PjD6HSIs6Jy2IBTsUZACPUXo1HZMtL5+bmYsqUKbj33nuxefNmbN68Gffeey+uvPJK9OrlGhHfu3dvLF26FAArTc2ePRvPP/88li5din379uGOO+5AREQEpk+fDoBlefr169fkBwCysrKQk5Mj159DKEEgJapQGLLpDs/gWKuAhpYWCQHjsLtOuOmDpD8+QYQCOp0ri3NiTWDHCqUMDuAmND6t7jraQNbxwR999BEefPBBsSvq6quvxsKFC5tsc/jwYVRUVIj/fvTRR1FXV4dZs2ahrKwMw4YNw6pVqxAdHS3nUgktEIjIOBRmULljjmbi34ZKltFKlvj9X3wUaKxlrfmhEhQShBx0Gwfs+TgwHU59pUsjGOwt4pwgcDOWNcBJSEjAhx9+2OY2giA0+bdOp8O8efMwb948r5+n+TGIIIVncGoKmbGWMcz7fUMtgwMwIV9DJUuPJ/eU9ti8PJXWPzRKegQhFzlj2G3+XqCmBIhM9P0YhQfYbXQG89cJBXgGR8Nmf9Q6QWiHiEQmEgZ8N/sLJRdjjpxCY95BlTFI+mMTRCgRnQqk9AUgACfX+XeMUNPfAEExcJMCHEI7NDH786FMZbe50r+h4IHDievCbouPSH9sEhgThPcEqsMJNf0N4CpRVZxlJoYahAIcQlvEO4XiG/8FOBze7VORx/wYjJbQaBHndLqI3Z7bLu1xHQ6WbgcowCEIb+DdU8fX+vdlzh2MQymDE9MJ0OkBWz1QU6T2ajxCAQ6hLcbOZWWqw98CPzzt3T58BlV8TmgZ1nUaym7P7ZLWLbT0BOvOMlqApF7tb08QHZ0uI9lcqoo8l97PWxwO4IJTg5MaIgJjgGkko51ldI2WqULo24AICbKGAdcsYvc3vgbs+E/7+4SiwBgAUnJZl5O1StoyFdffpPYDDLL2GRBEaBAWCWQ65yr62k1VdhJorAGM4aF3jtL4TCoKcAjtMeA3wJjH2f1v57R/QhEFxiHmg6Q3uMpUZ7dJd1zS3xCE7/irw+EC45Tc0OtYjNW20JgCHEKbjH0c6Hcj09b89zagqI0MRigN2WxOpyHs9qyEOhwKcAjCd3iAc/Jn30rGosC4r+RLUh3eSaXRVnEKcAhtotMB17zO0sL1FcDHv2EeFJ7gGZxQS/8CQGeuw9khzfEEwRXgUIs4QXhPxmDAHMvOR+d3e78fH7IZKgZ/7oglKgpwCMI3TBbg5o9Zu3TZKeCz3wG2hqbb2BuBMqdVeEhmcJwBTuEBoKE68OOVnwbqy5lgMjk38OMRREfBYARyRrP7vpSpQrFFnEMlKoIIgMgkYPp/2ZVT3ibg6z82bdMszwMEOxPwRae3fpxgJSYdiOkMCA7g/K7Aj8ezN6l9fHOKJgjCTYez1rvt68pc5ZuQLFG5uRlr0AuHAhxC+6T0Bn77H0BnAPZ+Bvz8sut3vIMqIcRaxN3p7NThSOGHw1PrNGCTIHynq9MP58wWwFrT/vbc/yY2CwiPk21ZqhHbmd1aq1kwpzFC9BuBCDm6jQOueIXdX/McsO8Ldj/Uhmx6gpeppBAak8CYIPwnsRsry9itwOlN7W8v6m9CsDwFAKZwIDKF3ddgmYoCHCJ4GHonMOIBdn/pH4AzW0NbYMzp7BbgBJIGdhcYUwaHIHxHpwO6OodveqPDueBsEQ9F/Q1Hw0M3KcAhgouJzwC9pgH2BuCTW1xXUaEoMOakD2LlueoCoPKc/8epPAfUFrNjhaIegCCUgJepvNHhhHoGB9D00E0KcIjgQm8Arn+LtVzWFruukEI5gxMW4QpIAilT8exNSi7rUCMIwndynBmcC/uA6sLWt7PbgMKD7H4oZ3DETirK4BBE4JijgFs+a9o1FcoaHMDND0eCAIf0NwThP1HJLk+bE+ta3670OMs0myJdQ4RDESpREYTExHYCbvkUCIsG4rNDs0XcHVFoHIDhH3VQEYQ0eNMuzkc0pPYJ3Q5PwM3s77S66/BACL/qRMiTMQh4aDdw389M/BfKdL6Y3Z7fxcwN/YEyOAQhDaIOZ03rwv9QNvhzR8NuxhTgEMFNZBJgiVV7FfKT2J2ZHdrqmKuxr1QVMJEydKEteCQIJcgaARjCmHC/5JjnbTqCwBhwaXDqy4H6SlWX0hwKcAgiGNDr3SaL+6HD4dmbpJ5AWKR06yKIjkhYBJA1nN0/3kq7uJjBCcEZVO6Yo4DweHZfYzocCnAIIlgIZPAmDdgkCGlpS4dTUwJU5bP7qX2UWpF6aLRMRQEOQQQLXIdzdpvv+5L+hiCkhetwTq1nLeHucPuK+BzAHK3sutRAo0M3KcAhiGChk3MmVfERoK7ct30pwCEIaUkfCFjigIZK4PzOpr/rKPobTlwXdltBAQ5BEP4QmcRa4oGWJ9S2qClx1cbTBki+LILokOgNrrENzXU4HUV/w4nTptkfBTgEEUz4M3gzfze7TegGWGIkXxJBdFha0+F0tAwOlagIgggYUYfjS4BD5SmCkAWuwzm7FWioYvdtVqDoELsf6h44HI26GVOAQxDBhPvIBm8ni/MMDnVQEYS0JOQw/YnDBpzeyB4rPgI4GgFzjOuLP9ThJaqaIqCxTt21uEEBDkEEE2n9mcFYbQlQdsq7fSiDQxDy0c2ZxeE6HFF/0zf0HdY5ljgW0AGa0uFQgEMQwYTR7Br0502Zqq7MFQiRwJggpKe5DqejjGhwR6dz6XC8vfBSAApwCCLY4DocbyaL5+9lt3FdgIgE+dZEEB2VnDEAdEDRQaAyv+MJjDn8wsub85JCUIBDEMGGL51UVJ4iCHmJSHB9vk6u63gt4pysYew2b7O663CDAhyCCDY6Ow3/CvYCtoa2t6UAhyDkh+tw9n7GhLY6PZCSq+6alCbTOZvr7PaWzs4qQQEOQQQb8TlARCJgtwIFv7a9Le+gSh8k96oIouPCdTjHf2K3Cd3YQM6ORHJvwBILNNa4RlWoDAU4BBFs6HTelanqK4GSY+w+ZXAIQj4yhwNGi+vfHU1/AwB6PZDJy1Rb1F2LEwpwCCIYcffDaQ2uBYjpBEQly78mguiomCxA1gjXvztSB5U7YoCzSd11OKEAhyCCET54s60Mzvnd7JayNwQhP1yHA7g6ijoaPMg7s8V7I1IZoQCHIIIRHuCUnQRqij1vIwqMBymyJILo0HAdDtBxMzidLgL0JqAqXxNzqSjAIYhgJDwOSOrJ7p/b4Xkb6qAiCOVI7Q8MuhUYcicQk6H2atTBFO4632igXZwCHIIIVtoSGltrgeLD7D4FOAQhP3o9cO3rwFULOs6IBk9kOdvFz1CAQxCEv3A/HE9C4wv7AMEBRKUCMenKrosgiI4LD3A00ElFAQ5BBCt8ZMPZHYDD0fR3VJ4iCEINeCdV4QGgrlzVpcga4JSVlWHGjBmIjY1FbGwsZsyYgfLy8jb3EQQB8+bNQ0ZGBsLDwzF27Fjs37+/xXabNm3C+PHjERkZibi4OIwdOxZ1ddoZ004QspPSFzCGAw0VLr8bjmjwRwEOQRAKEpXCjA4hAGe3qboUWQOc6dOnY/fu3Vi5ciVWrlyJ3bt3Y8aMGW3u8+KLL+LVV1/FwoULsW3bNqSlpWHixImoqqoSt9m0aROmTJmCSZMmYevWrdi2bRseeOAB6PWUkCI6EAYjkDGI3W9epjpPHVQEQaiEWKZSV4djlOvABw8exMqVK7F582YMG8ZSVm+99RZGjBiBw4cPo1evXi32EQQBCxYswJNPPonrr78eAPCf//wHqamp+Pjjj3HfffcBAB5++GE8+OCDePzxx8V9e/ToIdefQhDapdMQZqp1djswaDp7rLGeTTYGKINDEITyZA4Ddn+keoAjW8pj06ZNiI2NFYMbABg+fDhiY2OxceNGj/ucPHkSBQUFmDRpkviY2WzGmDFjxH0KCwuxZcsWpKSkYOTIkUhNTcWYMWPwyy+/yPWnEIR2EXU4bqngwgOAwwaEJwCxndVZF0EQHRdu+Fd2sqU+UEFkC3AKCgqQkpLS4vGUlBQUFBS0ug8ApKamNnk8NTVV/N2JEycAAPPmzcO9996LlStX4qKLLsKECRNw9OhRj8dtaGhAZWVlkx+CCAn4yIYL+1lrOODS32QM6tjtqgRBqENSD+D+rcDsfax9XiV8fuZ58+ZBp9O1+bN9O9MD6DycXAVB8Pi4O81/776PwxkN3nfffbjzzjsxePBg/OMf/0CvXr3w7rvvejze/PnzRaFzbGwsMjMzff2zCUKbxHQCotIAwe7qnKIOKoIg1ESnA5J7qRrcAH5ocB544AHcfPPNbW6TnZ2NvXv34sKFCy1+V1RU1CJDw0lLSwPAMjnp6S7vjsLCQnEf/nifPn2a7Jubm4u8PM/W0HPnzsWcOXPEf1dWVlKQQ4QGOh3L4hxazoTGXUZQgEMQBAE/ApykpCQkJSW1u92IESNQUVGBrVu34pJLLgEAbNmyBRUVFRg5cqTHfXJycpCWlobVq1dj8ODBAACr1Yp169bhhRdeAMCCp4yMDBw+fLjJvkeOHMHUqVM9HtdsNsNsNnv9NxJEUMEDnLPbAJuVlasACnAIgujQyJY/ys3NxZQpU3Dvvfdi8+bN2Lx5M+69915ceeWVTTqoevfujaVLlwJgpanZs2fj+eefx9KlS7Fv3z7ccccdiIiIwPTp08Vt/vznP+O1117D559/jmPHjuH//u//cOjQIdx9991y/TkEoV3EkQ07gKJDgN0KmGOB+Bx110UQBKEisrWJA8BHH32EBx98UOyKuvrqq7Fw4cIm2xw+fBgVFRXivx999FHU1dVh1qxZKCsrw7Bhw7Bq1SpER0eL28yePRv19fV4+OGHUVpaioEDB2L16tXo1q2bnH8OQWiTjMGATg9UngWOfs8eSx9AAmOCIDo0OkEQBLUXoTSVlZWIjY1FRUUFYmJi1F4OQQTOopFA4X4gpjMLdEY8AEz+m9qrIgiCkBRfvr/J+pcgQgHeLl55lt1mDFZvLQRBEBqAAhyCCAV4gMMhgTFBEB0cCnAIIhTo5BbghEU5h90RBEF0XCjAIYhQILkXC2wAIG2A6gZbBEEQakNnQYIIBfQGoNNF7D6VpwiCIORtEycIQkEu+T1Qed41VZwgCKIDQwEOQYQKuVexH4IgCIJKVARBEARBhB4U4BAEQRAEEXJQgEMQBEEQRMhBAQ5BEARBECEHBTgEQRAEQYQcFOAQBEEQBBFyUIBDEARBEETIQQEOQRAEQRAhBwU4BEEQBEGEHBTgEARBEAQRclCAQxAEQRBEyEEBDkEQBEEQIQcFOARBEARBhBwU4BAEQRAEEXIY1V6AGgiCAACorKxUeSUEQRAEQXgL/97m3+Nt0SEDnKqqKgBAZmamyishCIIgCMJXqqqqEBsb2+Y2OsGbMCjEcDgcOH/+PKKjo6HT6SQ9dmVlJTIzM3HmzBnExMRIemzCBb3OykCvszLQ66wc9Forg1yvsyAIqKqqQkZGBvT6tlU2HTKDo9fr0blzZ1mfIyYmhj48CkCvszLQ66wM9DorB73WyiDH69xe5oZDImOCIAiCIEIOCnAIgiAIggg5KMCRGLPZjKeffhpms1ntpYQ09DorA73OykCvs3LQa60MWnidO6TImCAIgiCI0IYyOARBEARBhBwU4BAEQRAEEXJQgEMQBEEQRMhBAQ5BEARBECEHBTgSsmjRIuTk5MBisWDIkCFYv3692ksKOebPn4+LL74Y0dHRSElJwbXXXovDhw+rvayQZ/78+dDpdJg9e7baSwk5zp07h1tvvRWJiYmIiIjAoEGDsGPHDrWXFVLYbDY89dRTyMnJQXh4OLp27YpnnnkGDodD7aUFNT///DOuuuoqZGRkQKfTYdmyZU1+LwgC5s2bh4yMDISHh2Ps2LHYv3+/YuujAEciPvvsM8yePRtPPvkkdu3ahdGjR2Pq1KnIy8tTe2khxbp163D//fdj8+bNWL16NWw2GyZNmoSamhq1lxaybNu2DW+++SYGDBig9lJCjrKyMowaNQomkwnfffcdDhw4gFdeeQVxcXFqLy2keOGFF7B48WIsXLgQBw8exIsvvoiXXnoJ//rXv9ReWlBTU1ODgQMHYuHChR5//+KLL+LVV1/FwoULsW3bNqSlpWHixIniPEjZEQhJuOSSS4SZM2c2eax3797C448/rtKKOgaFhYUCAGHdunVqLyUk+f/27iek6TaAA/h37s2pacvN3AyZGAxdTkjdJZMkCoksDKG/VsZOgtZsIJZB2cHVyUMUxoq8lOihIrslWS4LMqyVdBHL1AqRLlYsHW3Pe4h3L3sN3kNzTz5+P/A7/J7D/P4ue74++z2/39evX4XVahV9fX2ivLxcuFwu2ZGU0tzcLMrKymTHUF5lZaVwOp1RY9XV1eLQoUOSEqkHgLhz507kPBwOC7PZLC5cuBAZm5ubE3q9Xly5ciUumbiCEwPBYBDDw8OoqKiIGq+oqMDTp08lpVoeZmdnAQAGg0FyEjXV19ejsrIS27Ztkx1FSb29vXA4HNizZw8yMzNRVFSEq1evyo6lnLKyMjx48ACjo6MAgFevXmFwcBA7duyQnExd4+PjmJ6ejpoXdTodysvL4zYvLsuXbcba58+fEQqFYDKZosZNJhOmp6clpVKfEAJutxtlZWWw2+2y4yinu7sbL168wPPnz2VHUda7d+/Q0dEBt9uNlpYWDA0N4fjx49DpdDhy5IjseMpobm7G7Ows8vPzodVqEQqF0NbWhgMHDsiOpqx/5r5fzYsTExNxycCCE0MajSbqXAixYIxip6GhAa9fv8bg4KDsKMqZmpqCy+XC/fv3kZSUJDuOssLhMBwOBzweDwCgqKgIb968QUdHBwtODPX09ODGjRvo6upCQUEB/H4/GhsbsXbtWtTW1sqOpzSZ8yILTgxkZGRAq9UuWK2ZmZlZ0F4pNo4dO4be3l74fD5kZ2fLjqOc4eFhzMzMoKSkJDIWCoXg8/lw6dIlzM/PQ6vVSkyohqysLKxfvz5qzGaz4datW5ISqampqQknT57E/v37AQCFhYWYmJjA+fPnWXAWidlsBvBzJScrKysyHs95kffgxEBiYiJKSkrQ19cXNd7X14fS0lJJqdQkhEBDQwNu376N/v5+5Obmyo6kpK1bt2JkZAR+vz9yOBwO1NTUwO/3s9zEyKZNmxY85mB0dBQ5OTmSEqkpEAggISF6utNqtdwmvohyc3NhNpuj5sVgMIiBgYG4zYtcwYkRt9uNw4cPw+FwYOPGjfB6vZicnERdXZ3saEqpr69HV1cX7t69i7S0tMiqmV6vR3JysuR06khLS1twX9PKlSthNBp5v1MMnThxAqWlpfB4PNi7dy+Ghobg9Xrh9XplR1PKrl270NbWBovFgoKCArx8+RLt7e1wOp2yoy1p3759w9jYWOR8fHwcfr8fBoMBFosFjY2N8Hg8sFqtsFqt8Hg8SElJwcGDB+MTMC57tZaJy5cvi5ycHJGYmCiKi4u5dXkRAPjl0dnZKTua8rhNfHHcu3dP2O12odPpRH5+vvB6vbIjKefLly/C5XIJi8UikpKSxLp168Tp06fF/Py87GhL2sOHD3/5fVxbWyuE+LlV/OzZs8JsNgudTic2b94sRkZG4pZPI4QQ8alSRERERPHBe3CIiIhIOSw4REREpBwWHCIiIlIOCw4REREphwWHiIiIlMOCQ0RERMphwSEiIiLlsOAQ0ZLT2tqKDRs2yI5BRH8wPuiPiP4o//em4dra2sgLP41GY5xSEdFSw4JDRH+Uf94vBgA9PT04c+ZM1Aspk5OTodfrZUQjoiWEP1ER0R/FbDZHDr1eD41Gs2Dsvz9RHT16FLt374bH44HJZMLq1atx7tw5/PjxA01NTTAYDMjOzsb169ej/tbHjx+xb98+pKenw2g0oqqqCu/fv4/vBRPRomDBISIl9Pf349OnT/D5fGhvb0drayt27tyJ9PR0PHv2DHV1dairq8PU1BQAIBAIYMuWLUhNTYXP58Pg4CBSU1Oxfft2BINByVdDRL+LBYeIlGAwGHDx4kXk5eXB6XQiLy8PgUAALS0tsFqtOHXqFBITE/HkyRMAQHd3NxISEnDt2jUUFhbCZrOhs7MTk5OTePTokdyLIaLf9pfsAEREsVBQUICEhH//ZzOZTLDb7ZFzrVYLo9GImZkZAMDw8DDGxsaQlpYW9Tlzc3N4+/ZtfEIT0aJhwSEiJaxYsSLqXKPR/HIsHA4DAMLhMEpKSnDz5s0Fn7VmzZrFC0pEccGCQ0TLUnFxMXp6epCZmYlVq1bJjkNEMcZ7cIhoWaqpqUFGRgaqqqrw+PFjjI+PY2BgAC6XCx8+fJAdj4h+EwsOES1LKSkp8Pl8sFgsqK6uhs1mg9PpxPfv37miQ6QAPuiPiIiIlMMVHCIiIlIOCw4REREphwWHiIiIlMOCQ0RERMphwSEiIiLlsOAQERGRclhwiIiISDksOERERKQcFhwiIiJSDgsOERERKYcFh4iIiJTDgkNERETK+Rvxx9J2SSDoUwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -52,7 +53,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHFCAYAAAAzCLlHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0uElEQVR4nOzdd3xUZfb48c+dkkkPSSAJoYbeO9KkFxFFsSv27qLuYt2f4n4XXQV7F9cuFhAL2JGmdOm9dxJKSO/JTGbm/v64uTcJaTPJTALreb9evJJMyXNngLnnnnOe51FUVVURQgghhDhHmRr6AIQQQgghqiPBihBCCCHOaRKsCCGEEOKcJsGKEEIIIc5pEqwIIYQQ4pwmwYoQQgghzmkSrAghhBDinCbBihBCCCHOaRKsCCGEEOKcJsGKEA3s008/RVEUNm3a1NCH8pc2YsQIunXr1tCHwfTp01EUpaEPQ4hzigQrQgghhDinSbAixP+4wsJCZAuwqhUUFDT0IQghaiDBihDnidWrVzN69GjCwsIIDg5m8ODB/PLLL+Ueo5eUFi9ezB133EGTJk0IDg7GbrcDMG/ePAYNGkRISAihoaFcdNFFbN26tdzvuO222wgNDeXQoUNMmDCB0NBQWrRowSOPPGL8Hv1xiqJU+mf69Ok+fe3r169n4sSJREdHExgYSNu2bZk6dSoAq1atQlEU5s6dW+F5n332GYqisHHjxnKvbefOnYwbN46wsDBGjx5d5bgLFiwgODiYu+66C6fT6fHx/vjjjwwaNIjg4GDCwsIYO3Ysf/75Z4XH/fLLL/Tq1QubzUZCQgIvv/xypb9PVVVmzZpFr169CAoKIjIykquvvpojR454fExCnM8kWBHiPLBixQpGjRpFdnY2H330EXPnziUsLIyJEycyb968Co+/4447sFqtfP7553z77bdYrVZmzJjBDTfcQJcuXfj666/5/PPPyc3NZejQoezZs6fc84uLi7nssssYPXo0P/zwA3fccQevvfYaL7zwgvGYf/3rX/z555/l/tx0000AdOnSxWevfdGiRQwdOpTExEReffVVFi5cyFNPPcWZM2cAGDp0KL179+add96p8Ny3336b/v37079/f+M2h8PBZZddxqhRo/jhhx94+umnKx33tdde45prruHJJ5/kww8/xGKxeHS8c+bM4fLLLyc8PJy5c+fy0UcfkZmZyYgRI1i9erXxuGXLlnH55ZcTFhbGV199xUsvvcTXX3/NJ598UuF33nvvvUydOpUxY8bw/fffM2vWLHbv3s3gwYON90GI/2mqEKJBffLJJyqgbty4scrHDBw4UI2JiVFzc3ON25xOp9qtWze1efPmqtvtLve7brnllnLPT0xMVC0Wi/rggw+Wuz03N1eNi4tTr732WuO2W2+9VQXUr7/+utxjJ0yYoHbs2LHKY/z6669VRVHUJ598suYX7YW2bduqbdu2VQsLC6t8jP66t27daty2YcMGFVBnz55t3Ka/to8//rjC7xg+fLjatWtX1eVyqQ888IAaEBCgfvHFF14dq8vlUuPj49Xu3burLpfLuD03N1eNiYlRBw8ebNw2YMAANT4+vtzrysnJUaOiotSyH81//vmnCqivvPJKubGSkpLUoKAg9fHHH/fqGIU4H0lmRYhzXH5+PuvXr+fqq68mNDTUuN1sNnPzzTdz4sQJ9u/fX+45V111VbmfFy1ahNPp5JZbbsHpdBp/AgMDGT58OMuXLy/3eEVRmDhxYrnbevTowfHjxys9xhUrVnDzzTdz00038dxzz1X7etxud7ljcLlcVT72wIEDHD58mDvvvJPAwMAqH3fDDTcQExNTLrvy1ltv0aRJE6677roKjz/7/dEVFRUxadIkvvzySxYvXsyNN95Y7Ws52/79+zl16hQ333wzJlPpx2toaChXXXUV69ato6CggPz8fDZu3MiVV15Z7nXp2bKyfv75ZxRF4aabbir3vsXFxdGzZ88Kf3dC/C+SYEWIc1xmZiaqqtK0adMK98XHxwOQnp5e7vazH6uXCvr374/Vai33Z968eaSlpZV7fHBwcIXgwGazUVRUVOEYdu/ezaRJkxg6dCgfffRRja9HL1Hpf6rrGUlNTQWgefPm1f5Om83Gvffey5w5c8jKyiI1NZWvv/6au+66C5vNVuG1hYeHV/p7UlJSWLRoEYMGDWLw4ME1vpaz6X8PVf1dud1uMjMzyczMxO12ExcXV+FxZ9925swZVFUlNja2wt/dunXrKvzdCfG/yLMirBCiwURGRmIymTh9+nSF+06dOgVA48aNy91+9jod+v3ffvstrVq18tmxnThxgvHjx9OyZUu+++47rFZrjc+ZPn06DzzwgPFzWFhYlY9t0qSJMU5N/va3v/H888/z8ccfU1RUhNPp5L777qvwuOrWMGnZsiWvvvoqV1xxBVdeeSXffPNNtRmds0VHRwNU+XdlMpmIjIxEVVUURSE5ObnC486+rXHjxiiKwqpVqyoEXkCltwnxP6eBy1BC/OV50rMyaNAgNS4uTi0oKDBuc7lcavfu3SvtWTn7dx09elS1WCzqCy+8UOPx3HrrrWpISEiF2//973+X66XIyspSu3XrprZo0UI9ceJEjb+3ttq2bau2a9dOLSoqqvGxkydPVtu2bau2aNFCnTRpUoX7q3ptqlras6Kqqrpq1So1PDxcHT16tJqXl+fxsbpcLrVZs2Zqr169jL8TVVXVvLw8NSYmRh0yZIhxm6c9K6tXr1YBdd68eR4fhxD/aySzIsQ54vfff+fYsWMVbp8wYQIzZ85k7NixjBw5kkcffZSAgABmzZrFrl27mDt3bo0rnrZu3ZpnnnmGadOmceTIEcaPH09kZCRnzpxhw4YNhISEVDkrpiqTJ09mz549vP/++yQlJZGUlGTc17x58xpLN5565513mDhxIgMHDuShhx6iZcuWJCYmsmjRIr788styj/3HP/7BgAEDACqdVeOpCy+8kGXLljF+/HjGjRvHr7/+SkRERI3PM5lMvPjii9x4441ceuml3Hvvvdjtdl566SWysrJ4/vnnjcf+5z//Yfz48YwdO5ZHHnkEl8vFCy+8QEhICBkZGcbjhgwZwj333MPtt9/Opk2bGDZsGCEhIZw+fZrVq1fTvXt3/va3v9X6tQpxXmjoaEmIvzo9G1LVn6NHj6qqql3tjxo1Sg0JCVGDgoLUgQMHqj/99FOlv6uqLM3333+vjhw5Ug0PD1dtNpvaqlUr9eqrr1aXLl1qPMbTzEqrVq2qPOZ///vfdX9jyvjzzz/Viy++WI2IiFBtNpvatm1b9aGHHqr0sa1bt1Y7d+5c6X2eZlZ0u3btUuPi4tQ+ffqoqampHh/v999/rw4YMEANDAxUQ0JC1NGjR6tr1qyp8Lgff/xR7dGjhxoQEKC2bNlSff755yu8z7qPP/5YHTBggPH337ZtW/WWW25RN23a5PFxCXG+UlRVlrYUQvxv2LFjBz179uSdd95hypQpDX04QggfkWBFCHHeO3z4MMePH+fJJ58kMTGRQ4cOERwc3NCHJYTwEZm6LIQ47/3nP/9h7Nix5OXl8c033/glUDl7fZjK/ggh/EMyK0II4YHbbruN2bNnV/sY+TgVwj8kWBFCCA8cO3asxgXY+vXrV09HI8RfiwQrQgghhDinSc+KEEIIIc5p5/2icG63m1OnThEWFlbjwlhCCCGEODeoqkpubi7x8fHlNv6szHkfrJw6dYoWLVo09GEIIYQQohaSkpJqXPH6vA9W9E3QkpKSqtxJVQghhBDnlpycHFq0aFHtZqa68z5Y0Us/4eHhEqwIIYQQ5xlPWjj82mA7ffp0FEUp9ycuLs64X1VVpk+fTnx8PEFBQYwYMYLdu3f785CEEEIIcZ7x+2ygrl27cvr0aePPzp07jftefPFFXn31Vd5++202btxIXFwcY8eOJTc319+HJYQQQojzhN+DFYvFQlxcnPGnSZMmgJZVef3115k2bRpXXnkl3bp1Y/bs2RQUFDBnzhx/H5YQQgghzhN+71k5ePAg8fHx2Gw2BgwYwIwZM2jTpg1Hjx4lOTmZcePGGY+12WwMHz6ctWvXcu+99/r70IQQQgi/c7lcFBcXN/Rh1Dur1YrZbPbJ7/JrsDJgwAA+++wzOnTowJkzZ3j22WcZPHgwu3fvJjk5GYDY2Nhyz4mNjeX48eNV/k673Y7dbjd+zsnJ8c/BCyGEEHWgqirJyclkZWU19KE0mEaNGhEXF1fnddD8GqxcfPHFxvfdu3dn0KBBtG3bltmzZzNw4ECgYhewqqrVvqiZM2fy9NNP++eAhRBCCB/RA5WYmBiCg4P/UguXqqpKQUEBKSkpADRt2rROv69epy6HhITQvXt3Dh48yKRJkwDtL7Psi0hJSamQbSnriSee4OGHHzZ+1udpCyGEEOcKl8tlBCrR0dENfTgNIigoCNDO6zExMXUqCdXr3kB2u529e/fStGlTEhISiIuLY8mSJcb9DoeDFStWMHjw4Cp/h81mM9ZUkbVVhBBCnIv0HpXg4OAGPpKGpb/+uvbs+DWz8uijjzJx4kRatmxJSkoKzz77LDk5Odx6660oisLUqVOZMWMG7du3p3379syYMYPg4GAmT57sz8MSQggh6sVfqfRTGV+9fr8GKydOnOCGG24gLS2NJk2aMHDgQNatW0erVq0AePzxxyksLGTKlClkZmYyYMAAFi9e7NHSu0IIIYT4a1BUVVUb+iDqIicnh4iICLKzs6UkJIQQ4pxQVFTE0aNHSUhIIDAwsKEPp8FU9z54c/6u154VIYQQQghvSbBST4rdxZznSSwhhBCiQUiwUg+y7dlc/N3F3Lf0voY+FCGEEKJGzZs3Z9asWeVuW7t2LcHBwdUu3Oov9brOyl/VT4d/4kzBGc4UnKGguIBg6197KpsQQvwVqapKYbGr3scNspq9npUzcOBANm7caPysqipTp05l6tSpxiSZ+iTBSj3Ym7HX+P5I9hG6Ne7WgEcjhBCiIRQWu+jyf4vqfdw9z1xEcIB3p/uBAwfy6aefGj9//vnnJCYm8sQTTwDw888/88gjj+B2u/nnP//JXXfd5ctDrkDKQPUgsyjT+P5I9pEGPBIhhBCiZgMHDmTv3r3k5eVRUFDAk08+ybPPPktYWBhOp5OHH36Y33//nS1btvDCCy+QkZHh1+ORzEo9yHGUbraYXpjegEcihBCioQRZzex55qIGGddb/fr1w2w2s2XLFpYuXUp0dDR33HEHABs2bKBr1640a9YMgAkTJrBo0SJuuOEGnx53WRKs1INse7bxfaY9s5pHCiGE+F+lKIrX5ZiGEhgYSM+ePZk/fz7vv/8+P/30EyaTVow5deqUEaiA1ox78uRJvx6PlIHqQdnMSlZRVsMdiBBCCOGhgQMH8uabbzJmzBhGjx5t3F7ZMhz+3lZAghU/U1WVHHuZYMWe1XAHI4QQQnioV69eWCwWXnrppXK3N2vWrFwm5cSJEzRt2tSvxyLBip8VOAtwqk7jZwlWhBBCnA++/PJLpkyZQseOHcvdfsEFF7Br1y5OnjxJbm4uv/76Kxdd5N9enPOjeHYeK9uvAhKsCCGEOHe53W5SU1P56KOP2L9/PwsWLKjwGIvFwiuvvMLIkSNxu908/vjjREdH+/W4JFjxs4LignI/5zvyG+hIhBBCiOqtXLmSUaNG0alTJ+bPn09ERESlj7vsssu47LLL6u24JFjxsyJXUbmf850SrAghhDg3jRgxArfb3dCHUYH0rPhZkVMLVsIDtO2v84vzcavn3j8EIYQQ4lwlwYqf6ZmVxkGNjdsKnYUNdThCCCHEeUeCFT/TMysRtgjMiraKYJ4jryEPSQghhDivSLDiZ3pmJdAcSIg1BJC+FSGEEMIbEqz4mZ5ZsVlsRrBy9gwhIYQQQlRNghU/04OVIHOQEazkFUsZSAghhPCUBCt+ZpSBLGXKQMVSBhJCCCE8JcGKnxllILONUGsoIMGKEEII4Q0JVvzMKANZggi2BgMSrAghhBDekGDFz/QykM0imRUhhBCiNiRY8TM9s1Ju6rIEK0IIIYTHJFjxs7INtlIGEkIIcT5o3rw5s2bNKnfb2rVrCQ4O5vjx4/V+PLKRoZ/ZnXZAGmyFEOIvT1WhIdbZsgaDonj1lIEDB7Jx40bjZ1VVmTp1KlOnTqVVq1a+PsIaSbDiZw63A9CCFbdV28BQghUhhPgLKi6AGfH1P+6TpyAgxKunDBw4kE8//dT4+fPPPycxMZEnnngCgCuuuILly5czevRovv32W18ebaWkDORnxe5iAKwmq1EGkkXhhBBCnMsGDhzI3r17ycvLo6CggCeffJJnn32WsLAwAP7+97/z2Wef1dvxSGbFzxwuLbNiNVuxYQNk12UhhPhLsgZrWY6GGNdL/fr1w2w2s2XLFpYuXUp0dDR33HGHcf/IkSNZvny5Dw+yehKs+JkerASYAggwBwCyN5AQQvwlKYrX5ZiGEhgYSM+ePZk/fz7vv/8+P/30EyZTwxVjpAzkZ0YZyGwl2KJFt5JZEUIIca4bOHAgb775JmPGjGH06NENeiwSrPiZHqwEmAKMnhXJrAghhDjX9erVC4vFwksvvdTQhyLBir8ZZSBzgJFZKXBKsCKEEOLc9uWXXzJlyhQ6duzY0IciPSv+ZjTYlpkNZHfZcbqdWEzy9gshhDh3uN1uUlNT+eijj9i/fz8LFiyo9HEXXXQRW7ZsIT8/n+bNm7NgwQL69+/vt+OSs6Wf6euslO1ZAa1vJSwgrKEOSwghhKhg5cqVjBo1ik6dOjF//nwiIiIqfdyiRYvq9bgkWPEzp9sJaD0rVrMVi8mC0+2koLhAghUhhBDnlBEjRuB2uxv6MCqQnhU/K9uzAkjfihBCCOElCVb8yOV24VJdgJZZAUpnBEmwIoQQQnhEghU/0qctg9azAmUyKzJ9WQghhPCIBCt+pDfXQpnMiiwMJ4QQQnhFghU/0vtVAGOasiwMJ4QQQnhHghU/KnaVrl6rKAogDbZCCCGEtyRY8aOy+wLpgqxBgGRWhBBCCE9JsOJHZXdc1klmRQghhPBOvQUrM2fORFEUpk6datymqirTp08nPj6eoKAgRowYwe7du+vrkPyu7Oq1OulZEUIIIbxTL8HKxo0bef/99+nRo0e521988UVeffVV3n77bTZu3EhcXBxjx44lNze3Pg7L78ruC6STzIoQQgjhHb8HK3l5edx444188MEHREZGGrerqsrrr7/OtGnTuPLKK+nWrRuzZ8+moKCAOXPm+Puw6oXes6KvXguSWRFCCCG85fdg5f777+eSSy5hzJgx5W4/evQoycnJjBs3zrjNZrMxfPhw1q5dW+Xvs9vt5OTklPtzrjIabCWzIoQQ4jzSvHlzZs2aVe62tWvXEhwczPHjx+v9ePy6keFXX33Fli1b2LhxY4X7kpOTAYiNjS13e2xsbLVvxMyZM3n66ad9e6B+om9iWC5YkeX2hRDiL0lV1QZZEDTIEmQsn+GpgQMHljt3q6rK1KlTmTp1Kq1atfL1IdbIb8FKUlIS//jHP1i8eDGBgYFVPu7sN1BV1Wrf1CeeeIKHH37Y+DknJ4cWLVrU/YD9QM+s6AvCQZkVbItlBVshhPgrKXQWMmDOgHofd/3k9caFsqcGDhzIp59+avz8+eefk5iYyBNPPEFSUhI333wzKSkpWCwW/vWvf3HNNdf4+KjL81sZaPPmzaSkpNC3b18sFgsWi4UVK1bw5ptvYrFYjIyKnmHRpaSkVMi2lGWz2QgPDy/351ylZ1YqC1YksyKEEOJcNXDgQPbu3UteXh4FBQU8+eSTPPvss4SFhWGxWHj99dfZs2cPS5cu5aGHHiI/P9+vx+O3zMro0aPZuXNnudtuv/12OnXqxD//+U/atGlDXFwcS5YsoXfv3gA4HA5WrFjBCy+84K/DqleV9qxIg60QQvwlBVmCWD95fYOM661+/fphNpvZsmULS5cuJTo6mjvuuAOApk2b0rRpUwBiYmKIiooiIyODkJAQnx53WX4LVsLCwujWrVu520JCQoiOjjZunzp1KjNmzKB9+/a0b9+eGTNmEBwczOTJk/11WPWqssyK/o9GMitCCPHXoiiK1+WYhhIYGEjPnj2ZP38+77//Pj/99BMmU8VizKZNm3C73X5vx/Brg21NHn/8cQoLC5kyZQqZmZkMGDCAxYsXExYW1pCH5TOVloEksyKEEOI8MHDgQN58800uvfRSRo8eXeH+9PR0brnlFj788EO/H0u9BivLly8v97OiKEyfPp3p06fX52HUm0pnA+kNts5C3KobkyI7HgghhDj39OrVC4vFwksvvVThPrvdzhVXXMETTzzB4MGD/X4scqb0o8pmA4VYtZqeSsNMYRNCCCE88eWXXzJlyhQ6duxY7nZVVbntttsYNWoUN998c70cS4OWgf7XVZZZsZltWBQLTtVJfnG+EbwIIYQQDc3tdpOamspHH33E/v37WbBgQYXHrFmzhnnz5tGjRw++//57QJva3L17d78dlwQrflRZz4reYJXjyCGvOI8YYhrq8IQQQohyVq5cyahRo+jUqRPz588nIiKiwmMuvPBC3G53vR6XBCt+VNnUZYBQayg5jhzyHf6dly6EEEJ4Y8SIEfUeiHhCelb8qLLMCkBIgFb6ySvOq/djEkIIIc43Eqz4kRGsKOWDlVBrKAD5xZJZEUIIIWoiwYofGWUgc/kykN5UK8GKEEIIUTMJVvyosqnLUBqsSBlICCH+t6mq2tCH0KB89folWPEjKQMJIcRfk9WqZdQLCv7aq5Xrr19/P2pLZgP5UZUNtpJZEUKI/2lms5lGjRqRkpICQHBwMIqiNPBR1R9VVSkoKCAlJYVGjRphNpvr9PskWPGj6qYuAzJ1WQgh/ofFxcUBGAHLX1GjRo2M96EuJFjxI8msCCHEX5eiKDRt2pSYmBiKi4sb+nDqndVqrXNGRSfBih9VFayEBmiZFdl5WQgh/veZzWafnbT/qqTB1o+qKgMFW7WdlyWzIoQQQtRMghU/qjKzIrOBhBBCCI9JsOJHTrXirstQGqzkOnLr/ZiEEEKI840EK36kZ1bODlbCA8IByC2WYEUIIYSoiQQrflTsqnwF27CAMEDLrLjVc293SyGEEOJcIsGKH+lloLODlXCblllxq27pWxFCCCFqIMGKH1XVYGsz27CZbQDkOHLq/biEEEKI84kEK35U1dRlKO1bybFLsCKEEEJUR4IVP6oqswLl+1aEEEIIUTUJVvxIz6xUFqwYmRUpAwkhhBDVkmDFj6qaugylTbYSrAghhBDVk2DFjzzKrEjPihBCCFEtCVb8yJOeFcmsCCGEENWTYMWPqi0DSc+KEEII4REJVvxEVVVpsBVCCCF8QIIVP3GpLuP7yjIrEbYIALLt2fV2TEIIIcT5SIIVP9FLQFB5ZiUyMBKAzKLMejsmIYQQ4nwkwYqf6CUgqDyzEhUYBUBGUUa9HZMQQghxPpJgxU88zaxk2bNQVbXejksIIYQ430iw4id6sGJSTJiUim9zpE0LVuwuO4XOwno9NiGEEOJ8IsGKn1S3iSFAkCXI2HlZSkFCCCFE1SRY8ZPqFoQDUBSlXClICCGEEJWTYMVPagpWoLQUJJkVIYQQomoSrPiJsSCcUk2wItOXhRBCiBpJsOInxlL75sp7VkCmLwshhBCekGDFTzzJrDQJagJAamFqvRyTEEIIcT6SYMVPPOlZaRJcEqwUSLAihBBCVEWCFT8xpi5XUwbSMyspBSn1ckxCCCFEkbOIj3d9zM9Hfm7oQ/FY1Zf9ok6MzEp1ZaCSzEpaYVq9HJMQQoi/thxHDrcuvJVDWYcAKCgu4NqO1zbwUdVMMit+YjTYVrEoHEBMUAyg9azIkvtCCPHX43A5eHTFo9z22218ufdLv58LFhxcwKGsQwSaAwGYuX4mZ/LP+HVMX5BgxU+cas09K42DGwNQ6CwkrzivXo5LCCFE9VadWMXKEyvr5SLyk12fsOjYIjaf2czzG55n8fHFfhtLVVW+P/Q9AI/1f4xeTXrhVJ38ePhHv43pKxKs+Emxq/rl9kFbcj8sIAyQvhUhhKhKobOw3rLPn+z6hCnLpnD/svt5ZMUjxme5P5zMO8n7O94HIDwgHIDXNr+G3WX3y3h7MvZwKOsQNrON8QnjuarDVQAsOLQAt+r2y5i+4tdg5d1336VHjx6Eh4cTHh7OoEGDWLhwoXG/qqpMnz6d+Ph4goKCGDFiBLt37/bnIdUbTzIrAHEhcQCczj/t92MSQojzzU+Hf2LI3CFc9/N17Erb5dexNiVv4tXNrwLaJrRLji/h+8Pf+228hUcX4nA76BfbjyVXLyEmKIaTeSdZcnyJX8ZbdnwZACNbjCQ8IJxxrcYRYg0hKTfJ7+9tXfk1WGnevDnPP/88mzZtYtOmTYwaNYrLL7/cCEhefPFFXn31Vd5++202btxIXFwcY8eOJTc315+HVS88mboMEB8SD8CpvFN+PyYhhKirZceX8fiKx3n6z6dxuBz+HStxGdNWT6PYXczejL3cvfhuvy6iOf/gfAAmtpnIo/0eBeCjnR8Zszt9beWJlQBcnHAxwdZgJrWfBMCSY/4JVranbgdgQNMBAARbgxkcPxiAtafW+mVMX/FrsDJx4kQmTJhAhw4d6NChA8899xyhoaGsW7cOVVV5/fXXmTZtGldeeSXdunVj9uzZFBQUMGfOHH8eVr3wpAwEEB8qwYoQonZUVWXJ8SW8v+N9lhxf4vdSyeJji5m6fCoLjy3k2wPfMm31NL+WD97b/h4qKpe3vZyOkR3JK87j450f+2WsguICliYuBeDajtdydYeriQqM4mTeSSMj4UtZRVlG8DC02VAAxrUaB8Dqk6vJL8736XhOt5OdaTsB6Nmkp3H7wKYDAVh3ep1Px/O1eutZcblcfPXVV+Tn5zNo0CCOHj1KcnIy48aNMx5js9kYPnw4a9dWHeHZ7XZycnLK/TkXeVoGahbaDJBgRYj/FVvObOHzPZ8bV83+9Nux33h4+cO8tfUtHl7+MJ/u/tRvYxW7inl9y+sADGs+DIvJwm/HfvPbWh170/eyN2MvVpOVR/s9yj/6/AOAr/Z/RXphus/HW3J8CYXOQlqFt6Jnk54EWYK4sv2VAH5pel1zag1u1U27Ru1oGtoUgA6RHWgd3hqH2+Hzfz+Hsg5R6Cwk1BpK20ZtjdsHNR0EaFmXguICn47pS34PVnbu3EloaCg2m4377ruPBQsW0KVLF5KTkwGIjY0t9/jY2FjjvsrMnDmTiIgI40+LFi38evy15WkZqGmI9o/0ZP5Jvx+TEH9F21K2MXP9THan+b8f7os9X3Drb7fy4sYXuX/Z/fx0+Ce/jZVWmMZz658DoFt0NwBe3/I6W1O2+mW87w5+R1JuEo2DGvPSsJe4r8d9AHy2+zO/ZHT0WSujWo6iUWAjLmx2IZ2jOmN32f3S06EHBxMSJqAoCgBjWo0BtExHkbPIp+PpmQw9qwKgKAojW44EfF+W2Z6iZXG6N+6OSSk99bcIb0Gz0GY43U42ndnk0zF9ye/BSseOHdm2bRvr1q3jb3/7G7feeit79uwx7tf/UehUVa1wW1lPPPEE2dnZxp+kpCS/HXtdGCvY1lAGksyK+CspdhXzzYFveHPLmyw+ttjvZYvnNzzPzQtvZs6+Odz46418secLv411POe4kXnoGNkRgP9b83/sSd9TzbNq76OdH5Ftz6ZTVCc+m/AZl7S5BLfq5r0d7/llPD2Dcme3Owm2BnN9p+sJsgSxP3O/z09ybtXNwqPaZIxJ7SYB2rnikjaXAFpGyZdUVWVLyhYALoi7wLi9S1QXmoY0pdBZyJ+n/vTpmLvTteC5V0yvcrcPjNPKMutPr/fp/48daTsA6NGkR4X79Nfsr0DXF/werAQEBNCuXTv69evHzJkz6dmzJ2+88QZxcdosmLOzKCkpKRWyLWXZbDZjdpH+51xkbGRYQ2aleVhzQLtK8nWNUpyfVFWtt2maDpeD59Y9xz2L72H27tkUOgv9Npaqqjy3/jme+fMZPtj5AY+seIQPdn7gt/G2nNnCl3u/REGhe+PuuFQXL216iQOZB/wy3osbX8TusjOg6QDmXTqPkS1G4lSdxtRUX3K6ncbJ/MHeD2I1Wbm/1/0oKKw5uYYj2Ud8Ol5aYRo7UrWT3bjWWuk+whbBZW0vA+DbA9/6dLyDmQfJtGcSZAkymkEBLmp9EaD93fpyIbOk3CTSCtOwmqx0b9LduF1RFEa3HA3A8hPLfTZeobOQw1mHAega3bXcfb1iemExWTidf5oTeSd8Nub+jP2VjgelPSx6D825qN7XWVFVFbvdTkJCAnFxcSxZUprOczgcrFixgsGDB9f3Yfmcp2WgCFsEUYFRABzLPubvwxK1UFBcwPGc4z5PA1cmpSCF2xfdzsA5A3l4+cM+P+mUlefI4+7Fd/PV/q/48/SfvLzpZR5d8ajfGibn7Z/Hdwe/w6SYGNtqLABvbX2LpceX+nwsVVV5bfNrAFzV4SrmXDKHsa3G4lbdvLDhBZ8HgykFKaw6sQqApwY8hdlkZmqfqSgoLEtcZpyYfGVj8kbSi9JpZGvEoHit56BFWAtGtBgBwJy9vp2ksCJpBSoq3aK7ERMcY9x+aZtLAa2E4suZQXqmpndM73LZ6biQOHrH9EZFZVmi75pe9axKt8bdsJlt5e4b0mwIoGU6fGV/xn7cqpvGQY3LvZ+gzdDp0VjLfmw4vcEn47ncLo5mHwWgXaN2Fe7Xszu70nYZ565zjV+DlSeffJJVq1Zx7Ngxdu7cybRp01i+fDk33ngjiqIwdepUZsyYwYIFC9i1axe33XYbwcHBTJ482Z+HVS88LQMBJEQkAPj1xPS/QlVVdqbu5MOdH/LrkV/9vpDR+tPrGfXNKC5dcClDvxpq1NH9ITEnket+vo7NZzZT4CxgyfEl3LvkXr80EwK8u/1dtqRsIdQayn097yPAFMDKEyv5eJfvZ1vYXXZmbZsFwNQ+U3l1xKvc3OVmAN7Y8gYut8un4609tZZtqdsINAfyt55/A+CRfo8QYApgQ/IGn5ctFh5diIpKzyY9aR3RGoA2jdowquUoAD7f87nPxwNt9kjZz5jrO10PwKJji3x60vkj6Q8AIxjS9WjSg5igGPKK83w6m2Rj8kYA+sf1r3Df8ObDAXxaltlyRgtWesf0rnBfn5g+WBQLJ/NOciLXN5kOvQTUNbprpW0PFzTVyjIbkn0TrJzMO4nD7cBmthkzUMtKiEggLCCMQmeh3zKPdeXXYOXMmTPcfPPNdOzYkdGjR7N+/Xp+++03xo7Vrqoef/xxpk6dypQpU+jXrx8nT55k8eLFhIWF+fOw6oWnmRWANhFtAIzIt64cLgfrTq/z2X+s6thddmaun8lVP17Fg8se9Hld92zPrX+Oyb9O5o0tb/DPVf/knsX3+G3dhXWn1zFl6RTyi/OxKBaKXEX835r/47ejvq2X617Z9ApphWm0a9SOWaNn0Tq8Ncn5yfxz5T99nglIK0zj6/1fA/DCsBe4v9f9PDXwKQDe3fYuqQWpPh1v0bFFZNoziQuJM4KU+3vdT4QtgmM5x1h4bGENv8E7vxz5BYAr2l9hXLk2C23G5e0uB+CbA9/4ZTy9p0I3uZN24bX4+GKfZR5cbpeRVbg44eJy910QdwGRtkiy7Fk+C8iKXcVGVuHsYMWkmIyAzFeZDrfqNo69X2y/Cvfr64JsSN7gs9Vl9V6NPjF9KtwXbA02SkO+Ch70Zu+ujSuWZKA0aPJVWUbP7CVEJGA2mSvcb1JMRi/LtpRtPhnT1/warHz00UccO3YMu91OSkoKS5cuNQIV0OqB06dP5/Tp0xQVFbFixQq6devmz0OqN56uswKlmRVfBCsrT6xk0g+TuHvx3Vw8/2Ju/+12v12ZZxRlcPtvtzNn3xwOZB5g+YnlTFk6xW+rL84/OJ95++ehoDC8+XCCLEGsT17PU6uf8vnJvNhdzDN/PoPD7WBki5Gsu3Ed13a4FhWVf6/9t893yt6Wso3fk37HpJh4ZfgrDG0+lDdGvmG8xhUnVvh0vE92fUKRq4gejXsYsxEmtZtErya9cLgdzN4926fjzd07F4DrOl5nBPAh1hBu7XIroDWL+urv0O6y83vS74A2s6OsqztcDcDS40vJLMr0yXjHso+xN2MvZsVs9FTo+sb2JSYohlxHLqtPrvbJeAezDpLjyCHEGlIhE2AxWYzgwVcLi+3P3E+Rq4gIWwQdIjtUuF+fMbM8ablPMp0HMw+Sbc8myBJU6cm8Y1RHogKjKHAWsC11W53Hyy/O53jOcUArA1VGb0D1VfZIb7qurH8EoEfjHigonMw76ZPPmsPZWrCiXxhX5lzvW5G9gfxEX2fFk2BF/wdU1zLQtpRtPPj7gyTlJhEWEIZJMbHpzCamLJvil+bdZ9c9y860nUTYIvjPkP9wUeuLcKpOHlvxmJHm9JXEnESeW6dN03yg9wO8PfptPr/4cwJMAaw6uYrvDn7n0/F+PPQjSblJRAVG8fzQ57GZbUwbOI1u0d0ocBbwzrZ3fDreW1vfArSAoU0j7d9Dm0ZtjCvzWdtm+exkXuQsMjIL9/W8z0hDK4rC3T3uBuDrA1/77GS+N30vu9J3YTVZjXUrdNd3up5AcyCHsg4ZsxXqas3JNeQX5xMbHFth5kOX6C50ie5CsbvYZ9OK9Smm/WL7Gf1nOrPJzPiE8QD8evRXn4y3+cxmQLv6ruwqWV9YbGniUp+U1/Qr7Z5NelZasugT04cgSxAZRRkczDxY5/H0hct6NO5R6eenSTEZfTq+yOQezDyIikpMUAzRQdGVPkZv8t2YvLHO/w8dLgfHco4BpbPGzhYaULoWij7luC6OZGnnlrLrq5xN75Px9We3r0iw4id6ZsWbMlBiTmKt05r5xfk8seoJ3Kqbsa3GsvTqpSy4fAGRtkj2pO/h32v/XavfW5UNpzew5PgSTIqJD8Z+wKR2k3hh6AuMajEKl+ri2T+f9Wkfwse7PsbhdjCg6QDu6n4XoF1h/b3P3wF4ddOr5Dp8s02Dw+Xgvzv+C8Dd3e8m2BoMaB+Sj/V/DNCyPL5qmkzKSWJD8gZMisnor9Dd2vVWgi3B7M3Y67PsytpTayl0FtI0pCkXNruw3H1Dmw2lU1QnCp2FPtuJVc9yDG8+vMLJPCwgzLgy91U/0KJjiwBt1krZ9SR0V7S7Qnvc8UU+GU8vkQyMH1jp/RPaaNmdFUkrfDLbSg9W+sb2rfT+/k37E2YNI6Mog13pdd/vRb/SLrvqaVlWs9Uo1/gi82D0c1RRIoHSUpAvxtubsReATtGdqnxM98bdsZgspBWmkZRbt+UyjmYfxaW6CA8Ir9BcW5YvMx16ZqVtRNXBip5VOp5znGx7dp3H9DUJVvzEm8xKXEgc4QHhOFUnB7Nqd2Xy5pY3OZF3gviQeJ4e/DTB1mDaRLTh7dFvY1bMLDq2yGf9JC63i+c3Pg/ANR2uoXN0Z0C7inxq4FOEWkPZlb7LZ9mOlIIU48R5f6/7y52Abup8E20j2pJbnOuzGRDLEpeRnJ9MTFAM13S8ptx9fWL7MLLFSNyq22dNk/qaEQPiBhgbW+oiAyO5ruN1AHy17yufjKfPvhndcnSFK2VFUbimg/aaFxxc4JNszookLcga3mJ4pffr62j8dvS3Op/MXW4Xq05qs3L0GUdnG91yNAoKO1J31Hn6q8vtYuMZrRm07PocZelrdRS5iuo8u0NVVSNYqayfA7TPHD1w8kXpSS+19GrSq8rH6Eu2/3m67p8xRj9HFSUSKH2vd6fvrvNFij6lt6osB0CgJZDujbW+Ff39ry29gbVdo3bVrinmq2DFrbqNFgM9a1uZCFsELcNaAtTLAorekmDFT7zJrCiKYvzHrM3Ol+mF6cY6B/8e/G/CAkoblHs06WHMEJi5YaZPGtKWJy3nYOZBwgPCeaDXA+XuaxLchPt73Q9o+3r4oqnwiz1fUOwupk9Mnwo1erPJzD097gHgsz2fkefIq/N4emB0RfsrKkxjBLit622AtkiWL0olenPp2c2SOj1gWntqbZ2bpotdxcZ6EVWdzC9OuJhAcyCHsw8bKfnaOpN/hr0Ze1FQyq3UWVb/uP40C21GXnEey5OW12k8/eQVZg0zTi5naxLcxDgR6Fmf2tqXsY9cRy6h1lC6RHep9DGKohgzWPRZNbV1NOcoGUUZ2My2ak/m+nu9+kTdgpXk/GSS85MxKaYq+zmgNKu05cyWOv2ft7vsxgVbdZmVuJA4Woa1xK26jZk8tbUvYx8AnaKqzqxAafOtPs25tg5lHQKgfWT7ah/XM0b7N7o7fXedPrdP55+m0FmIxWShRVj1K77rf8d1/X/vDxKs+Ik+G8hqrjmzAqX/SGqz2uXcfXNxuB10b9zd2OehrCm9phAVGMXR7KP8dKTudfov930JaJt9NQpsVOH+azteS0xwDCmFKfxw+Ic6jWV32fn2oBaI3dn9zkofc1Hri2gd3pocR06dF6dKK0wzehAmtp1Y6WN6x/SmS3QX7djqON6hzEMczDyIxWRhdKvRlT6mRVgLBscPRkWtc7ZqQ/IGch25RAdGV5nWDwsIMwIZfRfa2lp5UlvCvHuT7lX2A5gUk9EIW9eZVnr2cEDTAdVeKOilp7puULc+WSsB9YvtV+14+iyalSdW1qkJVb+q79mkZ7WfLfraILvTd9dptpx+Vd8xsqNRDq1M+0btiQ6MptBZWKdMwMHMgzjdThrZGhk70ldFn9Zclxk6TrfT6LOpMViJLQlW6hgcGcFKo+qDldbhrQkPCMfusrM/c3+tx9PL1a3DW9d48awH+LW5aPY3CVb8pLik5mdRas6sQGnK09vmpkJnIV/t18oDt3a9tdK0YnhAOHd0uwPQZl3UZf2F/Rn72Zi8EbNiNsoTZwswBxjZh493flyn8f5I/INcRy5xIXEMiR9S6WPMJrMx3tx9c+vUK6Ov3dKjSQ9ahbeq9DGKonBT55sAbaGzuoynZ1UubHYh4QFVr8ZctjRTl/dT31V2dMvRlTZn6vTSTF2n3OoloBHNR1T7OL0JddXJVXVK6+tlCL0Bsyr6jJlNZzbVKTum96uUXWW1Mv3j+hNsCSa1MJW96XtrPV5N/Sq6mOAYOkZ2REWt0x4zeuBR2RLtZSmKYmRX6lJuLjtLproSCZSWgvQ1WWrjaPZRHG4HIdYQYzXxqvSK6YWCQmJuYp2m9uvBUbvIiouzlVV2OnFdAkBPmmt1ZTMr9bWKtqckWPGHvBSKE7X/sNbjnn1Q6CnPg5kHvSplfH/oe7Lt2TQPbc6YlmOqfNw1Ha6hka0RibmJLD5W+x1E5+zT+kLGtBpTob+irKvaX0WkLZITeSfqNJVZb7q8rO1l1Z5cL2lzCRG2CE7ln6pTKUHPPE1sU3lWRXdR64toZGvEmYIzrDm1plZjqapqZBIubl15CUg3vIXWnJpelF7rk4/L7eL3RK3sUVUWR9c3ti8xwXWbclvoLDQaIIc1H1btY9s3ak+biDYUu4uNY/RWfnG+MXOipmClRVgLOkV1wqW6av3vpdhVbFxl64t4VSXAHGBkO2q7bLuqqmxK1tYfqSlYAYzm6br0rejv59n711RG71upy0qv+sVaVSW1svTMyr6MfbVuCNVLQB0jO1bajF1WeEC4MXV7c0rt+lbyHHmczj8NVL6S7NmMvpU6zAjypLlW1ymqExbFQnpROsn5VW8o3BAkWPGHtAM4S1K9lozjHj1Fr8G6VJfHDVwut4vPdn8GwC1db6n2ZB5sDTayAR/s/KBWqeg8R56xcuYNnW6o9rHB1mDjMZ/v+bxWUXpyfrJxYp7UdlK1jw20BHJ1e20NDb1M5a0DmQfYl7EPi8nC+Nbjq31sgDnAKBN9d6B2pZk9GXtIzE0k0BxYYbGts1lNVmPBsdrOmtmaspWMogzCA8IrXRm0LLPJbARQ+oJn3tpwegN2l52mIU0rXZ+jLEVRjOxKbTep25S8CafqpHlo8xpr84Cx50ttFzPbnrqdIlcRUYFRNab0oXTl1doGR6fyT3Gm4AwWxVJjpgNKS0FrT66t1f93u8vOngwt01FVybAsPVjZlb6r1sFDTYulldUkuAkJEQmoqLVeAM9oro2qurm2LD1IrG0pSC8BxQTFEGGLqPHxvmiy1TMr1TXX6gItgUYvzbnWtyLBij/knaG4JIVp9SJLol+deTodb1niMk7knSDCFsHlbS+v8fE3dL6BUGsoh7IO1arR79ejv1LoLKRNRJtKV3o827UdryXAFMDOtJ21+s/20+GfUFHpG9uXFuE1n3yu73Q9ZsXMxuSNxoeQN34+rO0qO7z58Ep7cc6mB0crTqyoVVpYz6oMbzG82n4Anf53vDxpOVlFWV6Pp5eARrQY4dEsNWPK7YkVtWpc1qdaD2s+rMaUPmAEiOtOratVacbTEpBOz0SuPbW2VusQ6b0SF8Rd4NHrG9p8KAoK+zL21eqqVb+I6dq4K0GWoBof3yumF6HWUDLtmbWa3bEnfQ9Ot5PowGiah1ZfIgHtgishIkFbgTbZ++ChyFlknMyrax4uq66loH2ZWmalc1Rnjx5f174VvXm4puZaXffG3VFQOJV/qlafMaqqepVZ0ceEc69vRYIVf8g9g7Pks8ubYEWve+tNe9VRVZVPd38KwPUdr/foZBceEG7MDPpgxwdeZzv0ZtKr2l/l0YdzdFC0kX34bM9nXo2lqqqRQfAkEAPtw1K/WtbLVZ5yuV1GBqGmEpCuTaM29I7pjUt1eZ3tcKtuI4NQUwlI1zGqI52iOlHsLvZ6eXpVVY0py1XNAjpb56jOtA5vXW5FWG/G04OVmrJGuoSIBDpFdcKpOo3Ayht6r4S+BkdN2jZqS+vw1hS7i1l5YqXX43nar6KLCowyyil6L483PO1X0VlNViPbsfqU96UgvfRQ1WJwlanLFOb9mftxqS6iAqOIDY716Dl6sFKb0pOqqqVlIC8zKwcyD5DjyPF6zEOZWjDmSQkItMXh9N6W2lzwnSk4Y2wXUlUP3tnO1RlBEqz4Q94ZitH+c1uKPG8WHBA3AJNi4mDmwRoXHtqSsoWdaTsJMAUYAYgnbu5yM4HmQHan7/aqEW5P+h72ZuzFarJWOUumMnrpaVniMq8WU9qaspXE3ESCLEEVljCvdrwu2ni/HPnFq6vz9cnrSSlMIcIWwdDmlU+xrcxV7a8C4LuD33mVat+eup3k/GRCrCFc2PzCmp9QQg/cfjzk3YJtu9J2cabgDEGWII8zD4qiGNmVX494t/rqvox9pBSkEGQJqrHkVJaeXVl01LsF25LzkzmSfQSTYqqxf0SnKEqtS0EFxQXGirsD4jwLVqBMKagWfSveBitQt74VY30VD/pVdPpsxNos1lZ2fRVPgyP939ahrENez3o6U3CGbHs2FsXiUfMpQOOgxrQMa4mKWqs9dPTMUU3NtWXVpRSkl4Bahrf0eGaqnlnZnb7b5xuM1oUEK/6Ql4JTLwMVeR59RwZG0j9W+89XUxPsp7s+BeCydpfROKixx2NEBUYZ+6O8v/N9j5+nL0g2ptUYIgMjPX5eu8h2DIkfglt1e7Vomz7leVyrcR5ljXS9mvSic1Rn7C67V9N89aXXx7ceT4A5wOPnjWs9jjBrGCfzTnp1daf3/oxuObrStVyqMqHNBCyKhV3pu4yrNE/omYphzYd5N17JlOJ1p9d5tUeJfjIe1HSQV+PpfSsbkjd4lfbWA+9u0d2qnVV1Nn0K88oTK7G77B4/b2vKVpxuJ/Eh8TXOIilLzzKtP72eguICj5+XWpDK8ZzjKCiV7gxcFb1vZWfqTq9Kh6qq1rhybWX6xfXDrJg5nnOcU3mnPH4eeLZy7dkiAyONkoq3pSA9q5LQKMGrf6O1LQWpqmrMBPK0DAR1C1aMEpCHwRhoGc5gSzCFzsI6bwHjSxKs+ENeMsV6GcieC15Ep+Naa/t66EuGV+ZI1hGWn1iOgsItXW7x+vBu7XorVpOVzWc2e/QfLrMo09jXRN+rxhv6Mc4/ON+jaan5xflGP4c+hdZTiqIY2ZW5++ZS7K55MaWC4gLjytqbrBFAkCXIyD54Ghw53U7j77emRt6zRQVGGZkfT5fDL1sC0k/OnmoV3opu0d1wqS6vZpGtTNLKKp6WgHTNQpvRo3EPVFQWH/d8PG/7VXRdo7sSGxxLobPQq0yjHphe0NSzfhVdm4g2tAhrQbG72Kvx9NknnaI6lVv0sSZxIXG0j2zv9RRmfQM9i8ni0cwcXVhA6WJ83k5hrmlzv6rUtm9FD1Y87VfR6f163q5km16UTqY9EwWl2g0Fz6YHK7vTvF8cTl9jxZvxzCazETCeS30rEqz4Q9nMiqpCkeed8WNajcFqsrI3Y2+VkbS+6d3IFiONHZu9ERcSx+XttHKCJ9mV7w5+h91lp3NUZ6+usnSD4gfRrlE7CpwFHs2c+f7Q9xQ4C2gd3tqrlLdufOvxRAVGkVKQ4lF6f2niUgqdhbQKb2Vs5uUNPVO1LHGZR9mHjckbySjKoJGtUZX7yVRH/7v76chPHq25cjDrIIm5iQSYAqpcRbY6+iwkTzfiSy1INfak8aakptOzK9UF7GU53U7WnNSmj3var6KrbSlI7yuraon96sarTSloc7L3JSBdbUpB+mdP56jOBFoCvRrP2GTQi76VguIC4yre22CltovD6cFRdcvsV0bf5mBX+i6KnEUeP08vAbUIa+FRg7SudXhrImwRONwOI8DylP6eepNZgXOzb0WCFX8o27OCCgXpHj81KjDKWHa9sr1ntqVsY2niUkyKiQd7P1jrQ7yj2x2YFTNrTq5hZ2rV/yAdLgfz9s8DYHLnyV5dReoUpTQD9MnuT6qdeeFW3czdNxeAGzvfWKvxAswBXNvxWgC+3FPzNGY9Q3Fpm0trNV6nqE70aNwDp9tpHHt1fj6izToa22qsR7Nyzjas2TAibZGkFaZ51BiqZ0QGNxtMiDXE6/HGJ4zHpJjYnrrdo7SwvjdP98bdvSpR6sa1GoeCwtaUrZzOO13j47elbCPHkUOELaJWwbSebfoj6Q+Pgr9se7axsJunzbVllV3N1tOeAD2zUqtgJV4LVtacWuNxX1VtSkA6PVhZf3q9x+PtTNuJW3XTNKQpTYKbeDVev9h+KCgczT7qVelQLztVt41AZZqHNadJUBOcbqdXJ/PalIBA+/zUL6K8KQWpqlqrzAqcmzOCJFjxh6Kc0jKQqkKhd9Mw9RP74mOLyzVx2V12ZqyfAWg7x3rTpHW2FmEtjCvm/6z7T5Uf0nP3zSU5P5kmQU2q3LvGE5e2vZTW4a3JKMowZjFVZs3JNRzPOU6oNZTL2l5W6/Gu7XAtFpOFbanbqp22eTjrsJHSv7TNpbUe77ZutwFab091vQhZRVlGxqC2r89qtjKp/SQAvtj7RbWPdatuIxjztuSkaxzU2FjU7Zv939T4eH1afE0LwVUlNiTW6AvwJLuiB2xDmw2tdq2hqvSO6U2kLZJse7ZHV+ebkjehopIQkVDtrrlV6RPbx9gV2ZOTXbY92zjR6e+LN3rH9CbYEkxGUYaxw3BN9M8dfX8ab3Rr3I0QawhZ9iyPMwF1CY4ibBHGUvmeloJSC1JJKUjBpJhqXGb/bIqi1KpvRV9OwdtgBWrXt5JelE6OIweTYqJ1RGuvxtODlQOZB7zKHvmTBCu+5rSDy26UgSwq4EUjHWjT6C5rexkqKv9a8y/SCtNwuV08vfZp9mbsJTwgnCm9ptT5UB/q+xBhAWHszdjLl3srZiCyirJ4b8d7ADzY+0GvmtDOZjVZ+XufvwMwe/fsSsslbtXN+zu0stQV7a/wqrH2bE2CmxiziGZtn1XlNO2Pdn4EaGtueNMoebZRLUbRMqwlOY4cFhxaUOXjfjj8A3aXnU5RnWr1wayb3GkyFsXCxuSN1S7fvv70ek7nnybMGmaUO2rj2g5apuqHwz9UuzNyZlGmUW6oy3j6dG5Ppmjr5ZSqdnWuicVkMXrF9Ebr6ujlDW9mAZVlNVmN0ow+vbs6egDVJqINUYFR3o9nLjOF2YONDQuKC4ydgavbabnK8UxWY6KAXp6riafL+lfF21KQXgJKCE+o1edMbTY11ANFb3tkoDRo9CZY0bMqLcJaeP3ZHRscS+OgxrhUl9elJ3+RYMXX7FoDqV4GsqoqFHsfmT7W7zEaBzXmWM4xrv7xai7/4XJ+OvITZsXMKyNeqdUV3dkaBzXmsX6PAfD21rfLpfhVVeXVza+S68ilQ2SHOmU5dGNajqFH4x4UOgt5ceOLFQKI7w99z7bUbQRbgmvVOHy2e3vci8VkYeWJlZWuE3Ii94TRh3FX97vqNJbZZObWrrcC8NnuzypthHOrbr7e/zUA13W8rlYlJ11cSBxjW2vrpVRWLtTp679MaDPB696DsoY0G0Kz0GbkOnKr3Wzw16O/4nQ76RLdpVZXkLoxrcZgVszsSd/D8ZyqV4FOzEnkaPZRLIqlyr2jPKFPCV96fGm1C+C5VTd/JGqZIz3gqA29FLT42OIa1zvSM0f6zJ7a0KfH6xtLVmd76nZcqovY4Nhqt9SozrAWWlbNk9V6VVVlR6o2Dby2AbzeO+RtsOLNzKOy9HLctpRtHpUOi5xFRvDgTcOyrnvj7pgUE6fzT3u8oKDeI+NtCQi07NG51rciwYqv2bWpysaicKheZ1YAGgU24pOLPqFFWAvSi9I5nnOc8IBwnr3wWeMqyRcmtZvEBXEXUOQq4paFt7Dh9AZcbhcvbnzRyBA81v+xWqXXz6Yoiva7FDMLjy40sjag7Xb86uZXAW2X6Np+SJaVEJHA7V1vB+D5Dc+XK8+oqspbW9/CpboYHD+41h9aZV3W9jKiA6M5lX+q3GvTLT6+mMTcREKtocaU4LrQA7qFxxZW+gGWbc82mka9nVV1NpNiMhqJ5+2fV+UJ9odD2pRzTxfyq0p0ULTRfFzdlPdfjmoL+fWN6+vVLJmzdWvcjYSIBIpcRdXOQtqeup2UwhRCraFezzwqa0SLEQRbgknMTTTWM6mMW3Wz6oTWA1TbshpoG0kqKOxI3cGJ3BPVPlbPhtTp9ZVsXLkjbQcpBSnVPvZ4znGy7FkEmAJqlXUALXgwK2aScpM8Opl7swdRZdo1akeYNYwCZ4FHOyIfzDzo9YJ3ZYVYQ+gSpR2rp6UubzYwrIxeCpJg5X+VPRcX4C5XBqo6bV6d1hGt+e6y73hvzHvMHDqThVctrFNfRWUUReGFYS/Qo3EPsu3Z3Ln4Tnp93svohfj3oH/7NDjqFdOLJwc8CcA7297hlU2v8NPhn7ju5+vItmfTIbIDN3a+0Wfj3d3jbpqFNiM5P5mn1jxllDC+2PsFvx79FZNi4m89/+aTsQItgTwx4AkAPtz5oXH1Blrg8Pz65wFtYb66lLh03Rp3o19sP5xuJ/9Z958KAcQ7294xSk7ezrCozBXtriDAFMDu9N2Vbja4P2O/sXCgL4KxW7tomar5B+dXuuCX0+00VlW+ot0VdRpLURQjwNIDrsrozcojWozwaj2eswVbg43SU3Xj7U3fS3pROiHWEPrGeN9cq2sS3MRYLK+mvZf0jTnrkslpEtzEKOnUlF3RSxtdort4vHDZ2UIDQo3Ao6bsiqqqpWu61PL/hdlkpnestt6NJ30rZUtAtc2o6n9/nmaP9K0EPF0t92x6ZuVcabKVYMXXinKMrAqUlIGqqfHXJMgSxOBmg7m0zaVeLXbljcZBjfnooo+Mhlt93GcGP2NcTfvStR2v5bautwHw6e5PeXL1k6QUpNA6vDUvDXsJi8nis7GCLEH838D/w6yYWXJ8CTf9ehMPL3+Ylze9DMAjfR/xaoXOmlzU+iLGtRqHS3UxbfU0TuSewO6y89z650gvSqdNRJs6l5zKemrgU1hNVlaeWGnMMgItcNBncT3a79E6lZx00UHRRiPxS5teqrCI2qxtswDtRO7J3ko1Gdh0IF2iu1DkKqq0p2rliZWkFKQQaYv0eAuB6lza5lJMioktKVs4mn20wv1u1W3sIO6L8fTS6m/HfquyD0gvAQ1qOqjWJ3LdJQna/+/qNqZMzk/mUNYhTIrJWI22tka2GAlQ41YN+snXm8XuKqPPzKpphtyJvBPaGjKKxeNl9iujl4I8WU9Gv3DpHF27zBGU31qgptKh0+00GnprG5Dpz0vKTarVXl2+JsGKr9lzjX4VKJm6XMvMSn0KtATy/NDn+ePaP1hx3QrW3LCGK9rX7Wq1Og/1fYiZQ2cyvvV4WoW34vqO1zPv0nke7QzqrcHNBvPBuA+ICoziQOYBlhxfglt1c2X7K7m5y80+H+/JAU8SFRjFoaxDXP795Vz07UUsPLoQBYWnBz9dpyvys7Vt1NbIDD2/4XlWn1xNYk4i/1rzL9yqm7GtxtZqem1V7ux2JzHBMZzMO2ns+A3a1fPvSb9jUSw+y1QpimIEdnP3za0w5V3v/5nUfpJP3tPYkFiGNdNKLXrgVdbmM5s5U3CGYEtwnbIOur6xfWkW2oz84vwq13ip68yqska3Go3VZOVQ1qEqN/rUF47r3ri7R7sCV2dUy1GAdnKtqg/I5XYZDdl16QECrckdtGCluhksG05rwVGPJj28Wu/kbPqaRRuSN1TbdA5lgpValrlAC+YsioXT+ac5kVd9Ke9w1mHsLjsh1hBahres1XgRtghjHa/abC3gaxKs+Jo915gJBHUrAzWExkGNiQqMqtX6H94wKSYubXMpLw1/iZ+v+JlpA6f5pDRSlf5x/Zl36Tzu7n43D/V9iI8v+pjpg6b7JONwtuigaD656BMGNB2Aw+0gvSiduJA4Zg6d6dMsju62brfRNborOY4c/rb0b0z8fiJ7M/YSYg3h0X6P+nSsYGswD/V9CNBmWc3ePZvNZzYbU+pv7npznRprzza65Whah7cm15FbrtS1LHGZUa64psM1Phvvgd4PoKDw27HfyqW/VVXl7a1vA1qzcl1mxulMiskoPX29/+sKV8vbUrYZZbXaznQqKzwg3Ah6qlrgTw8c6tKsrGsT0YbW4a1xup3G2jtn25W+i4yiDEKtoUZZpba6Ne5GXEgchc7CalfrNRb083APqaq0a9SO+JB47C67EQBVxu6yG7st1yVYCbYGG6W16saD0uCoS3QXTErtT/P6AnjeLrjnDxKs+Jq9dI0VE2CGWjXYCt+LC4nj733+zh3d7qB/XH+/BCq6No3a8MHYD/jvmP8y48IZ/HLFL+XKbL5kNVl5b+x73NLlFqwmK27VzZD4Icy9ZC7xofE+H++ShEu4OOFinG4nL296mdt+u43T+aeJD4nnvh73+XQsk2LiqYFPYVEs/HLkF17b8hprT61l2uppgNb/0yKshc/G6xjV0dhy4dXNrxoBxIoTK9iSsgWb2ebT13hF+yuwmW1sTdlaIbuir0d0WdvLajVluTJ6L9GPh3+skA1IK0wzdoP2RSYHSstlem/R2fTxhjQbUucLJEVRGNNSW+BP317ibKqqGid6b1cfrmw8/X2qbgq6PmOoSVCTOi2PAKUBlh5wVcVoII6qXQOxMV7Je7TpzKY6/R5fkGDF1+w5FOtL7etvby2mLovzn6IoDGk2hIltJ/q09FOZCFsEj/V/jIVXLuTLCV/y7ph3a7UVgycUReGFoS/wr4H/wma2YTPbuKr9VXw8/mO/ZMcGNB3AUwOfAuCTXZ9w75J7yS/Op19sPyPL40sP9HqAAFMAG5M38vSfT7P5zGZe2vgSoK2qHBvi/WyOqsSFxBn9Wy9vetnoAzqec9xoYvbFNH7diBYjiA+JJ60wrcJqy1/v/xqH20H3xt1rPUvmbNd2vBazYmZD8oZKS096f4m+BUFd6asRLz+xvNLlA45kHyG9KB2b2VandY50esZrxYkVVfaR6ItODmg6oM4XSMYU7dMbqu1b0ddequssx35xWmZlf8Z+su2ebxvjDxKs+Jo9F6e+1L5SMt1XMiuinsSGxNKjSQ+/Zo1AC1iu7XgtS65ewh/X/sH0wdNpFtrMb+Nd1eEqHuv3GM1CmxETHMPg+MG8PPxlv5Qrm4Y25eF+D6Og8N3B77jtt9tIzE0kKjCKO7rd4fPx7uh2h9EH9OKGFzmZd5J/rfkXKirDmg/zaR9XgDnAWFDyw50fGiegImeR0ZB9S5dbfPbvJy4kzlgc8OzgKCknif2Z+zEppjr3q+h6NelFdGA0uY7cSktB+m29Y3r75AKif1x/gixBpBSkVDmFuWywUlc9m/Qk0BxIelF6lYu1FbuLjfvqGnQ2DmpMQkQCKmqDZ1ckWPE1e27pUvtGsHL+9KwI4Y3IwMg6rW/ijVu63sJvV/3GsmuW8d7Y94gOivbbWDd2vlEbIzDa6C356pKv6tx0Wplga7DRW/T1ga8Z/914tqZsJcQawv297vf5eJe2uZR2jdqR68jl9S2v43Q7+WTXJ2QUZdA0pKnXO3PXRN8F/ecjP5ebVTJru9bEPKjpICIDI30yltlkNnZBn71ndrn7VFVl/sH5gPe7gVfFZrYZs6Z+PVKxDyjXkWts6umLJSACzAFGYFfVVhQHMg/gcDsIs4b5pERqlIKSJVj531KmwdZqksyKEOerQfGD+PXKX1l81WKevfBZmoY29dtYFydczEvDXyI+ROsxah3emjmXzPFZOaYss8nM1D5TAa2XZNy344zA4baut/l06QDQsh2dozpjd9mZuX4mbtXN3vS9xlT7B/vUfkPWytzS5RYsJm0rirLL029M3sihrEMEWYJ8siK3Tl9wccGhBRWm829K3oRbddMqvJVPFroEuChB20bkt2O/VVoK0rdU6BvXt07Ntbp+cf1oE9GmVpuS+pIEK75WlFO647KeWTlHNoISQngn2Brs0x6V6oxvPZ4fr/iR/475rzaNvxbLpHtqeIvhPDvkWUKtoaQWpmIxWXi036Pc0OkGn4+lr1xtUSwsPLaQJ1Y9wbQ1WoP0xQkX+2TBwrLiQuKMxTM/3Pmhcbtehrqs7WU+zQYOaz6MpiFNybJnVch26AGZLxfWHNZsGEGWIE7mnTQaacvS+4D0VYTr6qJWF/HDpB+4s/udPvl9tSXBiq/Zc0uX2tevUKQMJITwgM1sY0izIX6dxq+7vN3lLLh8Aff2uJcvJnzBrV1v9VuvU/+4/vx78L8Bbdr0wcyDBFmCeLC3b7Mquju63YGCwvKk5czbN481J9cYi9Nd3/F6n45lNpmN6fPz9s0zbj+ec9xYRPDajtf6bLxga7ARiCw8Wn6jz7TCNGN5fF/N6PJ3/5unJFjxNUeuMRvISKdKGUgIcQ6KC4njgd4P+Dy7UZlJ7Sbx5IAnubDZhdzf637mXTrPp9POy0qISDC27Xh2/bPct/Q+3KqbYc2H0S6ydsvPV+eK9ldgMVnYkbbDCFA+3f0pKirDmw+nQ2QHn46nl4IWHVtUbiPF1SdXo6LSNborTYKb+HTMhubb4qQAe17pjsv6TAWZuiyEENzQ6Qa/lJoq83j/x4kMjOStrW8BMLnTZP7R5x9+GatxUGNu7HQjs/fM5slVT3Iw86Cx55M/yicXNruQSFskZwrO8M2Bb7ih0w2oqmo0+fpqKvi5RIIVX3PkG2UgI7PicjTc8QghxF+Qoijc0+MeBjQdgM1so1NUJ7+ON7XvVA5lH2LNyTW8u/1dQOtVqeueR5WxmW1M6TWF59Y/xzvb3mFCwgRWn1zNn6f/xGKycHHCxT4fs6FJsOJrjnyKLWdlVipZnEgIIYT/+WLxN09YTBZeHvYyj658lMLiQsYnjDe2U/CHqztczbz98ziUdYh7ltzDybyTANzX4z5aR7T227gNRYIVX1JVcORRbNU2x7IYwYpkVoQQ4n9daEAo/x3z33oZy2Ky8OSAJ7l3yb3lNkq8o7vvFy48F0iw4kvFhYCKnkcxtnQ/a+69EEIIUVf94/rz46QfWZ60nINZB7mr211+34S2oUiw4ksObQv70kXhSpZzljKQEEIIP2ge1txYJfh/mUxd9iVHHgDFFm37eIu+94SUgYQQQohak2DFl/TMSkmwYi0brFSzQ6YQQgghqibBii+VBCvFFi1IsZStHUopSAghhKgVCVZ8qaQM5DTrmRVb6X1SChJCCCFqRYIVX9IzKyWzgCwWCVaEEEKIupJgxZfOClas5gDQt+iWMpAQQghRKxKs+JJRBtJmhFtMFjCabGWtFSGEEKI2/BqszJw5k/79+xMWFkZMTAyTJk1i//795R6jqirTp08nPj6eoKAgRowYwe7du/15WP6jT10uCVasJmuZYEUyK0IIIURt+DVYWbFiBffffz/r1q1jyZIlOJ1Oxo0bR35+vvGYF198kVdffZW3336bjRs3EhcXx9ixY8nNzfXnofmHPnXZVDZYkSX3hRBCiLrw6wq2v/32W7mfP/nkE2JiYti8eTPDhg1DVVVef/11pk2bxpVXXgnA7NmziY2NZc6cOdx7773+PDzf03tWTFoMqJWBSppsJVgRQgghaqVee1ays7MBiIqKAuDo0aMkJyczbtw44zE2m43hw4ezdu3a+jw039B7Vkxm4KzMilOCFSGEEKI26m1vIFVVefjhh7nwwgvp1q0bAMnJyQDExsaWe2xsbCzHjx+v9PfY7Xbs9tJm1ZycHD8dcS3omRWlNLPiMlkxA26nXbqZhRBCiFqot/PnAw88wI4dO5g7d26F+5SSjf90qqpWuE03c+ZMIiIijD8tWrTwy/HWil3PrGhvq9VkJSnbCcDKfaca7LCEEEKI81m9BCsPPvggP/74I3/88QfNmzc3bo+LiwNKMyy6lJSUCtkW3RNPPEF2drbxJykpyX8H7i19NlBJoHU6y0F2sfYWr9h7ssEOSwghhDif+TVYUVWVBx54gPnz5/P777+TkJBQ7v6EhATi4uJYsmSJcZvD4WDFihUMHjy40t9ps9kIDw8v9+ecYddmMBWjBSupOS6KSyptKZm5qLKZoRBCCOE1v/as3H///cyZM4cffviBsLAwI4MSERFBUFAQiqIwdepUZsyYQfv27Wnfvj0zZswgODiYyZMn+/PQ/EOfulxSwUrLc1Ksam+x4nKQluegSZitqmcLIYQQohJ+DVbeffddAEaMGFHu9k8++YTbbrsNgMcff5zCwkKmTJlCZmYmAwYMYPHixYSFhfnz0PxDLwOV/JiW66SYkplBODmRWSDBihBCCOElvwYrnpQ9FEVh+vTpTJ8+3Z+HUj/0Blu0152a48ROyT5BipMTmYX0bhnZYIcnhBBCnI9kNq2vuN1QXDJ1uSRYySxwGz0rATg5lVXYYIcnhBBCnK8kWPGV4tItBJyqGwB7sVIuWEnPl4XhhBBCCG9JsOIrJSUgFBPFqkv7XjXhNpWUgXCSnifBihBCCOEtCVZ8paS5loAwnG5tIThVtWC2ag21Vpxk5NurerYQQgghqiDBiq/owYotlGJ3yXwg1YRFD1YUJxlSBhJCCCG8JsGKr+hloICQMsGKmQBbIAA26VkRQgghakWCFV8xykChRhlIC1ZKy0CZEqwIIYQQXpNgxVfspWUgu0vrTVFVC9aAIEALVvIdLlxuWXJfCCGE8IYEK75SpsG22KWXgSzlMisAeUXOhjg6IYQQ4rwlwYqvlAQrLmswTlUvA1mwlfSsBJm023KKiit9uhBCCCEqJ8GKr5SUgRy2YOMmVbUYDbbBZm2hOAlWhBBCCO9IsOIrJZkVhzWo9Da3hcDAksyKWVsoLlfKQEIIIYRXJFjxFX3HZauWWVFVBTARHKj9HGjSgpWcQsmsCCGEEN6QYMVX9DJQySJwqGZAIShIy7TowYpkVoQQQgjvSLDiKyWZFbtFD1YsKAqlwYoiDbZCCCFEbVga+gD+Zzi0XZcdlgBAa66NCLJiKnmHbYpkVoQQQojakGDFV+y5ABSXyaw0CrKCWUte6eusSM+KEEII4R0JVnxFLwPpqRS3hUbBAWDWgpSAkjKQZFaEEEII70iw4it6g63FCmhloEbBZTIrqpZRybVLZkUIIYTwhgQrvlLSs1KsZ1ZUC5HBAVCyvopZ1ctAklkRQgghvCHBii+oamkZyGwuuclMRJAVLNrPFlUvA0lmRQghhPCGBCu+4MgHtN2UHUrJbHDVWlIG0m43lZSBcqRnRQghhPCKBCu+oO+4rJhwKIr2vWouKQNpewKZ3A4A8uwSrAghhBDekGDFF0r6VQgIxeHSghLVXdJga9KDFS1IyZdgRQghhPCKrGDrCyVrrBAQiqMkg4KqT13WFomjJIgpcLhwu9UGOEghhBDi/CTBii/oZaCAECOzUroonDaVWUHFhJZlyXdIdkUIIYTwlAQrvqCXgWylmZXSdVasxsOCSjYzlL4VIYQQwnMSrPhCmTJQYXGR9v3ZZSAgouRb6VsRQgghPCfBii/oZSBbGLn20mAlzGYBU2lmpVHJtkF5dlc9H6AQQghx/pJgxReKcrSvtnDy7HYAAi0BmEwKmEygaAvDRQRojbWSWRFCCCE8J8GKLxRla18Dw8lzFGrf6rsvg9G3El4SrEjPihBCCOE5CVZ8wV6SWQmMoKBYy6wElQtWtGaVsJKKUJ6sYiuEEEJ4TIIVXzAyKxEUOrVgJSQgsPT+ks0Nw/QykExdFkIIITwmwYov6MGKLZzCksxKiLViZiXcImUgIYQQwlsSrPhCUWkZyF6yKFyYLaj0/pJgJcQqDbZCCCGEtyRY8YUyDbZ6sBJqK1MGMmtloFCLHqzI1GUhhBDCUxKs+EKZnpXikmAlPLBssFKSWbFoy+3nSoOtEEII4TEJVnxBnw1ki6DYrfWsNAoMKb2/ZGE4PViRMpAQQgjhOQlW6srtKjd1uVjVMiuRQWWCFfNZwYrMBhJCCCE8JsFKXemBCkBgOG60zEp0cMVgJcgss4GEEEIIb0mwUlf6TCBLIFhsuNEyK01CwkofU9Kzou+6LGUgIYQQwnMSrNRVmebaomIXKMUANA4NLX2MnlkxaWUgWcFWCCGE8JwEK3VVZkG4jIIiFJMWiDQOLhOslDTYBppLghXJrAghhBAek2Clrozm2nDO5OYaNwdZyy4KVxKs6GUghwtVVevtEIUQQojzmQQrdVWQoX0NiiQ1L8+42WauuOuyrSRYcblV7E53vR2iEEIIcT7za7CycuVKJk6cSHx8PIqi8P3335e7X1VVpk+fTnx8PEFBQYwYMYLdu3f785B8rzBT+xoURXp+PgCKasWklHlrSxpsrZSWf2RhOCGEEMIzfg1W8vPz6dmzJ2+//Xal97/44ou8+uqrvP3222zcuJG4uDjGjh1LbplyyjmvsCSzEhxFeoF23CYCyj+mpGfF5HYSEmAGZEaQEEII4SmLP3/5xRdfzMUXX1zpfaqq8vrrrzNt2jSuvPJKAGbPnk1sbCxz5szh3nvv9eeh+Y5RBooio1DLrFhMtvKPKSkD4SomNNBCvsMlTbZCCCGEhxqsZ+Xo0aMkJyczbtw44zabzcbw4cNZu3Ztlc+z2+3k5OSU+9OgymRWMkuClQDl7GClJNPichBi0+JDyawIIYQQnmmwYCU5ORmA2NjYcrfHxsYa91Vm5syZREREGH9atGjh1+OsUYHesxJJTlEBAAHmwPKP0TMr7mJC9WBFltwXQgghPNLgs4EURSn3s6qqFW4r64knniA7O9v4k5SU5O9DrF6ZzEpWkZZZCawqWHEVExKgBSvSYCuEEEJ4xq89K9WJi4sDtAxL06ZNjdtTUlIqZFvKstls2Gy2Ku+vd2WmLufYC8AGwdazghVTmWDFKAO56vEghRBCiPNXg2VWEhISiIuLY8mSJcZtDoeDFStWMHjw4IY6LO+oamlmJSiKXLtWBgoJCC7/uDI9K2GB0rMihBBCeMOvmZW8vDwOHTpk/Hz06FG2bdtGVFQULVu2ZOrUqcyYMYP27dvTvn17ZsyYQXBwMJMnT/bnYfmOIx9c2saFBEeR7ygEIKxCsFLyNruKCbFpU5dlNpAQQgjhGb8GK5s2bWLkyJHGzw8//DAAt956K59++imPP/44hYWFTJkyhczMTAYMGMDixYsJCwur6leeW/QF4UxWipQg7O4ibEB4YBWZFXcxIcGSWRFCCCG84ddgZcSIEdXugaMoCtOnT2f69On+PAz/KdNcm1FQDCZtx+XwaspAoSUNtpJZEUIIITzT4LOBzmtlFoRLz3OgKFqwEmg5u8FWLwM5jQZbCVaEEEIIz0iwUhf5qdrX0Cak5duNzEqFYKVsZkUabIUQQgivSLBSF3lntK8hMSWZFa3ZttyOy1BmnRVH6aJwMnVZCCGE8IgEK3WRl6J9DY0lPc8OJrv2ozW0/OOMFWylDCSEEEJ4S4KVujCClSak5tpRSoKVkICQ8o8zlc2syNRlIYQQwhsSrNRFfkmwEhLDmVw7irkIqCyzovesFBNq0wIX6VkRQgghPCPBSl2UKQOdySkyykAh1rMyK2X3BpLMihBCCOEVCVbqokwZKCWnCMVUVWal4q7LdqebYpe7vo5UCCGEOG9JsFJbbhcUpAGghsRwJseOYq6qwbZ06rLeYAtSChJCCCE8IcFKbRWkg+oGFHItjSgsLkYxaVOXQwPOClZMpXsDWc0mAiza2y6lICGEEKJmEqzUll4CCo4mJc9p9KtAZT0rpQ22AGGy1ooQQgjhMQlWaiv3tPY1LI6UnNJpywGmAAL04ERXZlE4QNZaEUIIIbwgwUptZZ/QvoY3IzmnqHTa8tklICi3KByUBivSsyKEEELUTIKV2tKDlYjmnM6uZtoylGuwBWRhOCGEEMILEqzUVs5J7WtEc05kFlQ9bRnKrWCLqkoZSAghhPCCBCu1VSazciKzsHSp/UozK9bS792uMpsZSrAihBBC1ESCldo6O1ipaql9KB+slNt5WYIVIYQQoiYSrNSG222UgdxhzTiZWVjas3L2JoZQ2rMC4C4uUwaSqctCCCFETSRYqY381JJmWYVUJQqHy425usyKqWxmpWywUlwPByuEEEKc3yRYqQ29BBQWx4kcLeAIDtKClcjAyIqPN5lA0WYAaWUg7XtZFE4IIYSomQQrtZFxWPsa1YbEjAIAAgMLAYi0VRKsQLlVbENtWqZFZgMJIYQQNZNgpTbSS4KV6LYcSc0HwBqgBStRgVGVP8dYxbaYECOzIsGKEEIIURMJVmoj/ZD2Nbodh1PztO9N2tdKy0BQZhXbYpkNJIQQQnhBgpXa0IOVqNLMikPNBaoJVsosDKc32OZKsCKEEELUSIIVb6kqZBwBwBXVliNp+YCbfGc2UF0ZSO9ZcRIeqAUuOYUSrAghhBA1kWDFW/mpYM8BFE4qcTicbgICilBRAYiwRVT+PLOWTcHlICK4JFgpkqnLQgghRE0kWPFW6j7ta2QrDqZrGxM2j3YDEB4QjrXsmiplldnMMDxQC1wcTjdFxTJ9WQghhKiOBCveSt6lfY3txu5TOQC0jNGClSpLQFChwdakaD/mFEp2RQghhKiOBCveOlMarOw8qfWpxDbSek+qbK6FMg22xSiKQniQ9nO2BCtCCCFEtSRY8VbyTu1rXHd2lwQrjcK0fYGqz6yULgoHEBEkfStCCCGEJyRY8Yar2OhZyQzrwKlsbYl9LBkANA1pWvVzzaVTlwFjRpBkVoQQQojqSbDijTO7tWAjMIKtueEAtGkcQmpRMgDNw5pX/dwyK9hCmcyKTF8WQgghqiXBijeSNmhfm/fnzyNaNuWChChO5p0EID4kvurnms7KrARpM4IksyKEEEJUT4IVbySt1762GMC6kmBlYJtoI1hpFtas6udaSqcuQ9nMigQrQgghRHUkWPGUqhrBSl5MH3af0ppru7ewkW3Xvq82s2K2aV+lZ0UIIYTwigQrnko/BNlJYA5gZUFr3Cq0aRKC05QOaCvXhgaEVv18S6D21anNHJKpy0IIIYRnJFjx1MEl2tdWg/l5n5ZJuahrHCfyTgDQLLSaEhCUloEkWBFCCCG8IsGKpw4tBaA4YTR/7EsFYEK3puzP2A9Au0btqn++UQbSgpXIkv2BsgokWBFCCCGqI8GKJxwFcGw1AEuLu1NY7KJlVDDdmoWzO303AF2ju1b/OywlwYpT61mJCtYyLZkFDv8csxBCCPE/QoIVTxxdCS47anhz3tphBuDGAS0B2J1WEqw09jRY0RaSayTBihBCCOERCVY8ses7ABJjRrInOZdAq4nr+rcgpSCF9KJ0zIqZjpEdq/8dxnL7JUvzh+jBSjGqqvrt0IUQQojznQQr1XA43VoJaP+vALxwQsue3HlhAo2CA9h0ZhOg9asE6rN9qmLMBtIyKY1KelZcbpWcIlnFVgghhKiKBCtVSMooYNxrK9j++zxw5JFmieXXrBbERwRy3/C2ACw5rs0QGt5ieM2/8KwyUKDVTHCAVlLKzJdSkBBCCFEVCVaq8MmaYxxLL+D0mi8B+KboAmwWM2/e0JuwQCsFxQWsPqk13Y5tNbbmX2guv4ItQKT0rQghhBA1sjT0AZyrnpzQCVdhFiN3bwPgz6ARzL7hAvq1jgLgmwPfYHfZaRnWsuZ+FaiwKBxAZIiVk1mFEqwIIYQQ1TgnMiuzZs0iISGBwMBA+vbty6pVqxr6kLCYTTzd4Tg2pZiiRu346J+3M7BNNABphWm8v+N9AO7qfheKonjwC8svCgdlMiv5staKEEIIUZUGD1bmzZvH1KlTmTZtGlu3bmXo0KFcfPHFJCYmNvShwd4fAQjseTVWi9ZfkpyfzJSlU8hx5NCuUTsua3uZZ7/rrEXhoDRYyZCeFSGEEKJKDV4GevXVV7nzzju56667AHj99ddZtGgR7777LjNnzmyw4yrITyXt+AryAqxkx7Tm2L657EjdwdLjSylyFREVGMUbI9/AbDJ79gvPWhQOoHGodltavr2yZwghhBCCBg5WHA4Hmzdv5v/9v/9X7vZx48axdu3aSp9jt9ux20tP7jk5OX45tu83vMrMplrZh00zyt3XO6Y3/xnyH1qGt/T8F541GwigcZiWWUnNlWBFCCGEqEqDBitpaWm4XC5iY2PL3R4bG0tycnKlz5k5cyZPP/20348tzFVMsFsl1BJEaFg8LcNa0j6yPUObD6VXk16e9amUVUkZqImeWcmTMpAQQghRlQYvAwEVTvyqqlYZDDzxxBM8/PDDxs85OTm0aNHC58c0cczLTHTNhOICCIyo+y+srAwUVhKsSGZFCCGEqFKDBiuNGzfGbDZXyKKkpKRUyLbobDYbNputPg4PzFYw+yBQgUrLQHpmJTVPghUhhBCiKg06GyggIIC+ffuyZMmScrcvWbKEwYMHN9BR+Ukli8I1KcmsZOQ7cLtlfyAhhBCiMg1eBnr44Ye5+eab6devH4MGDeL9998nMTGR++67r6EPzbcqWRRO38zQ5VbJLHAQHVpPGSMhhBDiPNLgwcp1111Heno6zzzzDKdPn6Zbt278+uuvtGrVqqEPzbf0MpDqApcTzBasZhNRIQFk5DtIybVLsCKEEEJUosGDFYApU6YwZcqUhj4M/9LLQKDNCDJrb31seCAZ+Q6Sc4ro3DS8gQ5OCCGEOHc1+Aq2fxl6GQjKlYKaRmi3J2cXnf0MIYQQQiDBSv0xW0ApebvLNNnqwcrprMKGOCohhBDinCfBSn0yV5y+bAQrklkRQgghKiXBSn2qZGG4uIggAJJzJFgRQgghKiPBSn2yVFxyP74ks3JKykBCCCFEpSRYqU9GGag0WIkrUwZSVVkYTgghhDibBCv1yVIxWGkWGYRJgQKHSzY0FEIIISohwUp9MlaxLS352Cxm4htpfSvH0/Mb4qiEEEKIc5oEK/XJqgUlFJdvpm0dHQLAsfSC+j4iIYQQ4pwnwUp9MoKV8s20raKDAcmsCCGEEJWRYKU+WbWghOLyGRTJrAghhBBVk2ClPklmRQghhPCaBCv1qarMSmMts3I0LV+mLwshhBBnkWClPlWRWWkZFYxJgdwiJym59kqeKIQQQvx1SbBSn/RgxVk+WAm0mmnTJBSAPadz6vuohBBCiHOaBCv1qYrMCkDnpuEA7DklwYoQQghRlgQr9anaYCUMgL2SWRFCCCHKkWClPlXRYAulmRUJVoQQQojyJFipT3pmxVExWOkarwUrR9LyySkqrs+jEkIIIc5pEqzUpwBtijKOiuupxIQF0jIqGFWFrYlZ9XtcQgghhNMOq1+Dhf8Pdn4LLmdDH5HB0tAH8JcSoPWl4Mit9O5+rSNJzChg07EMhndoUo8HJoQQ4pyjqpBxBAozIb43mMz+G6soG+beAMfXaD+vBw4sgivfB0Xx37geksxKfbKVBCv2yoOVC1pHAbDhaEZ9HZEQQghvuF31M05+Orw3FN7qAx+Ohs8uh9xk/4239GktULGFQ787wGSBnV/D7//x35hekGClPtm0tVSw51V6d/8ELVjZmpRFvv3cSb8JIcRfXu4ZmH0Z/KcxvNkHNn7kv7FcTvj2dkjeCeYAsATCsVXw/kgo8MPFbFYibPlM+/66L+DS12DiG9rPq16BY2t8P6aXJFipTzVkVto0DqFFVBAOp5s1h9Lq8cCEEOI8k3EEPr8CXusO39wGp7f7b6y8FHh/BBxdAaobMg7DLw/D5tn+GW/Lp9pY1hC4ZwXcuwoiEyD3FPzxnO/HW/MGuIshYRi0Ga7d1vsm6HOr9v3v/9FKUg1IgpX6pPesOAsrbVxSFIXRnWIBWLY3pT6PTAgh6ubAYvjyGnijF/z8EBT5cRmGU1vhv0Ph8O+QnQi7F8DsiZCyzz/jLZ+pBQpRbeHu32Hw37Xbf54KB5f6diy3G9a9q30/+l8Q2wWadIDL3tJu2/SxbwMzlxN2fad9f+FD5e5Sh/8Tt9kGiX+ye8V3vhuzFiRYqU96GQiqbLId3TkGgGX7zuB0uevjqIQQ/4s2z4a3L4A3e8P8e7UGSn85sBjmXg8HF0PmUe2E+t8hkHbQ92O5XfDTP8CRBy0GwORvoHl/7fV9cRXknPbteKn7SzMol78NzfrC2Ge0zIPqhoWP+3bWzOHfIf2QdnHb+6bS2xOGona7ClQ36V//ndxCh2/GO75aa+ANjobWw4ybHU43d8w/yYf2MQBY173hm/FqSYKV+mSxafVHqLJvZUBCNFEhAaTlOVglpSAh/MfthsxjkLQRnD764K+K065lG55pDM9ElzRLnvHfeEunw09/h7T9Wrlkx1fw8XjISvL9WJnH4ZtbQXVB1yvg6o+hUUutD2L+Pb6f/rpltpZZsEXAdV9Ch3FwwzyIbgc5J2DxNN+Ot+5d7bV1nACtBmu3KQqMfx5XYBRkHGbD92+T66v1sbaW9I70vrG0dQDYfDyDO09eRr5qIzpzG/+Y+QYvLdqHWtfyzN6ftK8dJ4BZmyCsqir//nE3f+xP5SMu5/foyRRM+qRu49SRBCv1rYa+lQCLict6xgMwf8vJ+joqIRpeXopWO9/4IaQd8u9YGUdh1gB4oyd8NEabdXH8T/+M5bRrvRWbPtb6AtxOOLIcPhgFZ3b7frwjy7W1MgCG/z+44SsIjYWUPTDnWnD5eNHJVa9oq3K3HARXfgDdroI7FmvBxKktsG6W78ZSVVj7tvb9yCcgtGSJh5Boci99X/t+13d8/ctCsgt98DqdDq3EBDDg3jKHofLskiRm5E4AoNmON7nk1WUs31/H8r3TAYd+177vfq1x86GUXCZ/sJ7fT1v5CS37cYW6lHf+OMw7f9Th/4qqwv6F2vedLzNu/mpjEnM3JKIoMOPGEYx68F16dWpX+3F8QIKV+hZQUgpyVJ5ZAbiqT3MAFu1OJi3PXh9HJc4XjnztStnfzW4uJ2z6BOZcBx+O0QKISva08plNn2i9Dkv+D355BN7uCyte9M9YGUfhkwmQdkDLdAaEQuo++HQCHFzi+/HWvlU6JfSGr7SGST0L8NVk376vLqe2oBfABfdqJ/SOF8NdyyAoClL2UPznu3W/GtdlJcK2L7XvxzwNZisAalgcR/o8AYB9yX/46IclpOb64LMs8U+tuTUgFHrfbNx8LC2fy77L5WfXQAAi173EhDdWsfl4HWfOHFoCRVkQGgethwIlgcove/lw9VG+cI0h3RRNMyWdIfmLue2TjfxRl4Dl+BqtRSA0VltXBa0cM3XeNuxON4PaRDPuFu3vd4JlE1Hk8PLiAyzZU8ssXeYxyDkJJiu0vhCAQoeLVxYfAOCxizoyunNs7V+PD0mwUt9s2rL62KtuPuvWLJyeLRrhcLr5Yt3xejqw/yH11bWefhjWv6+dYJM2+nfcrCQtjT+jmdaD8P4IOOTjxj6dywnz79aaBw/8Bic2agHEu0O07IevHVqmlUiK87UP6JKTAn88B3/M9O1Yqqq9rtxT0KQTTN0FU3dCl8u1/oMF9/l2LYvM47DyZe37S17RAof4XnDnEpyh8ZB5jL3z/sWR1KovXryy6ztI3asFJiOfMG4+SWM+Cb4dgKIlM5j86g9sPp5Z9/E2vK9lihKGQ8sBgHYyf3LBLkb90YJVrm7YcBCx6U0ufOF3Fu2u43u75XPta9crjB7AQyl5XPnuWo6m5fNl0I24MTHWvJno7F1c//46tibW4XXqjafdrzYWZPtpx2k+Wn0UgH9f0Zfo0VMBuC9sLQCPfbO99oHZgd+0r+3HgUk7Pb+34jC7TubQKNjK69f3IqptP4jvg1l1MrPNDgCe+n4nRcW1WP/luHbMNOsDAdredXM3JJKWZ6dZoyDuHtqmdq/DDyRYqW9BjbSvhVlVPkRRFO66MAGAz/88ToHjPF1zpTAL9v2qndCPrvLvybwoB1a8BK90ghdaaz0Bh3/333ibPoa3+8HCx7TSxUdj4JOLtYWcfC1lH3w0VruqRAXFDKe3ac2E+toIvvTro7B7vna1NfIpuGgGhDXVrmjn3uDbTEBeKnx3F6BqV8p3/wG3/QxjSxaiWvE8aevm+K7Z/MBvWpnEHKBlOcJiITiK5NFvkhbSHgrS2PrmdXyy+rBv1jpa87o2+6/1UOh+DaCdzN9el86UzOsAaHfwY+5//UteWrSvdiecsjaX9BUMnAJBkQAcOJPLVbPW8szJ3mx1tyNMKeSarA+4+r9reWtZHRpg3W7YNV/7/oK7jZtnLT/M3A2JmBSFbe0fAOBy81rCnRn846ut7DiRVbvxnHbY+6P2fUnjqdut8sT8HWTkO+jWLJw3HrwWUw/tfX40ag3FLpWH5m2r3d+l21X6GdJ5IgBFxS6e/3UvAH8f3Z7JA1pCz+vBZKFV0V4uapJBWp6Dx7/dXrvs1aFl2tcOFwGQb3fyYUlgNH1iV2LDA7X7+2mB59jC32gWEciZHDuf/1mLC1s9WCnpxbE7Xfx3xWEA7h/ZDqv53AkRzp0j+asIaax9zU+t9mEXd4ujRVQQ6fkOPllzrO7jul2w9Qt4ZwC80lmb9rdtrv8CiCPL4e3+8NUN2gl99qXw8UVweofvxyrK0X7/H89C7mktbXtkuXYy/3OW71/juv9qmQDVDS0HazX6kul9fHmVb6dsOu1a82LuaWjSGR7cAo8eMNY/UH96iD1rf/HdyTxxfekJ79rZMPwxGHQ/6dfMp8gaASc3seH1G5i/5QR5vjqZF2ZAbDeY8DIoCg6nmw/dl/IBVwDgXPgkQ575ka831rE5VFW1xlOAQfdDlHZBsOtkNpfM2sh1GfdQoNroXbyN7b9+yNAX/6j9iRW02Snb52nfD38cFAW3W+Wxb3fw8uIDLHb1Z63lAqyKi2mm2bzzx2Fu/XgDxbX9u0zdr/0bVMzGyTw1184N768jOaeItjHhBE7SelkmmdcSr6byypID/LarlrNnEv/USgi2CGg3FoDVB9N4adF+AKZf1pUHb7kBml+AFSfTYtZQVOzmrtmbalfePr5GK5+HxkLzCwD4elMSG49lEhxg5r2b+xETFgh9tRP5UMcq2oarHEsv4LmSAMMrp7dps2Rs4dCsHwAfrDzCqewi4iMCmTKirfa40BjoMB6AmW12EGA28cf+VNYd8bIElZcK6QcBxSjJzN2QSHZhMQmNQ5hY0ssIQNcrwRqCKfMI0/trvTmzlh/yvslXX1q/1RAAlu5JISXXTmy4jav6NvPud/mZBCv1LaSkIayGYMViNvHw2A4A/HfFYTLz6zBbobgQPp8EP9yv1eZzT0HyDvj+PvjiSt+viLjnB/hsEuSnaLMC2o/TTuZJ62H2RFzJe3w3lqtYu9o/vR2CG8OVH8I9y6HXjVowsegJDn73NIdT83xTp0/ZC4uf0r4f+ijc/itc/THHr11EgaURnNrKjlcu4e2lezmeXnHDSq+telX7OwturGUcottit0UyXb2Hn91DUFQn8Yvu5srnv+HNZQexO+twZe52aYElaCe7TpcAsPZQGsM/SuKWvL/jUM1ckP8HP3z7GaNeXs7e03UIzHLPlK4COmY6WAMpdrm55/NNPPvLXl4uupwk4ohTMrnD9TWPf7eDJ+bvrP3J/OhK7b0MCIULHwZg54lsbvhgHen5DiwxndjX/h4AHrL9QFZ+Ebd9spFDKbUs0Wyfp5W2mnQySluf/XmMbzefwGxSeHZSNwbf/yGqycKF5t30tyWy/mgGM2pzYgXYWlIi6TAewpsCMP3H3aTnO+gUF8a39w2ic59h0GYEJty8nLARgMe+2cGxtFr8W931rfa1y0SwBuJ0uXnmZ61hePKAltwyqLV2/6ApAFxW/Btdm1hJybXz6pID3o93YLH2tf1YMJnItzt54TdtXZWHx3agWaOSXe1bDoTo9ijF+bzXR8s2zFmfyL5kL/+t6lmVhGFgtlDgcPLBqiMA/PPiTgRay+zTUxIcRh2cz+S+cQC86W3WKrGkwTumCwRFUuxy83FJVuWeYW0wm8rsz2MLhfbalOLR6nraNA4hs6CYz71pG8hP06aZA7TQgr/vtpwA4Oq+zbFZ/LgPUS1IsFLfjGCl5mnJl/dsRqe4MHKLnMxaXsuOb7dLS7MfXal9SI/9D9z9B66R/8JlCoDDv3PsnUm8uWgXJzILajdGWWmH4Pv7ARV6XA/3b4Abv2Hj5X9wwNoJirJIfXcCd785n282JdU97f3nO9o6AbZwuHk+9LiGU8GduDfndp533gBAws43eOzVD7jpo/WczKpDCcPtgh8e0GZ0dLgYRj0FisLXm5IY+3ky1+Y/Sq4aRI/iHaT/8Q6jX1nBt5tP1H687JOw+lXt+wkvQkhj40r50z+P84jjbnbSlkZKPncWfcqrSw5wz2ebKXTU8j3d90vplNDR0wH4bVcyt32ykTy7k5zYC9jbcjIA021zSM8t4Lr3/qx978P6d7USSbN+0G4MqqoybcFOlu9PJdBq4ukr+xJ//esA3GX9jbamk8zdkGhcuXtt44fa157XQ2A4BQ4nD87dQm6Rk/6tI/nmb4Poc/XjENiIVupJpjTZTka+g1s+Wl+7iwV9Cmq/O0FROJSSy8yF2sn13xO7cNPAVhDZCqWrlkF6o5V2lfvJmmP8tP2U9+Pt+7Xk9WnlpcW7k/ll52nMJoWXr+lJo+CSZRMG3AfAwMyfGdIqiFy7k39+t8O7YF5VtU3uQOsfAeZtSuLAmTwaBVv550WdSh/baSJEtMRUmM5b3bWT41cbEtmfXPmMyKrH0/s5tBLJvI1JZBYU0zo6mNsGty59rKJAH635tl3SfCZ014KHt3738jP08B/a13ajAfh+6ylyipy0jArm0h7x5R/bbqyW8SlI44GEJKxmhT+PpLPxmBcXgnqw0lJrEl55IJVT2UVEhwRwRe9KshydtNKUaf8vTBmpzdSZuyERt9vDv0d9YbnodhAYQUpuESsOaBfRV5ZM8jiXSLBS34Kjta8eBCsmk8I/x2v/6Wf/ebx2J9o1b8C+n7XMxuR5MOTvrMhvwfB1fbik8Bly1CBa528nfvUTjHp5Oc/+vKf26X23C767U+tmbzUELn+HIgJ45OvtXDPnGNfkPsx+d3PilEweTHuG//ftVq6YtZbk7KLajZeVCCte0L4f/zw07cne0zlcOWsti/ak8F/nRFbYRmJR3LwRMIvth5IY/9pKlu2tZef87gVwcpMWGF3yCigKry05wOPf7sDhdBPRtj/7e/wTgMcDviXanc6j32zntSUHapfV+fNtcDm097LrlRQVu7hr9ka2JGYRHmjh7VsG0/Xuj1FRuNy8lkHWQ6w4kMptn2yoXRCoTzG94C4IbcKhlFwemrcNh8vNhO5xfH//EHpOfhaCokhQk/hnk3XkFDm57ZMN3ge6bhds/0r7fsjfjaDv600nMCnw9g19uP6Clpg7XQwdxmNWXXzadjUA7688wmJvGzVzk7VgDLTgAXh+4T6OpRfQNCKQD2/tT3igFQLDYZDWZ/FQwA+0jQ7kVHYRMxd6me3IPKbt66KYoNtVRtOp3elmWIcm3DywVeljB90PQPyJhTw+SGsafebnPd71WaQf1nqKTFZoOwqXWzWyDvcMa0O3ZhGlj20/Dhq1QinK4u1uhwiwmFh/NMO7WSxpB7USkNkGrYbgcLqNTMI/RrcnItha+lizBfrdBkCbUz9xcbc43Co8+4sXGdaMI1oWwGSFtiMpdrmNJte7h7XBcnZvRc8btI34Tm7i0T7aTb/uPM3BMx4GSMVFWmM5QMJwVFVl9tpjANwyqFX5LIf+Gkv6WhonLubqvtrJ3qtpxWf1j+hZjst7NSufxdF1GKe9H2n7mRifQ3ighaSMQlZ7uj6XHqw07QnAj9tO4XKr9GnZiLZNQqt5YsOQYKW+eVgG0o3o2IQBCVE4nG5m/OLlB2b6YVj+vPb9pa9C6wv5Yt1x7vh0IycyC0kJbscvHWfgxsTV5pVcy2I+XH2UGz9cT1ZBLa4kt83R6ry2cLjqI+yqwn1fbOa7LSdQFJg0qCvuG7/DbYugh+koDwYtLgku1nDA0w+Rspb9p2R9h8HQazKHUvK49r0/Sc4pon1MKIsfGsbwh2ZDREtaKCm80ug7cu1O/vblFu+ueEBrJtSn0g7+O0Q04/utJ3mj5AN66pj2fH7HAPpd8Q9ofgFBaiGfxWvNh28sO8icDYnejZefpk3nBRj2KCowbcEutp/IplGwlQX3D2Fsl1hMzXqhlKSgP4j9lnCbduJ5ztt/Kye3aFd2Jiv0v5uiYhcPzNlKYbGLIe2ieeuGPtoHZlAjGPkkAHc7v2JA80Byi5w8NG8bLk+v6EDL9OWehsBG0GE8KTlFxjE/dlEnxnQpM11y+OMAtDj5C//oHwLAo99s50yOF0Hu7gXawl7N+0NsF3adzOazkobEl67uSURQmZPrgHsgMAJz+gHeG6D9P/160wn+POxF87QeGLUcDCHR/LE/hQ1HM7BZTDx/ZXcUpczJLr43tLoQ3E7uCVxKq+hgUnPtvLv8sOfj6VmOVoPBFsZP209xODWfRsHW0t4KnckMF2jlrsjdn3F7SVbi+YX7PP871EskrQaBNYgft5/iTI7W63DjgFYVH1/SXMyx1UwbGo7VrLDqYJrnU4uPaYEqzfuDLYyFu5I5mVVI49AAY6mHckJjoK2WEWmTsozxXeNQVS+yK6e2ahcKobEQ1YZNxzPZfyaXIKuZa/q1qPw5nS7Vvu5fyL0XtgZgxYFUTnlykVlcqAW3AC0HklXgYOkeLXissnckMMLYx8d28FcjGzLX08+as4KVxbu1i7jLesZX9YwGJcFKffMyWFEUhf+b2AWzSeGXnaf5Y5+HVz+qqm205bJDm5HQ60a+3pjEU9/vwuVWubpvc9b+v1HcMPkOTOO0mRfTg76mY1AO25OyuP79daR70wRnzy3dSnz446hhcUz9apuR0v/izgE8fXk3OnfshOmiZwH4u/kbLozO4VR2Ebd8tIEUb04+GUdKa+bjZ5Jd5OSezzaRW+Skd8tGfHvfYDrEhmn/oa/Q9tkYZ1/ELW0LcTjd3PnpRs+vsgD2/qCtBmqLgAH3sOdUDo9/pzUL/21EW6aO6YDJpGjTDS99DRQzHTN+57ULtDr59B93ezeFctPHWokkvje0GcmvO5P5bovW6/DO5D7lr3xG/QsCwghN28FXF2ofOJ+vO+5d46ReIul2JYQ3Zdbyw+xLzqVxaACvXder/JVk39sgMgGlMJ13u+wl1GZh47FM764id8wrHc9i45mf95BT5KR7swjuHppQ/rHN+mo9H24nfw9ZQs/mEeQUOZnpTW+HMQVVO2m+slgrJV3eK54L2zcu/9jACKNJs93xr7lxQEsApi3YicPpYb/M3p+1r50vxe1WefE3bbzbBrcmXu+tKKukr8Oy/UumjdeCi/dXHfE8Y6WXSDpchMut8ubvWhB999A2hAVaKz6+12QtME3eyQNdi4kIsnLgTB7zt3hYtjxSUiJpOwpVVflgpdbLcfuQBAIslZxWGrXUAjdUmp/4lSt7ayfWD1Ye9Ww8PVgpaTz9quSEfOOAVpVnHQC6lCxytucHHhillUl+3Xnas88ZvSTTYgAoivG+XNKjafnAtqzWF2rBd0EarQt2MiAhClWF7zwpBZ/eoQXTobEQ3oxfdp7G4XLTuWk4XeMjqn6eESD9yvUXaEHUkj1nSMn14DWWCVbS8uxsLAkcx3WNq/m5DUCClfqmzwYq8PwqrWt8BHcMaQ3AU9/v8mwq8+HfS6doXvoam45nMu17LXK/b3hbXrq6R+l/8oF/g+b9sTjz+a7VApqEBrAvOZf7vtjs+Yfz+v9C3hltZ9AL7uGDVUdYuCuZALOJj2/tz5B2ZU4IvW+GhGGYnEV80uQr2jYJITmniLs/3+x5+WL161oDbbuxqE178tg32zmSlk98RCAf3NKvfBq69YXQeSKK6ubfgXPp07IROUVahsWj/g5VhTVvlrxX9+GwhPHIN9txON2M6hTDY+M6ln98XDdjauGkrNlc1CWGYpfKlC+3eLaqpssJmz8tGW8KOXYn03/SGhfvH9G2/HsJ2vTbwVrposvB97l3aGsAHv92h2cfWvY82P299n2/O0jKKDCmLz59WTdthkVZZqtRuoja8T7PXqa9/rd+P8hhT9YLceTDnpIpqD2uZ/PxTH7ecRqTAs9f1b1iSh9gyD+0obd8yoyLW6Io8P22U2w46sGVeeYxLaWvmKDLJDYfz+CP/amYTQoPjelQ+XP6luw2e3gZ/xwYSOPQAI6k5TNvowdXrXmpkLRO+77jBBbtTmZfci5hgRb+dnaWQ9f+Im3hsYJ0xpq3MqhNNA6nm7eWeRAA2nNLSwjtL2Lp3jMcSc0nIsjKrWV7OcoKjtLKQUDYwflG9uXd5Ydrzq44HdpSBABtRrL2cDr7z+QSEmDmhgtaVv28kinF7PiGu0oC0kV7kmtu7lVVOFYyXusLOZ6ez9rD6SgKXNu/iiwHaMvHmyxwZhfdAtPo2yoSp1tlniezyhJL/v5aDqKo2MXPO7TA/8rKekd0Zqu2jg7Avp+5ruTYvt6cVHMfyakt2tf4PqAo/FIy3uW9ashylPwdcnILncK1CzWnW+WHrTX0PBVmlTbXxvVg2d4zqCp0bxZReTB9DpBgpb7pmRV7TsX9gdIPaxuO/fdCmHcTHFlh3DV1jNbtfjKr0Cg9VElVYdkz2vf97+KkKY77vthMsUtlQvc4Hr+oY/k0tMkME98Ek4XQY4v4cXQmYYHa1fK/vt9Vc7+FPVdrdAUY+SSbTuTzQsmV5P9N7MLgs0+uigKXvg4mK9Zjy5kzQmvK256UxVPf76p+LICcU1rJCWDoI3yz6QSL95zBalZ47+Z+NA61VXzOmKfBZMF8eCmfDsujSZiNQyl5xuyFap3YqH2YmAOg/92888ch9p7OITLYygtX9dAyKmcb+ihYAlES/+S1fhm0jg7mdHYRz3lSpz+0ROsHCIqCLpfz4m/7SM2106ZxiNFIV8GAe7WNz1J282jro3RrFk5OkZP//OxB9mHPD9qsleh20GIAz/6yB0fJapl6c2IFvW7Uji/rOJfbtjCyYxOKXSr/94MH/172/qyNF5mA2ry/8Z5c07dF1VeR7cZosyQceXQ98yPX99dOiv/+cXfNJ1c9EGt9IYTF8vKiAyXjNad145DKnxPVBtqOAiB895f8Y3R7QCvp1dhLcmChFkjH9UBt1JJZJeWc2wa3Lm1yPZvZAr20hnBl65c8epEWAH635UTN2ZXDf2hN31FtoHE7PlqlnYRuHNCSUJul6uf1KFnOfcc33DigBRFBVo6k5fPbrhr6gU5s1P7+ghtDbDdjfY+r+javOusA0GWSls05s5P2yglGdYpBVeHD1UeqHy/jiFYyNAdAiwv4epMWbAxr36R0BlBlgqO0mTwAe37gpoHav5m5GxKrn+rvdmszFwFaDuT3fSnkFjlpGhHIwDbR1R+rnunY+zMXd40j1Kb1kaw7WsPF6cnN2tdmfUnNtbPuiPb4S7o3rf55Ec20JQ1Q4fDvRjD1Y00N2sklS0g0agnBUUYJaFzZ8us5RoKV+hbUqDRgSS0zq+H4Wi1I2fGVVrvc+xN8dhksfRpUlRCbhWcu7wrAh6uOVr/+w54ftN6RgFAKB0zlns82kZbnoHPTcF6+pmflJ9fYLjBkKgBN/3yaWdd2wqRoHf41rvOy4QNtPYLodqS3vpQH5mzF5Va5vFe8kUKvILqtsddG7LpnmXV9D0wKfLv5BN9squHKZ+3b2odzqyEkhvbk6ZKswyPjOtK9eRUnu+i20F9buCp8zXO8fm1PFAXmbkgyrmKqpG/X3v0aducEGOWOpy/vRpOwSgIj0KaOljRyBq+eyYtX9UBRtN6HGvcP0XtVet/I5pMFfLleu5p/9opuVae8gyKNhbmsq1/i+Su6Y1Lgp+2nah5PXy6912RWHUpj0e4zmE0K0y/rWj6oLSsg2BhPWfsWT0/sis1iYs2hdH6q6f3cUdJY2/N6ftt9hi2JWQRZzTw8roosB2gBrr43y8YPeWxce8IDLew9ncO3m2v496Lv7dL1CtYcSuPPI+kEmE08WBKAVKnfHdrXrV9wfd84WkUHk5bnMBo7q6T3q3SeyKqDaew8mU2Q1cztQxKqf16vkh12Dy2hb2QRQ9pF43SrRparSgdL+lXaX8T2pCw2HMvAalaqzqroOozX+styThCavMF4/Kzlh6oPOI0S0EiScx0sKWlYv6ls03BlgqO0oBNg9/fG6qjfbT5ZfY+cnlVp3h+nycY3m7SyyvXVZVV0nUtLQRd3a0pksJVT2UX8Xl05PW2/tlaTNRjiuht7tF3eq1nln51ltR0FlkDITiQo64CxNop+zFU6WZJZadab33Yn41ahZ/MIWkQF1/waS2Yrcfh3JnRvitmksPNkdvWrIpcpAeXbncamuedqCQgkWGkYMV20ryklV/VZiTDn+tJm0Ws+NRb9YvWr2nLuwOjOsVzSoykut8o/vqpiVUaXE37XekLUgVN4dOFJdp/KITokgA9u6UtwQDVXWkMfgYiWkHOCoadn8+SEzoDWtb/yQBU9NvY8be8TwD30UaZ+s1NbgKpJCDOu6F71yQ5g2KNajTd1L4NzfzPWlfnXD7uqntaYn24sWuYa8jAPf72NfIeLC1pH1bw09LBHtenbp7czxLnOSH3/v/k7SMqo4uo1+6QW/AHF/e7lka+343SrXNwtjok9arjqufAh7QPv1FYucKw3plc+MX8nOVUt3pSVCAe19SSKe93Kk/N3oqraugeD2zau/Dm6Qfdr453eRrfCTcbJ8anvd1Vd7so4oi0MpZgo7nYtT/+kZTluHtiKjnFhlT9Hd8E92gfzqS20zNvK/SVZn//8vKfq15dzWitPAsVdrzFmrNw9NKF0dc6qdL9G6xnKPErU6dX8vSTYeHnxgaqzHRlHtMBdMaN2msjLJb0qkwe0rP6qHLSTeWgc5KdiPfArj5aU+95bcbjqfi57bumU106X8HZJQ+cNF7QkKqSKrIqucTttM0DVDdvn8uAo7fV9vfFE1TPm3O7S/Yw6jDPWAbm0R3zN76c1UNtmAGDHPG4f3Jogq5ndp3JYebCaGSV6c22bkXy1MRGXW+WC1lFaj1hNuk7Svu75gYFtoujcNJzCYhdfVVeaMfpVhrJ8fyopuXaiQwI827Om06Va+e/0NgLzT3FtSXPsF+urKefpJaBmfckoUo1g/8o+HiySFhBcul3EwcVGKejXnaer/j9RmKXN5AKI78MvO7SsyISasiq6MsFKdEiAUSauNrtSJlhZeSAVh9NNq+hgOsSee7OAdBKsNIRYLUNCyl6tZPPDA2DP1tabuHm+tm7BZW/CxDe0x61901g867lJ3WgaEcjRtHyeXLCz4hXQ9rnaKohBUbxXPIFfdpzGYlJ496a+NI+sIUoPCIbxJXuxrH2LOzu7uaZvc9wqPDBnS+WR+qaPtBVIo9rwdmovVh1MI9Bq4t2b+hJSXQoatGzAcG2qL78/x5TBcQzr0ISiYjdTvtxc+Qlo/X+1oK5pL95Nasmm45mE2iy8cm3PitMJzxbSWOvPAfhjBlNHt6NPy0bkFjn5+1dbK19sbNNHWuNbqyG8tTeIfcm5RIUE8J9J3aoPxEDbEbZkTQv+eI7HxrWnVUk5qMqZXZtnAyokDOeDPQr7z2jjTSsJHGt8fXo2YOWLPDymPfERgZzIrKZ0uG2u9rXNSGbvKuZQSh5RIQE8NLaaLEfZ8Xpp666w5k3uGdaGhMYhpObaea2qRb92fqOdjFsMZM5BM8fSC2gcGsA9w6vo5SgrIKR0vI0fcPOgVsbMmfdWVlFK0EtACcP4PcnN1sQsAq0mpoz0YDyzFfrcon2/6WMu6d6Ubs3CyXe4eLuqZuJDy7Sm9sgE1uXFsuFYBgFmE/cM83CPlZKZXWz9goEJUVzQOgqHy817K6vIriRv13rFrCEkhfXm151aVsvjPV16aGuysPsHIgPcRs/JrKpeX2GmNlMGcLYezlcbtCDjpkE1ZFV0HcZrpaDUvShpB7i9pBfvs7XHKi/NqGq55lo9qLmqb/PKG3nPFtoEWmjrlrD/V215fLQ1TKpctLFMCejnHadwulW6xod7FoxBaR/JQa0ZvENsKHanu+q1c0reTyJbc8YZzPqSPqxLaroY0rUcDJYgrVSWsofLS7I5P24/VXWGzAhWerF4T2kJqMbPtAYkwUpDiCk58ZzZrZ0Mj67Q/rFd+T5Yy1zt9b0NRmtZFRY+DsfX0ihYm51hMSn8sO1U+ZUgHQXGVOXNLW/n+T+0/xz/mdSNCxKiPDu2TpdoqVqXA+W3f/LspK70bRVJTpGTu2ZvKt8g6sg3Gk93tb2H137XThjPTuru+X/s/ndpTbn5KZjWvslr1/YkLjyQw6mVBGNFObDhPQD2dbiHV5dqJ+Dpl3X1LF0KWvbBFgEpe7DuWcAb1/cmLNDC1sSsiifY4kKjJJPY/mbjA/yZy7tW3hdTmcEPaqn2M7sIPvgzL12tlZ++2phUcWaXq9hYhTS142TeKHl90yZ0JrKmq/Ky45WsFhxy+k+eubwbAB+sOlJxtVm3dgUPkNPpOmO8xy/qWH3vQVmDHgAUOLiIwP/f3p3Hx3ytDxz/fGeSTBZZJJFNEoKQRISIUBJUKUqVLqhar9v2Uopq+9NWW8u9llvq3tvqRpd7b1Vpq4qulDaxtRRB0RZNxK6IJCSyzff3x5mZCEFCkhm5z/v1mleTofM9mUjO8z3neZ6TtZ9p96hA/D+bMthzLPvKv2+pAsqPeeCSsu+m186tuFTiw+q/v32DKfcwz1j6EC1IPVj+6oNlC8gc04+5lpNkh3doeGXS8NW0HqbuzDPWYzh7gGd6qp/dRT8cKn817hdLFVBUb16xrKoMTAwjyLuC14vpB84e6k478wce76pWqxb/mFn+4XjWrq6Nu/DOD8cw69Ax0p+YEK+KXa9BEnjVVzdL+7/hkU4ROBs1fkw/W36zv/RUFWzWi+Lbo06cyLmIfx0XelZ0+8DNBxp3UR/vXck9LUPw83DhWPZF26RZxpmDlnwVEye9W9h6wQy4WvlweSydmPnlCxr4edC5qdqGX3y11RXrykrYbbYtoHKbsl1N5J2W19mMVpBjG+tVj4u4JLn2y93H0XVoHe5z/ZtLK2dXW5UUB9bSvXkgJicDv/9xgT3HyunaW3Be9ckBigJa2PpOOfIWEEiwYh8hli5F6SnqNFtQ7cb9yrnbS56ozoEwF8NHwyD7CLc18mPGvWoSenXdAaas+FlV7WyYBzlHyDEFMnhXCwAeu73xtTP0L6dpcNdLKpntwLeYDnzNm0MSCPF25ffTFxjx3pbScz1+fAvyTnOxThgDNoei6zCobZitIVKFOLnAndPUx5texc98hlcfisdoCcZmfrmvNGD56R24mE2hTxOGrPfHrKskyUpdz60uJD2uPl43nTBPA3+/Pw6AN1IOlt3u2v0x5J+lxDOUYRv9KTarBOUruldei7uvrckY382kbbiXbTvoiY/SyiZP/vI5nD+J7hHAqK2BFBSb6dDYr2LLz1aeQaWrASkv0S0mkJ7NgygxqwPdylRbpadA9mF0V29e+KUBuQXFxIV6V24i8GtcOhlsfpVOTevROy4Ys662n8pUQZzYDSd/BqMLC8605OyFQhrV87AtlVeIfxNVio8OP71Lz9ggEhvW5WKR+crOtmcOqkRCzciXRQnsO55DHZMTozpVYFXFyies9E55279JjvQnuYk/RSX6lS3jiwttwcMvdTuz6eAZnI0ao65WAVQeUx2IVR1h2bGI5Cb+tArzoaDYzNvry1k9spQs5zXsaks8rfAqDqhSe2sPlF0fEeztZpuY3yiva/YlW0D/3ZwBqMChQqscVtatp70rcHU22lY73ttYTi7QJfkqn+w8TYlZJ7FhXZoEVGK7IqqX5bU2QH6WLbfmo/I6aJ8/ZamS0Uh3iyHt8DkMGtxzvaqcS/lGgF+kWpE9+B33xtfH2aix80h2+S3/bfkqrW1VR5X6HQOlW0EHvsXT1Zk7ogIAyl/NOfkzoINnMFv+cCLnYjF+Hi60Dq9buWvWsGoNVmbMmEGHDh1wd3fHx8en3L+TmZlJnz598PDwwN/fn3HjxlFYeBPn4NwKgmJVu3aryO62Jk1X0DToOx8CW6jeLEsegqJ8BiaGl+luO2j2IopS/wnA07mDuKi7MKJDQ57u0az8170Wv8bqDh3g62epZypm4fA2eFlWIPrO38iKlC2UWJqkTc7qTV6xge4xgfzVcidfKdH3qKXa4nz45jkSG/oy817rikA6z366m+ycbHRLxdHfsntyOq+Y5iFetpWDSrntMXWK8LlM2PIWvVoEM6htOLoOf3l/Gxv2n1arHOtVq/sP9B5kZBUS7uvOjH4tbuB6o1WQdGY/7P6YST2jaFHfm3N5RYxetJ3svKIy5dHf1+nFtqN5eLs5M6d/y8ovzSaNV0vtGesh8wem92uOv6UcvUzXUEtvlYNBd7FizxmcLOfVXDeJsLzrAez6CHJP8ELvGDxcjOzIPMfSS5OlLR1rs8O7Mn+zyol4pmdU5U92tZ7wu/19tOICJvdWOWCf7jjC9kt72VhWVYobdmL6OnX3OKZLk4qvUllZt9bSPoCifNvP3WdpR9l76Z1rxnq1QuERwOzdamXx/tah18+NuVz8UNv4tcLzjLOsrvx7U0bZBmPnT9nuypeeiyavsIToYC+SL6++ux7rVtBv30DeWUZ1boymwbf7Tl05uVrycTJ82rLp4BmMBo3B10usvZytpHg3nDnIkNsa4GTQ2JqRxe4jl63GWbaA9AZJtmBsYGIlbr5AVUkFxKjg4bfV3BEVQIi3K1l5RbZtMxvrqkpADMv3qry5jpH1Kr4SZ2U5NZn9a/CrY6JrlMqv+WhrOYm2lmDltHcs2w5loWmV2AKysjTAI3MzFF6wNXZbufPYlWXTl+SrWDtBd4sOvP42up1Va7BSWFhI//79GT16dLl/XlJSQu/evblw4QIbNmxgyZIlLFu2jCeffLI6h+UYes9VyV/JT8AD76o7nKtx8YAHP1Ct+o/vhJXjwGxm9O2NeXtYG4LdSnih8B84U0RKSRybXNrzrwdbXbua43o6PgneYZCdCSvG0jzYi+Vjkmjg587Rc3k4fzsZY3E+W8zNWFbSkX6tQnhlUHz5PTKuR9PgrtnqtNg9y+HnZQxMDGdKHzUJLdl6mE9eHoN24Q8Om+uxOL8tsfW9WPTndri53MBhWy4eqpEaQOpcOP8HU/rE0KlpPfKLShjx3hY+XjgLstI5izezTyfhaXLineFtKj/RgWrhbp3QU2bjajDz+uDW+Lg7s/toNv3f2sSvP34Jx7ZTqLnw1KF2AMzt37LyEx2o1QBLGSypcwjwdOXlAa0AWPRDJnO/+RX9bLqtauXxA4kAPHFnU+JCfSp/vbC2qnlWSSH8+CZB3q5MtCSjTl+1VzXDK8q3lZvPORFPUYlO95hA7ryRUsmmPdW/zfyzsOdTWoX5cF/r+ug6jF+yo/TkWUu+yqridpzKLaCBnzsjLZ1FK6VJN8v1smDvClqEenN3XDC6DrO+umTlz7IFdDTwdr7ffxajQeOx269San4tYe1UGXnRBdjzGV2aBdC2oS8FxWbmXrp6ZEmsLQmMY/5WlU/2aKeIyv/MB8aoU6/NRbD3MxrVq0OvWDVZlumie/Z3OHcIDM68lq6+b3fHBVf+36i7L0Sozqvs/YxAL1fb5FxmdeWSfJUdxlgOncnD0+R09XL6a7FtBX2O0aDZVpsXXX7wnyVfxRzWjmWWLaBKrWxaWbeCDqwBs9m2erh8x5Gyh43mnlAHy2oGVp1SqyGJDX2vnxx9Of9I9W+0pBAyNtIlKgBPkxPHsy9e2a3bEqzoQXGl+SrNHbdk2apag5Vp06bxxBNP0KJF+Xejq1evZu/evSxatIj4+Hi6devGyy+/zMKFC8nJuYnTXG8F3qEqAOk2FUwVyO+o2wD6/0dN6Ls/go+Gwvk/6BZqZmOjf9PK8Dv5zj643DOPDZO60rfVTR7v7eIB976p7oD2fArfzaCxnzurxiaxLCqFXsYtFGPg0+CJLByWyD8fjL96WW1FhMSrah1QW2PnMvlTUgQfPnIbveoeZQRqIvirPoKH2jfmg4dvu7HAwarlIAiKU/1uVjyGq1Fj4bAE7mkZgos5n47H3wXglaK+BNfz4+PR7YmsaB5Oedo+qkrWszJgxyLCfN358JHbCPA08dvJXE5+oRKblxR15pzBh5fuj7uxidwqeaL6t3LgWzi6nc5N69mSdOd/d4AVC6YBOqnmOPYVB3NnTCCjKpLkejUdxqn/bn0XCnIZ3r4BnS3B38h/b2X7F29D/llOavX4MCuaAE8Ts++Pu7Fg2mC0Nd1jywLQdab0aU59HzcOn81n/JI08o//Aid3Y9acmLZfVUVN7xt7YyfJGoyl1XmWHKanujeztYx/e3262gKyVI3NzVTJyX9OjiDcr4J5B5fStDKJtpqmMbm3+t59uuNo6eRjCY7Wa204c6GQJgF1Kr99YHVJzxXA1rxu1c5jpFubtlm2gC4EJrBs9zmgEom8l7tkKwiwVa6t2nWsNBfozEE4fwKMJl7ep1oSPNQu/NoVjVdjDVYOrIWiiwxsG4aTQWN75rmyuVWWlZU9xiiOnsvHx92Z7jE3EByFt1eVh+dPwomddGpajyAvtZpjbaMPlPZXqRfF8j1qVfC6VYbl0bRLqoLW4upspEesGvcVh6lagpWDTo05nn0RDxfjlY0mHZBdc1Y2b95MbGwsISGlP2A9evSgoKCAbdu22XFkDiqiowogjC7qF9XcJvCP5hgOrgUnN9yGfUL7xMSKJ0deT8NkdWAfQOoceLsrXkvvIyFjAQBOPWcye/SDNzepXqrjUyqAyM+Cd7pD+nras5PXjHMxajqnI/oyc9LTTO8be/Nfo8EAfV9Tyaj7V8PGf2ByMvLKwDg2N/2QIC2LLOdAIns9zqrHk4kKqmDC4tW4eKjVKoBvp8KZg0RbVqv+FrGHTsbdFOlGfgwaxL//lHjtzpwV4RtROgF9NxN0nUc6NeJv/WIJM56lW/5XALxb3IP74uvz+uDWN7cM3KwX+DZW2yA/vYeT0cDrg1vTMsyHrLxCXLarLad3C7vh6+nOuyMSr1/Key2th6vv3bEdcGAt3m7OvDIoHhejgXW/nGLVOzMASC1uzjk8Gd810pZYeWPXG6qCv8M/wMk9NPT34IW71crf7K9/Ye2q9yHvDFmaDyvPN6Ohn/vVu+NWRMtBpdc7fYCWYT62M3DGLt7O6T9OqUAU+PthtS01tU/zym+pWcU+AGiQuQmyDhFb35vbm9XDrMOkT3apxnuW84dWnY/CrGOpjrpGK/hribpbfX3Hd8LZdFqF+dhygWZbTqYmIxWAHP9WbMw4j7NRu36vmqsJbqUSiYsuQHoKAZ6utsn8zRRLLlBRvm0ifzdT/U4bmBh2Y6u3TiZodLv6eP8ajAbNllv3zobfS1fjLMHR2bpx7DqSjZNB466KlixfzroVdGCtbewAn+86XrraWHRRVaECy0+on4cesUE3d6NZQ+warJw4cYLAwLITXd26dXFxceHEifK7KBYUFJCTk1Pm8T8lbgCM+FJN6qD2YcPbw9DlEJZY9ddLGKFONHapo/bHrQlv3WeUlgFXFScXGPSh6siYexz+cze8fy/a+ZNQLxr//v+seBVORQTHQa856uO10+HDQfD+vXhnrgGjibrDFjE4qemN3cmVp81IdRDbxXMq9yjnOPXz9zPk7HwA9M6TeG3s/XSMvIlJ9VIdn1QrYwfW2BrbDWkXzrdRn1NHu8gJrxZMGjuWeQNb3fgkZ2UwQPIE9fH3syHrEB4mJz58pB3z25wi1pDBRVw4HTmA5Y91uPFJzsrDvzR3Ze00MJtJaFCXDx9tR4RHIb2KVKLrf809+UvnRrYOtDfMM6g0UfMnteo29LYG3N86lBKzTsl21Vjvo6Ik6tZx47XBrW9skrv0etathLRFAEzr25wmAXU4mVPA62+9AiWF7NdD2VcSyv2tQ68846gyvOurmyFQieXA9Hti8XAxsiXjLP/6/Cd0S77KwtOqAeAzd0Xd+PU8/EorWPapoxcm947GoMEXu4+rvDHLFtDyc2r15oGESlRVXU7TymwFgSo+0CyNE3cdOadyR8xFFLoFsDzDCYMGQ8o7lLGirN8/S9+kYe0b4OJkYHvmObZmWHKrLNtOq3NVENarRfCN/45r1FkFgGf2Q9Yh2jSoS+N6HuQXlZT2XDm1B/QSdHc/PvxFbUf1u9lV+BpS6d9QU6dORdO0az5++umnCr9eecvAuq5fdXl41qxZeHt72x5hYTd5B3orCkuEUevhqQMwfheM/FqdflpdbhsNj2+DrlPUSstjP9rOoqly3qHq64npp5JSjS6qs+cja9Ved1VrPQw6Pa1+yH/9UlXIaAbo97rKxahKTiYY8L5qNPbHL/DPWHirk9qKCk3EpXMV52r5R0KPmerjNS+o5n1fP4Pp4NdgcCZoyEKiQ3yq7nqthqjAuegCrHwczCW4l+Ry9yGViO3a4S+8POKOipdkXk/yRHXEwIldsFcl0yY08OWLDvupo13krEcT/m/sGJ69K7ryScPlsZZNb/8vnP0dTdOY80AcL/cMpIsxDYD9wX34eFSHax8+V1HWraC0D6GkmDomJ94amkB9HzeSC9RNw+fF7egWHcDs+28g8fty1kTbXUtB1wn3c2dKH1WKfuiHT9HMRew31+egXp8X7o6peLuAq7FuBf2sTiePDvbiQUsuyZhFWynY/z0AX+Y0wb+OiUk9b6BY4FLNLMHmr1+BuYTmId62iXrqyj0UZajDC38sjgQ0HmwbfnNfYxNLsHLkJ7hwhgAvV9vqyqvr9qMX5dt6rLyTqfJVRlj6ztwQV+/S31kH16Jpmu1Yiv9uOqQSbY+lAXDKoxln84oI8DTRofF1jhBwEJUOVsaOHcu+ffuu+YiNrViFRlBQ0BUrKFlZWRQVFV2x4mL17LPPkp2dbXscPlyBQ6lqqzr1VC5LTfAMgo4T1S/sgJu4o6oINx8Y8B+YlAHPn4J+r6ltlOqgaXDH8zB6o8orueN5GL0ZWjxQPdfzCoYhn6jqJ3MxoKsmgAMXqfNhqlrbR1VpqrkYVj+vmuoBdHm2tN9PVbFurTm5qqDv7a7w7l1qlcyvCXSZXLXX8/ArrVr7/AlVGn1kG+6bVRWX751PERVcBUGDVURnVTZdUgirVYK2waBxf9Y7OFOCHtaOuWMGEXG184YqK7KHOn/n/Alb/53G9eqwbkQItxvV2S6teo3kzSEJN78yBhDdR33vTv8Gh7cA6qDAOQ/EcbfzVgBW622Z2ifm+q31KyKmr6paO55mm7Rf6B1D24a+RBf9jKngDNm6Ozu1psy4N/bq5ypVVMNk1WPpwh8qgACe7K56/GzPPMeBTZ8BsCavCd5uzraOxTfMu75KXEaHg2pr5tGOjXAyqFyndetWQ0khOQYf9hcH0C7Cl/gwn5u75mVbQf3bhOJpcuLXk7ms2nVMnesErM1RQdOIpIY3VhRhB5Uepb+/P1FRUdd8uLpWbKmuffv2/Pzzzxw/Xlo+tnr1akwmEwkJCeX+PyaTCS8vrzIPUYvVVEfFgGi1JdTp6eoPxoJawJ+/gbHbYNwOdbyCZzU1ZNI06PcG9J6n+vvUbwNDlpXmz1Q1v8Yqr8rkpSagP/ap1Y97L2t4WFWSxqnA72I2vNNDbR0W56u7WmvOTlXRNLUlqhnVVsKWhSqPY6eqctKsq1hVxcmlNOl87XTIU4m1pg1zMGCGpnfRJSm56iYbV+/SIP27Gban+0ca6OakcjlGPDyOETeaN3I5D//S9vtbVE6Tm4uRt0e0YUKQOiH+B9dkPvhLMj2qomGZ0bm0pHjvZwCE1nVnwbAEAp3O07RAHaK60ZDIPwa2vLmcKivrVtC+VQA09PfgSUsQtG2D6pGzuagJLkYjM+6tQFfs62miDt8kPRVKivBxd7H1+Znzza+UZKjTub/OjcDDxcjgm9nmqmHVGlJlZmaSlpZGZmYmJSUlpKWlkZaWxvnzqsyue/fuxMTEMHToUHbs2MHatWt56qmneOSRRyQIEbWffxPVA6K6GZ0h8c/w6HdqO816mFx1aX4vjN2q+tncOR0m7ILQ8m8+bpqzGzy0FIJbqu0ny1EM9H9PVfFUtYAoaP+Y+vjLp2CxJSCKHwqhbar+eokPQ70oVaa9apzaEvp5mfqzLs9V/fU6T1KrHekppae+b5iHVlIIDZLwCI+v2utZDhfl509swZiXM9yWr7a5egwYTUKDKtz+tQZjaYtVx2+gQ2N/Pr4jF6Omc9Q1kldG38MdUVVUNNDc0uDvt29UQA38pVMjukUHkEwaAD/p0bzYJ4YmATdRbWgV3Eqdhl6QY1s9+lNSQ4K8XCnKOoox+xAlusZ2cyQTujWtumKMGlCtwcqLL75IfHw8U6ZM4fz588THxxMfH2/LaTEajXzxxRe4urqSlJTEgAED6NevH3Pnzq3OYQkhqptnkDpnKml89eQaXcrNBx5epx6PfAcPr61YO4Ab1W06dP+bmtQNTiq3xHqmVlUzOluSwDV1d/7ZKECHFgNUgnhV8wkvLQv//AnY8YHlvCpUcFTVK51hbdVKY/FF+OF19dyupSo4c/eHhp2q9npNuqmv8eI51ZLBIvyUSh6u3+6+qsk3sgqKA/9m6ryofSqx12DQWPhAI9o7WQ7VHD6qarbVQAXojS2rK5ZqMXcXJ97/c1u6eqiqp1/0cLq1asLDHatohayGaPo1zwJ3fDk5OXh7e5OdnS2rMUKImpN9RAUsnjXQUCs9Fb58WuWTJE9UKyBOVbBNUZ7zp1Tid+4l3V0bd1WHrFaHn5fBJyNVYvs982H1ZNW+oNu00gqzqrThn/DtFLUa98j3qr3+a21VXtdf1ld9EJgyB777myplHqb6ypC2GD4brXJaRm+s2utZXzsoThViWOSvmIjbjnc4GT2cgAH/cohDCyszf98amTVCCOFovENrJlABiOikEr//Lx26vlB9gQpAnQB4NEUlFGtGaDda5VVVl9j7VSWZboYVj6lAJTBWHTpaHeKHqoNjj++E1JdUPpC5WOU5VcdqlXXrKT1VHV4LthwWou6u+utFdldB9Ildpa31zWbcflcl1IEtujpEoFJZEqwIIcStwGBQW141wTNQrQI8d1QdheFazavWveeq4MjNV5W/37dQbYFVBw+/0v5K38+yJNtq0G1K9VzPN0Kdf6ab4atJqhHcr1+qP4u5p+qv5+Ff+rpb31H/zdwM2YdV4rv1YM5bjAQrQgghrqRp1VPBVR5nNxi+Eialqz5LgTHVe73WQ6HdKPWxqzd0/6vKnakuPWaosvCM9fCB5ZTr+CEQ2Lx6rmftCbT7Y5XYu0sdIkrMPTX3Pa1i1dDYQQghhHBwPWerhpdeodXT4+hSPuHq8NTVk1Wljrs/3PnX6rteeHvVCfyPfbD4wdIziOIerL5rVjMJVoQQQvzv0TSo27DmrtdhrOq7cuagWjmqzio5TYOeM9URIpmqtwrNekGDpOq7ZjWTYEUIIYSoCfWaqUdNaHwHDF8FK8ZAWDvVGNJw62Z+SLAihBBC1EZhbVWDxlrg1g2zhBBCCPE/QYIVIYQQQjg0CVaEEEII4dAkWBFCCCGEQ5NgRQghhBAOTYIVIYQQQjg0CVaEEEII4dAkWBFCCCGEQ5NgRQghhBAOTYIVIYQQQjg0CVaEEEII4dAkWBFCCCGEQ5NgRQghhBAOTYIVIYQQQjg0J3sP4Gbpug5ATk6OnUcihBBCiIqyztvWefxabvlgJTc3F4CwsDA7j0QIIYQQlZWbm4u3t/c1/46mVySkcWBms5ljx47h6emJpmlV+to5OTmEhYVx+PBhvLy8qvS1RSl5n2uGvM81Q97nmiHvc82prvda13Vyc3MJCQnBYLh2Vsotv7JiMBgIDQ2t1mt4eXnJD0MNkPe5Zsj7XDPkfa4Z8j7XnOp4r6+3omIlCbZCCCGEcGgSrAghhBDCoUmwcg0mk4kpU6ZgMpnsPZRaTd7nmiHvc82Q97lmyPtccxzhvb7lE2yFEEIIUbvJyooQQgghHJoEK0IIIYRwaBKsCCGEEMKhSbAihBBCCIcmwcpVvP7660RERODq6kpCQgLr16+395BqlVmzZpGYmIinpycBAQH069ePX3/91d7DqvVmzZqFpmlMmDDB3kOplY4ePcqQIUPw8/PD3d2dVq1asW3bNnsPq1YpLi7m+eefJyIiAjc3Nxo1asT06dMxm832HtotLTU1lT59+hASEoKmaXz22Wdl/lzXdaZOnUpISAhubm7cfvvt7Nmzp8bGJ8FKOZYuXcqECROYPHkyO3bsoGPHjtx1111kZmbae2i1RkpKCmPGjOGHH35gzZo1FBcX0717dy5cuGDvodVaW7duZcGCBcTFxdl7KLVSVlYWSUlJODs789VXX7F3715efvllfHx87D20WuXvf/87b775JvPnz2ffvn289NJLzJkzh1dffdXeQ7ulXbhwgZYtWzJ//vxy//yll15i3rx5zJ8/n61btxIUFMSdd95pO5+v2uniCm3bttVHjRpV5rmoqCj9mWeesdOIar9Tp07pgJ6SkmLvodRKubm5emRkpL5mzRq9c+fO+vjx4+09pFpn0qRJenJysr2HUev17t1bHzlyZJnn7rvvPn3IkCF2GlHtA+jLly+3fW42m/WgoCB99uzZtucuXryoe3t762+++WaNjElWVi5TWFjItm3b6N69e5nnu3fvzqZNm+w0qtovOzsbAF9fXzuPpHYaM2YMvXv3plu3bvYeSq21cuVK2rRpQ//+/QkICCA+Pp6FCxfae1i1TnJyMmvXruW3334DYOfOnWzYsIFevXrZeWS1V3p6OidOnCgzL5pMJjp37lxj8+Itf5BhVTt9+jQlJSUEBgaWeT4wMJATJ07YaVS1m67rTJw4keTkZGJjY+09nFpnyZIlbN++na1bt9p7KLXa77//zhtvvMHEiRN57rnn2LJlC+PGjcNkMjFs2DB7D6/WmDRpEtnZ2URFRWE0GikpKWHGjBkMGjTI3kOrtaxzX3nz4qFDh2pkDBKsXIWmaWU+13X9iudE1Rg7diy7du1iw4YN9h5KrXP48GHGjx/P6tWrcXV1tfdwajWz2UybNm2YOXMmAPHx8ezZs4c33nhDgpUqtHTpUhYtWsTixYtp3rw5aWlpTJgwgZCQEIYPH27v4dVq9pwXJVi5jL+/P0aj8YpVlFOnTl0RVYqb9/jjj7Ny5UpSU1MJDQ2193BqnW3btnHq1CkSEhJsz5WUlJCamsr8+fMpKCjAaDTacYS1R3BwMDExMWWei46OZtmyZXYaUe309NNP88wzz/Dggw8C0KJFCw4dOsSsWbMkWKkmQUFBgFphCQ4Otj1fk/Oi5KxcxsXFhYSEBNasWVPm+TVr1tChQwc7jar20XWdsWPH8umnn7Ju3ToiIiLsPaRaqWvXruzevZu0tDTbo02bNgwePJi0tDQJVKpQUlLSFeX3v/32Gw0aNLDTiGqnvLw8DIayU5fRaJTS5WoUERFBUFBQmXmxsLCQlJSUGpsXZWWlHBMnTmTo0KG0adOG9u3bs2DBAjIzMxk1apS9h1ZrjBkzhsWLF7NixQo8PT1tK1ne3t64ubnZeXS1h6en5xV5QB4eHvj5+Ul+UBV74okn6NChAzNnzmTAgAFs2bKFBQsWsGDBAnsPrVbp06cPM2bMIDw8nObNm7Njxw7mzZvHyJEj7T20W9r58+c5cOCA7fP09HTS0tLw9fUlPDycCRMmMHPmTCIjI4mMjGTmzJm4u7vz0EMP1cwAa6Tm6Bb02muv6Q0aNNBdXFz01q1bS0ltFQPKfbz33nv2HlqtJ6XL1WfVqlV6bGysbjKZ9KioKH3BggX2HlKtk5OTo48fP14PDw/XXV1d9UaNGumTJ0/WCwoK7D20W9p3331X7u/k4cOH67quypenTJmiBwUF6SaTSe/UqZO+e/fuGhufpuu6XjNhkRBCCCFE5UnOihBCCCEcmgQrQgghhHBoEqwIIYQQwqFJsCKEEEIIhybBihBCCCEcmgQrQgghhHBoEqwIIYQQwqFJsCKEsKupU6fSqlUrew9DCOHApCmcEKLaXO9E1uHDh9sOVPTz86uhUQkhbjUSrAghqs2lp5cvXbqUF198scxhf25ubnh7e9tjaEKIW4hsAwkhqk1QUJDt4e3tjaZpVzx3+TbQiBEj6NevHzNnziQwMBAfHx+mTZtGcXExTz/9NL6+voSGhvLuu++WudbRo0cZOHAgdevWxc/Pj759+5KRkVGzX7AQolpIsCKEcDjr1q3j2LFjpKamMm/ePKZOncrdd99N3bp1+fHHHxk1ahSjRo3i8OHDAOTl5dGlSxfq1KlDamoqGzZsoE6dOvTs2ZPCwkI7fzVCiJslwYoQwuH4+vryyiuv0KxZM0aOHEmzZs3Iy8vjueeeIzIykmeffRYXFxc2btwIwJIlSzAYDLz99tu0aNGC6Oho3nvvPTIzM/n+++/t+8UIIW6ak70HIIQQl2vevDkGQ+m9VGBgILGxsbbPjUYjfn5+nDp1CoBt27Zx4MABPD09y7zOxYsXOXjwYM0MWghRbSRYEUI4HGdn5zKfa5pW7nNmsxkAs9lMQkICH3zwwRWvVa9eveobqBCiRkiwIoS45bVu3ZqlS5cSEBCAl5eXvYcjhKhikrMihLjlDR48GH9/f/r27cv69etJT08nJSWF8ePHc+TIEXsPTwhxkyRYEULc8tzd3UlNTSU8PJz77ruP6OhoRo4cSX5+vqy0CFELSFM4IYQQQjg0WVkRQgghhEOTYEUIIYQQDk2CFSGEEEI4NAlWhBBCCOHQJFgRQgghhEOTYEUIIYQQDk2CFSGEEEI4NAlWhBBCCOHQJFgRQgghhEOTYEUIIYQQDk2CFSGEEEI4NAlWhBBCCOHQ/h+aeXSUAGdwOwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHFCAYAAAAzCLlHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrv0lEQVR4nOzdd3hUZfbA8e+0THoChBQIvfcOAUE6CgoKtrX7U9eCDcuyYllR166sBXVFsaOCUgRFmkrvvfcSIIQE0uu0+/vjzr1JSJtJZhJYz+d5eJLM3OTeCTBz5pzzntegKIqCEEIIIcRFyljbFyCEEEIIUREJVoQQQghxUZNgRQghhBAXNQlWhBBCCHFRk2BFCCGEEBc1CVaEEEIIcVGTYEUIIYQQFzUJVoQQQghxUZNgRQghhBAXNQlWhKhlX375JQaDgc2bN9f2pfylDRo0iI4dO9b2ZTB58mQMBkNtX4YQFxUJVoQQQghxUZNgRYj/cfn5+cgWYOXLy8ur7UsQQlRCghUhLhGrV69m6NChhIWFERwcTL9+/fj1119LHKOVlJYsWcLdd99N/fr1CQ4OprCwEICZM2fSt29fQkJCCA0N5YorrmDbtm0lfsZdd91FaGgohw8fZtSoUYSGhtKoUSOefPJJ/edoxxkMhjL/TJ482aePfcOGDYwePZp69eoRGBhIixYtmDBhAgCrVq3CYDDw/fffl/q+r7/+GoPBwKZNm0o8tl27djFixAjCwsIYOnRoueedO3cuwcHB3HvvvTgcDo+vd/78+fTt25fg4GDCwsIYPnw469atK3Xcr7/+SteuXbFarTRr1oy33367zJ+nKAofffQRXbt2JSgoiDp16nD99ddz9OhRj69JiEuZBCtCXAJWrFjBkCFDyMzMZPr06Xz//feEhYUxevRoZs6cWer4u+++G4vFwjfffMNPP/2ExWLh1Vdf5eabb6Z9+/bMmjWLb775huzsbAYMGMDevXtLfL/dbmfMmDEMHTqUn3/+mbvvvpv//Oc/vPHGG/oxzz//POvWrSvx57bbbgOgffv2PnvsixcvZsCAASQmJjJlyhR+++03nnvuOc6ePQvAgAED6NatGx9++GGp7506dSq9evWiV69e+m02m40xY8YwZMgQfv75Z1588cUyz/uf//yHG264gWeeeYbPPvsMs9ns0fV+9913XHPNNYSHh/P9998zffp00tPTGTRoEKtXr9aP+/3337nmmmsICwvjhx9+4K233mLWrFl88cUXpX7m/fffz4QJExg2bBjz5s3jo48+Ys+ePfTr10//PQjxP00RQtSqL774QgGUTZs2lXtMQkKCEh0drWRnZ+u3ORwOpWPHjkp8fLzicrlK/Kw77rijxPcnJiYqZrNZeeSRR0rcnp2drcTGxio33nijftudd96pAMqsWbNKHDtq1CilTZs25V7jrFmzFIPBoDzzzDOVP2gvtGjRQmnRooWSn59f7jHa4962bZt+28aNGxVA+eqrr/TbtMf2+eefl/oZAwcOVDp06KA4nU7l4YcfVgICApRvv/3Wq2t1Op1KgwYNlE6dOilOp1O/PTs7W4mOjlb69eun39anTx+lQYMGJR5XVlaWUrduXaX4U/O6desUQHnnnXdKnOvkyZNKUFCQMnHiRK+uUYhLkWRWhLjI5ebmsmHDBq6//npCQ0P1200mE7fffjunTp3iwIEDJb7nuuuuK/H14sWLcTgc3HHHHTgcDv1PYGAgAwcOZPny5SWONxgMjB49usRtnTt35sSJE2Ve44oVK7j99tu57bbbeOWVVyp8PC6Xq8Q1OJ3Oco89ePAgR44c4Z577iEwMLDc426++Waio6NLZFc++OAD6tevz0033VTq+At/P5qCggKuvfZaZsyYwZIlS7j11lsrfCwXOnDgAElJSdx+++0YjUVPr6GhoVx33XWsX7+evLw8cnNz2bRpE+PGjSvxuLRsWXG//PILBoOB2267rcTvLTY2li5dupT6uxPif5EEK0Jc5NLT01EUhbi4uFL3NWjQAIDz58+XuP3CY7VSQa9evbBYLCX+zJw5k3PnzpU4Pjg4uFRwYLVaKSgoKHUNe/bs4dprr2XAgAFMnz690sejlai0PxX1jKSmpgIQHx9f4c+0Wq3cf//9fPfdd2RkZJCamsqsWbO49957sVqtpR5beHh4mT8nJSWFxYsX07dvX/r161fpY7mQ9vdQ3t+Vy+UiPT2d9PR0XC4XsbGxpY678LazZ8+iKAoxMTGl/u7Wr19f6u9OiP9FnhVhhRC1pk6dOhiNRs6cOVPqvqSkJACioqJK3H7hnA7t/p9++okmTZr47NpOnTrFlVdeSePGjZk9ezYWi6XS75k8eTIPP/yw/nVYWFi5x9avX18/T2UefPBBXn/9dT7//HMKCgpwOBw88MADpY6raIZJ48aNmTJlCmPHjmXcuHH8+OOPFWZ0LlSvXj2Acv+ujEYjderUQVEUDAYDycnJpY678LaoqCgMBgOrVq0qFXgBZd4mxP+cWi5DCfGX50nPSt++fZXY2FglLy9Pv83pdCqdOnUqs2flwp917NgxxWw2K2+88Ual13PnnXcqISEhpW5/4YUXSvRSZGRkKB07dlQaNWqknDp1qtKfW1UtWrRQWrZsqRQUFFR67C233KK0aNFCadSokXLttdeWur+8x6YoRT0riqIoq1atUsLDw5WhQ4cqOTk5Hl+r0+lUGjZsqHTt2lX/O1EURcnJyVGio6OVyy67TL/N056V1atXK4Ayc+ZMj69DiP81klkR4iLxxx9/cPz48VK3jxo1itdee43hw4czePBgnnrqKQICAvjoo4/YvXs333//faUTT5s2bcpLL73Es88+y9GjR7nyyiupU6cOZ8+eZePGjYSEhJS7KqY8t9xyC3v37mXatGmcPHmSkydP6vfFx8dXWrrx1Icffsjo0aNJSEjg8ccfp3HjxiQmJrJ48WJmzJhR4tjHHnuMPn36AJS5qsZT/fv35/fff+fKK69kxIgRLFy4kIiIiEq/z2g08uabb3Lrrbdy9dVXc//991NYWMhbb71FRkYGr7/+un7syy+/zJVXXsnw4cN58skncTqdvPHGG4SEhJCWlqYfd9lll3Hffffxf//3f2zevJnLL7+ckJAQzpw5w+rVq+nUqRMPPvhglR+rEJeE2o6WhPir07Ih5f05duyYoijqu/0hQ4YoISEhSlBQkJKQkKAsWLCgzJ9VXpZm3rx5yuDBg5Xw8HDFarUqTZo0Ua6//npl2bJl+jGeZlaaNGlS7jW/8MIL1f/FFLNu3Tpl5MiRSkREhGK1WpUWLVoojz/+eJnHNm3aVGnXrl2Z93maWdHs3r1biY2NVbp3766kpqZ6fL3z5s1T+vTpowQGBiohISHK0KFDlTVr1pQ6bv78+Urnzp2VgIAApXHjxsrrr79e6ves+fzzz5U+ffrof/8tWrRQ7rjjDmXz5s0eX5cQlyqDoshoSyHE/4adO3fSpUsXPvzwQ8aPH1/blyOE8BEJVoQQl7wjR45w4sQJnnnmGRITEzl8+DDBwcG1fVlCCB+RpctCiEveyy+/zPDhw8nJyeHHH3/0S6By4XyYsv4IIfxDMitCCOGBu+66i6+++qrCY+TpVAj/kGBFCCE8cPz48UoHsPXs2bOGrkaIvxYJVoQQQghxUZOeFSGEEEJc1C75oXAul4ukpCTCwsIqHYwlhBBCiIuDoihkZ2fToEGDEht/luWSD1aSkpJo1KhRbV+GEEIIIarg5MmTlU68vuSDFW0TtJMnT5a7k6oQQgghLi5ZWVk0atSows1MNZd8sKKVfsLDwyVYEUIIIS4xnrRwSIOtEEIIIS5qEqwIIYQQ4qImwYoQQgghLmqXfM+KEEIIcTFzOp3Y7fbavowaZ7FYMJlMPvlZEqwIIYQQfqAoCsnJyWRkZNT2pdSayMhIYmNjqz0HTYIVIYQQwg+0QCU6Oprg4OC/1OBSRVHIy8sjJSUFgLi4uGr9PAlWhBBCCB9zOp16oFKvXr3avpxaERQUBEBKSgrR0dHVKglJg60QQgjhY1qPSnBwcC1fSe3SHn91e3YkWBFCCCH85K9U+imLrx6/BCtCCCGEuKhJsCKEEEKIi5oEK0IIIYS4qEmwUgNsThsOl6O2L0MIIYS4JEmw4mcOl4OxP4/lhgU34FJctX05QgghRKXi4+P56KOPSty2du1agoODOXHiRI1fj8xZ8bMsWxaJ2YkAnMg6QbOIZrV8RUIIIWqDoijk2501ft4gi8nrVTkJCQls2rRJ/1pRFCZMmMCECRNo0qSJry+xUhKs+JnNadM/33d+nwQrQgjxF5Vvd9L+X4tr/Lx7X7qC4ADvXu4TEhL48ssv9a+/+eYbEhMTmTRpEgC//PILTz75JC6Xi3/+85/ce++9vrzkUqQM5Gd2V9EgnH1p+2rxSoQQQgjPJCQksG/fPnJycsjLy+OZZ57h3//+N2FhYTgcDp544gn++OMPtm7dyhtvvEFaWppfr0cyK35WIlg5L8GKEEL8VQVZTOx96YpaOa+3evbsiclkYuvWrSxbtox69epx9913A7Bx40Y6dOhAw4YNARg1ahSLFy/m5ptv9ul1FyfBip/ZnUXByt60vSiK8pefaCiEEH9FBoPB63JMbQkMDKRLly7MmTOHadOmsWDBAoxGtRiTlJSkByqgNuOePn3ar9cjZSA/K75kOduWzekc//6FCiGEEL6QkJDA+++/z7Bhwxg6dKh+u6IopY7195twCVb8zOaylfh67/m9tXQlQgghhOe6du2K2WzmrbfeKnF7w4YNS2RSTp06RVxcnF+vRYIVPyteBgJpshVCCHFpmDFjBuPHj6dNmzYlbu/duze7d+/m9OnTZGdns3DhQq64wr+9OJdG8ewSVrzBFqTJVgghxMXL5XKRmprK9OnTOXDgAHPnzi11jNls5p133mHw4MG4XC4mTpxIvXr1/HpdEqz4mRasBBgDsLls7EvbJ022QgghLkorV65kyJAhtG3bljlz5hAREVHmcWPGjGHMmDE1dl0SrPiZFqy0rtOafWn7SCtI42zeWWJDYmv5yoQQQoiSBg0ahMt18W0NIz0rfqZNsA0JCKFFZAtAmmyFEEIIb0iw4mdaZsVitNCmjtqkdDTzaG1ekhBCCHFJkWDFz4oHKxFWtfaXY8upzUsSQgghLikSrPiZtnQ5wBRAsCUYgDxHXm1ekhBCCHFJkWDFz4pnVoLN7mDFLsGKEEII4SkJVvysRLAimRUhhBDCaxKs+JlWBpLMihBCCFE1Eqz4mZ5ZMVkIsYQAklkRQgghvCHBip8Vn2ArmRUhhBDCexKs+JkWrJiNZulZEUIIIapAghU/0ybYWkwWgsxBAOTac2vzkoQQQohLigQrflbWaqB8R35tXpIQQghRofj4eD766KMSt61du5bg4GBOnDhR49cjGxn6WfFgRWuwzXfk43Q5MRlNtXlpQgghapKiQG30LFqCwWDw6lsSEhLYtGmT/rWiKEyYMIEJEybQpEkTX19hpSRY8bOyli4DFDgLCDGG1NZlCSGEqGn2PHi1Qc2f95kkCPDu9SYhIYEvv/xS//qbb74hMTGRSZMmATB27FiWL1/O0KFD+emnn3x5tWWSMpCf6auBTAFYTVaMBvVXLiuChBBCXKwSEhLYt28fOTk55OXl8cwzz/Dvf/+bsLAwAB599FG+/vrrGrseyaz4mc3lbrA1WjAYDASbg8mx55Brz6U+9Wv56oQQQtQYS7Ca5aiN83qpZ8+emEwmtm7dyrJly6hXrx533323fv/gwYNZvny5Dy+yYhKs+JnD6QDUYAUg2KIGK7J8WQgh/mIMBq/LMbUlMDCQLl26MGfOHKZNm8aCBQswGmuvGCNlID8rPsEWkMFwQgghLgkJCQm8//77DBs2jKFDh9bqtUiw4mfFVwMBMhhOCCHEJaFr166YzWbeeuut2r4UCVb8rfi4fSiWWZFgRQghxEVsxowZjB8/njZt2tT2pUjPir8Vn2ALxTIrUgYSQghxkXG5XKSmpjJ9+nQOHDjA3LlzyzzuiiuuYOvWreTm5hIfH8/cuXPp1auX365LghU/u7AMFGJ277wswYoQQoiLzMqVKxkyZAht27Zlzpw5RERElHnc4sWLa/S6JFjxM+lZEUIIcakYNGgQLperti+jFOlZ8TNtgq3ZqMaF2maGklkRQgghPCPBip8Vn2ALklkRQgghvFVjwcprr72GwWBgwoQJ+m2KojB58mQaNGhAUFAQgwYNYs+ePTV1STWiVBnIvRoo155ba9ckhBBCXEpqJFjZtGkT06ZNo3PnziVuf/PNN5kyZQpTp05l06ZNxMbGMnz4cLKzs2vismpE8Y0MgRI7LwshhBCicn4PVnJycrj11lv59NNPqVOnjn67oii8++67PPvss4wbN46OHTvy1VdfkZeXx3fffefvy6oRLsWFQ3GP25ely0IIIUSV+D1Yeeihh7jqqqsYNmxYiduPHTtGcnIyI0aM0G+zWq0MHDiQtWvXlvvzCgsLycrKKvHnYuVwOfTPLywDSc+KEEII4Rm/Ll3+4Ycf2Lp1K5s2bSp1X3JyMgAxMTElbo+JieHEiRPl/szXXnuNF1980bcX6idavwoUa7CVvYGEEEIIr/gts3Ly5Ekee+wxvv32WwIDA8s9zmAwlPhaUZRStxU3adIkMjMz9T8nT5702TX7mja9FsBsUONCrQwkDbZCCCGEZ/yWWdmyZQspKSn06NFDv83pdLJy5UqmTp3KgQMHADXDEhcXpx+TkpJSKttSnNVqxWq1+uuyfUrLrJgMJkxGEyBLl4UQQghv+S2zMnToUHbt2sX27dv1Pz179uTWW29l+/btNG/enNjYWJYuXap/j81mY8WKFfTr189fl1WjLly2DEVlIFkNJIQQQnjGb5mVsLAwOnbsWOK2kJAQ6tWrp98+YcIEXn31VVq1akWrVq149dVXCQ4O5pZbbvHXZdWoC5ctQ1FmJd+Rj9Pl1DMuQgghhChbrU6wnThxIhMmTGD8+PH07NmT06dPs2TJEsLCwmrzsnxGz6yYSmdWAAqcBTV+TUIIIURl4uPj+eijj0rctnbtWoKDgytcBOMvNbqR4fLly0t8bTAYmDx5MpMnT67Jy6gxNpfaYFs8s2I1WTEZTDgVJ7n2XH1InBBCiP9tiqLUSgtAkDmowoUrZUlISCixkldRFCZMmMCECRNo0qSJry+xUrLrsh+VVQYyGAwEm4PJtmfL8mUhhPgLyXfk0+e7PjV+3g23bNBbEDyVkJDAl19+qX/9zTffkJiYyKRJkzh58iS33347KSkpmM1mnn/+eW644QYfX3VJspGhH5VVBgIIsrh3XpYVQUIIIS5CCQkJ7Nu3j5ycHPLy8njmmWf497//TVhYGGazmXfffZe9e/eybNkyHn/8cXJz/TuOQzIrflTWaiCQwXBCCPFXFGQOYsMtG2rlvN7q2bMnJpOJrVu3smzZMurVq8fdd98NQFxcnD5yJDo6mrp165KWlkZIiP/aGiRY8SNt3H6pYEVmrQghxF+OwWDwuhxTWwIDA+nSpQtz5sxh2rRpLFiwAKOxdDFm8+bNuFwuGjVq5NfrkTKQH2kTbLVR+xqtqVYyK0IIIS5WCQkJvP/++wwbNoyhQ4eWuv/8+fPccccdTJs2ze/XIsGKH1VaBpLMihBCiItU165dMZvNvPXWW6XuKywsZOzYsUyaNKlGBrlKsOJH0rMihBDiUjVjxgzGjx9PmzZtStyuKAp33XUXQ4YM4fbbb6+Ra5GeFT8qa+kySM+KEEKIi5PL5SI1NZXp06dz4MAB5s6dW+qYNWvWMHPmTDp37sy8efMAdWlzp06d/HZdEqz4UXlLl/VgRTIrQgghLiIrV65kyJAhtG3bljlz5hAREVHqmP79++NyuWr0uiRY8SOtwba8MlCu3b/r0oUQQghvDBo0qMYDEU9Iz4oflduzImUgIYQQwmMSrPhRuWUgc9HOy0IIIYSomAQrflRpZkV6VoQQQohKSbDiR+UFKyFm91A4KQMJIcT/NEVRavsSapWvHr8EK35U3tLlkAA1WMkqzKrxaxJCCOF/Fov6vJ+X99d+U6o9fu33UVWyGsiPtMzKheP261jrAJBRmFHTlySEEKIGmEwmIiMjSUlJASA4OBiDwVDLV1VzFEUhLy+PlJQUIiMjMZlM1fp5Eqz4UXlloEhrJKAGK4qi/KX+AQshxF9FbGwsgB6w/BVFRkbqv4fqkGDFj8orA0UGRgLgVJxk27MJDwiv6UsTQgjhZwaDgbi4OKKjo7Hb7bV9OTXOYrFUO6OikWDFj8pbumw1WQk2B5PnyCOjIEOCFSGE+B9mMpl89qL9VyUNtn5U3gRbgDqBat9KemF6jV6TEEIIcamRYMWPyutZgWJ9KwUZNXhFQgghxKVHghU/Kq8MBEV9K7IiSAghhKiYBCt+VFFmRZYvCyGEEJ6RYMWPPCkDpRdIz4oQQghREQlW/Ki8pctQ1GArmRUhhBCiYhKs+FF5E2xBMitCCCGEpyRY8SOPVgNJZkUIIYSokAQrfuRJGUjmrAghhBAVk2DFjypcuixzVoQQQgiPSLDiRzZX5RNsM22ZOF3OGr0uIYQQ4lIiwYofVVQGirBGAOBSXGTbsmv0uoQQQohLiQQrflTRaiCL0UKYJQyQvhUhhBCiIhKs+ImiKHqwYjaWvbm1jNwXQgghKifBip84FIf+eVllICgauS+zVoQQQojySbDiJ1q/CpQfrEhmRQghhKicBCt+opWAoOylyyBTbIUQQghPSLDiJ1qwYsCA2VB2z4rsvCyEEEJUToIVPym+bNlgMJR5jFYGksyKEEIIUT4JVvykoum1GsmsCCGEEJWTYMVPbM7yp9dq9MyKzFkRQgghyiXBip9UtOOyRs+syP5AQgghRLkkWPGTiqbXaiSzIoQQoqY5XI5LrldSghU/8Sazkm3LLrHUWQghhPCXtze/zZBZQ1h/Zn1tX4rHJFjxk8pG7QOEB4RjQF0plFmYWSPXJYQQ4uJzKP0Q/17/7xppC1h6YikOxcG0ndP8fi5fkWDFTzxpsDUZTYRbwwHpWxFCiL+yVza8wswDM/l8z+d+Pc/Z3LOk5KUAsCl5E3vP7/Xr+XxFghU/8WTpMsjyZSGEuBitOLmCe5fcS1JOkt/PlZSTxJazWwBYdWqVX8+169yuEl9/s/cbv57PV/warHz88cd07tyZ8PBwwsPD6du3L7/99pt+v6IoTJ48mQYNGhAUFMSgQYPYs2ePPy+pxugNtsbyG2wB6gbWBdAjXSGEECW5FBfvbX2PGftm1Mj5bE4bL617iQ1nNvD9/u/9fr6Fxxbqnx/OOOzXAGnnuZ0AdIrqBMCiY4s4m3vWb+fzFb8GK/Hx8bz++uts3ryZzZs3M2TIEK655ho9IHnzzTeZMmUKU6dOZdOmTcTGxjJ8+HCys7P9eVk1ovgE24o0jWgKwLGsY/6+JCGEuCT9mfgnn+36jDc2vsG5/HN+P9+vR38lJV99A+nvTIeiKPx69FegqMdx5amVfjvfzlQ1WLmh9Q30iOmBQ3HUSEBWXX4NVkaPHs2oUaNo3bo1rVu35pVXXiE0NJT169ejKArvvvsuzz77LOPGjaNjx4589dVX5OXl8d133/nzsmqEw+UAKi8DtYhoAcCRjCN+vyYhhLjUKIrCp7s+VT9HYfnJ5X49n0tx8fnuor6RI5lHOJ1z2m/nO5h+kMMZh7EYLdzZ/k7Af8GKw+XQe1Q61+/MHe3vAGDWwVnk2fP8ck5fqbGeFafTyQ8//EBubi59+/bl2LFjJCcnM2LECP0Yq9XKwIEDWbt2bbk/p7CwkKysrBJ/LkaeNNgCtIiUYEUIcenZkbqD2xbextxDc/16nnVn1rHnfFF7wB+Jf/j1fH8m/snxrOOEBYTRrm47AFafWu238/1y9BcABjUaxKjmowDYmLyRfEe+z891JOMI+Y58Qi2hNItoxsD4gTQOa0y2LZufj/zs8/P5kt+DlV27dhEaGorVauWBBx5g7ty5tG/fnuTkZABiYmJKHB8TE6PfV5bXXnuNiIgI/U+jRo38ev1V5cmcFSgKVhKzEvXSkRBCXMwWHVvE3YvuZkfqDj7e8TGKovjtXJ/t+gyAyxpeBsD6M+vJtef65VyKojB993QA/tbmb4xoqr6ZXnXaP6Ugp8up96tc1ewqWkW2IjYklkJnIZuSN/n8fFq/SoeoDhgNRkxGE7e1vw2Ab/d+i9Pl9Pk5fcXvwUqbNm3Yvn0769ev58EHH+TOO+9k796ipVIX7kisKEq5uxQDTJo0iczMTP3PyZMn/Xbt1eFpsBITHEOIJQSH4iAxO7EmLk2IWmd32dl6disuxVXbl/I/QVEUsmxZHE4/TGKW/55HFEVh2s5p/GPlP7C51OzxmdwzfssMb0/ZzqbkTZiNZib3nUzT8KbYXXZWn/ZPpmPz2c3sOrcLq8nKLe1uYUDDAQBsOLOBQmehX86XkpdCWEAYA+IHYDAYuLzh5YB/SkG7UtWVQJ2jOuu3XdPiGsIDwknMTmTFqRU+P6ev+D1YCQgIoGXLlvTs2ZPXXnuNLl268N577xEbGwtQKouSkpJSKttSnNVq1VcXaX8uRp6M2wc1WNP6Vg5nHPb7dQlxodoIGF5Y8wJ3LrqTL/d8WePn9pc8ex7n8s/VyERqh8vBW5ve4p7F9zB67mj6fNeHy76/jLHzx3L13Kv1FyVfsjvtPLfmOT7Y9gEAt7e/nb5xfQH/ZR60rMqYFmOIDYllcOPBgP9KQVpW5dqW1xIVFEXrOq2JDo6mwFnA5uTNPj+f1lg7oskI/bXi8ng1WFl1apXPM1Zac622Eggg2BLMDa1vAODrvV/79Hy+VONzVhRFobCwkGbNmhEbG8vSpUv1+2w2GytWrKBfv341fVk+58kEW03zyOYAHM046tdrEqI4l+Lizt/u5Oq5V/v13fiF1pxew4KjCwCYsW+G3ozuL4qikJybzPKTy/nvjv8yc/9Mn78IJOcmM+THIQyeNZh+3/ej+zfd6fZ1NxK+S+DquVdzON23b0RWnVrF13u/ZmPyRo5nHdf7G8wGMwoKi48v9un5MgszuW/pfcw/Mh+TwcRzfZ5jYq+JDGw0EPBPFuBA2gFWnFqB0WDk7o53AzCk0RBAffy+LpvvT9vPmtNrMBqM3NlBbXQ1GAx6dsXXAVmhs5ClJ9TXv6uaX6Xf3juuN1aTlaTcJJ9mrHJsORzNVF9jOtXvVOK+m9vejNlgZsvZLexP2++zc/qSX4OVZ555hlWrVnH8+HF27drFs88+y/Lly7n11lsxGAxMmDCBV199lblz57J7927uuusugoODueWWW/x5WTXC0wZbgJaRLQG161xcXA6kHWDiyokcSDtQ4+fee34v7219j7SCNL/8/G0p29iaspWT2Se5Z8k9fl3xoMl35PPy+pf1r1PyUvjz5J8+P09qXipTtkzh3iX3cvnMyxn+03Ae+eMRPtz+If/e8G+2pmz16fn+SPyjVB+FQ3GQa8/lRNYJfjz4o0/Pt+ms2s8wMH4gn1/xOb+M/YWNt27k9ctfB2Dlad8GDy+ue5HNZzcTYglh6tCp3NT2JqAoC7AtZRvZNt+OnJi+S81yjGgygibhTQB1BUu9wHpk27N93tOhrQC6oskVNAor6oUcEO8OVny8hHnFyRXk2HOIDYmlR0wP/fYgcxC9YnsBvv173H1+NwoKDUMbEhUUVeK+mJAY+sf3B9SS18XIr8HK2bNnuf3222nTpg1Dhw5lw4YNLFq0iOHDhwMwceJEJkyYwPjx4+nZsyenT59myZIlhIWF+fOyaoSnPSsAzSPUzIqsCPKcw+Vg8trJPPLHI36pJWve3PQmvx37jfuW3sfxzON+O09xiqIwc/9Mblt4G5/t+oy3Nr3ll/MsOLJA/zw5N5l7Ft9Dcm75ze2+8N8d/+V0zmligmO4pa36puSH/T/4/Dzvbn2XL3Z/wYYzG8gozMBkMNGqTiuahjcF0N/R+oq2Idxj3R9jy21bWP231Sy7fhkv9XsJgOUnl/s0m6OVJEY1G0Wv2F40CW9CkDmIvg36YjKYOJZ5jJPZvunnc7qcrDm9BoAPhnxA/4b99fsahTWiaXhTnIqTdUnrfHI+gBNZJ1h8Qs0O3dvpXv12o8FYVAo66btS0Mnsk3o26v86/l+J+xLiEjAbzSRmJ3Ii64TPzqmtAhrVbBRGQ8mXYi0I9GXGSisNFi8BFdelfhcAdp/b7bNz+pJfg5Xp06dz/PhxCgsLSUlJYdmyZXqgAmqKbfLkyZw5c4aCggJWrFhBx44d/XlJNUYfClfJnBUoWhF0POu4T2rdb216i5t/ubnGXlxrmqIovLz+ZWYfms3yk8uZc2iOX85zIO0AG5M3ApBWkMb9S+/3+6ThPHseT696mn9v+Lf+b2Hx8cWczz/v0/MUOAr0J+fXB7xO47DGnM45zT2L7yE1L9Wn59IcSDvAV3u+AuDZPs9yV4e7MBqMbEze6NNA3aW49AbMh7o+xA9X/8CGWzcwZ8wcnuz5JKAGK77q1XG4HPq7/L5xfQkwBRBhjSAmJIYrm11JoCmQpNwkDqYf9Mn5smxZeqq+Z2zPEveFB4TTLbobgM+aUA9nHCbPkUeoJZTu0d1L3a9nHnxYJvli9xe4FBcDGg6gTd02Je7TSkF/Jv7ps7/Dr/Z8hUtx0a9BP9rVa1fivhBLiJ758FV2JbMwU/99Xd386lL3a8HK9pTtPtvktqx+leI61OsAlB7Hf7GQvYH8xNNx+wBxIXEEm4NxuBzVfje08tRKvt77NbvP7+b+pff79Z3ygbQDrDm9hqMZR2t0oNCH2z8sEaB8tuszv2RXvt33LaAumWwc1pik3CTuX3q/33bIPpJxhJt/vZmFxxZiMph4qudTdKjXAbvLztzDvp1lsfzkcnLsOcSFxDGy2UimXzGdhqENScxO5N4l9/o8OHK6nLy07iWcipNhjYcxuPFg4kLjGBiv9jzMPDDTZ+fad34faQVphFpCuafTPXSo1wGryQpA3wZ9CbGEkJKXoj95V9fuc7vJsecQYY2gbd22Je4LMgeR0CABwGfDzLad3YaCQpPwJkQHR5e6XwsefPWufFvKNkAtwZiMplL3F28I9UXwkJybrM/8+Hvnv5e6v09cH4LNwaTkp7DnXPW3Z0krSGPe4XkA3NPxnjKP8XXfyuLji3G4HLSu05pWdVqVur9haENaRLTwWcZKURR92XLn+p3LPKZDlBqsnM45TXpBerXP6WsSrPiJpxsZgpph0kpB1WmytTltvLHxDUBt7E3KTeKBpQ/4ZUfnE1kn+Nuvf+OBZQ9wzc/X0Oe7Pgz4YQA3LriRx/54jM92feaXVSYz98/kk52fAPB076eJCY4hJS/F59mV8/nn9U79B7s8yCfDPyEqKIrDGYd55I9HfD6w6Zejv3DzrzdzNPMo0UHRfH7F59zZ4U7+1vZvAPx44EefzkCYf2Q+oL6rMxqMxIbE8tmIz4gNieVo5lH+vvTvPv13M+vgLHae20mIJYSnez+t3649vvlH5vtsdob2gpIQl1CqDGs1WRnUaBDgu1LQujPqi0nv2N5lvpgPbqSWLXzVm7P5rFoC6hnTs8z7tRfWTcmbfPLvdHvqdgC61u9a5v3do7sTbA7mfMF59qXtq/b5vtv/HQ6Xgx4xPfQsUXEBpgA9IPNFKWjFyRUUOgtpV7ed3ityIe18m5I3+eSNmfbcUlZWRePLUlBSbhJpBWmYjeZSmSNNeEC4XiYtPoTvYiHBip9oDbaeZFagaEVQdZYvf733axKzE4kKimLm1TOJDo7mSOYRxv8+3ueZD20VR3hAOGEWtccoozCDfWn7+OPkH7y39T2fLy9cdmIZr2x4BYDxXcZza7tb+Xsn9Z2Xr7Mrsw7Owu6y0zmqM13qdyE+LJ7/DvsvYZYwtqVs4x8r/uGz5ak/7P+BSasmke/IJyEugVmjZ9E9Rk23X9n0SiKsESTlJvnsnfK5/HOsTVKnRI9uMVq/PT4snukjplM/qD6H0g/x6J+P+qTP4mzuWd7b+h6g9nTEhBSNJkiIS6BpeFNy7bn8cuSXap8LisofxXsrihveRC1FLz2x1CePb32S2q/St0HfMu+/PP5yDBjYc36PTzaM00pOF5aANC0jWxIXEuezwWLbU7YD0CW6S5n3B5gCSIhTs0e+KJNov8+b2txU7jFaKcgXzzFaxiGhQUK5M76ahTejYWhD7C67XhquqqScJLambMWAgZHNRpZ7nBYgrT69utpvVLR+lTZ12uhZxrJo2ZWLsRQkwYqfeDpnRaOtCKpqZiU5N5lpO6cB8ESPJ2hdpzXThk8jwhrBrnO7eOzPx/QAqrqybFl62vSdQe+w9pa1rL15LbPHzObDoR/q/wG/2POFz5oKt5zdwj9X/hMFhetbX88DXR4AYGyrsT7PrticNmYdmAXAre1u1W9vU7cNHwz9AKvJyopTK3hx7YvVfnyKouizRu5ofwf/HfZf6gXV0+8PNAcytuVYwHelkoVHF+JUnHSu35lmEc1K3Nc4vDGfXfEZVpOVbSnb2Ju2t5yf4rnXN75Orj2XzlGdubH1jSXuMxqM+ovSDwd+qPbvM7MwU3+i1SaeXuiyBpcRZA7iTO6Zar+DzLXn6uUk7QX7QlFBUXrqvbpDt3JsOXr2orzMSvHlttUNcFPzUjmdcxqjwVhikNiF9FJQNcskefY8DqSrK+/KyqpoBsQPwGw0czTzKMcyq7cJ7I7UHQB0iSo7GIMLljBXMyDTgulu0d2IDYkt97iu0V0Js4SRXphe7X+n2mMsr19Fo93vi/Kar0mw4ifeLF2GYnsEVXH58jub3yHfkU/36O56arFFZAs+HvoxQeYg1p9Zz9OrnvZJKWHuobnkO/JpGdmSPrF9AAgLCKN1ndZcHn85E3tNxGK0sDN1p17vro5D6Yd45I9HsLlsDG40mGf7PKu/AwowBfg8u7L4+GLO5Z8jOiia4U2Hl7ivR0wP3rr8LUwGEz8f+Zlv9n5TrXPtSN3B6ZzTBJuDebjbw2WWEW5sfSMGDKxJWuOT1QjajJMxzceUeX/ziOZ66aK62Y4/E/9kWeIyzAYz/+r7rzIf35iWYwgyB3E447Be4qiqtUlrcSkuWka2LPeFINAcqPfKLDmxpFrn23J2Cw7FQXxofInlrhfSSk/V7VvZlrINl+IiPjS+whc6LXhYfXp1tQJArQTUKrIVoQGh5R6nZbF2pe6q1lL7Xed24VJcxIbEVvj4wgLC6B3bG6heeS3XnqvPwLlw9siFijcSV+d3qgXTxZcrl8VitOhlqS1nt1T5fMXPWV6/ikZrst19brdft1CoCglW/MTuKADA4uHft9azcjzzuNdDsjae2cii44swGoxM6jOpRCqzU/1OvDf4PcxGM0tPLOXl9S9X6x+hw+Xgu33qrti3tbutzLRpVFAUY1qoL4Rf7PmiyucCNWP0wLIHyLZl07V+V968/M1Sg/Z8mV1RFEUPQG5ud3OZwebgxoP5R69/APDV3q+qVQ7Sli8OazKMIHNQmcc0Cm+kZwm0jE9VHUg7wP60/ZiNZq5sdmW5x2nloYXHFlbr8WkTSG/vcHupVR2a8IBwRjVTN3Cr7jJm7V2r9i64PHop6Hj1SkFa86PWRFseLfjbcGZDtUqyWjBXXm+FpldsLwKMAZzOOa0PAqsKrQTUNbprhcfFhMTQpk4bFBR9mXNVaBmA8vpjivNFKWj3OXX2SFxIXJnNysX1iu2F1WTlTO6ZapXrK1tCXJyWXarOmz67086+82o2rrJgpW3dtpgNZs4XnPf7GANvSbDiJ7YM9R2w5ZhnadgGoQ0IMgdhc9k4lX3K4/PYXXZe2/gaoL4Dv3A1Aqi19DcGvIHRYGT2odl6c2VVLD+5nKTcJCKtkSWmLl7ojg536MdX58nypXUvkZKXQvOI5kwdOpVAc2CpYwJMAfoshupmV7ambGVf2j6sJivXt7q+3ONuaH0DdQPrkpKXUuUnS7vTzqLjiwAq/F2COmESYO7hudVqmtR3eI0fRIQ1otzj+jXoR93AuqQVpFV5NcKp7FPsPLcTo8Gob0VfHu3x/ZH4R5WXhxdfslxev4qmf8P+BJoCOZVzqloTO7X5KuWVgDTNI5rTKKwRNpdN7xeqCm2+Snn9KppgS7Ae0FSnbKFlVrQZHBXxRSlI74/x4Hxatmpn6s4qr17RSnienC/IHKSX3qrat1LRFNmyaEHijtQdVQ6qD6YfxOayEWGNoHFY4wqPDTQH6quTdp+/uOatSLDiJw6H+u4pIN+zZa5Gg1HvH9Bqtp74Yf8PHM44TB1rHR7u9nC5x41oOoKHuj4EqEt/q/qCri3nvaH1DWUGDprmEc31J5Ov91Rtv4kdqTtYdXoVJoOJ9wa/V+GL67hW44gOjq52duXbverju7r51UQGRpZ7XIApgOtbq8HM9/u/r9K5Vp9eTWZhJlFBUXo5rTyXNbiMhqENybZl89ux36p0PofLoQcrxRtry2I2mvVsR1WDWy0Q6x3bu9TEzAu1qduGbtHdcCgOZh+cXaXz7UtTlywHm4Mr7HcA9cVcS+tXdVVQal4qhzMOY8BQ6d+fwWCo9qqgPHue3rtQXr9KcfoS5ipOQS10FrL3vNqzVFlmpfj51pxeU6Vys0tx6c2unpwvJiSGlpEtUVCqHDxomZzKMg4aLUisauNyRVNky9K+XnsCjAGkFaRVeaNb7TF2jOpY4SbBmou1yVaCFT+xaUPhvEihawOXPN3X41z+OT7a/hGgrrKo6MUc1AbO6OBozuSeqVI5Ye/5vWw5uwWzwawvOa3I/3VQJ0HOPzKfc/nnvD6f9tjGtBhD04imFR7ri96V0zmn9aWQt7W7rdLjb2x9o76fRlXG8RefYFlWL0dxJqOJG9uozak/7K9aI+qGMxs4l3+OSGtkpWUSKApo/kz8kyxbltfnW3RMDVaubFp+uam4v7VxL9M++GOVSk+rT6lZlYS4BI9GBmiloCUnllTp96llVdrVa1dhYKvRgveVp1ZW6cV8e8p2nIqThqENaRDaoNLjtd17t52t2ij8Pef24HA5iAqKIj40vtLjO0V1IjwgnCxblh50eON41nEyCzOxmqy0qVN2yfBCWkZL+7vwhqIoembF02BFy1ZtPru5SqMZvCkBgfq8pgUPVS0F6f0qFTRIF3exNtlKsOIndkXtOwnw4klpbCt11cefiX96NJTrva3vkWPPoWO9jvr3ViTQHMj4LuMB+HTnp+TYcjy+NlCXK4OapamsvgtqvbVz/c7YXXa9z8VTW89uZW3SWswGM/d1vs+j76luduX7fd/jUlz0jetLyzotKz0+JiSGoU2Gqt/rZXYly5alN1tWNGuhuLEtxxJgDGBf2r4qvRhoGZKRzUZ69GLerm47Wka2xOaysfS4d9mHoxlHOZB+ALPBzLAmwzz6nuFNhlM3sC6p+alVKl3oJaD4iktAmsvjLyfAGMCJrBMcyjjk9fm0F0ht5+HKdIvuRnhAOBmFGfq7XW9o+wFV1pipaRSujsJ3KI4qvZgXn6/iyTtys9Gs91ZV5e9vR4r6O+lQr4NH/z6hKFipyn42p7JPkV6YjsVooV3dsmePXKh9vfYEmYPILMysUt9KZVNky6JlmbQSmb/PqTXZ7jm/p1Z2ZC+PBCt+YnMHKRaH58uFW9dpTaeoTjgUR4l9W8qy5/wefj6sTnl8us/TpfaWKM81La+haXhT0gvTvdoO/Fz+Ob384EnWAdTUt5ZdmXlgpleNhVpW5dpW1xIfVvm7OiidXSlwNzl7Iteeqwc4t7X37PFBUa/Fr0d/9Wqy7bITy7C5bLSMbFlmn1FZ6gTW0ZtiZ+73bhlzji1H763Rmp8rYzAY9EBKW0HkKa0E1K9hv0ozfhqLycI1La4B8DrYzCzM1AM4T7JGoI5R115cvS0FKYricXOtxmw0630dVSkF6f0qHpSANNWZZutpc22J87l/91VZoq0313pxvp6xPTEZTJzMPulVrx/AjnPq+drVa+fxiAmL0aKXGL0tBXkyRbYs3eqr56tKsJKal0pidiIGDOXOyblQi8gWBJmDyLXnXlRbtkiw4id21Ig0wOndyp5xrcYBMPvQ7HJT04qi8ObGN1FQuKr5VR41h2nMRjOPdHsEUPfD8HSs+qwD6pC0LvW7eNQYphncaDCNwxqTZcvy+AVoU/ImNiRvwGw0c18nz7IqmnGtxhEbEktKXopXy4rnHZ5Htj2bpuFNK23OLK57dHfa1GlDgbOAuYc8H4mvlYCuan6VR+9aNVqpZNHxRV6V1paeWEqBs4BmEc30d06euKr5VRgwsOXsFo93ZVYURQ9sPS0BabQM4arTq7waoLYuaV2lS5bLMqLpCADvM0eZR0nNT8VqslbaH1NcVZcw59nz9IbHylYCFacFD6tPr/bqXbKiKEXzR7x4fhnQcABGg5GD6QdJykny+PvAu+ZaTYglRH/h9za7omVyPC2PaKq6nFifImswe/wGBYqG8R3JPOL1Vh9bUtRrbFO3DeEB4R59j9lo1jNNF1OTrQQr/uByYkMNNMxeDmIb2WwkQeYgjmcdL7dGuSxxGVtTthJoCmRC9wleX97wJsNpX689eY48fWlpRWxOmz6QzJusA6i9Fnd2uBOAb/Z+U+mybEVR+HD7hwBc1+o64kLjvDpfgClA/518uutTjzblO5Z5jKnbpgJwS7tbPM5SgZp9uKWde/fgAz941ItwJueM/q7sqmYVrwK6UKf6nehSvwt2l13f0r4yiqLogeKYFmO8Co5iQ2LpHafOs/B05sqB9AMczzqO1WTVm0o91SyiGd2ju+NSXF419morULwJNAEGxg/EYrRwJPOIV5spalmV7tHdK5wIeqH+DftjMVo4nnXcq2FmO1J34HA5iA2JpWFoQ4+/r0dMD4LNwZzLP+fVKPzE7ETSCtIIMAbQvl57j78vMjBSD968CciybFn6jClvghWoet+KluXw9nxaZmtzsnd9K1q/Suu6rStcnHChuoF19TH43pYPtySrwYqnpUON1idzMe3ALMGKP+RnYMc9tMzpXaNgiCVEfzdaViai0FnIO5vfAeCujnd59S5SYzAY9Bf0mQdmVvqO+bdjv5FWkEZMcAxDGw/1+nxjWoyhbmBdknKTWHK84iFcG5I3sOXsFgKMRSUdb41qNorOUZ3Jd+TzwbYPKjw2x5bDY38+Ro49h+7R3Stcrlyekc1GEh4Qzumc0x4t21x4bCGgPul5G4yBulcRqNkuT4KxGftmsD11OxajxeP+mOK0stGCows8akTVsiqXx19e4SCx8mjZxTmH5nj0YuBSXPpsj/Km1pYnLCCMfg36AUX7tXhC71cpZ8R+eUIsIfowM29ezIvvB+RNsFl8FL43S+y1LEeHqA4el0g0WoDqzePT+ioahTUqMcHZE33i1JVYG5M3ehw85DvyOZim7oLtbbDSoV4HgsxBpBemexXgasGRN/0qGq005m2T7daUrQBl7pZdEe0aJVj5X5efht39fGKxe78qRXuyXnJiSaku/hn7ZnA65zTRQdF6P0hV9G3Qlz5xfbC77Hp/SFkURdGXK9/ctuwhaZUJNAfqvR1f7Pmi3OyDoih8uE3NqtzY5sYSe8h4w2AwMLH3REAt72jLLy/kUlw8u/pZjmUeIzoomncGveNxY19xQeYgrmt1HUCljcSKougloKoEDqDOQOlavyuFzkKm755e4bF7zu3hnS1qcPuPXv+oUnA7rLE6sO5E1olKlzMqiuL1KqALDW8ynFBLKKdyTnnUF7A/bT/nC84TZA7y+kkZioKxnw7+5NEqMrvLrl9XZfNVyqKVgn45+ovHq5C0fhVvSkAarc/p16O/evxiXtnmhRXRHt+ms5s8buL3ZhjchTpHdSbIHERaQRqH0j1rlN57fi8OxUH9oPpe/5+wmCx6gOPNxGUts+JNv4pGy1Z507eSWZip/z60vcY81bFeR0D9v2X38g23v0iw4g9557Fr4+CrsB9Pl/pdaBHRgnxHfomZGufyz+n7/zzW4zGCLcHVukwtu7LgyIIy/5On5qXyxqY32J+2n0BToD5XpCr+1uZvBJmD2J+2n0mrJ5W5NHVt0lq2p24n0BTIPZ3K3qrdU13qd2Fks5EoKLy16a0yXxQ+2/UZf5z8A4vRwn8G/8ejuQfluantTRgwsO7MugqH4B1MP8jhjMNYjJZSo/w9ZTAYGN9VXdX144Efy+3tyLZl89SKp3C4HAxrPEzvd/FWsCWYIY3VaaGVlWZ2nttJUm4SweaiOSZVOZ+2v5QnfU7aKqA+cX28zgIADGk8hLiQONIL01l4dGGlx+9K3UWeI4861jrlTuWtyMhmI7GarBxMP6gHBRUpcBToQaI3zbWawY0GE2IJ4XTOaY/fmVe2eWFFmoQ3UVchuRysSfJsmm1V+lU0FpNF/714WgoqvmTZm0yVRgsaPW2ytbvsehmuSpkVdxC3+9xuj5f1b0vZhoJC0/CmXj+3xYfFE2GNwO6yczD9oLeX6xcSrPiBM/ccTvd/AIvD+8yKwWDQGw0/3vExr298ncXHFzNl8xRy7bl0qNehyu/Ki+sY1ZHhTYajoPD+tvf128/knOGV9a9w5ewr9eXKt7W/zeNVHWWJDIzk1f6vYjaY+e3Ybzy1/KkSGysqiqL3jdzU5qZqBQ6ax7s/jtVkZfPZzfye+HuJ+1aeWqmf77mE56r0bqe4hqENGdhI3W+mopHx+gTZRoM8bngrS0JcAt2ju2Nz2crsO1IUhRfXvcipnFM0CGnAi5e9WKUnZY22j9Ci44sqfKelZVUGNx5c7vYBntAyVctOLKu0qdDTEfvlMRvNeubv233fVprtWHdG7VfpE9fHq/4mTYQ1Qg/GPNleYGfqTuwuO9FB0RXuP1SeQHMgI5qojcSVrTIEd/+Iu7xRlUwHeFcKcrqcevDgzUqg4rQMl/Z3UxlvJteWpXiTrSfZsYPpByl0FhIeEE6T8CZen69pRFMirBEUOAvYf96zictbz6olIG/7VUB9DdKyKxdLKUiCFT+wFesjCKhCGQjU1HRYQBjn8s8xY98MnlrxlL58dGKviVV6kizLI90ewWQwsfzkcn45+gv/WvMvRs0ZxQ8HfsDmstG1flc+GvoRj3Z7tNrnGtZkGO8NeY8AYwB/nPyDR/94VB8dv/LUSnaf302QOYj/61j18lZxcaFxenPvO5vf0YOjE1kneHrl0ygo3Nj6Rr3sVl23tFUbbX8+/HOZ6W+ny6m/c69svH5lDAaDPpF49qHZpfbx+OnQTyw+vhizwcybA9+sVmAE6gtz/aD6ZBZmljsR1ely6gMNRzYdWa3zta/XntZ1WmNz2SrsJckszNRLCN421xY3rtU4gsxBHEw/WGFqP8+epwdkVSkBabShiktOLKl0RZ7erxLrXb9KcdqAvyXHl1S6pH9n6k4UFBqHNfa6f0RTfABeZU31hzMOk+fII9gcrO8+7y1t+fjWs1srLVsUX+lU1TcpHet1JNAUSFpBmkfbiRQfBleV526jwagHjp5mx7TVSlUJVqBYk+1FsiJIghU/sOcWLSm1eDHro7g6gXX4ZewvvHX5W9zc9mba1m2LAQPXtbrO6/pjRZpFNOPaltcCMGnVJOYenotDcdAnrg+fX/E5X4/8mgHxA6r1rry4y+Mv58NhHxJkDmJN0hoeXPYgObYcfQXQzW1vrvITZFnu6XgP9YPqcyrnFDP2zSDXnstjfzxGtl3dGPHp3k/77FwJcQk0i2hGniOPn4/8rN/udDnJLMzk98TfSclPITwgvMpZgOJ6x/WmV2wv7C47n+78VL/9YPpB3tj4BqBONq7qu8fiTEaTHmCVtypoa8pWUvNTSzStVpXBYKh0Gf/+tP3c8dsd+pJlT6a6lifCGsHo5uoLurblwoUUReGFtS9wPOs49QLrVanZXNOhXgd1ppLLUWGpK7Mwk3mH5wFV61fR9IjpQVxIHNn2bJafWl7hsVWZr3KhLvW7EGmNJMuWVemLqxY4dKrfqdJJzuVpFdmKuoF1yXfkV7piJjk3mdT8VEwGk1crnYqzmCx6icyTUpA+mM2LsQ8X0ofDeVA6zLPn6b16VX29uNiabCVY8QNbsXdKFnvVghVQl6xd2exKnunzDD+O/pGtt29lcr/JPrjCkh7o8gDBZrX/ZWD8QL4d9S2fjfiMXrG9fBakFJcQl8Anwz8h1BLKlrNbGDd/HPvS9hFsDuauDnf59FzBlmAe7a5mhabtnMbElRM5knmE+kH1mTJoSpUaastjMBj0csL7W99n2I/D6DOjD12/6Ur/H/rz5IonAbii6RVV6q0oizaReM7hOSTlJJFnz+OpFU9R6CxkQMMB+oaSvqCVHpefWl7mC5CWcRjWeJhPfq9XN7+aAGMAB9MPlmiSdikuvtj9BTf/ejNHM48SFRTFC31fqPb5bm13K6AObDuZfbLU/V/v/ZpFxxdhNpiZMmiKRyP2K6JlV2YdnFVm07miKDy35jnO5J6hUVijKjcsg/rOXPv7q2wJenX6RzQmo0kfgFdZKag6zbUag8GgrwqqrG9FGwbXuk7rapUq9SXMHjTZaj1HVelX0RTPrFRWetp5bicORV3q3iCkakF8xyi1DHQ082i1dgr3FQlW/MDhDlbMioKhipmVspiNZp/9rOJiQ2KZPWY2C65dwNShU33yTrwy3aK78dmIz4iwRnAm9wygvljUCazj83ONaTGGdnXbkWPPYeWplZiN6otN/eD6fjlXHWsd8hx5nM07S56j6D95oCmQJuFNPJ4A7ImesT3pE9cHh8vBtJ3TeHXDq/rqplf6v+KzciGog6W0bMAdv93B3YvvZl3SOhRFwe6y61NgtdUn1RVhjdC3M9CyD8m5ydy75F6mbJmCw+VgSKMhzBkzp1pZAE3zyOZc1uAyFJRS2yesP7OeKVumAOqqKl9kN69oegWR1kiSc5PLnPj67b5vWX5yORajhbcHvl2lZeDFXd1CDVZWn15dbunJ4XLoS2y9GXZXluID8Cp6cfVFcARF2x5UFqxUt19FU7zJtqLHl1mYyfGs40D1gpWOUR0xG82cyz9X6biJ4iWgqr7hjAqKIiY4Bpfi0jfQrE0SrPiBLV/drjxAUUBxwkWy9Ksi8WHxlW4W6Gsdojrw+RWfEx0cTcPQhnp/ia8ZDUb+2fuf+tfP9nnWJy9uZQmxhDBr9CymDZ/GD1f9wK9jf2XFTSvYettWNt22iV/G/kLzyOY+PafWuzLn0Bx+PvIzRoORNy5/wy+B37uD3+W6VtdhNprZlLyJ+5bex60Lb+Xj7R+TXphO3cC6+hwRX9AabRceW8jPh39m3PxxbEreRJA5iMl9J/Pu4Hd9+ji17MrcQ3PJtecCkJSTxD9W/AOX4mJMizF69qy6rCar3kivDV3U7ErdpQdHE3tNrHK5orjmEc3pWK8jTsWpb4dQnDaQMd+RT5gljBaRLap1vn4N+mExWkjMTuRYVtkD8M7nn9d3E65uk7vWQ7T73O4KN270dvPC8nSK6oTVZCWtIK3cx6ddD6gzZKrzbzXQHEj7uuq/g8pKa1pzbVWW8henBXRV3UTRlyRY8QN7gbp6waJF2z7MrvyvaV2nNUuuW8KcMXOqtdqoMj1ievBSv5d4oe8L1VqC7YnYkFj6NuhLh6gONA5vTN3Auj4tN12oW3Q3+jXoh+Kemvxglwf1rex9LTo4msn9JvPbuN+4td2tWE1Wdp3bxae71J6Z4U2G+zQD2Cu2Fw1DG5Jjz+G5Nc+RbcumU1Qnfhz9I9e1vs7nZcrLGl5G0/Cm5Nhz+PnwzxQ4Cpjw5wQyCjNoV7cdzyc879Nz3tj6RgwYWJu0lhNZJwD1nbi25Hx4k+Hc1OYmn51Py65cuARdURTe3PSmvrLske6PVDsrF2IJ0acfl1cK0gKH5hHNq/3/Py40jibhTXAqTn0uzYVsTpteUqxuZiXAFFA0b6Wc80H1hsFdyJNNDe1Ou15aq8pS9+K05lxvtxbwBwlW/MBWkAG4MysA1ehb+SswGU3VnhnjibGtxvo9UKktj3Z7lABjAP0b9q/y5F9vxIbE8nTvp1l03SLu7ng3weZgzAYzY1tWvvu3N4wGo95oazQYub/z/Xw18qsqLf/09Hza9gkz9s3g5fUvsy9tH3WsdXh38LtejUn3RHxYvD6PZuaBmSiKwvNrnicpN4n40Hhe7Fe9JecXGtlsJGaDmb3n9+rLk50uJy+ue1Ef/vhsn2d9lj0aFD8IKD9Y0YfP+SjTqe/CnFz2PkH70/Zjd9mpY61TpWXgF9LeFFTUZFudYXAX8qTJds/5PRQ6C6ljrUOziGbVOp/2+LalbPN4vou/SLDiB0WZFfcNklkRftYhqgMrblrB1CFTq7yioiqigqJ4vMfjLLthGb+O+1Vf7uhLd3W4i6d6PsW3I7/l4W4PV2mKsjeuaXENYZYwErMTmX9kPkaDkbcGvlWt1UYV0TIn8w7PY/ru6fx58k+1T2XQ24QFhPn0XHUD6+pLvBccWYDD5eDZNc8y+9BsjAYjL1/2st746wta38qO1B2kFaSVut8XzbXFaU22q06tKnN8QHWHwV2oeJNtWX0riqL4pLlWo/URHUo/VO5WG1oWpHtM92o/xpaRLQkPCCffke/xfBd/kWDF1xQFm7teGiBlIFGDQgNCazRQKS4sIMxvL+YBpgDu7HBntZZ9eiPYElxi9s7j3R/XXwT9oX/D/jQMbUi2LZv3tr4HqE283uyO7Q1t5sovR39h4sqJ/Hr0V8wGM28MeEMfY+ArsSGxtKvbDpfi4rt937Hy1EoWHV/EvMPz+GH/D+w5pzZu+qqpv3dsb4LMQSRmJzJm3hgWH19cIojwVb+KpnP9zgQYAziXf47pu6eXClhOZZ8iozADi9Hi1U7L5YkKiqJzVGcUFN7e/HaZx1R3vkpxRoNRbyav7VKQBCu+VpiNXVGXIZq1mq8EK0JcUm5vfztNw5tyY+sb/db4rTEajCX6UoY3GV7lrRE8MbDRQMIsYZzNO8vSE0uxGC1MGTTFZ6u4LqRlVz7Z+QkP/f4Q/1jxD55f8zyvbHiFAmcBEdYInzX3R1gj+HDohzQOa0xqfipPrXiKB39/UF+KXt1hcBeymqzc3+V+AN7b+h7vbH6nxP5LWr9K27ptfTau4Jk+z2A0GFl4bCFrk9aWuM/pcurNsL4IVqAoe1TbwYp/1sL+leWnFe0LZHC/y5WeFSEuKTEhMSwYW/loel8Z23IsX+/9moiACJ/3qVzIarIyoukIZh+aTaApkPcGv0e/htUb4leRca3Gseb0GnLtuQSaAwkyBxV9NAVyZbMrfbrEvldsL+ZcM4fpu6bz2a7PWHN6DWN/Hsst7W4hKTcJAwaflGQ093W+D6vJytub3+arvV+RXpjO5H6TsRgtegnIV8ERqCXfv7X5G9/t/45X1r/CnGvmYDVZATiUcYgcew4hlhDa1PF+36qyjGgyglZ1WvmsVFdVEqz4Wl5RsGKRzIoQwgORgZH8Nu43jAajz96BV+SBLg/gUlyMazXOb8v4NbEhscy4aoZfz3Ehq8nK+K7jGdlsJK+sf4UNyRv4YvcXALSs05IQS4hPz3dnhzupE1iHf635F/OPzCejMIO3B75dNLnWh8ERqNukLD2xlMTsRD7b9Zk+vkDLfnSN7uqzknBcaBxxoXE++VnVIWUgX8tLw6ZlVrRfbxU2MxRC/LUEmgNrJFABNYB46bKX/B6o1LZmEc34dMSnvDbgNeoG1gWgR7RvyiMXGtNiDO8PeZ9AUyArT63kviX3sT9NbUrtHOW7zAqo/Wna7Kjpu6ZzLFOd86IFK9VdsnwxkmDF1/LLyqzk1+IFCSHEX5fBYODq5lcz/9r5vNL/FR7u9rDfznV5/OVMGzGNsIAwtqdu15dJx4fF+/xcI5qMoH/D/thddl5e/zIuxVW0Eqiaw+AuRhKs+FpeGjZ3uTlAS8NJZkUIIWpVhDWCMS3G+HX4JKjLi7+88kvqB6nbeXSq38kvPUgGg4Fn+zxLoCmQTcmbmLptKmkFaQQYA/R9ff6XSLDia/lp2NEyK+6WILtkVoQQ4q+idZ3WfDPqG25pewuPdHvEb+eJD4vXVyNpU6Q71+9cY+XEmiTBiq/lndd7VvRgRRpshRDiL6VhaEMm9Znkk/kqFbmz/Z20iCjax8kXm2xejCRY8bViq4ECjBKsCCGE8B+LycK/+v5L/9pfDcS1TZYu+1p+GnZ3edIiwYoQQgg/6x7Tnad7P82RjCP65pH/ayRY8bXimRWtbihD4YQQQvjRre1ure1L8CspA/lafnpRz4q24ZpkVoQQQogqk2DF1/LOF60Gco9AlmBFCCGEqDoJVnzJXgD2PH3OisUkmRUhhBCiuiRY8aX8NADs7sm1AVpmRXpWhBBCiCqTYMWX8tRgxWZWgxQpAwkhhBDVJ8GKL+WdB8BhVlcBBZgC1dtl3L4QQghRZRKs+JK7DGRz96pYLJJZEUIIIapLghVfcpeB7O5gJcAUpN4uwYoQQghRZRKs+FJBBgA2927LFrO7DCQNtkIIIUSV+TVYee211+jVqxdhYWFER0dz7bXXcuDAgRLHKIrC5MmTadCgAUFBQQwaNIg9e/b487L8pyALQJ9ga7EEq7dLZkUIIYSoMr8GKytWrOChhx5i/fr1LF26FIfDwYgRI8jNzdWPefPNN5kyZQpTp05l06ZNxMbGMnz4cLKzs/15af5RqAYr+gRbi5SBhBBCiOry695AixYtKvH1F198QXR0NFu2bOHyyy9HURTeffddnn32WcaNGwfAV199RUxMDN999x3333+/Py/P9y7IrARIZkUIIYSothrtWcnMzASgbt26ABw7dozk5GRGjBihH2O1Whk4cCBr164t82cUFhaSlZVV4s9Fw51ZsaMAYDG7gxXpWRFCCCGqrMaCFUVReOKJJ+jfvz8dO3YEIDk5GYCYmJgSx8bExOj3Xei1114jIiJC/9OoUSP/Xrg3CtXSlRasBASEqrdLZkUIIYSoshoLVh5++GF27tzJ999/X+o+g7tsolEUpdRtmkmTJpGZman/OXnypF+ut0rcZSCb4gLAEhCi3u6yU1Boq62rEkIIIS5pNRKsPPLII8yfP58///yT+Ph4/fbY2FiAUlmUlJSUUtkWjdVqJTw8vMSfi4ZWBlKcAARYQvS7bpj6J4qi1MplCSGEEJcyvwYriqLw8MMPM2fOHP744w+aNWtW4v5mzZoRGxvL0qVL9dtsNhsrVqygX79+/rw0/9AzK2qwYtHKQMCp1DSyCx21cllCCCHEpcyvq4EeeughvvvuO37++WfCwsL0DEpERARBQUEYDAYmTJjAq6++SqtWrWjVqhWvvvoqwcHB3HLLLf68NN9zuYoyKy41KLGYA3EazJgUB1bsZObZCQ+01OZVCiGEEJccvwYrH3/8MQCDBg0qcfsXX3zBXXfdBcDEiRPJz89n/PjxpKen06dPH5YsWUJYWJg/L8337LmAggtwKO5gxWjBRgBBOLAa7GQV2Gv1EoUQQohLkV+DFU96NAwGA5MnT2by5Mn+vBT/02asuEftA5gMFvJcFoIMEIiNzHwJVoQQQghvyd5AvqKVgAKLGn6PpxaSj1r2sWInS4IVIYQQwmsSrPiK1lxrLSpfbT+ZRaGiBiuB2MjKlwZbIYQQwlsSrPiKlllxBysmg4nNxzMpJAAAq8EuZSAhhBCiCiRY8ZUCdSsBLbNiMVnYdDyNAooyKxKsCCGEEN6TYMVXtFH7VnUQnNkQwNmsQmxaZgVZDSSEEEJUhQQrvqKVgSxB6teKuirIEqhuZhhokMyKEEIIURUSrPiKtnTZogYnLpcarAQHq5kWK9KzIoQQQlSFBCu+4s6s2ALUzIrizqyYre7MCjZZuiyEEEJUgQQrvqJlVsyB6tcudd6eyaJ+LZkVIYQQomokWPEVd4OtzWIFwOVSf7Umd2bFarCRKXNWhBBCCK9JsOIrWoOtWQ1WnO6eFYtVLQvJaiAhhBCiaiRY8RVtzopJXarsdKq/2oDAomDF5nBRYHfWzvUJIYQQlygJVnxFz6yowYrDqWZWrIHqaqBggw1A+laEEEIIL0mw4itag61JbaxV3GWgwCC1ZyXEpParyIogIYQQwjsSrPiCohRlVrRgRTERYDbqS5dD3cGKZFaEEEII70iw4guOAnCpwYjNoGZUUMxEBlkwuJcyhxglWBFCCCGqQoIVX3CXgMCA3ej+lSomIoMt4B6/H2xUgxRZESSEEEJ4R4IVX3CXgLCGYXOpwYiimIkMCgD3UuZAg3p7Zp4EK0IIIYQ3JFjxBS2zYg3H7g5WUEyEB1nArGZWAnEHKzIYTgghhPCKBCu+UKjOWCEwHLuzKFiJDLbomRUr6tJlKQMJIYQQ3pFgxRfco/aLZ1YUd4Ot1rMSgMxZEUIIIapCghVfKCjWs+JUg5ILMysWRYIVIYQQoirMtX0B/xO0BtvA4j0rZiKCA8BsAMDsKgRkKJwQQgjhLQlWfKFYg63NpWZQFMVERJAFzO7dl51qsCKZFSGEEMI7UgbyheKZFWdRZqV4z4rRZcOASzIrQgghhJckWPGFwtKZFb1nxb0LM4AFJ1kFsnRZCCGE8IYEK75QxpwVfShcsWAlADs5hQ4cTldtXKUQQghxSZJgxReKlYEKHUWZlYhgC5gs+mEW3DsvS3ZFCCGE8JgEK75QLLNSoAcrZsKsZjCawL25YaS6iln6VoQQQggvSLDiC8UyK/l2ddVPSIAVo1FdtqyVguq4gxVZESSEEEJ4ToIVXyiWWSl0rwYKsViL7jdLsCKEEEJUlQQrvqCN2w8M1yfYhloDi+6/ILMi+wMJIYQQnpNgpbqcdnDkq59bw7G5MyvhZQQrkVYFkMyKEEII4Q0JVqpLKwEBWMOwu+eshJUIVtQVQREBEqwIIYQQ3pJgpboKM9WPlmAwWXAo6rLkiKDSmZVQsxqs5BbK0mUhhBDCUxKsVFex5loAp3soXGRgUNExerCiDoPLLXTW3PUJIYQQlzgJVqqrWHMtgBMtsxJcdIy7DBTsDlZyJLMihBBCeEyClerS9wUKQ1EUFNTMSt3g4pkVdRlQsEnNqEgZSAghhPCcBCvVVawM5HAVBSElgxV3ZsUomRUhhBDCWxKsVFex6bXaJoYAdYOLl4HUnpUgd2YlzyY9K0IIIYSnJFiprmKZFW0gHEBUSOkG2yCjlIGEEEIIb0mwUl16ZiVC33FZUQzUDSndYBvoDlakDCSEEEJ4ToKV6iosyqyk57sn2SomIoIsRce4MyuBBsmsCCGEEN6SYKW6CopWA6Xl5amfK2YCzMV+tWZ1NVCAUQ1SZM6KEEII4TkJVqqrWIOtFqwYMZc8xl0GsqIGKTanC5vDVWOXKIQQQlzK/BqsrFy5ktGjR9OgQQMMBgPz5s0rcb+iKEyePJkGDRoQFBTEoEGD2LNnjz8vyfcKipeBCgAwGi4MVtQyUIChqPwjpSAhhBDCM34NVnJzc+nSpQtTp04t8/4333yTKVOmMHXqVDZt2kRsbCzDhw8nOzvbn5flW8UyKxn57syKwVLyGHewYnTZsLrLQ7k2CVaEEEIIT5grP6TqRo4cyciRI8u8T1EU3n33XZ599lnGjRsHwFdffUVMTAzfffcd999/vz8vzXe0cfvWcLIKTgNgLhWsuL922gm1mil02KRvRQghhPBQrfWsHDt2jOTkZEaMGKHfZrVaGThwIGvXrq2ty/JesTLQeXfPisVYdmYFp40QqxofyvJlIYQQwjN+zaxUJDk5GYCYmJgSt8fExHDixIlyv6+wsJDCwkL966ysLP9coCdcTrAVbWSYmqMGK4HmgJLH6ZmVomBFelaEEEIIz9T6aiCDwVDia0VRSt1W3GuvvUZERIT+p1GjRv6+xPIVFuutsYaTlltesKIuXcZpJyTABEiwIoQQQniq1oKV2NhYoCjDoklJSSmVbSlu0qRJZGZm6n9Onjzp1+uskNZcawoASyBp7qFwwRZryeOkDCSEEEJUWa0FK82aNSM2NpalS5fqt9lsNlasWEG/fv3K/T6r1Up4eHiJP7WmWHOtoij6aqCQgAuDlaIyUKg7WJHNDIUQQgjP+LVnJScnh8OHD+tfHzt2jO3bt1O3bl0aN27MhAkTePXVV2nVqhWtWrXi1VdfJTg4mFtuucWfl+U7BUXLltPz7DhcDsxAmDWw5HFaZsVhI8SqloEksyKEEEJ4xq/ByubNmxk8eLD+9RNPPAHAnXfeyZdffsnEiRPJz89n/PjxpKen06dPH5YsWUJYWJg/L8t3CotG7Z/JzAf30DdrqZ6V0mUg6VkRQgghPOPXYGXQoEEoilLu/QaDgcmTJzN58mR/Xob/FFu2fCajAINR3XU50HRhZqXknBWQYEUIIYTwVK2vBrqkFWaqHwMjOJOZj8Gs9rDUC6pX8rhimZXgAK3BVnpWhBBCCE9IsFIdxTIrSZkFGMw5ANQPql/yOLO2dNlGqFWWLgshhBDekGClOgqLBsKdycjHYFaDl6igqJLHFSsD6T0rsjeQEEII4REJVqqjWINtUmYBRncZqHSwopWBCqXBVgghhPCSBCvVUbzBNjMfg6myYMVWrMFWelaEEEIIT0iwUh3uzIrLGk5yViYGk7oaqH7wBT0rZZSBZM6KEEII4RkJVqrDnVnJIRiHQf08yBxEiCWk5HElMivuBlvpWRFCCCE8IsFKdbgzK+cc1vL7VaBYsGLXly5Lz4oQQgjhGQlWqiPzFABJzkh9xkqpZctQ5gRbu1Oh0CF9K0IIIURlJFipqoJMKMgA4JgjqvyBcFAyWAkw6TfnSZOtEEIIUSkJVqoq/YT6MbgeJ3ONlWRW3A22igszLgIt6q9dmmyFEEKIykmwUlUZ7mAlsglJGfme9axAyeXL0mQrhBBCVEqClarSMit1mnAms0DPrHgSrMhgOCGEEMJzEqxUVbHMijpqv6JgxVL0ebEVQbKZoRBCCFE5CVaqyp1ZcUU24Wx2YVHPyoUD4QAMhrJnrUhmRQghhKiUBCtV5c6sZFgb4HQ5MJhygXIyK1Dm8mVpsBVCCCEqJ8FKVSgKZCQCcMYQjcGci8GgYDQYqWOtU/b3lDFyP0+CFSGEEKJSEqxURW4q2PMAA4mOekUzVgLrYTKayv6eYjsvh2pTbG3SsyKEEEJURoKVqtBWAoU34HSOs+LmWo2UgYQQQogqkWClKkrMWCnAaFb3CKo4WCleBpIGWyGEEMJTEqxURfpx9WOdJpzJzMdgksyKEEII4S8SrFRF8cxKZQPhNGUEK5JZEUIIISonwUpVFJtem5xZyUA4jR6s2IvNWZEGWyGEEKIyEqxUhTuz4ghvREp2ob4vUJkD4TRasOIoJCRAykBCCCGEpyRY8ZbLCZmnAEg1x6IoYDTnAOXsuKwp1mAbHqR+nlVg9+ulCiGEEP8LJFjxVlYSuBxgtHDKEQkoGCzuOStB9cr/vmI9K3WC1c8z8iRYEUIIISojwYq39ObaRiRl2cBYAAY16PC0wbZOsJpZyciz4XIp/rxaIYQQ4pInwYq30ovttpxZoPerhFpCCTIHlf99xcpAke7MikuB7ALpWxFCCCEqIsGKtzKKVgKdyfBwJRCA2ap+dNoIMBsJCVBXBKXn2fx1pUIIIcT/BAlWvJVehRkrUCyzogYnWnZFghUhhBCiYhKseKtYZuVUelFmpcKVQFCiZwUgUu9bkSZbIYQQoiISrHjD5YLUAwBkBMazPzlL71mJCq4ss1IyWKkjmRUhhBDCIxKseOPcAchPA0swKzJjUBSICM0HqlIGUr9Ol8yKEEIIUSEJVrxxYo36sVFv/jyUDkBEaAHgTRlIDU6KZq1IZkUIIYSoiAQr3jixFgBX436sPHQOAKMnA+EATEWrgQB91oqUgYQQQoiKSbDiKUXRg5WjwV1Iy7URajWT61AzLJVnVspbDSRlICGEEKIiEqx4Kv0YZJ8BUwCL0hsC0LdFOJm2TMCTnpULykAhRVNshRBCCFE+CVY85c6q0LAHvx/JAqBHCzXgMBvNRFgjKv7+YrsuQ7HMSq5kVoQQQoiKSLDiKXewkt+gD9tPZgDQRk2wUC+wHkZDJb/KYuP2QRpshRBCCE9JsOKp46sB2GZoj6JAm5gwFKOaYam0XwXKmLMiS5eFEEIIT0iw4on0E+rkWoORBecbATCoTX3O5asrgiodCAdlTLBVv863OymwO31/zUIIIcT/CAlWPLFvPgAFcb2Zt0/NpgxqE10UrFTWXAtgLtlgGx5oxmQ0ADJyXwghhKiIBCue2DMPgFn5Pcm3O+ndtC59mtUlNT8VqFoZyGAwEBkks1aEEEKIykiwUoHtJzOwnTsOpzejYOCDM+0JMBl5dVwnjEaDd5kVvcG2UL8pUgbDCSGEEJWSYKUcMzac4LqP1/Lzdx8BsJl2pBLJw0Na0jI6FEVROJl1EvA0WClZBoLiK4KkDCSEEEKUR4KVcsRFBKIoCq3OLQXgZ3sfusRH8MDAFgD8ePBHjmQeIdAUSMeojpX/wAvKQFB8iq1kVoQQQojyXBTBykcffUSzZs0IDAykR48erFq1qrYviSFtY1hwexO6Go/iwkDvkXfy4wP9CDAbScpJ4p3N7wDwWPfHiA6OrvwHXjBnBYqWL0tmRQghhChfrQcrM2fOZMKECTz77LNs27aNAQMGMHLkSBITE2v70uiQuQIAY5N+jOnfjQCzEUVRmLx2MnmOPLpFd+OWdrd49sPKyKzUCdGm2EpmRQghhChPrQcrU6ZM4Z577uHee++lXbt2vPvuuzRq1IiPP/64ti8N9v6sfmx/DQA2p43Pd3/OujPrsJqsvNTvpcon12ou2HUZijfYSmZFCCGEKI+5Nk9us9nYsmULTz/9dInbR4wYwdq1a2vpqlQnkjazM20XttAQzhmyObHqGVacWkGWTZ2z8ki3R2ga0dTzH1hGGSgySEbuCyGEEJWp1WDl3LlzOJ1OYmJiStweExNDcnJymd9TWFhIYWHR8t+srCy/XNvGPd/xUrR7lc++r/Tbo4OjubH1jdzW7jbvfuAFGxlCsZ6VfMmsCCGEEOWp1WBFYzAYSnytKEqp2zSvvfYaL774ot+vKSasEX0JwhocRWSDHsSHxtO5fmd6x/bGZDR5/wO1YMVlB0UBg0FWAwkhhBAeqNVgJSoqCpPJVCqLkpKSUirbopk0aRJPPPGE/nVWVhaNGjXy+bVdnvA4lyc87rsfqJWBQC0FmQOoEyKrgYQQQojK1GqDbUBAAD169GDp0qUlbl+6dCn9+vUr83usVivh4eEl/lwStMwKFNt5uahnxeVSauOqhBBCiIterZeBnnjiCW6//XZ69uxJ3759mTZtGomJiTzwwAO1fWm+VUawoq0GcimQXeAgIthS1ncKIYQQf2m1HqzcdNNNnD9/npdeeokzZ87QsWNHFi5cSJMmTWr70nzLZAaDERSXviLIajYRHGAiz+YkPc8mwYoQQghRhloPVgDGjx/P+PHja/sy/M8UAI6CEpsZ1gkOIM+WT3qejaaE1OLFCSGEEBenWh8K95dSxmaGsvOyEEIIUTEJVmqSPhiuKDCJiwgE4HR6fm1ckRBCCHHRk2ClJpWxP1CzKLX0c/Rcbm1ckRBCCHHRk2ClJpUxcr9ZVCgAxyVYEUIIIcokwUpNKmMzw6ZRwQAck2BFCCGEKJMEKzWpjDJQc3dm5WR6PjaHqzauSgghhLioSbBSk7QykKMoWIkJtxJkMeF0KZxMz6ulCxNCCCEuXhKs1KQyMisGg0FvspW+FSGEEKI0CVZqUhnBChStCJK+FSGEEKI0CVZqUhmrgUCWLwshhBAVkWClJlWSWZEykBBCCFGaBCs1yVxOsFJfykBCCCFEeSRYqUll7A0E0KyeGqycySwg3+as6asSQgghLmoSrNQkPVgpLHFznZAAfUPD4+cluyKEEEIUJ8FKTTK7J9jaS29aKCuChBBCiLJJsFKTguqoH/PTS92llYIkWBFCCCFKkmClJgXVVT/mpZW6S1++nCrBihBCCFGcBCs1Kbie+jG/jGDFvSJIelaEEEKIkiRYqUnBWmblfKm7pGdFCCGEKJsEKzWpgjJQU3fPSlqujcw8e6n7hRBCiL8qCVZqkl4GKt1gG2I1ExOurhY6JqUgIYQQQifBSk3SykCFWeCwlbpbKwXtTcqqyasSQgghLmoSrNSkwAjAoH5eRnblshZRACzek1yDFyWEEOKiVJgNqQdq+youCubavoC/FKMJgiLVQCU/DcJiStw9qnMc7yw9yJrD58jMsxPhnmorhBDiIpCdDKn7odlAMBj8f76Zt8HR5ZAwHoa/DCY/vmRv+xbWvAeKor5WGYzqn9AYGPsJhNb337k9IJmVmqb1rZTRZNuifihtY8NwuBSW7JXsihBCVOjcYUg/UTPnUhT47kb4+hpY8pz6tT+lHVUDFYD1H8G3YyG39EpSn1nxBpw7COcPqQFZyl44uxuO/A5/vuK/83pIgpWaFlT+8mWAUZ3iAFi460xNXZEQQviGosDRFWW+GfO5zFPw3/7wUQKcWOv/8x1fBWd2qJ+vmwpL/+XfgGXnLPVjvZZgCYFjK2HaoKJr8KWMk5CRCAYT3PEz3PmL+nH0ewAoW79GST3o+/N6QYKVmqY12ZYxGA6KgpXVh8+RmS9LmIUQl5C1H8DXY9Q/jsLKj6+O9R+DIx/seTDjBkjc4P/zAUR3UD+ufR9+f9E/AYuiwI4f1M8vnwh//x3qNofMRJh+Bez6ybfn04K9uC7QfBA0GwDNB+HsdidnYwdhUJykzHvWt+f0kgQrNa2CWSsALaNDaRMTht2psHTv2Rq8MCHE/xyXE5a+AP/pqL4z96ek7fD7S+rnybvgj3/771wFmbDlK/Xzei3BlgPfXgentvjnfOePwIHf1M9v/ApGva1+vvo/6uP0dcByahOkH1MzKu2uhuh28Pc/oOVwcOTjmn0fzvPHfHe+E6vVj00vK3HzP2fv5LYTo9jtasrneQN8d74qkGClplUwxVYzslMsAL9JKUgI/1OUMlfn+e1cu2fDZ8N8/+74QgVZ8P3NsOZdyDwJCx7zX7bDlgez7wWXHWI6qret/cB/AdLmL8CWDfXbwf0roekA9etvxqpBk69tnAYo0GoERLWC3n+HkW+q9616m0UfTiC30OG782lZlXajIUAdaUFQHRZ1eZdNrtYYcfLn3M98d77ja9SPTfrrNx08m81PW05xmHiW9p/Fg39/wHfnqwIJVmqaXgYq/8nxKncpaNWhc2QVSClI/EW4XPDbP2H236Ewp2bOmXVGfYF7oylsmu7ncyXBD7fAT3er75wXTICcVP+cK/0EfH4FHFoM5kB1x/e0o7DhE/+cb/EzamNmWBzcuQC63wkoMPcB3weCDhts+K/6eb9H1Bfzm3+Axn2hMJOcT6/i+U++p9Dh9M35CjLVlTIACQ/qNyu97+O3ho8CcOW5L5k+e4FvzuewwZ456uddbtJvPpmWx8TZe5jv7AdAncTFzNp0svrny06GtCOAARon6Dd/vPwIAFd2iOXxEW2IDA6o/rmqQYKVmlZJGQigVUwYraJDsTldLJNSkLhQYbb6BONPiuL/1Q4X2viJ+iK0a5b7XbqPXmzKs28BfNwXjv6pfr30Bf/8Xl0uNRPwYR84sBCMFghroGYClr/m+/MlrodPh6irOUJj4f8Wwgj3ao4Vb0JOim/Pt/9X2PKF+vnY/6pvyK54Ve2xyDpN4jcPcuN/1zJn6ynfnG/Xj5B9Rg2MOt2g3mYN5dSor9ltbEOoksNDSZN4d/Ee35xv6zdqmal+O2g+WL95ytKDPHgkgSXOHgAoe+fzx34fPF8fWqIGeGFx6hJpwO508egP28gqcHAqZigAPYyHeH/eCjYdr2Yz8wl3ViW2ozpaA0g8n8f8HUkAjB/Usno/30ckWKlplTTYamRVUDW4XOD0c0ZKUSD1oP/Pc6HE9fBuZ3ivC5z2U30+L009x9ut4feX1ZUC/pZ6AJZNdn9hgIO/waJJ/jlXYQ7Mf0SdYZGfDrGdIbaTGjwsed6358pKUptNf5mgTq5u2BMeWAXXuVP4W7707dCvfb/AV6Mh75z6uP7+BzTsgdLlbzhju4Itm7QFz7Pm8Dn+2H+WAns1A8LsZPj5YfXzfo+ozZlAoSmIRW1exoGRxkm/EZe4gElzdpF4Pq9651MUtbwE0OcBMKvv9o+m5nDDF7u4Oe8fnCOSWEM6+9fOr/4LudNRlI1KeFCfrTJt5RE++OMwAMFdxwFwhXETE3/axfmcapbadrpLQJ2uV+edAG8vOcC2xAzCAs28dNswlPjeAAxmEw98s4WTadX4vZZRAvrvyiM4XQqXt65Pp/iIqv9sH5Jgpabpc1YqXi9/VWc1WFl+IJWjqTWUEv9fcP4IfNgL3u/u3/kLaz9Qz/NRXzi0zH/nKW7XT+oLUX4aOArUckKBH7Zm2Py5uuogNwVWvQ3vdYbv/qY+TpcLp8vHGRenHeberz6mlsPgBve79I2f6CswFF9leZK2wycDYOvXgAEumwD3/o4y+n31612z4Phq35wL4Nen1CWvlmC44jW4ZwmpQc15YkMIO0P7g+LkxA9PMHvLKVYcTCU9t/Q2HB5TFLUc47RB26vh7kUQ0ZCZmxJp98ISbjhxLQCR+2fy6vSZ3P3lZp6Zu6vq53O53GWeNDXYG/I8iqIwY8MJBr21nAf+NPCeXX0hfzXgS6IcZ3lh/u7q/V0eWgqp+yAgDHr+HwAHkrO58ZP1nMksICY6Wg8eRho28uSsHdXrJTmwUP2/EFQXOt8IwPcbE3l14X4AJl7Zhv6jbkMxmmlrPElY7nEmzdlV9ceYnw4HF6ufd/4bAH8eSOGTFUcBeOv6zjSqG4yh/RgArg/ayvlcG3//enPVH6eWWXE3157NKuCnzWoW7OHBF0dWBSRYqXkelIEAWseEMaRtNA6XwpuLfPTOa+vX8PmVcHCJb36ep2y5kLJffaLxx4wAzZmdap3+/GH1Ceb7m9WSia/lnlPT6aDW6WdcB9/dpAZK/qAosPItmH2P+kLU5iqIaAzpx+HXJ3xbrnEUupsJgd73qY2LikvNdMy4jpRX2/Pmy0+w6qAPSwmr3oGkbRAYCWOmQoexMOxFAJRFk5j60bu0evY3XvttX/XO47Srf09pRyG8odpbMfxFvt+aTOuPkvnBpabXj371IKPf/ZMbP1nH7C3VKF0UZMHhpernd/0CfceD0cRLv+xlzrbTPHZ+LHbFRJPzq5k9ewZ3fr6Rq95fRZ6tii86Kfsg44TaozLuUwgIITPfzqsL91Ngd7FVac1812UYDQqvBX8LKMzZeprdpzOrdr4DC9USmjkQrpsOZiuzt57m2bm71cAh3Eq9K5/GFd+bEPL4V8AM/jyQypLqlLbXvq9+7HEnBEaw61QmN01bx7mcQtrHhTPzvgSCu14HwJXmLSSlZfHqwmr8u9GWK/e8GyxBLNx1Rg/wHhzUQi2RBEViaHY5AKPMm1my9yw/VvXfzZ656v/xmI4Q25GzWQU8OUt9zryjbxOu7Ki+iaXdaAA6O3fTIqSQ/cnZPD5zOy5v30jknlMHwAE0VnthPl15FJvTRa+mdejdrG7VHocfSLBS07QyUEFGpTX5SSPbYjTAoj3J1U9nntqiNvQlroPvblDfEflrcNPen+GHW+GTy+GNZvBqA/ioD8y4HmXaYDi12ffnPLEOvrwaclMhppM6IjplD8y5T30H6Esr31JLBrGdoe/DYDTDwUXwYR/Oz3uae6f9yS2fricjrxrvkjUOG/z8UNEy0L4Pk3b1dHYmvINiMMGuH9mz8L8s2p3Mb7vOVD8FvXs25JxV6+UjXlFfZB/aRF63v5NjCCHacYZJyufM/eZ9Vh3yQXPo6S1Fgd/VUyA8jj1JmbyYNozZhuEYULj77Ku0U47wyYqjrDxYjXMeXQE5yWp288E10GwAZ7MK+Pcve7E7FV633UC6EkpzJZFeqbPZeCyNSXN2caKqu6AfXKy+8ES1hgbdAdh8PI0FO5IwGGD0kMvZFqO+sL4W8gORgUaSMgv4dGUVl6QedC+tbXY5BAQDMH3VUTLz7bSMDmX3i1cw+olPwBxEZ+deXmiuDvl67bd9VcsEHFykfuxxF9Rvg6IofLJCDdj/77KmrPjHYO4a0Arj1f8BYKhpG+Hk8uL8PVULyE5vVbNURjMkPEhmvp3bP99ARp6dro0i+f7vCdQLtaqNtiHRhJPDZcY9zNiQyPIDVQiuk7ZB4lr1fL3uxelSeGnBXhQFbktozMQr2hQd6w4e7ohUA5kX5++pWmlmx0z1Y2e1sfb5ebtJy7XRPi6cZ0a1KzquTlOI7YxBcfF53xQCzEaW7D3LlKVeDm7T5qvUbwch9UjPtTFjQyIA4y+irApIsFLztMyK4lK7zCvQKiaMm3o1AuDVhVV8QgE1szHn76A41SdODLDje3Xy4/5fKbA7+XXnGdYcPle1n19cRqLaHLn/FzWL4u7NcVkjOG+oi0Fxkvrd/ZzP9GHG4+ASdUVHYSY07kvGjXPZ3HcqTmMAHFjIvhlP8c36E0xffYy11X2MaceKVo0MfwmueAUeXIerxVBw2am3/WNePX0Xkcd+5a4vNlUvBV2QqWZtts9Q9+i46h0yBrzAVVPXMuZnO2/Z1Be6Zhtf4K0Z83lwxlZumra+6n0IigJrp6qf976vqB+ABozYP4pe+R8wy3AlAPca5nPvV5tYfagav097Psy5X/132fE6XO3H8fevN3PV+6v5Yu0JJubfwTpDV4INhcwInkJDUpn4086qD0vc7V4q3GGsujoGeOXXfeTanHRrHMmCiWMoGKj2rDwTNIcrGivYnC5e/qWK78z3zlM/thsDBgMul8KLC/YCcFPPRjwxvDW973oDAiNoYj/Kl93VF/pPVh4hJbvA+/MdcAcPrdW/o/M5hUxfrQY+TwxvTajVjCGyEfR/HIDbsz8jzORgzeHzrPA2CFQUOPKH+nmr4QCsOJjKoZQcQq1mHh/emkCL2m9BbEeo3xazYufGsF0kZRbw3u+HvH98Wlal43UQEc/P20+TkWeneVQI397bp2gvNaMJ3GWSx+LUJtt/zt5JZp6X/260/+cdxkF4HGsOnyM5q4CIIAvPX90eQ/G9gdpcBRiIyd7NyEZOcm1OHp+53buSadoxOLle/b/e6QbO5RTy+341yJpyU5ei36emnfoYm5z9ndfHdQJg6p+H2XfGi9LwBSWgL9YeJ9/upEODcAa1rt29gC4kwUpNMweo9VbwKLPx+LDWBAeY2JaYwcJdVVypsOQ5dWlaWAO4ezHcs0QNWnLOwg+38Ocro3nuu+Xc+tmG6i+F+/M19d1kw57qcsIH1nDq/gMMMn3F0PzXOKeEUz/vMN+88yT//mUvZ7Oq8KRc3K6f4Ieb1UmWrUZwctS3DPpwG9cvsPNkwb0AtDsynS3z/8vLv+zl1ukbqpcR+PMVdZZE88HQQl0ZsCUvihEpj3K37SmOuWKINmQwNeADCk/t4L5vNld9CeWS59Q5FQGhcMss6HUvz/+8hzOZ6hPmivq3ssPchWBDIZ+FfExUoIvDKTm8sWh/1c53dLmajbKE6P0A209mcP1/13EqPZ+YenXpd+8UFEsI7Y0nSHBt557qBCzLXlTLaKGxMOptftp6iqV7z2IxGbiqUxyf3ZVAr3/8DDEdCXemMSXkK5KzCnhxfhVWedjz1eZTgI7XA7D2yDnmu7McL1/TkUZ1g4kbdB806I7ZkctbkbMxGw0s23fW+3fmtlw4/Lv6ufuFc/bWU+w6nUmo1cyTI9zvyoPrwuX/AKDLwQ/oHR9Ins3Ju8u8fDHPSVWXQ4MerPx3xRFybeoLz5UdYouO7fcIhMdjzj7Ne03XAfD6b/u9e2FNPQBZp9USUBP1he6zVWpgdFOvRoQHXrAJa4exADwQtROA6auOcfCsF29Yss+qGVv39SuKwnfuDMAdfZsQar1gg7/21wLQLW8NraKsnM0q5F/zd3t+vuLBWNebAfjJXdq5pmsDrOYLAoewGH3Z76vtTxBqNbP5RDqfrPSiNLzrR/Vjs4EQHsdvu87gdCl0jo+gbWx46ePd/6448ifj2odxRQd1Y1yvSpd6c+1lZBfY+XKN+nf40OCWJYOxi4AEK7UhWH1XV9mKIIDo8EDuu7w5AG8s2u/9C9+BRWrDJMDYjymwRDDvXENuNb/Nx47ROBUDI1nD74ETGW7czD/n7Kz6EsOze9SMDagDk9qM5Ji5GTd+uYfEtDzC68ZwuPtzADxomM2fa1Yz4I0/eW7eLk5n5Ht/vs1fuJe4OqDTDRRc9w0PzNpHRp6dmHArpxqNZn6Ymk59y/opN8Uloyjw6Pfbqna+MzuKnlCGTSan0MELP+/m+v+u43BqLjuDE9g/dilKm5EYUXgqYDZrDp/nse+343B6WYrKSS1KCf/tO2g1nPk7kliwIwmT0cBXd/fm1wmD6PLoTAiuRzPHUea1VhvzvlhzvGpZsnXurEq32yCoDssPpHDztPWk5dro1DCCnx7sR3zDhhh63AXApPBFFDpcVQtYjq2EDe5+gGs+JMcUzluL1d6siVe05cNbuzO4bTTm4Ei48WswGOnj3Eob4ynmbDvNot1eBu6Hlqilu/B4aNQHu9PFCz+rQc9tfZrQsaF7xYPRCFe9DRgIPziH5zupM0Je+mUvNocXf4eHlqoBtDtdn1Po4E3343tkSEvqh1mLju19H9RpiiEnmSkN1SFqMzed5HCKFy/mh5YAilqajGjI2awCvl6nNpg/NaINRmOxF56AYBj8DAADc38jPNDE/uRs7/7fH3Y3lTfpB5Yg9iZlsfrwOUxGA/93WdPSx7uDlaiza7imTTAOl8Jz87xotj3yu5qNjusKsZ3YfjKD/cnZWM1GxnaLL318k34QEo0hP53/XpaLyWjg5+1J/LrTw9WVaUfVYMwUAI0SyCqws3iP+m/u+h5lnA/0UlCdE4uZPEYdyf+fpQc97wk65O4l7KhmTLWlw6M7Nyj7+Ppt1DedLjscXMINPdQs/LztSZ493+SnqxsVAjS5jBkbEskqcNC8fghXFA9uLxISrNQGD5tsNX8f0Jz6YVYS0/L4Zp0XK1xyUmG+e1lhwkP8lN6ShNd+Z8LM7aw5nsNbzpt5veFUciJaUZcs/hvwHu04zlM/7tD/o3hl2YuAAu2vgfgeHDybzY2frCMps4AW9UOYdX9fEsbch9JqBFaDg6mhX2J3Ovh2fSJX/meld++0zh+BhU+p5+v1dxg7jcm/HmRPUhZ1QwKYO/4yfnqwH2Me/y+0uQqLYud12+sMii0kPc/O+G+3eB/4aUtrO93APkNzRkxZwVfrTqAocEOPeJY9MZCR3ZpgGPYSGIwMNWymu/kYi/Yke79CYPN0cBZCwx7Q7HKSMwt4fp76xPLQ4JZ0bRSpHhceB9eqA7LiD37Dy23Vd5tP/bjDu3JJyj73C5ABEh5g7rZT3PvVZvLtTga0iuL7+xKICnW/wPYdD0YzbQt28PfmaXrA4lWA9Kd7vkiPu6DVMD5efpjU7EKa1gvmzn5NSx5brwW0vQqAN+PVd4LPzt3FOW/6c7RpsR3HgdHIl2uOcyglh7ohATw1ok3JYxv2UBs4gdsypxEVYuFoai5frvWil0TLArhLQB/9qT6+JvWCuevCF3OzFYZNBiB+32dc3TYMp0vh9d+8yJBp/SptRgLwwR+HKHS46NGkDoPalJHO73AtWEIwZRznpR5q4P7OkoOelxCPuLNGLYcB8NlqdbXKyI6xxNcJLn18/TbqnjouOy+0OkaQxcTGY2nM2Xras/NpWaqWahP09xvVf+dXdY4rKv8UZzTpwUOLlKWMH9QCgOfm7fKsxHZshfoxvjcEBPPrzjMUOly0ig6lkxbYXqjt1erHE2u4ro2VKzvEYncqnmU6C3PUnhyA5gM5nZHPpuPpGAxwdZe48r/PXQpi33wGtqlP3ZAAzuUUssqT/4uJ6wEF6rVCCY3WM1UPDGyByXhxZVVAgpXa4eHyZU2I1cyTw1sD6nr7Q568qCsKLHhUbTiNbs8fDR9g4k87yMiz0yAikCeGt2bt00N59r7bCH1kDbQZhQknn0R+DYqLx2du927c//E16rRMgwmG/IvdpzO56ZN1pGYX0jY2jJn39yU2IhAMBgxXTQFLCO3se/h94DE6NYwgu9DBPV9tIs3TpZvLXlAzKi2Hw6i3+HHraX7YdBKDAd77W1caRAapxxmNMO4TiO6AITeFaZYpRAXBjlOZev+AR478qaaFjRbyLnua8TO2kpRZQKO6QXx7Tx/euqFL0YTH+q2hk7rM8ZP4RRgN8OOWU7zyq4d9R/YC2OSew5EwHgWYOFvt1egcH8EjQy5ofGs9AhIeAuDWc+/Spq6JM5kFvPCzF2nvdR+qH9tdzZbsOjwxawcOl8I1XRsw/c5eJdPsEfH643s6fBHD2kVT6HBx95eb2JvkQb387B61cdFggoH/5GRaHp+6SwjPjGpHgLmMpyX34+t8fhF9ol2cz7Xx7FwPA8CCrKLloJ1uIDmzgHeXqY2IT1/ZtuwXuyHPg8mKKXk7ryeo/ybfW3aIFE/KlvaConfJ7a8h8XyeXiJ5dlS70iUEUMsW9VqBLYd/Nd2HyWhg2b4U1h/14DnCUaj++wRofSUn0/L4YaNazn1qRJuy0/kB7j1ngKtZTcPIIJKzCvQel4ofX35RY2aLoZzNKmCB+83NvQOal/997uxK3eO/8ujQVoDai1dpL4nLVTS4r8VQsgrsLNihPjfd0rtxBee7Vv24/xceGdiUDg3CSc+ze7a6UtsmwL3KRysBXd8jvvzySJ0m6kaAigvDwd949qp2GAzqJPJj5ypp0k5cr/ZuRTaByMb8ulP9ffZqWpe4iKDyv88dkHF4GRZnAWO6qFmYuZ4EgdoS/Sb92H06i8S0PAItRq7uXEFwVIskWKkN5Q2GS9kHy99Q0/9ndqpPem439mxE/5ZRFNhdPPzdtsrfAW39Sl1aaArg0GX/4aFZe3EpamPfqn8O4dGhrdTgAdR3dlf/B6wRNMrfz5SmG3G6FB75fhtL9niQblcUNXgA6HEnW/PqcfOn60nPU19cfyj+rhwgshEMU49vvu1NvrmhEU3qBXMyLZ8Hvt1Sebr9xDp1+qjBCCNeZu+ZbJ5zZx0eH9aaAa0ueCdpDYNbfoCgugSk7uLHjhswGOC7DYn8uNmDHh2Xq+jx9bqHyatzOXYul7iIQBY83J/+raJKf8+gf4LBRP3kVXw2WP27+mz1MT7883Dl59s9Ww0ywxtC+2v4dkMiKw+mYjUbmXJjFyymMv7bDv0XRDbGmJPMF203YDSo6eBfdnqQIctJgZ1qycnW+0Genr0TRYExXRrwnxu7lh08XKaOGTft/5WPrgzn8tb1KXS4mDh7R+Up6I2fqh/bXQ3hDXj9t/3YHC4ua1mP4e1jyv6exgnQoDsGZyEftNqK2Whg8Z6zzNvuwZPy/l/ULFVUa4jtxCsLi5pqy03ph0SpQ7mAoZnz6BIfQa7NyRuevNAd+UOdeBreEBp059WF+7A5XfRvGVX+4zMY9GxO9MEfuLl3UWN9pctRj69WzxcaC3FdeXfZIRwuhf4to+jbol753+eeG2LeO4d/DG8KqCPWK11RdnyNOhMnvCHUb8NXa49jdyr0alqnKONXFnewwtHl3NM9glbRoZzPtfHWkkoyD2e2q2/sAsKgUW9+3p5Evt1J65hQejSpU/73NbkMgqMgP52Ak6t5+Vp1z6Kft58mObOCoNPlgmOr1M+bXc6xc7lsOZGO0QBjuzWs+FrbuoOHfb/QqG6w3qT63YZKMuLHteBI3SxQy2xrwUe54rpAZGN15+kjvzOuu3p9i/ckk13ZVi16c21/ftmlnm9o2xiCA8wVfFPtkWClNpRVBspJga+vheWvwtz71MFVr8bBj3eBw4bRaGDKTV2ICg3gwNnsirMC54/o0z8z+03ill9y9HT+v8d2LDvFFxYLwycDcM356dzVwYTDpfDQd1v5c38lzYX7f1Gb+yzB7Gh+P7d/toHsAgc9m9Th23v7lL2nRK97Ib4X2LKJ/PNppt/RgzCrmY3H0nhuXgXvmBUFlri3Ku9+B1nhLRk/YwuFDheD2tQvf4hRZGMY9RYAzfZ+zIt91XfTz83bXXlNec8ctV8lIIwlUbcza/MpDAb4z01dy98vo25z6HYrAEPOfMrzV7cH4O0lB/nBncIu9/Gt/0j9vPffOZZu49Vf1dUo/7yyLS2jw8r+PksgDFUDqga7PuEfl0UC8Ozc3ZU3MW/6TG+KnnooikMpOUSFBvDSNR1K9joUF93O3cipELDhQ96+oTMRQRZ2n85i2qqj5Z+rIBN2zlI/73UvG4+l8euuMxgN8NxV7ct/12owQF81uxK9/1seH9wEgH/9vIczmZX0H+kloOtZe/Q8C3YkYXQ31Zb7+EDtJQEMe+fx72Hqi87srafYmljJXjf75qsf241h3bF0Fu1Jxmig9AqSC3W5WR3Fn7SVJzoVEhJgYuepTBZUFnBqS4hbX8Hhc7nM3aZmAZ66ok0F3wQ0G6Qu8c9PY0zwfjo0CCen0KFPZi3XkaKSTJ7dqS91rTCrAhDVUh0e53IQcOhXPXj4fuPJipeHa+drdjmK0ayXK27u3bji32exUhB759G9cR16N62L3anwRUUlvdR96gRgSzA07KE3rF7euj7R4YEVP0btfEf/hIIsbktQ/53+uOVUxW8wteCo6QCOpuaw+3QWZqNBn2ReLoOhqBS0dz6dGkbQMjqUQoeL3ypakFGYrc+8Upr003t5rrpIsyogwUrtuHDnZZdTHfiVk6wO+2rcTx2QpbjUIUELnwJFIToskP/c1BWDQa3Zlvmu2V6g/ix7Ho7G/blpR3dSswtpExPGh7d2L/tduab7XdAoAYM9l38ZP+eqjmrN9f5vt5SfYXE63L0qcLrt3dz8w3FybU76Nq/H1/f0Lr0qQGM0wZgP1CfnAwtpee53PrilG0YDzNp8qvx09J456mwOSwjKoEk8NWsHx8/n0TAyiP/c2LXiF5+O16m7pjpt3J76DkNa16PQ4eLBGVvKT0U7bPDHywBk9niQJ39V38k/PLglCc0reNcK6ioPowWOreSehif18s2z83aX35B6bKXa9GYJxtH1Th6fuZ18u5PLWtbjrgt7Ocp6fA17gj2X+50z6dgwnMx8O//4aWf5wZ89Xy85nW5/Lx+752S8OKZj5RuXXTZB/bjje6LJ4IXRakD27rJDHE4pZ+ryjh/Angv12+Jq3J+XflGbXP/WuzHt4spY8VBc+2vUd/O5KTxQbxtd4iPILnAwsaLHl3tOXeUE5Le9Vs/A3Vq8qbY8DbqqPQsuO52S53GDOwszef6e8rMdDhvsXwhAYeureW7eLv18bWLLCTQ1IVF6aabu/u95YKDaZ/HW4gPl91cpStGS5TYjeXvxQVwKDGsXU3GWA8Bk1ldGGXfP0ud4fLv+BMcrKlto/SMthvLj5lNk5ttpWi+YYe3KyRoVp2VX9swloXk9Brauj9OlVJxxPOxeldNyCDtOZbLvTJa7sbaSLAcUlYL2/QJOu75Y4bv1ieVnHrQSUOO+uIwWvfG43CxccfXbqOU8pw0OLWFQm2gaRgaRkWcvv7m3IFPNHgE0HaBnVfq3iqJuiAebB2oB0sFFGJx2Pbsyu6KG6cQN6utLnabsyg7lVHo+QRYTg9tEV36+WiLBSm3Qela0MtDy19T/IJYQuO0nuPs3+OdxdRUIBrWk456kOKBVfR50P4lNmn3BXhuKAr88DknbUILq8KT9Afan5FI/zMrn/9er/MBBYzTC6PfAaMF4aDHvdUlkRPsYbA4X932zhefn7SbfdsGT5vZv4fwh7NY6XLO9B3k2J/1bRvH5Xb0qTydGt4MBT6if//okg8KTee4q9QXv1YX7Smd0HIV6k6uz32P8Z10mS/aeJcBk5KNbu1Onsv/YBgNcNQUCQjGcXM+HrbfTqG4QJ9PymTBzW9kvQOumQvpxlJBoxh/pS3aBg26NI/Wae4UiG6sNpAB/vMITw1pxbdcGOF0KD87YUnbvkTur4uxyM88tPsX2k+p+IG9d36XiQEx7fFeoG9YZt3/Dh0MDsZqNrDyYyrcbysnm7Pge8s6jRDTikW0NsTsVhrePYVQnD1YDNOkLjfqoT8zrP2Zst4YMalMfm8PFxJ92lF4KqyhFvTi97mX2ttPsPp1FmNXME+6erAqZLND77+qn6z/inRu6YDUbWXXoHN+sLyfNvmeu2gvQoBvPryrgaGou0WHW0k215XFnV9j8OROHtyDMambnqUx+3FJO+fDYSnXeT0g0Uw/V5UhqLlGhVp4c4cHjg6J/LztncW+fGHVVW3o+X68t5/Gl7FWnNZsDWW5vx6I9yZiMBp66wsPzuUtBHPiNy+ItDGxdH4ergqbQjJNw7gAYjDibDtTfVNzdv5lnTZlasHJsJeSe0/8fzdl6uuwhagVZcGqj+nmLoXzv/nd8Vac4z3YBbtJffb7NT4PjqxjSNpoW9UPILnQws7wxDUfdzbXNLmfd0fMkZRYQHmj2LBgzGIqCh30LMBkN3NJH7av5trxSUOJ6NXCo2xwlvIHe/1PuKqALxfdWM2SFWXBsBdd2bYjBABuOpZU/mO6E1q9ymR5EDWkXTVBAGf1UFwkJVmqDeyAVx9fArDvUiaigBgr13U+iBoO6AmKEe3Lpkmf1MflPDG9NjyZ1yC508PD3W9l9OpPU7EJc6/8LO75DMZj4LPZf/HzMSJDFxOd39qJhZAVNWsVFt9WHRpkX/5Op41pw92XNAPhm/Qmu/mBVUdnElqev6ngrfzTn7FYGtIriszt7ev6PfsCTat017zx8MYr/izvOzb0b4VLgke+3lVwhtHEaZCSSZ63PiPWdeN+drn5+dHu6VPYuUhPZSF95EbTyZT67Jg6r2cifB1JLp78PL9OzKsvi7mNNYj6hVjPv3dSt4gzVhY/PHAgn12M4+gdvXN+ZXk3rkF3g4P++3ERqdrH+gHOH9ZT+U4l99YbhV8Z2KmoYrkzjBDUtrLhosvV1/nllWwBe+XVv6T2mbHn6pnAbYm5i66lswqxmXr6mo+czFrTsyubPMRRm8erYToRazWxNzOCrtcdLHntsBZw7CAGh5LS9rmgp79CWJXuaKtLjLjU9n7KHlrlbmOh+fC8u2Fv2jre7ZwOwM3IYP205hdEA79/creym2rK0vwZCoiEnmfqnFvPYMPXF9c1FB8pejbRPXQWU1uQKPlp5HICXr+ng2QsrQNPL1eXOhVkEHVrAk8PV54MP/jhU9r5BB9RVQM6mA3n2F7X8dk//ZmXP5ShLXBeIaqP2oOydz9Puqdm/7U4uO5uqlWTie/HT3mwS0/KICLJ4lnUAtTwa11UNIPfNp0eTOgxoFYXDpfDR8jKyK8dWqo30dVuQHRyvZx1u7lNBY21xJnNR8LBnHkajgb+7y1Wfrz6G/cL+KqejqJej+UC9sXZ0lwalh7KVRzvfoaVgz+fGno2wmAxsS8xgT1IZJWctk9N0AHvPZHEkNRer2ciIDh4ER6C+ydRWIu2bT4PIIPq5e5V+Lq+nyx2QKU368Ys7WLm6spJTLZNgpTZEu8cm56cVLXHseQ90vqH0sX0fgm63q5H3T3fD2b2YTUb1CTfIws5TmVz9wWoefe09XIvU2QnTAu/mlX0xGA3wwc3dvN81c8CTUK8l5JwlYPlL/Gt0e76+uzfRYVaOpOYy9qM1/HfFETU4yknmlBLFl7ahDGpTn0/v6On5f2pQm3vvmK/uQWPLxjDjel5utoc+zeqSU2yFUHb6WQr/eAOAF3LGciRTISrUyguj23Obp09cmp73qBkBWw5tNr/Av69xz0RYdpCxH63hvWWH2LdrC8qP/weKi9RWN3L/HvXv7JWxHWlcr4ylmeUJj1PPB/DHv7GajHxye0+a1AvmVHo+f/96c1Ete4O6BHmNsSdzE4MJtZr57I6elTfZXWjYZLX8dHgZd8Uc5bKW9Siwu3jk+21sP5lRVDJZ+A9IO4ozuD4P7VP7ByaNalfUeO2J1ldC/bbqu7otX9IgMohJo9QA4q3FB0pm/txZlXMtxnLnjP36UuW7+jXz/HxBdaCr2gvEuo/4v35NGdetoZqt+nYrG48V6wPLOAmJ61Aw8Ohu9QXqsaGtKy/fFWcO0AfksfFT7uzXlJbuxtDbp28suaWC06EPnnv7ZBucLoWRHWMZ6c2LgNEI3dVGW7Z+xXU94mkbG0ZWgYMHZ5Sx3N4d3C62d+V0Rj4NI4OYMMyDrJ/GYCjKruycSbu4cP7uLpU8N2936fKouwSUHjdA75sbP6iFd02ZxUpBAI+5sys/bj7FqfQLMgHF+mO0xtqW0aH0rKix9kLuAXFqo7WDa7s1JCrUSlJmQelS+pkd6r/lwAiyI9vx2271hfw6T4MxgAbd1Hk+9lw48if1w6z63JIZZWU4jxc182rB2JC20YRVlgkv8RjdfSv7fwWng3Hu2TNztp4uXSLNSYEkdZn0nuBenM7IJzjAxKCLuAQEfg5WXnnlFfr160dwcDCRkZFlHpOYmMjo0aMJCQkhKiqKRx99FJvNB3uqXMxiOsBDG9XNv4a9qI5tv/K1so/VShdN+qtDrT6/Anb9RMPIIKbd3oPujSPpHJrJh5b3MBtczHb257X0QQD86+r2DCtv9UFFLIFqlgfUgXIn1nF56/osmnA5o9rX5TJlK/WXPYb9D/Wa37bfyIC2Dfnk9h7eBSqaoEi4bbbac+FyYP75Ab5otZrGddQSzY2frGPeexOwOrLZ52rM+tARvHxNB1b/czD/d1kz7yctGo1qv4wpAA4t5obAjXote1tiBtOXbcX64y0YCrM4EtSRGxKvx6UYGNetIdd09aBOfqH+j6vZgKRtcOA36oYE8MVdvYgIsrD9ZAZPztqBKzcd59ZvAZhacAWN6wYzZ3w/hnqSer5QvRZ6ucS49HneGteR8EAze5KyuPbDNVz1/mrW/fQubP8WxWDk9eB/cN4eQJ9mdfmbe3sHjxmN0E9dGcS6j8Cez829GpPQvC75didPz3H3k2SeRnH3cty8vRNbTqQTaDHy72s7lb3aqCIJDwIGOLQYY9ph3ri+8/+3d+9xUZbp48c/MwMMA8JwUEFUFM0zKgKe0DyUmmX9QkotT5jWdzUtD2Wm7m7aJlau1q9MDfvqupppreWhw6abJpKaSp5S85AHzENkKqAIyMzz/eOGQZQUZIYZZq/368UrGXxx3zzJPNdz3dd93dzftKat34tt+3RhVmW/oQUn883ENQxmzM3bvssi5il1Pkz6NjwzfuT9ITFUr2bk0Lkshi7aQVZR7cOp7+DaRa55mFn5Wz3MJk+mFwbC5RI1SI13+nsMF37irQFRVDN6sP34RSbdWJ9z5TfbOVt/O6oC9tfiI8u/m6MoWDmZCpm/ML5HYxrU8CUjO49XP7+hkN9SYHsiTzpci5x8C+0jgu5cWHuzojqSk6lwJYPY+kF0uieYAqvG/G9v6PiqabbgyNrgvrIX1t6s/r1qKSjndziVirengWFxqvA1OeVEyZt5UX+V+vfy5YEMcq9baVDDlzZlzdzCLUtBgK3QdvXuMyVrZa5dUjs/AWt4Jz4v3JJd7geUep3Uxo2c3+H4t/SODMXkaeD4havsOX255N89Wni4Zq3WrDmmgt/7m4W49BIQODhYyc/Pp1+/fowaNarUr1ssFvr06cPVq1dJTU1lxYoVrFq1ihdeeMGR03INNZqorZGdx0GnsSrD8Ec8vGDAUpUNyMtSBbSrn6V9bS8+fboNa4PnEaS7Qn7NVkQM+4B5g2JYMrwdwzqV44n1ZvU7q4wOwLqxcOw/BP1nAu+dfYJ/eM3iMcMWjOSzxRJJTpO+zBscXXr/iLLyMELCB6oVOOCT8hprG67GbNRz/bdjDNBUn4wLcX9l40v3M6Rj/bsLjIrUaGJrc85Xk5jSLYStL9/HG/HNWBH4Pg30KmPU/9JoTmYWEB7kc3c3HoBqNaD9n9SfNyWB1UqDGtV4f0gMngYdX+w/x8rkv2GwXOOQNRxreGdWj+5E45A7FGTeTpeJ4G2GjAOEnfyMf42Ko2+b2iowOL+PNvvV8uK//BNZ+EsdjB56Xn+s1Z3rYkrTsp8qfL1yHpY9jj4vkzcea4W3p56tP/+uzmT6eBY6zcJ2azOOanVIiK7Nphe7lb7t+06CG9qan7F9Hp4GPe8NiqZd/SCycwsYumiH2l1SeBbQR7ntqV7Ni7cHRN1dsyv/WsU7LnYk07BGNZY/054gXy/2/ZLJsEU7uJJXYNsF9Hl+NBYM/OXh5tT0K0eWqohfiK1lPmlLaFbLn3mDojHodazec5bZ6wsPqzv6NaBx1OMezlkD6dOqFt2b3sXTcUB4Yct8Dfb/C29PA7Meb4VOp4o0NxUdNXBmF+Rlcs3Dn1W/huDv7cFbd3NNA+urxnua1ZZZfv4+lV35eNdpzhZ1l754HC6fQtN7Mnm3mYPnsvDy0JNQlsLaGxk8ipdJDqwGVPDg42Xg0DnVedemcEnmbGBbZhTuwrttb5U/UlgozeEvwXKd9hFB3FOzGjn5FlbvvmFp5tQ2ihqz7b5s5MxltdRc7v+PBk/1ewiw+5/4Gj3oHamyObc03juq3ku1Rr1sR7j0cfElIHBwsDJ9+nTGjx9Py5YtS/36+vXrOXjwIMuWLaNNmzb06NGD2bNns3DhQrKyynEY038DnyAY9iV0eUn1F9nzoTrV+OOh8Ot+8K2B16CPiG5Yi4da1qKrPQ6h6vkq+NZQBXXLHoPdS9HlXgbfmmS2fIqZoW/xdZt5zB0UW7FApYher2p0er8O6Aj4cQmbwhfxbvAqvHQWtHt6cm/vfmWvF7mTTuOgZnO1TfHfkwkLMDHgUjLNr6Whefpw+f8t4cnuMfRsHsL7Q2LKl5a9Wdzzqk/Er/thdmP4OJEOFz5lXg8TnhTQ9bJKif8YPpilT3co2y6A2/EJUv9WADa+RuMAHW8NiOL7CW35KGA+3rrrbLRE8dKvqiPouB6Niajue3djeXhBQrL6+U6lwuKHqOeZaStifeOL/TT65VMAtgX35fPnOjOnf9Ttm13dSYdn1X/3fAQ5F/H2NLAwMZZmtfy5cCWPKQtXwfn9XNcM/NvajrcGRN152+ntFBXa7v8Eci7SOMSPpSPa4e+t6nOeXvw91oPqKfqLgrZ0bVyDx6LvIgtXJKZw6WnvR3A9ly6NazCzb/FhdSt2pNvqVb7IbYWftwevFG6Pvys3LAWhacTUC7LVqk1etV9ljwqzHP/Ja44VPTMTWpW9lupmtqWg1QC0bxBMhwZqW7Etu1I43iHPFqzcewkPvY5Zj7e6cyF9qePFq/8eWgeWAgJ8vOgfq7KIySmFW+0L8gq7usJz29XSW2y9wDvvwitNeEfV4yX3MpxMRafTMaio0HZ7enE2p3AJKLdOHDO/VEXNvVqE3N2DWPRQ9d+fvoQrv9l2Ba3bd7a4d5Xluq2B4BH/OM5cvoavl6H0Lscuxqk1K9u2bSMyMpKwsOKU1wMPPEBeXh5paWlOnJmLMnjAfVMh8XO1JnrxOBzboFLG/f+pOovak08Q9JmtgiOfYPUGmrgOXvgJ82NvM3nkcF5LaF3+NP6ddBgF/f4BBiNBp9fT6sp3oNOj6/mqfcfx8FLLQehg3wpYM8Z2Xo2u7/tExnTmxQeasHBo7J231d6JT5Dq8+LhrRq+HVwNX75Iz83xHPAdSZjuIte8gnk8caz9rme7Z9RT7JXzaleTphG4fizma6fRzHXxG7iIvtF1Gdg+nGfurUAWDlQm7qkv1a6EjAPwQU+eapxPdHgAD+p3UEOXSa53TcaNHn/nLcNlHS+0pTp/J20xAGaTJ0ueiuUx82Em5rwNQIq1FQO7Rd3aKLC8wjsUjpcLu5cC0CLMzNIR7alhLOCJM6+hv/orWZoPezxaM6NvOYqUS9OwO5jrqptdYcamf9u6tu3v01f/wPWjhcGDJZpJvZtWLBhr/qhaFs04aDsv5sVeTagf7MP5rFySvjhEQeHyQYq1FY/H1KlYT46iOpJT30G2erofe7/awbRy52nOZV4j/7Aab+2VppgKg9G7WoYFtRRkClQPJoUFtCM6R6Av7DB78GyWWlIruMbvmEm7prZ+L36qDLsaS6M3QNOH1J8Lz0tLiK6DydPA4V+z2XWqsFdPYX+VGQdrsOvUJXy9DLYgsdxCI1XGynod9n5EXMPqhPgbuZxzvTg7lr5NZed9qvPJOZW96dH8LoOjSubUYOX8+fOEhJRckw8MDMTLy4vz50vv65GXl0dWVlaJj/869TvBqFT1C6/3VAFFvTjHjNX8UXjxKLxwGB55W7Wf1lfCP+wW8TB0tVrKALUkFVKBJ8c/Uie2sAYC202IblOKC9bsKepJeDkdnvoKuv8ZGnQDTx+8LKqo0NRpFDrPCtxwbnbDmTN89/9VF96fPge9J7r+S2jbrCFz+keR1LclHvbIVtVqBSM2qD4TWb9gWPwAyx7Q8bfa6mnVu8MIdB4VzBgV0emgY+G5VzsWqqfiQ+uoueJBZudNJ0r/M3maB99Wf5LxPcq4jfdO4xVlV3Z+oHojAa1NF0gJnEG8YSsFmp6/FQxmwoORpZ+PUx56Q/EybNoS28sTejYmMdLIEo8kPC3XOKcF4VWnze3bzpeFKbB46amwm7HJy8Abj7UC4OudB9AX9gL52b+D7aC+uxZQV225RbMtBXVoEES7+kHkW6y8vm4vluNqSWa3VzTLn2lfsR4gBs/ipaBvZ8L1XOoG+diari3ccpyLB9ThjN9ZmtOydgBLhrerWDa1TWGmY99KOLUVs8nTVouybPsp1RT0V9WH56vshkRU92X16E4VC+aLsis//BODDuILl8xsh1QWHjuh3dODL39Uu+eqwhIQ3EWwMm3aNHQ63W0/du3aVebvV9rTh6Zpf/hUMnPmTMxms+2jbt1yFgS6C1Mg9F8CU84W92ZwFN/q6pe9stWLg2c2qROc/6gA2R66T1XN+EAFgF1fctxYHkb1c3WdCEPXwKRT6gb/+CLblnG7ah6vbgrXc1TAAupa1o6x/1igzkcZ/rXqTpx7GZ/l8Zh/26Wyf0W7XOylRYJqMZ99Dt5uCSsHqyJmDxOZrZ9heYc1jBsxzD6BGKiaAFMgXE5Xb/qHPoeF3TFdPky+qQYjDdO43GQAg9vXs894bQarrOapVLhwFADdic1MOzeSdvrDZGkmphY8w8zHytCDpyxaqRPK2f8vWzDWvkEwiR3r0Vn/I3o0frLW5S9P3lfyrKi7VbQUtGsx5FxEp9PZtoZnHEzBRC6/E0DSqCdpE16O3T9/JO55MPqr7MJn/wNWK3/qonpWrdt7lvRdalnthF8MS0e0w2yq4Hte3bbFwcO6cVCQZyu0/Wr/eZatXA7AEWttWjdtxOrRnWhUkTo1UJsUPH3h96OQvt22K2jjTxm8+MleLu/7AoBDfh05m5lLNaMHXexRMlAJyv1bPGbMGA4dOnTbj8jIyDJ9r9DQ0FsyKJcuXeL69eu3ZFyKTJ48mczMTNvH6dNlONvFndnrSdVVBTdUxaled1lPURbGaqoZ3wNJED9fPUVXFg8vqNtOvckYHHAmxw2N4gDVsbTt0/Yf50a+wWo7euPe6kweUE+1/nZ+gvPwgnaFP8uVX9WN6N4XYPyPmPv+nace7ExwWfu3lIWnqTjb8fk4WDlIpdTDO+L1bCrzpz5H8pAY+wQOAObaquMyQNo/VD+mpX3RXf0NS40W/G/zRSQMGHbnzrhl1ain6pydfU7VUuRlw8+bmOq7lheMqqYqJ7ybfQIHUP/mjWbV3n7hffDbEeIaBhNbL5CuerVDxqdZTxrWrOASbJEajWHAMpWNPrgGvp5My9r+dGwQjKf1Gi2sqnA5ceDQsvfFuZMb6/6+e4eWdcy0rmMm32Ll+s8qc5QTFsfCobEVD45AnYMWWRgE/vBPmoT6EVMvkOsWje9/SCPg6gkKND1PfKMyfz2ryBIQQLnfHatXr0716ndRwV+Kjh07MmPGDM6dO0etWuqNbP369RiNRmJiSn/yMxqNGI12fAMSAtTuoKKGfO6mbju17PTbIbUlvTKCMS8fGPAhfD0Zfvy0uFOxvbUfBVnn1I09doTaBu9IbZ9WjfSuFDag6zAaek4HgycOyT1GJ6peKtvmFr/WZgiGh2Yx3rMCBcql8TCqbEfaYnUmWW4maFa8gPqFfyWq11D7jecXAiO+huUD4NIJ+KAHun6LWTCkM/r3j0A2mJr1st94AA26Qt8Fakfl9wvAvzajuw8k+eRGPHUWLH51CKhth2XDIqZAtWFg1QgVbLboS2JcfSZ8vJdOBrUtPKrLI2CvABfUv5ndy1QfmwdfZ8nwdmw9dgHPXQvhBOzTNyML9fBXVGRcFei0Mp2xfnfS09O5ePEia9euZdasWWzZooqJ7rnnHqpVq4bFYiEqKoqQkBBmzZrFxYsXGTZsGPHx8bz77rtlGiMrKwuz2UxmZib+/naKwIUQ4o989bK6EfSeCZEJjh3LUgBvR6psh4e3qk9rM9hx453eAf/bs/hzcziEt1dtEyK6quyEvV29oJbw0repZa8uL8Hm19XXXjymtv7b29a5xQeiJnzAxeNpBO2ZD1GDIf49+46labAsQZ3GHdEFbcgatuw9TJc1HdTXJx5X2Uh7jjevo3o46TO7OJO6NEE12ev5KpeiRpFz3VL2zuYOUp77t0ODlWHDhrFkyZJbXt+0aRPdunUDVEDz7LPPsnHjRkwmEwMHDuTvf/97mbMnEqwIISpV0VtmZS0XHv2PalVw7wtqx4ejHfka8q+qHVD+5WxOdrcK8tS5Zns+LH6tVmv4U4rjxvz3FNj+nloW8glWu+b6JkPrAfYf6+IJmNdB7SaLX6Aab34yDGq2gGe32n+8bfNUVrPoGuZfhTci1LLss9+rY1VcgMsEK5VBghUhhHADmgZb34ENrwAadJ4APV5x3HhWK6wabmv7D8CEQ44L0LbMgW+mq06zDbqqcduPhAffsP9YV3+HOU3VIaP/sxmyzsKKJ1UDwLH7Krcu7zbKc/+Ws4GEEEI4n06nunkP+gRaPVHc9dlR9Hro+77qwQJqy70jM0lxz6kmlNcuFgdIRWPbm29w8Vbt3UttXWtp9IDLBCrlJcGKEEII19GoJyS8D36hjh/Lw6h2CHUcAw/PcexYBs/CM9eKggWd4/pjQfG26X2f2Pqr0PgBx43nYBKsCCGE+O9lClDb+yO6OH6suu0gdrj6c2hL1dnaUSK6QkA9yMssLNA2qc7PVZQDGjsIIYQQolQ9Xy3ZMdhR9HqIHgIb1aGlNOiqegVVUZJZEUIIISqLsRrc/xfV4dbRogap7eBQ3GCwipJgRQghhHBH/mGqsLdWVPHxBlWULAMJIYQQ7srep9U7iWRWhBBCCOHSJFgRQgghhEuTYEUIIYQQLk2CFSGEEEK4NAlWhBBCCOHSJFgRQgghhEuTYEUIIYQQLk2CFSGEEEK4NAlWhBBCCOHSJFgRQgghhEuTYEUIIYQQLk2CFSGEEEK4NAlWhBBCCOHSJFgRQgghhEvzcPYEKkrTNACysrKcPBMhhBBClFXRfbvoPn47VT5Yyc7OBqBu3bpOnokQQgghyis7Oxuz2Xzbv6PTyhLSuDCr1crZs2fx8/NDp9PZ9XtnZWVRt25dTp8+jb+/v12/tygm17lyyHWuHHKdK4dc58rjqGutaRrZ2dmEhYWh19++KqXKZ1b0ej116tRx6Bj+/v7yy1AJ5DpXDrnOlUOuc+WQ61x5HHGt75RRKSIFtkIIIYRwaRKsCCGEEMKlSbByG0ajkVdeeQWj0ejsqbg1uc6VQ65z5ZDrXDnkOlceV7jWVb7AVgghhBDuTTIrQgghhHBpEqwIIYQQwqVJsCKEEEIIlybBihBCCCFcmgQrf2DevHlERETg7e1NTEwMW7ZscfaU3MrMmTNp27Ytfn5+1KxZk/j4eA4fPuzsabm9mTNnotPpGDdunLOn4pbOnDnD4MGDCQ4OxsfHh6ioKNLS0pw9LbdSUFDAn//8ZyIiIjCZTDRo0IBXX30Vq9Xq7KlVaSkpKTzyyCOEhYWh0+lYvXp1ia9rmsa0adMICwvDZDLRrVs3Dhw4UGnzk2ClFCtXrmTcuHFMnTqV3bt3c++99/Lggw+Snp7u7Km5jc2bNzN69Gi2b9/Ohg0bKCgooFevXly9etXZU3NbO3fuJDk5mVatWjl7Km7p0qVLdOrUCU9PT7766isOHjzI7NmzCQgIcPbU3Mobb7zBggULmDt3LocOHeLNN99k1qxZvPvuu86eWpV29epVWrduzdy5c0v9+ptvvsmcOXOYO3cuO3fuJDQ0lJ49e9rO53M4TdyiXbt22siRI0u81rRpU+3ll1920ozcX0ZGhgZomzdvdvZU3FJ2drbWqFEjbcOGDVrXrl21sWPHOntKbmfSpEla586dnT0Nt9enTx9t+PDhJV5LSEjQBg8e7KQZuR9A++yzz2yfW61WLTQ0VHv99ddtr+Xm5mpms1lbsGBBpcxJMis3yc/PJy0tjV69epV4vVevXmzdutVJs3J/mZmZAAQFBTl5Ju5p9OjR9OnThx49ejh7Km5r7dq1xMbG0q9fP2rWrEmbNm1YuHChs6fldjp37sw333zDkSNHANi7dy+pqak89NBDTp6Z+zpx4gTnz58vcV80Go107dq10u6LVf4gQ3u7cOECFouFkJCQEq+HhIRw/vx5J83KvWmaxoQJE+jcuTORkZHOno7bWbFiBT/88AM7d+509lTc2vHjx5k/fz4TJkxgypQp7Nixg+effx6j0cjQoUOdPT23MWnSJDIzM2natCkGgwGLxcKMGTN48sknnT01t1V07yvtvnjq1KlKmYMEK39Ap9OV+FzTtFteE/YxZswY9u3bR2pqqrOn4nZOnz7N2LFjWb9+Pd7e3s6ejluzWq3ExsaSlJQEQJs2bThw4ADz58+XYMWOVq5cybJly1i+fDktWrRgz549jBs3jrCwMBITE509PbfmzPuiBCs3qV69OgaD4ZYsSkZGxi1Rpai45557jrVr15KSkkKdOnWcPR23k5aWRkZGBjExMbbXLBYLKSkpzJ07l7y8PAwGgxNn6D5q1apF8+bNS7zWrFkzVq1a5aQZuaeJEyfy8ssv88QTTwDQsmVLTp06xcyZMyVYcZDQ0FBAZVhq1aple70y74tSs3ITLy8vYmJi2LBhQ4nXN2zYQFxcnJNm5X40TWPMmDF8+umnbNy4kYiICGdPyS3df//97N+/nz179tg+YmNjGTRoEHv27JFAxY46dep0y/b7I0eOUK9ePSfNyD3l5OSg15e8dRkMBtm67EARERGEhoaWuC/m5+ezefPmSrsvSmalFBMmTGDIkCHExsbSsWNHkpOTSU9PZ+TIkc6emtsYPXo0y5cvZ82aNfj5+dkyWWazGZPJ5OTZuQ8/P79b6oB8fX0JDg6W+iA7Gz9+PHFxcSQlJdG/f3927NhBcnIyycnJzp6aW3nkkUeYMWMG4eHhtGjRgt27dzNnzhyGDx/u7KlVaVeuXOHYsWO2z0+cOMGePXsICgoiPDyccePGkZSURKNGjWjUqBFJSUn4+PgwcODAyplgpew5qoLee+89rV69epqXl5cWHR0tW2rtDCj1Y/Hixc6emtuTrcuOs27dOi0yMlIzGo1a06ZNteTkZGdPye1kZWVpY8eO1cLDwzVvb2+tQYMG2tSpU7W8vDxnT61K27RpU6nvyYmJiZqmqe3Lr7zyihYaGqoZjUatS5cu2v79+yttfjpN07TKCYuEEEIIIcpPalaEEEII4dIkWBFCCCGES5NgRQghhBAuTYIVIYQQQrg0CVaEEEII4dIkWBFCCCGES5NgRQghhBAuTYIVIYRTTZs2jaioKGdPQwjhwqQpnBDCYe50ImtiYqLtQMXg4OBKmpUQoqqRYEUI4TA3nl6+cuVK/vrXv5Y47M9kMmE2m50xNSFEFSLLQEIIhwkNDbV9mM1mdDrdLa/dvAw0bNgw4uPjSUpKIiQkhICAAKZPn05BQQETJ04kKCiIOnXqsGjRohJjnTlzhgEDBhAYGEhwcDCPPvooJ0+erNwfWAjhEBKsCCFczsaNGzl79iwpKSnMmTOHadOm8fDDDxMYGMj333/PyJEjGTlyJKdPnwYgJyeH7t27U61aNVJSUkhNTaVatWr07t2b/Px8J/80QoiKkmBFCOFygoKCeOedd2jSpAnDhw+nSZMm5OTkMGXKFBo1asTkyZPx8vLiu+++A2DFihXo9Xo++OADWrZsSbNmzVi8eDHp6el8++23zv1hhBAV5uHsCQghxM1atGiBXl/8LBUSEkJkZKTtc4PBQHBwMBkZGQCkpaVx7Ngx/Pz8Snyf3Nxcfv7558qZtBDCYSRYEUK4HE9PzxKf63S6Ul+zWq0AWK1WYmJi+PDDD2/5XjVq1HDcRIUQlUKCFSFElRcdHc3KlSupWbMm/v7+zp6OEMLOpGZFCFHlDRo0iOrVq/Poo4+yZcsWTpw4webNmxk7diy//PKLs6cnhKggCVaEEFWej48PKSkphIeHk5CQQLNmzRg+fDjXrl2TTIsQbkCawgkhhBDCpUlmRQghhBAuTYIVIYQQQrg0CVaEEEII4dIkWBFCCCGES5NgRQghhBAuTYIVIYQQQrg0CVaEEEII4dIkWBFCCCGES5NgRQghhBAuTYIVIYQQQrg0CVaEEEII4dIkWBFCCCGES/s/ocLvyLk4lKUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -62,17 +63,17 @@ } ], "source": [ - "for diffeq_name, (cy_diffeq, nb_diffeq, args_, y0, timespans, CySolverClass) in diffeqs.items():\n", + "for diffeq_name, (cy_diffeq, nb_diffeq, args_, y0, timespans, CySolverDiffeqInt) in diffeqs.items():\n", " \n", " time_span = timespans[0]\n", - " time_domain, y_results, success, message = cyrk_ode(cy_diffeq, time_span, y0, args_, rk_method=1)\n", - " y_len = y_results.shape[0]\n", + " result = pysolve_ivp(cy_diffeq, time_span, y0, args=args_, method='RK45', pass_dy_as_arg=True)\n", + " y_len = result.num_y\n", " \n", " \n", " fig, ax = plt.subplots()\n", " for i in range(y_len):\n", - " ax.plot(time_domain, np.real(y_results[i, :]), label=f'$y_{i}$')\n", - " ax.set(title=f'{diffeq_name} - cyrk_ode', xlabel='Time')\n", + " ax.plot(result.t, result.y[i, :], label=f'$y_{i}$')\n", + " ax.set(title=f'{diffeq_name} - pysolve_ivp', xlabel='Time')\n", " ax.legend(loc='best')\n", " " ] @@ -87,13 +88,13 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 7, "id": "90a56756", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHFCAYAAABSEJsFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACe6ElEQVR4nO2dd3xb1fn/P1fTkveM7cRxBtkJSUgCWUAgNJRVRoGyoWm/QIEy0vKD0AF0kDJKKaRAgTLKTGnDHiGQyQ4JCSF7x4nteMXb2uf3x9G9kmxZ1pXu1b3Wfd6vl1+SZfneY/vxOZ/zrCMwxhgIgiAIgiBShEnrARAEQRAEYSxIfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBCG4Pnnn4cgCPjmm2+SvtbWrVtxzz33YP/+/T2+NmfOHIwfPz7pe6jFkCFDcM0110ifV1dX45577sHGjRs1G1OqcLvdWLx4MWbPno38/HzYbDYMHDgQF198MVavXp3QNb/66iucf/75GDx4MOx2OwYMGIAZM2bgV7/6VULXu+aaazBkyJCEvpcg+hMkPghCJlu3bsW9994bVXz0N6qrq3HvvfemvfhoaGjArFmzsGDBAowfPx7PP/88PvnkE/z1r3+F2WzG3LlzsWnTJlnXfO+99zBz5ky0trbigQcewEcffYS///3vmDVrFpYsWaLST0IQ6YFF6wEQBJF+dHV1ISMjA4Ig9PhaZ2cnnE5nSsdz1VVXYdOmTVi2bBlOPfXUiK9dcsklWLBgAfLz82Vd84EHHsDQoUOxbNkyWCyhqfSSSy7BAw88oMi4U0VXVxccDofWwyAMBHk+CCKMTz/9FHPnzkV2djacTidmzpyJ9957T/r6888/j4suuggAcMopp0AQBAiCgOeff77Xa77xxhtwOp34+c9/Dp/PB5fLhV/96leYNGkScnNzUVBQgBkzZuCtt96K+L7JkyfjxBNP7HE9v9+PgQMH4oILLpBea2pqwg033ICBAwfCZrNh2LBh+M1vfgO3293ruFatWoVp06YBAH76059KP8s999wjveebb77Bj370IxQUFCAjIwOTJ0/Gf/7zn4jriCGtjz76CPPnz0dxcTGcTifcbrcUhlqzZg1mzpwJp9OJ+fPnAwCWLFmCefPmoaysDA6HA2PGjMGdd96Jjo6OXsecCOvXr8cHH3yAn/3sZz2Eh8i0adMwePBg7N+/HxaLBYsWLerxnjVr1kAQBLz++usAgMbGRhQVFUUIDxGTKXJqDQQCeOCBBzB69GjY7XaUlJTgqquuwqFDh2KOXY4NeDwe/OlPf5LuUVxcjJ/+9Keor6+P+N4hQ4bg7LPPxtKlSzF58mRkZGTg3nvvjTkOglAcRhAG4LnnnmMA2Lp163p9z6pVq5jVamVTpkxhS5YsYW+++SabN28eEwSBvfbaa4wxxurq6th9993HALB//OMf7IsvvmBffPEFq6urY4wxdvLJJ7Nx48ZJ13z44YeZ2Wxmf/zjH6XXmpub2TXXXMNefPFFtmLFCvbhhx+yX//618xkMrEXXnhBet/f//53BoDt3LkzYpzvv/8+A8DefvttxhhjXV1d7Nhjj2WZmZnsoYceYh999BH73e9+xywWCzvzzDMjvreyspJdffXVjDHGWlpapN/Lb3/7W+lnqaqqYowxtmLFCmaz2diJJ57IlixZwj788EN2zTXXMADsueee6/G7HThwILv22mvZBx98wP773/8yn8/HTj75ZFZQUMAqKirYY489xlauXMlWr17NGGPsj3/8I/vb3/7G3nvvPbZq1Sr25JNPsqFDh7JTTjklrr9pvIh/rw8++CCu959//vls8ODBzOfzRbx+0UUXsfLycub1ehljjP385z9nANgvf/lL9uWXXzKPx9PrNa+99loGgN10003sww8/ZE8++SQrLi5mFRUVrL6+Xnrf1VdfzSorK6XP47UBv9/PfvjDH7LMzEx27733suXLl7NnnnmGDRw4kI0dO5Z1dnZK31tZWcnKysrYsGHD2LPPPstWrlzJvv7667h+NwShFCQ+CEMQj/iYPn06KykpYW1tbdJrPp+PjR8/ng0aNIgFAgHGGGOvv/46A8BWrlzZ4xqi+PD7/eymm25iNpuNvfTSSzHH5vP5mNfrZT/72c/Y5MmTpdcbGhqYzWZjd911V8T7L774YjZgwABpEXzyyScZAPaf//wn4n33338/A8A++ugj6bVw8cEYY+vWreshJkRGjx7NJk+eLN1H5Oyzz2ZlZWXM7/czxkK/26uuuirq7wMA++STT2L+DgKBAPN6vWz16tUMANu0aVPM98vh+uuvZwDY9u3b43r/ypUrGQD2xhtvSK8dPnyYWSwWdu+990qvNTQ0sNmzZzMADACzWq1s5syZbNGiRRE2tG3bNgaA3XDDDRH3+eqrrxiAiL9vd/ERrw28+uqrDAD73//+F/E+8e/7+OOPS69VVlYys9nMduzYEdfvgyDUgMIuBAGgo6MDX331FS688EJkZWVJr5vNZlx55ZU4dOgQduzYEde1XC4XzjvvPLz88sv46KOPcPnll/d4z+uvv45Zs2YhKysLFosFVqsV//rXv7Bt2zbpPYWFhTjnnHPwwgsvIBAIAACOHj2Kt956C1dddZXk7l+xYgUyMzNx4YUXRtxDrGr55JNPZP0uAGD37t3Yvn27NHafzyd9nHnmmaipqenx+/jxj38c9Vr5+flRwx179+7FZZddhtLSUpjNZlitVpx88skAEPF7iEb4eHw+Hxhjsn/G3pgzZw4mTpyIf/zjH9JrTz75JARBwLXXXiu9VlhYiLVr12LdunX4y1/+gnPPPRc7d+7EwoULMWHCBDQ0NAAAVq5cCQARVUYAcPzxx2PMmDEx/z7x2sC7776LvLw8nHPOORG/l0mTJqG0tBSrVq2KuO6xxx6LkSNHJvw7IohkIfFBEOATOmMMZWVlPb5WXl4OgMf446Gurg7Lli3DjBkzMHPmzB5fX7p0KS6++GIMHDgQL730Er744gusW7cO8+fPh8vlinjv/PnzcfjwYSxfvhwA8Oqrr8LtdkcsZI2NjSgtLe2R3FlSUgKLxRL3uMM5cuQIAODXv/41rFZrxMcNN9wAANLiKhLtd9fb6+3t7TjxxBPx1Vdf4U9/+hNWrVqFdevWYenSpQB4AmQsuo/phRde6PW9gwcPBgDs27cv5jXDufnmm/HJJ59gx44d8Hq9ePrpp3HhhReitLS0x3unTp2KO+64A6+//jqqq6tx2223Yf/+/VLSqfj77822+vr7xGMDR44cQXNzM2w2W4/fTW1tbdx/K4JIFVTtQhDgu3OTyYSampoeX6uurgYAFBUVxXWtwYMH4+GHH8b555+PCy64AK+//joyMjKkr7/00ksYOnQolixZEiEYoiWHnn766SgvL8dzzz2H008/Hc899xxOOOEEjB07VnpPYWEhvvrqKzDGIq5XV1cHn88X97jDEb9n4cKFEUmN4YwaNSri82iVLb29vmLFClRXV2PVqlWStwMAmpub4xrfunXrIj4fOnRor+89/fTTcdddd+HNN9/ED3/4w7iuf9lll+GOO+7AP/7xD0yfPh21tbW48cYb+/w+q9WKu+++G3/729/w/fffA+B/HwCoqanBoEGDIt5fXV3d598nHhsoKipCYWEhPvzww6jXyM7Ojvi8t78VQaQK8nwQBIDMzEyccMIJWLp0acSuOxAI4KWXXsKgQYMkN7XdbgcQe3c+b948LFu2DGvWrMHZZ58dUcEhCAJsNlvEAlBbW9uj2gUIhX3efPNNrF27Ft98841ULSIyd+5ctLe3480334x4/d///rf09d7o7WcZNWoURowYgU2bNmHq1KlRP7ovaHIQf3bx/iL//Oc/4/r+7mMRF/hoHHfccTjjjDPwr3/9CytWrIj6nm+++QYHDx6UPs/IyMC1116LF154AQ8//DAmTZqEWbNmRXxPNKEKhEJGosdMDDm99NJLEe9bt24dtm3bFvPvA8RnA2effTYaGxvh9/uj/q26C0WC0ByNc04IIiWISZH3338/e/3113t8dHR0SNUuJ5xwAnv99dfZW2+9xU4//fSIahfGGNu7dy8DwM477zy2du1atm7dOtbQ0MAY61ntsm7dOlZYWMhmzpzJmpubGWOMPfvsswwA+8UvfsE++eQT9vzzz7Phw4ezESNGsGj/kjt27GAA2KBBg5jD4ZCuIyJWu2RnZ7OHH36YLV++nN19993MarXGrHZhjLGOjg7mcDjYrFmz2MqVK9m6devY4cOHGWO82sVut7N58+axV155ha1evZq98cYb7L777mMXXnhhj99ttGTe7r8PkYaGBpafn88mTpzIli5dyt555x12ySWXSL+DaAmwyVBfX8+mTJnCbDYbu/7669lbb73F1qxZw5YsWcKuuOIKZjab2caNGyO+59ChQ8xisTAA7JlnnulxzQkTJrAzzjiDPf7442zFihXs448/Zg899BArKytjWVlZ7LvvvpPee+211zJBENitt97Kli1bxv75z3+ykpISVlFRIdkOYz0TTkX6sgGfz8fOOOMMVlBQwO699172wQcfsI8//pg9//zz7Oqrr2ZLly6V3ltZWcnOOuusRH+VBKEIJD4IQyAukL197Nu3jzHG2Nq1a9mpp57KMjMzmcPhYNOnT2fvvPNOj+s98sgjbOjQocxsNkcsltEW2++//56Vlpay4447Tiqr/Mtf/sKGDBnC7HY7GzNmDHv66afZ3XffHVV8MMbYzJkzGQB2+eWXR/16Y2Mju/7661lZWRmzWCyssrKSLVy4kLlcroj3dRcfjPFKidGjRzOr1coAsLvvvlv62qZNm9jFF1/MSkpKmNVqZaWlpezUU09lTz75ZI/frRzxwRhjn3/+OZsxYwZzOp2suLiY/fznP2cbNmxQRXwwxkXao48+ymbMmMFycnKYxWJh5eXl7IILLmDvvfde1O+ZM2cOKygoiChVFVmyZAm77LLL2IgRI1hWVhazWq1s8ODB7Morr2Rbt26NeK/f72f3338/GzlyJLNarayoqIhdccUVUlmzSG/ig7G+bcDr9bKHHnqITZw4kWVkZLCsrCw2evRodt1117Fdu3ZJ7yPxQegBgTEF08QJgiDShLq6OlRWVuKXv/xlv+tYShB6hxJOCYIgwjh06BD27t2LBx98ECaTCbfccovWQyKItIMSTgmCIMJ45plnMGfOHGzZsgUvv/wyBg4cqPWQCCLtoLALQRAEQRAphTwfBEEQBEGkFBIfBEEQBEGkFBIfBEEQBEGkFN1VuwQCAVRXVyM7O5taABMEQRBEP4Exhra2NpSXl8Nkiu3b0J34qK6uRkVFhdbDIAiCIAgiAaqqqnqcY9Qd3YkP8byIqqoq5OTkaDwagiAIgiDiobW1FRUVFXGd+6Q78SGGWnJyckh8EARBEEQ/I56UCUo4JQiCIAgipZD4IAiCIAgipZD4IAiCIAgipegu54MgCIIg9Izf74fX69V6GJpgtVphNpuTvg6JD4IgCIKIA8YYamtr0dzcrPVQNCUvLw+lpaVJ9eIi8UEQBEEQcSAKj5KSEjidTsM1wmSMobOzE3V1dQCAsrKyhK9F4oMgCIIg+sDv90vCo7CwUOvhaIbD4QAA1NXVoaSkJOEQDCWcEgRBEEQfiDkeTqdT45Foj/g7SCbvhcQHQRAEQcSJ0UIt0VDid0DigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELig0hr/AGGQIBpPQxCQwIBBq8/oPUwCA0JBBjcPr/WwyDCIPFBpC1efwCXPvUlZt+/Ai1dxuxGSAC3LtmIifd+hH0NHVoPhdCI2//7HSb/YTm217ZqPRTNGDRoEB5//PGI1z7//HM4nU4cOHAg5eOhPh9E2vL8Z/vx9f4mAMDqnfX40cRyjUdEpJpPdzXg7U3VAIDXv6nC//vhaI1HRKSa6uYu/G/DIQDAQ8t24pmrpyp2bcYYurzaeFQcVrOsqpPp06dj3bp10ueMMdx666249dZbUVlZqcYQY0Lig0hbnvl0r/R8DYkPQ/LU2jAb2FVP4sOA/Hf9Ien5mp31aGh3oyjLrsi1u7x+jP39MkWuJZetfzgdTlv8S/j06dPx/PPPS5+/+OKLOHjwIBYuXAgAePfdd/GrX/0KgUAAd9xxB37+858rPeQIKOxCpCX1bW4caXVLn6/ZWQ/GKPfDSDDGsPlQs/T594dbUdvi0m5AhCas2F4nPff4A9hU1azdYDRk+vTp2LZtG9rb29HZ2Ym77roLf/rTn5CdnQ2fz4cFCxZgxYoV2LBhA+6//340NTWpOh7yfBBpybYaHtsdmOdAfZsbdW1uHDrahYoC6k5oFOra3Dja6YVJACoLM7GvoQPbalpRmpuh9dCIFMEYw+66dgDA0CJuA9UKClCH1YytfzhdsevJvbccpk6dCrPZjA0bNuDjjz9GYWEh5s+fDwD4+uuvMW7cOAwcOBAAcOaZZ2LZsmW49NJLFR+3iGzPx5o1a3DOOeegvLwcgiDgzTfflL7m9Xpxxx13YMKECcjMzER5eTmuuuoqVFdXKzlmgugTUXxMqshDSQ53sda1uWN9C5FmiDYwrDgLlYVcdNa1kefDSNS0uNDu9sFiEjB9GD+Ppaa5S7HrC4IAp82iyYfcLqMZGRmYOHEili5dioceeggPP/wwTCYuAaqrqyXhAfDk1MOHDyv2e4qGbPHR0dGBiRMnYvHixT2+1tnZiQ0bNuB3v/sdNmzYgKVLl2Lnzp340Y9+pMhgCSJetgYXnjFl2SjJ5uKjnsSHodhe2wYAGF0asoG6VrIBI7ErzOsxOOj1rDFw6G369Ol49NFHcdppp2Hu3LnS69FC0mq3kZcddjnjjDNwxhlnRP1abm4uli9fHvHaY489huOPPx4HDx7E4MGDExslQchkR3DhGVOWg82HWwAA9bTrNRTbJQGagy4Pr0gg75ex2HWEzwPHlGShPI+H26oV9Hz0NyZNmgSLxYIHH3ww4vWBAwdGeDoOHTqEE044QdWxqJ5w2tLSAkEQkJeXp/atCAIAV/EHmzoB8B1PMXk+DMm+Rm4Dw4szMUAKvZEANRJivseIkiyU5fKj4I3s+Xj55Zdxww03YNSoURGvH3/88fj+++9x+PBhtLW14f3338fpp6uby6JqwqnL5cKdd96Jyy67DDk5OVHf43a74XaHFoXWVuM2gSGU4WinF53BnW55ngMl2XzHQ7teY3H4KN/hDsp3AuAuZLIBYyE2lhtWnIWyYKJxbYsLgQCDyWSM02kDgQDq6+vxr3/9Czt27MAbb7zR4z0WiwV//etfccoppyAQCOD//b//h8LCQlXHpZr48Hq9uOSSSxAIBHp0VQtn0aJFuPfee9UaBmFAxEWnONuODKuZPB8GxOX1o6Gd/70H5jngCbZXp5wPY1HdIgpQB0pzMyAIvNy2qdOjWK8PvbNmzRqceuqpGD16NJYuXYrc3Nyo7/vRj36U0vxMVcIuXq8XF198Mfbt24fly5f36vUAgIULF6KlpUX6qKqqUmNIhIE4dJS72wfmcTerlHDaTguPUTgcjOtn2szIc1ojko6p34sx8AeY1NelPM8Bq9mE4qDgqGk2Tuhlzpw5CAQC2Lp1q+p5HHJQ3PMhCo9du3Zh5cqVfbpu7HY77HZjKFAiNYgLz6B8Lj6KqdLBcIjer4H5DgiCINmAxx9Ac6cX+Zk2LYdHpICGdje8fgazSZDEZ2GWHXVtbjR1ejQeHSFbfLS3t2P37t3S5/v27cPGjRtRUFCA8vJyXHjhhdiwYQPeffdd+P1+1NbWAgAKCgpgs9E/PKE+hyJi/SHx0dDuNlSs18iIAlT0ftkt3APS3OlFXZubxIcBEG2gNCcDFjN38mdn8CWvzUUHTWqNbPHxzTff4JRTTpE+X7BgAQDg6quvxj333IO3334bAC/pCWflypWYM2dO4iMliDiRwi5Bz4cY2/UFGI52elBokFivkRFtQBSgAFCcZUdzpxeN7W4A2RqNjEgVYkmtWGILADmS+PBpMiYihGzxMWfOnJgxU4qnElpzOBjPHRTc9VrNJmRnWNDm8qGly0viwwCEh11EssSFx00LjxEIiY+QDWRnWAGQ50MP0MFyRNohVrWIbdUBIMvOF552WngMgdjLoSzsHBfJBmjXawiqm0PJpiLZ5PnQDSQ+iLTCH2Bo6uDiI7yUjsSHsRAF6ICckPgQF54OD9mAERBzPspze9oAiQ/tIfFBpBVHOz0IBCN/BWFJhZm06zUUR1r5rjdcfIgClBYeY1AXxQbEsEsrhV00h8QHkVaIjaXynVZYzSHzFhce2vWmP+1uHzqCHW7FEksgTICS98sQ1EnhV/J86BESH0Ra0djO6/e7dy8MhV38KR8TkVpEr0e23SIJDvFzAOgg8ZH2BAIslPsVJkAp4VQ/kPgg0grR81GYFdnHgcIuxkEUH8U53QRoBtmAUTja6YEvGH8N34iQ50M/kPgg0gpxt9Pd8yElG9KuN+2Rkk2zMyJeFwUoldqmP2LIpTDTBpsltMxRnw/9QOKDSCsaegm7ZNrNACjebwRCyaa9hN5o4Ul7RPFRnN19E2LcsMugQYN6HPL6+eefw+l04sCBAykfj2qn2hKEFjS2R590sux80iHxkf4cae1ZZgtQqa2RECtdSnqxgTaXD4wxCEKSRy0wBng7k7tGolidgIzxT58+HevWrZM+Z4zh1ltvxa233orKyko1RhgTEh9EWiHlfHQ7uyNL9HzQrjftOdLLwiMJULKBtKcuSrIpEPJ8+AIMLm8ADps5uRt5O4H7ypO7RqLcVQ3YMuN++/Tp0/H8889Ln7/44os4ePAgFi5cCAA4//zzsWrVKsydOxf//e9/lR5tDyjsQqQVvYddaNdrFOp7cbmLoTfK+Uh/JM9HdxuwmSGeK2m00Mv06dOxbds2tLe3o7OzE3fddRf+9Kc/ITubn3N0880349///nfKxkOeDyKtED0fRT3CLpRoZhQkG+hW8ZRNng/D0JvnQxAEZNktaHX50OryoSQnyRtZndwDoQVWZ9/vCWPq1Kkwm83YsGEDPv74YxQWFmL+/PnS10855RSsWrVK4UH2DokPIm1gjIX1+egedqFqF6Mger+Ku/d6Ccb7u7x++AMMZlOS8X5CtzRIuV8ZPb6WnWFFq8unjOdDEGSFPrQkIyMDEydOxNKlS/HUU0/hnXfegcmkXfCDwi5E2tDq8sHjDwCI0mSMSm0NgccXQEsXX1S6n14shl0ASjxOdxp62YQAxu71MX36dDz66KM47bTTMHfuXE3HQuKDSBvE3U6W3YIMa2QiGfV4MAZNHXzRMZsE5DmsEV+zW8ywBVvuk/hIb0LNBu09vmZkL+ikSZNgsVjw4IMPaj0UEh9E+tDQFj3WD0ROOIyxlI6LSB3h1U6mKGEV8oClPy6vX/JqdA+9AZAqXFw+4x218PLLL+OGG27AqFGjtB4K5XwQ6UNjR/RKFyAkPgKMx/ydNjL9dCTWjhfgdtDU4TGky90oiN4vq1lAjqPn/7ndwsVHlyeQ0nFpRSAQQH19Pf71r39hx44deOONN6K+7/TTT8eGDRvQ0dGBQYMG4Y033sC0adNUGxfNwETa0Nu5LgDgtJkhCLwnULvbR+IjTYkV6wfoZFsjEPJ+2aM2EZM8H15jeD7WrFmDU089FaNHj8bSpUuRm5sb9X3Lli1L6bhoBibShoZeznUBgiV2Ngva3D60u3woyU716IhU0Njeuw0A1GzOCIgVb9E2IQDgsPJsgy6DiI85c+YgENCfl4dyPoi0ob6XBmMiUqMxtzEmHSPSW48PETER2Si7XiNS34cAJRvQByQ+iLShsZcGYyKiu9UoOx4j0luHWxFp4TFgsqFR6NvzQeJDD5D4INIGqbFQL5OOPXi0Nk066UtfCaehhUd/bmhCGULzQHQbsFtpE6IHSHwQaUODtOMhd6tR6SvhNMNKAjTdaYyReA4kL0CpVF+Z3wGJDyJtaOgz1htceHy0601X+ko4FQWom8RH2tJX6C3RhFOrlTet6+zsTGJ06YH4OxB/J4lA1S5EWtDp8aHTwyeTvpINaeFJTwIBFrPXCxCe80ECNF3pK/Qm2YBH3jxgNpuRl5eHuro6AIDT6YxaypvOMMbQ2dmJuro65OXlwWw29/1NvUDig0gLxCQzu8UkNRTrToaFFp50prnLC3+Au4N7c7lnUN5P2iOFXzN7Cbsk0eG0tLQUACQBYlTy8vKk30WikPgg0oLw8rrediNi2IU8H+mJGHLJc1phNUePKNsp7yetCQQYmjrEE217STiVOpzKtwFBEFBWVoaSkhJ4vQqcitsPsVqtSXk8REh8EGlBrHNdRMRJhxae9KQ+7FyX3sigape05minB0HnFwr68nwkYQNms1mRBdjIUMIpkRb0FesHwisdaOFJR/pKNASo2iXdEeeBWN4v6vOhD0h8EGlBrNbqIlRqm970VekCUN5PutMQl/eLBKgeIPFBpAWxDpUTsVN3y7Smr9bqAAnQdCce75eDmozpAhIfRFogz+VOu950pFGGDVDScXoSl/eLxIcuIPFBpAUNfZzrAoS53GnSSUv66u8AUMJpuiPP+xWgbqUaQuKDSAvkTDpuivenJfV9tFYHwrvckgBNRxr7OGIBCFW7ADQXaAmJDyItoEoHoq9TjQEqt0534sn9EhvNAWQHWkLig+j3eHwBtHTxhj/xxHrd5HJPSxr76GwJUNgl3YlnE2Ixm2A180aElPehHSQ+iH5PU7C232wSkOfo/aAju4Vc7ulKp8cnLSTk/TIu8YRfgbCk0wS6nBLKQOKD6PeE1/abTL0f9ERllulLQxsXoBlWE5y23jtPhuf9ULJh+hHyfvUuQAHygOkBEh9Ev6c+jioHgEpt05mGjr7P9gFCiw5AyYbpRoT3K0beD0C9PvQAiQ+i3xPPuS4AJRumM/FUOQCUbJjOhJ9snRnD+wVQvxc9QOKD6PeI5zkU9+n5IPGRrkiVLjGSTQGebGgJhubIA5ZexHOytQh5PrSHxAfR75E8H324WqXdDrnb0w5RgMYqsRQhEZqeNMbR50WEupxqD4kPot8Tz2FSACUbpjPxdDcVEUUoLTzpRaMsG6CEU60h8UH0e+Kp7Qco2TCdiafHhwjl/qQnkvcrDhugsIv2yBYfa9aswTnnnIPy8nIIgoA333wz4uuMMdxzzz0oLy+Hw+HAnDlzsGXLFqXGSxA9iOdcF4CSDdOZxo6+DxQToaqn9CQR7xclnGqHbPHR0dGBiRMnYvHixVG//sADD+Dhhx/G4sWLsW7dOpSWluIHP/gB2trakh4sQUSjIc5Yr8VsgpmSDdMSsc+HrJwPajaXVsjJ+RDPd6EmY9phkfsNZ5xxBs4444yoX2OM4ZFHHsFvfvMbXHDBBQCAF154AQMGDMArr7yC6667LrnREkQ3/AGGJjm7XosJHR4/eT7SDNHz0VdzKSC8zT7ZQDrR0B7/PCCF3kiAaoaiOR/79u1DbW0t5s2bJ71mt9tx8skn4/PPP4/6PW63G62trREfauDy+vGTf36B8/7xGS08acTRTg8CwdzRgjhivbTrTT+4AJVT6UBhl3Qk1OslnrwfbgMeyv3SDEXFR21tLQBgwIABEa8PGDBA+lp3Fi1ahNzcXOmjoqJCySFJmE0CvtrXhI1VzXSwWBohTjj5Tius5r7NmbLc049muQKUEk7TEjneLxuJD81Rpdqle4MXxlivTV8WLlyIlpYW6aOqqkqNIcFiEiAe++H206STLshxtQKAnQ4WSzvEKod8pxUWWQKUbCBdkOv9sgXtxOMn8aEVsnM+YlFaWgqAe0DKysqk1+vq6np4Q0Tsdjvs9vgWjmQQBAE2iwkub4A8H2lEKMO97wkHCO16qdQ2fZBT5QCECVCygbQh3PuVH4f3S/R80DygHYp6PoYOHYrS0lIsX75ces3j8WD16tWYOXOmkrdKCDstPGlHfZs8zwcdqZ5+yOnxAZDnIx1pkBl+pbCL9sj2fLS3t2P37t3S5/v27cPGjRtRUFCAwYMH49Zbb8V9992HESNGYMSIEbjvvvvgdDpx2WWXKTrwRLBLapcmnXShsSO+BmMitPCkH3JDb6GcD1p40gU53U0BEh96QLb4+Oabb3DKKadIny9YsAAAcPXVV+P555/H//t//w9dXV244YYbcPToUZxwwgn46KOPkJ2drdyoE0R0t5LBpQ/iuS7FfTQYEwmVWZINpAtyqhwA8n6lIw0yupsClPOhB2SLjzlz5sQ8F0MQBNxzzz245557khmXKogGR2GX9CHec11ERO8XldqmD3KqHIBQ+JUWnvShUab3izwf2mOos10o5yP9iPdcFxEKu6QfDTI9H7TwpB9yvV/U50N7jCU+KOySdjTGea6LCE066Udo10viw6jIOdsHCLMB8n5phqHERyjsQrvedIAxFve5LiK08KQf0mmm5HI3LPUyzvYBAJs5GHojG9AMQ4kPOyUbphWtLp+0c4l7xyMKUNrxpA2NMkNvdko2TDvk5v2QANUeY4kPaiyTVojJpll2i5TL0Rc06aQXLq8f7W4fAMr5MDJyTrQFAKuZt7umtUA7DCk+PBR2SQvkTjgALTzphihAbWYTsu3xFe+RDaQfCff5IO+XZhhKfFBL3fRCbnMpgBaedCO8yqG386O6Q6G39KLL40eHh28o492IUOK59hhKfFCpbXqRkPigeH9aIcX6yftlWCTvl8WErHi9X5RwqjkGEx806aQTYndTOQsP2UB6IfX4iDPREAgXHxR+TQekIxYyZXi/KOyiOYYSH2Rw6UWDzHNdANr1phtym0sBNA+kG3LzPYCQDfgDDP5A7x27CfUwlvgw08KTToiej3gbjAG08KQbcttqAzQPpBvJCFCA7EArjCU+KOE0rRBjvcVyJh0z5f2kE40yDxQD+gi9NVcBfp8iYyNSQ4PM7qZASIAC3ezg4FfA3yYAW95QbHxEdAwpPiKM7dO/AU/NAf5zNdC0T5uBEQkROtMjybDLvjXAixcAj00Ftr+n6BgJdWlIwuUeYQOuFuB//wc8Mh547zZFx0ioSyKeD7HPBwC4/WG5P8/OA1oOAkuvU2x8RHSMJT66VzowBqx+EKj+Ftj6JrDuGe0GR8gmIZd7tIXn43uAPZ8AjbuA9S8oOURCZeS21wd6Cb2tvA/Y/B/+fPcnio2PUB+p6k1G0rEgCD3ngoZdoTf43Xx9IFTDUOLD2j3L3dUCeDtCb2jaq8GoiERIpLYf6KXUtrkq9LxxtyLjI1JDMjkfXj9DQEw2rN0cekP7EcDvVWyMhLok4vkAwtrsi+Jj/fORb2itTnZoRAwMJT56GFt34yLx0W8Qdzt2GbX9QBTPh98LdNSH3tB8gGL+/YRAgKGpI8lkQ1GEttWEXdhHIdh+RCKhNyBkB15/UIAe3hD5htrvkh4b0TuGEh893K2i+LBl8cemfUCAEhH7A/VhO954a/uBKMmGbbUAGCCYAbOdLzzNB5QeLqECrS4vfEHPRYGMhNMe4oOxoB0AsGXzx8ZdUb6T0CNSnw+Zno8eGxFxE5JbwR9rSHyoiTHFh+T5OMwfK44HTBYe5xNfI3RNIue6AFEEqLjjzSkHCo/hz8kD1i8Q8z2yMyxS9+J46FHp4G4DvJ38haEnBi9O4qM/EO79khN6A8LngmAYXhQfw0/hj+T5UBVjiY/ewi55g4H8Ifw5LTz9gkRaqwMxbCC7DCgczp9T3ke/IJF8DyCYbBhuB6LXw54LlE0MXpzER3+gpcsrNQnLd8rciIhn/PgCPPzqauZfGH4qfzyyRalhElEwlvjo3udD9HLkDAQKhvHnJD76BVKDsUR3O75ong9RfOxRZIyEuiTS40Mkwg5EG8geEPJ+keejXyBuQnId1ohwWjxE2EBnI39RMAGlx/LnbTVU8aIihhQfUV3uJD76FaEks8TDLoyxkOcjpxwoCIqPJhIf/YHGBG0A6DYXiJ6P7FKgaAR/TuKjX9CQYKUL0E18iCEXZyGfCwDA5wp5QwjFMab46O5yJ/HR70jkXBcgSrKhtOsNC7tQpUO/oD6BJnMiEWGXdlF8lIWSDbuaAJ9bkXES6tGYQHdTkYiy+44G/mJmMWB1ABm5/PO2I4qMk+iJscRHj3h/WNhFnHSotrtfkMi5LkCUZMPWMO9X1gD+vL1OkTES6iLlfCQRdnH7unk+HPmAyco/JzvQPYkmngPdPR+i+Cjij1ml/FEUpoTiGEp82MNdrZ4O3mQM4DuerBL+PLznA6FbQgmniSWZAWK8PyzhVLQBbwe3D0LXSAuPTAEK9JLzkVUKCELYXEDiQ+9IoTcZ3U1F7FHDLkHxkR3ciJDnQzUMJT4iJhxReAhmwJ4dUrztdZRk1A8ItdWWN+mYTIJ0rkOEuzVrAO/3YnHwz2nXq3tEl3siC0+Ey11cYLKDu93MYv5INqB76pXI+fAHgM6wsAvANyMAeT5UxLjiw93OX7Rn891OZnC343cD7laNRkjEg8cXQEsXb3+dVKzX6+c9HoCQHZAHrN+QaFttoJdKB8nlTuG3/kJjgt1NgW5hePH/XRQfog20kfhQC2OJj6Cx+QIMAVdQYNiDHQ1tzlCnU3E3TOgSMeRiNQvIc1hlf7/UVtnVDiDo5bIH//ai+KCFR/fUJxh6A7qJD09wI2IjG+hviOXWxUnYgDsi56OQP4peMBIfqmEs8RFW6eDrCoZdRPEBkLu1n1Af1uPDZIq/tbqIaAe+rqAAFUyA1cmfix6wdor16hmX1482Fz+Dpzg7Q/b328O7W4Z7QYEw8UE2oHeS8nxETTjt5vkgG1ANw4oPb1eYu12EEs36BaL4KE4g0RAI2YFf9H7ZgiEXAMgKTj4UdtE1og3YLCbkZMR/sKBIROjNE5wLJM9HcOGheUD3SKG3RCqezLwlP8/5CIbenKLnI5jzQZ4P1TCW+AirdPCLng9xwgHI89FPqAsuPCWJio+gHQQkARpuA+Ry7w+INlAs82BBEUmAejoBFiy9F+2A5oF+QZfHjzY3934lXfHk6eb9EsMu5PlQDUOJj/AzHXrkfACUbNhPSN7zwXc8zEXer/5KfZsLAFCSk5z3i7naQy9aM/kjJZz2C8R5IMNqQrY9Ae9XhPgIltbbutmApz2UlE4oiqHEBxAyuICrm9IFaNfbT6hv5wtPcQJxXiBs4XF3c7cDlGzYT6gP83wkgrgJYeHJpqbgdEjio18gzQPZiXm/xLwfr9cXJj6Cc4E9KyRGyQ5UwbDig0X1fFC8vz9Q1xpceHLkJxoCgL37wkMCtN8hio9kPR9C90oXIDQPeNoAT2fCYyTURZwHShJIOAYg9fthvi5IVW+i5wMI5X90HU10iEQMjCc+xLyP7hnuQGjhIfGha8QSy2Q9H4I7Ss4Hhd76BaGcj8QWHtEGTJ4ooTd7DmAJXpdi/rol6XnALApQsZuxEGoyCADOAv4oJqMSimI88SFWvHjESgdyufc3lKp2Ce16o5Rbe9pp16tjFLeBcAEqCKE2251NCY+RUBfJ85Gw94vnfgne4P+5LTMUegNCng8SH6pgWPEhRPV8UNhF7zDGFKt2EaLuerMBc7BsjyYd3ZKsDYihN7O3W6xfxJnPH7tIfOiVujZlcr9Mvm7JpiIkPlTFeOLD3H3HE7bwOIITjqcd8HlSPDIiHlpdPulU4mR3vSZx4em+63UE3a208OgWpTwfZnHhCZ8HgJANkOdDtyiV9xMSoCQ+UonxxIe08ETZ9Wbk8W6XACUZ6RRxwsnOsCDDak7oGqFJJ4oABUIilGxAlwQCTGqxr9zC083zQTage+qSFaDBjajFFxZ2CYfEh6oYVnxEXXhMJi5AAJp0dIroak3U3Q6EbMDijVLpAIQlmtGuV48c7fTAF+DVCYmcaAuELzxRvF9AyAbI+6VbJM9HgtUuYqmtxS+KD5oHUonhxIdkcN7e3K0U69UzybrbgWgLD9lAf0Kscsh3WiOOTJCDmGxo9ffm+aCFR8/4w71fSYberP6+PB9kA2pgOPHRY+EhtduvCImPxHY7QEiAWvsUH+T90iPJ9ncAQguPTXS5d7cByfNBNqBHmjo8CDCeolWQwLkuQLj46Aq+QGGXVGI88WExwQw/LKLB2XMi30ALj66pT7LKAQifdPoSoGQDekQR75coPgK9uNzJ+6VrxPBrYaYdFnOC3q/g99l6DbuQ+FATQ4qPTLhCL3SP9VKlg65RMuwiTTq9VTqQDeiS+iTd7UA0G6CwS38i2WRTIFyABteD3jwfXU1AIJDwfYjoGE98mE3IQtDrYbYBlm7GS54PXaPIwhOcdOy9ig+yAT0jtddPwgbE0FtGb54PSjjVNUp6QO2st5yPoA2wAOBqTvg+RHQUFx8+nw+//e1vMXToUDgcDgwbNgx/+MMfENCJcrRZTMgSxJBLds83UM6HrlFi4eGTDoO9r4WHbECXSG21lVh4An0J0OaE70Goh5IeUHtvng+zFbDn8uc0FyiO/HOI++D+++/Hk08+iRdeeAHjxo3DN998g5/+9KfIzc3FLbfcovTtZGOzmOAEN1zp1MJwaNera5RaeBxww4SgIO7hcicb0DP1baHTTBNFFB9O1lvOR1CAulsBv5cvRIRuUMLzIXq/HExMOM3q+SZnPuBuCeZ9HJPwvYieKC4+vvjiC5x77rk466yzAABDhgzBq6++im+++UbpWyWEzWJChhDsXmp19HwDLTy6xesPoKmD/+2SqnQwm+BAWAfb7iKUcj50jSLxfnO3haeH5yMPgACA8blAPPeJ0AV1CgpQB3rxfAA87+Pofko6VQHFwy6zZ8/GJ598gp07dwIANm3ahE8//RRnnnlm1Pe73W60trZGfKiJ3WxChuT5iLKAkctdt4h1/RaTgDxH4jtRm8UEO7z8E7Mt8jApILLMUifhQiJEss2lgNDCI80FNmfkG0xmICPocqeNiO5Q0gYyJRuI5gmnkmu1UNzzcccdd6ClpQWjR4+G2WyG3+/Hn//8Z1x66aVR379o0SLce++9Sg+jV2wWEzLEhcfq7PkG8nzoFnHCKcqyw2QSEr6OPdz7ZYkyeYk2wALc7e7IS/hehLK4vH60uXwAFMr7ERceSy9eUFczbUR0SF2S57oAIe+XUxA9H1HCLrQeqIbino8lS5bgpZdewiuvvIINGzbghRdewEMPPYQXXngh6vsXLlyIlpYW6aOqqkrpIUUgxvsB9LLwkMtdryR7kJRIhOcjmg1Y7KFQDNmBrhBtwGYxIScj8b2TzWyCBX6Ywdu0x/SCkg3oCsZYKPE8wRNtAcBiNsEkINR6Iarng8SHWiju+bj99ttx55134pJLLgEATJgwAQcOHMCiRYtw9dVX93i/3W6H3Z7cYiIHmzk85yOG58PnArxd0fNCCE2QMtyTmHAAwGY2IwMxPB8AX3haOnijsYKkbkcoSF1YoqEgJOn9Cs/7ibkRoYVHT3R4/Ojy+gEk5/0CggUIQjzigwSo0iju+ejs7ISpWwzdbDbrqNTWHEo2jLbbsWcDpqAmI3errlAi0RDo5vmIZgNAKNRCC4+uUKLSBehmA0Ds8BvNA7qirpXbQKbNjEx7cvtnmzms6WTUahcSoGqhuOfjnHPOwZ///GcMHjwY48aNw7fffouHH34Y8+fPV/pWCWEL3/FE82oIAt/xdNRxtZs7MLUDJHpFifI6oFvFU/cmcyIUftMlitpAcB5g5l68KBR20SWh8GviyaYiNrMJTl+shFMKu6iF4uLjsccew+9+9zvccMMNqKurQ3l5Oa677jr8/ve/V/pWCcEXnhhJZgA3uI46MjidoURjIYBPOHYp7BLDBgDa9eoMRW1A4J4PZslA1AAOtVjXJXUKhV8BINMSgNXPQzjUeiG1KC4+srOz8cgjj+CRRx5R+tKKYDOHV7v0svBQua0uUaK2H+hW8dSb54PcrboktPAkt+u1mE1wBL1fjGygXyEJ0CQTzwEg2+KDWH/Qa8UTQIdMqoDhznaxh1e79CY+SO3qklB30+QWHrvFBHusRnMAhV10ilIVTwCQZeY7XmbuLe+H5gE9oqTnI8vEy7YZhOgbEbIB1TCc+Ogz5wOghUeHMMYUjffb+/J80KSjSxR1uZv5whMw92ED5AHVFaIHVAkBGmED0fJ+RBvwtPE2+4RiGFN8CH3F+/P4Iy08uqHN7YPLyyumlMz5CPRmAxR60yWKej6Cu15/b54PCrvoEiW6m4pkmrmg6NUGMnIBMSOIDhlUFOOJD3Mcng9p4aFJRy+IE052hgUZVnNS1wrP+QiYbNHfRPX9uiMQYFKL/WQFKBC26yUb6FcolXQMAJnBpGO/qZdrRbTZJztQEuOJj7jCLjTp6A2po6ECE44tLOej1x0PNZjSHUc7PfAFeEfSwkwFFh4TX3h8fdmAzwV4OpO+H6EMSoVfAcApej56E6AAecBUwpDiwxF3siEZm144EmwsVKpAbb/FJMAR9Hz4ept0yPulO8R8j4JMm3QoWDI4xLBLbzYQ3nCQ5gJd4PUH0Bg82VqJjYhTEOeBGNei/C9VMJ74CA+7ULy/31AbFB8DFBAfgiDAYerD3SpOOO4WwO9L+p5E8ihpAwDgNPWx8IgNBwHyguqE8JOtC5wxvBVxIooPbzzig9YDRTGc+IgstaUSu/5CbYtKC4/QywSWkRd67mpW5J5EchxpEb1fypwF5RAXnt5sAKCFR2eI80BJdnInW4uIm5C4xAetB4piOPHB4/1xxnq7mgDGUjQyIhahsIvCC09vk47ZEko0o4VHF4iej9JchQRoPLtearGuK6RNiEI2IIZfvUIs8UFheDUwpPgQPR+9GpyodAM+wN2WopERsVB64ZG166WFRxccUTjskhGXDdDCoydqFcz9AiC1XfAK1t7fRJ4PVTCe+AjL+eh1x2Nzhk65JIPTBUcUDruEFh7a8fQXaltUWnhAYZf+gtKbENEGPDHnAdqEqIHhxAevdAgaHMjg+gOBAJMqHRSbdILuVk88Ox5aeHRBbbDcWimXuz0eG3DSrldPHFFagAbXAnc8ApRsQFEMJz7g98Ak8DwOF+16+wUNHW74AgyCoExbbSDOHQ/F+3WFkuXWQPjCE8c8QAJUFyjt+RAFaEzxQX0+VMF44sMbahbkjhXrpXJb3XCkhe94i7LssJiVMdnQpBPL80E2oBfcPj+agv0dlBIfkucjpg3QrldPHBG9XwrZgI2R50MrDCg+uHL2MRM8gRhtuul8F92gdJIZANjI3dqvEDvc2iwm5DljiAUZiDbgol1vv4Axpnjejz1YfBDTBqTwK9mAkhhPfPi6AHBj8/hjlNFS2EU3KN1cCgDs4o6HxYr3kw3ohXABKkQ7fTQBQrte8nz0B1q7fOjy+gEoF3aRZQN0sq2iGE98eLn46IINHn+g9/fRpKMbpCSzXGXyPYDQpBPXjodsQHOU3vECIRvoYvGU2lLoTWtEAZrrsCZ9uKSIlXHPR0wboJNtVcGA4oMbsBs2eHwxxAflfOgGNcIuVtHlHsvzQQuPbpB6fCi04wXitYEwAUoNBzVFnAfKlLSBgChAY9hAxMm2tBFRCgOKD55w2sXsscUH7Xp1g9LNpYA4Jx3JBpoVuy+RGLUKt1YHAGsgGO9nlt7fJG5CqOGg5ijd6wcIeT46A33kEVHrBcUxnvjwcQN2wQp3TPFBu169cETh8joE/LCAHxYXU3w4qc+HXlAj78cSDLt0xnK5Wx3UcFAnqOEBtQQFaGeseQCgzagKGE98BD0fLsr56DcofaicKECBPnY8og14OwCfW5l7EwmhuABFyPPRFYjh+QBo16sTalUIvVkkG+hDfFDyueIYT3z4RFcr5Xz0B7o8frS6uJdCMfHhDRMfsVzu9lxACP6L0KSjKWrses3B0FvfLndaePSA0t1NAcAcFB8d8YZdaD1QDAOKDzHh1BpfzoerGQjEeB+hKtUtvDop02ZGTkYfO9R4CdqAh5nh9sco2zSZgIw8/pwWHs0IBJjizaUAwOzndtARt+eDbEBLQt1Nlcv7IRvQDgOKDz6JcfHh7/19orGxAOBuScHAiGjUNAcz3PMcivV3CAnQPrxfAO14dEBjhwceXwCCoGzYRfR8tPfpcicb0AOKh18BmPxBG/BTzkeqMaD4CFt4YuV8WOyANZM/p0lHM6qbuedDyfK68KTjPsUHxXo1pybo/SrJtsOqUHt9+H0wMR7O6/THu+ttVubehGxcXj8ag+31y3Mdil3XFPR89C0+aB5QGuOKDyZn4WlWd0xEr4hhl4F5yk04Eb1eYglQgJINdUC16P1ScNEJTzpuj1t8kA1ohej1cFjNirXXB8LFB9lAqjGg+AgPu/S18OTxRzI4zahRceGJS4DSjkdzRO+XogJUlvggG9Aa0QbK85Rrrw/GIATtoM3fR8dUCrsojgHFRyjh1N3nrpcmHa0RPR9leUqGXfg1KeejfyCGXdQIvbmZBe4YqV8AyAZ0QHXQ81GupAD1eyEw/v/f6rOAxepgS+JDcQwoPuR4PmjS0Rp1dr3iSZbWvsMulPOhOWLYRdGFR848QDagOZLnQ1EPaJf01A0bvLEOGqUQvOIYUHyIO544dr006WgKYww1Lcqf5yAeLuhitthdbgGK9eoA0ftVrqT3yxvm/Yo774fmAa0IhV2UF6ABJnARGk/TSXcrnWyrEAYUHwl4Pmjh0YTWLh86PdwnrmzORyI20Kzc/QlZqLnwxGcDdNSC1ohhF0XDr5IAtQIQYtuBeLAcQHOBQhhQfIQ1GaOcD10j7ngLMm1w2JQ5QhuA5G51ycn5IBvQBK8/gLo2LhSUFaAh75csG6CGg5qgZtIxFx+IbQd0sq3iGFB8UM5Hf0GVHh9ApA3Em/NBNqAJtS0uMAbYLCYUZsY4AE4u3TYhcSUbsgB3uxMphTGmkvcrVHIP9CE+APKAKYwBxUcifT5I6WqBKhnuQETOB3k+9E14zo/JpFCJJSD1enGJC08sEWrNAKxO/pzsIOVEhl+VrHjimxCPINpAH2VPNBcoigHFh7jrpQZTeqdGynBX0fMR727H1yWJFiJ1qOf9Cm1CgHh2vbTwaMXhoA0UZtqQYVUy/MptwBsMu8SffE42oAQGFB9hfT6owZSukRYepT0f4TkffQlQezYgBCc8soOUE6p0UdoGunk+yOWuW2rU6PUDSJsQb9DzQeIjtRhQfCSQ8+FqAfw+lQdGdEe1sIscGxAEyv3RELHDraL9HYDQrleII+wChHU7blZ2HESfqNLjA+hpA/GG4WkeUAQDig85rbXzQ89ddLJtqhF3PIqHXeTkfACU+6MhqiQaAlLOhyfehYcEqGYcVqPJHBDyfJhk2gDNA4pgQPEho9LBbAHsOfw5uVtTSiDApMOklA+7RNpAzEoHgHJ/NESV/g6AtAnxyd310sKTcmrUaDIHSDbgN9kBkPhINQYUH2Enmsaz6yWD04SGdje8fgaTAAzItit78bCzXYB4XO608GiFKv0dgJDLPbjwUKdb/aKa90sUH3GH3mgtUBIDio+wcz3kiA9yt6YUMcN9QE4GLGaFzTTM8wGQy12vdHp8aOnirazVqnbxm0iA6h1VzvYBAJ+HP8QddqGkYyXp4yzpNCTsbBdfXxMOQO5Wjag6ysVHRb5T+YuH5XwA5HLXK4eCNpCdYUF2hlXZiwdzPnzkctc1/gBDbau6SccBM9mAFhhLfPh9QIBXrbhhhV9W2IXUbio5dLQTADCoQOEJB+hRYhd/pQPZQCoRbUAVASp5PrhHhSod9MmRVhf8AQaLSUCx4uFXPg+IOR/uuMMuzcqOw6CoEnY5fPgwrrjiChQWFsLpdGLSpElYv369GreSh98tPY2rzBIgd6tGVDXxXe8gVRYefm1/3DseOk5bC0QbqFBFgAbFh5kqHfRMVRMXoAPzHTAr2eEW6OH5cHvj7HBKJ9sqguKej6NHj2LWrFk45ZRT8MEHH6CkpAR79uxBXl6e0reSjy8kPjywIhCsdBCEGEZN8X5NCO161fN8yHa3kg2kFHHhUdPzETAHPR/U7ViXqBp+7T4PxOsBBfhGJKtY+TEZCMXFx/3334+Kigo899xz0mtDhgxR+jaJEZxwmMmKQNDp4/EHYLfEaNlL8X5NEOP9qng+vJEu9z4rHcgGNKFKFKAF6tkAS8T7FQgAJuPl6muBJEBV9H4xS5w2IJ5s62rhcwGJj6RQ/D/o7bffxtSpU3HRRRehpKQEkydPxtNPP630bRIjaGywhGKH8btbaceTKgIBhsNH1Xe5S5MOldjpkpAAVc8GJM9H3A0HGeBqVn48RFREAapO+DXoCY9XgAI0FyiI4uJj7969eOKJJzBixAgsW7YM119/PW6++Wb8+9//jvp+t9uN1tbWiA/VEI3NEirbi3/HQ8aWKura3PD4AzCbBJTmKFxiCYQWHku8C09YiV1fDckIxQjtetULu4gCtM9kQ4sNsGXx5zQXpIxDUt6P+jYgT3zQZjRZFBcfgUAAxx13HO677z5MnjwZ1113Hf7v//4PTzzxRNT3L1q0CLm5udJHRUWF0kMKETQ2wZIBSzB5Ke5dbydNOKlC3O2U56nQ4wMITTpycz78HsDbqfx4iB60dHnR6uKVaWp6Pli8AhSgagcNqEpB7pdgiTPvBwhtRCj/K2kUn9nLysowduzYiNfGjBmDgwcPRn3/woUL0dLSIn1UVVUpPaQQkufDDpslmPNB8X7dIe54B+WpsNsJ+LmIACQPWJ82YMsETME+EzTppAQx4bgw0wanTYWOAF4xBJuI+CAbSAVun1/q8aGm5wNyPB/OQv5INpA0iv9Xz5o1Czt27Ih4befOnaisrIz6frvdDrtd4frt3vCFJhybxYROjz/+Xa+njXfEs9jUHSMhxfrVyfcIVTzxHY+r7x2PIHAR2n6Ei9A8Fb1zBICwUms1Fh0gZAfWRMQHbURSQXWzC4wBDqsZhZkqzLuJ2IAoPjoblR+PwVDc83Hbbbfhyy+/xH333Yfdu3fjlVdewVNPPYUbb7xR6VvJJ9zzEXTn91npkJELIFiKS4lmKSEVJZYAElx4aMeTClQttQakXi+CVGrbR48HgEquU4zkAc13xG6HkChhYXggjrwfgMSHgiguPqZNm4Y33ngDr776KsaPH48//vGPeOSRR3D55ZcrfSv5dPN8AHHE+cTyKoAmnRQhVTmoWOkCkwUWS5xnuwCUeJxiVE02BULxfpucXS+d7ZFKVC21BiQbMIniwyvDBmgtSBpV2qufffbZOPvss9W4dHIkkvMBcINzNdPCkyKq1GyrHTzXBRaHZANx7Xho15tSVC2zBSQRarI6ALSRy12HSB1u1bYBm4yEU9EGOhrUGZOBMFannHDPh1mG+CCXe8rw+QOoaeF/J1Vr+y122ILN5WTtekl8pARVBWhY0rFg5QubrIWHxEdKSJXnwyyFX+MIvWUW8UeygaQxmPgILTx2WZ4PmnRSRU0LP0jKZjahROmDpAAp1g+rQ54AlSYd2vGoDWMs7FwXFQUoAJM1zi63AOAM2gDtelPCoSYVG4wBPT0ftBakFIOJjwRyPgCadFKIuNsZmO+ASemDpIAkQm806aSKpg4Purx+CALv9aI4YUnHZjkLT6ZoA+T9SgVVala9ASHPhy0B71fXUe5BIxLGoOJD5sKTSQtPqlA91h+W8yF5v+KpdCABmjLERWdAdkbsc5cSJSzp2GqL81RbIEyAkg2oTYfbh6YOHhpTL+zC7cAiig85IXgwajaXJAYTH6H26rJc7rTwpAz1Xa0Jej4o7JIyVD1MDIhMOjYn4AHtbKQ2+yojbkJyHVbkZFiVvwFjgJ/PBRY53i+zNaz6kTajyWAw8dHT8xFXpQMlGaWMKtWrHBLM+aCE05SharIpkHzoLeDjJ5sSqqG6AA3L+7HYZXg+AArBKoTBxEeY50NWpQO5W1PFvoYOAMCQwkx1bhBt4ZGb90O7XlWRupumQIDKSjy3ZoQOl6OFR1XUF6ChvB9RfMSVdAyQ+FAIg4mPMM9HQmEXMja12d8YFB9FKk06kss9lHQc16Qjer/8bsDTrs7YCADA/qAArdSbAAXCPGA0F6iJqtVOQJjnQ4DNKuNsF4DEh0IYTHyEez4SSTglz4eaNHd60NzpBZAKz4fMvB+rUzqEjHJ/1EUUoEOLVbKBiJwPGR5QIDLvg1CNA0EbGKxysiksGbAHDy6MKwQPkA0ohMHER8jzIbpbvXJc7t5OwENHqquFGHIZkGNHpl2V5rthLneZAlQQwiYdyvtQiy6PX2oyNzSVng+5u14SoKoizgXDilJgA2GbEBZPSJW8X4pgMPERxfMRj/iwZwPm4KmKZHCqIYVc1Fp0gMRtACAPWAoQbSDPaUW+GieZApFJx3JCbwBVPaUArz+Ag8GEU9W8X1F6PvF7xyM+KOyiBAYTHwm2VxcESjpNAfsaghOOWrsdICLnQ1ayIUC73hSwX+2EYyD6rjdulzstPGpz6GgXfAEGh9WMAdkqNJkDona7BqjNfioxmPjo6W6NP8OZkk7VRlp41BQfieZ8ABTrTQF7gzaQKgGaeNiFbEAtQgnHTnW6HANRN6IAdTtOJQYTH1Haq8ftbiXPh9qkJuwSJecj7rALudzVZn8qxEeYAJXt/aKeP6ojCtBhaoVcgIiNqMkkwBIUOSQ+UofBxEcy7lbqcqomjDEpySxVC4/8XW8w0Yx2vaqxLyXeryQEKIVfVWdfAy9lV3ceCG1EAYR5wuM5aoHO+FECg4mPaJ6POA8Hoh2PqjR2eNDm8gHg7lbVCHe5U9hFd0hltqlKOg7agD/A4A/Ek2xINqA2+6Xcryz1bhJW+QhAZqfb4CbE3Qr4PGqMzhAYTHwkU2JHLnc1Ed3tA/McyLCqcJiYSBTPB1U66INWlxcN7XwyV63JHBA15wOQ6XIn75dqhDygKtqAPygagp4Pu5y5ICMPEIJzFInQhDGW+IhW6SC3syFNOqoQcrerOOEAUcssKfSmD0QBWpRlR7Yah4mJRBGggMyGg562iPNBCGVwef043Mz/RzXxfMQzF5hMoY1IR50aozMExhIfvTSWiQva9apKSpJNgagldtRWWR+o3lhKxBfahFhMAoRgQYXbH0cIlna9qiLOA7kOK/KdqRGgAGAPnvXl9sa7HpTwx456pUdmGAwmPpKodqFdr6rsT0WPDyC51tqiAKVYryqkzvsVXHisGRAEIYmePyQ+lCa83F4QVCqzBXoknNrlJJwCobmgncRHohhHfPh9AAsaViJ9PijhVFVUP81WJJlDxTLyACH4L0N2oDgp6fMCRIRfAZnJhkCYy502IkqzN2Xer9A8AMjM+QCALNHzQWGXRDGQ+PAAOYO4ByO80kFuvN/VDPi96ozRoDDGwk6zTZHLPSznI+5KB5MJcIjnOtDCozT7Grn3K3ULT+SuV3a5LYkPxdlXn4Jye6CH50NMcnd54/V8FPPHdhIfiaLS6V06xOYEFmwJfWrhE1Dcux1HHgABAOP13dkDFB+iUalvc6PT44dJUPEUS5Eong+A24HDFkeVTWYRFx608CgKYwz76nl/h5QJUNHzITf/Kyv4v0+7XsVJSa8fIGwe4OcHJe75oLBLohjH89EN2a5Wkzlsx0MGpyTihDMw3xEhCFTBK+54HPLbKgM06ajE0U4vWsU+LwUpWnisCYZdRBtoP6L0yAyP1OclhblfQMjz4Y7b8yHaAAnQRDGs+JDtagUozqcSKat0ASJK7KzmUEJbXJUOQNikQwuPkogCtDw3Iz4PVDIkm/MhiQ8SoErS0hXe5yVVYZcEcz7EsAttQhLGsOJDdqUDEDbpkPhQkpQlmQUCgF/c9Tp4pYPshSfocifxoSgpaasu0luZZdwLDwlQNRATjkuy7ciyq5wRIIoPa6TnI+6cjywSH8liXPEhd9EBaOFRiZRVOfjDmkKJOx7Z8X7a9apBymwA6LXMMv6FR5wHaBOiJCnL9wDCwq8JdDgFwvp8NPBNDSEbw4sPX4AhEE+lA0CeD5XYk6oMd9HdDkixXrtVbqIZCVA1SFmDMSBs1xtZ6RC/DYi7XpoHlCSl4qNb0rH8apdg9SPzA110wFwiGFZ82MMSG+UvPDTpKIXb55d2vaNKs9W9mehuF8yAmbt1RZd7/LteEqBqsKc+BSeZivQos0zQ89FRDwTi/B6iT1IrPiKTjmV7PszWUNk9zQUJQeIDibhbaderFPsaOuALMGRnWFCak6HuzcJ6fIiEFh6qdNAKrz8giQ/VBSjQ0+Uud9frLAIgACxAx6oryN6GFArQbtUusm0AoAKEJDGs+LCYTbCYeLWDK96WurTrVZwdtW0AgJEDstVtpwz06GoIhLlb47aBoADtbORdc4mk2d/QAa+fIdNmxsA8R9/fkAyMhXJ/RM+H6P2Ke9drCZXdkwhVBH+AYdcRLj5GDkiBAE22wykQ1miM8r8SwbDiAwiP81G8XytSOuF02+0ACdT3OwuDLdYZdTlViB1HggK0NBUC1BV6Lrrc5YZdAGo0pjD7Gzvg9gXgsJrVbzQI9PCC2q0yD5YDwsptyQYSweDiQ+akI2Y4dzXRwWIKIS48owaoeHy2SFTPh8wdj8kctuMhEaoEO2tFG0jFjjdMfHT3fMhZeLKovbaS7JQ8oFkwmVQWoECP0FuGWPEUrwcUoIaDSWJo8SE72dCRD5iC9edkcIqw80go7KI60XI+5NoAQN0NFWZHKm1AXHQEM08aRAKbEIC8oAqzvTaFNgD0LLdOxvNBYZeEMLT4kJ1saDJRgyEF6fL4cbCJHyY2MhWJhrFyPmTteskGlGTnkRQmm3ZbdIAESm0BOlhMYcTcr5TYANCz3DopzwfZQCIYXHzITDYEKOlUQXbXtYMxoDDThqIse9/fkCxRcj6SiveTDSRNl8cvtddPjfcrctEBwkJvZAOaIXpAR5fmqH8zxhTyfNBakAwkPpDopEO73mQR3e0jUpHvAajg+aBJJ1lEAVqQaUNRlk39G8bwfNCuVxtc3jABWprC3C8guZwPOt8lKQwuPmSGXQBaeBRk15EUJhoCsXM+ZC08JECVIpTvkaV+pQvQI9EQSDThlOYBpdh1pB2BoAAtToUH1BfW6TiZapfw811YnF2yCQlji49Ekg1p4VGM8BLLlBDF85FY2IUWHqXYmXIB2lN8JGQDlPulGDvCbCClAlQwSQUEoaq3BGzA7wFczQoO0BgYW3wk1NWOxIdS7Ex1hnu0Ph/J7HrJ5Z40UpM5jRINgQSq3oCwZnNNgN+r1OgMyY7aVgAaJJtaHEBQ7EgnG8uZB6wZgD2Yo9JBPX/kYmjxIe14ZJ1sS7teJWhzeVHdwieBkSXaeT6SSzYkAZosevB8JBR+dRbwcl0wWniSZLvGlS5AmA3I8XwA1PMnCQwtPhLzfNCuVwnE8srSnAzkOq2puWnUs12SSDZ0tYRcuIRsWrq8qAkK0BEp837FKrWVYQMmc+hkU5oLkkISoKkSH5IHtKf3y+tn8Md7yjkAZJfxx9YapUZnGIwtPhJyuVOJnRLsTHWlCxDT8yHLBjLyAHOwMoMWnoQRE47LczOQ60iVAI1R7SLHBgDygipAc6cHR1r5/2XqGoxFnu0DdD/lXIYIzQmKj7ZqJUZmKIwtPpJJNvS0A+52FUZlDFLubgdinu0iywYEgWr8FSDlCcdAmPiI1mJfrsudkk6TRQy5DMp3IMtuSc1No3hAI8SHHBFKno+EUV18LFq0CIIg4NZbb1X7VrJJyN1qywKswYOPaNebMDs1WXiiVLskkmwI0K5XAVJ6pouIFO8PX3gS9XyQFzRZQs3FtJ0Hwk85l9XpNqecP5LnQzaqio9169bhqaeewrHHHqvmbRImIZe7INDCowA7alN4mq1I1JyPBGwAoKRTBUjpmS4i3t49H7IFaHbQBtpo15soKT/TBYjqAQUS9IKS5yNhVBMf7e3tuPzyy/H0008jPz9frdskRULGBtDCkyRNHR40tPPdx4gSrXM+EvB+ASEB2larxMgMB2Ms9ed5AJFllkHE3C9fgMHnl7PrHcgfW2nXmyja2kBkQzMx9JKY54PEh1xUEx833ngjzjrrLJx22mkx3+d2u9Ha2hrxkSoSajIG0MKTJKKrtaLAgcxUxXmBPnI+ZHo+xIWH3K0J0dDuwdFOLwQBOCalAjSa58MsPU9o4SHxkRCMMSn0lpIzXUSihN6AJD0fbTVAQOYcYnBUER+vvfYaNmzYgEWLFvX53kWLFiE3N1f6qKioUGNIUbEn6nKXdjyHFR6RMdhewwVmyvp7iMTq8yHX80ELT1KIAnRIYWbE4q86UXM+QtOgrIWHbCApqltcaHP7YDEJGFqUmbobRym3BhL0fGSXAhCAgA/opH4vclBcfFRVVeGWW27BSy+9hIyMjD7fv3DhQrS0tEgfVVVVSg+pVxLq8QCExEcLiY9E2HSoBQAwYVBuam8c62wX2QI0uPCQDSREKNafQq8HEDXnw2QSYLMk0HBQnAfaj1CX0wQQO5sOL86Sfv8pwdezzwcQOt9FlgA1W0OecBKhslDc571+/XrU1dVhypQp0mt+vx9r1qzB4sWL4Xa7YTaHdjp2ux12ewoOE4pCwi73XIr1JsPGqmYAwKSKvNTeOOaptjIFaO4g/kg2kBCbgjYwrjzVArRnzgfAd70eX0CeHTiLAJMVCHh5CDYvdV7bdEBMOk9pvgcQmgesCng+AB56aT8SzPuYlPz4DILi4mPu3LnYvHlzxGs//elPMXr0aNxxxx0RwkNrxGOUZbXWBsLCLocUHlH609zpwb4Gfnz2xEF5qb151M6G3AbEZEOLOc4dmOj5cLcA7jbAnuIJtJ8jCtDJg/NSe+MoAhTgIrTN5ZMnPkwm3mSq+SAXoSQ+ZLGtJsVnuohEmQeAJKqecsqBmo20EZGJ4uIjOzsb48ePj3gtMzMThYWFPV7XmoR3vZL4CCYZmQzdq00WYshlSKET+Zm21N5civc7pZfC8w1cvgCy4hUf9mx+qJS7lU86xaOUHGla09juxsGmTgDAsakWoFFCb0ASJdc5A4Pig8Jvcvm26igADTYhUbrcAkn0/AlPOiXixtCrZijnQ66bTUwy8gId9coPLI3ZeLAZgAYhFyC041Ei2RCgxOMEEb0ew4szU9dWXSRKzgcQyv2R7wWlpNNEqG9zo6qpC4IAHFuhUeitW9jFaeM20CXbBqjXRyKkpM5x1apVqbiNbBJ2s5mtXIC01fCFR2w2RPTJpkPNAICJmogPvtsO93yIyYay4/0AX3jqt9HCI5NQzo8G/X8kG4isrgj1e0kw8ZhsQBaiDYwoyUJOhlYCNNL75QiKj06PXM8HdTlNBEN7PhxhYRfGZJxkCNCuNwEYY9olm/q9vBwO6OlytyTqcqeKl0TQLN8DiOr9ApKJ99M8kAjfHuQhl8laCNBemow5ExUf5PlICEOLD7G0KsD4UcqyoIVHNoeOdqGpwwOrWcDY8hQ2FQJCO14gwvMBKFHxQjYQL4GAhgIUiCE+Ei27J89HInwbDL9qIkB7aTLmtPFAQJfHJ+965PlICEOLD3G3AyQw6dDCI5tvg4vO2LIcKbkrZYiLjmDmYbMwEm6xTguPbPY2tKPN5UOG1ZTaw8REooTegFDuT+INB8kG4sUfYFL4dfJgLUJv0atdRE94wp4PVwvg6Yz9XkLC0OLDZjZB4AcZJhbvB0h8yEDbZNOwRUf8owdJvNKBbEAu4o53wsDc+MualURceGzRvV9dsheesLM9AjK/16DsqG1Dp8ePbLsltWc7ifRS7SIlnMq1AXtOKIeIKl7ixtDiQxCEsCx32vGojbbJptHd7UAyJdfk/ZJLKN9Dgx1vIBBWahspPjJFl3sih0wKZoD56ZTrOJFKbCvyYDIJfbxbBXqZCxLO+RCEsLwPWg/ixdDiAwjtemVPOmLYhXI+4sLrD+D7w7zHh55i/UDI3Sq/xC6463W1AO72ZEZnGDTN9xCFB9Bz4bFzG+hwy4z3m8zB0nvQwhMnmuZ7ACEvqC2y4skRFKCdcucBgHp9JIDhxUcoyShRd2s1nWYYB9tr2uD2BZCTYUntIVIivcT6AUgn63a6ZdpARg5gC+Yt0MLTJ10ev3Smi6YCFOhRZpnwrheg8JtMpEoXrcSHmJfRi+dDdsIpQDaQACQ+ggbXIdfgskoBwcTLNzvI3doXG8NCLoKgH1crkIQNAGHn/NCk0xebD7fAH2AoybajLLfvQycVRxSgloweXYnFTUhnUgsPCdC+aOn0Yk89P15Bkz4vQNhc0N3zkYQAFT3hzak7GLW/Q+IjuOvtkLvrNVu4AAEo9BIHYrLpZC12vEBsz4e08CSz66WFpy82VoV2vHoToJmSAE3EBkiAxou4CRlS6ERBqo9XEPFy8dPD85Fo0jEA5FXyx+aDyYzMUBhefGRKapd2vWqiabIpENvzkWi8HyB3qww07WwKxBSgTin0Rp4PNQmFXDSygfBmg90qnpzJbELyRfFxIJnRGQrDiw/R4GR7PgDa8cRJq8uLPfU8IVOTWD8QtvD0dPcn5/mgipd4+VbLUmsgrtAb5Xyoywatk009HaHn3USoI5mNaN5g/th8EJDbLdugGF58ZNmTMDgSH3HxXVULGAMqChwozLL3/Q1q4I1eYgko5Pmg0FtMjrS6UNPigkkAjh2U4oPERLzREw2BJAUoudzjIhBg2KhlW3WgW7PByLBPwgfLAUBuBc8B9LmA9iPJjtIQGF58JJzzAYTCLi2HFBxR+iGFXFJ9dHY4MeP9ySw8FfyR3K0xEb0eIwdkS9VFKSeWAE0m6Th/CH9srQ4dWkb0YG9DB1rF7rZlGnS3BWI2GxRtwOtn8PplVjCaraHNKInQuDC8+Egq50Pc8Rzdr9yA0hDN3e1A7Hh/UgvPUP549ACVXMdA08PkRGIJ0ETLrQHAWQjYsgAwWnhiIOZ7HDswD1YtutsCYT0+es4DYtgFSNIDdpQ2IvFgePEh5XwksvAUiAvPfuUGlGaEn2SblgtP7iDuwvW7qcFQDMRKF00FqBjvt/bsM5NUvF8QQt4Pmgt65Vs9zAO99PgA+HEb5mDH1cQqXsS8j/0JDs5YGF58ZIo5H4ksPKLS7ToKdDUrN6g0orrFhYZ2NywmAePKNYr1AzHj/Ul5PszWUOiFFp6o+AMM3x0Su9tqFOsH4g69sUQSBkl89InmnU2BsHmgpwAVBEEqt01IhOaT50MOhhcfSXk+7FlAZgl/fnSfgqNKH8T+HqPLsqUzVDQhRrxf8nwkstsBwhYesoFo7DzCDxLLsltwjBYHiYnEEqDBTYgvwOCRG+8HSHz0QYfbhx21rQA0LLMFYtoAkGSjMUo8loXhxYfk+Uh04RFDL0208ERDF8mmQHwdThOpdgHC8j72J/b9aY4Ydjt2UK7k1taEWAmnYcI4IZc7iY+YbDrUjAADynMzMCBHg+62Ir2caiySVMUL9fqQheHFR6jPR7ILD4mPaGzUQ7IpoF6HU4AEaB/oxwZ6F6AWswk2C58OE+pySgI0JqGQi4ZeDyAs7ye6+HAkVfkWzPloOQQEEpxLDIThxQctPOrh8QWwOXiSraZxXiC+DqceH8X7VeBbPSSbAjEFKBBW+ZbIRiTcBqjJVA90ke8BxPR+AUkeLpddBpisvIMq9X7qE8OLj/CFJyFox9MrGw4eRZfXj8JMG4YVaRjrB+LyfDAGuLyJxPvJ+9UbLV1e7KoLdrfVzcITPd4fyv9KtN+LwM8N6WhIcIDpCa940/gkWxFvbM9HUp1uTeawvj+U99EXhhcfmcm0Vwdo1xuD1TvrAQAnjiiCSctYPxBz4XGExfuTajLV2Qi4WhMYXPry+e4GMAYML85ESbaGsX6gz2RDZzLlthZ7qMkUzQURVDV1oaHdA6tZ44o3IO6cj4Q94dTrI24MLz6STjYUwy4thwCfW6FRpQdrguLjpJHFGo8EMcWHySRIAiShkuuMHN5oCqCFpxuiAD15ZInGI0HfLvdk+r0AYX1/yAMWzqe7uSdowsBcbSvegJh9PoCQ9yuhpGMgrNcHiY++MLz4EMss3b4AfImU2GUWB2vGqbthOPVtbmyp5l6AE0foQXz0Ee9POvw2hD/SwiPBGAuJj1F6sIHYYZfMZPq9AGF9HvYn9v1pyqoddQCAOaP0IEB77/MBJFlqC1CvDxkYXnw4w1vqJlJeJQiUdBqFT3fzRWdceQ6KszU6TC6cOHc8CbncAcr9icKuunbUtLhgt5hwwtACrYfTpwBNetdLIdgeeHwBfBb0fMzRhQDtYx4QPaDeBOcB6vURN4YXH3ZLqKVuwu5WmnR6sGYnn3B0EXIJ+AGfGOuNnvgaCr8laQMkQCVW7+ACdPqwQu3d7UDcOR8JJZwCJECj8M2BJnR4/CjKsmG81vkeQMyzXYDwahdqOKg2hhcfgiAk114bIIPrRiDAsHZXMN9DDyEXT3voeS/iI9TlNMncH1p4JEL5HjqwAQBwB+2gVxtIotQWoE1IFEQBetLIYu2TzoE+834cyRYgFB7DH9tqKPm8DwwvPgAgS6lEM9r1AgC21rSiod2DTJsZUyo1bioEhBoLmSy8KiEKSWe5U7ltBJ0eH77e1wRAJ/keQEiE2nvzfgXngUTCr0BIfLRWA15XYtdIM1YFxYcu8j2APsOv2RncBtrd3sSu78gDsgbw5w27EruGQSDxgSQPFgNo4emGuOOdMbxQ6hqpKdKON5Pn6EQhM5keD0Bo4WmuAvwJ2lEa8eXeRnj8AQzKd2BYUfTkvpTCWEh89BF6S9jz4SwEbNmg5HNOdXMXdhxpg0kAThpRpPVwOH0knIrio7Urif/hopH8sWFH4tcwADpYGbRHUZd7IIGKmTRjjd7c7Z42/mjL7vUtzmRd7tllgNkOMD/QUpXYNdII0d1+8shiCL0IvpTic/POk0Cfno+EBaggAIXD+PNG2vWKXo9JFXnIc9o0Hk2QPvJ+cjKsAIC2RD0fQJj42Jn4NQwAiQ8okGyYWwEIZsDn4rE+A9Pu9mH9Ad7NUBfJpkAo7NLLogMo4PkwmYCC4MJDk47+8j3iyvtJosmYSPFo/li3LfFrpAm6KrEVcccOveU4+DzQ5krGBkbxx3qaB2JB4gPh57skaHBmK1A4nD+v367QqPonX+xphC/AUFnoRGWhDtztQJ+JhoACng8AKBnDHw2+8Oxv6MD+xk5YTAJmHqMTd7s76P2yOnkb7Cg4k002BELiw+DzgO5KbEVEO7DnRP1ydtDz0dqlhOeDwi6xIPGBUGfDpCYdWngAhHU11UOVi4gnLOejF5L2fAAhGzD4wrMmWOk0dUi+lMytOX3kewChxPN2RQSosW1AdyW2AA+J92EHYs5HmyvBQyaBkOejaR/g8yR2DQNA4gNhp1km424tGcsfjS4+dumopbqItNvpPecjU4mFR3K5b038GmlAKN9Dh+72GAJUdLm3JLPrFReehp2GPlZdKrEdoZMSWyB4qFxQUPQyF4g5H74AS+yQSYDnf9myef5X097ErmEASHwgtPC0KbHw1BtXfOxv6MCBxk5YzQJmDC/UejghxJyPGLvenAwFFh5RgNbvNGzisdvnx+d7GgHoKN8DiCvvJ9ehgMs9bwhgcQB+t6H7fYjJpropswZCAlQwxWw0JzadbHUlaAeCABSN4M8p9NIrJD6g0KQjeT62G3bhEb0eUyp15G4H4gq7iDaQlPgoGMorXnxdQPP+xK/Tj/lm/1F0ef0ozrZjTFnvnqaUE0fFk7jrTcoGTCagOBjzN6gXNLLEVkfiQ+rzkt1ryb0gCNLc1Zao+AAo6TQOSHxAqYVnGGC2cddeizFr/HV1im04fWS4AyEbaEtq4TGHks0MuvCEV7noosRWJB4bcHIbcPsCcCXaaAwAisXcH2PbwMSKPORn6qTEFgDcwY6jMQQoEAq/tSZT8UJJp31C4gOhhae5M4mFx2wBioJq14ALj8cXwBdBd7uudjtAmOej90lHXHiSEqCA4ROPw/t76Ip4Ek5tFmlDnLDLHQjteg2adCqV2Oop5wcIE6CxxUe2XcmKF/J89AaJDyjk+QAMvfB8urseHR7ubh9bFr2MTTP6aKsNRNpAwlnuAFBi3FLLcHf7bL2U2IrE4fkwmQQp9JJcCFb0fBhv18tLbPkm5JTROhOgUuJ57zYARFa8JIyUeLzLsGH4viDxASBHMfFh3AZDb3xbDQA459hy/WS3i8RR6SCKD1+AJX6+C2Doqqe3N3EbmFpZoC93OxCW8xF74QmJUAWSzw1Y8fLN/ia0u336KrEV8cTn+RDXg6TER/5QwGTlHVVbDyV+nTSGxAeAPMVc7sZceNpcXny0pRYAcP7kgRqPJgpxVLs4rGZYzVw0JVdqGbbwGOiMF8YY3thwGABwnh5tII5Gc0BYvD+pipfKUMWLwQ6bfHMjt4G5owfocBMSnwCVzndJJvRmtoQ1nqTQSzRIfCAs2dDlgz+QjMs96G5t2GGohWfZliNw+wIYXpyJ8QN1FnIBQrveGDseQRCUCb/lVfIumn6PoQ4a3FrTih1H2mAzm3DWhDKth9OTOEptAYVCsOEVLwZKOu3y+PH+Zr4J+fGUQRqPJgp9dDcVkc53SUZ8AFRu2wckPhCacIAkdzy5g/lpiX6PoZrLvPltcMc7aaC+KhxE4t71KrXwiAmHxmk2JtrA3DElUvKurogj4RQILTxJ7XqBsIoX4+T+fLS1Fu1uHyoKHJhama/1cHqSypwPACgZxx9rv0/uOmkKiQ8AVrNJOlwu6YWnxFjNxo60uvDZHn6Gw7mTdOhuB8LCLrHPmlEs8bjYWC22/QGGtzbyfA9dht2AuLrcAmE2kEzlGxCW/2UMGwCA/67nuQ0XTB6kv5ALEH/OhxJJxwBQPpk/Vm9I7jppiuLiY9GiRZg2bRqys7NRUlKC8847Dzt26N/tlKf4wmMM8fH2xmowBkytzMfgQqfWw4lOHNUugJJVT8YSoJ/tbkBdmxv5Tqu+TjANJ17Ph4M8H4lQ2+KSDpK74Di9CtD4bEAxz0f5JP5YvyN0b0JCcfGxevVq3Hjjjfjyyy+xfPly+Hw+zJs3Dx0dHUrfSlGUq3gRxYcxXO5vfKvjJEOA595I4iN29r0inW6BUOLxEWPZwNnHlsNm0akzNY5SW0BBATog6HKv3w54u5K7Vj/gzY2HEWDAtCH5+jnNujtik7E+wy4KVLsAQHYpkF0OgAG13yV3rTRE8R7YH374YcTnzz33HEpKSrB+/XqcdNJJSt9OMRTv9WGAON+O2jZsrWmF1SzoM8kQCE04AJARO9FMMRsoncAfG3dxd38fbt7+TIfbhw+/D1Y66XXHCwCuFv6YEVuAKrYJyR0EZJYAHXVAzXfA4BOSu56OYYzhf2LI5TgdJpqKSJuQPhJOHQpUu4iUTwZ2VAPV3wKVM5O/Xhqh+jalpYX/0xcUFET9utvtRmtra8SHFii28IhxvqY9QGdTkqPSN2JZ3ZxRJfrr6yDSdZQ/2rIAc+xESMVsILsUyK0AWIBPOmnMsi216PL6MbQoE5Mr8rQeTu+4mvljX+JDLLNMps8HwM8OGTSVPz/8TXLX0jnfH27Frrp22CwmnHWsTjchQNyltmLOR1Idr0UGinkf6T0PJIKq4oMxhgULFmD27NkYP3581PcsWrQIubm50kdFRYWaQ+oVxXp9OAuAwmCJ1aH0nXQCAYa3gu523SYZAmGLTl6fb1VMfADAwCn88dC65K+lY97Qe6UTAHhdgM/Fn/dhB+rYQPrOAwDwvw3c6zFv7ABp4dYlcSYdF2bxjVRThye5bsdAWNIpiY/uqCo+brrpJnz33Xd49dVXe33PwoUL0dLSIn1UVVWpOaReUXTSGTSNP6bxwvP1/iZUt7iQbbfg1NE6TTIE4na3A2HJhorawPrkr6VTjrSGkgz7hQCFEIfLXaGEU8AQng+PLyB1ttVlb49wupr5oyMv5tsKM+0AAI8/gDZ3kh6wsqD4aNwdmosIACqKj1/+8pd4++23sXLlSgwa1LtR2u125OTkRHxogWIldkBo0klj8SH2dThzQhkyrGaNRxODOCccQEUBmuzuSae8FUwy1HWlExCygYxcXg4fA0XngfLJAASg+SDQXp/89XTI6p31aOrwoDjbjhP1dp5POIyFQrCO2D1IHDYzMoOtFxrbPcndN7MQyBvMn1dvTO5aaYbi4oMxhptuuglLly7FihUrMHToUKVvoQqKLjwVx/PHw+vT8lAhl9eP9zbXANBxlYtIAmGXZiVsoOxYwGThCYfNB5O/ng5ZGmynrutEUyBkA3EI0MJg7lKb2we3L8lzWTJyQ6ebpqn3Q0w0PW9SOSxmnVY6AfyMlUDw/7oP8QEAhVnc+9HY7k7+3hR6iYri1nLjjTfipZdewiuvvILs7GzU1taitrYWXV36LjfLc/JJ52hnkkoX4DX+1kxeaZGGrXU/2noEbS4fynIzcMLQ6InEukFG2KUoGOtNercDAFZHqOolDReebTWt2F7L26mfPaFc6+HERvJ85PX51lyHVTrjp0EJO5BCL+kXfmvu9OCT7UcA6LzKBQh5Pcw2fvxBH4h5H4rYAImPqCguPp544gm0tLRgzpw5KCsrkz6WLFmi9K0UpSiodOuVULpmCzDwOP48zUIvjDH8c/UeAMBPplXos5NhODLCLsVZGQC49yvpXS8QFnpJP/Hx7y/2AwBOHa3TdurhiAI0DhsQBEGaCxraFJgL0jjp9J1N1fD6GcaW5WBMmQ7PdApHFB8ZebwSqQ/EvI/GDvJ8qIUqYZdoH9dcc43St1KUkpyg+GhVwNiAtM37WLurAVuqW+GwmnH1jCFaD6dvZIRdchwW2IKuY0V2PAPT0waOtLrwv/U85PLzE/tBWFWGDQBAcXZwLlBCfEiejw1pFYL1Bxie/Ww/AOBCvSeaAmGbkPjOnFHUC1o2kT82H0j79gty0HGQLrWUBCecNrcPXR4ldr3BvI802/E8GfR6XHJ8hX57e4QTnmzYB4IgSAtPXasr+XuLC0/Nd4BPIVGrA/716T54/AFMG5KPqUN0HnYDZNkAABQr6QUtGQdYHIC7hVc8pAnvb67BvoYO5Dmt+Mk0bdojyCLOZFORQkl8KGADjnygYBh/fpjOeREh8REky25BhpX/OhTd8dRtS5sSq01Vzfh8TyMsJgE/P3GY1sOJDxkudwAoUnLXWzAMcBQAfnfadLxt6fTi5S8PAABumHOMxqOJExkJpwCUDbuYLaEzPtIk94cxhn+s5ELqpzOHItOueKNs5ZErPoJhl4YOBTwfAFAR7HB74FNlrpcGkPgIIggCSrJ5zL+uTYFdb1YJkFcJgKWN2hW9Hj+aWI6BeQ6NRxMnMl3uogdMkV1veJfLNAm9vPDFfnR4/BhTloM5o4q1Hk58yEg4BcLCLkrYAJB2eR+fbKvD9to2ZNrMuGbmEK2HEx+S+MiL6+2Kej4AYOjJ/HHvKmWulwaQ+AhD0VgvkFYJh3vr2/HhFn6Gx3UnD9d4NDKQ63JXzQa+VuZ6GtLp8eG5z/YBAH4xZ7h+O5p2R6bnQzUbOPC5MtfTEMYYFge9HlfMqNR/srGIZAPx5nyIpbYKeT6GBcVH9caQEDI4JD7CEHe9dUpNOmnkantqzV4wBswdXYJRpf3ooDS5C0+WwgvP4Bn8cd+afp9wuGRdFY52elFZ6MSZ40u1Hk78yPR8SGEXxXa9JwGCCajfBrQcVuaaGvHFnkZsrGqG3WLCz2f3k9ArkHjOh1Jhl5zyYM8XBuzv/+uBEpD4CENKNlQi7AIAw+bwxwOfA54OZa6pAUdaXVJDqV/M6UdeD78vtPA44+u+WKyGALVlAR31/fpYbY8vgKfX7AUAXHvSMH03lOqOzIVHcc+HswAoD5be71mhzDU1QvR6/GRahfR76hckmPNxtNMDn1+hTQOFXiLoRzOI+pQoPekUjeCtdf0eYN9aZa6pAc8GqxumVvaT6gaRzkYAjO86nfGNW/GFx2ILTTq7P1bmmhrw1sbDqG5xoTjbjh/rvaFUdzrq+GNWfGcQKW4DAHDMXP645xPlrpliNhw8KiWcX3tSP/J6AJF9PuIg32mFIPCu7E1KNJ4EQpvRvauVuV4/h8RHGKGEU4UmHUEAjvkBf757uTLXTDEtXV68/BVvD96vvB4A9zYAgLMQMMV3/oyqC08/FR+BAJOSjX8+e6i+z/Lpjt8X6q2QGV+CrGgDHR4/Oj1JHiwmMlwUHyuBgAKl/BrweNDrcd7kgRiUr+OzfKLRKc/zYTGbpM1oTbNCnvAhs/lGqHFXvw+/KQGJjzBCPR4UXHhGBMXHruX98oCxF7/Yj3a3DyMHZOGUUTo+vTYa4o43zkUHiOzxkPRx2iKi+Kj6OhQG6kd8tPUI9tR3ICfDgstOGKz1cOQR4f0qjOtbMm1mZcvuAV7xYs/lOUj9sNPltppWfLytDoLQDzchgGzvFwBJYB06qtDRII68ULfTfeT9IPERhuLxfoAnm5ltvLtdP2syVNfqwhOr+I73F3OG67+Venc6+HHvssRH0AY8vgCalTjZFADyhwCFIwDm73eTjtcfwF8/4ucTXTVjCLIz+kl1g4i46MjwfgmCgLJcXkperdSu12wJVTzs7n+hl8dW7AIAnDm+DMOLszQejUwC/pAXNGtA3N8mthM43Nyp3FikvI/+NQ+oAYmPMMpyedilscMNl1ch16gtE6icyZ/v6l+hl798sB0dHj8mVuTh3Ik6P7k0Gu3yPR8ZVrMkQKqOKjjpiB6wfhZ6ef6z/dhV146CTBv+r780lgtHXHQy5XntKgr4rreqSUEb6Kd5H5/tbsD7m2thEoCbTu0njeXC6WwEWIB7vzLjSzwHgEH5XHwo5vkAwvI+VvVLT7iSkPgIoyDThiy7BYwBh5RcePph3se6/U1Y+u1hCALwhx+N639eDyBs4ZHXDGtwcOE5qMbCs/uTfjPpHGl14ZGPdwIA7vzh6P7T0yGcdtEG4l90AGBwAV94FLUBMe/j0Lp+0+vB4wvg92/x7rxXTq/U/wFy0WjnJ+/CWRS39wsIhV0OKyk+Kk4ALBlAey1Qu1m56/ZDSHyEIQiCtPAcaFRh17v/M8Cj4HVVwh9g+P1bWwAAl0yrwMSKPG0HlChi2CVLnvioVMMGKmfxSaf1MFC/Xbnrqsh9729Dh8ePSRV5/ePwsGgkEOsHVBKgeRVA0Si+C+8nbvdnPt2LPfUdKMqyY8G8UVoPJzFE8SEj5AIAA9XwfFgzgGNO48+3vKHcdfshJD66UVnIJ539Si48RSOB3MH8jI99a5S7rkq88tUBbKtpRa7DittPH631cBIngYRTABgctIGDStqA1cGz3QFg54fKXVclvtjTiLc2VkMQgD+eO75/er6AhMMuqogPILQR2f6ustdVgcPNXXjsE56ndteZo5Hr6IeeLyAUfpW5CQmFXTqVSz4HgPEX8Mfv/9dvvKBqQOKjG5WFmQCAg40KNgUTBGDk6fy5ztVuU4cHD33EXe2/njcSBf3h5NreSHLhOdCkcGO40Wfxx+9eV/a6CuP1B3D329zVfvkJgzFhUHyt6XVJgmEXVXI+AGBccOHZ9i7gblP22grzh3e2oMvrx/FDC3D+5H6Y8yWSqOcjmHDa4fGjpUuh5HMAGPlDwOrkRQjV6XHuVyKQ+OiG6Pk4oPSkc+xP+OO2twF3u7LXVpAHl21HS5cXY8tycNkJlVoPJznaE8v5EG2gqklBdysAjDufVz7VbdF1vPeFz/dj55F25Dut+HV/dbWLJBh2EcVHY4cH7W6Fen0AwMDjgILhgK8L2P6ectdVmJU76rBsyxGYTQL+eO74/nOOTzTaE7OBDKtZarWvaOjFlskFCAB8v1S56/YzSHx0Q4z3K+pyB/jppgXDAW8nsO0dZa+tECu2H8GrX1cBAO49dxzM/dXVDvDmUm01/HmuvF3b4ALu/apu6YLbp2BDKEd+aNLZ9Jpy11WQPfXt+GvQ83XHD0cjz9mPPV8A0Bq0gWx5Z9HkZFiRF0ywVdT7IQihjch3S5S7roK0ubxSkun8WUP611lO0ZDEhzzPBwBUBBOPFc3/AkKhly1v9vsznxKFxEc3xHh/1dFO+AMKxuMEAZh4KX++6RXlrqsQda0u/Pp1fvbIT2cNwbT+1EY9Gm01vK+GySo77FKUZYPTZg5WPSns/Zh4CX/c/F/ddbp0ef246ZVv0eX1Y+bwQlw8tULrISVPCxfTyJXfHE21vI9jL+KPe1cBbUeUvXaSMMZw1xvfo6qpCwPzHLjltJFaDyl52vhp3HLnAQAYUcJ7muw4onCI7JgfALZsoPVQWpx4nQgkPrpRluuAzWyC189Q3azwwnPsxfxx31qguUrZaydBIMBw2382oqnDg7FlObjzjH6cZCrScog/5g4ETPLMPLzqaW+9wnkfx/wAcBTwUjudHTD1lw+2Y1tNKwoybfjbTyb13yRTka5mwN3Kn8v0fgHAsCLuAdul9MJTMAwYdDyvevn+f8peO0mWrKvCO5uqYTEJeOyyyciyW7QeUvK08OMhkCdfTI8u5aXF22talRwRr3oRc8AMGnoh8dENs0nA8KDa3aq0weVXApWzATBg83+UvXYS/HPNXny2uxEOqxmPXjoZdks/OrujN6Qdb2K797HBfgZbqxW2AYst5HLVUehl+dYjeP7z/QCAv140EQNyMrQdkBKINuAs5HF2mYwt5zawRWkbAEIbER2FXnbUtuGed3iJ/a9PH4XjBsd3Doqu8ftC56jkyc9hGx0MOSnu+QCA8T/mj9//F/Aq1Em3H0HiIwrjxUnncIvyFxfd7pte00WZ1bcHj0rts+/90TgcU9LPWif3RrLiQ1p41LCBYPhtuz4qHmpaunD7fzcB4AfHnTK6n53h0xuS9ysxGxhXzqt8FN+EADz52GQBajYCR7Yof32ZdHn8uOmVDXB5Azh5ZDGu7Y/dbKPReoiHX832hHI+xHyXg02dyh0yKDL8VG6bnY262oymChIfURBLC79XY8cz9lzA4gAadgL7P1X++jI43NyF615cD1+A4exjy3DR1H7aSCoaYlgrN7GfafxAbgOq7HoHTuFnvXg7gW9fUv76Muj0+HD9i+vR3OnFhIG5+H8/TIOQm4hoAwm424GQ9+tAYydaXQqWWgK89HfUmfz5F/9Q9toyYYxh4dLvsKuuHSXZdjx88cT+H3ITaQ4LucgMvwJAYZYdRVl2MAbsPKJwlaLZAhx/LX/+5RO62IymEhIfURB3PJvV8Hxk5ACTLuPPP31Y+evHSavLi/nPrUNdmxujBmTjvgsm9O9yuu6Iu95EF56g5+NwcxeOdniUGhVHEIAZN/Dnny8GfApfP058/gBufvVbbDrUgnynFYsvmwybJY2mBDHWn6DnIz/ThvLgeU/ba1TwUM26hT9+9x9Nj1h/YNkOvLmR53n8/ZLJKAyWl6YFRw/wxwRCLiJi6EXxvA8AOO4qwJoJ1G3VXQ6Y2qTRTKMcY8tyYBL4cdp1rSrE4mbdDAhmYM8KTY7X9vgC+MVL67HjSBtKsu147qfTkNPfTivtC3HHk6DnIyfDKvX7UMX7MfEy7gZuPcRjvimGMYZ73tmCj7fVwW4x4Zmrp0kN9tKG5uRCbwAwtlz0gKmwERk0leeABbzAl48rf/04+PcX+6WTqxddMAEzhhdqMg7VkDwf8qudRETxocpm1JEHTL6cP//yCeWvr2NIfETBYTNLuQ+qGFz+EGDChfz52tR6PwIBhoVLN+Oz3Y3ItJnx7DXTUB7s5Jc2+L1A017+vDDxUzjHl4vhNxVswJoBTA96Pz59JOW1/k+u3ouXvjwIQQD+fskkTKlMg+TC7jTyRRUFQxO+hOgB++6QCjYAhLwf65/n1Tkp5MPva3H32zzf5Fc/GImL0qG0ujvNQc9HfuKej2lDeduBL/c2KjGinpxwPQAB2LUMaNilzj10CImPXpg4KA8A8NW+JnVuMPs2/rjtHaB+pzr36IY/wHDXG5vxvw2HYDYJWHz5cVJuQ1rRtI/vJq2ZQE7ieSyTB+cBAD7fo9KkM3U+YM8FGnYAO95X5x5ReGbtXtz/IT/c7ndnjcUPx5el7N4pI+DneVUAUJx4Hsv04MLz6e4GZc/3EBnxA6BkLOBpB755Vvnr98LK7XW4+bVvwRhw6fGDcdOpiYt0XSMu5vmJC9DpQwshCMCe+g51POGFw0PNB1O8GdUSEh+9cOJI3pJ79Y56dW5QMiaYcMaAT/+mzj3C8PkD+NV/NuK1dVUwCcCDFx6LU0alSVVDdxp49Q6KRyaUZCZyctAGvtrbCJdXhYZgGTnAtJ/x52sfSon3Y/GKXfjTe9sAADfMGY75sxOflHXN0f38IEeLIymX+5Qh+ciwmlDf5lan3FIQQt6PL/4BuFTysITx/uYaXPviN/D4Apg3dgD+eO649Mr3EgkEQidIDxiX8GVynVYp+fgLtbwfJ/2aP256FajeqM49wthT3658F2+ZkPjohROPKYJJ4PXdijcbk27yK/646VXg8Hp17gGe43Hza99KSWWPXjoZFxyXRpUt3REnnCR2vABwTEkWynIz4PYF1POATf8F99BUfwtsfFmde4DneDzw4Xbp0MAFPxiJ20/v5+e2xKKOCywUjQBMifetsVvMmD6M50Gs3dmgxMh6Mv7HvPqpswFYuUidewT57/pDuOmVDfD6Gc6ZWI5/XH4cLOY0XQaO7uMVZZYM3tgtCWYEbUC10MugqcCEiwAwYNldqla+rD/QhB8/8Tmufu5rNCmdTC+DNLW65MnPtGFiRR4AYPVOlbwfg6YGz3lgwLsLVGm33djuxhXPfIX3N9fCZjbh8cuPw9nHlit+H11RL3o+kltcBUGQvB+qecCySoA5d/LnH98NdCovclxeP371+iY8Hkws/M2ZY3Dz3BHpudsVEQVoyZikL3XiCG4Da3apZANmK3DmA/z510+p0veDMYbFK3bh169vQoABl0yrwCM/mQRrugoPgFeQAHweSEKAApAScdfsVCn8BgBz7+ZC6cBnqp3/9f7mGlz29Fdo7vQix2FV72eJgzS2vOSZM5KHJVZsr1PvJvP+xOP+NRuBdf9S9NJbq1vxo8Wf4ev9Tci2W/DM1VMxb5y8A7b6JdKuN/mdvSg+Vmw/ot4/6vRfAMVjeLOhFX9U9NK1LS785J9fYOmGwzCbBPzpvPH4v5PSpIFULCTvV/I2cNKIIgA8/6u5U6Wd4vBTgTE/4g2x3r9d0Z1vh9uHG17eIHm9fj57KBZdMKF/HxwZD0eC4qMk8ZCLyMzhRciyW3C4uQvr9h9N+npRyasAZv6SP1/+O8DnVuzSPn8Af/lgO254eQPcvgBOG1OCV//vBE3Lqkl8xGDeON4Rb+X2OnUSjQC+8537O/58xR8VOWiKMYalGw7hx098jsPNXRhS6MQbN87ESSPlHS3fL3G3hXY85ZOTvtyJI4uRaTNjf2OnevFesxU46yH+/JvnFAvBfbm3Eecs/hSbDrUgz2nFv+cfjyumJ57136849A1/LD026UsdU5KFMWU58PgCWLpBxX4cp/+Z56gc+Iz3/lCAPfXtuODxz/HB97WwmgX85YIJ+O3ZY9Pb6yVyhJ/Mq4T3y2Ez48wJfOP23/Uqnss161Ygq5TnLH3yB0Uu2dDuxlXPfo0nV3PP5/xZQ/HkFVPgtGl7bg+JjxiMKcvB1Mp8+AIMr3x9UL0bTZ3PF0p3K/DWDUmFX452eHDjKxuw4D+b0OX148QRRXjrxtk4pqSfH4sdL4fX8wO7cgcDOclXcWTZLThvMj+U7KUvDyR9vV4ZMjsUglt6LeBKvLeIy+vHn9/bikuf/hL1bW6MHJCFt2+cjVnHFCk3Xj3TXsfj/RCAQdOSvpwgCLjsBJ60+srXB9XzgOUNBk4K5oG9/+tQqXACBAIMz3+2D2c9uhY7jrShONuO166dgUuOTzz5tl/BGHDwS/580FRFLnnhFF6K/P7mWnR5VDqR2p4FnPMIf/7FYmDnR0ldbvnWIzjz72vx+Z5GOG1mLL5sMn5/zlhd5PloPwKdc+UMvlN85auD8PpVqkYwmYEfLebxvt0fA6v+IvsSjDEs21KL0x9Zg/c318JiEvDreSPx3DXTkOtMswZisagKHk9dcbxilxS9BR9tOYIjannAAOD0Rbw0uHE38OYvEnK9f3vwKM5d/BmeXrsPLBjbX3rDLAwONkwzBOKiUzKGN3FSgPMmlcNpM2N3XTu+Viv5GOA738Ez+EZkyZWAR35FQlVTJ6589ivc885WuLwBzD6mCO/+cnZ69nLpjcY9QEcdP9Ol/DhFLjltSD4GFzjR7vap6/0YdUaw9weAN68HWmtkX6K504NbX/sW//fvb1DX5sbw4ky8deMsXeX7kfjogzPGl6Eoy466NjdeW6eiwZWOB855lD9f8wCw/b24v3VPfTuufm4drntxvWRob9wwCzedOkIXCjeliAtPxQmKXTLcA/boJyo2AcosBC7+N2C28UPnPnsk7m+tb3Pj169vwvmPf44dR9pQlGXDM1dNxV9+fGx6HIsuh6qv+KOCNpCdYcW5k/jE/cCyHQgEVPJ+mK3Ahc8BmSVA3RbgvQVxi9BOjw8PLduBuQ+vxme7G5FhNeEP547Dv+cfnx6nFMvhwGf8cdBU3tBPAQRBwM+CpemPfLxL+fN+wvnBH4DSCTwP7H8/jzv/w+cP4MUv9uPUv67GmxurYRKA604ehvduPhEjBujL+22wlUk+NosJN54yHADwwAfbUdui4s534k9CinfpdUDNdzHfXtviwu/f+h4/fGQN1uysh81swk2nHIN3f3midDieofB0Agc+588rZyp66V/N44mLL391EOsPqLjzHTQFOCNY+fDJH/rMem9zefHoJ7tw6kOr8N/1/DybHx83CMtuPQmnjZV/imdasGcFf1TYBn556gg4bWasP3AUr6u5880pAy58FhBMvAx/zUMx3+7xBfDq1wcx96+rsXjlbnh83NvxwS0n4aoZQ9LnkDg5iId2Vs5S9LKXnTAYw4oz0djhwT9W7lb02hFY7FyEWjOBA58C//sZ4O/9VF3GGD7eegRn/H0tfvfWFjR1eDCiJAv//cVMLDxjDDKsyVX7qAGJjzi4asYQTKrIQ5vbh9+++b265Unz/sT/YTxtwAvnRD37paqpE/e8vQUnPbgS//7iALx+hlNGFeOj207Cr08fBYdNf4aWEvZ8Avi6eOw8iaZC0ZgxvBAXTeG9URYu3axO0zGRKdfwA6dYAHj9GmDrWz3ecrTDg8UrdmH2/Svx8PKdaHP7MGFgLv73i5n468UT0+twMDk07OYJxyYLcMxpil66PM+BBT8YCQBYpPZGZOiJwLw/8+cr/xRVgLi8frz81QGc8tAqLFy6GTUtLlQUOPDPK6fgxZ8dj6FFaXZWT7z43MDOZfz5sDmKXtpqNuE3Z/IE1mc/3ade3w+A96i55GXuCd32DvDWjT0aEfoDDO99V4MzH/0UP//3N9hV1458pxV/OHcc3r/lRBw3WL+hNoFpWegbhdbWVuTm5qKlpQU5OTlaD0diR20bzn5sLbx+hqtnVOLuc8apt6NwtQAv/Rg4tI6X4V75BgLlx+HLvY144Yv9WL71CESv77Qh+bjttJGYMbzQGBnssVh6LfDdEmD6jcAP71P88kc7PJj78Go0dXhw4ogiPH3VVPV2FH4fz/vY/B9+COGF/wLGnY8t1S349+cH8ObGw3D7+EQ0vDgTN88dgbOPLU//8sm++PRvwMf3AMNOAa56U/HL+/wBnLP4M2yracWw4ky89n/TUaJmSGPtX0NVD6f+Fjjx16g62oWXvjqAJeuq0NzJXf8l2XZcf/JwXHbCYF3uclPK9veB1y4FssuA27Ym1eU4Gowx3PjKBry/uRbZGRa8fv0MjC5Vca3a/h7P/2F+fiDlOY+gwQX855sqvPLVQRw6yptgZtrMuGJGJW44+RjN8vzkrN8kPmTw2tcHcefSzQCAn0ytwJ/OH69ekx5XK9jLF0Go+hIekwOLzNfiubZQDPvEEUW47qThmHUMiQ4AXLA9PI57jH76geIud5Ev9zZi/vPr0OnxY+bwQvzzyinIVutE4IAfePMG4LvXwCDgpYxLcXfzmQgEHZZjy3Jw3cnDSHSIMAY8MZN7Ps56ONS6XmGqmjpxyVNf4nBzF4YXZ+KF+cdjUL6KCb1rHpL6v6zJOBXXNl8JF7hna1C+Az+bPRSXHk+iQ+K/84Hv/8cPbvyhOh1jXV4/rnjmK3xz4ChKsu34x+XHYdqQAlXuBQD47nWwN66FwALYbR+HK9pvQq2fh9ZzHVZcPXMIfjpzCPIzbeqNIQ5IfKjI/9Yfwu3/5V0CR5Rk4ffnjJU6ICpBq8uLb/Y3Yc3OBny+bT9+274IJ5m54Pkvm4vNx96FK2aP0l3ykOZ89ihvzFM8GrjhS35mhkqs29+Ea579Gh0eP4qz7bjzh6Nx/uSBinnCXF4/NlY149NdDVixtRqXNi7GlZaPAQBrA8fi3WPuxYUnTcLUynwSnuHs+hh4+cc8Tr5gC+BQz+V8sLETP3nqC9S0uJBhNeHmuSPw89nDYLMosxnx+QPYWtOKT3c3YMW2Okw8/AoWml+GRQhge6AC/yq/F/NOmo1TR5eQ8Azn6AHgseOAgA+4dpUivX56o7nTg4v/+QV2HmmHIPD+GTefOkIxrwNjDHvqO/Dprnqs2lkPy95P8LDpUeQInahmBXgs7w5MPvEsnHNsuW5C7SQ+VObD72tx1xubpb744wfm4KwJ5Zg7pgTDijLjrjBp7vRgX0MHttW04fvqFnx3qBlbq1sRnkifYQEeKPoQ5zS/CAEMKBjO1fzI09X40fonnk5g8VSg9TDwo8d4voTKbKxqxm1LNmJfQwcAoKLAgXOOLcfp40oxqjQ77l1oh9uH/Y0d2F7Thi3Vrdh8uBmbqlrgCSvrNgnAgpINuL5tMSwBF+As5K2YJ1+RdNvotIEx4PmzeXKeijvecKqaOvGr/2zC1/t5AnJBpg1nTSjDmRPKMH5gTtweMZfXj0NHO7G9ltvA94dbsOHAUXR06yVxcdEB3ON5CE5PIy/Ln30bP5TO6lD8Z+u3vHsbPx142Bzgqp65UkrT0uXFn97diteDyd52i0mygUmD81AUZ+6Vzx9AdbML22tbsaO2DZsOtWDDwaM9zl6ZnX8Uf2cPoNAV7Dk0+UpeGeNU0esiAxIfKaCli1cZvPD5fvjC1ILNYsIxxfxAshyHFVl2CxgYvD4Gl8+Ppg4P6tvcqGlxoaUreqnWkEInpg8rxKmjSzB7RBHvRLdnJfDGdUB7sAPqMT8A5v4eKEu+g2O/56PfAp8/BuQMBH65QbHSur5w+/x47rP9WLxiN9rdoUx0s0nAsKJMlOc5kOuwIsfBS119fga3L4CmDg8aO9yobXGjoT16CV1Jth0nDCvEqaOLMWdkCXenHtnKXcr1wfbxZZOA0+7hE63RPSAbX+E5MmY78Mv1vFV1CmCM4Y1vD+P+D7fjSGvk33JIoRMVBU7kOqzIdVghCDxB0O0LoLnTi6YOD460ulDb6opaTZudYcHxQwowZ3QJTh1dgoF5DqCtls8De1fxN+VVAqf+Dhh3PmA2WEl1dw6tB/71A54bcc17vHFfilix/Qge+HAHttdGnnw8MM+B8rwMFGfbkeuwQXRSubwBtHR50dLlQU2LCzUtLvijlG/bLSYcNzgfc0YVY86oEowckAXB3Qos/z2w/nn+JmcRMOtm3qzSrq1HnMRHCmlsd2PZliN4f3MN1h84ii6ZVRADcuwYOSAb48pzMX5gDqZWFqA0t5fF09XKe4B8+SQQCAqXoScBM27imf1G3AXv+hh45SJeGXLZfzTxCHV6fFixvQ5vb6zG1/ubpCTAeCnItOGY4iyMLc/BuPIcTB1SgCGFzughFb8X+PppYNUi3ogKAAZMAGbcyBegFAkvXVG3HXh2Hs/7mXs3cOKClA/B5w/gsz2NeOvbw/hibyNqZFbCZNrMOKYkC2PLczG2PAdTBudjVGl29JAKY8DWN4Flv+HePgDIreAen0mXqhpu0i2dTcAzpwFNe4BxFwAXPZfyITDGsOlQC17/pgpf72vCrrp2Wd9vM5twTEkWRpdmY2x5Do6rzMf48tzeQ3kHvgDevTV0jpEjHzj+OmDy5bziTwNIfGhEIMBQdbQTO2rb0NThQZvLhzaXF4IgwGYxwW4xoSDThsIsOwbk2DG4wJlYf/2G3cDKP/MSTBYUO1kDgLHn8QVo0DRj7IJ2LedZ4L4uYNIVwHn/0HpEYIzhSKsb22pb0dDmRkuXF60uHwQAVjO3gzynDYWZNpRkZ2BwId8Zy6a9HljzIPDti/zYcACwZQNjzuaT79CTjCFEjmwBXrwAaK/ldv/TD3Vh+00dHmyraUVdmwvNnV7Jy2kWBFjMJuQ7rSjItKEo247KAicKMm3y83fc7cCXTwBf/xPoCJ64a7ICI34AjP8x35Ao1OFV17TXAS9dANRuBrLLgV98poswREuXF9trWlHf7g7OBT4w8OXWZjFJHrHSnAwMyneiJNsuP2/M7+XnAK39KxdeIkNOBCZcxG0hJ3VdTXUhPh5//HE8+OCDqKmpwbhx4/DII4/gxBNP7PP7+rP4SDnNVXzi2fAi4GoOvW7P4S7HIScCA6fw7qm2NKr5bzsCrH2IHz8OACPmAZe8wrtDGo3OJmD9c8C6Z4HWQ6HXzXZg8AnA0JN5l8fSY3UxISuGu53//Vf9BfC7gZKx3NWeTj9jvHi7gE2vcY9Y3ZbQ64KJtxYfdjIXZuWTgew0OtXa7wU2v849QF1NvCvs1e8AJaO1HlnqCfi5N2z988C+tQDClvWSsXweKJ8MlE3k/UNU8pJrLj6WLFmCK6+8Eo8//jhmzZqFf/7zn3jmmWewdetWDB4c2x1E4iMBfB5g70rg+6XAzg+4+zkCgRtc0Uig8BigcDiPFeeU81p4e5Ymw5ZFy2Gg6kte8779PcAXdGtP+z/emM0Iu/xYBALAoa95ieG2d4C2KOdB5FXyaiDRBvIreZ5MTjkXrHrPG+ls4r1vdnzAJ9qu4NHmI+YB5z0BZBrk4LxYHNkKfP9fbgMNO3t+PauUL86Fx/CP/CH8758ziAs3vduAux2o2cibiG15A2gJdpodMIGHWopGaDo8XdBcxfsD7fggeLpztyXe6uSt28sm8RPVFcwT0Vx8nHDCCTjuuOPwxBNPSK+NGTMG5513HhYtip2FTuIjSQJ+oGYTsH8tbzVesyn6QhSOLZvHCzNyuZs2IxfIyAs+zwMycniXPYudP8Z6LipqyaxY75/7uviuzdvFQwfio7udHwrVXsdL55r2hNzKIoOmAafcBQw/NdnfWPrBGNCwC9i3mreZrtnIj+iOhdUZsoHwv324DUh/ZztgCT6arcHXw14TwmPUYdNL96mGBbiIFG3AF2YL7jagtRpoOcTzGloO89BKOAXDgZN+DUy8VP+Lpha0HOY2sG8tt4H67fx33htmW9AG8sL+/vm9zANhf2/p0R76uhBnyTELBP/2ruAc4Ao9d7fzuau1OvhxmIuN8J8hs5jnusy4iY+DiKSziR83cGgdUL2Rh6a8vEIP1kxgYZWiXhBNxYfH44HT6cTrr7+O888/X3r9lltuwcaNG7F69eqI97vdbrjdoSzx1tZWVFRUkPhQkrYj3Ogad/OFvHFPaFL3yEuK0gzBzFumDzuZ57YMnEILjhy6joZsoHEPf2yuAtqqQx6E/kDhMTycOOZs3sXUiEnWieLp4J6Rhp1BO9jFbaC1mov9/kLOQN5EcPRZwMgfUqmxHAJ+/v9fs5ELk+nXK3p5OeJD8cyshoYG+P1+DBgQeajVgAEDUFtb2+P9ixYtwr333qv0MIhwsgfwjxFRzrpwtfLyXVcL0NXMc0dczcHnLcHPWwG/h3/43DzW6nfzcI/fE/bcHbm7lcSBEP1zqyPswxl6tGXyHU1mMZA7iIcIikamV95KqnHk8yTUoSf1/Jqnk3sVwm1AsoXga+7W4N/eE3r0e0J/9/CvdXfzoptIDLcDS0YUG3Dwv3V2KQ8H5A7kC07BUGNWciiFLROomMY/uuNzc0+jq5mL0e520HWUe6PC/84+d+T/fkwb6A0h9De3iHaQEbQFJw8L55QHPwbyMFG2QQ9MVAKTGSgeyT80RrW08O6Z24yxqNncCxcuxIIFodI40fNBpIiMHP5BGBebEygYpvUoCC2x2IO9UWjuJVKD4uKjqKgIZrO5h5ejrq6uhzcEAOx2O+x2g57ASRAEQRAGRPFT0Ww2G6ZMmYLly5dHvL58+XLMnKnOYV8EQRAEQfQfVAm7LFiwAFdeeSWmTp2KGTNm4KmnnsLBgwdx/fXKJrcQBEEQBNH/UEV8/OQnP0FjYyP+8Ic/oKamBuPHj8f777+PyspKNW5HEARBEEQ/gtqrEwRBEASRNHLWb8VzPgiCIAiCIGJB4oMgCIIgiJRC4oMgCIIgiJRC4oMgCIIgiJRC4oMgCIIgiJRC4oMgCIIgiJRC4oMgCIIgiJRC4oMgCIIgiJRC4oMgCIIgiJSiSnv1ZBAbrra2tmo8EoIgCIIg4kVct+NpnK478dHW1gYAqKio0HgkBEEQBEHIpa2tDbm5uTHfo7uzXQKBAKqrq5GdnQ1BEBS9dmtrKyoqKlBVVWWIc2Po501vjPbzAsb7mennTW/S7edljKGtrQ3l5eUwmWJndejO82EymTBo0CBV75GTk5MWf+h4oZ83vTHazwsY72emnze9Saefty+PhwglnBIEQRAEkVJIfBAEQRAEkVIMJT7sdjvuvvtu2O12rYeSEujnTW+M9vMCxvuZ6edNb4z284aju4RTgiAIgiDSG0N5PgiCIAiC0B4SHwRBEARBpBQSHwRBEARBpBQSHwRBEARBpBTDiI/HH38cQ4cORUZGBqZMmYK1a9dqPSTVWLRoEaZNm4bs7GyUlJTgvPPOw44dO7QeVspYtGgRBEHArbfeqvVQVOPw4cO44oorUFhYCKfTiUmTJmH9+vVaD0sVfD4ffvvb32Lo0KFwOBwYNmwY/vCHPyAQCGg9NEVYs2YNzjnnHJSXl0MQBLz55psRX2eM4Z577kF5eTkcDgfmzJmDLVu2aDNYBYj183q9Xtxxxx2YMGECMjMzUV5ejquuugrV1dXaDVgB+vobh3PddddBEAQ88sgjKRufFhhCfCxZsgS33norfvOb3+Dbb7/FiSeeiDPOOAMHDx7UemiqsHr1atx444348ssvsXz5cvh8PsybNw8dHR1aD0111q1bh6eeegrHHnus1kNRjaNHj2LWrFmwWq344IMPsHXrVvz1r39FXl6e1kNThfvvvx9PPvkkFi9ejG3btuGBBx7Agw8+iMcee0zroSlCR0cHJk6ciMWLF0f9+gMPPICHH34Yixcvxrp161BaWoof/OAH0jlY/Y1YP29nZyc2bNiA3/3ud9iwYQOWLl2KnTt34kc/+pEGI1WOvv7GIm+++Sa++uorlJeXp2hkGsIMwPHHH8+uv/76iNdGjx7N7rzzTo1GlFrq6uoYALZ69Wqth6IqbW1tbMSIEWz58uXs5JNPZrfccovWQ1KFO+64g82ePVvrYaSMs846i82fPz/itQsuuIBdccUVGo1IPQCwN954Q/o8EAiw0tJS9pe//EV6zeVysdzcXPbkk09qMEJl6f7zRuPrr79mANiBAwdSMyiV6e1nPnToEBs4cCD7/vvvWWVlJfvb3/6W8rGlkrT3fHg8Hqxfvx7z5s2LeH3evHn4/PPPNRpVamlpaQEAFBQUaDwSdbnxxhtx1lln4bTTTtN6KKry9ttvY+rUqbjoootQUlKCyZMn4+mnn9Z6WKoxe/ZsfPLJJ9i5cycAYNOmTfj0009x5plnajwy9dm3bx9qa2sj5i+73Y6TTz7ZUPOXIAhp69kD+IGqV155JW6//XaMGzdO6+GkBN0dLKc0DQ0N8Pv9GDBgQMTrAwYMQG1trUajSh2MMSxYsACzZ8/G+PHjtR6Oarz22mvYsGED1q1bp/VQVGfv3r144oknsGDBAtx11134+uuvcfPNN8Nut+Oqq67SeniKc8cdd6ClpQWjR4+G2WyG3+/Hn//8Z1x66aVaD011xDkq2vx14MABLYaUUlwuF+68805cdtllaXPwWjTuv/9+WCwW3HzzzVoPJWWkvfgQEQQh4nPGWI/X0pGbbroJ3333HT799FOth6IaVVVVuOWWW/DRRx8hIyND6+GoTiAQwNSpU3HfffcBACZPnowtW7bgiSeeSEvxsWTJErz00kt45ZVXMG7cOGzcuBG33norysvLcfXVV2s9vJRgxPnL6/XikksuQSAQwOOPP671cFRj/fr1+Pvf/44NGzak/d80nLQPuxQVFcFsNvfwctTV1fXYTaQbv/zlL/H2229j5cqVGDRokNbDUY3169ejrq4OU6ZMgcVigcViwerVq/Hoo4/CYrHA7/drPURFKSsrw9ixYyNeGzNmTNomUN9+++248847cckll2DChAm48sorcdttt2HRokVaD011SktLAcBw85fX68XFF1+Mffv2Yfny5Wnt9Vi7di3q6uowePBgaf46cOAAfvWrX2HIkCFaD0810l582Gw2TJkyBcuXL494ffny5Zg5c6ZGo1IXxhhuuukmLF26FCtWrMDQoUO1HpKqzJ07F5s3b8bGjRulj6lTp+Lyyy/Hxo0bYTabtR6iosyaNatH6fTOnTtRWVmp0YjUpbOzEyZT5FRlNpvTptQ2FkOHDkVpaWnE/OXxeLB69eq0nb9E4bFr1y58/PHHKCws1HpIqnLllVfiu+++i5i/ysvLcfvtt2PZsmVaD081DBF2WbBgAa688kpMnToVM2bMwFNPPYWDBw/i+uuv13poqnDjjTfilVdewVtvvYXs7Gxp15SbmwuHw6Hx6JQnOzu7Rz5LZmYmCgsL0zLP5bbbbsPMmTNx33334eKLL8bXX3+Np556Ck899ZTWQ1OFc845B3/+858xePBgjBs3Dt9++y0efvhhzJ8/X+uhKUJ7ezt2794tfb5v3z5s3LgRBQUFGDx4MG699Vbcd999GDFiBEaMGIH77rsPTqcTl112mYajTpxYP295eTkuvPBCbNiwAe+++y78fr80fxUUFMBms2k17KTo62/cXWBZrVaUlpZi1KhRqR5q6tC22CZ1/OMf/2CVlZXMZrOx4447Lq3LTgFE/Xjuuee0HlrKSOdSW8YYe+edd9j48eOZ3W5no0ePZk899ZTWQ1KN1tZWdsstt7DBgwezjIwMNmzYMPab3/yGud1urYemCCtXroz6/3r11Vczxni57d13381KS0uZ3W5nJ510Etu8ebO2g06CWD/vvn37ep2/Vq5cqfXQE6avv3F3jFBqKzDGWIp0DkEQBEEQRPrnfBAEQRAEoS9IfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBAEQRAEkVJIfBAEoSj33HMPJk2apPUwCILQMdRkjCCIuOnr1M2rr74aixcvhtvtTvszOQiCSBwSHwRBxE346apLlizB73//+4hD7hwOB3Jzc7UYGkEQ/QgKuxAEETelpaXSR25uLgRB6PFa97DLNddcg/POOw/33XcfBgwYgLy8PNx7773w+Xy4/fbbUVBQgEGDBuHZZ5+NuNfhw4fxk5/8BPn5+SgsLMS5556L/fv3p/YHJghCFUh8EAShOitWrEB1dTXWrFmDhx9+GPfccw/OPvts5Ofn46uvvsL111+P66+/HlVVVQCAzs5OnHLKKcjKysKaNWvw6aefIisrCz/84Q/h8Xg0/mkIgkgWEh8EQahOQUEBHn30UYwaNQrz58/HqFGj0NnZibvuugsjRozAwoULYbPZ8NlnnwEAXnvtNZhMJjzzzDOYMGECxowZg+eeew4HDx7EqlWrtP1hCIJIGovWAyAIIv0ZN24cTKbQXmfAgAEYP3689LnZbEZhYSHq6uoAAOvXr8fu3buRnZ0dcR2Xy4U9e/akZtAEQagGiQ+CIFTHarVGfC4IQtTXAoEAACAQCGDKlCl4+eWXe1yruLhYvYESBJESSHwQBKE7jjvuOCxZsgQlJSXIycnRejgEQSgM5XwQBKE7Lr/8chQVFeHcc8/F2rVrsW/fPqxevRq33HILDh06pPXwCIJIEhIfBEHoDqfTiTVr1mDw4MG44IILMGbMGMyfPx9dXV3kCSGINICajBEEQRAEkVLI80EQBEEQREoh8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREr5/2UM8MIEHkBTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHFCAYAAABSEJsFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChlElEQVR4nO2dd3hb5fm/b21b3nams4GQhCRAmCFAkzDLHqWUUUZT+oMCBQrtl9FFFykdlLILbdlQShsoG1KSEDYhIcyQRfayncTbljXe3x9H50i2ZVnjHEmWnvu6fEmWlaPXyck5n/cZn8emlFIIgiAIgiBkCHu2FyAIgiAIQmEh4kMQBEEQhIwi4kMQBEEQhIwi4kMQBEEQhIwi4kMQBEEQhIwi4kMQBEEQhIwi4kMQBEEQhIwi4kMQBEEQhIwi4kMQBEEQhIwi4kMYsDz00EPYbDY+/PDDtI/1xRdfcPPNN7N+/fpeP5s1axZTpkxJ+zOsYuzYsVx88cXG91u3buXmm29m+fLlWVtTIWOz2bj55puzuoZZs2Yxa9asrK5BEOLhzPYCBCEX+OKLL/jlL3/JrFmzGDt2bLaXkxZbt27ll7/8JWPHjmX//ffP9nKELHDPPfdkewmCEBcRH4IgJERHRwdFRUXYbLZeP2tvb8fr9WZhVUIs9tlnn2wvQRDiImkXIe956623OProoykrK8Pr9TJjxgxefPFF4+cPPfQQ3/zmNwGYPXs2NpsNm83GQw891Ocxn3nmGbxeL5dccgmBQIDOzk6uu+469t9/fyoqKqiuruawww7jv//9b7c/N23aNI488shexwsGg4wYMYIzzzzTeG3Xrl1cfvnljBgxArfbzR577MFPfvITfD5fn+tatGgRBx98MADf+c53jN8lOg3w4Ycfcuqpp1JdXU1RURHTpk3jX//6V7fj6Cmt1157jTlz5jB48GC8Xi8+n89IQy1evJgZM2bg9XqZM2cOAE899RTHHXccw4cPp7i4mEmTJnHDDTfQ1tbW55pTJRQKceedd7L//vtTXFxMZWUl06dP57nnngPgu9/9LtXV1bS3t/f6s0cddRSTJ082vn/66ac59NBDqaiowOv1ssceexi/k87GjRv59re/zZAhQ/B4PEyaNIk//elPhEKhPtf48ccfY7PZ+Pvf/97rZy+//DI2m81YL8Dq1as577zzun3G3XffnfTfTXTaxe/3M2TIEC644IJe72tsbKS4uJhrr70W0M4fm83GY489xrXXXsuwYcMoLi5m5syZfPTRR0mvQxD6RAnCAOXBBx9UgFqyZEmf71m0aJFyuVzqwAMPVE899ZR69tln1XHHHadsNpv65z//qZRSqq6uTt1yyy0KUHfffbd699131bvvvqvq6uqUUkrNnDlTTZ482TjmbbfdphwOh/r1r39tvNbY2Kguvvhi9eijj6oFCxaoV155Rf3oRz9SdrtdPfzww8b7/vKXvyhArVq1qts6X3rpJQWo5557TimlVEdHh9p3331VSUmJ+uMf/6hee+019bOf/Uw5nU514okndvuzY8aMURdddJFSSqmmpibj7+WnP/2p8bts2rRJKaXUggULlNvtVkceeaR66qmn1CuvvKIuvvhiBagHH3yw19/tiBEj1P/7f/9Pvfzyy+rf//63CgQCaubMmaq6ulqNGjVK3XnnnWrhwoXqjTfeUEop9etf/1r9+c9/Vi+++KJatGiRuu+++9S4cePU7NmzE/o3TYYLLrhA2Ww2dckll6j//ve/6uWXX1a//e1v1V/+8hellFIff/yxAtQDDzzQ7c99/vnnxr+1Ukq98847ymazqXPOOUe99NJLasGCBerBBx9UF1xwgfFn6urq1IgRI9TgwYPVfffdp1555RV15ZVXKkB9//vf73Z8QP3iF78wvp82bZo6/PDDe63/7LPPVkOGDFF+v99YV0VFhZo6dap65JFH1Guvvaauu+46Zbfb1c0335zU383MmTPVzJkzje9/+MMfquLiYtXU1NTtfffcc48C1CeffKKUUmrhwoUKUKNGjVKnnXaaev7559Vjjz2m9tprL1VeXq7Wrl2b1DoEoS9EfAgDlkTEx/Tp09WQIUNUS0uL8VogEFBTpkxRI0eOVKFQSCml1NNPP60AtXDhwl7H0MVHMBhUV155pXK73eqxxx6Lu7ZAIKD8fr/67ne/q6ZNm2a83tDQoNxut7rpppu6vf/ss89WQ4cONW5E9913nwLUv/71r27vu/XWWxWgXnvtNeO1aPGhlFJLlizpJSZ0Jk6cqKZNm2Z8js7JJ5+shg8froLBoFIq8nd74YUXxvz7ANTrr78e9+8gFAopv9+v3njjDQWojz/+OO77k2Hx4sUKUD/5yU/ivm/mzJlq//337/ba97//fVVeXm6cE3/84x8VoBobG/s8zg033KAA9f777/c6ls1mUytXrjRe6yk+7rjjDgV0e8+uXbuUx+NR1113nfHa8ccfr0aOHNlLIFx55ZWqqKhI7dq1K+7v2vP3jhYfn3zyiQLU/fff3+19hxxyiDrwwAON73XxccABBxj/N5RSav369crlcqlLLrkk4TUIQjwk7SLkLW1tbbz//vucddZZlJaWGq87HA4uuOACNm/ezMqVKxM6VmdnJ6effjqPP/44r732Gueff36v9zz99NMcfvjhlJaW4nQ6cblc/P3vf2fFihXGe2pqajjllFN4+OGHjXD97t27+e9//8uFF16I06mVYS1YsICSkhLOOuusbp+hd7W8/vrrSf1dAKxZs4Yvv/zSWHsgEDC+TjzxRLZt29br7+Mb3/hGzGNVVVVx1FFH9Xr9q6++4rzzzmPYsGE4HA5cLhczZ84E6Pb3EIvo9QQCAZRSfb735ZdfBuCKK66Ie8yrr76a5cuX8/bbbwPQ3NzMo48+ykUXXWScE3qa6uyzz+Zf//oXW7Zs6XWcBQsWsM8++3DIIYd0e/3iiy9GKcWCBQv6XMP555+Px+PplsZ78skn8fl8fOc73wG08+v111/njDPOwOv19vq36ezs5L333ov7u8Zj6tSpHHjggTz44IPGaytWrOCDDz7olV4COO+887rV9owZM4YZM2awcOHClNcgCNGI+BDylt27d6OUYvjw4b1+VltbC8DOnTsTOlZdXR2vvvoqhx12GDNmzOj183nz5nH22WczYsQIHnvsMd59912WLFnCnDlz6Ozs7PbeOXPmsGXLFubPnw9EbkTR7bI7d+5k2LBhvYo7hwwZgtPpTHjd0ezYsQOAH/3oR7hcrm5fl19+OQANDQ3d/kysv7u+Xm9tbeXII4/k/fff5ze/+Q2LFi1iyZIlzJs3D9AKVuPRc00PP/xwn++tr6/H4XAwbNiwuMc87bTTGDt2rFE38dBDD9HW1tZNtHzta1/j2WefJRAIcOGFFzJy5EimTJnCk08+abxn586dKZ9H1dXVnHrqqTzyyCMEg0FjHYcccohRd7Jz504CgQB33nlnr7+HE088Eej9b5Msc+bM4d133+XLL78E4MEHH8Tj8XDuuef2em+sv9dhw4aldN4JQiyk20XIW6qqqrDb7Wzbtq3Xz7Zu3QrAoEGDEjrW6NGjue222zjjjDM488wzefrppykqKjJ+/thjjzFu3DieeuqpboIhVnHo8ccfT21tLQ8++CDHH388Dz74IIceemi3DoWamhref/99lFLdjldXV0cgEEh43dHof+bGG2/sVtgazYQJE7p9H6uzpa/XFyxYwNatW1m0aJER7QCtqDERlixZ0u37cePG9fnewYMHEwwG2b59e58CCcBut3PFFVdw00038ac//Yl77rmHo48+utfvedppp3Haaafh8/l47733mDt3Lueddx5jx47lsMMOo6amJq3z6Dvf+Q5PP/008+fPZ/To0SxZsoR7773X+HlVVZURkesrmhPv7yMRzj33XK699loeeughfvvb3/Loo49y+umnU1VV1eu927dvj/laTU1NWmsQBB2JfAh5S0lJCYceeijz5s3rtusOhUI89thjjBw5kr333hsAj8cDxN+dH3fccbz66qssXryYk08+uVsHh81mw+12d7spb9++vVe3C0TSPs8++yxvvvkmH374Ya/Q99FHH01rayvPPvtst9cfeeQR4+d90dfvMmHCBMaPH8/HH3/MQQcdFPOrrKysz+P2h/6765+v89e//jWhP99zLfFudCeccAJAtxt4X1xyySW43W7OP/98Vq5cyZVXXtnnez0eDzNnzuTWW28FMDo8jj76aL744guWLVvW7f2PPPIINpuN2bNnx13Dcccdx4gRI3jwwQd58MEHKSoq6hZx8Hq9zJ49m48++oh999035r9Nujf+qqoqTj/9dB555BFeeOEFtm/fHjPlAlo0LjrttWHDBt555x0xLhNMQyIfwoBnwYIFMZ1JTzzxRObOncuxxx7L7Nmz+dGPfoTb7eaee+7hs88+48knnzRumLqD6f33309ZWRlFRUWMGzeu1wX/iCOO4PXXX+frX/86xx13HC+99BIVFRWcfPLJzJs3j8svv5yzzjqLTZs28etf/5rhw4ezevXqXmubM2cOt956K+eddx7FxcV861vf6vbzCy+8kLvvvpuLLrqI9evXM3XqVN566y1uueUWTjzxRI455pg+/z723HNPiouLefzxx5k0aRKlpaXU1tZSW1vLX//6V0444QSOP/54Lr74YkaMGMGuXbtYsWIFy5Yt4+mnn072r99gxowZVFVVcdlll/GLX/wCl8vF448/zscff5zyMfviyCOP5IILLuA3v/kNO3bs4OSTT8bj8fDRRx/h9Xr5wQ9+YLy3srKSCy+8kHvvvZcxY8ZwyimndDvWz3/+czZv3szRRx/NyJEjaWxs5C9/+Uu3epUf/vCHPPLII5x00kn86le/YsyYMbz44ovcc889fP/73zdEbF84HA4uvPBCbrvtNsrLyznzzDOpqKjo9p6//OUvHHHEERx55JF8//vfZ+zYsbS0tLBmzRqef/75uHUliTJnzhyeeuoprrzySkaOHNnneVRXV8cZZ5zB9773PZqamvjFL35BUVERN954Y9prEARAWm2FgYvekdHX17p165RSSr355pvqqKOOUiUlJaq4uFhNnz5dPf/8872Od/vtt6tx48Yph8PRrVukZ6utUkp99tlnatiwYeqAAw5Q9fX1Simlfve736mxY8cqj8ejJk2apB544AH1i1/8QvX132zGjBkKUOeff37Mn+/cuVNddtllavjw4crpdKoxY8aoG2+8UXV2dnZ7X89uF6WUevLJJ9XEiROVy+Xq1X3x8ccfG22eLpdLDRs2TB111FHqvvvu6/V3G6uTKNbfh84777yjDjvsMOX1etXgwYPVJZdcopYtW9Zn9006BINB9ec//1lNmTJFud1uVVFRoQ477LCY/7aLFi1SgPrd737X62cvvPCCOuGEE9SIESOU2+1WQ4YMUSeeeKJ68803u71vw4YN6rzzzlM1NTXK5XKpCRMmqD/84Q9Gh5BOz79vnVWrVhnn5vz582P+TuvWrVNz5sxRI0aMUC6XSw0ePFjNmDFD/eY3v0nib6Z3t4tOMBhUo0aN6rNTSO92efTRR9VVV12lBg8erDwejzryyCPVhx9+mNQaBCEeNqXilJQLgiDkAddddx333nsvmzZtkrqFOCxatIjZs2fz9NNP9+q0EgQzkbSLIAh5y3vvvceqVau45557uPTSS0V4CEKOIOJDEIS85bDDDsPr9XLyySfzm9/8JtvLSZtgMBjX/8Rms+FwODK4IkFIDUm7CIIgDBDGjh3Lhg0b+vz5zJkzWbRoUeYWJAgpIpEPQRCEAcLzzz8fd7BgOq3SgpBJJPIhCIIgCEJGEZMxQRAEQRAySs6lXUKhEFu3bqWsrKxPa2dBEARBEHILpRQtLS3U1tZit8ePbeSc+Ni6dSujRo3K9jIEQRAEQUiBTZs2MXLkyLjvyTnxoRdMbdq0ifLy8iyvRhAEQRCERGhubmbUqFEJFT7nnPjQUy3l5eUiPgRBEARhgJFIyYQUnAqCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFyruZDEARBEHKZYDCI3+/P9jKygsvlMmV+kIgPQRAEQUgApRTbt2+nsbEx20vJKpWVlQwbNiwtLy4RH4IgCIKQALrwGDJkCF6vt+CMMJVStLe3U1dXB8Dw4cNTPpaID0EQBEHoh2AwaAiPmpqabC8naxQXFwNQV1fHkCFDUk7BSMGpIAiCIPSDXuPh9XqzvJLso/8dpFP3IuJDEARBEBKk0FItsTDj70DEhyAIgiAIGUXEhyAIgiAIGUXEhyAIgiAIGUXEhyAIglAQdHQFUUplexkCIj4EQRCEAmD1jhb2+9Vr/OqFL7K9lKwwcuRI7rnnnm6vvfPOO3i9XjZs2JDx9YjPhyAIgpD3LN2wm65AiLdWN5h2TKUUHf6gacdLhmKXI6muk+nTp7NkyRLje6UU11xzDddccw1jxoyxYolxEfEhCIIg5D0NrT4AtjZ2oJQypV20wx9kn5+/mvZxUuGLXx2P1534LXz69Ok89NBDxvePPvooGzdu5MYbbwTghRde4LrrriMUCnH99ddzySWXmL3kbkjaRRAEQch76ls08dHWFaSpo/CGwk2fPp0VK1bQ2tpKe3s7N910E7/5zW8oKysjEAhw7bXXsmDBApYtW8att97Krl27LF2PRD4EQRCEvKehtct4vqWxg0qvO+1jFrscfPGr49M+TqqfnQwHHXQQDoeDZcuW8b///Y+amhrmzJkDwAcffMDkyZMZMWIEACeeeCKvvvoq5557runr1hHxIeQ9nf4glz22lIPGVHHlUeOzvRwhgzR3+nlg8Vecul8t44eWZXs5QhbRIx8AW3Z3MLm2Iu1j2my2pFIf2aSoqIj99tuPefPmcf/99/P8889jt2vJj61btxrCA7Ti1C1btli6Hkm7CHnPB+t2sWhlPQ+/m/mKbiG7PLd8K3cuWMPt/1ud7aUIWUav+QCt7qMQmT59OnfccQfHHHMMRx99tPF6rPZjq23kkxYfixcv5pRTTqG2thabzcazzz5r/Mzv93P99dczdepUSkpKqK2t5cILL2Tr1q1mrlkQkuLL7c0AtPkCWV6JkGm2NWk3mS0FerMRInSLfBTo+bD//vvjdDr5wx/+0O31ESNGdIt0bN68meHDh1u6lqTFR1tbG/vttx933XVXr5+1t7ezbNkyfvazn7Fs2TLmzZvHqlWrOPXUU01ZrCCkwoptLQC0dwUJhcRgqJBoaNHy/HXNnVleiZBNOv1BWqI2H1sbC/N8ePzxx7n88suZMGFCt9cPOeQQPvvsM7Zs2UJLSwsvvfQSxx9vbS1L0smqE044gRNOOCHmzyoqKpg/f3631+68804OOeQQNm7cyOjRo1NbpSCkwYptzcbzDn+QEs/AyNEK6aOH2utafIRCCrtdJpIWItFRD4DNBRT5CIVC1NfX8/e//52VK1fyzDPP9HqP0+nkT3/6E7NnzyYUCvF///d/1NTUWLouy6/CTU1N2Gw2KisrY/7c5/Ph80VOjObm5pjvE4RU6AqEWFPXanzf5guI+Cgg6sPiIxBS7GrvYlCpJ8srErJBfWt38VFINR+LFy/mqKOOYuLEicybN4+KitiFtqeeempGsxSWXoU7Ozu54YYbOO+88ygvL4/5nrlz5/LLX/7SymUIBcyaulYCUamWtq7suBEK2aEhase7o7lTxEeBop8Ho6u9bNzVTn2Lj05/kKIk21UHIrNmzSIUCmV7Gb2wrNvF7/dzzjnnEAqFevnJR3PjjTfS1NRkfG3atMmqJQkFiF5sqiNFp4WDUqqbt8MOqfsoWPTIx95DSw1/jO1Ncj5kE0siH36/n7PPPpt169axYMGCPqMeAB6PB49HdiOCNUTXe4CIj0KiuTNAVzCy49vR7IvzbiGf0Ws+Bpd5qK0sYm19G1saOxg7qCTLKytcTI986MJj9erVhouaIGSLL7e3dPu+XdIuBUPPIkOJfBQueuHx4FIPI6q8QOG22+YKSUc+WltbWbNmjfH9unXrWL58OdXV1dTW1nLWWWexbNkyXnjhBYLBINu3bweguroatzt9O1tBSAY98lHqcdLqC9AqkY+CoaG1p/iQyEehogvRQWUeRlQWAZrLqZA9khYfH374IbNnzza+v/baawG46KKLuPnmm3nuuecAzcwkmoULFzJr1qzUVyoISVLX0klDaxc2G+w7soJ31u6kvUvER6HQU3yI10fhotf+DC710FxZDBRWx0sukrT4mDVrVkwrVp14PxOETPJl2FxsXE0JNeEuhzafpF0KBb3Dwet20N4VZEeLiI9CJTry0eHXrgFbm0R8ZBOZ7SLkLXrKZdLwcko9WoW7FJwWDnqHw6ThWsG7pF0Kl241H+HIh6RdsouIDyFv0YtNJw0vMyZPis9H4aBbq0+u1cRHQ6uPQDD3/A4Ea2nzBYxCc63bJZx2aeqUcQtZRMSHkLfokY+Jw8opcWuRD6n5KBwaDG+HMhx2G0rRzfdDKAz0lEuxy0GJx8mwiiLsNs39uKFNomHZQsSHkJf4AkHDVn1SbblhqS7dLoWDLj6GlhcxpEyr+ZF228LDSLmEzwGXw87Qcq3jpVAHzOUCIj6EvGRtXRuBkKK8yEltRRHesPhol4LTgkGPcgwqdTMkfLMR8VF4GMWmpRGrh1qp+8g6Ij6EvMRIuQwvx2azRQpOJe1SECilom46HobqkY8WCbMXGj0jH4BRdFpI7bYjR47sNerknXfewev1smHDhoyvR8Z7CnmJPtNln3Cng1FwKmmXgiDaWn1wmccIs4vXR+ERba2uY0Q+0hUfSoG/Pb1jpIrLCzZbwm+fPn06S5YsMb5XSnHNNddwzTXXMGbMGCtWGBcRH0JesiLs8TFxWBkAJWHxIfbqhYG+2y3zOClyORhaLjUfhYrech090XhElUniw98Ot9Smd4xUuWkruBOfTTN9+nQeeugh4/tHH32UjRs3cuONNwJwxhlnsGjRIo4++mj+/e9/m73aXkjaRchL9MiH7vFQEk67SMFpYdAQZSoFRNV8SNql0KgPt1x3T7sUnsX69OnTWbFiBa2trbS3t3PTTTfxm9/8hrIybYN21VVX8cgjj2RsPRL5EPIO3VbdbtPaLAGj20UiH4VBZLerFRkOlYLTgiVm5KNSGy6Xtsupy6tFILKBy5vU2w866CAcDgfLli0zhr7OmTPH+Pns2bNZtGiRyYvsGxEfQt6hp1zGDiqhOOzv4XWLw2kh0dDS/Yajp13qpOC04GiIWfOhidHGdj9tvoCxOUkamy2p1Ec2KSoqYr/99mPevHncf//9PP/889jt2Ut+SNpFyDu+1G3Vh5Ubr5WGLy6+QEhcLguASJttWHyUaTebXW1d+AIS/SoUlFJG5GNwVOSjrMhFeZF2TSikjpfp06dzxx13cMwxx3D00UdndS0iPoS8IzLTpcx4Te92AbFYLwR6tldWel24ndrlrk7qPgqG5s4AXYFI11M0pnW8DCD2339/nE4nf/jDH7K9FBEfQv4RmekSiXy4nXZcDq0tTSzW85+GHnl+m80WlXqRuo9CoWfXUzQjClB8PP7441x++eVMmDAh20uRmg8hv4i2VZ8YJT5AKzrVc7xCfhPL1XJoWRGbdnVIx0sBUd+j6ykavd0239MuoVCI+vp6/v73v7Ny5UqeeeaZmO87/vjjWbZsGW1tbYwcOZJnnnmGgw8+2LJ1ifgQ8oo1da3dbNWjKXHr4kPSLvmOUfMRddORjpfCoyFGvYdOoVisL168mKOOOoqJEycyb948KioqYr7v1Vdfzei6RHwIecWXurlY2FY9GqPjRdIueU1fRYZDDKMxiXwUCrHcTXUiFuv5LUZnzZpFKJR7RfZS8yHkFXqx6T49Ui4Q8fqQyEd+0+KLXWQoFuuFR0Nr7/SbTiEWnOYSIj6EvEIvNtVt1aPRXU6l4DS/0Xe7pT2KDA2LdSk4LRjiRT5Ghms+tjd3Svt9FhDxIeQNSqmoNtvekQ+93VYs1vObhhjFphDx+pC0S+FQ39Lb3VRncKkHl8NGMKRk2nEWEPEh5A31LT52tnW3VY9GNxprl7RLXqMXm/bc7Q6RgtOCo69zAcButzG8IvmOF6WUOYsbwJjxdyDiQ8gbVmzvbasejRScFgY9PT509LRLS2dAUm8FQrzIB0Rs1hPpeHG5XAC0t7ebtLqBi/53oP+dpIJ0uwh5Q7yUC0QXnMqNJ5/p64ZT6nHidTto7wpS1+xj7CC5/OUzoZBiZ1vfNR+gD5jblVDRqcPhoLKykrq6OgC8Xm+vjrp8RylFe3s7dXV1VFZW4nD03uQlivzvE/KGyEyX3ikX0Hw+QOzV852+Ih+ay2kR6xra2NHcydhBA2MgmJAaTR1+/EEtPVATo9sFYIQe+Ugw7TJs2DAAQ4AUKpWVlcbfRaqI+BDyBn2abd+Rj3C3i0Q+8hpDfJT1vuEMKfNo4kMKDPMe3eulotiFxxl7h56sy6nNZmP48OEMGTIEv99vzkIHGC6XK62Ih46IDyEv8AdDrK2Pbauuo6ddWqXgNK+p14sMY+T5xeujcGiI02arU1uZmsW6w+Ew5QZcyEjBqZAX7GztIhBSOOw2hpcXxXyPXnAqxYb5TUOceR6G14eIj7ynPo7BmE55kVYwKcaDmUfEh5AX6KH2mhI3dnvsIjCp+ch/+rJW14nMd5G0S74TMRiLvRkBbdo1gC8gJmOZRsSHkBfU91FkGI10u+Q/0dbqsc4FGS5XOMQToTq6+OgKyIYk04j4EPKCneE8f19V7SAFp4VAQ5S1eiyvF6PmQwpO856GFn2ycd/XBLdDIh/ZQsSHkBfEG52t45W0S96jO1r2leePrvkQp8r8JpHIh0ePfARDcj5kGBEfQl4Qr8hQpzQq7SIXmvykP0fLIeH8f3tXkBaJgOU19QlcE/S0i1IQCMk1IZOI+BDygp1t4bRLSd8hVm847RIIKbpkimVe0pfBmE6x20F5kSZCpd02v0kkGqqLD8CoFRIyg4gPIS/o76YD4I0ary6tdfmJccOJs9uVjpf8JxhS7AyfC0PiRT4cIj6yhYgPIS9IJMTqdNgpcmmnvHS85CeJiFDpeMl/drd3EVJgs0F1nGio02HHEW7Nl2hoZhHxIeQFetolnqEQRLw+2qXoNC+pT6DDYYhRdCqRj3xF34xUe904HfFvc3r0QyIfmUXEhzDgCYUUuwzx0feOFyJ1H60S+chLEvF7kchH/tNf4XE0YjSWHUR8CAOe3e1dBMOV6vFCrBAd+RDxkY80JHDTGRpOzdW1iPjIVxKp/dGJiA+JhmYSER/CgEf3dqjyunD1E2KNuJzKhSbfUEoZN514RYZScJr/1CcwVE5H0i7ZQcSHMODRq9prEgix6sPlpOA0/2j1BYzQebzIxxBJu+Q9DQkMldMxjMZEfGQUER/CgCeR6ZU6utGYpF3yD323W+J2xLRW19FdTuuafWI2l6ckFfmIcjkVMoeID2HAE7HUTiTyIRbr+YpxHvRzw9FvSF3BEI3tfsvXJWSeZK4Jbol8ZAURH8KAZ2cCHQ46+nA5SbvkH4k4WgJ4nA6jMHmHFJ3mJclEPiTtkh2SFh+LFy/mlFNOoba2FpvNxrPPPtvt50opbr75ZmpraykuLmbWrFl8/vnnZq1XEHqRTH5XCk7zl0QMxnSk6DS/qU+h20XSLpklafHR1tbGfvvtx1133RXz57///e+57bbbuOuuu1iyZAnDhg3j2GOPpaWlJe3FCkIskgmxloRrAaTmI/+IuNz2L0Kjp9sK+YU/GGJ3exJpF4f4fGQDZ7J/4IQTTuCEE06I+TOlFLfffjs/+clPOPPMMwF4+OGHGTp0KE888QSXXnppeqsVhBgkl3bRTnkxGcs/kop8hKfbynC5/GNXWxdKgcNuo8rbvxCVmo/sYGrNx7p169i+fTvHHXec8ZrH42HmzJm88847Mf+Mz+ejubm525cV+AJBfvz0x1z9z4/ETCbP0CMfNQmkXYrDw+U6pOA079Ct1RMJtQ8Vi/W8xbBWL3Ebc1vi4XZq1wSJfGQWU8XH9u3bARg6dGi314cOHWr8rCdz586loqLC+Bo1apSZSzKwYePppZv57/KtdPrlJMsXlFIJWWrrSH43f0km8iFeH/lLfYKFxzpiMpYdLOl2sdm6q02lVK/XdG688UaampqMr02bNlmxJFyOyOfLSZY/tPgCxr+nzHEobFIqOG2RyEe+kciE62gk7ZIdkq75iMewYcMALQIyfPhw4/W6urpe0RAdj8eDx5PYSZIONpsNt9NOVyAku948Ymc45dKfsZSOvsvxyzmQVyilIu2VCYmPcNqlSSIf+UaiLdc6RqttUFKxmcTUyMe4ceMYNmwY8+fPN17r6urijTfeYMaMGWZ+VEp49Kpmv5xk+YKx25VdTkHTzVo9gW6XimIXAC2dYjKWbyTj8QHi85Etko58tLa2smbNGuP7devWsXz5cqqrqxk9ejTXXHMNt9xyC+PHj2f8+PHccssteL1ezjvvPFMXngpupx18ku/PJxKZYhqNiI/8pCEqAqa72MZDan/yl0jrff8iFOSakC2SFh8ffvghs2fPNr6/9tprAbjooot46KGH+L//+z86Ojq4/PLL2b17N4ceeiivvfYaZWVl5q06ReQkyz8a2sKdLiWJXWg8ctPJS5KOgBnpN0UopLAn0BUhDAzqw661iUY+jIJTuSZklKTFx6xZs+IOY7LZbNx8883cfPPN6azLEiS8ln80JFlc5pLK9rykPskImMcVqQ/qCoYosvdfLyQMDPTIR8LdLlKEnhUKaraLRD7yj2Q6HEDOgXwlGYt9iOx2QW46+UayNR8iPrJDQYoPn4TX8oadxi4nuZuOiI/8oiHJG4603ucnvkCQpg6tiDhZ8SHnQWYpLPEhN568Q9/x1iQb+RABmlfUJzHfByKt9yDnQj6hb0ZcDpvR0dQfcl/IDoUlPkTh5h0pp12Cobi1S8LAItnzACKt93I9yB/0lEtNiadPY8ueyH0hOxSY+BAP/3xjZ5JtdR6Hdg4oBYGQiI98IdmCU5CbTj5SFz4PhpQnIUIlApYVCkt8yE4nr+j0B2kJT6dNNu0Cch7kE4arZYJ5fhDxkY/oInRIEueBJ7wplfMgsxSU+Ii02orDaT6g33DcDjvlRYl1jYv4yD+UUklbakN0Ck6uB/lCneHxUZTwnxERmh0KU3xIeC0viHYyTDS/67Db0P2k5DzID9q6gsak6kSs1XX064FPplznDXVJdj2BFKFni4ISH6Jw84udSXa66Mh5kF/ooXZvgtbqOtJ6n3/UNSefdnHHm/m1ewPs+NyUtQndMXWqba4jN538IlljKR23w06nX6Yb5ws7mrVQ+7DyxEPtIDVg+YhurZ6U+IgV+WjfBW/cCkv+plWnX/sFlA0zda2FTmFFPhx97HTWvw2rXs3CioR0aEjS20HHLQVmeYUuPpIJtUOMzcjaBfDHCbDyFVPXJ2QOo+A0CSHay+HU3wH3zoD374NQAFQQdq6JcwQhFQpLfMSKfCgFT54DT56rqV1hwJDsMDEdmfGTX+ih9qHJRj56itDV/4PW7fD5PFPXJ2QGpRT1ramnXYzzoHkrtGwDhxuqxmmvte4wda2CiA/wNWtfKgiNG7O0MiEV9MhHohNtdaTALL/QIx9Dk/B2gBjTTP1t2mP9l6atTcgcu9v9+IOad09SZnM9jQf9HdoPiiqhdpr2vEXEh9kUpPjoZjLW0Rh53rI9swsS0iLZeR46kuvPL/QOh2QjH70iYPpNp34VhOTcGGjobbZVXle3lvr+0H0+DONB/TxwFUfqPFrl3mA2hSU+Yt10Ohsjz+UEG1DsbEve1RLA5dR6bUV85Ad65COZPD/EEB9d4chHoAOaNpm2PiEzRDpdkk2/9fD+8bdr37i8UDpUey6RD9MpKPHhccUoNJTIx4DFSLuk0O0CYrOfLxiRjxQLTn266aC+4wWoX2nK2oTMUZ+CtTrEEB8BTcziKo6ID6n5MJ3CEh89c7wAHbsjz1u2ZXhFQqoEgiF2t6fa7aKdB36p+RjwKKWiaj5S2/FG0i7tkR9K3ceAIxWDMdCMBx1h50Fft8hHMZSJ+LCKghIfMQtOo9MuElobMOxq60IpsNugyptswam02uYLrb4A7V1a5CLpHW/P1ns97QIS+RiARKzVkzsPoEdKPrrmozRc8yFRcdMR8dEt7SKRj4GCnnKpLnEbu5ZE6dXlIAxYdoTz/GVFzqTcTSFW5CMq7dIg4mOgYUy0TbLmA3rM+ekW+QiLj45dEOgyZZ2CRmGJj1gmY93SLqJuBwoRd9Pkdzni85E/1KWYcoH+0i4rtfYHYcBQn4K1uk63Tki/XvPhheIqsLu079vqTFmnoFFY4qO/tEtbHYRkwuVAIB3xITb7+cOOltQ8PqAf8eFrlkjoAKMuBWt1nZhpF2cR2GzS8WIRBSk+jOp26J52USFoq8/sooSU2Bk10TZZXI5wq62kXQY8etplaCqh9p7pty493F6iPUrR6YAiFWt1HY8rWnxEtdpCVNGpRMbNpCDFR5+RD5DdzgChIcWJttCH2ZwwIEnV4wN6tN6HghDUzimG76c91q8yZY2C9bT5ArSFC4/TKjgN9ig4BSk6tYiCEh8xc/3RNR8gobUBQn06aReHdtORVtuBT2SuSwq1P9F+L9EpF91SWyIfAwa92NTrdlDqSX5Ye7d7Q0AXH+HIR+kQ7bFVaj7MpDDFRzBGt4u3RnuUyMeAIJ20i9R85A+penxAj/NAT7lgi4p8SMfLQEEvPE6l3gN6Fpz2iHyIxbolFJT40He8MdMugydpjxJaGxBYWnC643No2pzy2oTMsSOdIkNnH3n+IRO15xL5GDCk02YLfZ0L4WNJwaklFJb46HnTCQWhs0l7rl9wJPIxILCs1XbnWrh/Fjx2VjrLEzKA5m6a2lA56NF6H+3tUDMesGneDm0NZi1XsBC92HRwCuk36MtkTC84lciHFRSk+AiEFKGQiggPgMFh8SE2ujmPUiqSdilLIe0Sz2Ts82cg2KWZTMlk05ymqcNvCMiUigxjpV3cXu2raoz2vUQ/BgSGtXoKmxGISrvELDiVmg8rKEjxAeEbj55ycZVA5WjtuUQ+cp6mDr82+hrN4TRZjFbbWJGPFc9pjyrUuxNKyCn0G06l10VRuHMlGSLiI9i7vXKwpF4GEobHR6qRj+iRCz0jH3q3S+sO2ZCYSGGJD0fk1/X5Q5Fi0+LKSGhNaj5yHj3lUl7kxONM5aaj/Zlerba718O2jyPf9+yEEnIKo9g03Tx/MNRbfAzaW3uUotMBQX2aNR/dUrHRJmMQjnzYIBTQUnGCKRSU+NB3vAC+YDBycymqjKjbtnoIBjK/OCFh6lv0lEt6IdZerbYrnu/+vYiPnEav90h1t6vfcHz+KPHhDhuMGZEPER8Dgbo0rNUhTvExgMMV1Q0pm1OzKCjxYbPZuitcPaxeXAUlg8DmEJfTAcDOttSLTSFOt8sXz3X/vl12OblMOm220KP1viuq4BREfAwwdN+flNMuRh1YsHfNB0Q6XqQm0DQKSnxAjxtPdNrF7ohqqZK6j1ymoUUXH8nXe0AfBafNW2HzB9pz/cYjIdacJjJULtUbTnSev2fNRzjt0rpdImA5TlcgxK42LRqaasFptyhYQB8sFyU+DIt1KTo1i4ITH912O9FpF4g6wUTd5jINhsFYeheabpGPFS9oj6MOhSFhzxe56eQ06bTZQj+hdk8ZlI/QnovNek6j14A57TaqvCluSGLW/0SJj+Jq7VGuCaZRcOKjWz+3kXap1B7LhmuPEvnIaSxJu3zxX+1x0qmRC42kXXKaiMFYeuIjEFIoX1v4RW/kDYMnaI8NknrJZYw22zIPdrutn3fHRr8vBPxdWmEp9BAfVdqjiA/TKDzx0VfaBaTjZYCgF5zWpJh2cfVMu7TWw8Z3tOeTTgGvvssR8ZHLpDPXBbq33ge7ekQ+QOo+BgjpWqtD1LnQFTXjJ/pcEPFhOoUtPvTIh552kemFA4J03E0hRuTjyxe0QuPh+2vmUhL5yHlCIWV4O6ScdolqvQ/qkQ9XjMiHeH3kNJHIR2rnAUSuCUofKmezgyNqcyPiw3QKVnz4ukU+wieWRD4GBGmnXXpGPnRjsX1O1R7lQpPz7G7vwh/UjOZScTeF7q33qitG2mWQLj4k8pHL1EelXVLF8AuKNhizRaVw5JpgOoUnPhyxxEel9ig1HwOChpbUJ9pCz9Tbbli3WPvBpNO0R0m75Dx6semgUreRRkuW6Nb7UMy0S1h8NG0CX2vKaxWsJTJULv20i62nwZiOiA/TKTzxEV3VbKRdJPIxUGjzBejwBwGTul1WvqwVmA2ZDIP20t5gpF3kQpOrpFtsqtMr1x8tPrzVEXOp3evT+hzBOurTtFaHyHlgD0RFPqIR8WE6BSc+PNEe/vqJ1LPgVFxOcxa93qPY5aDE40zpGN0E6Bc9Ui4gkY8BgFFkmMYNByJCNOJw2uOm4x2kPcpNJ2epS9NaHSIRcVsghsEYiPiwgIITH4a1dpcPusKhVL3g1Bt2OUVBm5jJ5CINaUyz1dEvNMWhNtTaBdqLk6LEh36h6WqFQFfKnyNYh+HxkW7kw9FDfMiOd8CRrrU6RESoPRjDYAwi50FnE4SCKX+OEKFgxUe3iaVFFdqj3R6VepG6j1xEj3zUlKR+oXGFz4Gj7MuxBX1Qs1fEWAzC50O42ExuOjnJjjTdTXUiuX4RHwORUEgZ1wQz0i6OPsVHZfiJ0gSIkDYFJz484Z2O3Rc+gTzl4IgK3xsW6+Jymouk22YLkd3uwfZwC+XeX+9e2W53RC42knrJSYxQe4pttjqS6x/Y7G7vIhDSup7S2ZAY4qOvtIvDBe4y7bmcC6ZguvgIBAL89Kc/Zdy4cRQXF7PHHnvwq1/9ilAo1P8fzgDGxaanx4eOdLzkNDvDaZfBaaRd9BZLr027gWkjs3sgXh85TV2aQ+V0enU59Kz5EPGR0+gitLrE3c00Lln0DYkzpEc+vL3fZGxIGlP+HCFCahV7cbj11lu57777ePjhh5k8eTIffvgh3/nOd6ioqODqq682++OSxhAfeuTDCKeFkY6XnMaMtIvNZsPttOMhXM/Rs60OtKLTXWsl8pGj7EjT3VRHv+k4ghL5GIiY0WYL4HHp4iO8IekZ+QDtXtG0Sc4FkzBdfLz77rucdtppnHTSSQCMHTuWJ598kg8//NDsj0oJQ+H2Jz5aRXzkIpG0S+qRD9DSb56QX/smlviQQVI5SzCkjBHq6UY+PE4HNkJRuf6e4qNSe5TzICfRI2DpGIxBjMhHzGuCCFEzMT3tcsQRR/D666+zapU2CfLjjz/mrbfe4sQTT4z5fp/PR3Nzc7cvK9EjH66usPjolXaRyEcuE+l2Sb/Q0EM88RG+0EjaJefY2eYjGFLYbVBTkp4IdTvtFBPV0SRplwGFLkLN8ntxG5GPWGkXORfMxPTIx/XXX09TUxMTJ07E4XAQDAb57W9/y7nnnhvz/XPnzuWXv/yl2cvoE93nwxUIi5xekQ+p+chlzEi7gHaxKfKHbzquPtIuIGmXHKSuOVJ07EzR3VRHEx++yAvOvvwdGtP6HMEa9HMh7ciHvikNdWpb8phpF73dtjGtzxI0TI98PPXUUzz22GM88cQTLFu2jIcffpg//vGPPPzwwzHff+ONN9LU1GR8bdq0yewldcNQuH5dfFR1f4N0u+Q0DcYch/R2vC5Hf5EPKTjNVXaYVGwKYfGhFx47i7V2+2hkt5vT1JtV8+HQNqVGFEwiH5ZjeuTjxz/+MTfccAPnnHMOAFOnTmXDhg3MnTuXiy66qNf7PR4PHk96J04y6OLDo4uPvrpd2uoh6NdarIScoCsQorlTc55Np9UWwpGPuAWncqHJVcwqNgWt9se44fRMuYDccHKcOhOs1SFyXyiy6eIjTuRDzgVTMD3y0d7ejr3H7sHhcORcq21xX2kXbw3YnYCCVnE5zSX0abZOu43yovREoTvRyIdcaHKOHYa1ujmRDy/x2ivDNxx/GwR8vX8uZBUzrNUhSnwQr9tFxIeZmB75OOWUU/jtb3/L6NGjmTx5Mh999BG33XYbc+bMMfujUkI3GSsKtmgv9Ey72O1QOgyaN2tFpxUjMrxCoS+2NenDxDzY7bZ+3h0ft9Me2eU4Y+yapOA0Z9F3u+laq0NYfNjiFBl6ysFmBxWegl02NO3PFMzDrLSLw27DYbdFpV1EfFiN6eLjzjvv5Gc/+xmXX345dXV11NbWcumll/Lzn//c7I9KCb2f26uLj55pF9AuMM2bpd02x9iyW/NiGFkV4yaRJN26XWJdaKTgNGcxM+3idkSl32KdB3a7do3o2KXddER85AytvgDtXdqclXQLTkGb71KsRHxkCtPFR1lZGbfffju333672Yc2BX2AUElIj3xU9n5TSdjxUtIuOcWWRk18jKiKcWFIEk+3mo9YkY+oglOlutuvC1nFzIJTj8uOVw+1u0tiv6m4KiI+hJxB9/gocac+4Toat9NOUUAKTjNF4c12CbfaloR6TLSNxiv5/lxEj3yMqExffLjttqiajziRj5AfutrS/jzBPHaY1F4J4HY4It0usW44IDedHMWs+T46WhRM73zqx2RMKVM+s5ApQPFhx40fj36S9az5iH5NQu45xebd2uRRMyIfxY4gdlv4AhIr8uHygiP8upwHOYM/GDIKj01rtY1XZAgiPnKUuhbzRCj0MJyLF/kIBaCr1ZTPLGQKT3y47FSg72RtWkFZT+Rik5MYaRcTIh9eeyDyTaybjs0mRac5SEOrD6W0AsF03U1B73ZJIO0Ccj3IMfS0S7rFpjrdPF9iXRNcxZGIiJwLaVN44sPpoMKmp1wqepsKQSTk3i4nWK6glIqkXUyIfHgdmvhQ2MDRx01Mik5zDt3R0oyOJ0jghgMy3yVH0a3VTYt8OPqJfIAIURMpQPERFfmIlXKJfl1OsJyhqcNPW7iy3ZzIh1bvEbC7+y4mFZfTnMNMjw/QTcak5mMgUm8IUZPOhehJ17FGLoCcCyZScOKjyOWgwqaLj8rYbyqWHW+usTkc9RhU6qbI5Uj7eF5bWHzY4uyaxOU059gRzvMPtSLPL2mXAUWdSR4fOkUOhccWTseKELWcghMfHqedSuJ0uoCcYDmImfUeECU+7HHqBsTlNOeoM7HNFrTrgbfftItcD3IRs6zVdcoc/dSBgZwLJmK6z0euo9V8aJGPUFFlbPXlFY+HXMPMeg+AonDaxW+LJz6k4DTXiHh8mBf5CBn26hL5GEiYZa2uU+rwR76J1WoLUv9jIoUX+XDZDfER9FTEfpPRUiUeD7mCHvkww90UoIgExIcUnOYcuseHad4O3dorZbc7UPAFgjS2a/+HzSo4LdGjoY6iOHVgci6YRcGJD7cjUnDqd/chPsTjIecw02AMoCh8oemKV/MhaZecw0x3U9CuB0baJdZUW4i64TSa8plC+jS0aoLR5bBR5TVn8niJXTtmwB7n3BLxYRoFJz7sdhvV9rD4cMXw+IDuHg9ykuUEZtd8eMIzHLpscS5cXul2yTX0ULuZaZfIJNN+0i6+JggGYr9HyCh67c/gUg82k9Li3rD48NvjbUhEiJpFwYkPgEq75pTZ1VfkA+TGk2OY6W4K4AlHPnwkUPMh0a+cwBcIsqtNu0GYMdEWepiM9ZV2iS5M72wy5XOF9DDcTU2KgAF4bbr4kMhHJihM8RFOu/icfUQ+QE6yHKK9K8DucH7XNPERvuF0xRUfIkBzCX18utthp9KkUHu3bpe+Wm0dzogTslwPcgKz22wBinXxYRPxkQkKUnzoDqedjrK+3yS73pxBr/coK3JSXmTSTSdccNpJAmmXziYIBU35XCF1IsWm5oXa3Q5HZLpxX94OIF0OOUa9yXNdALzoqdhEoqFyHqRLQYqP8nDkoyMh8SEnWbbZbHK9B4A7XPPhUwlcaFASbs8BzPb4AK37rd+0C8j1IMeobzF3rgtEIh9dCdV8yHmQLoUnPpSiTGmRj3ZHnLSLzHfJGfTIx0iTUi4ArpB2oemIF/lwuCLhdkm9ZJ0dJg8SA3DbbUbaJeiMF/mQm04uUWeytTpgFB77SCDtEugEf4dpn12IFJ748HfgQqtYb7OX9v0+udjkDGZ3ugC4wiHWzlA/aRwj3C7iI9sY1uomRj7cetSD/tqu5XqQS1hR86GLj854aRd3KdjD3pxyLqRF4YmP8AkTUHba4ypcMZjKFcx2NwVwhbQLTdzIB0jRaQ5RF1XzYRbuUKfxvEsKDQcMZlurQ6T9Pm4HnNgwmEbhiY/ORgCaKMEXUH2/T06wnMFsd1MAZ/hC09Ff5MMrRmO5gn7DMavNFsAZ1M6tTuXCF+dyINeD3CEYUobJmJkFp24V3pCofo4p54IpFJ74CJvDNKpSOgNxOhjE5yNnMNvdFMCpRz5UP+ONJAKWM5jtbgpgC+ftO/DQFQj1/Ua54eQMu9u7CIYUNhsMKjUz8qFHQ0V8ZIICFB/aCdNMCT6/XGxyna5AiB3hHa+ZaRdnuOC0LdHIh4jQrKO32prlbgqAXzOvaxfxMWDQ02/VXjcuh3m3MJfSrjMdqr9UrJwLZlB44qNL63RpUcX44l5sosLtKl48VrCS7U2dKAVFLjs1JXFysUniCGoXmvZgf5EP8XvJBTr9QZo6NG8Ws4bKAYb46FTufq4HcsPJFfT0m5kpF4h0wLXHa78HORdMovDER0A7cX248cVLu+gnmAqCrzkDCxNioduq11YWm2YsBWBPNPIhw+VyAn23W+SyU17Uj2BMhi6JfAw0jE4XM0UokciHiI/MUIDiQ+/ldsXf6biKIo6HEnLPGlYYjAE4gtp50B5yEQrFiWxJ2iUn0FNvQ8uLTBWhkbRLEV1BER8DgXoL2mwBXHo0VNIuGaEAxYce+XDFr/kAOclyACsMxgDs4QtNJ65+bjpScJoLGMWmJna6AN3SLglFPjobIdTPdUOwFCus1QGc4bbr1pBEPjJBAYqPcORDueJ3u4DceHIAKwzGAGxBPQLmxh9PfHjDFxpxus0qOyzw+AASLzjVJ9uqkKRhs0ydBdbqEKkDawuK+MgEBSg+kol8VGqP4fZcIfNYYTAGYAufB53KlWCuXwRoNrFirgtg1Hx04Ek8DSs3naxihbU6RMRHa6i/IvRK7VHOg7QoQPER2fHGLTgFyffnAJHIh3kGYwC2qPMgobSLvx38nX2/T7CUiMeHNZGPDuWJfx6A7HhzhEjBqbnngj2gXWtaEo58NJr6+YVGAYqPqMhHvJ0OyMUmy4RCim1N1tR8EL7QdNJPrr+oAmwO7bmcB1kj4vFhTc1HOx58/v7SsHI9yDZKKcvSLnodWHNQCk4zQeGKD5WI+JCaj2xS1+LDH1Q47TbzbzpRXU9xxUe3WQ5yHmSLHcYNx6q0Sz8RMJCbTg7Q6gvQGU6Xm11wGol8OFHxvJ3086CrFQJdpq6hkChA8RHVais7nZxmS6N2YxhWUYTDbmJ7JRjjsBMSoZJ+yzpWDJUDjPOgQxXFF6Eguf4cQE+5lHqceN0m+r0QXQfmxh+MIz48FUD4ehSeFSYkTwGKj0japVNuOjnNZgtmugAQDGjmcYTTLrLjzWnafAFafQHAirRLGxCOfCSchm00dw1CwugF6MMqTD4PQiFDfHTQT/2P3S5C1AQKUHxI5GOgsNmiThe93gO088Av6becRt/tlrgdlHrM3e0m7HAKcj3IAb6q18ZjjBtUYu6Bo64JyQlRORdSpQDFRyS01v8JJjedbKJ3uow0O/IRFqAQrvnoL/IhEbCsYsU0WwPpdhlQrGvQIlV7DDZZfPgj4qPfInSQc8EEClB8JGivDnKCZRmrPD50AerHicKexIVGxEc20MWH6fUeEBEfEvkYEHwVFh97Dio198Bh8dGpXCjs/dswyLmQNgUoPhIcLAeRHW9HI4T6ea9gOlZ5fOh+HV027WbW703HK8PlskmdVW22YNx02vszGQO54eQAX9Vr4mOcRZEPn03z+BAhaj0FKD6iaz76OcF0S2UUdDZZuiyhO0op6yMf+oUm0XC7WKxnBUvTLl3azaxTuUV85Did/qCxIdnD7JoPfcYP2oZEzgXrKUDxEfH56He2i9MN7jLtuZxkGWV3u5+OcEHwcLMr2w3xkeiFRmp/sskOi6aYAt2n2soNJ6fR6z3Ki5xUl/TjQpos4ciHEQ2V+h/LKTzx4Y+02vqDimC8ceogJ1mW0KMeQ8o8FLkc5h48LD4C9gRDrFJwmlWsLTiNpF2SuuHEM6ESLCFSbFqKzWa2748mQn027RwTIWo9hSc+onw+IJEbjx5ylxtPJtENxkxPuYAhQAN2bZcTd6otSOQjy1g2VE4pI+3Sodx0JVpkGPIbf07IHHqbremdLtA7FSueL5ZTgOIjMlAMkKrmHMUygzFIPvJRMkh7bN8FoX7eK5iKUipqrovJaZeAD9AiGAl1u7i84AiH++V6kHH0ThfT6z0gknaxJxj50OsB5TxImcISH0r1UriS789NjE4XKyIf4XMgZE+026VGe1RBsVPOMC2+gFH7Y/pcl3CoHRJwtYQec37kppNp9E6XPQab3GYLxrkQ0MWH1HxYTmGJj6Affadjc4aLDfvreJGTLCvokQ/TDcbAEB9Bh3YOdPTndOtwadNtAdoazF+P0Cd6yqW8yEmx2+Tan3DqJGR3EcTRvwgFuR5kCaWUde6mYEQ+/IlGPuQ8SBtLxMeWLVv49re/TU1NDV6vl/3335+lS5da8VHJEb7pAODUTrJ+O16k2DArWNZmC8aFRoUFaHtXAh4u3nDqpa3e/PUIfbIjAx4fQafmI9NvFBTkppMldrV10dypzfexUnzodWAJp+M7m8QDKkVMHpQAu3fv5vDDD2f27Nm8/PLLDBkyhLVr11JZWWn2RyVPlK22FvnwSeQjR7HMYAwi54FTEzYdiYiPksGway20S+Qjk1jb6RKOfDgS3O2CXA+yhF7vMaKy2PzuN4gI0UTPBX2wHEorOi2pMX9NeY7p4uPWW29l1KhRPPjgg8ZrY8eONftjUkOPfDg8eMIncP8KV2o+Mk2rL0BThx+wtuZDj36195d2gUjRqaRdMooe+bDG40O74YRcmsAV8ZG7rKu3aKaLjl7zERYf/UbBHC6t6LSzUduQiPhIGtPTLs899xwHHXQQ3/zmNxkyZAjTpk3jgQce6PP9Pp+P5ubmbl+WYex4i/A4dfEhkY9cQ0+5VBS7zJ9iCob4sLm0C01HV6D/P6MXnbbvNH89Qp9s2Bne8VohQsMTbVU4AiZpl9xlbUO4zdaKlAtEhGj4XOi34BSgdIj2KKnYlDBdfHz11Vfce++9jB8/nldffZXLLruMq666ikceeSTm++fOnUtFRYXxNWrUKLOXFMHY8XrwuLRfPeH5LlLzkTEMjw8rik2hl/ho8yUT+ZALTSZZtaMFgPFDy8w/eDjtgku7oSV0w9HD7SI+Moox08Uq8REIi49kUnAlg7XH1jpr1pTnmC4+QqEQBxxwALfccgvTpk3j0ksv5Xvf+x733ntvzPffeOONNDU1GV+bNm0ye0kRoiIfRXrkI+Gaj0br1iV0Q498jLRitwuGyZjDrYXbE0u7hC80knbJGEopVtdpO969h1rRXhkeo+6WtEuuE+1uaglGEXoy4kNSselguvgYPnw4++yzT7fXJk2axMaNG2O+3+PxUF5e3u3LMmJEPvrtdtFrPnxNEEwgPC+kzWYrPT7AOA8c7mTSLrrRmFxoMsWOZh8tnQEcdps1O17dpdQVDrUnJT4azV+PEJNAMGSk3yyLfBj1P0mcC8aGRKKhqWC6+Dj88MNZuXJlt9dWrVrFmDFjzP6o5IkqNPQ4w2mXfifbVkSei8FURthipbspRIkP7fgJtdrqBWVtUvORKfSUy5gar1GjZSrhG47NnUzaRSIfmWZLYwf+oMLjtFt3TdAN58Jt1wmdCyI+0sJ08fHDH/6Q9957j1tuuYU1a9bwxBNPcP/993PFFVeY/VHJY6RdPIkXnDqcEQEidR8ZQW+ztSztEhYfTk8Srbbi85FxjJTLEAvqPcC44djDaZdgSBFIdM6PRMAyRnS9h91u8kA5HT0FF4589LspBakDSxPTxcfBBx/MM888w5NPPsmUKVP49a9/ze233875559v9kclT6zIR39pF5DdToaJRD4s8PgAo+bDpdd8JOrzAVq3i8x3yQirw5EPS+o9wEi72D2RUH6/O97SodpjW4OcBxlirZXOpjqG+EjQXh2kDixNLOhjhJNPPpmTTz7ZikOnhx75cBVFul0SUbjF1bB7vXh9ZIBOf5C6Fu3fyeqaD1eRJj46/EFCIRV/V9VzvoveBSVYhh752MuKThcwbjiOaPERCOF1x/kz+m5XBbXrgf69YBmRYlPrxYctGc+XEmm1TYfCmu3SLfKRYNoFJPKRQbY1af9GxS4HVV6XNR8SPg/cRRFx02/hsdMNHpnvkimUUkbNh2WRj3Crrd3tRded/d50HK5I6qV1hzXrEroRSbtYdB5Ar/qfhO4LUvORFgUmPqJqPvRul0TaLMXrI2NEz3Sx2SzK7+riI2rHm1jqRTpeMoXlnS4Q1WpbgttIwyZiLhVOvYi/Q0bITORDr/9JwmRMvx74mo1UrpA4BSY+JPKR61huMAaGCLW7iygO2+wnNt9F+vozxeo6iztdwHA4xVWM26FdChNztpQdb6Zo8wXYHp7vY5m7KRj3Brvh+ZLA9aCoAuzh6KxsSJKmwMRHdLdLMgWnMt8lU1huMAaRXYqzGG94THtSk23lQmM5q3ZY3OkC3RxO3WGBk1SuX9IulqNHPapL3FTGLcZJA6WMyIfDk0TNh80mqZc0KDDxEavbRSIfuYTlBmPQzWyuOCw+2hIxGjO8PkR8WM2aOt1W3fo8P26vcT1I6KYjaZeMoU+zzUTUA6LERyIRMJBoaBoUmPiIrvlI0F4dpOYjg1huMAaRi40rEvlILO0irXWZQo98WDLTRSc67ZJUzYfsdjPFV5lsswWc4bRLQvcFkMhHGhSY+AifZOLzkbNYbjAGPSIfWre5pF1yh+hOl/FDrIx86OKjJFLzIWmXnMLymS4QOQ/sLtxuLbWTeORDxEeqFJj4iEQ+isKRj85EfT5AIh8WEwwptodbbS0zGAsFIdilPXcW43XpNR+JpF0kxJoJ6loinS6Z6HDAVWx0v3UFExChRtpFbjhWo7fZWnse6JFQrxEBS0iEQiQKJim4pCkw8ZGiw2lp1E5HKYsWJ+xo7iQQUrgcNoaUeaz5EF2AAjg9yaVdvFLzkQksn+mio6dd3ElGPoy0i9xwrEQpZaRdLK358PdOvyUsPiQVmzIFJj5idbskUWAW8kv0w0I2h+s9hlcUWzfDIaq4DGeRUXCanMW6XGisZLVe72FlyiWqwyF6x5uYuVSUs2UogfNGSIn6Fh9tXUHsNhhdY1EkFLrNdfEk0/UEknZJgwITHyn6fDjdkV1v63aLFidkxuMjfA7YneBwRiIfiZjNGSZjMt/FSnSPj72tLDYNdmkW6ZD8jrdkEGADFZLNiIWsDadcRlZZHAGLJUKl5sNyCkx89HY4TSjtAlA2XHts2WbBwgTo7m5qGf5I0TGA1yg4TaDmQxegoYA230WwBL3TZa9MFJtC97RLIjcdhyvSASepF8vIiLMpRHW/FXVLv6lEUuxSB5YyBSY+YtR8JNpSpadeWqTC3Sr0TpdMuJtGxEcSaRenBzzl2vP2nVasruBRSkVNs81Am63dCQ5XZMebcIuldLxYTaTew0IRCjEjHwD+YCLiIyryIfWASVGg4iO620UiH7nC5ky4m0YJUCC5glOQnY7F1LX4aO4MYLdlZpYHLu0zjLRLouF2owhdwu1WoRuMjbM68tGt5iNyS0woKq6334f80NlkweLylwITH5Fdb1IFpwBlw7THFqn5sIotmXQ3dWniIymfDxCvD4vRi03H1pRYm+f3adEVPNquOimHU4iID0m7WIaedtnTyk4X6CY+9LQLJHguuIoi0VDZkCRFgYmP2AWnCeX2dPEhBaeWoJRiq24wZpXHB/QZ+Uio5gOiIh+y47UCw1zMSlt1gC5N5ODWxUeyXQ6SdrGSrkCIjbu06FTGIh9OrcvOGe60S95oTIRoMhSY+OhdcAoJnmQS+bCUnW1ddPpD2GwwrKLIug/y9yU+kk27SM2HFeidLuOtHCgHUZEP7XMk7ZJbbNrdTjCk8LodDCu38HoA3SIfQBpeH3IuJEOBiY/eBaeQqNeHiA8r0TtdhpYVdSv6Mp0ekY9iV5LiQ9IulmJ4fFgd+fCFIx/htEtSJmMgaReL0Z1Nxw0qwWazyPNHJ6rgFFJIwUk0NCUKTHxEaj7cDjv6OZ1QhXt05EOqmk0nI/Ue0KvmQ2+1lYLT7BM908XSTheArnDkI5x2ScpkDKLSLiI+rCAjA+V0+oh8JH4uiMtpKhSO+FCq267XZrMZCjehjhdxObWUzbszYDAGvXw+DIdTf4I1H17Z5VhFfVSni+U3HSPtohULJj/TQ8SHlWRkoJyOEfnQrglJp+Ak7ZIShSM+9GFioPk1gLic5hAZMRiDqMiH9jkpt9qKz4fprIrqdNFb4S2jj7RLwqaDuvhobxCLdQswBsplIvJhXBO0tEvSKTgRHynhzPYCMocNvn6rdqKFbzxJDZcDzeujfafm9TF0slULLUgyYjAG3YZIQToFpxJiNZuMdbpAr26XpCMf3h4W6/qwOcEUvsqUuynESLsksSkFuSakSOGID6cbpl/W7aWIxXoSLqc7PpOiUwvYnKnIR1RbHUTSLh3+IEqp/ovbogtOlQKri+EKiNV1+kA5i+s9oHfkI9lQu8OpRULbG7R2WxEfptHc6aehVavPy0zNR/eCU0nBZYbCSbvEwEi7JGqpbLicivgwGz3yMcpy8dE97VISLjhVCjoTOQ/0XY7MdzGd1ZmMfPiatcdwzUfSHQ4gHS8WoadcBpd5KCtyWf+BPSIfHkm7ZIQCFx/Jpl2k3dYKGlp9tHRqBZ+1GUu7aLuc4qjagoSMxqLnu4jXh2kopTIb+ehlMpaC+NBvOuL1YSrrGvSZLhmIekCvaGgkCpZoKjZ8HnQ2QqAr7luFCAUtPiLzXZK0WJeCU1NZtmE3AHsPLTVaXy2jxy7HbrdRFE6/Je71ES48Fq8P06hv8dHU4bd+potOumkXiHTAicupqRjFppk4D6B35CNZIVpUCbbwJkYK0ROmoMWHRD5yg6UbNfFx4Jgq6z8s0P1CA1FeH4kOGRRTIdPJaKcL9HY4dSRprw6SdrEIo9jU6mm2Oob4SLHmw26Xa0IKiPggmYJTER9WoEc+DhidAfHh7y0+9NRLmy9Zrw+JfJiFbqu+15AM3XCMtEt3e/WErwUgaReLyHzko3sHXFrngoiPhClw8ZFkS5W4nJpOVyDEx5u1UdQZiXzEEB+pe32I+DALPfJhubOpTo+ptknvdkHSLhYQCimj5iMjnS7Qy/XY8PlIJgUn7bZJU9jiQ2+1TTTcLi6npvP51ia6AiGqvK7MWik7e4sPGS6XPdbUZbDTRakYaZcUdrulsts1m+3NnXT6QzjtNkZVWzjdWkepPlttE+6CBJlsmwKFLT6SDa+Jy6npLN0QqfewfIAUxE67GBbrSQ6Xk5uOKWgzXTLY6RLoBBX+t+5lMpaEW6nMdzEdPeUyutqLy5GB21OwSzOKg95TbZOKfOj1P3JNSJSCFh96YVvCkQ+I8vrYZsGKCo9l4WLTAzKRcoFeuxyIHi6XYM2HpF1MJWudLtC71TaVbhexWDcNo8020/UekHrBKUjaJQUKWnwkHfmAyAVHik7TRikViXxkotgUeuV3ISryIWmXrKD7e4zJVKeLPtHWVaJ1KpCiz4e3hojFupwLZrC2PoMD5SASCbU5wKEZmiVtMgZScJoCBS4+kiw4BXE5NZEtjR3saPbhtNvYd2RlZj40VuTDlaT48Erkw0yMmS6Z6nTpUe8Bkd1uSEEgWYt1kNSLSejTbDNWbNqjzRbA40qh7VrER9IUuPhI0ucDxOvDRPSox+TaciP6YDkxaj5KPHraJYXhctL1lDaGs2kmik2hl8EYRMQHiNFYNvkqW+6mUdeD1LpddPEhG5JEKWzx4UqhqllcTk3D8PfIVL1HKKgVmEG3nU7SaRc98hHyQ2eTmSssSPSZLhlrs+1hrQ6RGw4keT2QjhfT6PQHjQGT4zLubhpJw6ZX81EvG5IEKWzxkVLaRSIfZqE7mx40pjozH6hfaACckYuNnnbp8CdYcOoqMsypJNefHhnvdIGYaRenw4493GyVUpeDpF3SZuOudpSCMo+TwaWezHyoXv/j7p2CS85kLCw+Ap2R80uIS0GLD32mR2cy3S7icmoKbb4AK7Zp/0kPGFOZmQ/tQ3wkHfkAKAnn+iXMmhb1rRnudIGY4gNSNRrTxYekXdLlq/qwudjgksy03UPs+h9HCul4d4lWwAwSBUuQghYfaUc+JLyWMh9vbiQYUoyoLGZ4hcWTbHX0YlNnsdHlAJFW2zZfEhcb8fowhdU7MtzpAjHTLpCq0Zj4O5hFZKZLhkQoRNX/9I58JCVCISoFJxuSRChw8ZGCwhWXU1NYuj7D9R4Qs80WouzVE027QKTATDpe0mJ1pjtdoM/IR2pdDpJ2MYuvMt1mC3E7n5JKv4F0vCRJYYsPVwo7nWiXUzEaSxljku3oysx9aIw2W5C0SzZZlelOF4jZ7QIpdjmUivgwCyPtktHIR/cZP5BG5EPER1IUtvjQ0y7JVLdDxOtDOl5SIhRSRqfLgZkqNoWYbXWQwmA5kMm2JpHxTheIWWQIKRqNGWkXER/pont8ZKz2B8DXrD16yo2XUjoPQFxOk6TAxUcKaRcQl9M0WVvfSnNngGKXg4nDM3jTiTFUDlIYLAdisW4C0Z0ue2U07dJH5COV64GedmnfKRbrabC7rYvd7X4gw5GPrt41HylZ7YNEPpLEcvExd+5cbDYb11xzjdUflTR65KMz1ciHiI+U0M3F9htVkZnhUTp9RD6KXVrBaXLiQ7oc0iW602XPLOf5IQ1/B5tdLNbTRC82HV5RZBSAZwT9XOjm+ZJC7Q/IZNsksfTKv2TJEu6//3723XdfKz8mZYpcKUY+yiTykQ7Rk2wzSr9plyQKTitHa4+7N5ixsoJkTTY6XaDfbpekbjp2R5TFugjRVNHrPTKacoH4Bacpiw+JhiaCZeKjtbWV888/nwceeICqqgzfZBIkpVZbkMm2aWIUm2ZcfMQuOPV6wmkXfxCVaPt01VjtsWkzBP0mLbCw0Ge6ZDTlAv2mXZIPt0vRabp8lemZLjpmttqWSPt9MlgmPq644gpOOukkjjnmGKs+Im1S6naBKIt12ekky662LqOlbtqoDIuPPltttTCvUkmcC6VDNaMyFdQEiJA0eqfL3pnsdIGYRYaQ4pRrEK8PE1int9kOyv65oJ8HnclGxEvkPEgGS5Jr//znP1m2bBlLlizp970+nw+fz2d839zcbMWSYqKfZMGQIhAM4Uy0/kBcTlPmo3DUY8/BJVSVuDP74X212kaF/Nu7gomlAOx2qBwDDSth93qoHmfiQguDNZm2VdfpK+2SsrmU1P+kiz5QLmMzXXRitNqWhDcj/qCiKxDqNnQwLob3zy4IBrSpx0KfmB752LRpE1dffTWPPfYYRUVF/b5/7ty5VFRUGF+jRo0ye0l9oqddQFxOM0XW6j2gz5oPh91mCNH2ZOo+9NTL7vXpr63AUEqxqi5sMJbxyEdfaZc0Cw0l7ZISwZBi/U5tY7BnpiMfMbpdoidsJ9d+Xw3YAAUdYkDZH6aLj6VLl1JXV8eBBx6I0+nE6XTyxhtvcMcdd+B0OgkGu/9j3njjjTQ1NRlfmzZtMntJfeKJUrTJzXcRl9NUyQnx4ewtilNqt9XFR6MUnSZLQ2sXje1Z6HQJdEEwHGnt2e2SiskYRK4HEm5Pia2NHVqEwWFnRFWGRi3o9FFw6nJos2Xak3E9ji4+lnOhX0yPCx199NF8+umn3V77zne+w8SJE7n++utxOLqHtD0eDx5PhiYY9sBut+F22OkKhlJzOW3fqRWd6m6XQlz8wRAfb24Esh358Pb6kdftZHe7PzXxIZGPpNHNxUZXe7PT6QK9TMYMn49kW+8l7ZIWa+v1ricvDnuGBsqBJkT1OrAeKbhilwN/MJDcvCfQomDtDVoUbOhkkxaan5guPsrKypgyZUq310pKSqipqen1ei7gcaYgPkDreGnfGXY5zb3fKxdZsa2ZTn+IimJX5gvLoM+0C0RbrCeTdhmjPYr4SBq902V8Jp1NIbLTdRb1yslHzKVSuOEAtMpuNxWy4mwK3YVojyhYicdJc2cgubQLaB0v9Ui7bQIUtMMpRHe8iMup1egplwNGV2LP5A5HJ9C3+EjJYl0iHymzWp/pkvE2296mUjqelCMfetpFaj5SQe9+G5fxThddiBaDw9XtR/pmpC2ZzQiI0VgSZKQcd9GiRZn4mJRIe76LiI+E0cXHQWMzOM8lmniRD1cKNR+V4chHx27oaITiyvTWV0Cs3qG32Wap08XT+3NLPdrlsNWX5A3HaLVtkC6HFMha5KMPp1uIdLwkHfmoGKk9ivlgv0jkI9XefnE5TZplRuQjS6ZzfbTaQoqRD09pZKcjRacJk4udLgDlxdrut7kzSdM4b41msY4Si/UU0N1N98yBNlsdb6qRj5o9tcddX6WzsoKg4MVHSsOkQFxOk2RrYwdbmzpx2G3sN6oiO4uIE/nQjcaSqvmAqNSLiI9EyVqnC/Q50RagvFg7B5o7kjwH7I6oKccSbk+G9q4AW5u0os+Mp13iRMGM7rdkC06rdfGxNp2VFQQFLz70Svvkh8uJy2kyLAubi+0zvDyzg6Oi6WOqLURdbJJpuQap+0iBrHW6QNxQe0U48tHUkYJdvnS8pMT6Bi0aWel1UZ1p08E+nG4BvJ4UNyPVe2iPuzfI2IV+KHjx4Uk18iEup0nx4fos+nvoxI18pJB2gUjdh4iPhNGLTffKtLMpxE+7FKWYdgHpeEmRL7ZpAmCPTM90gbhC1OvS0y4pRMSdxdrYhcaN6a4wrxHx4Uq14FRcTpNBj3wckKPio9hIu0jkw2r0NtuMz3SBPq3VId3Ih3S8pMKCL7VI0RF7Dcr8h8fpfCrxpFhwardHoh87JfUSDxEfKQ+TEpfTRGnvCvD5Vm2Hk9XIRwKttiI+rCdrnS4QFWqPVfMRjnx0+BOfbqxTKhbryeILBHljpRYpOmafoVlYQN81Hym32gLUhMWHFJ3GRcRHqmkX3eUUpOi0Hz7Z3EQwpBhWXkRtRf/zfiwjgbRLygWnjRshlOQ5VIBEd7rslWmPD4h7w9EjHyGVQrhdn2gq4iNh3vtqF21dQYaUeZhSm4Ui9LittimmYSES+ZCi07iI+NB9PpKNfECk46VV6j7iET3PxWbLgrkYaKmxOK22xalGPsprwe7SImDNW9NdZd4T3emSFfERJ+3icdqN+S5Jp17Ka7XHps3prK6g+N8XWsrl6ElDs2M6aETBep8Leho2aREKkY4XSbvEpeDFR1HY4TSpwXI64nKaEIa/R1ZTLr7I8ziD5ZLP8TqgcrT2XLw++mV1XRY7XSCut4PNZotqt01SfNTspT3uXJ3O6goGpRSvr9DEx7H7DMnOIoxW297dLiVGq20qaRdpt02EghcfpkQ+JO3SJ0oplm7MhU6X9sjzmA6nKbbWgdR9JIFe75GVTheIm3aBSN1H0pEPXXy01UsNWAJ8sa2ZrU2dFLnszNgzC8WmEL/bxZNiATpEIh+NG7XhdUJMRHzos12S7XaBKJdT6e3vi68a2mhs9+Nx2tlneO8dRsbQ6z3srl5zHCCNglOQAXNJkNVOF4hrMgZR7bbJig9PKZSHrbV3rkl1dQXD/77QamOOHD84OxEwSKjVNqXNSNkwLbWrQtJuGwcRH6kWnIJEPhJAr/fYb2Sl4SabFYxi0971HhCVdkkl/SaRj4QxBsplS3zE8fmASNFpc2cKN51B47XH+pWprKygeD3cYnvspCx0uejEabX1etLYjNhsUnSaACI+0kq7iMtpf+REvQdEtdnG7rZJueAURHwkiFLKcDcdn7W0S9+7XUgj7QIwaG/tsWFVKisrGLY3dfLJ5iZsNpg9MUv1HhAlRGM4nKbq+6MjXh/9IuIjVZ8PEJfTBIjudMkqcdpsIY0pliDiI0F2tnWxu92PLVudLhC32wWgvCjFglOIRD4apOg0HnrUY/9RlQwu82RvIXE8X0pSbb3XkQFz/VLw4iMy2yWVtIu4nMajqd1vhNkPGF2Z3cXEabOF7j4fSRtM6eKjrT6ymxJ6oQvRsTUl2cnzh4KR86CPyEdaLqcS+UiI11do9R7HZDPlolTczqeIyViakQ9Ju/RJwYuP9CIf4nIaj2WbtJvNuEEl1JRmcYcD4NcmZ8Zqs4XIxSakUjgXiiqgOBzZkQKzPnnxE6026qhshdr1mw30m3ZJab7L4Ana4+713Vu7BYP2rgBvrWkA4NhsuJrqBDq1+SvQR+RDi4B1BUIEgincG8Tro19EfBjdLikoXHE5jcuyXEm5QAKRj8ik3ZRSLzJgLi6d/iD/C/s6nLzv8OwsQk+52F3gjC2GjYLTjhTC7aVDtfoBFYRd61JdZV7z5uoGugIhRlUXMz5bqTeIEqI2cPUeaqdvRiCFSdcQSbs0bZJ22z4Q8ZFOwSmIy2kccqbeA/qt+XDYbUY3TkrzHKTuIy4Lv6yjvSvIiMpi9h9VmZ1F9NPpAmm02oLW5WDUfUjqJRa6sdgxk4Zmz+0Yuhce23vfBj1OO46w62q7L0UDSldJuN1WzAdjIeIjnbQLiMtpHwSCIZZvagRyRHz00+0CabicgoiPfnjhUy0yePK+w7N30/HF9/iA6FbbFMQHRNV9SLttT4IhZdR7ZLXFFiLFpn0UHttsttTnPWkHkI6XfhDxkY7PB0QiHzLXoxtfbm+hvStIWZGTvQZnMbyq04/PB0QbC4n4MJP2rgALwjedk7KVcoGIwVgf9R6AYa+eUsEpSMdLHJZvamRnWxdlRU4OHled3cX043QLaRoPQtR0WxEfsRDxEb7hpORwCpHcXv2XJq0oP1gWtlQ/YHRVdoZG9aSftAuI14dVLPiyjg5/kNHVXqaOyML0Uh2r0y4gHS9x0Gt+Zk0YgsuR5VtPP34vECk6Td3rQ4pO41Hw4kMfLJdy5GPoFO1x+2cmrSg/+HB9DtV7QL8FpxApOu3wp1Hz0bhB2q578MLHWsrlpGymXKBfjw+IpF3auoKpdTkY4mO1nAc9iNR7ZNFYTCdOm61OpN1WvD6soODFh1FwmmrkY1hYfOxcHdldC7lVbAr9ttpCmpGPipFgs2stfOJ4a9DqC7BwpZZyyVqXi04Cu92yokjXU0oW61XjwObQhI50wBls2NnGqh2tOO02Zu2dA+IjgRRcWsaDIF4f/SDiI92C07LhUFytVTVL6gXQ7JO3NHZgt8F+2eps6ElCkY80xIfDpQkQkNRLFK+v2IEvEGLcoJLsDhaEhHa7ToedUk8aLqdOd+SmI6kXg/+Fa34OHltNhbf3YMeMY5wLfZ+TRuTDl2LkQ0+7NG0W35cYiPgIi4+uYIhQKIUwqc0WiX5I6gWI1HtMHFZuXMizTgI1H2nvdKTuoxcvfJIDXS46Rtol/lwZ3WI99aLTcOqlXsSHjpFyyaaxWDSJ1HykM1wOoHSIluJTIbkmxEDER5TNc1cqOV6AoVO1xx0iPiAHUy6QUKttWmkXEPHRg5ZOP2+srAey3OWik8ANB9J0OQXx+uhBU7uf99dpDtA5Ue8BcSfa6hS70iw47TbdVuo+eiLiI2rMe0rzXQCGTtYeJfIB5Kj4SKTV1vD5SDHMKuKjG/O/2EFXMMReQ0qZMDRLU2yjSaDbBdKcbAvS8dKDRavqCIYU44eUMqamt5toVkig1TYS+UjxegDi9RGHghcfLocdd7jtqzXV3J6edtnxWcFXuHf6g3y+tQnIVfFhUastiPjogT7L5aSpOZBygYS6XSC63TbF60F0x4sQGSSXKykXiDvRVsebbqstRHW8iPjoScGLD4DqEjcAu9pS9OAfPBHsTuhshOYt5i1sAPLplib8QcXgMg8jq/q+0WccXXw4+16TNxxmTXmSpSE+xE65qd3P4tVayiXrXS46CdxwwAyX0720x5at3YfZFSD+YMjodsrqFNueJFBwmpbDqY54ffSJiA9gUJkmPhpaU6xIdnoiu50CT70YKZfRVbmx29VJIPKRdtqlcqz22LI10tpboLz2xXb8QcWEoWWMz4WUCyQUagcTXE6Lq6AkXNtQ4NGPJet20dIZYFCpO3szfWLR1X8KLm2HU4iKfMigwZ6I+ABqSrQJlw0taUwf1M3GdnxqwooGLjlZ7wEJtdqmnXbxVkc6KRo3pnaMPEHvcsmJQlOdBNMukcm2KYoPkNRLmPnhLpfZE4YYg9pyggSKj/W0S1sqg+V09JqPpk0FvyHpiYgPYFBpWHy0pdGLLUWnKKVYFhYfB+Sc+Egi8pFq4bHNJnUfwO62Lt5e0wDkmPhIwOcDIjUfKUc+IKrjpXAHzCmlDEv1nKr3gCRbbdNIu5QMDm9IVEFfE2Ih4gMYVBpOu6QT+TCKTj83YUUDkw0729nZ1oXbaWfKiCwbSvUkEN51JCA+0gqzVo3RHgv4QvPq59sJhBSThpezZy4MFdQx0i7xz81Iq20aN53BE7THAu54WV3XyqZdHbiddo4cPyjby+lOQq22JlwPbDYZMNcHIj6IRD52phX5CHt97FoLXe0mrGrgoadc9h1RYdjW5wxG2iVet4sJ1e0S+eDFTyPGYjmDUhlOu8h02/lfaFGPw/esMVIYOUEoFFXz0bcQLfHo14M0RChEik7F66MbIj6AmtI0C04ByoZqITYVgroVJq1sYLF0Y47WewT9EApfQKwsOIXuA+YKkJ2tPt5ZuxPIMfHR1QaE2+D7TbukYa+uo9d87FwLwTRvXgOUnHM11dGFB8RNu6RdA6YjXh8xEfFBVOSjNY20C0TqPgq06DTn6z0gfqutKWmXsdpjgUY+Xvl8O8GQYuqIitwxlIJImN1mj1t0DBizR1JutQUoH6mdayF/QQrR+hYfH21qBODoiTkmPvRzwe7SOhX7oMSMSCiI10cfiPggquA0ncgHRHW8FF7dR3Onn5U7tP/UB4zOVfFhi3ux8aY72wW6i48CNJx74eMc7HKB7nNd+mkBjy44Van+G9rtEb+PAqz7WPhlHUrB1BEVDKvoe6RBVohus41zLpji8wFRXh+SdolGxAeRgtNdbV0EUxkupzMsXPdRgB0vyzc2ohSMqfEyuKzvG3xWiG6zTeRi4w+mftOpGAXYtAtc+87UjjFAqWvp5P112u980tQcEx8JdrpApODUH1R0+lOc9wQFbbNudLnkkrGYToIzfvTrQac/lN59QY98NG/uHoUtcER8EHE4DSnY3W6G18fnBbfrjTYXyzmMTpf4OzA9xxsMqdSHDLqKoLxWe15gqZdXP9tOSMF+oyoZVR0/tZFxEuhu0ClxOwxPirRSLwU63bbTH+TN1Vqr9TH75MgguWgMp9v4XU8lURO504p+eGsin1Vg14R4iPgAnA47VeE8b1p1H4P21vKIvqaCM5latjFH6z0AOrS19Xex8UZNOG5Px1ioQOs+ng8bi52SaykXiAq19++2arPZjKJTc7w+Ckt8vLO2gQ5/kNqKIvYZnmMt9xBpue5HiHqcdiNQmlYqNnq6rRSdGoj4CGNK3YfTHenvL6C6j2BI8dHGRiAHO10gIgQrR8V9mzNqyGB7qkZjECU+CsdSeUdzJ0vWa2PTT8i1lAskPNFWx5x22yivjwKKhP4vPEju6ElDc2vEgk6CaRebzWYUnaY870lHik57IeIjjCntthCVeimcuo+V21to9QUo9TjZO1fmeERjiI/R/b612Mx22wIaMPfSp9tQCg4YXcmIyhwaKKijh9oTSLtApO4jrchHzZ6ATRs42daQ+nEGEKGQyt0WW50ExQdgTgQMxOsjBiI+wkQiH2m22+pOp9sLp91W9/eYNroyt+Y36OitjpVj+n2rKe22lYXncvriJ7qxWG2WV9IHCZhKRZP2ZFvQPGV0wVsgqZfPtjaxo9lHidvB9D2qs72c2CQhPqrDm9Kd6W5KJe3SCxEfYSJeHxL5SBbD3yMXi00hpciHeH0kztbGDj7csBubDU7MxZQLJJ120dttmzvSbLMssI6X/4VdTb+29+DccznW6UpcfOhDR3e2pbkprZHIR09MFx9z587l4IMPpqysjCFDhnD66aezcmXuD1caZFbaRW+33bUucsHLY0IhxQfrtFx/TtZ7QFLiI+Jymob4GDxBM7Nq2gRNm1M/zgDhpbCd+sFjqnPP00EnQWt1nfJik8LtBTbdVq/3yMkWW50kIh81RuQjTfGhp12atxTs+I2emC4+3njjDa644gree+895s+fTyAQ4LjjjqOtrc3sjzIV09IuJYOgdCigCsJm/X8rdrClsYMStyM3O11CwYgASER8uExwNSyuhJEHa8/X/C/14wwQXvgkR43FoknihgNRw+XSFh+FM912S2MHX2xrxm6D2RNzsMVWJxnxUWJS2sVbDUUV2vMCiYj2h+ni45VXXuHiiy9m8uTJ7Lfffjz44INs3LiRpUuXmv1RplJjVtoFolIv+V33oZTijgXaju6iGWMp9eTQ8Cidlm3aXBe7E8r6vzl6zRijDbDXMdpjnouPTbvaWb6pEZsNTpg6LNvL6ZtkxUeRCQWnUFBpF73Q9KAx1YZ3Uk7iS7ztWr8v7Eo37RLdbisdL0AGaj6ampoAqK6OXXzk8/lobm7u9pUNImmXNE8yiCo6ze+6j4Ur6/hsSzNet4NLjtwj28uJjZ5yqRgJ9v5z0EbaJZ1WW4iIj6/e0Abb5Sl6yuXQcdUMKcvRlAsknXYxpeAUIuKjcVPeh9sjLbY5HPWApAzn9MhHQ7riA6Js1kV8gMXiQynFtddeyxFHHMGUKVNivmfu3LlUVFQYX6NGxfdisIpon4+UrbV1hobrPvLY60MpxV9eXwPABdPH5O5OJ4l6D4BiM9IuAMP315wNfc2w6YP0jpXDvPhpjne56KScdkkzAlYyCIoqAZXXO96WTj/vrtVdTXO43gMSdjiFSM3HrjYTIuLi9dENS8XHlVdeySeffMKTTz7Z53tuvPFGmpqajK9NmzZZuaQ+0U8yXyBEqy/NC44x3fZzCKUxGyKHWby6gY83NVLksudu1AO0HSckLD5MabUFbbDYnkdrz9fMT+9YOcqGnW18srkJuw2+PiWHUy6QQreLSQWnNlvEeDCPUy9vrm7AH1TsMaiEPQcn9necNZKq+TBp4jlE7gvr3y4o07m+sEx8/OAHP+C5555j4cKFjBw5ss/3eTweysvLu31lA6/badx40j7RBo0Hh1tr6crDcdpKKe54Xav1OP/QMbk3SC6aJDw+IEp8pCtAAcYfqz3mad2HHvWYsecgI3KYs0RPtU0A09IuEFV0mr8dL/oguZxPuUD3qbb9EN3tknZEfM+jtPvCrrVQ/2V6x8oDTBcfSimuvPJK5s2bx4IFCxg3bpzZH2EZplisAzhcMHii9jwP/T7eXbuTpRt243baufRrORz1gOTTLlGTbdNmz6MAm2Y417I9/ePlGC8OhC4XHSPUnkGHU508LzoNBEMs/HIAtNjqpBD56AqaEBH3lIWvCcCK59M7Vh5guvi44ooreOyxx3jiiScoKytj+/btbN++nY6O3B8lbG7Raf7WffwlHPU49+BRDCnP4SJDSFp8mOLzoVMyCGr3156veT394+UQ6xra+HxrMw67ja9PzvGUi1JJdThAJPLR6gsQSmecOuT9dNtlGxvZ3e6n0uvKXa8fnaA/MuU6gXOh2O0wLyIOMOkU7XHFc+kfa4Bjuvi49957aWpqYtasWQwfPtz4euqpp8z+KNOpMSvyAZF22zyzWX/vq528v24Xboedy2btme3lxCdJjw+AYrdecGpC2gVgr/xMvbz4yVYADt9rEFW5WmysE+gEFRaTiZqMhVttlYKWdHe8uvjYuVo7J/MMPeUye8IQnI4cN83Wox6QcArOSL2YUXS69wmaAeH2Twve78OStEusr4svvtjsjzKdiMW6icVFeZZ2uTPs6/HNg0YyvCIHB4hF07IdQv6EPT4AvC6TCk519JbbtQvy6sajG4udnKt26tFEOw0nKD7cTjvF4XMhbaOxyjGawVSgEza+m96xchBdfAyolIuzGByJ+RJVm1l0WlIDYw7Xnq94If3jDWByXKZmFtMs1iGSdtm9Hjqz411iNh+u38Xba3bitNv4fq5HPSBpjw8wOe0CMOJA7cbT2QhbcttoL1HW1LXw5fYWXA4bx+d6ygW6T7S1J37JM81i3eGEiSdrzz+bl96xcoy19a18Vd+Gy2Hja3sPyvZy+ifJlmuAQbrLqRleHwCTTtUeC7zuQ8RHFEbkw4zwmrcaysLeB3lis37HAs3X46wDRzKyypvl1SRAkvUeYNJguWgczkiRWZ6kXvSoxxF7DaLC68ryahIgSYMxnchwOROKTiefqT1+8V8ImpTSywF0V9Ppe9RQVjQAzoUUxEeNWZNtdSaepD1uej8vC9ETRcRHFPpJ1tBiksLVnU7zwGZ9+aZGFq+qx2G3cfmsvbK9nMRIQXyUhC3i03Y4jSbPrNb1LpecNxbTSdLjQ8fUdts9ZkJxNbQ3wPo30z9ejjAgBslFk0SbrU61WZNtdSpGwIiDAAVfvmjOMQcgIj6iMFptzYh8QFTR6cCv+7gz3OFyxrQRjK4ZAFEPSNrjAzDy/KYVnELEbGzLMmhrMO+4WWDl9hZW17Xidtg5dvIAueGksNsFE11OQWu/1zsdPs+P1Mvuti4+XK9NtB4Q/h6QlLupziCzJttGMymchivg1IuIjyiMmo8Ws8RHfhSdfralide/rMNugytmD5CoB6QU+dB3u7vb/ASCJrnTlg8PW+4rWLvQnGNmCb3L5Wt7DzbSEjlPimmXCjO9PgCmhFMvK57Pi3k/8z7aQkjBpOHlAyMNC+mlXczalAJMDAvR9W9Cx27zjjuAEPERhR75aO4M4AuYEHY3vD6+GNA267qb6an71TJuUEmWV5MEKYiPEZXFeN0OuoIh1u9sM28te+lW6wM39aKUinS5DARjMZ1UIx9hi3VT0i4AY46AksHazearReYcM0tsaezgttdWAnD+oYn//8o6Sfq9gMndLjqD9oIh+2gTt1e9at5xBxAiPqKoKHbhtNsAE0YogzbF0FkM/jbY/nH6x8sCX2xt5rUvdmCzwZVHDaCoRwoeHwB2u40Jw7QL04ptLf28Owmi6z4GqBBdsa2FrxracDvtuT88LJokpphGY6rLKWjFx/ucpj0fwF0vSil++syntHUFOXhsFecdMpDER/LnQo3Z3S46huFYYaZeRHxEYbPZzC06dThh4ona8w//kf7xssBdC7Wox0lTh7PXkOR2jlklBY8PnYnDtHzwyu0mio9Rh2qmRu0NA1aIvviplnKZPWEwpZ7EPBJygq7kd7sQVXBqlviASNfLly9CwMQwfgZ57uOtLFxZj9thZ+6Z+2IPb9gGBKm02oYj4rvbutJ3u41GFx9r/gddJkZZBwgiPnpgetHpIf9Pe/zkaWjfZc4xM8TK7S289KnWCvaDo8ZneTVJoqdcykck7PGhMzEc+fhyu4n+LE631vEAsHrgpV62NXXw6LtaAe+A6XLRSbHbRa9pMS3yATD6ME0M+5oGpOX+rrYufvn8FwBcdfRe7DUkxyfY9sQoOE1cfFSVaOdBIKTMS8GB1pBQOUYznxvA6dhUEfHRA8Ni3ayi01GHarUfgQ5Y/rg5x8wQdy3UfD1OmDLMSEUMGFKo99CZaEXaBQZs3UcopLjuXx/T3Blgv1GVfH3KADAWi8YwGUux26XTxM4nux32OV17PgC7Xn71/Ofsauti4rAyLp05AIwGe5JCFMzjdFAWrv8xZe6Xjs0WlXopPLdTER89MNqqzMrv2WyR6MeSvw0Yi+01da28EO5sGFC1HjqG+Ei8zVZHT7tsaewwd6ej131s/mBAVbj/4+11vLN2J8UuB7d/a39cuT6/oycppl10h1NT0y4Q6XpZ+TL4c3/gps7ClXU8u3wrdhvc+o19B955ACkXH+sRcVNqAaPR3U5XvQIBk4+d4wzAs8daBpkd+QCYchYUVWpW6wNk13vPwjUopZkHTa6tyPZyksfw+Eg+8lHhdVFboU3rNbXuo3I0DJoAKjRguh1WbGvm969oXQ0/P2WfgdXtpJNLaReAkQdDxShNFK2eb+6xLaLVF+An8zSzxDmHj2O/UZXZXVCqpCg+qktMHL0RzciDoXSoFp1bt9jcY+c4Ij56YHrkA8DthQMu0J6//1fzjmsR6xvaeHb5FkDL6w5I0ki7AEwcrkU/vtxm8lyeAeR22ukPcs0/l9MVDHHMpKGcc/CobC8pNdL0+TA1+gVaNHTy6drzAZJ6+cMrX7K1qZNR1cVce9ze2V5O6qTQagswulrzMVm1w+RUrN0emfuz4jlzj53jiPjoQU24p9t0hXvQdwEbrH0dGtaYe2yTuXvhGkJK62rYd2RltpeTGumKD73uw8zIB8B4XXy8rs1rz2H+8OpKVu5oYVCph1u/MRWbbQB1NUSTpsNppz9kju9PNHrXy6pXc77TYemGXTzynhZJnHvGvnjdA6jTqSdGq21y58K00ZUAfLSx0dz1QMTt9MsXB0xa3gxEfPRgUJkuPkzOv1WPg72P154v+Zu5xzaRTbvamfeRFvX4wdEDrMNFJ0WPj2gsi3yMnqF5v7Rsgx2fm3tsE3lrdQN/f2sdAL8/a6pRiD0gSVF8lHmc6HrLFIv1aGqnQdVY8Ldr+f4cxRcIcv1/PkUp+OaBIzli/ACYXBuPFLpdAKaNqgLgo427zW23BRh7pDb5ur1BGzZXIIj46IFhsW525APgkO9pj8sfj4T/cox7Fq0hGFIcOX4QB4yuyvZyUiMNjw+dSeHIx8rtLeZebFxFMO5I7XmOpl4a27u47unlAHx7+miOmjiADMVikWLaxW63URb2MzG90NBmi0Q/cthw7O4Fa1hT18qgUg8/PWmfbC8nPZRKWYhOHF6Gx2mnuTPAVw0mR6ocLpgQ9oMqIMMxER89iK5qNl3h7nGU5nrqa4ZPnjL32CawpbGDfy/VIgZXD9SoB3T3+HCkFiIeO6gEt8NOW1eQzbtN7kjY61jtMQfFh1KKm575lB3NPvYYXMJPThzgNxyIuuEk70mhdz59tNGC7iS962X1fOg0OcJmAl9ub+aeRWsB+NVpk6nwDpBZPn0R6AQVTmskKT5cDjv7jtQK7y05F6LdTnM8HWsWIj56oFc1B0OKRrOr3O32SNvtBw/k3El276I1+IOKGXvWcNDY6mwvJ3XSrPcA7WKjGyiZajYGEb+Pje9Fbow5wrxlW3jp0+047TZu/9b+FLuTM2jLOQJdEAxHLZK84QBM30P7f/DuVzvNXJXG0ClQMx6CPq3tNocIhhTX/+dTAiHFcfsM5YSB5u0SC+P/mg3cyXdt6ZHgjzY1mrcmnT2PApcXmjbBtuXmHz8HEfHRA5fDTmVY4e+0IvWy/7ngKoH6FbD+LfOPnyL/WbqZx97TbtoDzs20J2l4fEQzcbjudGqyQKjZE6rGaamhHGqv27SrnV88p9Wh/PDYvQdusXE0XVHpzSSLDAGm71kDwLtrd6LM3izYbJHoR451vTz49jo+3tRImcfJr06bMnCLjaOJTrmk8PtYWnTqKo50whVI6kXERwz01Eu9FeKjqAL2O0d7/sH95h8/BV75bDv/959PAPjO4WM5LHzBHbCk4fERzaRwyN30yAfA+HDqJUd8HoIhxbX/Wk6rL8BBY6q4bCC6V8ZCLzB0FqWUgjtgdBVup526Fp/5uX6I1H2seT1njOc27WrnT6+tAuDGEycxLOx5M+BJsd5DZ1o48rFyezOtPpMLkCFiOFYgbqciPmKgTzHc3tRpzQfohadfvhjpysgSb61u4KonPyIYUpx14Eh+NtCLykALXULa4sOIfJhtsw5Rfh+50XJ73xtrWbJ+N6UeJ3/+1v44BtKwsHik6OugU+RycEB4x/vuWgtSL0Mmhker+7XrQZbRa346/EEOHVc9cL1dYpHidGOdoeVF1FYUEVLwyeZG89als/dxYHdBw0qoX2n+8XMMER8xmDpCKyx6c3WDNR8wZJLWXqWC8OGD1nxGAizdsJvvPfIhXcEQJ0wZxu/OnDqwJlT2hQk1HxApNly3s42OLpP778ceAQ43NG2EhtXmHjtJPt3cxJ/nazvdX546mVFhQ6W8IMVOl2gO20NrL33PiroPyKmul/8s28KbqxvwOO387hsDbGJtf3Q2aY8pClGAaWP0lttGExbUg6IK2GOW9rwAUi8iPmJwfLi46vUVO/AHQ9Z8iF54uvQh8FsUYYnDF1ub+c6DH9DhD3Lk+EHcfs7+OAfirIaehELQaE7kY3CZh0GlbpSywNnQXQJjDteer8le6qWjK8jVT31EIKQ4aepwzjxgRNbWYgkpWqtHoxedvvfVLvPrPiBS9/HVImizSOAkQH2Lj1+/oE2sveaYvQemlX48Nr6rPdaknlKcFraVt0R8QMRwTMRHYXLA6CoGlbpp7gxYt9uZcKLWCtreAF88a81n9MFX9a1c+I/3ae7U8vt/veBAPM4B3tWg05q+x0c0E62s+9BTL1nsdLjlpRV8Vd/G0HIPvz0jTwoLozFMpcpTPsT+oyvxOO00tPpYU2eBP0/NnjBsXy0SmiWL7UAwxE+f/ZSmDj+Ta8v53pHjsrIOy1Aq8nert7WmgF738dHG3dYI0QknATat40WP4OYpIj5i4LDbOHYfzVjp1c+3W/QhTjhojvY8g4WnWxo7+Pbf3qehtYt9hpfz94sPHth2yT0xweMjmgm6zboVdR8TTgCbHda/CZ88bf7x+2Hhl3U8GrbN/tM396fS6874GizHhLSLx+ngoLHaTceSllvIatdLS6efSx75kFc/34HDbuPWb+ybH1HQaLZ9rF0bnMWw59EpH2ZybTkuh42dbV1s2mXBROLSwTBmhvY8B2qArCTPzjDzOG6ylnp57fMd5puN6RxwkZb337IUNi+15jOiqG/xccHf3mdrUyd7DC7hke8eYgzPyhtMqvfQ0We8WBL5qNkTvvZ/2vMXr9WmHmeIJet3cd3THwPalNIBb5vdFxvDdtUVI9M6zGF7RFpuLWHyGdrj+regtc6az4jB5t3tnHXvuyxaWU+Ry87d501jyogBOMW6P/Q0xvhjtEGfKVLkcrBPeMr3R5ss6k6KNhzLY0R89MGMPWso9Tipa/Gx3IrKZtBUrl5stuQBaz4jTFOHnwv/8QFfNbQxorKYx757qNFSnFcYbbbpeXzoTNJnvGxvsSbM+rUfw6hDtfTAf74HQQta+KJQSvGPt9Zx7v3vsauti6kjKvi/r0+w9DOzRlc7fPFf7fmUb6R1KL39/P11u6zZjFSNhREHggpF1mwxH23czel3v8PKHS0MLvPwr0sP4+tT0k9V5iT6jXzSaWkf6gAr/T4gMuV2wzsZFaKZRsRHH3icDmZPHAJYmHqBSOHpZ/+BNmu6a9q7Asx5aAkrtjUzqNTDY5ccSm1lsSWflXVMjnzsNaQUuw0a2/3UtVjg++JwwpkPaDUJmz+AxX8w/zPCtHcFuOap5fzqhS8IhBSn7lfLU5dOp8iVJ/U+PVn5EnS1aOfC6MPSOtTUEZUUuxzsautiVZ1FrrT6RiQDRegvfrKNc+5/j4ZWH5OGl/PfKw7PD1O5WNSv1NpX7S6tnTVNous+LKFyFAzfH1Dw9l+s+YwcQMRHHI6frNV9vPb5Dmt2vQAjD4TaAzQL6GUPm354XyDIpY8uZemG3ZQXOXn0u4fkXxV7NCaLjyKXgz0Ga/UCK8yecKtTNQZO/rP2fPHvYcO7pn/E+oY2zrznHf67fCsOu42fn7wPfzln//yq9+nJx//UHvf9ljbaIA3cTnuk7sOq1MvUb2rtljs+g/9eYYn/i1KKuxeu4YonluELhDhq4hCevuyw/N2MQKTQdM/Z2t9vmugdL59vbabTb3ILvs4R12iP794FHz1mzWdkGREfcZg1YQhup511DW2stqLKXUePfiz5h6lhd38wxNVPLufN1Q143Q4emnOIkUbIW0wWHxBd92HhHJapZ8G+52hh93n/DzoaTTv06yt2cMpdb/Hl9hYGlXp44pJDmXPEuPzrbImmtQ7WLtCe73uOKYc8bE+L6z7KhsLZj2qdWp/9GxbeYurhfYEgP3r6E/7wqmZgNefwcTxw4UGUevJYgAJ8kX6XSzQjq4oZVOohEFJ8tqXJlGP2YvIZWkoW4PlrcmoUh1mI+IhDqcfJEXtphXivfmZh6mXyGeCtgebNsMqctst31jZw4l/e5JXPt+N22Ln/goOMwUh5i4keH9EYdR9WRT50TvyDlvtv2qgVoKa58w2GFLe9tpLvPvwhLZ0BDhhdyYtXHcGhewxw+/xE+PTfWuvqiINg0F6mHFIvOrWs7gNgj5lwSjjUvvj3sPxJUw67u62LC/72Af9ZthmH3cavT5/Cz0/ZJ3+cbPti93rY/onWVaaPrU8Tm81mfd0HwKybtHtDyA9PfRt2rjXlsEopHntvAw++vc6U46WKiI9+0FMvr35hofhwFWmdLwDv/zWtm862pg6ueGIZ5z3wPqvrWqkucfPXCw7M326GaEz2+NDRIx+fbGmyLv0GUFQOZ/4NbA6tBkhPG6RAY3sXcx5awh0L1gBw0WFj+Of/O4yh5Xkyp6M/Pgn/3e1nTtQDNOfjEreDpg4/K6zoftKZ9m044ofa8+d+kPaud219K2fc8zYfrN9FmcfJPy4+mAumm1OQnfPoc1LGHA4l5l0DjboPqzpeQEsVnn6vVojcsRueODvt+T9bGzu48B8f8NNnP2PuS1+yzop5RQki4qMfjpk0FLsNPtvSzObd7dZ90EFztJvO+jfh+auTTr90BULcu2gtR//pDV78ZBt2G1x42BgWXjfLKJzNe0z2+NDZb1Qlbqedr+rbeOTdDaYdNyajDoZZN2rPX/pRSrudz7Y0ccpdb/HGKq198s/f2o9fnjYFt7NA/rvXrdB8HezOSBGnCTgddg4ep7mdWpZ60Tnq57DP6ZqY/uf50LAmpcO8tbqBM+5+m/U72xlZVcx/Lp/BzL0Hm7vWXMYwFjvV1MPqE26XbWi0dkPiKoZznoTykbBzDfzrQgj6kz6MUop/L93M8X9ebNjn33DCRMZkcZRCgVyNUqem1MNBY7ULzquf77DugypHwUl/1MKDyx6Gf54bsYbuhzdX1/P1vyzm1le+pL0ryIFjqnj+B0fwq9OmUOHNMx+PeFhQ7wHalOObTpgIaI6gplut9+TIa2H0DM0ga973Er7YdAVCPPreBr5x7zts2tXB6Gov875/OGdMS8/jYsChR4zGHwcl5qaY9NTLYqvmPunY7XDGfVraqLMRnvhmwtbrSineXbuTC/7+Pt/+u+ZkfMDoSp694nD2Hpr6XJMBR8t22BT2edFty01i35EVuJ12tjd3cv/ir0w9di/KhsJ5T2lGeesWJ5WSDYYUL326jVPvepsfPf0xLb4A+4+q5KWrj2TOEeOyOrtHxEcCHB82HHv6w000dyavOhPmoDnwrcc0F77Vr8FDJ8Xt897S2MH3H1vKBX//gK/q2xhU6uZP39yPf192GJNr89AoqD8Mjw9zxQfARTPGMnPvwfgCIa568iN8AYuq3AHsDjjzfq0yf8tSWPS7uG/f1dbFna+v5vBbF/CzZz/DFwgxe8Jgnr/yCPapzfMC456EQvBp2C3WxJSLzswJWtRg8ap6/vI/iwcCuorh3Ce183nXV1reP9B3u7dSigVf7uCs+97l3Afe483VDTjsNs47dDRPfG96fvr6xOPLcMpl5MFQXmvqob1uJzeGNyS/e+VLa+0YAIZNgbP+Ed6cPqJ1wcShKxDiXx9u4tg/v8Hljy/j0y1NFLns/Pj4Cfz7ssPYc3Dqjr9mIeIjAU6aOpwSt4Mvt7dw+t1vW5snm3gSXPS8VoC6bTn87ZheU099gSB3LVjN0X9axMufbcdht/Gdw8fy+nWz+MaBI/O7iyEeFkU+QCsy+8M396W6xM2X21v446sWj7yuHAUn3649f/NPMfP+q3e0cOO8Tzhs7uv8af4q6lt8DC338NOTJvH3iw4urKiXzvo3oXmLJtz2/rrph584rJybTtRuOn/+3yruXphaOiRhSofAeU9rPjAb39FqQHrseoMhxQufbOXEO95izkMfsnTDbtxOOxdMH8OiH83iljOm5q+XSzxM7nLpycUzxnLB9DEoBdf8c7l1nS86ex8Px/1We/7az+DLl3q9pb0rwD/eWsfMPyzk//79CV/Vt1Fe5OSqo/binRuO5orZe+WMdb5NWZqwSp7m5mYqKipoamqivDx3dm2fbm7i/z36IduaOikvcnL3+Qdw5HgLc6c718Jj34Dd66C4iuC3nmRJaG9e/nQbL3+23TC8OmRsNb88bXL+t9AmwiOnaZNBT78X9j/Pko/43xc7uOSRDwF47LuHWl/I++wVsPwxrY7l+2+jiipZvLqBv7+1jsWr6o23TR1RwXePGMeJU4cXTm1HLJ75Pnz8BBx4caRrxALuWbSG37+iCdAbTpjIZTNTn5SaEGsXwGNnaR08s26CWdfjD4Z45qMt3LdoLV+FN0Qlbgffnj6G7x4xjiGFUlwci/Zd8Ie9tL+vqz6C6j0s+ZhAMMSchz9k8ap6hpZ7+O8VRzCswsK/d6W0tMuH/wBXCcx5BYbvS1O7n4ffXc+Db69jd7sWnR9S5uGSI8dx3qFjMtZOncz9W8RHEtS1dHLpo0v5aGMjDruNn540iYtnjLUs0hBorqPj4bMo2/kxPlxc3XUFr4QOAbRx7z85cRKn7V9buJGOntwxTQtPX/wijD3Cso/5yTOf8vj7Gxla7uGVq79GVYmFA9l8rfDXr8Gutewum8AtwW/z9C7tRme3wXH7DOO7R47joDFVch50tcMfx2u1Mt95Bcak52raH3ctWM0fX1sFwE9OnMT3vmbNDc5g6UNaMTrwxpRbuGnNJLY0asPNKopdXDxjLN85fGx+DghMlo8e04zahk6F71vrkdHc6ecb97zD6rpWJteW869LD6PEypt90A+PfxO+WkigZDj3jL+fvy5rp61LSwWPqfFy6df25MwDRmQ84iXiw0J8gSA3zfuM/yzbDMC3DhrFr06fbNpI+q5AiLfXNvDKp9t57YvtdLS3cqfrLo51LCWEjeeGXUn5rB9w+F6DTPvMvKBxkyY+Qn645lNLUi86HV1BTrrzzXCdjYdT96vlzANGMLm23DQB0OoL8PGmRpZt2M3O1e9z7fYfU47WbfWW2o/P97mOE489llFZrFbPOT55GuZdos31ufpjyIAYu/1/q7g9XPvx85P3Yc4R5o+i39Hcybtrd/LeVzvZ78s/ca7/WXzKyf/5/x/vFs/iu1/bi/OnZ253OyB44luw6hUjSmQ1m3a1c/rdb7OzrYtj9xnKnedOM/3Gr5Ri46523vtqJ8tXb+D/rb6McWozn4fGcJP/u/iGTuPy2Xtx4pRhWUutiPiwGKUUf39rHbe8tIKQggPHVPGtg0cxblAJY2q8DC71xL0JKaVoaO1iS2MHW3Z3sKWxnS27O9i8u4MP1u+ipTPSZltd4ubr+wziys4HqF39uPbi9CvguN+kbRmdN9StgEfPhJatUDMernhfK9q0kC+2NnPxgx90m/cyfkgpZx4wktOn1TK8InG7aqUU6xraWLaxkWUbd7Nsw25W7Wgh2seqmmZuKn2eM4Kv4lABwKbZhh/1E0uF1oDi0TNh7esw83qYfVPGPva211YafirHTx7KwWOr2X9UJVNGVKR0A6pv8fHeVzt596udvLd2p5FSAbAR4l7XX/i6YwkAocox2A+7EqadD+48HpuQDL4W+P0e2siKy9+DIZMy8rFLN+zm3AfeoysQwuO0M32PGr6292Bm7j2IPQeXJr0xUUqxYacmNrSvXWxvjsz8GWXbwX/dP6fapnXfqTGHYzv8Ghh/bEaEdyxEfGSIhSvruOqJj2jxdffkKHE7GFNTwthBXsbUlFDscoRFRgdbG7VHXyDU53EHl3n4+uRhnDB1GIeMrdZUrAoPGfrfL7Q37XmU1h2z17GaSVmhsvF9zXynsxEGTYAL5qU9Pj1R/MEQb6ys55mPtjB/xQ66wv+mNpvWkjm5thx/UBEIhfAHFP5gCH9I4Q+ECIRCdAUVPn+QVTtajDxtNCMqizlwTBUHjK7kgDFVTK6twNG4Dl7/NXw+T3uTw63Z8x95HXirM/J75yQt2+G2SZo9/Q+WQY3FNRhRKKX442sruXthd08Wp93GPrXlTBtVybTRVQwp89DU4Te+GqOeN4cfd7V1sXl3R7fj2Gwwubacw/ao4bA9azh4pJeyJXfBB/dDxy7tTcVVcPAl2rlQWiC+Pn3x6b/hP9+Fmr3gyg8zeiN+7fPt/OK5z9nW1H0wYG1FETMnDOaIvQZT7LbT0hmg1RegNfwY/X1bl/b9tqYOdjR3725yOWzsP6qS6XvUMH2PGg4sa6To3dvgk39pUV+AIfvAjKu0Sc7OzKbgRHxkkK/qW3n4nfWsrW9j/c42tjZ2kIjzss0GQ8uKGFFVzIjKYuNx4rAypo2u6tv2+NN/wzOXRU40dxlMPFEzU9rzqIyfbFll5Svw9MUQ6ICRh2i98Fm6ATd1+Hn5023M+2gLH6zblfSfdzvt7DuiggN0sTG6Kn7B4JZlmhBdt1j73lMBR/4QDr1Ma9EsNN65C177iXYeXDI/K0tYtnG3FhLf2MiyjY00tKY+BXnS8IjYOGRsdezOpa52WP44vHu3VpgO4PBoLcYzfgCDxqf8+QOaf10EXzyrucQec3PGP14pxaodrSxeVc/i1fW8v26XsTFJFpfDxrRRVUzfo5rpe9QwbXQVxe4Y0bSmLfD+vfDhQ9okZ9CK1KdfDgdeBJ7M+LuI+MgivkCQzbs7WN/Qxvqd7axvaMMXCFJbGREZIyu9DKsoSr0roW6FVlD1+TNaW6FOUQVMPFkTInvMBEcet1p+9Hi47TComUl982Fw50b9w6Zd7bz46TZ2tXXhtNtwOey4nXbjucuhP9pxOmyMrvYyubYi+fNBKVjzuiZCdnymvVY+Ag67AkZNh6GTCyMq1rIdHj0D6r6Ak/6kRQCyjFKKLY0dfLSxUfvatJuWzgAVxS4qi11UFLsoDz92+/K62GtwaXJFzKGg5mnx9h2w5cPI6xNO1HbAo6dnLQyfUZSCrR/BQyeDvw2+txBGHJDtVdHRFeT9dTt5Y1U9S9bvwm6zUepxal9FTsrCjyWeyPNSj4sqr4vJtRWxxUafH9YISx+E9+6F1rApZlFFOCp2qWZYZiE5IT7uuece/vCHP7Bt2zYmT57M7bffzpFHHtnvnxvo4iOjhEKweYkWgv/8WW22iU5xldbfPvkMqJ0GRZX5cQHqmX7a71w49c78Flr9EQrBp/+CBb+Bpk2R1+1OLQRbO027CNdO077Ph7+rhtXaDXfFC5EbrsMN160s3PSTUrDxPXjnTlj5EhC+tNfsBUOnaLUPQyZp50DVOFNHEGSVps3wyVOas22D1n1E1TitxTYfrnmpEPBpfydv3wE7wz5RDrcmREcfpj2OPNj0iEjWxcdTTz3FBRdcwD333MPhhx/OX//6V/72t7/xxRdfMHp0/OI4ER8pEgpqF57P58EX/4W2+u4/95RrhYkVo7RH42uU1h1QXJWb/1GDAa2QtHGj9rXuTc3HAbRd3bG/ys11ZwN/p9aOueZ/sHUZtMew43Z4NLfE2mnaV81eUFyt/fsXV+XuDSkU0n6nL1+AL1+M3GR0RhykjSCfYL6x2ICkYbXmgrn8SQjGSP843FqN1JCJmiAZHBYmlaMtL9Y2BV8LrHgePn5SuyboQstZpBk1zrwBBu+d1SXmBKGQNin9rdth8wfdf2ZzwI/XmCrWsy4+Dj30UA444ADuvfde47VJkyZx+umnM3fu3Lh/VsSHCQQDsOFtTYisehVatvX/Z9yl2oWndIhmXuMq0moHXN4+HqOeO4u13bRSgNKK/lT4Me73Pd7fsSsiMho3anbpTVu01EpPjvuNltcWYqOUtiPc+lH4a5n22NmPC6OnHIorw2IkSpR4w889ZWB3aVEVuyP86Ozj+z7eEwpAoFMTS4Gor76+b90Bq+d3j+zZXTDua9qNZsKJUG7eFOO8on2XVh9Uv0JL19atgPovwR9nSKa7TJuw7Cnv+zH6ucOl2X7b7Nq/r82u3di6fd/Xz2za84BP82fpatO+fK3dv49+3rFbq3UKRBXmjjlCq3XZ5zRtXUJv6lfChne0TerGd7W//6s+MvUjsio+urq68Hq9PP3005xxxhnG61dffTXLly/njTfe6PZ+n8+HzxdR5s3NzYwaNUrEh5l0tWvh+MZN2g1dv7k3bdIe9dxgruJwd4/YTDwZ9j4u26saeCilFSYagmS5dg507O5flOQC7jKtjXDiSdpjUQHOLzKDUAiaNkbESN0KTZzUr4odJclVavbSBMfUs6FqTLZXM/DobDZdqCUjPkyPsTY0NBAMBhk6tHthy9ChQ9m+vffwnblz5/LLX/7S7GUI0bi9MHiC9hULf4e2S27cCG0N2o7C36Htjvyxnsf4WdAf3tXYIrsZbFGv9fze1v17bNp/BCMdNCb8NRpKh4qniRnYbJrNdPUeWhteNKGgVqzWsTvqa1fkeXv4ua9Fi1yEAtqfMZ4HtAhVz9d6fh8MaKkdZ1Hky1UU/3t3CYw5HMYdCc4CG45mBXY7VI3VviacEHk9GAj/GzdrYtTXrN2gej02Rb73tWj/91VI+woFw8/Dj6FQj++jf64i37uKtOiruyTqq7THc/17LwzfH0YcKCnXdMhyhMiyBG9PQxWlVEyTlRtvvJFrr73W+F6PfAgZxFWsteUVamueoIVgS2pMH0EvDCAcTigdrH0JgsWYLj4GDRqEw+HoFeWoq6vrFQ0B8Hg8eDyymxEEQRCEQsH0WLbb7ebAAw9k/vzuRj/z589nxowZZn+cIAiCIAgDDEvSLtdeey0XXHABBx10EIcddhj3338/Gzdu5LLLLrPi4wRBEARBGEBYIj6+9a1vsXPnTn71q1+xbds2pkyZwksvvcSYMVKRLAiCIAiFjtirC4IgCIKQNsncv6V/URAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjGKJvXo66Iarzc3NWV6JIAiCIAiJot+3EzFOzznx0dLSAsCoUaOyvBJBEARBEJKlpaWFioqKuO/JudkuoVCIrVu3UlZWhs1mM/XYzc3NjBo1ik2bNhXE3Bj5ffObQvt9ofB+Z/l985t8+32VUrS0tFBbW4vdHr+qI+ciH3a7nZEjR1r6GeXl5XnxD50o8vvmN4X2+0Lh/c7y++Y3+fT79hfx0JGCU0EQBEEQMoqID0EQBEEQMkpBiQ+Px8MvfvELPB5PtpeSEeT3zW8K7feFwvud5ffNbwrt940m5wpOBUEQBEHIbwoq8iEIgiAIQvYR8SEIgiAIQkYR8SEIgiAIQkYR8SEIgiAIQkYpGPFxzz33MG7cOIqKijjwwAN58803s70ky5g7dy4HH3wwZWVlDBkyhNNPP52VK1dme1kZY+7cudhsNq655ppsL8UytmzZwre//W1qamrwer3sv//+LF26NNvLsoRAIMBPf/pTxo0bR3FxMXvssQe/+tWvCIVC2V6aKSxevJhTTjmF2tpabDYbzz77bLefK6W4+eabqa2tpbi4mFmzZvH5559nZ7EmEO/39fv9XH/99UydOpWSkhJqa2u58MIL2bp1a/YWbAL9/RtHc+mll2Kz2bj99tsztr5sUBDi46mnnuKaa67hJz/5CR999BFHHnkkJ5xwAhs3bsz20izhjTfe4IorruC9995j/vz5BAIBjjvuONra2rK9NMtZsmQJ999/P/vuu2+2l2IZu3fv5vDDD8flcvHyyy/zxRdf8Kc//YnKyspsL80Sbr31Vu677z7uuusuVqxYwe9//3v+8Ic/cOedd2Z7aabQ1tbGfvvtx1133RXz57///e+57bbbuOuuu1iyZAnDhg3j2GOPNeZgDTTi/b7t7e0sW7aMn/3sZyxbtox58+axatUqTj311Cys1Dz6+zfWefbZZ3n//fepra3N0MqyiCoADjnkEHXZZZd1e23ixInqhhtuyNKKMktdXZ0C1BtvvJHtpVhKS0uLGj9+vJo/f76aOXOmuvrqq7O9JEu4/vrr1RFHHJHtZWSMk046Sc2ZM6fba2eeeab69re/naUVWQegnnnmGeP7UCikhg0bpn73u98Zr3V2dqqKigp13333ZWGF5tLz943FBx98oAC1YcOGzCzKYvr6nTdv3qxGjBihPvvsMzVmzBj15z//OeNryyR5H/no6upi6dKlHHfccd1eP+6443jnnXeytKrM0tTUBEB1dXWWV2ItV1xxBSeddBLHHHNMtpdiKc899xwHHXQQ3/zmNxkyZAjTpk3jgQceyPayLOOII47g9ddfZ9WqVQB8/PHHvPXWW5x44olZXpn1rFu3ju3bt3e7fnk8HmbOnFlQ1y+bzZa3kT3QBqpecMEF/PjHP2by5MnZXk5GyLnBcmbT0NBAMBhk6NCh3V4fOnQo27dvz9KqModSimuvvZYjjjiCKVOmZHs5lvHPf/6TZcuWsWTJkmwvxXK++uor7r33Xq699lpuuukmPvjgA6666io8Hg8XXnhhtpdnOtdffz1NTU1MnDgRh8NBMBjkt7/9Leeee262l2Y5+jUq1vVrw4YN2VhSRuns7OSGG27gvPPOy5vBa7G49dZbcTqdXHXVVdleSsbIe/GhY7PZun2vlOr1Wj5y5ZVX8sknn/DWW29leymWsWnTJq6++mpee+01ioqKsr0cywmFQhx00EHccsstAEybNo3PP/+ce++9Ny/Fx1NPPcVjjz3GE088weTJk1m+fDnXXHMNtbW1XHTRRdleXkYoxOuX3+/nnHPOIRQKcc8992R7OZaxdOlS/vKXv7Bs2bK8/zeNJu/TLoMGDcLhcPSKctTV1fXaTeQbP/jBD3juuedYuHAhI0eOzPZyLGPp0qXU1dVx4IEH4nQ6cTqdvPHGG9xxxx04nU6CwWC2l2gqw4cPZ5999un22qRJk/K2gPrHP/4xN9xwA+eccw5Tp07lggsu4Ic//CFz587N9tIsZ9iwYQAFd/3y+/2cffbZrFu3jvnz5+d11OPNN9+krq6O0aNHG9evDRs2cN111zF27NhsL88y8l58uN1uDjzwQObPn9/t9fnz5zNjxowsrcpalFJceeWVzJs3jwULFjBu3LhsL8lSjj76aD799FOWL19ufB100EGcf/75LF++HIfDke0lmsrhhx/eq3V61apVjBkzJksrspb29nbs9u6XKofDkTettvEYN24cw4YN63b96urq4o033sjb65cuPFavXs3//vc/ampqsr0kS7ngggv45JNPul2/amtr+fGPf8yrr76a7eVZRkGkXa699louuOACDjroIA477DDuv/9+Nm7cyGWXXZbtpVnCFVdcwRNPPMF///tfysrKjF1TRUUFxcXFWV6d+ZSVlfWqZykpKaGmpiYv61x++MMfMmPGDG655RbOPvtsPvjgA+6//37uv//+bC/NEk455RR++9vfMnr0aCZPnsxHH33Ebbfdxpw5c7K9NFNobW1lzZo1xvfr1q1j+fLlVFdXM3r0aK655hpuueUWxo8fz/jx47nlllvwer2cd955WVx16sT7fWtraznrrLNYtmwZL7zwAsFg0Lh+VVdX43a7s7XstOjv37inwHK5XAwbNowJEyZkeqmZI7vNNpnj7rvvVmPGjFFut1sdcMABed12CsT8evDBB7O9tIyRz622Sin1/PPPqylTpiiPx6MmTpyo7r///mwvyTKam5vV1VdfrUaPHq2KiorUHnvsoX7yk58on8+X7aWZwsKFC2P+f73ooouUUlq77S9+8Qs1bNgw5fF41Ne+9jX16aefZnfRaRDv9123bl2f16+FCxdme+kp09+/cU8KodXWppRSGdI5giAIgiAI+V/zIQiCIAhCbiHiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEQRCEjCLiQxAEU7n55pvZf//9s70MQRByGDEZEwQhYfqbunnRRRdx11134fP58n4mhyAIqSPiQxCEhImervrUU0/x85//vNuQu+LiYioqKrKxNEEQBhCSdhEEIWGGDRtmfFVUVGCz2Xq91jPtcvHFF3P66adzyy23MHToUCorK/nlL39JIBDgxz/+MdXV1YwcOZJ//OMf3T5ry5YtfOtb36KqqoqamhpOO+001q9fn9lfWBAESxDxIQiC5SxYsICtW7eyePFibrvtNm6++WZOPvlkqqqqeP/997nsssu47LLL2LRpEwDt7e3Mnj2b0tJSFi9ezFtvvUVpaSlf//rX6erqyvJvIwhCuoj4EATBcqqrq7njjjuYMGECc+bMYcKECbS3t3PTTTcxfvx4brzxRtxuN2+//TYA//znP7Hb7fztb39j6tSpTJo0iQcffJCNGzeyaNGi7P4ygiCkjTPbCxAEIf+ZPHkydntkrzN06FCmTJlifO9wOKipqaGurg6ApUuXsmbNGsrKyrodp7Ozk7Vr12Zm0YIgWIaID0EQLMflcnX73mazxXwtFAoBEAqFOPDAA3n88cd7HWvw4MHWLVQQhIwg4kMQhJzjgAMO4KmnnmLIkCGUl5dnezmCIJiM1HwIgpBznH/++QwaNIjTTjuNN998k3Xr1vHGG29w9dVXs3nz5mwvTxCENBHxIQhCzuH1elm8eDGjR4/mzDPPZNKkScyZM4eOjg6JhAhCHiAmY4IgCIIgZBSJfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFFEfAiCIAiCkFH+P+slHbrtaE/cAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -103,7 +104,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHFCAYAAAD/kYOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyzUlEQVR4nOydd3hb1fnHv1fTW94rtuPsvXCWE0J2QtirZaZllhAohJTSBvprAxRCKaUphBACCXsHCBBCBiOLOHvv6djxiPceWvf3x9G5km3Z1rhL8vk8j58rS/ceHcvS0Xve9/u+L8fzPA8Gg8FgMBiMIEKj9AQYDAaDwWAwxIYZOAwGg8FgMIIOZuAwGAwGg8EIOpiBw2AwGAwGI+hgBg6DwWAwGIyggxk4DAaDwWAwgg5m4DAYDAaDwQg6mIHDYDAYDAYj6GAGDoPBYDAYjKCDGTgMhsK8++674DhO+NHpdEhLS8M999yDgoIC2eezadMmcByHTZs2eX1tbm4uOI7Du+++K/q85KSmpgbPP/88Ro4ciaioKBiNRmRmZuLee+/Fvn37fBpz/fr1mDFjBlJTU2E0GpGamopJkybhxRdf9Gm8SZMmYdKkST5dy2B0BXRKT4DBYBDeeecd9O/fH42NjdiyZQsWLVqEzZs34/DhwwgPD1d6el2Gs2fPYsaMGSgpKcGcOXPwzDPPICIiArm5ufj888+RlZWFqqoqmEwmj8dctmwZHnroIdx8881YsmQJYmNjkZ+fj+3bt2PVqlX461//KuFfxGB0TZiBw2CohMGDB2PkyJEAgMmTJ8Nms+G5557D6tWrceeddyo8u66BzWbDjTfeiLKyMuTk5GDw4MHCYxMnTsTvf/97/PDDD9Dr9V6Nu2jRIlxxxRVYtWpVi/tnz54Nu90uytzlgOd5NDU1ITQ0VOmpMBidwkJUDIZKGTt2LADgwoULAMiXy9KlSzF8+HCEhoYiJiYGt9xyC86dO9fiukmTJmHw4MHYvXs3JkyYgLCwMPTs2RMvvvhimy/TEydO4Morr0RYWBji4+MxZ84c1NbWtplLZmYm7r777jb3exImufvuu5GZmdnm/oULF4LjuBb3cRyHRx55BO+88w769euH0NBQjBw5Ejt27ADP8/j3v/+NHj16ICIiAlOmTMGZM2c6fG5vWb16NQ4fPowFCxa0MG5cmTVrFsLCwrB161ZwHIdPPvmkzTnvv/8+OI7D7t27AQDl5eVISUlxO55G03IZbmpqwoIFC9CjRw8YDAZ069YNDz/8MKqqqtqdt8ViQWJiImbPnt3msaqqKoSGhmL+/PnCfTU1NXjiiSdaPMe8efNQX1/f4lr6/1i2bBkGDBgAo9GI9957r915MBhqghk4DIZKoV/eCQkJAIAHH3wQ8+bNw7Rp07B69WosXboUR48exbhx43Dp0qUW1xYXF+POO+/EXXfdhW+//RazZs3CggUL8OGHHwrnXLp0CRMnTsSRI0ewdOlSfPDBB6irq8Mjjzwi3x/phjVr1uDtt9/Giy++iE8++QS1tbW4+uqr8ac//Qm//vorlixZguXLl+PYsWO4+eabwfO8aM+9YcMGAMANN9zQ6bkTJkzAiBEj8Prrr7d5bMmSJRg1ahRGjRoFAMjOzsaXX36JhQsX4uDBg7DZbG7H5HkeN9xwA15++WXMnj0b33//PebPn4/33nsPU6ZMQXNzs9vr9Ho97rrrLnz55Zeoqalp8dgnn3yCpqYm3HPPPQCAhoYGTJw4Ee+99x4effRR/PDDD/jLX/6Cd999F9ddd12b13P16tV444038Pe//x3r16/HhAkTOn1tGAxVwDMYDEV55513eAD8jh07eIvFwtfW1vJr1qzhExIS+MjISL64uJjPycnhAfD/+c9/Wlybn5/Ph4aG8k8++aRw38SJE3kA/M6dO1ucO3DgQH7mzJnC73/5y194juP4AwcOtDhv+vTpPAD+l19+Ee7r3r07//vf/77N3CdOnMhPnDhR+P38+fM8AP6dd94R7vv973/Pd+/evc21//jHP/jWSxAAPjk5ma+rqxPuW716NQ+AHz58OG+324X7Fy9ezAPgDx061GZsX7nyyit5AHxTU5NH59P/3f79+4X7du3axQPg33vvPeG+M2fO8IMHD+YB8AD40NBQfurUqfySJUt4s9ksnLdu3ToeAP/SSy+1eJ7PPvuMB8AvX75cuK/1a3/o0KE25/A8z48ePZrPysoSfl+0aBGv0Wj43bt3tzhv1apVPAB+7dq1wn0AeJPJxFdUVHj0ejAYaoJ5cBgMlTB27Fjo9XpERkbimmuuQXJyMn744QckJSVhzZo14DgOd911F6xWq/CTnJyMYcOGtcl4Sk5OxujRo1vcN3ToUCHcBQC//PILBg0ahGHDhrU474477pDsb/SEyZMntxBVDxgwAAAJDbmGtOj9rn+TO1xfL6vVKqrH5/bbb0diYmILL85rr72GhIQE3HrrrcJ9vXr1wsGDB7F582Y888wzmDZtGnbv3o1HHnkE2dnZaGpqAgD8/PPPANAmHPib3/wG4eHh+Omnn9qdy5AhQ5CVlYV33nlHuO/48ePYtWsX7r33XuG+NWvWYPDgwRg+fHiL12XmzJlus+emTJmCmJgYr18bBkNpmIHDYKiE999/H7t378b+/ftRWFiIQ4cOYfz48QBIOInneSQlJUGv17f42bFjB8rKylqMFRcX12Z8o9GIxsZG4ffy8nIkJye3Oc/dfXISGxvb4neDwdDh/dQ4cEdubm6b12vz5s3tnp+RkQEAOH/+vEdzNRqNePDBB/Hxxx+jqqoKpaWl+Pzzz3H//ffDaDS2OFej0eCKK67A3//+d3z77bcoLCzErbfeir1792LlypUAyP9Ep9MJYUkKx3FITk5GeXl5h/O59957kZOTgxMnTgAgmXlGoxG33367cM6lS5dw6NChNq9LZGQkeJ5v815qTzvEYKgdlkXFYKiEAQMGCFlUrYmPjwfHcdi6dWubL04Abu/rjLi4OBQXF7e53919ISEhbvUfZWVliI+P7/B5OrpWalJTUwWhL6Vfv37tnj9z5kwsX74cq1ev9jh1+6GHHsKLL76IlStXoqmpCVarFXPmzOn0uvDwcCxYsACfffYZjhw5AoD8T6xWK0pLS1sYOTzPo7i4WND0tMftt9+O+fPn491338Xzzz+PDz74ADfccEMLD0x8fDxCQ0MFo6o1rf+frYXgDEagwDw4DEYAcM0114DneRQUFGDkyJFtfoYMGeL1mJMnT8bRo0dx8ODBFvd//PHHbc7NzMzEoUOHWtx36tQpnDx5stPnyczMRElJSQshtNlsxvr1672es7cYDIY2r1VkZGS7519//fUYMmQIFi1aJBgdrVm/fj0aGhqE31NSUvCb3/wGS5cuxbJly3DttdcKniBKUVGR27GOHz8OgBhiADB16lQAaCEGB4Avv/wS9fX1wuPtERMTgxtuuAHvv/8+1qxZg+Li4hbhKYC8l86ePYu4uDi37yV3GW8MRiDCPDgMRgAwfvx4/OEPf8A999yDPXv24IorrkB4eDiKioqwbds2DBkyBA899JBXY86bNw8rV67E1VdfjX/+859ISkrCRx99JIQ3XJk9ezbuuusuzJ07FzfffDMuXLiAl156qU0oxR233nor/v73v+O2227Dn//8ZzQ1NeHVV19tN5NISbRaLb7++mvMmDED2dnZeOihhwRN0IULF7Bq1Sp89913qKysbHHdY489hjFjxgBACw0MZdCgQZg6dSpmzZqFXr16oampCTt37sR//vMfJCUl4b777gMATJ8+HTNnzsRf/vIX1NTUYPz48Th06BD+8Y9/YMSIEW7TwFtz77334rPPPsMjjzyCtLQ0TJs2rcXj8+bNw5dffokrrrgCjz/+OIYOHQq73Y68vDxs2LABf/rTn4S/hcEIZJiBw2AECG+++SbGjh2LN998E0uXLoXdbkdqairGjx/fRlDsCcnJydi8eTMee+wxPPTQQwgLC8ONN96IJUuW4Prrr29x7h133IHCwkIsW7YM77zzDgYPHow33ngDzzzzTKfP06NHD3zzzTd46qmncMsttyAlJQXz589HaWmpR9fLTa9evbBv3z689tpr+Prrr/HGG2+gubkZKSkpuOKKK7Bt27Y2VYxHjx6NzMxMhIaGuvWyvPjii1i/fj2ef/55FBcXw2q1Ij09HXfccQeefvppQefCcRxWr16NhQsX4p133sHzzz+P+Ph4zJ49Gy+88IJHochp06YhPT0d+fn5ePrpp9vU2QkPD8fWrVvx4osvYvny5Th//jxCQ0ORkZGBadOmMQ8OI2jgeDFTChgMBqMLcujQIQwbNgyvv/465s6dq/R0GAwGmIHDYDAYPnP27FlcuHABTz31FPLy8nDmzBmEhYUpPS0GgwEmMmYwGAyfee655zB9+nTU1dXhiy++YMYNg6EimAeHwWAwGAxG0ME8OAwGg8FgMIIOZuAwGAwGg8EIOpiBw2AwGAwGI+joknVw7HY7CgsLERkZycqQMxgMBoMRIPA8j9raWqSmprap8dSaLmngFBYWIj09XelpMBgMBoPB8IH8/HykpaV1eE6XNHBoL5r8/HxERUUpPBsGg8FgMBieUFNTg/T09A57ylG6pIFDw1JRUVHMwGEwGAwGI8DwRF7CRMYMBoPBYDCCDmbgMBgMBoPBCDqYgcNgMBgMBiPo6JIaHAaDwWAw1IzNZoPFYlF6GopgMBg6TQH3BGbgMBgMBoOhEnieR3FxMaqqqpSeimJoNBr06NEDBoPBr3GYgcNgMBgMhkqgxk1iYiLCwsK6XDFaWoi3qKgIGRkZfv39zMBhMBgMBkMF2Gw2wbiJi4tTejqKkZCQgMLCQlitVuj1ep/HYSJjBoPBYDBUANXchIWFKTwTZaGhKZvN5tc4zMBhMBgMBkNFdLWwVGvE+vuZgcNgMBgMBiPoYAYOg8FgMBiMoIMZOAwGg8FgMIIOZuAwGAyGWuB5wFyv9CwYjKCAGTgMBoOhJHY7kL8L2PB/wKsjgBdSgYOfKT0rBsNr0tLSsHTp0hb3bd++HWFhYbhw4YLs82F1cBgMBkNJPrkNOL2+5X1b/wMM/S3QxbNpGKSycaPFv3RpXwnVa73KaBo7dix2794t/M7zPObNm4d58+ahe/fuUkyxQ5iBw2AwGEpReYEYN5wGGHQT0PdK4LvHgLKTwIXtQOZ4pWfIUJhGiw0D/76+8xMl4NizMxFm8NxMGDt2LN59913h9w8++AB5eXlYsGABAGDNmjX405/+BLvdjr/85S+4//77xZ5yC1iIisFgMJTixBpy7D4euGUFMPQ35AcA9qxUbl4Mhg+MHTsWx48fR11dHRoaGvDUU0/hn//8JyIjI2G1WjF//nz8/PPP2LdvH/71r3+hoqJC0vkwDw6DwWAoxXGHgdP/Gud9I+8F9r4LHPsGqHsRiEhQZGoMdRCq1+LYszMVe25vGDlyJLRaLfbt24cff/wRcXFxuPfeewEAu3btwqBBg9CtWzcAwFVXXYX169fj9ttvF33eFGbgMBgMhhLUlQB5OeT2ABcDJ2UY0C0LKNgLHPgIuHyeItNjqAOO47wKEylJSEgIhg0bhq+++grLly/Hd999B42GBIoKCwsF4wYgguSCggJJ58NCVAwGg6EEJ74HwAOplwGmtJaPjSS7Xux9h2RZMRgBwtixY/Hqq69i2rRpmDp1qnA/z/NtzpW6JQUzcBgMBkMJjn9Hjq7eG8qgmwCjCajMBc79Iuu0GAx/GD58OHQ6Hf7973+3uL9bt24tPDYXL15ESkqKpHNhBg6DwWDITWMVcH4LuT3guraPG8KA4Q5twr73ZJsWg+EvH330EebOnYt+/fq1uH/06NE4cuQICgoKUFtbi7Vr12LmTGm1RYER2GMwGIxg4vQGwG4BEvoD8X3cnzP4ZmDnMuBCDqlwzGriMFSK3W5HaWkpVqxYgZMnT+Lrr79uc45Op8N//vMfTJ48GXa7HU8++STi4uIknZcsHpylS5eiR48eCAkJQVZWFrZu3drh+Zs3b0ZWVhZCQkLQs2dPLFu2rM05VVVVePjhh5GSkoKQkBAMGDAAa9eulepPYDAYDPE4/i059ncTnqIkDwE4LVBfAtQUyjMvBsMHtmzZgpSUFHz44Yf46quvYDKZ3J533XXX4dSpUzhz5gz+8Ic/SD4vyT04n332GebNm4elS5di/PjxePPNNzFr1iwcO3YMGRkZbc4/f/48rrrqKjzwwAP48MMP8euvv2Lu3LlISEjAzTffDAAwm82YPn06EhMTsWrVKqSlpSE/Px+RkZFS/zkMBoPhH+YG4MxP5PaAa9s/Tx8KJA4ELh0GCvcDpm7tn8tgKMikSZNgV6EYXnID55VXXsF9990nVCxcvHgx1q9fjzfeeAOLFi1qc/6yZcuQkZGBxYsXAwAGDBiAPXv24OWXXxYMnJUrV6KiogLbt2+HXq8HAEXKQDMYDIbXXNwNWBqAqG4kJbwjUoc7DRx3YmQGg9EukoaozGYz9u7dixkzZrS4f8aMGdi+fbvba3JyctqcP3PmTOzZswcWiwUA8O233yI7OxsPP/wwkpKSMHjwYLzwwguw2dz362hubkZNTU2LHwaDwVCES0fJMXVE57qa1BHkWLhf2jkxGEGIpAZOWVkZbDYbkpKSWtyflJSE4uJit9cUFxe7Pd9qtaKsrAwAcO7cOaxatQo2mw1r167F3/72N/znP//B888/73bMRYsWwWQyCT/p6eki/HUMBoPhAyUOAydpUOfnuho4buqIMBiM9pFFZNy6mA/P8x0W+HF3vuv9drsdiYmJWL58ObKysnDbbbfh6aefxhtvvOF2vAULFqC6ulr4yc/P9+fPYTAYDN+hHpzEgZ2fmzQI0OiBxgqgKk/aeTEYQYakGpz4+Hhotdo23pqSkpI2XhpKcnKy2/N1Op2QUpaSkgK9Xg+t1tknY8CAASguLobZbIbBYGhxvdFohNFoFONPYjAYDN+x24CSE+S2Jx4cnZGcV3SAeHFimNaQwfAUST04BoMBWVlZ2LhxY4v7N27ciHHjxrm9Jjs7u835GzZswMiRIwVB8fjx43HmzJkWqu1Tp04hJSWljXHDYDAYqqEyF7A2AroQILanZ9cwHQ6D4ROSh6jmz5+Pt99+GytXrsTx48fx+OOPIy8vD3PmzAFAwke/+93vhPPnzJmDCxcuYP78+Th+/DhWrlyJFStW4IknnhDOeeihh1BeXo7HHnsMp06dwvfff48XXngBDz/8sNR/DoPBYPgODU8l9Ac0HnZqpgZO0QFJpsRgBCuSp4nfeuutKC8vx7PPPouioiIMHjwYa9euFdK6i4qKkJfnjC336NEDa9euxeOPP47XX38dqampePXVV4UUcQBIT0/Hhg0b8Pjjj2Po0KHo1q0bHnvsMfzlL3+R+s9hMBgM3yk5Ro6ehKcorYXGrKIxg+ERHO+uxWeQU1NTA5PJhOrqakRFRSk9HQaD0VX4bDapYjzjeWDcI55dY7MAL3QDbM3Ao/s9D20xAo6mpiacP39eqPzfVenodfDm+5s122QwGAy5EDw4HmRQUbR6IHkwuc10OAyGxzADh8FgMOTA0ghUnCO3E70IUQFMaMxg+AAzcBgMBkMOSk8AvB0IiwMiEr27VjBwDog+LQZDLNLS0rB06dIW923fvh1hYWG4cOGC7PORXGTMYDAYDACXHOGpxIHeC4WpKLn0pLhzYqgfnie9y5RAH+bVe3Xs2LHYvXu38DvP85g3bx7mzZunSL9IZuAwGAyGHPiSQUWhwuL6EqC5FjBGijcvhrqxNAAvpCrz3E8VAoZwj08fO3Ys3n33XeH3Dz74AHl5eViwYAEA4MYbb8SmTZswdepUrFq1SuzZtoGFqBgMBkMOvGnR0JoQExAWT25THQ+DoTLGjh2L48ePo66uDg0NDXjqqafwz3/+E5GRxCB/9NFH8f7778s2H+bBYTg59DlgrgdGzAa07K3BYIjKJS+abLojrhfQUAaUnwVShok3L4a60YcRT4pSz+0FI0eOhFarxb59+/Djjz8iLi4O9957r/D45MmTsWnTJpEn2T7sW4xBKNgHfPUAuX3wU+Cm5azvDYMhFvVlJLwEjlQx9oXYXkD+TubB6WpwnFdhIiUJCQnBsGHD8NVXX2H58uX47rvvoNEoFyhiISoGYet/nLfzdwDLLgcOfaHcfBiMYIJ6b2IyAWOEb2NQHQ4zcBgqZuzYsXj11Vcxbdo0TJ06VdG5MAOHQRbfE2sAcMCdq4D0MUBzDfDV/cDR1UrPjsEIfEodHcR90d9Q4piBw1A/w4cPh06nw7///W+lp8IMHAac3puB1wN9pgN3rwVG3EXuO8y8OAyG31ScJ8e4Xr6PQT045Wf9nw+DIREfffQR5s6di379+ik9FabB6fKUnQaOfEVuX+Ho2K7VAVn3Avs/BM5vAWxWJjpmMPyhylHkLDrD9zFcU8WbaoAQ1kePoQ7sdjtKS0uxYsUKnDx5El9//bXb82bOnIl9+/ahvr4eaWlp+PrrrzFq1CjJ5sW+tbo62/4LgAf6zgKShzjvTx0OhMYAjZVAwR4gY6xSM2QwAp9Kh4ETk+n7GDRVvKEMqDzPMqkYqmHLli2YMmUK+vfvj6+++gomk8nteevXr5d1XixE1ZWpygMOfUZuU+8NRaMFek4mt8/+LO+8GIxgguddPDh+ZibSEBcLUzFUxKRJk2C323Hs2DGMGTNG6ekIMAOnK3Pie8BuBbpfDqSNbPt4rynkeOYneefFYAQTDRWAuY7c9idEBZBUcQCoYAYOg9EZzMDpyuTvIsdek9w/Tg2cwn1kkWYwGN5TlUuOEcmAPsS/sYRU8fP+jcNgdAGYgdOVuehoipY22v3jpm6kKBlvB85vlm9eDEYwIehvRCicGccyqRgMT2EGTlelpgiozgc4DdDtsvbP6+Uo1MR0OAyGb4ilvwFYsb8uAs/zSk9BUcT6+5mB01Wh3pvEgR13JhZ0OD8TsSSDwfAOMT04rVPFGUGFXq8HADQ0NCg8E2Uxm80AAK1W69c4LE28q3LRob9J66QGQfdxgNYI1FwkNXMS+ko/NwYjmBDTg+OaKl5xjpRzYAQNWq0W0dHRKCkpAQCEhYWB4ziFZyUvtKZOWFgYdDr/TBRm4HRVLu4hx/R29DcUQxjQPRs4twk4+xMzcBgMbxHTgwM4u4p3RQMnfxegNQT1352cnAwAgpHTFdFoNMjIyPDbuGMGTlfEagYK95PbnXlwAKLDObeJ6HDGPiTp1BiMoMJuJ1o3QBwPDuDSVbwLCY2bqoEf/goc/Jh4lP+4F4hOV3pWksBxHFJSUpCYmAiLxaL0dBTBYDCI0oWcGThdkUuHAWsTqVQc17vz83tNATb+H5C7DbBZAK1e+jkyGMFAbRFgMwOcFojqJs6YXS1VPHcb8PVDQHUe+d3WDOx4A7jyBWXnJTFardZvDUpXh4mMuyI0PJU2CvDEBZg0CDBEAJaGrrOoMhhiQPU3pjTx+rl1pVTx3F+Bd68hxk10d2Dy38j9e99ltbkYncIMnK5IvocCYwrHAfF9yO2yU9LMicEIRsTW3wAuHpwuYODs/xAAD/SZCTz0K2kpkzQYsNQDe1YoPTuGymEGTldEKPDnRRfXeIe4mBk4DIbniJlBRaFj1ZcClkbxxlUbdhtwah25Pe6PpJwFxwHjHyP37XwzuP9+ht8wA6erUVfiWHQ5oFuW59cJHpzTkkyLwQhKpPDghMYA+nByu6ZQvHHVRv4uoLECCIkGMsY67x90I2DKIAbewU8Umx5D/TADp6tBw1OJA4CQKM+vYx4cBsN7BA9OpnhjchzR9ADODK1g5NQP5NhnRsvEBq0eyH6Y3N7+GvH0MBhuYAZOV6NgLzm66x7eEXEuHhxW0ZjB8AwpPDiAi4FzUdxx1cRJh4HTb1bbxy6bTTxZFeeA49/JOy9GwMAMnK4G9cAkDfHuutiepG9VczUJczEYjI6xmoGaAnJbTA0OQBrhAsFr4JSdIWuVRg/0ntr2cUM4cNnvyO2Ta+WdGyNgYAZOV4MaOPEe1L9xRR/iXKRZmIrB6JzqfAA8oAsBIhLFHdvkKHIXrAYODU9lXk7aU7ij+3hyLDooz5wYAQczcLoSNouzjk28Dy0XmA6HwfAcQX+T4Vm9KW8I9hCVEJ66qv1zUoaRY9kpwFwv/ZwYAQczcLoSlRcAuwXQhwGRqd5fzzKpGAzPqXJU3hU7PAU4qyIHo4HTUAHk5ZDb/a5s/7zIZCAiGeDtQPEReebGCCiYgdOVKHcYJnG9AF/6fDAPDoPhOdTAEVtgDDg9ODUFwSf6P72BGC1JQ4j3qyNo082iA1LPihGAMAOnKyHob3zsCE6vK2ceHAajU2iNGrF6ULlCx7Q0AI2V4o+vJGd+Ise+Mzs/l4apmA6H4QZm4HQlaGiJpnx7CzVwqvIBc4M4c2IwghWaQSWFgaMPAcIdwuVgq4VTfIgc00d3fm7KcHIsPCDVbBgBDDNwuhLUwIn30cAJjwNCYwHwXaMPDoPhDzVF5BiVIs34Qqp4gTTjK4GlyblOJQ3u/HzqwSk9wdo2MNrADJyuRLmfBg7AdDgMhifwvLQhKiA4M6lKTwC8jRTxi/IgESIqFQhPINdcOir9/BgBBTNwugoNFUBDObkd52UNHFdYJhWD0TlN1aTjNQBESuXBobVwgihEdcmRDZU02LPUeo5zCVPtl2xajMCEGThdBWqQRKWRKqC+wjw4DEbn1DrCUyHRgCFMmucIxlRxmu6d7EWldSY0ZrQDM3C6CmKEpwBm4DAYniClwJjimioeLLh6cDyFpYoz2kEWA2fp0qXo0aMHQkJCkJWVha1bt3Z4/ubNm5GVlYWQkBD07NkTy5Yta/fcTz/9FBzH4YYbbhB51kGGkCLur4FDQ1RnALvdv7EYjGBF0N9IFJ4Cgq9dA88DxYfJ7WQvDBwaoio5DlibRZ8WI3CR3MD57LPPMG/ePDz99NPYv38/JkyYgFmzZiEvL8/t+efPn8dVV12FCRMmYP/+/Xjqqafw6KOP4ssvv2xz7oULF/DEE09gwoQJUv8ZgU/ZGXL0tQYOJbo7oDUA1kagJkgWVgZDbIQMKh8qhnsK9eDUFgE2q3TPIxc1BUBTFaDRAQn9Pb/OlEayO+1WJjRmtEByA+eVV17Bfffdh/vvvx8DBgzA4sWLkZ6ejjfeeMPt+cuWLUNGRgYWL16MAQMG4P7778e9996Ll19+ucV5NpsNd955J5555hn07NlT6j8j8KEeHH8ExgCg1QGxvVqOyWAwWiJHiCo8gXTb5u1OzU8gQ/U38X0BndHz6ziOhakYbpHUwDGbzdi7dy9mzJjR4v4ZM2Zg+/btbq/Jyclpc/7MmTOxZ88eWCwW4b5nn30WCQkJuO+++zqdR3NzM2pqalr8dClsFqCSNtn0M0TlOgbLpGIw3EMNDqkyqADSbsUURELjS47wVNIg769lQmOGGyQ1cMrKymCz2ZCUlNTi/qSkJBQXF7u9pri42O35VqsVZWVlAIBff/0VK1aswFtvveXRPBYtWgSTyST8pKen+/DXBDCVucR9qw/3rclma5jQmMHoGKlr4FCCSYdT7IPAmMIqGjPcIIvImGtVz4Dn+Tb3dXY+vb+2thZ33XUX3nrrLcTHx3v0/AsWLEB1dbXwk58fRHUjPKHMzyabraEenPIz/o/FYAQjQohKQg8O4DSggkEPRzOovBEYU2iIquQYYDWLNiVGYKOTcvD4+Hhotdo23pqSkpI2XhpKcnKy2/N1Oh3i4uJw9OhR5Obm4tprrxUetzuyeXQ6HU6ePIlevXq1uN5oNMJo9CKmG2z422SzNcG0a2QwxMbS6GyAKaXIGAieasbmeqDc0f4lyYsaOJTo7qTmUFMVUHrcGbJidGkk9eAYDAZkZWVh48aNLe7fuHEjxo0b5/aa7OzsNudv2LABI0eOhF6vR//+/XH48GEcOHBA+LnuuuswefJkHDhwoOuFnzyBelrE0N8ALXvgOLxrDAbDAQ1P6cPIl66UBIuBU3ICAE+E05HuN78dwnHOzKty1iePQZDUgwMA8+fPx+zZszFy5EhkZ2dj+fLlyMvLw5w5cwCQ8FFBQQHef/99AMCcOXOwZMkSzJ8/Hw888ABycnKwYsUKfPLJJwCAkJAQDB7c0oUZHR0NAG3uZziozCXHmB7ijBeZCoADbM1AfRkQkSDOuAxGMEANnMgUz9oN+EOweFMFgbEfa3hMJpC/w7neMbo8khs4t956K8rLy/Hss8+iqKgIgwcPxtq1a9G9e3cAQFFRUYuaOD169MDatWvx+OOP4/XXX0dqaipeffVV3HzzzVJPNXipcry+0RnijKczABFJQF0xif0zA4fBcFIrQw0cSrBkURX7ob+hxJDvFFRd8H8+jKBAcgMHAObOnYu5c+e6fezdd99tc9/EiROxb98+j8d3NwbDgc3qFDzSBUAMTGnEwKm+CKSOEG9cRvDSXAuUngS6ZUnv2VASOWrgUOhzNFWR19cYKf1zSkHJcXL014MDMA8OQ4D1ogp2agtJirjWAEQkizeuqw6HweiIhgpg04vAfwcDb08FcpYoPSNpEaoYS5xBBQAhUUCIidwO5M9ixTly9KcQqWDgMA8Og8AMnGCHhqdM6eKkiFOE2H8XS7lneMfe94DFQ4BNi4iXAQC2vxbcPYPk9OC4Pk9toTzPJzbmBufcY/2oSh/t8FBX5wdH6wqG3zADJ9ihuxmx9DcUof5GAO8aGdLSVAOsfQIw15HQw80riEC97hJwpG1vuaDBVWQsB5EOz2yt++KpqodWWQ+JBsJifR8nMoV4qu1Wti4xADADJ/gRW2BMCZb0VIZ0nN4A2MxAXB9gzjZgyC3AmD+Qx7YvCd4SA3KKjAGnIVUToB4cGp7yx3sDEA81XeeY0JgBZuAEP/SDLqbAGGAaHEbnHPuGHAde5xQVZ91NWoaUHAXObVJqZtJhszg9KXKFqKiBE6geHLEMHIAJjRktYAZOsCN4cMQ2cBwanNoisqgzGK6YG4AzP5LbA5xVxxEaA4y4i9wORrFx3SUAPKDRkaJ1ciCEqAK0o7iYBg5d55jQmAFm4AQ/Uhk4YfEk3g0+cBdWhnSc/QmwNJCQAW2ESBn7EMBpiAFE04ODhRqXLuJiivo7gobCAvVzyDw4DIlgBk4wY7M4xXZia3A0GqcLnulwGK059i05Driubc2b2B5A/2vI7WDz4ggZVDLpb4DAFxlXOETGohg41IOT6/9YjICHGTjBTPVFgLcDuhAgIlH88ZnQmOEOazNwah25PeA69+dkP0KOh1cFV/fnWhcPjly4anDsNvmeVwwsTc71Q0wPDhMZMyBTJWOGQlS5pIhLUTm2AwPnQnk9/vfTaZwpqUN8hBFJUUZcOywV43rFiz8Phro4txloriGFJdNGuT8nfTTR4zRWApeOAN0uk3eOUkG9KJEiFtXsjPBEEvLjbaQ3nC/NKpWi6gIAHjBEAuEirA3UwKkvBZrrAGOE/2MyAhZm4AQzUulvKG5CVDVNFryy4RQ+2nkBFlvLNOBPduXj3vE98OSV/RCi10ozJ4byHKfhqWva16FwHGnZcOZHoGBv8Bg4dZfIMUJGI0OrI0ZOXTEpmBdIBo6gv+khziYsxETq6TRVkfUvaWCLh48WVuPFH04gv6IBPICYMAPmTuqF6QOTwAVz+5AuCjNwghmpivxRqAfHoTuw2Oz4w/t7sONcBQDgir4JuG1UOqobLdh7oRKr9l7Eyl/PY/vZMnz6h7GIDjNIMy+GctjtwMm15HZ74SlK6mXEwCncL/285EIJDw5A2kLUFQeeDkdo0dBLvDFjMoGiA0SH4zBwmiw2/O+n01i+5RxsdufG60J5A/7wwV5c3jseL9w4BBlxYeLNg6E4zMAJZqQq8kdpFaJ6bs0x7DhXgXCDFstmZ2FCH2ea7O2jM3DVkGQ8ueoQThTX4rFPD+Cdu0dBo2G7pqCi8jzQUE50X93HdXxutyxyLNgr/bzkQgkPDuDQ4ewPvEwqMTOoKDHdnQYOgPK6Zty6fAfOlNQBAK4emoLfZ2dCwwE/nyjB21vPY9uZMtz+1g6sfng8EiKN4s2FoShMZBzMUANH7CJ/FJcQ1Se78vB+zgVwHLD4thEtjBvKlP5JeP/eMQjRa7D5VCkW/3RamnkxlKP4MDkmDgC0+o7PpWGp0pOkrUMwoJiB4/AY1TADx1VobLPzmPfZAZwpqUNCpBFvzs7C63dchtE9YjEyMxZPXtkfP86fiO5xYSioasQD7+9BkyXAhNqMdmEGTjBTJVOIqqkKL36zBwDwp+l9MX1g+4v7wNQoLLppCADg1Z9O4+cTl6SZG0MZLh0hx6TBnZ8bkQiYMgDwZMcd6FjNxHsFyB+iigzQWjhSGDjRzlTxJT+fwdbTZQjRa/DhfWMwc1Db/0tGXBjeuXsUTKF6HMivwvzPD8BuD9I2Il0MZuAEK9Zm52IXnSnNc4REgTdGAgDi7WW4ekgKHp7cu9PLbhyRht9lk0XoL18eRoOZdf4NGoodBk7yUM/Op16cYAhT1ZeQo0YHhPrRNNIXArGasdXs9DJL4MGpv3QWi386BQB4/oYh6Jcc2e4lPRMisHx2FvRaDmsPF2PVPlb6IhhgBk6wUpVPjvpw/zr0dkK1nnhrBoRW46VbhnqcifD01QOQHhuK0tpmrNh6XrL5MWSGhqiSPfDgAMFl4NDwVHiifFWMKVEB2I+qOp/U6dKHiRvScxg4muo88DyP20al4+astE4vG9MzDk/M6AcA+Pf6k6hvZhuvQIcZOMGKa5NNidIfmyw2HGuIAgDc1k+DcKPnmnWjTissJm9uOYeyumZJ5siQkYYKoMax800a5Nk1gtA4CDKpah0GjhJp2kKxvwDy4LiGp8Rco0zp4MEhFM0YnWDFwus8fC8CuHt8JrrHhaG0thlvbDor3pwYisAMnGBFav0NgE925eG8OQYAMDauwevrrx2aiiHdTKhrtuI1JjgOfC4dJcfoDFKPxBNShpMidTUXA8v74I46x/wjZNbfAE4Dp6GchKcDAdcaOCJS0mhHIR8HAPjz6BCvam4ZdVosmDUAAPDW1nMoqGoUdW4MeWEGTrAicZG/RrMNr/9yVlhIdHXe7xw1Gg4LZvUHAHy0Mw+5ZfWizpEhM5e81N8ApNJsAnkPoGCf+HOSkzqHBkeKtiidERoDaB3pzYFiKEohMAbwxqazyOdJFufIqGqvr585KAljesSi2WrHv344IercGPLCDJxghVYXNnUee/aF93NyUVbXjOZwx86xOt+nccb1jsfEvgmw2nm8yrw4gQ3V33iSQeVKsOhwlCryB5AQT6AJjWmTzRjxPDhF1Y34aGce8uzEyOToRs8LOI7D/10zEBwHfHuwEGdKakWbH0NemIETrEho4NQ2WbBsM4lPT8ga7ni+Ap/Hmz+9LwDgu0OFKKlt8nd6DKXwVmBMCZaCf0rVwKFEBViquAR1upb8fAZmqx08Dc372FV8cDcTpg0g/8f3trPGnYEKM3CCFWpwSGDgfLHnIiobLOiZEI7x1MCpKQB432pHDEuPxoiMaFhsPD7Z6ZsniKEwNgtQ6nDnJw/x7tpUhwencJ/P7yFVQA0cJTw4rs8bCCEqnncaOCZxdIL5FQ34bDdZP7KGjyB3+tFV/J5xmQCAL/ddRHWjxd/pMRSAGTjBiN1Gmu4BzmrDIsHzPD7dTRame8b3gC7aMb61yVnkzAfudiwmH+68ALPV7u80GXJTdhqwmQFjlPe6r6RBRD/SVO3UZQQitQp7cKjQuKZQmef3hsZKwOLQ3Im0CXvt59Ow2nlM6BOP3n0dXkQfPTgAkN0rDv2SItFgtuGLPWzjFYgwAycYqSsB7FaA04q+m9yfX4VTl+oQotfg+uGpgM7oXNB91OEAwKzBKUiMNKK0thk/HAkQFzvDiaC/GeR9yq9WD6QMI7cDNUzF88qHqCIDqBYO9d5EJAH6EL+HK69rxur9xLCbN62v02iqLSINYH2A4zjcPT4TAPBeTm6LJp2MwIAZOMGIo7s3IlMAjecpkp7w6S6yMF09JBVRIY5eQzT278fO0aDT4K6xZOf/7vZcf6bIUIJLPgqMKVRoHKidxRsqALsjjKFEFhUQWLVwhPBUuijDrdp7EWabHUPTTMjqHkMMJ05DNnr1pT6Pe8PwbogO0yO/ohE/nygRZa4M+WAGTjAiCIzFDU/VNlnw3UGyeN422mVhihAn9n/76AwYtBrsz6vCgfwqv8ZiyIzQosFL/Q2FpoqXnxFnPnJDvTehMcSrqQRRAWTgUG+vCHW67HYeHzs2XneOcYyn1ZGK0oAzXO8DoQYtbhtFxnznV1ZxPdBgBk4wQj04IutvvjtYhEaLDb0SwjGye4zzARoGq/OvcWZCpBHXDCWL9Ac5LHMhoKBF/rzNoKLEOXqYBayBo2CRP0oghqii/ffg/Hq2DBfKGxBp1OHaYanOB6jB52eH9dnZ3aHhgO1ny5FX7n1BU4ZyMAMnGJHIg/OZQ1x826iMlj2nRMzeuHMs2S39cKSI9YIJFJpqnI0m4/v6NgY1cCovkCaMgYaSbRoo9HNoriP/EzVDe+WJEKL6aAdZl266rBvCDC7tYmiH9RrfS1gAQLfoUIzvHQ8A+OaAf2Mx5IUZOMGIYOCIE98GgGOFNTh4sRp6LYebLmtlOFFRpZ8eHAC4LCMGmXFhaDDbsP5oAOxEGUClw3UfFg8Y2+/Y3CGRyaQxLG/zK7VXMZQWGAOAIRwwOlpkqN2LUy1OpfVLNU3YeJy89neMaTWWiCG7G4aTNe/rAwXgA7mUQReDGTjBiAQhKuq9mTEwGXERrTQGIlZQ5TgON11GMiC+2sd2SwEBrUjrT08hjgPiepHbgRimUoOBA7h8FlWeKi5SiOrz3fmw2XmM7B6DfsmtjOtIcUJUADBzcDJC9BqcK63H4QLv2z8wlIEZOMGIUORPHAOn2WrD1/vJmLeOcrMg0UW91n8PDgDcOILM+9ezZShkze7UD6014m/J/UDW4SjZpsGVqADQ4TRVkx/ALy+zzc7jEyouHutGrCxUdvbf2Isw6jB9IPnf0rWQoX6YgRNsWM3O3WSUOAW0fj1ThpomK5KijLjcEYtuAd0p1ZeQIoN+kh4bhtE9YsHzwGoW81Y/lSJ4cIDANnCERptKe3ACIJOK6m9CY0mzVR/ZdLIEhdVNiA7TY9bglLYniOjBAYAbRxCD6buDRbDaWDHSQIAZOMFGbREAnlSGDXdjjPjA2sNkNzhrcAo0GjdF3MITAHAAbwfqy0R5zltcwlSqjHnb7UDZGeDE90Cd73U2ggKxmiYKBs5Z/8ZRAiGLSmkDx+FBEulLXRKEFHH/wlNf7CFaw1suS0OI3k29L5F7c03ok4DYcAPK6prx61nfq7Yz5IMZOMGGoL9J9b6irBvMVjs2HKUGTjvud63OYeTAudD7yawhyTDqNDhTUqeumHd1AfD+DcCLGcCSLODTO8iPGo0wuaAenJhM/8YJZA9OrcJ9qCiRAdBwU4QMquoGi1B47+asdjzV1MBprgGa63x+LopeqxHKWKxmYaqAgBk4wYbITTZzzpWjpsmK+AgjRmbGtn9ipLg6nMgQPWYOIl8WX+69KMqYorD9NeDcL4C5FtCFkHYYF3cBF/coPTNlsJqdWXt+h6gcIuPaIlG+kGTDXE/eD4B6PDiqNnAcWXJ+ZFCtPVIEs82O/smRGJAS5f4kYyRgcAiPRXo9bnDoA9cfLUaDmZWxUDvMwAk2qPtXJAPnh8NkYbhycBK07sJTFFrgTCQPDgAhHf27QyqJeVubgUOfkts3LgcWFADDbiO/71ym3LyUpDqfhCb1Yf5/uYdGOz2BgeTFoZo3XajvafJiIYRlVCwyFiFERYW+1OBolyhxG5COSI9GemwoGsw2bD7ZxUPTAQAzcIINEVPErTa7UIvmKnciPlcED454C+vlveMRE6ZHRb0ZO85ViDauz5xYQ7ogR3UDhtxCQnOj/0AeO7Za3boHqahwCU+JEBINyDCVa5E/MV4Df3Atuuljk0nJEVLEfWvTcLGyAbvOV4DjgOtcKxe7Q2TRNcdxgqB5HavTpXqYgRNsiJgivvN8BSobLIgNN2B0jw7CU4AkZeJ1Wg2udCwmaw6poK7HvvfJccRdziamqcOBjGzS1G/vO4pNTTEqRRIYU4RaOAEkNFZDmwZKRBIAjjT+bFCpENZPDc43B8haMLZHHFKjQzs+OUqcasau0ND5z8dL0Gz1P2tUVOrLgQ9vBl4bCbzcj2gFty1WelaKwQycYKPGoYcQIUV8rSM8NWNgEnTaTt4qIlYzduXaoc7dkkXJMFVlLnBuEwAOGH5ny8fGPEiOe1aSMFZXgtbA8Vd/QwlED46QIq5QF3FXtHpnmE+NOhxzA9DgyLT0IUTF87wQnrqxs/AUIHqqOEDCVImRRtQ2W7FdbdlUO98AzvwIlJ8mhndTNbD5JWfdoS4GM3CCDZE8ODY7L4SnZg3pJDwFiNqPypUxPeMQH2FEVYMF286Ik4LuE/s/JMeek4CYVuLI/teQsFV9KXD0a9mnpigVImVQUQLRwFFLkT+KmoXGVH9jjAJCor2+/GhhDc6U1MGg0+DKIR683iKnigOARsMJXpz1R1QUprI2A3vfJbdn/BN4cAuQ0B+w1AP7P1J0akohi4GzdOlS9OjRAyEhIcjKysLWrVs7PH/z5s3IyspCSEgIevbsiWXLWgo433rrLUyYMAExMTGIiYnBtGnTsGvXLin/hMDA3AA0OrQqfmpwdudWoKzODFOoHuN6xXV+gSAyFteDo9VwuMqxkK05qNCCbbc5F4jLftf2ca0eGHUfud3VxMaih6hcauEESuq9Wto0UCT4UhcN1/CUD3olmp49fUASokL0nV8QKa7ImHKlo2TGhmOXYLOr5H16dDXZZEWmAmPmACnDnBrB3W+pV5MlIZIbOJ999hnmzZuHp59+Gvv378eECRMwa9Ys5OXluT3//PnzuOqqqzBhwgTs378fTz31FB599FF8+eWXwjmbNm3C7bffjl9++QU5OTnIyMjAjBkzUFDQxWsT0A+xIQIIMfk1FM2emj4wCfrOwlNAS5GxyF9MVzs8SBuOFSsT8z63iZR7D40F+l/t/pzL7gbAAYX7RUuVVz08L36IKqYHAA5orhataKTkqM3AkcibKgpCirj34Smbncc3B8ka12n2FEXEhpuujO4Ri2hHAsTuXBUkQADArjfJcdS9ZNMFkCxPowmoOEdCV10MyQ2cV155Bffddx/uv/9+DBgwAIsXL0Z6ejreeOMNt+cvW7YMGRkZWLx4MQYMGID7778f9957L15++WXhnI8++ghz587F8OHD0b9/f7z11luw2+346aefpP5z1A11/0Z18yubw27n8YPD9XqVJ25gwLm42y1Ag7gf+FGZsUiKMqK2yYqtpxT40ruwnRz7zQJ0RvfnhMcBCf3I7cJ98sxLaeouAZYGgNOI17leH+L88guUMJVaivxRJPJaiAKtmeTD+2X72TKU1jYjOkyPiX0TPLuIerLrLgE28erW6LUaTBtA1rx1aghTXdwLFOwFtAbHZsuBIRy4bDa5TQ2gLoSkBo7ZbMbevXsxY8aMFvfPmDED27dvd3tNTk5Om/NnzpyJPXv2wGKxuL2moaEBFosFsbHuM32am5tRU1PT4icoqRGnyN/+/EqU1DYj0qjDeHe9p9yhMxIPByBqLRyAxLyvGqJgNlWBo4hf2siOz+uW5Ti/ixg4VH9jSgN0BvHGDTQdjlraNFAkyGgUDcHA8X6NouLia4amwKDz8KsrPIEU4+TtpFeeiFxJdThHi5VvJ7NrOTkOugmIaGX8jbofAEc8OGWnZZ+akkhq4JSVlcFmsyEpqeUHPykpCcXF7j98xcXFbs+3Wq0oK3O/e//rX/+Kbt26Ydq0aW4fX7RoEUwmk/CTni7SblNtiCQwpr2npg1MglHnpsdLe0joGr9mKNEVbDx2CU0WGcNUdrvTYOnWiYGTOoIcu4oHR6wu4q0JJAPHZnWG0tTmwRGhi7bo+GjgNJitgqDXo+wpikYrWX+uy/vEI8ygRVF1Ew5eVDBLqaECOPoVuT3mD20fj+0B9L2S3N71lnzzUgGyiIy5VuESnufb3NfZ+e7uB4CXXnoJn3zyCb766iuEhIS4HW/BggWorq4WfvLz8739EwIDEVLEeZ4X9Dft9p5qD4lSxQGSmplqCkG92YZNclYQLTtFetnow4DEgR2f2+0ycizYGzgCWX8QqwdVawLJwKkvBcCTMF2YB2J8OYhSsQenxrcQ1cZjl1BvtiE9NhSXZcR495wSGXwhei0m9yOlATYoWfTvwq+AzUwypqgXuTU0CeLE9/LNSwVIauDEx8dDq9W28daUlJS08dJQkpOT3Z6v0+kQF9dyAXn55ZfxwgsvYMOGDRg6dGi78zAajYiKimrxE5SI4ME5eLEahdVNCDdocYWncW6KhB4cjYbD1UMVCFPR8FTqCFK5uCOSBgMaPal2TL0bwQwNUYklMKYEUrE/Gp4KT3QWf1Qa+oVeXwrY3If1FcFuc+qCvFyjaPbUjcO7dbg5dovI7RpcmTGIfI9tPKZgYkH+TnLMyG7/nIxsYoTXXFSn4SsRkho4BoMBWVlZ2LhxY4v7N27ciHHjxrm9Jjs7u835GzZswMiRI6HXO9MC//3vf+O5557DunXrMHJkJ6GDroIIbRqo92bKgCSE6L1csCX04ADOMNVPx0vka3R3cTc5trczckVnBJIHk9tdIUwl9BTyreR+u1APTsU59ae20iJ/kSrR3wBEC6dxrJVq+jKrKyEVvzmtV1Wfy+qaseU0CQNe7014ikI7rEtg4EzqlwidhsPpkjrkltWLPr5H5DtKpKSPbv8cYwSQMIDc7kKNgSUPUc2fPx9vv/02Vq5ciePHj+Pxxx9HXl4e5syZA4CEj373O2dtkTlz5uDChQuYP38+jh8/jpUrV2LFihV44oknhHNeeukl/O1vf8PKlSuRmZmJ4uJiFBcXo64ugDoQS4GfncR5nsfaI8TAucrb8BQget+X1gxNMyE9NhSNFht+PiGuYLBdLu4lx7RRnp3flYTG9P0mQtXsFkSlkS9BW7NkxrJo1KpMYAwAGo06hcZUfxOZ0rk31IXvDxXBZucxLM2EXgkR3j+vRKniAGAK1WNMT5JcoYgXx9oMFB4gt9PHdHxuGl2bmIEjGrfeeisWL16MZ599FsOHD8eWLVuwdu1adO9OqsEWFRW1qInTo0cPrF27Fps2bcLw4cPx3HPP4dVXX8XNN98snLN06VKYzWbccsstSElJEX5cU8m7HE3VgLmW3PbRg3O0sAb5FY0I1WsxqZ8PZeeFWjjSfNA5jsPVQ8huTJaif+Z6oOQoud1ZBhUl1aHDKdwvzZzUgt3m1DSI0PesBVqdc0xaN0WtqK0GDkUIF6tIaFzjm8DY487h7SGhBwcgRQcBUqdLdooOkY1AWBwQ27Pjc2mSRBfy4HhuRvvB3LlzMXfuXLePvfvuu23umzhxIvbta38HnJubK9LMggi6OwqNBQxhPg1Be09N6peAUIMPegKhmrF0H/RrhqZg2eaz+OVkCeqarYgwSvgWLtxP0ksjU53VYTuDCo0LDxAjQC26DLERwg0aaZpMRncnXaer8oCMseKPLxZqa9NAUaPQWMig8txQOV9WjwP5VdBqOCFE7TUSenAAkm268Ltj2HuhEuV1zYiLaKdWlhRQ/U36mM5rn9FNWuH+4F6bXGC9qIIFPwXGPM8LBo5Hvafc4erBkSiLaFBqFHrEh6PZasdPxyV2CV/0sP6NK/F9AX046f9SelKaeakBqvfyMtzgMdGOfl/Mg+MbEoeLfcKHEPrX+4hRdHnveCRE+mg4UA+ORJ7ltJgwDEyJgp0HfpIrdE4RDJwO9DeUhP6kyr25LrjXJheYgRMs+JkifqK4FrnlDTDoNJjS38euyHQnb20kqdUSwHEcrnFkU30ndZjK0wJ/rmi0XaMeDt2N+9nzrF2ocLnKfUsX1aBaA0ea2i9+IVRa92yNstt5fLmPGEW3ZPmh86Jd3s21JOwsAdMHKpBNxfMtPTid4bo2dREdDjNwggU/PTg0e2pi3wTfwz6GMNIlGJC0HxNNF99yqhTVjRKmwXorMKZ0o4tIEBs4NeIUlWyXQDFw1NamgRLZsuFmRb0Z28+W4VhhDUpqmpSpvOtlpfUd58pRUNWIyBCdYED4hDES0IWS23XSeFjo/LaeLkWjWaZCpFV5xMDW6JyGS2fQJIguosORRYPDkAE/U8TXett7qj0ik4n3pq4YSOjr31jt0C8pEr0TI3CmpA4bj13yb3fXHjVFRKDJaYGU4d5dKwiNg9jA8TNjr1MCwcDheRcPjo9eT6lwGFyWqgL885sj+GxPPposzpT7ngnheHJmP8wclOx9XRlf8VKDs2ovOf+6Yanel6xwhePI/6fqAjFwxK7bBBI67xYdioKqRmw7U+afQeYpND08ZRigD/XsGuqNLtgrzZxUBvPgBAt+9Hg5fakWZ0rqoNdymDrAzw8mddVLKG50DVN9e1CiLJHS4+QY29N70TYVGhcfIWmcwYgIVbM7RDBw8okgUo00VZEMFkAaobU/OETxTRUFeC/nAposdqSaQhAfYYCGA86V1mPOh/twy7IcXKxskH4+liZH1Wd4VMW4tskilKwQZQMjcY0ujuNcwlQyCbtpeCrNA/0NhWZSlRwDmoO/rAozcIIFPzw4tHP4hD4JiArRd3J2J0hYzdiV64eTv3Pb6VKU1kpgRJSeIkfaIdwboruTbDa7hRg5wYhIfc/aJSqVuN7tFnVlArlCw1MhJtIFXUV8c5Z4ayK5RkztGY6P7h+DX/86BXv+Nh0H/zEDf5zSGyF6DfZeqMRvluXgTEmttBOi65M+DAjtvNXCD4eL0WSxo1dCOIanR/v//NTDJmFdJWrg/HS8BDa7DCHAix4U+GtNVAoJX/J2oOiAJNNSE8zACQZ43q8vnLW+9p5yh8Q7JUqPeLLw2XmJvDhlDgMn3ocwG8c5Y+KXDos3JzUhtchYo3V6I9UaphLCU+ry3vxysgTzvzmLOp4YXStuSsP43vFCKCoyRI8/zeiHH+dPRO/ECBRVN+E3y3Jw6GKVdJNyfb94EBKj4albstLFCaEJ65J0WU6je8QiKkSH8noz9uVVSvY8AEgLjkvHyG1Pqqy7ktZ1dDjMwAkG6sscrnLOKS70kHOldThRXAudhhMnbizDQkKhXYVpnxpRKfPDgwMA8X3IMRD6KXmL1ez8cpdKgwOoX4ejQv3NwfwqzP1wH2x2HvVGx7zaSRVPiwnD5w9mY1iaCZUNFtz59k6cLZUobOGFwDi3rB67ciug4bzsHN4R9H9UL926pNdqMNmRgSp5NlXFeeLd1Id73bhUCFN1gUwqZuAEA1QPEZEE6AxeXUrDU+N6xyM6zLtr3SLDQkK5ZmgKdBoOhwuqxXex0zoR1FDxllhHw8iKc+LMR03UFgHgAa0BCIuX7nnUbuCorMif1WbHn744iEaLDVf0TUBCqqOWUAe1cGLDDfjogbHI6h6D2iYrHnh/D2qaJMhM9EJg/KWj9s2EPglINokU+hNCVNKuS67p4pJmqpWeIMeEvqQ1hzdQofHF4BcaMwMnGPAjPPWDP72n3CHTQgIAcRFGTHR0PP9aTC9OY6XTQPMlRAUAcY6y6cHowRH0XqneL67eIBT7y5XuOfxBZTVwPt2djzMldYgJ0+O120dAE9UyVbw9Iow6LLsrCymmEJwrrcfjnx6AXWwNiWDgdOxtMFvt+GQXqZfzm5EiegdlCp1P7JsAvZbD+bJ66bxhAFBGN2A+eJiTh5JjbSFp8RPEMAMnGPBRYJxX3oAjBTXQcBAvrVGmhYRy42U0TFUo3qJcdpoco7qRGhq+QPvCVJ5HbmktnvnuKO55ZxeuXLwF1y3Zhre3nkNFvVmc+cqNVE02W6N2D46KDJzaJgv+u5GEVR+b2gemUL1Xgv+ESCPenJ0Fo06Dn06U4L8/nhJ3gh5qtn44UoSyumYkRRkxc5CInjGZQueRIXpk9yJezQ1Shqmoh9mXEHpIlPP1KD8j3pxUCDNwggEfU8TXHCbi3LE948TrnxLu8OA0VBAhnMRMG5CESKMOBVWN2J1bIc6gQnjKjzo+pgzwGh1gbcLv/7ca7/yai19OluJEcS0OXazGP78/jrEv/IT/bDipTNE1f6jxrp6JzwgeHJUaOCoKUS3ddBbl9Wb0jA/HnWMdrxtt1+Bhk8mhadF48eYhAIAlv5zBjnPl4k3QQw3Oe9tzAQB3jukOvVbEryfXLCqJP2+yVDUWDJz+vl0f15scg9HD7AIzcIIBHz043x4gC991w3xsYueOsFhSHA88ET9LTIhei1mO4oSihanK/Ddw9l6sRT5PFtVUexEm9InHopuG4N17RuG5GwZjcLcomG12vPbzGTz19RF50krFotq/opIeQz041RfVWQtHJR6ci5UNWLHtPABgwVUDnIaB0I/K8zT7G0ek4daR6eB54E+fH0StGHocnvdoE3b4YjX25VVBr+Vw22gvhbOdQTdeNjOpXyQhtLv4gfwqlNQ2if8Edpv/SRDUwKHe6iCFGTjBgA9dek8U1+BEcS0MWg1mDfaxuaY7NFog3CE8lUFoDJBFGQC+P1yEJosIX4T0Q+9jJeZ9eZX43YqdOG0lC92C0Xq8f+9o3D46A5P6JWL22O5Y88cJ+NfNQ6DhgE925eHxzw7AYrN3MrJKkLpNAyUyGdDoSddyNTWNpKjEwHl5/UmYrXaM7RmLaQNcMroEA8e7Mgr/d+1ApMeSqrzPfHfM/wk2VZMGj0CHRvG7Du/N1UNSkBgpcl0hfQipVwRIHqZKNoVgWJoJPE9q4ohOVR5gbQK0RiAm07cxBA8OC1Ex1I4gMvZ81/ONw3szqV8CTGF+FvdrjYxCYwAY0yMWqaYQ1DZZBdG0X5T6LuA7WliNu1fuQr3ZBrMpEwAwNLTMbS2PW0dl4NXbR0Cn4fDtwUL878cA2U1VS1zFmOJaC6dSZV3FLY1OgWakcgZOUXUjvjtE3vNPXzWw5fssysWD40VYJsKowyu/HQ6OI/Vo1vn7maLvl7C4dquCl9c147tDZE363bhM/56vPWTUB0oaphJqdPUhnxFfEMpYMAOHoWbsNufu1sOQgd3OC+EpWhFYVGQWGms0HG4fTcIZ7+f4+UVoaSI9awCv3b9nSmoxe8Uu1DRZMSozBlPHjSUPdJAqfs3QVLxy63AAwBubz+JIQQBkNcjlwQHUKzSm722tEQiJVmwan+7Kh83OY3SPWAxJM7V8kH4ObWaSGegFozJjMWciKXWw4KvD/oVaPAihf7o7H2arHUPTTBghRuVid8hYo2v6QBI233amDPXNVnEHF1LEfQxPAS01OIGmAfQCZuAEOrXFAG8jZe09LDi2L68SBVWNCDdoMXWABEXKwuX14ADAbaMzoNdy2J9XhcMX/TASys+QMuYhJiA8wePLSmqbcNfbu1BRb8bQNBNW3D0KhkTPiv1dNywVswYnw2bn8eSqQ+oOVVkagQaH+FRqDQ4AxKhUaEzf2xFJHlXmlQKrzY5Pd5PX5c4xGW1P0BmJ1wTwWGjsyuPT+mJAShQqGyz465eHfRfDV5O07/Y8zPXNVrzzK9EQ/T47U7rmnzK0a6D0TYpARmwYzFY7Np0sFXdwPzzMAtHdiVbSUq/O8K9IMANHRJosNvx6pgxHCqphletLiu6OIlM9dlfS8NTMwcn+deltD5lDVABJc71qCHHJv5+T6/tAgvu3n8dfXFabHY99cgDFNU3onRiB9+4ZTXp6xTmK/VWe71Qk+8z1gxAdpsexohos36Li4oDV3vUU8hu1enCEDCrlwlM/Hi/BpZpmxIUbcGV7daxoZXMf+nkZdBosvnU4DDoNfj5RItSn8ZpO6nS9l5OLsjozuseF4brhIiY8tEZGzzLHcULrm+8Pi9xKxp8UcYrO4NTvBLHQmBk4InKppgl3vr0T17y2DaOe/xF//uKg9D1JvBQYW2x2fO/oPXWDFOEpQPYQFeV32ZkAgG8OFqLS1xozQnaC5wLj//54CjnnyhFu0GLZXVmICXdUhDalk2q/NrPTEG2HxMgQ/P2agQCA//14GvkVMnR49gUhHJoqj+dCSBVXmQZHBQLjj3aS1+S3o9Jh1LWzURFq4fj2JdsvORJPziRfpM+tOYbcsnrvB+kgg6q60YI3NxODft60PuKmhrdG5o3XNUOJsfbziRLUiRWm4nn/U8QpXUBozAwcEbHZefRNikBUiA6VDRZ8sfcibn5jO/617gTMVok8Ol6miG87XYaKejPiIwwY1ytOmjkJ7RpEds12wmUZ0ST92mrHZ3t83G166f79+cQlvP4LCUEtunkoeidGOB/UaJ27JA/qTdw4ohvG9YqD2WbHm1tUWp9C8FyImHnXEWr14FADR6EaOLll9dh6ugwcB9wx2k14ihLlfap4a+4d3wPZPePQaLHh8c8PeO+d7mCNWrHtPKobLeidGIHrhkkc8pR54zW4WxQy48LQZLHjp+MiPWdNIWCuJeElWkzUV7qA0JgZOCLSMyECGx6fiH3/Nx0fPzAG1w9PBc8Db2w6ixuX/irNrtzLNg1f7CVf/NcMTYVOqt2SjLFuVziOE7w4H+Rc8K22DBUE091NBxRUNeLxzw4CAH6X3d19PSG6CFV0brBwHIc/TiGLzud7LqK0ttmzOcsJ9eDIbeBUXwRsIos1/YEaDAp5cD7ZRQy+iX0TkB7rPjMJgEuquO86C42Gw8u/HYbIEB3251Xh3xtOejdAOxqcinozVmwln7f50/tCq5HYIyizB4fjOMGL891BkXQutEZXXC+v+w62gYbQmYHD8AadVoNxveLxv9tGYNldlyEmTI+jhTW44+0dKKxqFPfJOhHwuVJS04QNR4nRcesokQtpuaKAyJhy3bBURIfpUVDViF9O+PD8lbnkGNujw9Nsdh7zPt2P6kYLhqWZ8PTVA9yfSJtulnumqxnbMxYjMqJhttoF4aWqkLt6b0QyCfPxNp/DLJKgYIiq2WrD5w4P5Z1jund8Mv0/1fj3BdstOhQv3Ux6GL25+Rw2HPXQI2S3OZ+71SZsyc9nUG+2YVBqFK4Usy1De8iYRUW51rHp2XKqFNWNIhRNFEN/Q2EhKoa/XDk4BWsfm4DMuDDkVzTi9rd2oLhaxOqWXoSoPt+TD6udR1b3GAxIiRJvDq2hO6WmKsAqrxciRK8VjLc3t5z1LvOjsdJZ5TS64y+OJT+fwe7cSkQYdXjt9sva10DEee7BAciu7yFHeu4HORek6ezsD3J7cDQap3ajysewoxQoGKLacqoMlQ0WJEUZMaV/J1mQgsjYfw/CrCEpuO9yYvj/6YuDyCv3wCNdVwLYLSSkEuF8rXaeK8c724kB/+eZ/aCR2nsDuLSRKZOtMna/5Ej0SYyA2Wb33CjsCOphphsnf4hzhKgqLwDWAO2L1wnMwJGBFFMoPn5gLNJjQ3GhvAF3vL3DdxFsazwMUdnsvJAF4TalVExCY0gFWkARL87d4zJh1GmwO7fSu0qitJhcRFK7BckAYE9uBf73ExEj//OGwciI6yBEIHhwPNfUTBuQhD6JEahttuKjHSrTnijRf4kaOFSsqgZqqQdHgjILnbDWkSRw9ZDUzsM6gshYnBDJX2f1R1b3GNQ2WfHQR3s7rxzu2nleqyNTabLgT18cBM8Dvx2Zhkn9ZHoNw+MBTkPKQMjQRoZCvThrDonwP/DQw+wRkcmAIYJ4R+m4QQYzcGQiNToUH98/FqmmEJwrrcejn+73P5Xc2uxsh9BJVdlNJ0tQUNWI6DC9kE4tGRznIjSW38BJMYXinvFkAfjXuhOea3Hoh7yD8ufVjRY89ukB2HkiCr5hRCeeMyFVPNfjXaNGwwlF1lZsOy9O+wmxkNuDAzjDr9Uq8eDYbc73dYS8Hpwmiw0/OqrjXj3Ug+eOcnhw6kpE0TDptRosuWMEYsMNOFpYg4c/2odmawfvT/o/c/EwP7fmGC5WNiI9NhR/v3aQ33PyGI0WCHO0kZFRH3jNUPJZ2XaGJHj4RYUjbB0jgoHDcS46nOBMFWcGjoykx4Zh5T2jEGbQYuvpMry03kuxXmto8S5dCGly2QEf7SSegN9kpUlT+6Y1CtTCceWhSb0QHabH6ZI6fLnXw51/JwYOz/N44ouDKKhqREZsGJ693oPFOaob0ZDYLV59QV83PBUpphCU1TXjR7EyMPyF5xXy4KjMwKkvI14AcF4VgxSDrafLUNtsRXJUCEake1CHKCzepfmtOJ/FFFMoltwxAkadBj+dKMEf3u/Ak9MqRXzV3ov4fM9FcBzwn98MR4RRJ8qcPEYBHU7PhAgMSo2Czc5j3RE/wlR2u7Ncgq89qFrj0OHs3b8b/15/Agu+OoxVey+iwawiQb8fMANHZvonR+HftwwDACzfcg7fHPCjA7ar/qaDmiQXKxvwy0nygb6jM1GiWChUC4diCtXjkcnkw/vKxlNoNHvgBamku6NMtw8v23wOG49dgsGxi40M8aCHl0br3G15EabSazW46TKy6/XYQJOapmrA6hDJd+UQFX1Ph8cLYRe5oOGpq4akeKZb0WhEExq7Mq5XPN65exRC9VpsPlWK+97b7f4z5hJCf297Lp74gmQdzpnYC6N7dLwpkwSFMjxpNtW3B/1Y72uLSE0tjU6UKuKXapqwvpiUtTh19ABe/+UsPtmVhye+OIhR//wRf1t9WPw2EzLDDBwFuHpoCuZOIq7Bv3x5CCeKa3wbyEP9zYc78sDzwOW949EjPty35/IWurOtk7cWjiuzs7ujW3QoimuaBEFjh3Tgwdl+tgz/Xk96wCy8bhCGpkV7PhHqBu6gJ5U7br6MfLFvOV2GkhoRhem+Qr03IdGAPlS+51WbyFjIoFJ5eIoiQqq4O8b1jse794xCuEGLX8+U49ol2/DD4aKWwn6H1+2nQgP+8e1RAEQj9+cZImQB+YJCG6/rhqdCwwE7zlXgXGmdb4PQDVh0hl+GNc/zWLb5LCa/vAnfFxIDZ0R4GX6X3R0PTuyJ7nFhqDfb8OGOPNzx9k7/w2oKwgwchfjTjH6Y2DcBTRY75n60z7dKl0J8u339TUW9GR84Whf8Llsm7w2guAcHAIw6LZ6YSSoSL/3lLM53VoW1HQOnoKoRj36yH3aeGB23j/YyxZ7WwvHCgwMQ1/ZlGdGw2Xms9sfTJxZK6G+AlrVw1NAYUKE2DV6HpygiC41dGdMzDu/fNwYxYXqcKanDQx/tw7VLtuHNzWfxQU4uivLJe/6Tk0Rv+NjUPvjHtQPlyZpyh0Kh827RoYKYmtYw8hoPNIKdYbfz+NvqI3jxhxNoMNtgTCKZVP11l/Ds9YOxYNYAbHpiEt67dzSiw/Q4mF+F3yzbjgKxy5vIBDNwFEKr4fDfW4cjOYqIjp/+2odmdkJX5/YNnOVbzgm1JqYPlHFBVsgV3Jrrh3XDyO4xqGu24sEP9rTvcrVZnR4ClwWktLYZs9/eibI6M/onR+KfNwz2vhkgzXjwod3AzVnkf/vl3gLfmx2KhRL6G8AplLXUe90VWxIU8uDQ8NSsIcneGQhR4qWKuyOreww2/XkyHp3SG+EGLY4U1GDRDyfwf98cha6OrFHWyG749y1D8fj0vtI10/QEBTdetOL0qr0XfUsc8NPAsdl5/PWrQ/hoZx44Dnju+kF46cGbyIP1JSQEDVKqYmLfBKyak41UUwjOltZj9ts7PQvzqwxm4ChIbLgBS+4YAa2GwzcHCr1vZtdJiKqsrhnvbc8FQCqFyrqwKNSuoTUaDYeld16GxEgjTl2qw59XHXRvKNRcJOmSWqPwxVXdYMHvVu7CubJ6dIsOxcq7RyHU4INA20Q9EN6HWK4ZmgqDToOTl2pxtNDHUKZYKOXB0Yc6Q55qEBrXyZ8i7hqeolk5HiN4cESow9IOplA95s/ohy1PTsZjU/vgxhHdcO3AWCRw5D274o834DcjJSwu6ikKJj9M7p+IVFMIKhssWO9LTZyKjjWCHWGz8/jT5wfw+Z6L0Go4LL51OGZnZ4ILMTk7zrdqh9I7MRKrHhpHNuFl9fjXuhPez1lhmIGjMCMzY/FnRzO7hd8dxeGL1Z5fLIiM3Xtw3tx8Fo0WG4almTovCCY2KghRURKjQvDGXZdBr+Ww9nAxlm5yEyoSdkfdAY0GJbVN+P07u3C8qAbxEUZ8eP8YpEb7qDvxQ0NiCtULnrdVSouNlfLgAC6ZVCoQGivwOmw/62N4CnAapDXSV4KOizDi8el98d9bh+O1qx1rjj4M2nAFBMXuUHBd0mo43DqKbHZ8qm8lrFHep4i/+MNxrD5QCJ2Gw2u3j8D1ro2WO+j3lhodin/dQipYv7s9Fzlny71+biVhBo4K+MOEnpjaPxFmqx0PfrAHZXUeVv/toJN4SU0T3s8hIRFF3MJCuwZlPTiUrO6xeOa6wQCAf68/iae/Poxa1yrBLu7fzadKcdX/tuJAfhWiQnT44L7R/omzqYHTVAU013p9+S0OsfG3Bwula9rqCUp5cAB1CY3p7l/GNg0/O9qOTBuY6L1+RRAZS+fBcYtrCF3JsJQrCqSJu3LrqHRoNRx25Vbg9CUv1wIfQ1Sr9l7EW1uJ9+e/tw5vWwetk4a2E/smCLrDP686GFCZVczAUQEaDYdXbh2OnvHhKKxuwtyP9sHSWRFAc72zrYCblMF/rz+JZqsdl2VEY2JfeWt1AHC6gs21ZK4q4I4xGXjIkb320c48zPzvFnxzoADHi2rQeIl4dTaVhOP3K3cJmpuv5o73v61FSBQQYiK3ffBATOgTj4RIIyrqzfj1jHwVWNugpAcn2vcwn+jUydtok+d5/HKCbBR88sQKBo7Mvbzoe12ElGbRoOtSczVgkV84m2wKEf6HH3sjNm6uJS0mAOJl9pC9Fyrw1FeHAQCPTu0jVFVuAfWOdrB5ePrqgegWHYqLlY142dtmqwrCDByVYArVY/nvshBh1GHX+Qr8c82xji+g+htjFPkCdWH90WJ8sZcU01pw1QBlRH3GSEDnCOkotFtyx1+u7I+PHxiD9NhQFFY34bFPD2DW/7bip5xdAIAtZSRt8q6xGVj98Hj0TowQ54n9CLHotBrMHES+TDcck3kX7opg4CjowVE6RMXzzjYNMmVRnbpUh4KqRhh1GmT3jPd+gCjH/6upGjB70D9KLKo7T4KQnRAT0dkBiq1LtFXOl94U1KPem9BY52apE4qqG/HgB/tgttkxc1AS5k3t4/5E2nevgySICKMOi24aAoBsDlVRtsIDmIGjInonRmLxrcMBAO/lXMDbWzuom+KmBDpAsn4WOCz2P1zRE6MyFYp9cxwQ4fAcKSw0bs24XvFYP+8KPDixJwamRCEmTI90jix2/QYMwZo/Xo5/3jBE3IrPflbjnenotrzx2CXPW0+ICc+7hKiU0OBQA0dhD05zrbPYoUweHBqeyu4V55vI3RgF6B390upkNJDp/0pNBg7HOf9vCq1LV/RJQPe4MNQ0WQUZQad42YPKbLXjoQ/3oayuGf2TI/HKb4e3H9rsJERFmdAnHiO7x8BstWP5Fu9qeikFM3BUxrSBSYLo+J/fH8fyLe3UTnGTIs7zPP765SFU1JPwyvzpfaWebseoSGjcmjCDDgtmDcDaxyZg/99nYGg4ST++dfoEDO7m2Q7JK/zUkIztGYeoEB3K6szYl6dAqnRDBWk3AciqPRFQi8iYvpcNkYBBnqKZvzgMHJ8TBThOkmrGndKqTYNqULiEhUbD4Y9TiDdl2eazqHHVAraHlxlUz39/TNAQLp89EuEdtcSI9mzzxXEcHplCqsN/tDMP5Z5qRRWEGTgqZO6kXnjM4U58Ye0JLN10pu1JrVLE7XYez605jp9OlMCg1WDxbcNh1MnQc6ojwtVRC6dTGqvA0foqXsS3vSLavy9ovVaDqQMcYSpfUkz9hXpvwuIBnUH+56cGTt0l0mRWKWQu8lfdYMFeh0E72Z+u29TTK0MmlQD1CJhUkB7uigpqdN04oht6J0agqsGCt7f6V2W9Nd8cKMB7Ds/Qf28djoy4sI4voP+fxspOkyAm9k3A0DQTGi02rNjmwbwVhhk4KoTjODw+vS8en0Y8MC+tO4knVx1saTHXUAFfGsxWO+Z9dgArfyVvuH9cNxD9k/0UxopBhLoyqdqFLh7hCdLtykUIscxwpIuvP3pJ/qJ/SupvANJMlmq6lPTiyFzkb/PpUtjsPPokRiA9tpMvqo4QDByZXjued/6fotVq4CinDdRqOPzJ4WFfsfVc5+0QPDRwThTX4K9fEonCH6f0FjZFHRISBYQ6Sg904mHmOE7o8fd+zgVUNai7jQMzcFTMY9P6COGqz/dcxJT/bMb7ObkoqW0CX0l2R3trIvCbN3Pw7UFS4+C/tw7DnXI11OwMFYeoWiAsxBnSPYcIIZaJ/RJg1GmQV9GAE8Xep5v7hZL6G4CEWfz0gomCzK+D3+EpCi0lIddrV1/m0CpxHbaSUQSVrEtXDk7G4G5RqDfb8IY7L70rQiPg9jU45XXNuO/dPWi02HB573jMm+aFREHIpOo8s2vagCT0T45EXbMXGiKFYAaOynl4cm98MScbA1KiUN1owd+/OYrRz/+Ei+dJVclF2xtwML8KYQYtVtw9CjeOUNFiolKRcRs8aHnhN3QBqSkkbSF8IMygw4Q+5DXdcFTmxVnJFHGKGoTGMr4ONjuPTSeJgTPZbwOHvnYy9TSrdnxRRqYoE9LsCBV4cADiDXnC0XT0/ZwLKGyv35Pd5tJGxv3m1Wy146GP9qGgqhHd48KECvke46HQGCAaojkTSbmNT3flKZP04CGyGDhLly5Fjx49EBISgqysLGzdurXD8zdv3oysrCyEhISgZ8+eWLZsWZtzvvzySwwcOBBGoxEDBw7E119/LdX0FWdUZiy+e2Q8nr1+ENJjQ6HnbEgGqShpicrAY1P74Mf5E5Wpd9MRKtkpdYoHTUv9JiIJ0OhJOwg/egLRdHGfSr37A51zlJs6GnKhhlRxGYsdHrxYhcoGCyJDdMjq7mX14tbQ97ZcISr6hay28BSgqnVpYt8EjM6MRbNDZmB1V/+s7hIR+HNaILLt54/nefzj26PYdb4CEUYd3v7dSESHeWlU0lTxas9q81w5OBlRIToUVjcpW5urEyQ3cD777DPMmzcPTz/9NPbv348JEyZg1qxZyMtz/0KeP38eV111FSZMmID9+/fjqaeewqOPPoovv/xSOCcnJwe33norZs+ejYMHD2L27Nn47W9/i507d0r95yiGTqvB77IzsfXJKTj252HQczbwGj2+evImPD69r+9tBKRERQtJh8iR7aHRiBImmDogCRoOOFZUg/wKGWua1Mpb3M4tfvT0Eg36OkRJb+BsOUU8nxP6xEOv9XOpljtEJaSIMwOnIziOw4s3DxHqn7284VTbk4SCiamAtmU2FM/zeGn9SXyyizTQfO32EeiTFOn9RLzw4ABAiF6LG0aQ99Rne1RQfLMdJDdwXnnlFdx33324//77MWDAACxevBjp6el444033J6/bNkyZGRkYPHixRgwYADuv/9+3HvvvXj55ZeFcxYvXozp06djwYIF6N+/PxYsWICpU6di8eLFUv85HWNpBAr3A+e3SPo0escujItOh1arcKZUR9AGiXWlRHSoVuRKZ/WzFg5AGrSO7kFqG/14XMYFmn4ZqCFEpWS7Bhk9ONtOk50xDUv6BX3tGivlKfZHvyhV6cFxCVGpYF3qmRCBf91M+j0t23wWP7X+XAvZaC3XJ2rcvOHorffMdYN8D2VGe67BofzW0Tx149FLqOxMJK0Qkho4ZrMZe/fuxYwZM1rcP2PGDGzfvt3tNTk5OW3OnzlzJvbs2QOLxdLhOe2N2dzcjJqamhY/klB6Elg+CVh1nzTjU2jFSSlFsWJAFxJro089mGSjk67soiGCgQMAU/uTHeimkzJqm4TsIQU9OEqLjHleNg1ObZMF+/OrAACX9/ahenFrQkykdg/g1JxJSZWKPTi0fIW1CWiW6LvAS64emoK7x2UCAB7/7ACOF7nMS9iAOV9Ls9WO59Ycb2Hc/C470/cJCB4cz9emwd1MGJQaBbPNjtUHZNJ2eYmkBk5ZWRlsNhuSklouiklJSSgudq8hKC4udnu+1WpFWVlZh+e0N+aiRYtgMpmEn/R0iT509A1YXwJYJCxlLeyOVG7gGMIBg6PVgYraNbTAZnHuyqVejEXyQEzsR3b0O86Vo8li83dWncPz6jBwXDU4dgWajjbXABaH90PiNPEd5ypgs/PIjAvzLz3cFSFMJYMHjD6HGtcoQxip7gyoal166qoBGJ4ejZomK65//Ves3HYedjvfxsN8+lItblz6q1AW5JnrBuH3DuPIZ+ja11DmVe9A6sX5bHe+/KUrPEAWkXHrXkg8z3fYH8nd+a3v92bMBQsWoLq6WvjJz5foAx4W6yyJLuUuSTBwVJIO3hHUi1OvnoWkBTWFAHjSnyZMhJ1yR4gkku2TGIFUUwiarXbknCsXYWKd0FQF2Bwu6Ag/s3n8ITIVAAfYmp2NB+WEem9CTORLUkK2nSbeucv7iPielDOTSs0eHEAVxf5aY9BpsOL3IzGlfyLMVjueXXMMd769ExfOk+aW+2si8NCHe3H1a9twtLAG0WF6LL3zMv+NGwAIjQaMjgruXmzArh+eCoNOgxPFtThSoA5vmCuSGjjx8fHQarVtPCslJSVtPDCU5ORkt+frdDrExcV1eE57YxqNRkRFRbX4kQSOc9mle9Ep1lsCysBRj6DPLcLuqBsRAkuJSCEWjuMw0VHVdrMcYSq6yw2JBnRG6Z+vPXQGp/ZFCaGxjPqbrY7MlMt7i5gZKRT7k9jAaaom3boBdWpwANWuS3ERRqz4/Ug8d/0gGHUa5JwrR0NJLgDgf3ua8MORYpitdkzul4AN867AVUNEfC9Gey/ijw4zCH3yPleh2FjSFd1gMCArKwsbN25scf/GjRsxbtw4t9dkZ2e3OX/Dhg0YOXIk9Hp9h+e0N6asyNEzJ1A0OEBLobEaoYt9lMT6G6ClBsdPd+4kR5iK1kmRFDWEpyhKCo1l0t8UVjXiXGk9NBxpsCkaImnAOoX+b8LiZOvX5TUqqYXjDo7jMDs7E2sfm4A/TumN7roKAEBofHf8cUpvfPvIeKy8exQSo0LEfWJBh+Nd8b5bsshn8ocjRaqridNBBy5xmD9/PmbPno2RI0ciOzsby5cvR15eHubMmQOAhI8KCgrw/vvvAwDmzJmDJUuWYP78+XjggQeQk5ODFStW4JNPPhHGfOyxx3DFFVfgX//6F66//np88803+PHHH7Ft2zap/5zO8bBxmc/YrE4XcyAYOCrdKQnImc5Kv5zNdSTsE+p7bZPxveOh03DILW9Ablk9MuMl/CKppQaOguEpiikNuLhLGaGxTB4cmj01LD0aplC9eAMLGhyJPThq7UHlirAuqc/AofRKiMCfrkgBttcBAN54+HrA6EMKuKcImVTefXeN6xUHU6geZXVm7M6twNieIhrlfiK5BufWW2/F4sWL8eyzz2L48OHYsmUL1q5di+7dSXilqKioRU2cHj16YO3atdi0aROGDx+O5557Dq+++ipuvvlm4Zxx48bh008/xTvvvIOhQ4fi3XffxWeffYYxY8ZI/ed0Dv1QV0pUwrqmgBSL0xrVsaPuDNUbODJ2PNaHOnU+fnogIow6jMwkBtLmUxJ7x9SQIk6RegPRETJ5cGh4aoIY2VOuyBWiEgTGajZw1OvBaQFdn0KipTVuAK9r4VD0Wg2mO/rk/XBYxm71HiC5BwcA5s6di7lz57p97N13321z38SJE7Fv374Ox7zllltwyy23iDE9caHN0Lx083mMa30JqTUjYqD2dg1ypYhTTN2IQLamEEgZ6tdQk/olYse5Cmw6WSKO0LA9VBWiUjBVXAYPjt3OC5Vhx4tt4LiK3HmeaAalQPDgqNjDrPaNF8VNirhk+GEAXzUkGav2XsQPR4rxj2sHQeNNmwgJCYBvyACDGjhSeXACJUWcovaFRE4PDuAstV5b6PdQVIeTI3W6ON3lqiVEBQStB+dYUQ0q6s0IM2gxIsPP9gytoV9glgZS8E8qAsGDE66+LCq3CCF0GdYn+hw13q9N43vHI9KoQ0ltM/blSfje8hJm4IgNzWyqLZKmFk4gCYwBl4VEpa5gOXdIgLOXkw+LSGv6JUUiOSoETRY7dp6v8Hu8dqlTQZsGisk3nYAoyODB2ebw3oztGQeDTuTlWR/iDJFKmgSh8hRxIPBCVHIYi65rk927DZNRp8U0GqY6InOfvA5gBo7YhMc7auHw0uwyA86Do66y6C1oqnGms8qRRQU4exjV+B+r5jhOaLAqaTaVGj04jRVeFSTzG5mqGFOBsSjVi90h7NIl1OEEggeHGuv1pV5/mcuKnB6ciCRAoyMaTx88W7MGk8/FD4eLVFP0jxk4YsNx0oapAqkGDuD8UrRbpHWL+wJd5EOiAWOEPM8pstCTVjWmX4ySIGhwVCAyDo12VqGVo2AdpbHSpdihNJ6sJosNu3KJJ26CmAX+XJG6I7u5wam3U/MmLDweAEe+zBsk9H76i5whdI3W6Z30wcN8Rd8EhBu0KKxuwsGL1SJPzjeYgSMF1PioyhV/7EAzcHRGUvkVUJ/QWO7wFOB0A9eKk20wrlccNBxwuqQORdWNoozZApsFaHBUS1ZDiApw+ZKWsJhma+j/KyxOsmKHu3MrYLbakRRlRO9EiQxuqQ0cOq4hkmwc1IpWT/6XgLp1OMIaJZOxSNcnH94fIXqt0OxTLdlUzMCRghiH8SG2B8dmce781bw7ao1ahcZyun8pkeJpcABSSXRIWjQAibw41CjV6Pyq2yMqUn9Ju0MO/c1pZ/XijlrZ+IXUqeKVpD8SYjKly9ISC2FdUo9mpAU2q3OdkGuNEt4fvq1PtLLyuqPFqghTMQNHCoQQVa6441ZfBHg7oAtRhx7CU9RaVMu1TYNcUA1Oc41oHdavcIQztkph4FDdSXiiesoSKCE0lkF/Q/9/koWnAOmL/VWcI8fYHtKMLyaCPlBlnmVKbREJoWn08nlPBaGxb++PiX0TYNBqcKG8AWdL60ScmG+oZMUKMoQQlcgeHFeBsdp3R64I7RrUZuDQGjgyenCMkU4NiQhCYwCY0MehwzlTRroPiwn9n0WqJDwFKOzBkcbAKatrxrEi0qxQ9Po3rkhdR6jC4cEJCANHpZ5lipx98ih+frbCjTqMdbQX+fG48us9M3CkQKoQVaBlUFHUupAoocEB/N4ltWZERjTCDVpU1JuFL0nRUFORP4oSxf4ED440ISpa3K9/ciQSIiVsaErXjpoCEvIWGxqiiu0p/thio/ZUcUU0gv6FqABg2gDyuv50XPn1nhk4UkA9OE1VQGOVeONS92+gCIwpEWr14CigwQFEFxrrtRqhKaPoYSo1pYhThHYNcoqMpQ1RbZMjPAUQQ1UXQkIfUhiIdI2KYR4cv6HvbznXJxE0WlMcQuO9FypRWW8WY1Y+wwwcKTBGuPQcEtGLU36GHOP7iDemHAg1J1Rk4Njtzl2KXDVwKJHienAAZ5hq62mR9QRqKvJHca24KlcNE2qMSpAqz/O8UODvcsf/UTJalLHIFXdsu83ptWYhKv+Ru8o64NRo1RYTkbMPpMWEoX9yJOw8sOmUsms+M3CkQoowFTVw4nqLN6YcqHEhqS8htXk4jeTdodsghKjES6W83LHz35NbiUaziF/6agxRRaYAnBawW52eFamRsGfZ2dJ6FFU3waDVYHRmrOjjt0HKJAi7BdAa5N80+ELAhKhkNHDCE/wq9keZNoCsF0rrcJiBIxViC43tNqD8LLkdaAaOIDJWUbYCXTwiUwGtLD1nnUT5XkyrPXrGh6NbdCjMNjt2ni8XbVxniEpFBo5G6/wClUOHYzU7F/so8b9stjm8biMzYxBq0Io+fhsEA+e8uOPS8aK7k/+R2lHjxssVJZIgNFpRPMxTHTqcLSdLYbHZxZiZTzADRyrErmZcfRGwNZPdUaCKjNVUFl3Q3yiw06RfziI03KRwHCfoN0TV4ajRgwPI23SztggAD2iNjgq44uIMT0msv6FI5cERUsQDQGAMOD04TVWAtVnRqbiFGhhye8NESIIYlhaN564fhO8fnQC9Vjkzgxk4UiGEqHLFGa/8NDnG9gyM3ZEraiyLrsTuiOJHOfSOENLFxTJweF6dImPAaeSLXYrBHdRLFJUqenkGi82OHecc7Rl6S6y/oUhm4ARQijhACldq9OS22sJU5npieAHyGzgi1ErSaDjMzs5ERlyYSJPycR6KPnswI3aIqixA9TeAoyy6Q1ugFqGxEvFtCl2w6ktF3TmO6xUHjgNOXqrFpRoROtk31wKWBnJbbQYO3UBUyZBJVSOdMbzvQiXqmq2IDTdgUGqU6OO7RSoDJ5BSxAFirKq1CCnd/BgigRCZ3hcUqatdywgzcKSCfsgrzvusRm8B9eAEWgYVRW3xbiFEpUDH47BYEu4ARBXJxoQbMLQb6fslSpiKLvqGSMAQ7v94YkI9OFI0tG2NhMbwVpfu4RqNTMU7hTIW1eI2wKUenEBIEacIQmOVrEsUV6+h3DADh9EppnRAF0qyCsTw4gRqBhVFbdWMhQVEAQ0Ox0kiNAZcw1QiCLrpoq+mKsaUaAU8OBK8V7Y4/k9X9JUpPAUAhjDnhkMsLw7Pu4SoAsSDA6hv40URelApsD5J3c5DRpiBIxUaDRDvMEZKT/o/nhCiCnQPjkoMHAnDDh4hgdAYcApVRWnboCKBMc/zOF9Wjy/25GPTyRLUhDgMxOp8UtNISiRKEa+oN+NwQTUAGQr8tUbsMFVdCWCpJ2UXAikJQq2p4oJRrYQHR9yGwEoic35sFyO+L1B8GCg7BeAq38cx1wM1Do9DwIaoVOQKtjQ6u2QrZeBIJDS+LCMGYQYtyurMOF5cg0GpJt8HEwwc5fQ3VpsdS345gy/2XERBVaNwvxY2nArRQGszk2KEUn4R0M+eyCni286UgedJe4akqBBRx+6UmEwgf6d4Bg7V35jSAJ1BnDHlQLUeHGrgKKERdDxnnaPYn9xlNESEeXCkJL4fOZad9m8cmn4ZGuMU6wYa9EuyXgW1cKhRoQ8nr6kSSFDsDwAMOg2ye4rUtkFhD05FvRm/f2cXFv94GgVVjdBrOYzsHoMe8eGwQYtCO/k73/5uExrMIujc2kOirvNbTikQnqKI7cEJRP0NoK6NlytClXUFPDjhCSS7jLeL1k5GKQLXNAsEqLelzM8QFTWQAjU8Bahrp+RaA0epruwSCvkm9InHTydKsO10GeZM7OX7QAqmiB8pqMaDH+xFQVUjwgxaPHPdIFw9NAVhBrJkldc1o3pZOlBXiiNHD+O3Fen45IGxiAzRizsRc4NTiCuiBofneaGthuzhKUACA4fWwAk0A0dloXOKhJWzO0WjIRrBqjyyPkUrkIghEsyDIyUJ1INziojwfCVQe1C5oqZYt5I1cCgSiYwBZz+jXbkV/rVtEDw40jSYbI/Tl2rx2zdzUFDViMy4MHw9dzx+MzJdMG4AIC7CiJ69BwIA+horcKSgBg99uA9mq8h6HGqAGiKBED/Cfa04dakOl2qaEaLXYJQc7RlaI7aBE2gp4hQ1bbxcUarIH0WEruJqgBk4UhLbCwBH0jH9+WIP9AwqAAhXk4GjYA0cCi2HLkEvpV4J4Ug1hcBstWNXrh+FFRUIUTWYrZj70T40mG0YnRmLbx65HP2SI92f7KiFc1sfO8IMWmw7U4YnVx30X1ztimt4SkRvH/XejOkRhxC9AoU7qYFTlS9OGYtA6iLuiuvGy59NqJi0KPKnQIgKcGoEAzxExQwcKdGHOAuSlZ3yfRwhRBXABg79kmwoB2wWZedCQ1RKCPgokQ6vSG2R6AsradsgQrp4rfwi4398cxSnS+qQEGnE63deBlNoByEnR7ZOrKUYb9yVBZ2Gw+oDhVjyyxnxJiTRTnrzKQXDUwDxymmNpLp4jQj9vAIxRRxwvretjaSwpRpoUeRPPK+hVwRJJhUzcKRGEBr7qMPh+eAIUYXFkhRS8EC9iL2SfEHpFHHAaeDYLcToExmaLr7llI+vtd0GNDiulcmDs2rvRXyx9yI0HPC/24YjIdLY8QUuxf4m9k3ACzcNAQC8+tNpHC2sFmdSEgiMmyw27DpPPGsTlRAYA0RnIVY7mcYqoNHhKaSeoUDBEE4MCUAd3mVA2SJ/FGbgMDxCEBr7mElVVwI01wDgAm935IpG6yz2p3S7BjWEqLR65+shgRv48t7xQtuGourGzi9oTX0ZyaLgNJI0mGzNmZJa/N/qIwCAx6b2xbheHjwnLfZXUwDYrPhNVhpmDU6G1c7jiS8OidPFuFr8FPGcc+VottqRYgpB78QI0cb1GhpO8jfLk+pvIpIAo4J/j6+oLZNKySJ/FBaiYngEFRr7WuyPem+iMwBdJztataMGoTHPq8PAAVxq4Yi/iMSEGzAiPRoAsOmkD2EqutiHJ0je3JXnefz9m6NotNgwvnccHpniYSg2Mpmks9qtQG0ROI7Ds9cPRkyYHseLarD0l7P+T65G/GyWn46T13ZK/0RwSmXxAf6vTZRSR/g91o+MPSVRm9BYyRRxSpC0a2AGjtTE9yVHX3dJgd6DyhU1CI0bK50NJJXKUKBIvEua3I+83r+c8OH1ljFF/OcTJdh+thwGnQYv3jQUWk97Mmm0zhRWRzuUhEgjFl43CACw5JfTOF5U49/kRM6443kePx0nr+20AQpXiE4cQI6lJ/wb5xLxvCF5sH/jKIWaanQBkhWW9Aqa5VlbrB7xtQ8wA0dqqIFTcxForvP++pLjLccJZNSwU6Lem/AEIgJXElehsQRM7k8W7m1nytBs9TJdvM6R3SWx/sZis+P5teQ9fs/4TKTHhnk3ANXhuPSkum5YKmYMTILFxuOZ746C93WB5nnRK8oeLaxBUXUTQvVaZPeKE2VMn0noT450jfGVS0fJMWmQf+MohRrWJVfU4MGhpSFsZkk0gnLBDBypCYsFwhx6gnIfvDgFe8kx9TLx5qQUaghRqSU8BTgXMIkMnEGpUUiMNKLBbMPu8152jZYpRfyTXXk4V1qP2HADHp7sQ5Yg1eG4dBXnOA5/v3YgDDoNdpyrwM++eLAAUt7B7NiUiPRl86MjPDWhT7wy6eGu0BBVQ5l/wn/qwUkKcA+OWgycaoVr4ACk3Qb1uAdwmIoZOHLga5jKagaKDpHb3YLIwFFSZKxkF/HWUA+OBBocgHzRT+pHhMy/nPTyNZchRFXdaMF/NxL9xuPT+iDKlyrEbjw4AJAWE4Z7xxMR7Qtrj8Pqi+CYvldCY0kHbhEQwlMDlW9gCkO48/XzNUxVV+owDDinRyjQUFs1Ywl0Xz4RJZ1GUC6YgSMHiY4PfvEh764rOQrYmoGQ6MDOoKKoYSER2jSooPx4pLQeHMAPHY4MVYyX/nIGlQ0W9E6MwO2jfexALRSsy2vz0NzJvRATpsfZ0np8ujvf+7FF/qIprm7C4YJqcBwRGKuCBIcOx9cwVYkjPBXbIzAzqAB1hajUUOSPQjeBtYGbKs4MHDnoNpIcL+7x7joanuqWpVzPJDGhadFKLiRqqIFDETQ44lczplzeJx46DYdzZfXILav3/EKJi/wVVTfinV9zAQBPXdUfOq2PS5FQCye3zUNRIXrMm0a8p4t/PIXaJi8LTIqcIv7TCfKajkiPRnyESjIi6ebL10wqQX8ToOEpQB2hc4oaivxRhCxPZuAwOiJtFDkW7veuim/BPnLsliX+nJRAFR4cFWpw6kslq+4cGaIXeh1t8iZMJbEGZ/mWczDb7BjdI1bwMvkE9WzWFACWtvV+7hiTgR7x4SirM2P5lnPejS2yMfzjMfKaTlU6e8qVBD8zqYoDXH8DtFyX7CL3MvMWQdSusPcGYCEqhofE9SbWuLXJKcjzBFcPTjBAd0pNVYC1WZk5qMnACY0ldVzAS+rVmtyfeM5+9qYejqDBEf/LuLyuGZ/sIiGlRyb39q8WTFgcYDQB4J3tAlzQazV4ciYR067cdh4V9WbPxxaxinGD2Ypfz5JslOlq0N9QqNDY1xCVIDAO0AwqwFHIkiNtKxr96N0mBkp2EW9NENTCYQaOHGg0Ti+Op2Gqphqn2zgYBMYAEBrj+EKHMjUnbFan3kUNBo5GI7nQGHDqPXacK0eD2YPGiuZ6wOzoyyNBiOqdX3PRZLFjaJrJ/15MHAfEObw4Fe4L+105OBmDUqNQb7bhzc1eFP+jBpMI7Qe2ni6D2WpHemwo+ihZvbg1/mRS2axOz08gGzhaPTGUAeV1OGpIEacEQTVjZuDIhWDg7Pbs/KIDAHjAlCFrs0NJ4Tjn3yKh7qRdaotI+wGN3pkCqTQyLCK9EiKQFhMKs9WOX894UNOCem/0YYCxnU7ePlLTZMF7ObkAgLmT/PTeUGgF3XL3xgvHcfjTDKLFeS8nFyW1TZ6NSw0mEQT+aw6R/+/0AcnKVi9ujSHcmWrvbZiq/Aypk2KIdI4RqKhFaFyjoixPwYPDDBxGZ6RRobGHBg719ASL94Yig7C2XVyb2GlU8taXuNgfQL7gadXcHw578Dx1LgJjkb+MP8i5gNomK3onRmCGWKGaOIeB044HByDZZMPTo9FkseONTR54cRqrnAXO/DRw6put2HiMvN+vH66CnXlrEn3MpBLCUwPV83nyFbUIjQUPjhoMHMfmq7natyK1KiDA35UBBNXRVJwD6j3YRQeb/oaipNtT0FSoIEWcInGxP8rVQ8nrvvHYpc6rGkskMG4027ByGwn7zJ3UCxpPWzJ0huDBaV9E7OrF+WhHXucNSKmxFJHktxdr47FLaLLYkRkXhqFpCmfGuMPXnlTBoL+hqMWDo4YifxRjpLPTeoCGqZiBIxehMc6CfwUe6HCCLYOKoqQHp0ZFAmOKTK9HVkYMkqKMqG22YtvpTrQWEhX5+2x3HsrrzUiLCcV1w0T0ZHjgwQFIh/XRmbEw2+xY8vOZjsekxpIIDSRXHyBfWtcP76au8BTF10yqQG/R4IpqPDgqEhkDzg1YgAqNJTVwKisrMXv2bJhMJphMJsyePRtVVVUdXsPzPBYuXIjU1FSEhoZi0qRJOHr0qPB4RUUF/vjHP6Jfv34ICwtDRkYGHn30UVRXV0v5p4hD2mhy7CxMVVNIiitxGiBlmPTzkhM1hKhUZeDQBUTaWhMaDYdZg4kX5/vOwlQSeHDMVruQpj1nYi/f6964g4aQaouIQLodXL04n+/JR35FQ/tjVjgMnDj/wlPldc3Y6jAor1NjeApw1sLxOkQVBDVwKGrw4KipyB8lwFPFJTVw7rjjDhw4cADr1q3DunXrcODAAcyePbvDa1566SW88sorWLJkCXbv3o3k5GRMnz4dtbUkq6OwsBCFhYV4+eWXcfjwYbz77rtYt24d7rvvPin/FHHwVIdDvTcJAwK3Omh7qCJEpZLdESCrwXfVEA/DVHQuIlYxXn2gAIXVTUiINOKWLJENzLBY4iEFnIZJO4zpGYfLe8fDYuPx2s8dtE4RBMb+eXDWHi6Czc5jSDcTeiWo9LMc3w/Q6EgmlZuK0G5pqHDu6hMHSjc3uVCDgaOmIn8Uodp6YBb7k8zAOX78ONatW4e3334b2dnZyM7OxltvvYU1a9bg5En3sV6e57F48WI8/fTTuOmmmzB48GC89957aGhowMcffwwAGDx4ML788ktce+216NWrF6ZMmYLnn38e3333HaxWD1JglUTIpNoL2Dv4ghH0N0EmMAZU4sHpehocABjZPQaJkUbUNlnx65kOwlQih6hsdl4Q9j4woYc0TSY7yaRyZb7Di/PlvgKcb6+6c7k4GVSrD5AvBlWKiymGMCB1BLmd+6tn11DvTXR3ICRKmnnJiRpCVGoq8keJksfDLBWSGTg5OTkwmUwYM2aMcN/YsWNhMpmwfft2t9ecP38excXFmDFjhnCf0WjExIkT270GAKqrqxEVFQWdTuf28ebmZtTU1LT4UYTEAYAhgtQYaa/gH88Dx78ltzPGyjc3uVCFB0dNISqHwddcI3mmAglTkef7/lAHBqbIIaofjhThfFk9TKF63DlGonRiD3U4AHBZRgym9E+Ezc7jfz+ecn8SHSfOdw9OfkUD9l6oBMcB14qpOZKC7uPJMXebZ+cHU3gKUIcHp1qNBg4LUbmluLgYiYltd4CJiYkoLna/uNL7k5JaLqxJSUntXlNeXo7nnnsODz74YLtzWbRokaADMplMSE9XaAev0QK9JpPb+z90f07uVlJfwhABDLxevrnJBTVwGivkrWbcXOsS31ZRiMoYSf7XgMxhqmKYre2UpRfRg8PzPF7/hRgL94zPRLjR/SbEbzzIpHJl/nTixfnmYCFOX6pt+WBDBdBY6RjXdw/O1/vJF9a4XnFIigrxeRxZyJxAjhc8NHBomD05WAwcx3u9sVK5KuvUS6KmEHqAN9z02sBZuHAhOI7r8GfPHpIl5C5jgOf5TjMJWj/e3jU1NTW4+uqrMXDgQPzjH/9od7wFCxagurpa+MnP96GzsFiMdGiFDnzifse+ZyU5Dv2t6EXWVEFoDKA1kNtyhqno7shoUp9LXUav1sjMWCREGlHTXpjKbgfqxWvTsOlkKY4X1SDcoMXd4zL9Hq9dvPDgAMDgbibMHJQEngf+29qLQ3U8kSmkEJ4PNFtt+GDHBQDAb7JUFBJtj4wxAKclTUupp7M9bBbgzEZyu9cUyacmC0pXWQfUVeSPEuANN702cB555BEcP368w5/BgwcjOTkZly61dfeVlpa28dBQkpOJ+7y1t6akpKTNNbW1tbjyyisRERGBr7/+Gnq9vt05G41GREVFtfhRjB4TSW8qcy1w+POWj9WVAMe/I7dH3iv/3OSA45TR4agxPEWRodgfResapnKXTdVYAdgdWjY/PTg8z2PJLyQd+66x3REdZvBrvA6hnhYPNDiUx6f3BccBaw8X49DFKucDFf6niK85WITS2mYkRRkFr5mqMUYCqcPJ7c50OHk7gKZq0t6A6goDHY5TPkylpiJ/FBouqyuRrCGwlHht4MTHx6N///4d/oSEhCA7OxvV1dXYtWuXcO3OnTtRXV2NcePGuR27R48eSE5OxsaNG4X7zGYzNm/e3OKampoazJgxAwaDAd9++y1CQlTu/nVFo3F6cXa9TTQ3lH3vky+XtFFA8hBl5icHSuhw1FgDhyKj0BgArnZ84a47Uoy65lbCfLq4h8WRHj1+8OuZcuy9UAmjToP7Lu/h11idQj049SWkj5sH9E+Owg3DyZfJwm+Pwm53fBYFgbFvc+Z5HiscBQ1/l50Jgy5Ayo0JOpytHZ938gdy7DOThN2DBaWFxmo0cMLinQ2BlUgM8RPJPnkDBgzAlVdeiQceeAA7duzAjh078MADD+Caa65Bv379hPP69++Pr7/+GgAJTc2bNw8vvPACvv76axw5cgR33303wsLCcMcddwAgnpsZM2agvr4eK1asQE1NDYqLi1FcXAybrZMKrWph+B2ALhQoOUp2QwDJqtr7Hrk9MgBS3v1BUQ+OihYPisyvx+geseiZEI66Ziu+3tcqHCGSwJjneSx2hH7uGJOBRKk1KCEmshgDnaaKu/KXK/sjzKDFvrwqoSCfvwLjnHPlOFZUg1C9FneOyfBpDEXIvJwcL3TgweF54ORacrvfldLPSU6U9uCocY3SaAK66aakW4uPPvoIQ4YMwYwZMzBjxgwMHToUH3zwQYtzTp482aJI35NPPol58+Zh7ty5GDlyJAoKCrBhwwZERhI9yt69e7Fz504cPnwYvXv3RkpKivCjqLbGG0KjgaG/Ibd3vUkEsCd/AKrzgJBoYNANCk5OBpT4wKg6RCVvKibHcZg9lmQzfbDjAnhXL6JIAuPtZ8ux50IlDDoN5kz0vxqwR3ipwwGAZFMI/jilDwBg0Q8nUNtkcfHg+DZv2o7i5qxu0oblxCZjLCkuWnGu/fdi2Smg8jzR0QWL/oaipAdHjUX+KAGcKi5RSgMhNjYWH37YTraQgxaLK8jiu3DhQixcuNDt+ZMmTWpzTUAy8j4Skjr6NfmhDL8T0IcqNy85UNSDo0LBpwKvx02XpeGldSdx6lIddp6vwNiecS3n4EeRvxbem9EZ8mUQxfYC8nd6nElFuffyTHy+Jx/ny+qx5KfTWOCHB+d8WT1+OkG+IO8ZL3FYTmxCTEDyUKDoANHh0E2YKzQ8lTkh+JIglPTgCEX+IgCjypIgogJXaBwgweEgJHV42zTw0Bhg9AOKTEdWmAenJcLrId8CYgrV44YRxBVOs30AtOwk7iPbz5Zjdy7x3jw0SSbvDeA0SMraqW3TDkadFn+/hlTj/Wr7YSKgBYAY7w2Ul9adAM8DU/onqrdycUfQMFV7Ohxq4PSbJc985ETw4Chh4Lg02VRbv7IArmYsqQeH0Qm/fR+wmgHeTn60BkDbBf4lcnss7PaWC4jaoDuk2mKicZBpgZs9tjs+2ZWH9UeKUVLTRHQy9H8S6ZsHRzHvDeBs+njpaMfnuWFy/0RM6Z+IypOkfQMflQrOEObVGJtOluCHI8XQajj8eWa/zi9QI5mXAzlLgNMbAUsToHf5/9WXARcdSSN9g0x/A7h4cBQIUamxyB8lgENUzIOjNDoDWUQMYV3DuAGcHos6mQyc+lLAZgbAqXMBoeEgm5kUmZOJgalRGNk9BlY7j092OfRrfoqM1x8tFrw3smlvKLSqbtlJn4q1/f2ageirJ19uebx3Bl6TxYZ/fEsMq7vHZWJAisrCDJ7SYyLZsdcWAjteb/nY6Q1kI5Y8BIhWYajXX9QQolKTwJgSwNWMmYHDkB/qHWiqBswddHQWC5oiHpnid+qzJOgMzgwgmTMVZmcTsfHHuy7AYrO7eHC8r93SZLHhn9+TjtQPXtETySaZyzeY0oiOxG4FSt33u+uIzPhw3D+Q6Pt+rTThG5pV5QFvbj6HC+UNSIoyYt60Pl4/t2owhAHTnyG3t/yn5ZcazZ7qG4ThKaClyFhunaeaPcwBHKJiBg5DfoxRgN7h/pfDi6PG9MvWKJSKeeXgZMRHGHCpphlf7bvoV4jqrS3ncLGyESmmEHm1NxSOA5Ic9aPa6/XWCX10ZPeeyyfjL18ewtHC6k6uAPbnVeL1TaSg4d+uHojIEBUa0d4w5DdA2mjAUg/89Awp8LbuKWcR0v5XKTs/qaAGjqUBMEvbF64NajZwhBBVkfyGn58wA4chP3JXM1azwJgSpYyBY9RphVDSkh8OkC81wOsQVVF1I5Y6Oob/dVZ/hBkUCrfSApnFvhk4NEU8PKUfmix2/OH9vSisamz39MMXq/G7lbtgttoxuV8CrhkaAFWLO4PjgFkvktsHPwHenuYMV014wtl5PNgwhAMGR2aY3DocNRb5o9DNl61Z1hC6GDADh6EMcnosAsHAUSJ13sHvx2Wid2IEdI2ORd0QARi9ywB6/vvjaLTYMCozBtcp2TmbNn8sPuT9tTwPVJAaNvdeNw3d48JQUNWImYu34Ov9F9uUp9iXV4m7VuxEbZMVozJj8Pqdl3XaZy9g6JZFSlYAJG3cEAn89gNg6v8pOi3JoV4cuT+HavYy6wxAeAK5XeN52FYNdBFVK0N1KOLBUbEwUuZif67otRosvHYQXltJOkQ3hybA6MX1q/ZexJpDRdBwwD+uHaTslzwVGl864n1GWkM50ExCUpEpvfHBvb3wx0/342B+FR7/7CC+3l+Ikd1jEBtuwJpDhdhxjuxmR2RE4517RivntZKKqX8HcrcRXdPNK4CEvkrPSHoik0mhSDk9qWou8keJTCHJGrVFQMpQpWfjMUH2iWQEDEp4cNTo/qUo6MEBgMv7xONUdztQDJxpjMBAnvfIUDlZXIu/rT4MAJg3rS8GdzNJPdWOSehPumI3VhJj0ZsdcRlJEUdUGqAPRUYc8OWcbCzbfBaLfzyNLadKseWUs9O0VsPhqiEp+OcNgxFhDMKlNDIZeHR/cPWb6gxF+uSpuMgfJSqVeEUDLFU8CD+VjICAaXBaokCxv9bc3FcPFANnGyNwYFce7hzTvcPz65uteOijvWiy2DGhTzwemdxbppl2gD4EiO8LlB4nXhxvDJyCPeSYMky4S6fV4JEpfTBjUDLWHSlGfkUDimuaMLibCXeN7Y5u0UFedbwrGTeAMinRai7yRwnQWjjMwGEoQ6RLcTspsTaTDtOAug2cKJlejw4wWcsBACV8NJ5ffQQajsPto903i6xutGDuR3txrrQeyVEhWHzrcGg0KlmckwcTA6f4MNB3pufX5TuK2KWPavNQ36RI9E0KstYEjLYokRItCIxVGp4CAjZVnImMGcpADRzqXZGKKkcBO30YEBYn7XP5g1D8sISk5SpBLUmRTsvoAZ4HFnx1WGgc6cqF8nrctPRX/HqmHGEGLV6/cwTiIrxR7UiMqw7HU3ie9LECgPQx4s+JERgo4cGhVYzVKDCmuKaKBxDMg8NQBupNqSkkrRQ0EtnaVbnkGN1dve5fgBT60+hIkbq6EmUWO4fuYOaY4XgwrSfe3HIOz645hnVHinFF33ikx4bhlxMl2HjsEurNNiRHhWDF3SMxKFVh3U1rhEwqLwycqjxSwVajC940aEbnKOLBUXENHEqANtxkBg5DGaJSAXCO2gplfjV37JBKRyPJmI71JIqj0ZCWDTWOYntKGDiOEvVcZLJQy+a/P57CrtwK7MptWf9iWHo0ls/OkrfXlKckO7I8ys+QDBVDeOfX0PBUyjBAH+S6Gkb7KNEXrkbFfagoARqiYgYOQxm0ehKWqS0EqvOlM3CqHAZOtMoNHIAsrjUXHYtIlvzP7whRITIZHMfhsWl9cOOIbth8uhRbT5Uiv7IR43vFYdaQZIxIj1GP5qY1EYlAeCLRXpUcB9JGdn4NC08xgFZ94cqB8HjpnzMQkiCo8dVU7fmmQQUwA4ehHKY0h4FzkRQWk4JA8eAAyqaKmxuEGjCuVYwz4sIwO647Zo8NgNfPleTBwNmfidDYKwNntLTzYqgbWtSuvpSEY6Q2cHjeqRM0uRf0q4KQKJLGbq4jOpx4FWRMegATGTOUg+5YpBQaB5IHJ1LBODftCaYLJYXdAh2a6p23o/Nzm+ucguQ0ZuB0eai3Qo5aOE1VgLmW3FazBwdQRSkLb2EGDkM55DBwAsqDo2CquBCeSlK3GNtTek0lxzM/EhF7RxTsBXg7qXSt5kwWhjzIWVWcem/C4kkndzUTgLVwmIHDUA7aOqE6X5rxm2uBRoc4NpA8OErskKgHJ8L7LuKqJGMs6Z/UUAYU7u/4XKH+DfPeMCBv49tA0N9QmIHDYHiB1B4c6r0JjSExZLWjZLE/Vw9OMKDVA70mk9unN3R8LhMYM1wRPDgyNJakm7toFffJozADh8HwAqkNnEDS3wAuGhwFimnR3SqdQzDQZwY5dmTg2O3ARdJklHlwGADkLfZXlUeOahYYU5TUCPoIM3AYykENnPpSwNIo/viBpL8BnAtIsyMVU04cNXBcM6gCnj7TybFwHyme6I7y00ToqQ9zVkBmdG1kbQRMM6gCIEQlFGeVuPq8iDADh6EcoTGA3lFPQYpdQaB5cIyRztdD7jAVfb7IINHgAORvodlUZ35yfw4NT3XLImEtBkPOUAz1XgdCiErwuMsQuhMJZuAwlIPjXD40EgiNA82Dw3HKlUQPRg8O0HmYitW/YbSGenCaqqTxLLsi1MAJAAOHtpJoKJP+dREJZuAwlEVKHY7gwckUf2ypUErIF4waHMBp4Jz9CbBZWz5mrnd6dlj9GwYlxERCloC0n0NLE6m2DQDRAaDBkdrjLgHMwGEoi1QGDs8HngcHAKJonFtGN7C1GWisJLeDKUQFkNBTaAwpMU/FxJTNLxHDzpQB9JyozPwY6oPj5NHh0DVPH0beo2qH45x1oqSsXSYizMBhKItUtXAaygFLfcvnCASiZExRpdDwlNYQGAutN2i0QO9p5PaOpc6ifyXHgZwl5PZVL7EGm4yWCJ9DKQ0cl/BUoBTXjGIGDoPhOVJ5cKj3JjIF0Kuw43V7KBGiqnXR3wTKQusNI+8FOC1w/Ftg7RPEyPn+T4DdCvS7Gug3S+kZMtSGHEU3A6kGDsWkgIfZD5iBw1AWqQycqlxyDJQMKooSCwh1wwebwJjSfRxw03IAHLBnBfDeNcCFX0loYNa/lJ4dQ43IUQsnkATGFCmTQiSAGTgMZXGN6fK8eOMGov4GcHpw5EzFpCGqYNPfuDLkFuDaxeT2hV/JceJfAmv3zJAPWs1YDg9OINTAoQRYqjgzcBjKQmO61iaimxGLQKuBQ2mRitkkz3MGYw0cd2TdDcx8gdxOGgJkP6zodBgqRg4PjlADJwAyqCgBpsHRKT0BRhdHZyShkbpLZEcTHi/OuIHqwQmNAXQhxOCrLQJie0j/nMHWaLMjsh8Gek8nnkNW2I/RHoIHR8oQFW3TEEBeRDrXmgLicVe5Zo95cBjKI4UOJ1A9OBzn3CXJpcMRPDhBqsFpTUJfwBCu9CwYasa1ozjNvBMTu835+Q6kMCkNoZvrSOkFlcMMHIbyiG3g2G1OAV+geXAA+TOpBAMnyIr8MRi+EpEMcBqSaUc1amJSW0zG5rSB5Tk1hAFhceR2AISpmIHDUB6hFo5IH5jaIsBuATQ6pzckkJDbg0Nf90B8rRgMKdC6rB1SZAy5fua0AaYUkXt98gNm4DCUhxo4lbnijEf1N6Y0Uugt0BAyy2RYQMz1pOeO6/MyGAyn+JdqZcQkEGvgUKQqzioBzMBhKE9cL3KsOCfOeNRQCjT9DUXWbsYOI8oQSXrwMBgMAl0/qJ5PTAJRYEyRcwPmJ8zAYSgPNXDKz4oj6Cs7SY7xff0fSwnkdAHXOFzlzHvDYLSEenAqJTBwaIgqkGrgUAIoVZwZOAzlMWUAGj1ga3Z+4fpD6SlyTOjn/1hKIKuB4/ASUa8Rg8EgsBCVewKoXQMzcBjKo9U5672Un/F/vNIT5BjoBk59Ken0LSXUzcwExgxGS6Q0cAKxTQMlgNo1MAOHoQ7i+pBj+Vn/xrE0OjU4Cf39G0spwmJJsT9A2kJjgEuIKgBd5QyGlFADpzpf3Fo4PO80mgKpijFF8OBIVCNIRCQ1cCorKzF79myYTCaYTCbMnj0bVVVVHV7D8zwWLlyI1NRUhIaGYtKkSTh69Gi7586aNQscx2H16tXi/wEM+RB0OH56cMpOA+BJReDwBL+npQgcJ19PKubBYTDcE9WN1KmxmcWthVN3CbDUkzo7gZgIIdQIsgD1JUrPpkMkNXDuuOMOHDhwAOvWrcO6detw4MABzJ49u8NrXnrpJbzyyitYsmQJdu/ejeTkZEyfPh21tbVtzl28eDE4lZeKZnhIXG9y9NvAcehv4vupvox4hwg6HIkzqWgcnYmMGYyWaHXOz4WYYSrqpTalAzqDeOPKhVbnbGWhcqGxZAbO8ePHsW7dOrz99tvIzs5GdnY23nrrLaxZswYnT550ew3P81i8eDGefvpp3HTTTRg8eDDee+89NDQ04OOPP25x7sGDB/HKK69g5cqVUv0JDDkRy8AJdP0NRUgVl8uDw0JUDEYbpEgVr3AYONRrHYiYAiOTSjIDJycnByaTCWPGjBHuGzt2LEwmE7Zv3+72mvPnz6O4uBgzZswQ7jMajZg4cWKLaxoaGnD77bdjyZIlSE7uvMx1c3MzampqWvwwVAY1cKry/BPWCgZOgOpvKHJkUjVVA2aHZ5R5cBiMtghCYxENHOrBiQ1kA0eC/oESIJmBU1xcjMTExDb3JyYmori4uN1rACApqWXTv6SkpBbXPP744xg3bhyuv/56j+ayaNEiQQdkMpmQnh6AyvVgJyKRFJvj7f5VNC51eAeDxoMjYYiKjh0SzZpPMhjukCKTKhg8OAFSC8drA2fhwoXgOK7Dnz179gCAW30Mz/Od6mZaP+56zbfffouff/4Zixcv9njOCxYsQHV1tfCTn6/+9LYuB8f5LzS2mp3VkAPewJHBg8MExgxGx0hi4Jwnx9ie4o0pN64ZZirG6y5fjzzyCG677bYOz8nMzMShQ4dw6VJb5XlpaWkbDw2FhpuKi4uRkuLsbFxSUiJc8/PPP+Ps2bOIjo5uce3NN9+MCRMmYNOmTW3GNRqNMBqNHc6ZoQLiegNFBxyZUD5QcY506DVEBP6XthxZVKyKMYPRMWIbODzv3IQFcogqJpMcxeofKBFeGzjx8fGIj4/v9Lzs7GxUV1dj165dGD16NABg586dqK6uxrhx49xe06NHDyQnJ2Pjxo0YMWIEAMBsNmPz5s3417/+BQD461//ivvvv7/FdUOGDMF///tfXHvttd7+OQw1EU9r4fjowXEVGAdyBhXgjHHXlxDPlBTZFsyDw2B0jGDgOGrhaPxUddQWAZYGkn4eE4Ap4hRq4FScJ0abStdbyfq0DxgwAFdeeSUeeOABvPnmmwCAP/zhD7jmmmvQr58zfNC/f38sWrQIN954IziOw7x58/DCCy+gT58+6NOnD1544QWEhYXhjjvuAEC8PO6ExRkZGejRo4dUfw5DDoRMKh+L/VH9TXyAh6cAICwO0BpJ+4raQueCIiYsRZzB6JjIVECjIzVfaov8/6zQtS06A9Dq/Z+fUkRnAOBIPZ/6MiBCnTXHJK2D89FHH2HIkCGYMWMGZsyYgaFDh+KDDz5occ7JkydRXV0t/P7kk09i3rx5mDt3LkaOHImCggJs2LABkZGRUk6VoQb81eCUBYnAGCA7IurFkaJUPOAUCLIUcQbDPVqd08MpxucwGATGAKAzOl8XFYepJPPgAEBsbCw+/PDDDs/heb7F7xzHYeHChVi4cKHHz9N6DEaAQmPS9SUkhTnE5N31QgZVgKeIU2K6kwWx8gIghXOSeXAYjM6JziBp4lV5QPds/8YKhhRxSkwm0fFV5gLpo5SejVtYLyqGegiJAiIcAnRvw1Q2q1OcHAweHMClyJgEHhyed+kkzgwcBqNdxPwcUoFxoHtwACA2kxwrzys6jY5gBg5DXfiqw6m6QPQqupDAbGDnDimKjFEaK4nYEWAGDoPREWJ+DoPNgwOoOkTFDByGuvBVhyMIjPsAGq24c1IKmmVRKYGBQ8NTYXGAPkT88RmMYEGsVHG73entiA2ChJgYx9/ADBwGw0PiHKnipce9uy5YWjS4Ep1JjlJ4cFiKOIPhGTEi9aOqLQSsTSQrKxC7iLeGeXAYDC9JJfWPcHGPd9cFU4o4hS6stUX+9edyh1Dkj2VQMRgdIlTtvUi0fr4ipIh3J9lZgQ714NQUApYmZefSDszAYaiLbpeRIlg1Bd71OaEen2ARGAOO8JGjR1SVyCXRmQeHwfCMyFRAH0aqpPsjqA2WFHFKWCzpHwheulIWfsIMHIa6MIQDyUPI7fxdnl3TXAsUHyG3U4ZJMy8l4DiX+H+uuGOzFHEGwzM0GufGqeSY7+MEk8AYIOuTysNUzMBhqI/0MeToqYFzYTvA24jrN5DLn7tDKqGxkCLOQlQMRqckDCDHkhO+jxFMKeIUYX3KVXQa7cEMHIb6SCe9y5C/07Pzz20mx54TpZmPkkhVC6eaNdpkMDwm0ZG84G3ygyuCByeAu4i3hmaDqbQWDjNwGOqDenCKDwHmhs7PP7+FHHsEoYEjVgaHK6zIH4PhHYkDydFXD47d5jQCgsqDk0mOzIPDYHiIKY0I++xWoHB/x+fWlwGXDpPbwWjgREsQoqovI0URwQGRKeKNy2AEK7T8RPlpwGr2/vrqi4DNDGj0wRUWZgYOg+ElHOd5mIp6bxIHqbajrV9IUc2YpohHJAI6g3jjMhjBiimNZAzZrc5sKG8od7SRickMjhRximuxPxX2hGQGDkOdeCo0Pu/Q3/S4Qtr5KAUNUTWUA8114oxJd1vB0tKCwZAajnPqcEp80OEUHiBHmiEaLJjSAU5D2r7UlSg9mzYwA4ehTgQDZ2fHOwPqwQlGgTFAOqqHRJPbYgmNqdiR9v1iMBidk+CPgeMItXe7TLz5qAGdwRlyU2GYihk4DHWSPIQ0zmysaL/xZlU+Sb3ktED38fLOT07EFhoHWz0OBkMOEh2p4r5kUlEDh1ZqDyZUnCrODByGOtEZgFTHbqc9HQ4NT3W7DAiJkmdeSiC20FioqBpE6aoMhtQk+lgLp/aSo7AmF1yFSCmC0Fh9qeLMwGGol86ExsGcHu6KWN2MKSxExWB4Dy32V3HOu95L1HuT0A8wRoo/L6WhtXAqmIHDYHgO1eGcWg+Y61s+xvPOAn/BKjCm0B2SGCGqxiqgoYzcDqaCYwyG1EQmE00cb3NmRXlC4T5yDMbwFOAMdZedUnYebmAGDkO99JpCvBd1xcCvr7Z8rOwUuV8X4jSEghUxQ1Q0PBWRFJy7SQZDKjjOt5YNgv4myATGlKRB5Fh6ArDblZ1LK5iBw1Av+hBg+nPk9q//c7YXsNuAX54nt9PHkPOCGVeRsb+1Jsod/XCYwJjB8B5vhcY8DxQEuwenJ9loWhpUp8NhBg5D3Qy8HsgYB1gbgR+fIQvG2ieAY9+QqqATn1R6htJDNTjNNUBTlX9jlZ8hx2AqF89gyIUgNPbQwKm+SELCGh2QPFi6eSmJRitOt3UJYAYOQ91wHHDlCwA44PDnwJf3AXtWkt9vWg5kXq70DKVHHwqEJ5Lb/qZiChlUzMBhMLzG21o4VH+TOIB8joOVREeY6tJRZefRCmbgMNRP6ghg+J3k9pEvyfHql4HBNyk3J7mJ70OOpX4K+VgNHAbDd2jTzcpczxoBB7v+hpLEDBwGw3em/h9giCC3Jz0FjLpf2fnIDd05+lJkjMLzLEWcwfCHiAQgIhkA33mfPMCpvwm2CsatSaLd1lmIisHwnshk4HffALe80zV0N63xtciYKw3lQHM1uU1rVzAYDO/oPY0cT2/o+Dyed/agClaBMYWGqCrOAZZGZefiAjNwGIFD2kgSluI4pWciP2J4cKj3JiotuPUADIaU9J1BjqfWd3xexTmyodAanaGtYCUiEQiLA3g7SRdXCczAYTACAWrgVF7wLPbvDpZBxWD4T8/JJIOz4mz7ffIAp/4meQig1cszN6XgOKcRpyIdDjNwGIxAICKB7JDA+14xlGVQMRj+ExIFdM8mtzvy4nQV/Q1FEBqrR4fDDBwGI1CgVVR9dQGzDCoGQxz6zCTH0+0YODwPnP2J3A72DCoK9eCUMA8Og8HwlkQva3C0poJlUDEYotD3SnLM/RVorm37+NmfyUbEEAH0v0reuSlFkqOQIfPgMBgMrxGExie9v5bnnW0aWIiKwfCP+N6kRYHdApz9pe3jO5aS44i7SIPOrkBifwAcUF8C1JUqPRsAzMBhMAIHfzKpaosBSz3AaZzNOxkMhu+0F6YqPQmc+REAB4x5UPZpKYYhHIjJJLdVEqZiBg6DESjQWji+ZFLR8FR0d0BnEHdeDEZXhKaLn97Ysos29d70v5p4eboSKhMaMwOHwQgUwuOBsHiQTCovw1QsRZzBEJfu4wF9OFB3CcjdQu6rLwcOfkpuj52r3NyUQmVCY2bgMBiBhNDsz8tMKpZBxWCIi84I9HWEqT64CVj/NJDzGmBtAlKGAd3HKTs/JaAtG4qPKDsPBzqlJ8BgMLwgsT9wYZv3qeKsBxWDIT6zXgJsZuDEGiBnifP+7Ee6ZsX1tFHkWHwIaKpWXGDNPDgMRiAhCI29MHB4Hih0FB2jOh4Gg+E/EQnAbR8Bd64CYhz93SJTgYE3KDotxTClEd0Rbycp9ArDDBwGI5AQmm56kUlVnQ/UFgEaHdAtS5p5MRhdmT7Tgbk7gBuXA7O/7tpC/h4TyfH8FmXnAWbgMBiBBfXgVF0AzPWeXZO3kxyThwKGMGnmxWB0dfQhwLBbnQU5uyo9qYGzWdl5gBk4DEZgIWRSwfOCf/k7yDFjrDRzYjAYDErmBHIsOQbUlSg6FWbgMBiBBg1Tedq1l3pw0sdIMx8Gg8GghMcDSUPIbYXDVJIaOJWVlZg9ezZMJhNMJhNmz56NqqqqDq/heR4LFy5EamoqQkNDMWnSJBw92nYhz8nJwZQpUxAeHo7o6GhMmjQJjY2NEv0lDIaKoJkKuVs7P7epxlmTgnlwGAyGHKgkTCWpgXPHHXfgwIEDWLduHdatW4cDBw5g9uzZHV7z0ksv4ZVXXsGSJUuwe/duJCcnY/r06aitdTY0y8nJwZVXXokZM2Zg165d2L17Nx555BFoNMwhxegC9JpMjmd/IRlSHXFxN8loiO4ORCZLPzcGg8HocQU5nlPWwJGsDs7x48exbt067NixA2PGENf4W2+9hezsbJw8eRL9+vVrcw3P81i8eDGefvpp3HTTTQCA9957D0lJSfj444/x4IOkr8fjjz+ORx99FH/961+Fa/v06SPVn8JgqIv0MYA+jDS1u3QUSB7c/rn5jvAU894wGAy56D4O6DsL6DEBsNsAjVaRaUjm8sjJyYHJZBKMGwAYO3YsTCYTtm/f7vaa8+fPo7i4GDNmzBDuMxqNmDhxonBNSUkJdu7cicTERIwbNw5JSUmYOHEitm3b1u5cmpubUVNT0+KHwQhYdEZSJh4Azv7c8bl5DoEx098wGAy5MEYCd3wKZD+smHEDSGjgFBcXIzExsc39iYmJKC4ubvcaAEhKSmpxf1JSkvDYuXPnAAALFy7EAw88gHXr1uGyyy7D1KlTcfr0abfjLlq0SNABmUwmpKen+/x3MRiqoNcUcjz3S/vn2KxAwV5ym3lwGAxGF8NrA2fhwoXgOK7Dnz179gAAODelqnmed3u/K60fd73G7uja+uCDD+Kee+7BiBEj8N///hf9+vXDypUr3Y63YMECVFdXCz/5+fne/tkMhrqgBs6F7YClyf05JUcBcx1gNAH/3979xzR5JnAA/5ZOCkipUoRCEIUdEQR/IOhOZHNmyunUabjM+RvDYkIGSiVhOt0m7s4yXcYfjk2vLvMf9SRxY3N/LLFRR2U7hGMynW4QNiaoh2yZKUxEAn3uj57denA6b20fefh+kgb7tJRvn0TeL2+f933H8QzGRDSyPPAanMLCQqxcufKez5k4cSIuXLiAGzduDHrshx9+GLSH5i6TybUIsqOjA9HR0e7xzs5O9/fcHZ88ebLH9yYnJ6OtrW3I19XpdNDpdPfMTDSsjJsE6KNdZyhu+8cvC49/zX14+EyAC/CJaIR54IITERGBiIiI+z5v9uzZcDgcqKurw6xZswAA586dg8PhQGbm0FdZjY+Ph8lkgs1mQ1paGgCgr68P1dXV2LNnDwBXeYqJiUFTk+dJzpqbm7Fo0aIHfTtEw5NG49qL03jEtQ5nqILTzvU3RDRy+ezPuuTkZCxcuBAbN25EbW0tamtrsXHjRixZssTjCKqkpCRUVVUBcH00ZTabYbFYUFVVha+++gobNmxASEgIVq9e7X5OSUkJ9u3bh+PHj6OlpQWvvPIKvvnmGzz//PO+ejtED5+E/5Sa/7UOhyf4I6IRzGeHiQPAkSNHsHnzZvdRUc888wwqKio8ntPU1ASHw+G+/+KLL+L27dt44YUXcPPmTTz22GM4efIk9Hq9+zlmsxm9vb3YsmULfvrpJ0ybNg02mw2PPvqoL98O0cMl4UnX146LrlOih/5qUf/VfwJdVwGNFojNkBKPiEgmjRD3O1OYerq6umAwGOBwOBAWFiY7DtH/70CWq+DkHASmrnCNDfQDB+cBHReAqSuBnL/JzUhE5CUPsv3mykOi4ewP811fT/0F6PqX6991Vle5CRoDZP9VWjQiIplYcIiGs9mbgPAEwNEGHP4zcOMycGa367EFu4DQcXLzERFJwoJDNJyNNgLrqoDQKNd5b6xzXee+Gf9HIG297HRERNKw4BANd2MnAmuOA7owYKAPCHgEWFLOc98Q0YjG34BEKoieCqz6OzAuCfiTBYhKkZ2IiEgqnx4mTkR+NDELKDgnOwUR0UOBe3CIiIhIOSw4REREpBwWHCIiIlIOCw4REREphwWHiIiIlMOCQ0RERMphwSEiIiLlsOAQERGRclhwiIiISDksOERERKQcFhwiIiJSDgsOERERKYcFh4iIiJTDgkNERETKeUR2ABmEEACArq4uyUmIiIjot7q73b67Hb+XEVlwuru7AQDjx4+XnISIiIgeVHd3NwwGwz2foxG/pQYpxul04vr169Dr9dBoNF597a6uLowfPx7t7e0ICwvz6mvTLzjP/sF59g/Os/9wrv3DV/MshEB3dzdiYmIQEHDvVTYjcg9OQEAAYmNjffozwsLC+J/HDzjP/sF59g/Os/9wrv3DF/N8vz03d3GRMRERESmHBYeIiIiUw4LjZTqdDjt37oROp5MdRWmcZ//gPPsH59l/ONf+8TDM84hcZExERERq4x4cIiIiUg4LDhERESmHBYeIiIiUw4JDREREymHB8aJ33nkH8fHxCAoKQnp6Os6ePSs7knLKysowc+ZM6PV6REZGYvny5WhqapIdS3llZWXQaDQwm82yoyjn2rVrWLt2LYxGI0JCQjB9+nQ0NDTIjqWU/v5+vPzyy4iPj0dwcDASEhLw2muvwel0yo42rNntdixduhQxMTHQaDT48MMPPR4XQqC0tBQxMTEIDg7Gk08+iUuXLvktHwuOl1RWVsJsNmPHjh04f/48Hn/8cSxatAhtbW2yoymluroaBQUFqK2thc1mQ39/P7Kzs3Hr1i3Z0ZRVX18Pq9WKqVOnyo6inJs3b2LOnDkYNWoUPvnkE1y+fBlvvvkmxowZIzuaUvbs2YMDBw6goqICX3/9Nfbu3Ys33ngDb731luxow9qtW7cwbdo0VFRUDPn43r17UV5ejoqKCtTX18NkMmHBggXu60H6nCCvmDVrlsjPz/cYS0pKEtu2bZOUaGTo7OwUAER1dbXsKErq7u4WiYmJwmaziblz54qioiLZkZSydetWkZWVJTuG8hYvXizy8vI8xnJycsTatWslJVIPAFFVVeW+73Q6hclkEq+//rp7rLe3VxgMBnHgwAG/ZOIeHC/o6+tDQ0MDsrOzPcazs7Px+eefS0o1MjgcDgBAeHi45CRqKigowOLFizF//nzZUZR04sQJZGRk4Nlnn0VkZCTS0tJw8OBB2bGUk5WVhVOnTqG5uRkA8OWXX6KmpgZPP/205GTqam1tRUdHh8d2UafTYe7cuX7bLo7Ii216248//oiBgQFERUV5jEdFRaGjo0NSKvUJIVBcXIysrCykpqbKjqOcY8eO4YsvvkB9fb3sKMr67rvvsH//fhQXF2P79u2oq6vD5s2bodPpsH79etnxlLF161Y4HA4kJSVBq9ViYGAAu3fvxqpVq2RHU9bdbd9Q28UrV674JQMLjhdpNBqP+0KIQWPkPYWFhbhw4QJqampkR1FOe3s7ioqKcPLkSQQFBcmOoyyn04mMjAxYLBYAQFpaGi5duoT9+/ez4HhRZWUlDh8+jKNHjyIlJQWNjY0wm82IiYlBbm6u7HhKk7ldZMHxgoiICGi12kF7azo7Owe1V/KOTZs24cSJE7Db7YiNjZUdRzkNDQ3o7OxEenq6e2xgYAB2ux0VFRW4c+cOtFqtxIRqiI6OxuTJkz3GkpOT8f7770tKpKaSkhJs27YNK1euBABMmTIFV65cQVlZGQuOj5hMJgCuPTnR0dHucX9uF7kGxwsCAwORnp4Om83mMW6z2ZCZmSkplZqEECgsLMQHH3yA06dPIz4+XnYkJT311FO4ePEiGhsb3beMjAysWbMGjY2NLDdeMmfOnEGnOWhubsaECRMkJVJTT08PAgI8N3darZaHiftQfHw8TCaTx3axr68P1dXVftsucg+OlxQXF2PdunXIyMjA7NmzYbVa0dbWhvz8fNnRlFJQUICjR4/io48+gl6vd+81MxgMCA4OlpxOHXq9ftC6ptGjR8NoNHK9kxdt2bIFmZmZsFgsWLFiBerq6mC1WmG1WmVHU8rSpUuxe/duxMXFISUlBefPn0d5eTny8vJkRxvWfv75Z7S0tLjvt7a2orGxEeHh4YiLi4PZbIbFYkFiYiISExNhsVgQEhKC1atX+yegX47VGiHefvttMWHCBBEYGChmzJjBQ5d9AMCQt0OHDsmOpjweJu4bH3/8sUhNTRU6nU4kJSUJq9UqO5Jyurq6RFFRkYiLixNBQUEiISFB7NixQ9y5c0d2tGHtzJkzQ/4+zs3NFUK4DhXfuXOnMJlMQqfTiSeeeEJcvHjRb/k0QgjhnypFRERE5B9cg0NERETKYcEhIiIi5bDgEBERkXJYcIiIiEg5LDhERESkHBYcIiIiUg4LDhERESmHBYeIhp3S0lJMnz5ddgwieojxRH9E9FC535WGc3Nz3Rf8NBqNfkpFRMMNCw4RPVTuXl8MACorK/Hqq696XJAyODgYBoNBRjQiGkb4ERURPVRMJpP7ZjAYoNFoBo3990dUGzZswPLly2GxWBAVFYUxY8Zg165d6O/vR0lJCcLDwxEbG4v33nvP42ddu3YNzz33HMaOHQuj0Yhly5bh+++/9+8bJiKfYMEhIiWcPn0a169fh91uR3l5OUpLS7FkyRKMHTsW586dQ35+PvLz89He3g4A6Onpwbx58xAaGgq73Y6amhqEhoZi4cKF6Ovrk/xuiOj3YsEhIiWEh4dj3759mDRpEvLy8jBp0iT09PRg+/btSExMxEsvvYTAwEB89tlnAIBjx44hICAA7777LqZMmYLk5GQcOnQIbW1t+PTTT+W+GSL63R6RHYCIyBtSUlIQEPDL32xRUVFITU1139dqtTAajejs7AQANDQ0oKWlBXq93uN1ent78e233/onNBH5DAsOESlh1KhRHvc1Gs2QY06nEwDgdDqRnp6OI0eODHqtcePG+S4oEfkFCw4RjUgzZsxAZWUlIiMjERYWJjsOEXkZ1+AQ0Yi0Zs0aREREYNmyZTh79ixaW1tRXV2NoqIiXL16VXY8IvqdWHCIaEQKCQmB3W5HXFwccnJykJycjLy8PNy+fZt7dIgUwBP9ERERkXK4B4eIiIiUw4JDREREymHBISIiIuWw4BAREZFyWHCIiIhIOSw4REREpBwWHCIiIlIOCw4REREphwWHiIiIlMOCQ0RERMphwSEiIiLlsOAQERGRcv4Nny4drX+ejUMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHFCAYAAAD/kYOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtIElEQVR4nOydd3xUZfb/P1OSmfTeSSD00BGUJgIiTbHiruiKimVlsaFrWdRd/aora1mXn8uiawHsZVUsiAgWEOkdaaEnQBLSe5nMzP398cxzZ5JMkim3zeS8X6+8Zpjce+fJMHPn3HM+53N0giAIIAiCIAiCCCL0ai+AIAiCIAhCaijAIQiCIAgi6KAAhyAIgiCIoIMCHIIgCIIggg4KcAiCIAiCCDoowCEIgiAIIuigAIcgCIIgiKCDAhyCIAiCIIIOCnAIgiAIggg6KMAhCIlZsWIFdDqd+GM0GtGtWzfMnTsX586dU3w969evh06nw/r1673e9/Tp09DpdFixYoXk6+rKaOV17dGjB2677TZV10AQcmFUewEEEawsX74c/fv3R0NDA3755RcsWrQIGzZswG+//YaIiAi1l0cQWLlyJaKjo9VeBkHIAgU4BCETgwYNwsiRIwEAkyZNgs1mw7PPPosvv/wSf/jDH1ReHUEAw4cPV3sJBCEbVKIiCIUYPXo0ACAvLw8AIAgCli5dimHDhiEsLAxxcXG4/vrrcfLkyRb7TZw4EYMGDcKOHTswfvx4hIeHo2fPnvjHP/4Bu93eYtsjR45g+vTpCA8PR2JiIubNm4eampo2a2mvNDFx4kRMnDixw7/jtttuQ48ePdo8/vTTT0On07V4TKfT4d5778Xy5cvRr18/hIWFYeTIkdi6dSsEQcBLL72E7OxsREZG4tJLL8Xx48c7fG5faGpqwjPPPIOcnByYzWYkJCRg0qRJ2Lx5MwBg8uTJ6N+/P1rPHRYEAb1798YVV1whPvbaa69h6NChiIyMRFRUFPr374/HH3+8xX4HDhzA1Vdfjbi4OJjNZgwbNgzvvPNOh2v88ssvodPp8OOPP7b53WuvvQadTof9+/eLj+3cuRNXXXUV4uPjYTabMXz4cHz66adevzau74OSkhKEhobir3/9a5vtjhw5Ap1Oh1dffRWAswy7bt06zJ07F/Hx8YiIiMCVV17Z5v1LEGpBAQ5BKAT/8k5KSgIA3H333ViwYAEuu+wyfPnll1i6dCkOHjyIsWPH4vz58y32LSoqwh/+8AfcfPPN+PrrrzFjxgwsXLgQ77//vrjN+fPnMWHCBBw4cABLly7Fe++9h9raWtx7773K/ZFuWLVqFd566y384x//wEcffYSamhpcccUV+POf/4xNmzZhyZIleOONN3Do0CHMmjWrTaDhD1arFTNmzMCzzz6LmTNnYuXKlVixYgXGjh2L/Px8AMADDzyA3NzcNsHFd999hxMnTuCee+4BAHz88ceYP38+JkyYgJUrV+LLL7/Egw8+iLq6OnGf3NxcjB07FgcPHsSrr76KL774AgMGDMBtt92GF198sd11zpw5E8nJyVi+fHmb361YsQIXXHABhgwZAgD4+eefMW7cOFRWVuL111/HV199hWHDhuGGG27wS9OTlJSEmTNn4p133mkTOC9fvhyhoaFtMo933HEH9Ho9PvzwQyxevBjbt2/HxIkTUVlZ6fM6CEIyBIIgJGX58uUCAGHr1q1Cc3OzUFNTI6xatUpISkoSoqKihKKiImHLli0CAOGf//xni33PnDkjhIWFCY8++qj42IQJEwQAwrZt21psO2DAAGHatGnivx977DFBp9MJe/fubbHdlClTBADCzz//LD7WvXt34dZbb22z9gkTJggTJkwQ/33q1CkBgLB8+XLxsVtvvVXo3r17m32feuopofUpBYCQmpoq1NbWio99+eWXAgBh2LBhgt1uFx9fvHixAEDYv39/m2P7yrvvvisAEN588812t7HZbELPnj2Fq6++usXjM2bMEHr16iWu8d577xViY2M7fL7Zs2cLJpNJyM/Pb3Os8PBwobKyUhAE96/rQw89JISFhYnbCIIgHDp0SAAg/Pvf/xYf69+/vzB8+HChubm5xXPMnDlTSEtLE2w2W4drdKX1++Drr78WAAhr164VH7NarUJ6erowa9Ys8TH+Hr/22mtbHG/Tpk0CAOG5557zeA0EIReUwSEImRg9ejRCQkIQFRWFmTNnIjU1Fd999x1SUlKwatUq6HQ63HzzzbBareJPamoqhg4d2qbjKTU1FRdddFGLx4YMGSKWuwB2ZT9w4EAMHTq0xXY33XSTbH+jJ0yaNKmFqDonJwcAMGPGjBYlLf6469/kDtfXy2q1dpjx+e6772A2m3H77be3u41er8e9996LVatWiVmdEydOYM2aNZg/f764xosuugiVlZW48cYb8dVXX6G0tLTNsX766SdMnjwZmZmZLR6/7bbbUF9fjy1btrS7jttvvx0NDQ345JNPxMeWL18Ok8kk/h8eP34cR44cETMprq/D5ZdfjsLCQuTm5rb7HJ0xY8YMpKamtsgkff/99ygoKHD7GrbO6IwdOxbdu3fHzz//7PMaCEIqKMAhCJl49913sWPHDuzZswcFBQXYv38/xo0bB4CVkwRBQEpKCkJCQlr8bN26tc2XZ0JCQpvjm0wmNDQ0iP8uKytDampqm+3cPaYk8fHxLf4dGhra4eONjY3tHuv06dNtXq8NGza0u31JSQnS09Oh13d8qrv99tsRFhaG119/HQDwn//8B2FhYS2+1OfMmYNly5YhLy8Ps2bNQnJyMkaNGoV169aJ25SVlSEtLa3N8dPT08Xft8fAgQNx4YUXisGFzWbD+++/j6uvvlp8rXjp8uGHH27zOsyfPx8A3AZenmI0GjFnzhysXLlSLDOtWLECaWlpmDZtWpvt23u/dfR3EoRSUBcVQchETk6O2EXVmsTEROh0OmzcuBEmk6nN79091hkJCQkoKipq87i7x8xmM5qamto8XlpaisTExA6fp6N95SY9PR07duxo8Vi/fv3a3T4pKQm//vor7HZ7h0FOTEwMbr31Vrz11lt4+OGHsXz5ctx0002IjY1tsd3cuXMxd+5c1NXV4ZdffsFTTz2FmTNn4ujRo+jevTsSEhJQWFjY5vgFBQUA0OlrO3fuXMyfPx+HDx/GyZMnUVhYiLlz54q/5/svXLgQ1113ndtjdPR6eMLcuXPx0ksv4eOPP8YNN9yAr7/+GgsWLIDBYGizbXvvt969e/u1BoKQAsrgEIQKzJw5E4Ig4Ny5cxg5cmSbn8GDB3t9zEmTJuHgwYPYt29fi8c//PDDNtv26NGjRVcOABw9etSj8kaPHj1QXFzcQghtsVjw/fffe71mbwkNDW3zWkVFRbW7/YwZM9DY2OiR+Pb+++9HaWkprr/+elRWVnYozo6IiMCMGTPwxBNPwGKx4ODBgwBYR9ZPP/0kBjScd999F+Hh4WInXXvceOONMJvNWLFiBVasWIGMjAxMnTpV/H2/fv3Qp08f7Nu3z+37prPXwxNycnIwatQoLF++HB9++CGamppaBFmufPDBBy3+vXnzZuTl5XXaiUcQSkAZHIJQgXHjxuGPf/wj5s6di507d+KSSy5BREQECgsL8euvv2Lw4MH405/+5NUxFyxYgGXLluGKK67Ac889h5SUFHzwwQc4cuRIm23nzJmDm2++GfPnz8esWbOQl5eHF198Uezw6ogbbrgBf/vb3zB79mw88sgjaGxsxKuvvgqbzebVepXgxhtvxPLlyzFv3jzk5uZi0qRJsNvt2LZtG3JycjB79mxx2759+2L69On47rvvcPHFF7fRMt11110ICwvDuHHjkJaWhqKiIixatAgxMTG48MILAQBPPfUUVq1ahUmTJuFvf/sb4uPj8cEHH+Dbb7/Fiy++iJiYmA7XGxsbi2uvvRYrVqxAZWUlHn744TaZp//+97+YMWMGpk2bhttuuw0ZGRkoLy/H4cOHsXv3bvzvf//z+3W7/fbbcffdd6OgoABjx45tNyu0c+dO3Hnnnfjd736HM2fO4IknnkBGRoZYLiMINaEMDkGoxH//+18sWbIEv/zyC2bPno0rrrgCf/vb31BXV9dGUOwJqamp2LBhAwYMGIA//elPuPnmm2E2m7FkyZI2295000148cUX8f3332PmzJl47bXX8Nprr6Fv376dPk92dja++uorVFZW4vrrr8cjjzyC3/3ud7jlllu8XrPcGI1GrF69GgsXLsTKlStx9dVX45ZbbsGvv/6K7t27t9n+hhtuAAC32Zvx48fjwIEDeOCBBzBlyhQ8+OCD6Nu3LzZu3CgGhv369cPmzZvRr18/3HPPPbjmmmtw4MABLF++HI888ohHa547dy6Ki4thsVjcehVNmjQJ27dvR2xsrGgz8Kc//Qk//PADLrvsMi9enfaZPXs2wsLCcPbs2XazNwDw9ttvw2KxYPbs2bj//vsxcuRIrF+/vo2+iiDUQCd01IJAEATRhZg1axa2bt0qipkJ96xYsQJz587Fjh072tWZEYTaUImKIIguTVNTE3bv3o3t27dj5cqVeOWVVyi4IYgggAIcgiC6NIWFhRg7diyio6Nx991347777lN7SX5jtVo7/L1er++0dZ4gAh0qUREEQQQZrWeCtebWW2/1a6wDQQQClMEhCIIIMlp7BbWmMz8egggGKINDEARBEETQQUVYgiAIgiCCji5ZorLb7SgoKEBUVFSntWqCIAiCILSBIAioqanxaMZclwxwCgoK2kz7JQiCIAgiMDhz5gy6devW4TZdMsDhs1rOnDmD6OholVdDEARBEIQnVFdXIzMz06OZa10ywOFlqejoaApwCIIgCCLA8EReQiJjgiAIgiCCDgpwCIIgCIIIOijAIQiCIAgi6OiSGhyCIAiC0DI2mw3Nzc1qL0MVQkNDJZmVRgEOQRAEQWgEQRBQVFSEyspKtZeiGnq9HtnZ2QgNDfXrOBTgEARBEIRG4MFNcnIywsPDu5wZLTfiLSwsRFZWll9/PwU4BEEQBKEBbDabGNwkJCSovRzVSEpKQkFBAaxWK0JCQnw+DomMCYIgCEIDcM1NeHi4yitRF16astlsfh2HAhyCIAiC0BBdrSzVGqn+fgpwCIIgCIIIOijAIQiCIAgi6KAAhyAIgiCIoIMCHIIgCDWxdU0zN4KQGwpwCIIg1OLIauDZRGD3e2qvhCD8plu3bli6dGmLxzZv3ozw8HDk5eUpvh7ywSEIglCLo9+x261LgQvmqLsWQpMIgoCGZv/apX0lLMTgVUfT6NGjsWPHDvHfgiBgwYIFWLBgAbp37y7HEjuEAhyCIAi1KD3ObosPASW5QFI/dddDaI6GZhsG/O17VZ770DPTEB7qeZgwevRorFixQvz3e++9h/z8fCxcuBAAsGrVKvz5z3+G3W7HY489hjvvvFPqJbeASlQEQRBqUXbcef/gl6otgyCkYPTo0Th8+DBqa2tRX1+Pxx9/HM899xyioqJgtVrx0EMP4aeffsLu3bvxwgsvoLy8XNb1UAaHIAhCDRqrgLpi578PrgQmPqbeeghNEhZiwKFnpqn23N4wcuRIGAwG7N69Gz/88AMSEhJw++23AwC2b9+OgQMHIiMjAwBw+eWX4/vvv8eNN94o+bo5FOAQBEGoQdkJdmuOASz1QMlhoPgIkNxf3XURmkKn03lVJlITs9mMoUOH4osvvsAbb7yBb775Bno9KxQVFBSIwQ3ABMnnzp2TdT1UoiIIglADHuAkDwR6T2b3D32p2nIIQgpGjx6NV199FZdddhkmT54sPi4IQptt5R5JQQEOQRCEGnD9TUIvYMA17P7BlaothyCkYNiwYTAajXjppZdaPJ6RkdEiY3P27FmkpaXJuhZFApylS5ciOzsbZrMZI0aMwMaNGzvcfsOGDRgxYgTMZjN69uyJ119/vc02lZWVuOeee5CWlgaz2YycnBysXr1arj+BIAhCWniAk9gH6DcDMIQCJUeA4sPqrosg/OCDDz7A/Pnz0a9fy47Aiy66CAcOHMC5c+dQU1OD1atXY9o0ebVFshf2PvnkEyxYsABLly7FuHHj8N///hczZszAoUOHkJWV1Wb7U6dO4fLLL8ddd92F999/H5s2bcL8+fORlJSEWbNmAQAsFgumTJmC5ORkfPbZZ+jWrRvOnDmDqKgouf8cgiAIaSg7xm4TegNhsUCvS4Gja1g3VXKOmisjCK+w2+0oKSnB22+/jdzcXKxc2TYTaTQa8c9//hOTJk2C3W7Ho48+ioSEBFnXpRPcFcYkZNSoUbjgggvw2muviY/l5OTgmmuuwaJFi9ps/9hjj+Hrr7/G4cPOq5h58+Zh37592LJlCwDg9ddfx0svvYQjR44gJCTE6zVVV1cjJiYGVVVViI6O9uGvIgiC8ANBABZ1Ayy1wD3bmf/Nvo+BlXcDif2Ae7ervUJCBRobG3Hq1Cmx4hEorF+/Hpdeein69++P5cuXY9SoUX4dr6PXwZvvb1lLVBaLBbt27cLUqVNbPD516lRs3rzZ7T5btmxps/20adOwc+dONDezmS1ff/01xowZg3vuuQcpKSkYNGgQnn/+edhs7t0em5qaUF1d3eKHIAhCNWrPs+BGpwfierDHeJmqNJfKVERAMXHiRNjtdhw6dMjv4EZKZA1wSktLYbPZkJKS0uLxlJQUFBUVud2nqKjI7fZWqxWlpaUAgJMnT+Kzzz6DzWbD6tWr8eSTT+Kf//wn/v73v7s95qJFixATEyP+ZGZmSvDXEQRB+AjX38RmAUYTu2+OAXo5uk5IbEwQfqOIyLh1K5ggCB22h7nb3vVxu92O5ORkvPHGGxgxYgRmz56NJ554okUZzJWFCxeiqqpK/Dlz5ow/fw5BEIR/iB1UvVs+PvBadnvwS1bGIgjCZ2QVGScmJsJgMLTJ1hQXF7fJ0nBSU1Pdbm80GkVBUlpaGkJCQmAwOF0Wc3JyUFRUBIvFgtDQ0Bb7m0wmmEwmKf4kgiAI/2kvwOk3vWWZKmWA8msjiCBB1gxOaGgoRowYgXXr1rV4fN26dRg7dqzbfcaMGdNm+7Vr12LkyJGioHjcuHE4fvw47Ha7uM3Ro0eRlpbWJrghCILQHNzkr3WAY44Bel/G7pPpH0H4hewlqoceeghvvfUWli1bhsOHD+PBBx9Efn4+5s2bB4CVj2655RZx+3nz5iEvLw8PPfQQDh8+jGXLluHtt9/Gww8/LG7zpz/9CWVlZXjggQdw9OhRfPvtt3j++edxzz33yP3nEARB+E+pS4t4a1xN/6hMRRA+I7sPzg033ICysjI888wzKCwsxKBBg7B69Wp0794dAFBYWIj8/Hxx++zsbKxevRoPPvgg/vOf/yA9PR2vvvqq6IEDAJmZmVi7di0efPBBDBkyBBkZGXjggQfw2GM0qI4gCI1jswIVp9h9dwFOvxmAwQSUHgWKDwEpA5VdH0EECbL74GgR8sEhCEI1yk4A/74AMJqBxwsBvZtE+kc3ArmrgUseBS59Qvk1EqoQqD44UhMQPjgEQRBEK7j+Jr6X++AGcOmmojIVQfgKBTgEQRBK4jpksz36TmdlqrJjrExFEITXUIBDEAShJO21iLtijnZ2U5HpH0H4BAU4BEEQSuI6RbwjyPSPIPyCAhyCIAgl8SSDAzhM/xxlqvMH5V8XQfhJt27dsHTp0haPbd68GeHh4cjLy1N8PbK3iRMEQRAOLHVA9Tl2v7MAxxQF9JkCHFnFylSpg+RfH6E9BAForlfnuUPCgQ7GKrVm9OjR2LFjh/hvQRCwYMECLFiwQLSGURIKcAiCIJSi/CS7DYsDwuM7337ANSzAOfQlcOmTXn3ZEEFCcz3wfLo6z/14ARAa4fHmo0ePxooVK8R/v/fee8jPz8fChQsBANdeey3Wr1+PyZMn47PPPpN6tW2gEhVBEIRSeFqe4ohlquPA+QPyrYsgJGD06NE4fPgwamtrUV9fj8cffxzPPfccoqKiAAD3338/3n33XcXWQxkcgiAIpfA2wGlRpvoSSB0s29IIjRISzjIpaj23F4wcORIGgwG7d+/GDz/8gISEBNx+++3i7ydNmoT169dLvMj2oQCHIAhCKdobstkRA6916nCoTNX10Om8KhOpidlsxtChQ/HFF1/gjTfewDfffAN9e2aWCkAlKoIgCKXoaMhme/SdxsY6lJ8Ain6TZ10EIRGjR4/Gq6++issuuwyTJ09WdS0U4BAEQSiBILCWb8C7AMcU5TT9O/Sl5MsiCCkZNmwYjEYjXnrpJbWXQgEOQRCEItSXA41V7H58T+/2pdlURIDwwQcfYP78+ejXr5/aSyENDkEQhCJwgXF0NyDUO/Em+k53lKlOsjJV2hDp10cQPmK321FSUoK3334bubm5WLnS/XiRadOmYffu3airq0O3bt2wcuVKXHjhhbKtiwKcroylHqgp7HjoH0EQ0uDJkM32MEWybqrD37AsDgU4hIb45ZdfcOmll6J///744osvEBMT43a777//XtF1UYmqK7NqAfDvC4A976u9EoIIfrxtEW8NL1Md+pLKVISmmDhxIux2Ow4dOoRRo0apvRwRCnC6Mvlb2O23DwPFR9RdC0EEO54O2WyPPtNcylT7pVsXQQQpFOB0VZobgMoz7L61AfhsLnuMIAh58DeDY4oE+kxl9w+61zgQBOGEApyuSvkpAAIQGglEJAPFh4A1f1F7VQQRnNjtLiZ/fmjeBl7Dbg9+SWUqgugECnC6KvxqMqkfcN0bAHTArhXAgS/UXBVBBCfVZwFbE6APAWKyfD9On2mAIRSoOAVU5km3PkJTCF08eJXq76cAp6viajjWaxIw/iH2728ecGR3CIKQDH5BEZ8NGPxoXjVFAjHd2P1qleYTEbIREhICAKivr1d5JepisVgAAAaDwa/jUJt4V6X1TJyJjwOnNwFntjI9zu1rAWOoeusjiGDClxlU7RGVzoTGFOAEHQaDAbGxsSguLgYAhIeHQ9fFZo9xT53w8HAYjf6FKBTgdFVaCx4NRmDWW8DrFwMFe4Af/w+Y9nf11kcQwYQ/HjitiU5jtxTgBCWpqakAIAY5XRG9Xo+srCy/gzsKcLoq7ob+xWYC17wGfHwjsGUJkH0JG/RHEIR/iAGOjy3irkSns9uaQv+PRWgOnU6HtLQ0JCcno7m5We3lqEJoaKgkU8gpwOmK1JcDDeXsfusryv6XA6PmAdteB1bOA+b9CsRkKL9GgggmfJki3h5RjgCn+pz/xyI0i8Fg8FuD0tUhkXFXhOsBojOA0Ii2v5/yDJA2lAVBX9wF2KzKro8ggglrE1CZz+5LEeCIJSrK4BBER1CA0xURO6ja0QMYTcD1y5lHTt4m4JcXlVsbQQQboudUFBCZ7P/xoqhERRCeQAFOV8QTR9WEXsDMxez+hheBU7/IviyCCEpcBcZSdMS4anDsdv+PRxBBCgU4XRFPBY9DfgcMvxmAAHx+F1BbIvvSCCLo8HdEQ2siUwCdHrBbgTr6TBJEe1CA0xUp9eKEO+NFIKk/UFsEfDmPrhgJwlukDnAMRjZeBQBqunCreHMDsPV1oPiw2ishNAoFOF0Nux0o92ImTmgE0+MYzcDxH4At/5Z3fQQRbHBRv69TxN3By1Rd1QvHUg98NBtY8xiw+hG1V0NoFApwuhrV5wBrI5uJE9vds31SBgAzXmD3f3wGOLtTvvURRLDRmajfF7pygGOpBz66ATi5nv2bZ8gIohUU4HQ1+MnW25k4F9wKDLyW1f03/T951kYQwUZDpVMnEy9hgBPlaBXvap1Uljrgw9+zpgdjGHusppC14hNEKyjA6Wr4OhNHpwOG3MDuc08PgiA6hpeDI1MAc7R0xxUzOF0owGmqBT74HXB6I2u5v+UrICSc/a7qrLprIzQJBThdDX8Ej131qpEgfEXKIZuuRHcxN+OmGuCD65kvlykamLMSyBoFxGax31fmqbs+QpNQgNPV8Mcynp9Ua4sBW9eckUIQXiHlkE1XutLFRmM18P71QP4WwBQDzPkSyLyQ/Y7rCCsowCHaQgFOV8OfDE54IhMnQwBqz0u6LIIISqRuEedEO+bDBXuJqrEaeH8WcGYrYI4BbvkS6DbC+Xsxg0Nlc6ItFOB0JZobnScCX1pW9XogKpXdD/YTK0FIgZRTxF3h86gsNSwICEYaq4D3rwPObgfMsUxzk3FBy20owCE6gAKcrkSFYyaOKRqISPLtGDzA6QqpcYLwB0GQT4MTGsHKNUBwfhYbKoH3rgXO7gDC4oBbvwbSh7fdjgIcogMowOlKSDETpyvV/gnCH2qKAEstG6sQ10P64werF05DBfDeNcC5XUBYPHDrN0DaUPfbUoBDdAAFOF0JUWDsR7o8WE+qBCE1/IIitjtgDJX++LxMFUyfxfpy4N2rgYI9QHgCC25SB7e/PRcZ1xaxEjxBuKBIgLN06VJkZ2fDbDZjxIgR2LhxY4fbb9iwASNGjIDZbEbPnj3x+uuvt7vtxx9/DJ1Oh2uuuUbiVQchUqTLKYNDEJ4hl8CYE8WnigdJgNPcwIKbwn2soeHWVUDqoI73CY8HQiLYffLCIVohe4DzySefYMGCBXjiiSewZ88ejB8/HjNmzEB+vvuU4qlTp3D55Zdj/Pjx2LNnDx5//HHcf//9+Pzzz9tsm5eXh4cffhjjx4+X+88IDqRoWaUMDkF4htwBTrCZ/R1bBxTtZ2Wp21axETGdodMBcY4sDnnhEK2QPcB55ZVXcMcdd+DOO+9ETk4OFi9ejMzMTLz22mtut3/99deRlZWFxYsXIycnB3feeSduv/12vPzyyy22s9ls+MMf/oD/+7//Q8+ePeX+M4IDPqbBn6F/JDImCM8o82KorS8EW4mq4hS77XUpkJzj+X5k9ke0g6wBjsViwa5duzB16tQWj0+dOhWbN292u8+WLVvabD9t2jTs3LkTzc1Oc7lnnnkGSUlJuOOOOzpdR1NTE6qrq1v8dDnqy4H6Mnbfn5k4Ylq8yP81EUQwwzM4Uk4RdyXYSlTcrC/OwyHAHBIaE+0ga4BTWloKm82GlJSUFo+npKSgqMj9F2RRUZHb7a1WK0pLSwEAmzZtwttvv40333zTo3UsWrQIMTEx4k9mZqYPf02AU36S3UalAaZI348j+m/UBq//BkH4i63ZmZGgEpVn8ACFByyeQgEO0Q6KiIx1rVqSBUFo81hn2/PHa2pqcPPNN+PNN99EYmKiR8+/cOFCVFVViT9nzpzx8i8IAvwZ0eBKsPtvEIQUVOYDdiubeM0zLVLDA5y6YsBqkec5lISXmGIpg0NIg1HOgycmJsJgMLTJ1hQXF7fJ0nBSU1Pdbm80GpGQkICDBw/i9OnTuPLKK8Xf2+12AIDRaERubi569WpZgjGZTDCZTFL8SYGLlILH6DSgpIrV/pP6+X88ggg2XAX9epmuI8MTAEMoYLOwNmlvMx9aQhCcAQqVqAiJkDWDExoaihEjRmDdunUtHl+3bh3Gjh3rdp8xY8a02X7t2rUYOXIkQkJC0L9/f/z222/Yu3ev+HPVVVdh0qRJ2Lt3b9csP3mClAEOtYoTRMfINWTTFZ3O+VkM9DJV7XnA2shMEaO7ebev6IVznrWaE4QDWTM4APDQQw9hzpw5GDlyJMaMGYM33ngD+fn5mDdvHgBWPjp37hzeffddAMC8efOwZMkSPPTQQ7jrrruwZcsWvP322/joo48AAGazGYMGtfRGiI2NBYA2jxMuSCl4jAqy7g2CkBq5W8Q50emstFN9Tt7nkRuefYlK994UMSwOCI1ic7mqzson6iYCDtkDnBtuuAFlZWV45plnUFhYiEGDBmH16tXo3p1F3YWFhS08cbKzs7F69Wo8+OCD+M9//oP09HS8+uqrmDVrltxLDV7sdmln4nChMXVSEYR7lApwgiWb6msHFcAyWbFZQPFBdhwKcAgHsgc4ADB//nzMnz/f7e9WrFjR5rEJEyZg9+7dHh/f3TEIF2oKAGsDoDdKU6cPlpMqoRyVZ4CQcCAiQe2VKIN4QSHzl22wGG9Wnma33gqMOTzAIS8cwgWaRdUV4B1UcdmAIcT/4wXLSZVQhtoSYOkYYPl0JiYNdix1zpKRnBocIHg+i/5kcAASGhNuoQCnKyB1upwyOIQ3nN3O9BGlR4Hiw2qvRn549iYsns1KkpNg+Sz66oHDoQCHcAMFOF0BqS3j+VVj7XnAZpXmmETwUrjPef/UL+qtQymU0t8AwZPB8dUDh0MBDuEGCnC6AlLMoHIlIgnQGQDBDtSVSHNMIngp3O+83yUCHAkF/Z3BA5yawsAt/9ltzkngVKIiJIQCnK6A1FeUegMQ6TBqDJY5OIR8uGZwTv8a/Fk/JTxwOJGO4bc2i3PWXKBRfY65PutDnCU3b+GBUV0xeeEQIhTgBDvWJudVjZRXlNFBYjBGyEttsSMI1jGvkqYqoGhfp7sFNEqWqIyhLKMKBG6Zip+fYrqxiydfMMcCpuiWxyO6PBTgBDvlp1gpKTTKmXWRgmARNxLywstTCb2B7EvY/WAuUwmC9CXhznAtUwUi/nZQAU4vHIACHEKEApxgxzVd3sGAU68JFnEjIS+Fe9lt2lCg5wR2/+QG1ZYjO/VlQGMVux/fU5nn5MM8A9XN2F+BMUcMcMgLh2BQgBPsyJUupwwO4Qlcf5M21JnByd/KSqfBCP+8xWQCIWHKPGegl4ulyOAAlMEh2kABTrAjV7rcwwCnsKoB72/NQ2OzTdrnJwID1wAnqT8Qkcxctc/uVHddcqGkwJgjlqgCNJsqeuBQgENICwU4wY5cLaseXDU2WGyY8/Z2PPnlAfz1ywPSPj+hfRoqnOWCtCGsRCrqcIK0TKWkwJgTFeDlYslLVO0HOA0WG5ptdv+ehwgYKMAJduS6oozqXNj4zKqDOF5cCwD4366zWHMgQFPohG8U/cZuY7uzic9A8AuN1QhwArlEZW1yBmZ+l6gc+7cT4JTXWXDZKxsw7h8/4XBhtX/PRQQEFOAEMw2VTiM+uTI4TdVAU22bX3+zrwAfbT8DnQ6Y3D8ZAPCXL37D+epGaddBaBexPDXE+RgPcM7uYDObgg0lTf440RnsNhBLVFVnAQiAMczZ7u4rPINTV+L2vfXPtbk4V9mA4pom3PjmVhw4V+Xf8xGahwKcYIafbCNTAVOUtMc2RbHWc6BNFudMeT0e/4Jdvd8zsTdeu3kEBqZHo7K+GQ//bx/s9gB1XCW8w1V/w4nPZl9EdiuQt0WddcmF3S79WBRP4Hq4xqrACxrF8lSW/12eYbGAKcZx3DMtfnWooBofbWeZnZ5JEaisb8ZNb27F3jOV/j0noWkowAlm5E6Xi6lx55Vjs82O+z7ag5omK0Z2j8OCy/og1KjH/5s9DCajHhuPleLdLaflWQ+hLcQAZ1jLx4NVh1NfBtgc3WExmco9rzkaCI1k9wOtTCVVBxXHjQ5HEAT83zcHYReAKwan4at7xmFk9zhUN1px81vbsCuvXJrnJjQHBTjBjNhBJVOAE+Wwia8pEh/659qj2HumEtFmIxbPHgajgb3FeidH4fHLcwAAi747gmPna+RZE6ENmmqBUsf7zzWDAwDZDj+cYAtweCYzIgkwhCj73IHaSSWVwJjjxgtn9W9F2HaqHCajHgsv748ocwjeuf0ijMqOR22TFXPe3o5tJwN0zAXRIRTgBDNyZ3CiWp5UNx4rwesbWIr+xeuHoFtceIvNbxnTHRP6JqHJascDH++FxUrdDEHL+QMABFY+iUxu+TuewSncD9QH0dVz7Xl2y+dDKUlU22xqQMAzLTJlcBosNjy/+jAA4O4JvcRzUoTJiBVzL8LFvRNRb7Hh1uXbsel4qTRrIDQDBTjBjGIlqkKU1DThwU9YSeIPo7IwfVDboXk6nQ4vXT8EceEhOFRYjVfWHZVnXYT68BENrbM3AMv8JfYDIAB5mxRdlqzwDE6UCgFOoDqLV7hocKSgVYDzxi8nca6yAekxZvxpQktdVFioAW/dOhIT+yWhsdmO21fswIajJdKsg9AEFOAEKy0EjzLNxHFkcITqAjz06V6U1jahX0oU/jpzQLu7JEebseg61lXz319OUGo4WHEnMHaFZ3GCaWxDjSODEyXhzDdPCdR5VFKXqOKcreLnKhvw2gZ2kbfw8hyEhbYd5GkOMeC/c0bgspwUNFntuOudnfjx8Hlp1kKoDgU4wUpNIdBcD+gM0qV/W+PI4BQXnMLGY6Uwh+ix5KbhMId0PBF4+qBU/H5kNwgC8NCn+1Dd2CzP+gj14AFO6hD3v+dzqYLJD0fM4LTNXspOIJaoLHVOGwvJS1R5WLT6MBqb7bioRzxmDmn//8RkNGDpHy7AjEGpsNjsmPf+Lqw5UNTu9kTgQAFOsMLLU3E95BM8Ok6q9ip2Un3qyoHok+JZO/rfrhyIrPhwnKtswFNfHZRnfYQ6NDcCJUz30G4Gp/s4ADqgNLeFSD2g4X8Hlag8g7dym2KcRpD+wrvX6svw0/5T0OmAv105ALpOWtBDjXr8+8bhuHJoOpptAu75cDe+2RdAryXhFgpwghW5ZlC5UBPKjLmSUImZg1Iw+0LPW2MjTUb864Zh0OuAlXvO0ckkmCg+xHxuwuKBmG7utwmPdxoABksWp9YR4KghMg7EElWlxPobAAiLhWBmXjgZulLMvjALgzJiPNrVaNBj8Q3DcN3wDNjsAh74eA9W7jkr3doIxaEAJ1iR2VFVEAQ8+UMxbIIORp0dz09L7fQqqTUjusfh3klsfU+s/A2FVQ1yLJVQGlf9TUfviWBrFxczOGqUqBwBTu15wGZV/vl9QWoPHH7YEPb69zGV4+Gpfb3a16DX4aXfDcUNIzNhd5TQP915pvMdCU1CAU6wIvNU4//tPIuv9hejFOzqKLrZt+6D+yb3wdBuMahutOLPn5LLcVDQmcCYkx1EOhy73dkmrkaJKiIJ0BsBwWUdWkdqgTGAqvpm7K2JBgDM6QckRJq8PoZBr8Oi6wbj5tFZEATgsc/340gRza4KRCjACVa4yZoMHVTHi2vw1NdMN6MTa/++pcZDDHr864ZhCAsxYPOJMizbdEqqZRJqUdRBi7gr3cewL+XKfKA8wP/f68tYWQ66tr4/SqDXOzNHgVKmqpQ+g/P/fjyGU9YEAMBF8W1n5HmKXq/Ds1cPwqR+SRAE4Ku9VEIPRCjACUasFufJQ+ISVWOzDfd+uAcNzTZc3DsRSek92C/8cFDtmRSJJ2cyl+MX1+TS1VIgY2sGig6w+50FOKERQLcL2f1Az+KILsaJyrsYcwKtk6pC2gzO8eIavLvlNM4ITBtoqPKvtKTT6TBrBNOQrf6tEIJA2eVAgwKcYKTiNEtVh0ZKni5/fvVhHCmqQWJkKF65YSh04lWjf50wN12Uhcn9k2Gx2bHg471obLZJsFpCcUqPsnlMoVFAXHbn24tzqQI8wFGzPMVxMxtO00goMmbzpg7BaheQkOHIWrvMo/KVS/snwxyiR15ZPQ4W0IVXoEEBTjDCO6gSevk/odeFLSfK8O4WdlL65++HITnK3MLN2B90Oh1euH4IEiNDcaSoBl9TSjgwEfU3Q1jZpDNcdTiBfIXMMzhqdFBxojMcawmAz05DJZt+DkgS4PxwuBgbj5Ui1KDHrMlj2IMVeR3v5AHhoUZc2p+VHL/9LUBKf4QIBTjBiEwjGv63i6V8Z1+YiQl9WRq49Twqf0iMNGHuOHbV/zW1jQcmngqMOd1GAsYwoK4YKDki37rkRk0PHE6UNBcbisCzK+GJgCnSr0M1WW147ttDAIA7xmcjvbujc6qhHGjyf6jv5YPZ60plqsCDApxgRAxwpBMYN1ltWHeIpeF5XRqAZBkczpVDWMC0+UQpimsaJTkmoSDeBjhGE5A1mt0P5LENWghwAsnsT0KB8bJfTyOvrB7JUSbcM6k3YI4BzLGO5/G/xZvKVIELBTjBiOiBI12L+KbjpahptCI5yoQRWS6uoxJmcAAgKyEcwzJjYReA1fsD4EqUcGK3A0W/sfueBjhAcIxt0EKAI+rhAiDAkWjIZnF1I5b8xEryj03vj0iTseVxJdDhhIcaMakflakCEQpwghH+oY7rIdkhv93PTuAzBqVCr3fR9fAMTmMVYKmX5LmuGsqCJipTBRjlJwFLLSs5eZM95ELj078C9gAVl9eqaPLHcbVs0HopRSIPnH+sOYI6iw3DMmNx7fAM5y8kDHAA4IohVKYKRCjACTZsVmeKuj2bfC+xWO1Yd4idwHk9WsQUDYSEs/sS+W/MHJIGnQ7YnV+JM+XSBE2EAhTuZbepgwCD0fP90oaxeURNVc5jBBo1Ko5p4PDgytoANFSotw5PEC/CfA9wDpyrwhe7zwEAnr5qYMsLL35xV+m/0BigMlWgQgFOsFFbBAg2ZqAWmSLJITedKEV1oxVJUSaM7BHf8pc6neQGY8nRZozOZmZdq6hMFTh0NkG8PfQGoMfF7H4glqnUdjHmhJjZ/C9A+2Z/EnjgfLKD6WuuGJKGYZmxLX8pcQaHylSBCQU4wUaVYzhcdDr74pAAroWZMSgVBr2btnM/3YzdcdUwKlMFHN4KjF0JZD8ctV2MXeGt4lrupBIEv0tUTVYbvtnPzg1uh/yKAY40GRyAylSBCAU4wQYPcGKkmdDbbLNjraN7qk15iiODuHHGoFSEGHQ4XFiN48X+t3rKRulx4Mv5gT9qwF8EQZoAJ28LYG2Sbl1KoAUXY47Y1XhO3XV0RF0p0FwPQAfEuglOPODnIyWorG9GSrQJY3sltt1A4gwOQGWqQIQCnGCD25NLpL/ZdLwUVQ3NSIw04cLW5SmOxK3iABAbHopL+jCvHU2b/n37ELD3A2DLf9ReibpU5gONlYA+BEjO8X7/5Bw2MNLaAJzdKfnyZEULHVScQJhHxYOOqDRmE+ADX+xmF3LXDM9wn1WOcQRODRVAozTBCJWpAg8KcIKNSmkDnNWOD/L0QSnuTySA5K3iHNcylSZTwoX7gVMO75bzB9Vdi9rw7E1yjm9fWjpd4JapajUgMOaIJSoNXxRUnma3PgqMy+ss+Dm3GABw3fB2znPmaCDMYWfh50wqV8j0L7CgACfYEEtU/gc4HpWnAOeVq5/zqFpzWU4KzCF6nC6rx2/nqiQ9tiRsWeK8f/6g9ltz5cTTCeIdIQY4AWb4p6UMTiDMo/LTA2fV/gI02wQMTI9Gv9So9jekMlWXhwKcYEMMcHyrbbuy5UQZKuubkRgZilGOria3yCAyBoAIkxGTc1gn2DdaExtXnQMOfO74h461OEt4pRhw+KO/4fC5VGd3AJY6/9ekFDUa8MDhiNlUDZdQ/BQY89bw6y7o5CKOH1/CACfC5CxTraYyleahACfY4AGOj+I9V/gHeNrAdrqnOK51f7vd7+d1hZv+rdpfCLtdQxmSba+zzpnuFwMpA9ljXblMJQY4w3w/RlwPJo63W4H8LVKsShnEAEcaWwa/CIRxDX544JwoqcXeM5Uw6HXiuaFdZMjgAM5s9rdaK1M1VgNblgL15WqvRDMoEuAsXboU2dnZMJvNGDFiBDZu3Njh9hs2bMCIESNgNpvRs2dPvP766y1+/+abb2L8+PGIi4tDXFwcLrvsMmzfvl3OPyEwaKximQTAWYv3kWabHd8fbMfcrzVRqQB0gL2ZtcxKyMR+SYgyG1FY1YgdpzXywW2sBnatYPfH3usS4BxQbUmqUlPEfGB0eudr4QuuOpxAmkvFsyVayODwElVDOdDcoO5a2sMPD5yVjuzNhL5JSIrqROvFj19x2uvn6YhL+yfDZNRgmWrrUuD7hcCXf1J7JZpB9gDnk08+wYIFC/DEE09gz549GD9+PGbMmIH8fPdR9alTp3D55Zdj/Pjx2LNnDx5//HHcf//9+Pzzz8Vt1q9fjxtvvBE///wztmzZgqysLEydOhXnzmm4NVIJqhx/f1ic3xN6t50sR0V9M+IjQjEqu53uKY4hhHXAAJILjU1GA6YPZNoGzXji7HkPaKpm4wj6TKMMDs/eJPYFQsP9O1YgzqXSgskfxxzLRmUA2ixT2e3OUq6XGhy7XcDKPbw85cEFnEwZnAiTEZf212CZ6twudnt0jfN+F0f2AOeVV17BHXfcgTvvvBM5OTlYvHgxMjMz8dprr7nd/vXXX0dWVhYWL16MnJwc3Hnnnbj99tvx8ssvi9t88MEHmD9/PoYNG4b+/fvjzTffhN1ux48//ij3n6NtJGwR/9alPGU0ePA24VeOEguNAeBKRyp69W+FaLZJWwLzGpsV2OrIKI65B9DrgZRB7N9dPcDxR3/D6THeecxASLXb7doY08DR6WTTxElCTSFgswA6g9dZ5m2nynGusgFRZiMuy/GgHChTgANotEzFB90CwPoX1FuHhpA1wLFYLNi1axemTp3a4vGpU6di8+bNbvfZsmVLm+2nTZuGnTt3orm52e0+9fX1aG5uRny8+0xDU1MTqqurW/wEJWKA45/+xupSnrqis/IUJ0q+7o2xvRKQGBmKivpm/Hq8VPLje8Xhr4CqfCA8ERg6mz3GA5yy49otC8iJlAFOdBoQlw1AaHnC1ir1pWw0ihZcjDla1uHwYCOmm3fzyuD0vpk5JA3mEA9c2rkOsbGSle8lRHNlqrpSZ8ZOZwCOfQ+cpSyOrAFOaWkpbDYbUlJaRtspKSkoKnJ/pV9UVOR2e6vVitJS919uf/nLX5CRkYHLLrvM7e8XLVqEmJgY8Scz038BriaRqEV826lylNdZEBcegtE9OylPcWQ0GDMa9OIVk6rdVIIAbP43u3/RXUCIoxQQmcwCHsEOlBxRb31qIWWAAwDx2ew2ELrSePYmIkl9F2OODM7iksE7qLwUGDdYbGI5qNPuKY4pyjmbq1La95LmylT8YiC+JzDkBnZ/wz/UW49GUERkrNO17MARBKHNY51t7+5xAHjxxRfx0Ucf4YsvvoDZbHZ7vIULF6Kqqkr8OXMmAE6cviBRi7jX5SlA9qtG3jGx9uB5NDbbZHmOTsnbDBTsAYxm4MI7nY/rdF1Xh1Nf7gxEUgdLc0z+/pX4S0kWtNRBxdFyicpHD5y1h4pQZ7EhMz4MI7vHeb5jnPSt4hxNmf7xBofUwcAlDzuyOGsDzxVcYmQNcBITE2EwGNpka4qLi9tkaTipqalutzcajUhIaOnF8vLLL+P555/H2rVrMWRI+xOMTSYToqOjW/wEJRJkcGx2Ad8f8LB7yhWZLeIvyIpDRmwYapus+PlIsSzP0Sk8ezP0RjZ3yJWuqsPh2Zv4noA5Rppj8tJCIGRwajXkgcMRAxwNNl2IHjg9vNrtc+59M7xbhxfHbZBRh8PLVKe1UKbiGZyUwUBCL2f5fH3XzuLIGuCEhoZixIgRWLduXYvH161bh7Fjx7rdZ8yYMW22X7t2LUaOHImQEGcK+KWXXsKzzz6LNWvWYOTIkdIvPhCRIIOz7VQZyuosiA0PwZheHZj7tUaGeVSu6PU6zHRM81Wlm6r0GHD0O3Z/zD1tf99VW8V5gJPa/gWG18hg0CYbosBYQxkcLc+j8sED53x1I349VgIAuHa4l/YXMkwV52jK9K/IJYMDOLM4x9cBZ3aoty6Vkb1E9dBDD+Gtt97CsmXLcPjwYTz44IPIz8/HvHnzALDy0S233CJuP2/ePOTl5eGhhx7C4cOHsWzZMrz99tt4+OGHxW1efPFFPPnkk1i2bBl69OiBoqIiFBUVoba2Vu4/R7vYrM7ykB8ZHNHcb0AqQjwtTwGKnFR5N9WPR4pR0+hecC4bfJhm3xlAYp+2v+cBTtGBrjWyQWr9DeBSogqEAEdDHjgccR6VBgMcHzxwvtp7DnYBGNE9Dj0SI7x7PpmD5SuGaKBMZW0CSnPZ/VRHJjm+J8s0A8D6ReqsSwPIHuDccMMNWLx4MZ555hkMGzYMv/zyC1avXo3u3dkbr7CwsIUnTnZ2NlavXo3169dj2LBhePbZZ/Hqq69i1qxZ4jZLly6FxWLB9ddfj7S0NPHHtZW8y1FTyLo59CE+X03a7ALWHGCeHjMGe9nyGuVqMNbo0/N3xsD0aPRMioDFasfag+dleQ631JUC+z5i98fe536bpP7M6K6hXJZWec0iR4DDS1TV5wC7SnorT6nRkAcOh2dTa4u09frZmoFq7rTuuQbHOZrBB/NSGTM4gEbKVCVHmPt3WFzL1vtL/syyOCd+BM50TSNc7/r0fGT+/PmYP3++29+tWLGizWMTJkzA7t272z3e6dOnJVpZEMHLU9HpzJvFB7afKkdpbRNiwkIwrndi5zu4EhbHxLfWRhZs8U4YCdHpmD374h+O4et9BZg1QpqJ6Z2y4y32d6UPB7q7L60ixMyM/0pzmQ4nWkNX9HLRWA2Un2D3pQxwotIAvZGdtGuKgBj/XLllRczgaCjAiUhmwbbdCtSVaGdtVWdZp6HB5PFF2KGCahwpqkGoQY+ZgzsZzeAOGTU4gLNMteZgEVb/VohBGRLp0LxB1N8MYg0PnPiewLAbgT3vsyzOnJXKr01laBZVsFDl/ZVRa747wE7WUwekeFeeAtgHS8Ey1a/HS1FeZ5HteUSaG4Dtb7D7Y+9reQJpTVfT4fATa3S3tqJrf9C7mMBpvUylpUniHIPRaTqoJS8c/n8Zm+XxRRj3vrlsQDJiwn1ow+flzsYqoKHS+/09QPUylai/caODG/8wu1g48ROQv03ZdWkACnCCBT9djG12Ad/x7qkhPmYfFDAY65UUiYHp0bDZBWWEffs+ZvO1YrKAnKs73rartYoX7We3UmZvODxQ13Inld3uMqZBYxm7aA0Kjb30wLHa7PhyLzuXXDfcx2ytKZJ5VAGyvZdcy1SHClUoU/ELDa6/cSU+u0trcSjACRb8bBHfebocJTVNiDYbMa6Xj1fjCnVvcE8c2bup7HanuHj0vM6dV7taq7gc+huOzKUFSXB1MY7QiIsxR0ZncZ/xUmC88XgpSmubEB8Rign9knx/XoXKVADw7X6FA0pBAM7zAKcdH6pLHFmckz8D+VuVW5sGoAAnWPAzg8OzIVMGpCLU6OPbgqfpZRbZznQEODtOl6OwSsbRCMe+B8qOAaYY4IJbOt+eZ3BKcwGrAuUztREDHAlbxDmB0EnVwsVYETmj54idVBoKcCq9M/nj4uKrhqZ7XzJ3RYFg+XK1ylRVZ1j5TR8CJPZzv01cD2DYTex+F8viUIATLPiRwbG7lKeuGOKHlkChGTgZsWG4sEccBAFYtU/GK6bNS9jtiFuZ7XtnxHRjZnd2K1B6VL51aQFLvXMshSwZnAAw+9OiizHHUaKqLsnH2EU/4vrXNuOXoyXqOu564YFT3diMtY55eLM8Hc3QHjzAqZCnkwoAJqtVpuL6m6T+gDG0/e24FufkeiBviyJL0wIU4AQLfpj87cqvQHFNE6LMRlzc249UsIIGY7KXqc7tBvJ+ZSeFUfM820en6zplquJDrCMmIkke/UkgjGvQogcOJ4p9Ps6cPo6CqkbszKvALcu247rXNmODWoGOFyWq734rRJPVjj7JkRiU4afzvAIZHNXKVB3pb1yJ6w4M+wO734WyOBTgBAONVUCT46rBhwwO/0BOGZDie3kKUHSK8YzBaTDodfjtXBVOldZJ/wSHvmS3A67xrk25q3RSFe5lt2lDO+4s8xVXkbFWjRNrNeiBw3FkcMwN5xFq0OMPo7JgMuqxJ78Sty7bjmuXbsb63GLlAp3mBudYi7genW4ujma4wMvRDO5QyBlblTJVZ/obV7gW59QGNlevC0ABTjDAszdh8UCod06frDzFApzLB/l5JSpmcIpk/1JKjDRhrGOUhCwTxstPsdtuF3q3X1fppJJTYAw4NCQ65j9UVyLPc/gLz+BEai/AaQpna0rVlePOi3vg79cOxsbHJuHOi7NhDtFj75lK3LZ8B65Zuhk/KxHo8ExcaCTzzOqAM+X12H6qHDodcM1wH7xvWqOQYH1y/2SYQ1iZat/ZKlmfS8TVA6czYrOA4Tez+10ki0MBTjDgh/5md34Fzlc3IcpkxPi+fnqZ8CtZWxPQUOHfsTyAl6m+2ntO+hO0q2eHN4glqmDP4MjYIg4wPQEPmLVaptKiB46Ddw40AQAidE24ZyzTCCVHmfHkzAHY+OiluGs8C3T2nanE3OU7cM1/NuHnIzIGOuLnqXunGb8v97DszdheCUiLCfP/uflnuEk+LxyAlammD2TvBe7fIyuN1UDFaXbfkwwOAIz/MxMkn/oFOL1JtqVpBQpwggF+8vBBf7P6N3aSvmxACkxGg3/rMJqAcMeATgXKVNMGpSI81IATJXX4SeoJ474GOEn9AehY+aJWo5kHf7FamAYHkC/AAVzKVBrtpBIDHG1pcM5XN2LxhnOoEsIBABFNLT8bSVEmPHEFC3T+eElPhIUYsO9sFeau2IFZr21GWW2T9IuqPM1uOxEYC4KAL/Y4J4dLQmg404oBsmdxrnMIor/eV4Amq8xjMniWODoDCI/3bB/XLM7G4B9tRAFOMOBjBqdFeWqwRCdph7hRCaFxtDkEt4zpAQBY/MMx6a4+m2rYTCnA+wDHFOkcU1HcskzVbLOjoFLGtnalKDkC2CysY8yLoYleE6vxVnGNdlG98N0R1FtsqDQ6vtRr3F9sJEWZ8PjlOdj42CTc7Qh0dudX4rHP90ufyfFQYLznTCVOldYhLMSA6YMkzIwpVKYa1zsRKdEmVNY34+cjMl/gFHmhv3HlwjvZ7dld0q5Hg1CAEwyIYxq8y+DsOVOJwqpGRJqMGN9HIqv9aGUNxu4an42wEAN+O1clXRaHnwTD4gCzDx0cbnQ4eWV1mPH/NmLcCz/hfzs1WnLxFK6/SR0ij8CYo+VOKo26GO/OrxAzIHGpPdiDnXwWEyNNWHh5Dr6YPxahRj1+OFyM97dJHAh46IHDSzszBqUiwiSht5DMQzc5Br0O1wxnTQmyl6nOe6G/cYVfgDVVsQaVIIYCnGDAxwwON/ebnJMMc4if5SmOgq3iAJAQacItY9lV4f/7UaIsjpeOq21o1Sq+7WQZrvnPJhwvroUgAE+sPIA9+fJrlGSDXznKWZ4CtO2Fo0EXY7tdwP99zd5zvxvRDdHJfCq7Z5/FnLRo/GV6fwDAc6sO4XhxjXSL88ADp8lqwzcOX6vr/PW+aY2Czti8tPZzbrG88/J8zeCERrCGFECbFw8SQgFOMOCDB05js00U810hVXkKULRVnPPH8Sy9vv9sFX7OlSCL46v+huPSKv7pzjO4+e1tqKhvxpBuMZjULwkWmx3z3t+F4upG/9eqBvz9JsPE+BZoeVwDD+A15GL8+e6z2He2CpEmIx6Z3s/pZtxOicodt43tgUv6JqHJasd9H+2VTkfiwUXD+1vzUdXQjNRoM8Y4OiQlQ8H3Ur/UKAzKiEazTZCnwxMAbFag+DC7722AA2j74kFCKMAJdGxW5wnMiwzON/sKUFZnQXqMGZf2l/AK1LVVXCESIk24ZQw7cUqixZEowLEWHcbCz/ag2SbgiiFp+OSPY/Dvmy5An+RInK9uwt3v75JfiCgH3M9E7vboGP6lpEEvnBpteeDUNDbjhTW5AID7Lu2N5CizT/Oo9HodXv7dEMRHhOJwYTVe/j7X/8V5oGk7UVKLF9cwZ+x7L+0Ng17i0qdCXjgcnsWRrUxVdpxZKIREAHE+XGhoufwrIRTgBDo1BcxRVh/icapcEASs2HwaADBnTA8Y/Znz0hoxwFF2Bs5dlzizOOtz/RT3iVOPe/i0e214NzTqzDAKFvTQFeGByX2w5MbhCAs1INJkxJu3jES02Yg9+ZX425cH1bXP9wWlvtx5wG6pARor5X0ubxFdjLUR4Cz5+ThKa5uQnRiBueMcX3g+ZlOTo8x46Xo2X+zNjaew8Zi/n6eONW1Wmx0PfboPTVY7xvdJxB9G+Xhh0RGuAY4Cn7erhqXDqNdh39kqaUt9HG5DkToI0Ptw/lZIk6Q2FOAEOmJ5KsPjN/rOvAocLKiGyajH7Au9by3vEFFkrOxU3cQWWZyj/gUNXg4FdOVsRT2uf30rDtnYl/MLF+vx4JS+LdxYeyRG4N83XQC9Dvhk5xm8uyWATjKC4BTXRsrcPdSivVdjV5oacjE+VVqHZb8yY8onr8hxupFH+97RODknBXNGs8/Tnz/d55+WpJPy1H9/OYl9ZyoRZTbixeuH+O9c7A5ekmmqViRYTow0YaJjAjp3ZZaUIocPlbcCY04MlaiIQMAH/c2KTacBANcOz0BcRAcD2nyBt4nXlwJWGfw0OuAuF08Pv7I4FS6mZF6wO78C1/xnE44U1eC0gV1FjzS7v3qe0DcJjzkEnc+sOoQtJ8p8X6+S1JcD9mZ2X+4AB9DuVHENzaH6+7eH0GwTMKFvUstyM/8s1pX49Fl8/PIc9E6ORHFNk3+t42JGtO3n6VBBNRb/wAbT/t9VA6Ux9nNHSJgzw61UmcohlP5yzznY7BJnjfiQTV/0N4CLBQMFOISHVDU047X1J/C/nWeUE5DyCNzDAKegsgFrHFN6bxvXQ/r1hMcDBhO7r6AOB2BXTXN4FsfXjqqGStY+CXjVdv/V3nOY/cZWlNZakJMWjUsnTmK/KGrf0fiPl/TEVUPTYbMLuOfD3ThbUe/9epWG62/C4jueXiwVWhVD8ve2EkFeB2w4WoIfDhfDqNfhrzMHtMx++PlZDAs14P/NHoZQgx7rDp3Hh9t9DAzayeA0WW146NO9aLYJmDogBdcO92Lmmy8oMFXclck5yYg2G1FY1YitJyW+gPG1g4pDGRzCW8pqm/DCmiN45LP9uOj5H3HVkl/xyQ6Zrxa8bBF/f2sebHYBY3omoH+qn1N63aHTOdP2CrWKu/LHS3qKFvTrj/qQxeFXd+GJHs31stsFvLI2Fw98vBcWqx2X5aTgs3ljENtjONugg5lUOp0OL8wagoHp0Sivs+CP7+5Cg0XjomOlxxNoVQypARfjZpsdz3zD3l+3ju2B3smRLTfQ6ZwlYx8/iwPTY/Do9H4AgGdXHcLx4lrvD9KOaP/VH4/hSFEN4iNC8fx1g+UpTbmicFeeyWjAlY5xMp/vklBsXHMeqCsGdHogeYBvx+CvRV0JG4QapFCAIyHhoUbMuqAbhmbGAgD2n63CY5//htc3nJDvSb0IcBqbbfjIcRUmS/aGo7AXjitMi9MDgI8dVR2k092x6LvDePWn4wCAuy/pif/OGcEMynirePXZDudyhYUa8MYtI5EQEYpDhdV45LN92hYdK6W/4YjiUI3plDQwh+rdLXk4UVKHhIhQ3D+5j/uNovy3bbh9XDbG90lEY7MdD3y8x/vOPzei/d35FXhtPTsvPn/tICRGmnxen8eoYDvAy1TfHShCXZNVmoNyg7/4Xkyn5gthcawDC3B+hwQhFOBISGqMGf/8/VB8dc84bH9iMuZP7AUA+Md3R/COo2tJcviVrQcBztd7C1BR34yM2DBcliPjF5RKQmPOXeOdWZwN3mZxvGgR/2rvOby5kYk7/3HdYCy8PMfZ3mqOcbY5nz/U4XEyYsPw2s0jYNTrsGp/IV7fcNK7NSuJ0l/sWixR2W2qi4zLaptE7coj0/ohJizE/YYSOIuz1vGhiAsPwcGCaryy9qjnOwtCmxJVg8WGhz/dB7vAdIDTBymUBVMhwLkgKxbZiRFoaLZhzQGJSvb+6m8Alt3Tss+URFCAIxPJUWY8Or0/7ru0NwDgqa8P4tMdEp+kBcFjDY4gCFi2iX0Z3zq2u/Q+E66I86iUbRXnJEWZxA4Qr7M4HgY4Bwuq8NjnrJPhnkm9MPsiN9u7GdnQHhdlx+Opq9j2L35/RBrDQjlQOoOjxRJVfZnqLsYvr81FTaMVA9Oj8buRHXz2/eikciUl2owXZrHW8f/+chKbjpd6tmNDBWvzB8Rg9YU1R3CytA6p0WY8feVAv9blFXHKeuEArAx9nUNb9LlUnjii/sbHDiqOFi8eJIYCHJl5aEpf3HEx66h57Iv9+FpKZ8vGKsDiqIl3ksHZdqocR4pqEBZiwA0jZfCZcEXlDA4A/PGSXjCH6LHX2yyOB46rFXUW3P3eLjQ223FJ3yQ8NKWf+w1dHI094eZRWbjxokwIAnD/R3twssQHvYPcqJXBaSgHmjTyeqjsYnzgXBU+dlwsPX3VwI4vViQoUXGmDkzFTQ6Pmoc+3YviGg8aKXh5KjIFCAnD5hOlogfXC9cPQUx4O5knOVDYC4fDZ1NtOVmGc1IM2xU9cIb4dxwtXjxIDAU4MqPT6fDkFTm4aVQWBAF48JO9WHtQolQlr52GJ3RaixVbwy/IkP+koqIGh5MUZcLNo3yYUVXZcYu4zS7g/o/34GxFA7Liw/Hq7GHtf8F4kcEB2Hvl/64ahBHd41DTaMVd7+5ETWOzZ+tWCqUzOOYY9gNo50pTZRfj5749BEEArhqajgt7xHe8sXixIY0Xy5NX5KBnUgTOVzfh0pc34JV1R1Hd0XvU5YKhprEZj/yPZT1vGpWFCX2TJFmTx7QwjlRuyGRmfDhGZcdDECCOx/GZ5gag1FEi9NUDh0MZHEIKdDodnrt6EK4bngGbXcC9H+7xXhviDg8Fxmcr6rH2EAuq5o7t4f/zdoZEaXF/+eMEpsXZk1+JX455kFIXhE5Fxi99n4uNx0oRFmLAf+eMQGx4B63S/ARUfIhNn/aAUKMer918AVKjzThRUocHP9kLu9QeGv6ghrjWdWSDFlDRA6egsgFbT5ZDrwP+MqN/5zvESKuzCA814o05IzAwPRq1TVa8+uMxjH/hZ/zn5+Oot7gR0bp8np5bdRjnKhuQGR+Gxy/PkWQ9XhESBpgcwTIP1BVi1gjn6Aa/mgiKDzPn+vBE/z+DlMEhpEKv1+HF64fg8sGpsNjsuPu9ndjmrzeCh/qb97bmwS4AF/dORJ+UKP+e0xP4B6+6UNUZQslRZjGL45G7cUNFhyW/b/cXih1xL1w/BDlpnbTZx/cEjGaguR6oOOXVuv87ZwRCjXr8cLgYn8k1z8ZblHQxdkW80tSIGFIM8pT3wPnFcWE0LDMW6bEemOLxgag1hZK1A/dOjsKq+y7Ga39gc9WqGprx0ve5uOTFn/H2r6fQ2OzSZeXI4Jy2JeKTnWeg0wEvXz8UkSaVBpTy/zOFA5wZg1JhDtHjREkd9p31I3vkqr/xt62e6wwpg0NIgdGgx+IbhuPS/slobLbj9hU7sCe//RbiTqnqvIOqwWLDx9vZdrcpkb0BnFe21gbVZwj9cUJPmIwsi7OxsyxOK72AK7lFNXjks33smA6Dvk4xGIEkx1W2h2UqztDMWLEL77vf1M2EiTTVsGANUDaDo7Vuj1r1PHC4Q/eEvh6Km8PinFmLitOSrUOn02HG4DSsWXAJ/nXDUHRPCEdprQXPrjqEiS+txwfb8tBss4uB/bu57Mv4jnHZGNVT4knh3sAD8xplA5wocwimDWSfGb8GcPpr8OcKvzCuLmBDm4MQCnAUJtSox9I/XICxvRJQZ7Hh1mXbcbDAx4jegxLVl3vPoaqhGVnx4Zgk5dTwjggJYydWQFWhMeDI4oz2MIvTjsC4qqEZd7+3E/UWG8b1TsCj09oRFbuDl6m8DHAAYIajfXbTiTL36X+l4Ve9oVEemSBKhtZS6Sp54DTb7GL3Ep9z1Ck6HRDfg90v9zyL6CkGvQ7XDu+GHx6agEXXDUZajBlF1Y14YuUBTP7nBtQVMr3Ib/WJ6J0ciYe9+ezIAf8/q5VIB+kFsxyeOF/vK4DF6lnJug1cYJzie4BzprweU17ZgDH/PoBmGAHBhn99sR7/3XACX+09h+2nynGmvN57vyMNolKesGtjDjHgzVtG4pZl27ErrwK3vL0dn84bg15JkZ3v7Eonc6gEQRDFxbeMkbk1vDVR6azkU1MApPjotikRd0/oife35mG3I4tzSXviRjct4na7gAUf78HpsnpkxIbh3zde4N30dS87qVzpmxKJbnFhOFvRgI3HSsUrQNVQqzSjNTEk1+BEKvv/sSe/EjVNVsRHhGJwRoznO8ZlA4X7vCqTekuIQY8bL8rCtcMz8NH2fPzn5xMoLK+G2XQO0AH5ujS8+fuhMIcYZFuDR4gZHOUDnHG9E5EcZUJxTRN+OlKM6YO8fP/Y7X574FQ1NGPuih2iI/W50AT00J/Hlt17sV1oO68sISIU3eLD8X9XDcQwh4FtIEEZHJWIMBmxfO6FGJQRjbI6C255ezsKq7yskXcS4Gw5UYbc8zUIDzV07JUhBxpoFeckR5nxB086qtxMEV/8w1H8nFsCk1GP/84ZgXhvh5P6EeDodDrRkPHHw8qm1N0i6m8UDrS0VqJSqYtqvcMbaXyfROi9uVjhOhwJS1TtYQ4xYO64bPzy6EQ8Mz4CBp2AWsGM2RNHYEi3WNmfv1Mi1dHgADzbxVrGfSpTVeaxDjBDKJDYjnN1BzTb7Ljng904XlyL1GgzPrprNKJS2XtjTo4e1wxLx6jsePRICIfJMZG+rM6CfWcq8fy3h71frwagAEdFos0heGfuReiZGIFzlQ2Y8/Z2lNdZPNvZ1uy8kmynRLXc4Tcx64Ju7TudyoXYKq78lZI75jm0OLvyKvBreyZl/AvU0UH1/cEicQzDousGY5A3V80cHuBUnGYaFi/hAc5PR4rV76ZSK4PDO4FqzwPNCg2xbY8WLsbKanB456XH5SlOnCPAkaFE1R7hoUbc2Iudy/SJvbBgSl/FnrtDxDl56pyX+OiGn3OLPT/Xc7j+JjkHMHh3PhcEAX/76gB+PV6K8FAD3r5tJMb0SkBCOjOivbK7DYtnD8cnd4/B+kcm4ciz07Hnr1Pw2bwxCDHosP10uX96UZWgAEdlEiJNeO/OUUiLMeN4cS3mLt+OWk9mltQUsnZBQygzHGvFmfJ6/OC46r9VKXGxK2KAo46bcWuSo51ZnBfX5OLj7fl4d8tpvLXxJP7z83H8a91RlJ49BgBYcciOxz7bjz9/ykTFt43tIZ6YvCYi0ZnxKPb+Kuii7HhEmYworbVg79lK39YgFVy3oHQGJzweCHH4PEnk5+IzLVyMlfNxKa5pxMGCagDA+D5ePq+YwVEuwAEAlLOOw/DUvvIP0vQUFTM4ANAvNQqDMqLRbBPwjbemr37ob97ceBIfbT8DvQ74943DMTDdcbHGy7+tZr3pdDrERYRiZI94XD2MZZ3e2qjw+0cCKMDRABmxYXjvjosQFx6CfWercPd7OzsXeHHBZXQGoG/73/jultMQBOCSvkltpwwrgYZKVByexfntXBX+8sVv+NtXB/Hct4fx0ve5+H8/HkV4PTvhLD8k4JOdZ1DbZMVF2fF44go/PTv8KFOFGvW4xHHFrnqZSizNKJzB0elchMYql6lE/U2yoi7GvxxlWcfBGTHeD6bkQy4r8lgGSinKHEOGE3or95ydIWZw1PssXTfc6YnjFT52UK05UIRF3x0BADx5xQBMdp1DGNO5vu2u8T0BAN8dKER+Wb1Xz602FOBohN7JUVgx9yJEhBqw6XgZFny8F7aOShIddFDVNVlFK3dFjP3cofI8KnckR5vx/LWDcUnfJEzun4wZg1Jx9bB0/G5EN/zxgmiE65ogQIfrJo7CI9P64e/XDsLy2y5EiDeiYnek+t5JBQCX5bDutx8OqTyfSq0MDqAdHQ4vbSjpAwQ/ylOA4yIoBLA3K5sBc2RwEN9LuefsDP7/1lQlmS+Qt1w1LB1GvQ77zlbheLEXZWtRYOy5g/H+s5VY8MkeCAJrNJk7rkfLDWI771DslxqFS/omwS5AnGcYKFAXlYYYmhmLN24ZibnLd+C7A0V4YuVvWHTdYPfpXR5xtxoKKQgCPtyWj5pGK3okhCtvh87RYAYHYI6i3FW0BWd3AocAXVQaHpjmpwV6a/xoFQeASf2SYdDrkHu+BmfK65EZ3/FYDtlQK4MDaKeTqkZ5DxybXcDGY9z/xofPs97AdGVlx5kOp5NBspJRdpLdJmgowDHHMPNNayMrU/HsloIkRpowsV8SfjhcjC92n8Oj0z1wpG6ocBpdejii4VxlA+54Zycam+2Y0DcJf5s5oO13iZjBOcu6tNxUAwDgj+N74pejJfh05xksuKxPxw7uGoIyOBpjXO9EvHrjMOh1wMc7zuCFNbnuN2yVwWm22fH1vgJcs3Qz/r6aaT1uGdPDu24LKeEZnLoSJojWOp2MaPAL15lUPjg7x4aHYkR35iv0g5plKjUzOFrxwlHBA2ff2UpU1jcj2mz0vVU3TmEdTnMDUO04R2kpg6PTqWb25wrX9K3cc67jTD2HXxzFZAFhsZ1uXtPYjDtW7EBJTRP6pURhyU3D3dtbRGcA0AG2JnaubodxvROQkxaNeosNH2zTSDejB1CAo0GmD0rDoutYnfX1DSfwX8d4gBY4Apz6sDT8d8MJTHjxZ9z/0R7sO1OJUKMec0Z3Fw3uVCE8gaXFIagm6PMKNx44kpHQh70WTdU+ZyCmiO3iKpWpmhucAwpVyeBopUTF51ApF+BscLgXj++T5J0HkyvxCndS8ecxxzCRuJZQ0eyPc2n/ZESbjSisasRWT0b2eKG/sdrsuO+jPThSVIPESBPevm0kosztdF0ZQ53ZyA7OTTqdDn+8hL2HVmw+HTAmgBTgaJQbLswSh+kt+u4IPtnR8sRuKWf/vm91CRZ9dwQFVY1IjAzFg5f1xea/XIpnrxmEUKOK/716fcuZVFqnHRdjSTCGAkkOB1cfy1STHTqcrSfLOp7eLBc8SDWYAHOs8s+vlbk5tcp74Kw/6kd5ihOnnBcOgJb6G610UHEiHY7uKmZwzCEGXOkY9/K5J2JjL/Q3z646hPW5JTCH6PH2rSPRLa6TknasZwL+mUPSkRptRklNE77aqx1tZUdQgKNh5k3ohbsnMAX7wi9+w5oDhdhxuhx3v7sDljL2hXyqOQ79UqLw4vVD8Otjl+KBy/p432UhFxprFe8QOTM4gLNMVeR9JxUA9EyKRM+kCFjtgjhwUVFc9TdqfGFpZW6OwpPEy+ss2O+wB5jgi8CYo3SreBnzj9KU/oYTqX4GB3CWqdYcKEJdZ9YgRfvZbScZnBWbTuGdLey74V+/H4ahnpQ0PeikAphbNRcpv7XxpH9T0RWCAhyN85fp/XHDyEzYBWDe+7vxu9e3YMuhk4jUMcOz526ZgTULxuP3IzPVt0FvjUaFxm5RKsDxoVWcc5maZSo19TcA000YQpkHjZoBMw/0FOqi2nisBIIA9E+NQkq02fcDiWZ/p33SgXlNmQY7qDhR6mtwAOCCrFhkJ0ag3mLDH9/biar6djKztmaghLV5dyQw/mzXWTyz6hAA4LHp/TFjsIdBuFj+7Tw7euOoLESajDh6vlbs7NMyigQ4S5cuRXZ2NsxmM0aMGIGNGzd2uP2GDRswYsQImM1m9OzZE6+//nqbbT7//HMMGDAAJpMJAwYMwMqVK+VavqrodDr8/dpBmO6YQ2Qy6nHHYEc9NTwRY3O6acdEqzUabBV3i93exsVYclyFxj7i6mpstfk4rM9X1OygAljJk1siqKXDUcHFmOtv/MreAM73dVMV68iRm3INdlBxNJLB0el0ePbqQQh3WINcu3QTTpbUtt2w4jRgswAhEW5L6E1WG5788jc8/L99sAvADSMzMc+R+fcILzoUo80hmH0h2/7NjSc9fw6VkD3A+eSTT7BgwQI88cQT2LNnD8aPH48ZM2YgP9/9SerUqVO4/PLLMX78eOzZswePP/447r//fnz++efiNlu2bMENN9yAOXPmYN++fZgzZw5+//vfY9u2bXL/OapgNOjx75uGY8XcC7Fl4WQ8MDKM/aKDKeKaIFAyOHXFrItAp3d0FcgAv/IqPwFYfDPLuiArFrHhIahqaMauPIVt09XO4ADqd1LVlbIMkk6viIux3S7gF0d7+MS+yf4dLCTMGZQpITQWTf40GOBowOyPc3GfRHz+p7HIiA3DydI6XLt0Mza3HiXj2jHbqo27sKoBN/x3K97fyr5PH5jcB8+3Zy3SHjGeZ3AAYO7F2TDoddh0vAwHzlV5/jwqIHuA88orr+COO+7AnXfeiZycHCxevBiZmZl47bXX3G7/+uuvIysrC4sXL0ZOTg7uvPNO3H777Xj55ZfFbRYvXowpU6Zg4cKF6N+/PxYuXIjJkydj8eLFcv85qhFi0GNiv2Q27LEDkz9NIWZwNB7gcIFxdIbXM148JjKFdZYJdme62UuMBj0m9XOY/indLq52BgdQ3wuHB3kRSYq4GB8sqEZprQURoQbRJsAvlGoVb6p1vlZaLFGpPK6hNTlp0fjynnEYnhWLqoZm3LJsOz7Y5jI6gZszxrS8+Np8vBQzX/0Ve89UItpsxLLbRuLBKX1h8NYaxMvPVUZsGK5wlL/e0ngWR9YAx2KxYNeuXZg6dWqLx6dOnYrNmze73WfLli1ttp82bRp27tyJ5ubmDrdp75iK0VQLnPoFyP1O3ufhb8R2pohrBvFKSeMBjqi/kbGtXqcDkhwjH7gA0wdU0+FoIYPD/39azc1RDIU9cDYcZf/HY3snStMRqVSrOC9PhSd45NmiOPz/r65EXcG6C0lRJnx012hcPSwdVruAJ1YewP99c5CVoqscAY4juywIAl7fcAI3v70NZXUW5KRFY9V943Fpfx8vPviFclM10FDp0S58fMM3+wtRUKmOI7QnyBrglJaWwmazISWl5QufkpKCoiL39c+ioiK321utVpSWlna4TXvHbGpqQnV1dYsfWSg/AbxzJfD1ffIcn8NTiVrP4EQ7MjjVhcoIG32Ff2HK7fDKr8CqfdckXdI3ESEGHU6W1uGEu3q9XNQo3x7dBrVLVOIcKqUCHD/GM7hDqQyOFkc0uBKeAOgMAIQOze2UxhxiwOIbhuHhqWzy+vJNp3HnuzthqXBcgMV0Q01jM+a9vwv/+O4I7AIw64Ju+OJPY5GV4Ie7eWgEe00Aj7M4g7vFYEzPBNjsAlZsPu37c8uMIiLj1vVAQRA6rBG62771494cc9GiRYiJiRF/MjNlynzwE3BdibxzTniJKlbrGRxHzb+5jl0daBU5XYxd4a+HHwFOlDkEo3uyk5GiwzfFDE4XLlEpGORVNTRjd34lAOASb6eHt4dSGRwt628ANrqCa6hUFhq3RqfT4d5L+2DpHy6AOUSP9bkl2HuAdUYVIQFXL9mE7w+eR4iBNZ+8/LshCAuVoHvWh4uHP17CsjgfbstXx5vLA2QNcBITE2EwGNpkVoqLi9tkYDipqalutzcajUhISOhwm/aOuXDhQlRVVYk/Z87IdIIMi2NKd8AZhMhBoGhwQsOZkymgbaGx3C3inGhpusom9+c6HIXKVDYrE9gC6mZwRLM/x9wcpVHQA2fT8VLY7AJ6JUVIN3tMKbM/LbeIczTSKt4elw9Ow6d3j0FKtAkxzexz/sRPFThZWoe0GDM+vXsM/jCqu3QdtD5cPEzom4Q+yZGobbLik+0qG3C2g6wBTmhoKEaMGIF169a1eHzdunUYO3as233GjBnTZvu1a9di5MiRCAkJ6XCb9o5pMpkQHR3d4kcWdDqPXSF9xtbsPNFqXYMDBIbQuEKhElWUNF1lkx06nJ2ny1FRZ/F3VZ1TVwxAYGn98ET5n689otLZGmwWdQSitcoJrXl7+MR+fnZPucIzODUF8maYeYkqwYtWZaXRSKt4RwzpFouv7rkY3QzlAIDTzbEY2ysBq+67GMOzJBCduxLj/SgUvV6HO8ez99SyTafQrLR1hQfIXqJ66KGH8NZbb2HZsmU4fPgwHnzwQeTn52PevHkAWHbllltuEbefN28e8vLy8NBDD+Hw4cNYtmwZ3n77bTz88MPiNg888ADWrl2LF154AUeOHMELL7yAH374AQsWLJD7z+kc0TRJJiFkdQEAgVnmq/ll4ylaFxrbbS4lP5lLVNHSBHuZ8eHonxoFuwCsP6pAFoeLayOT2502rAgGo/M1VKNMpVAGRxAEUX/j13iG1oTFASZHRrVCRqE2ZXAkI9VkQYTAbCVuvGwM3r39IiTI4VTv44X51cMykBhpQmFVI77dr71zvOxnqxtuuAGLFy/GM888g2HDhuGXX37B6tWr0b07+zIpLCxs4YmTnZ2N1atXY/369Rg2bBieffZZvPrqq5g1a5a4zdixY/Hxxx9j+fLlGDJkCFasWIFPPvkEo0aNkvvP6Ryx00OmDI5YnspQ98vGU6L9F9bKSk0RYG8G9Eb5Sw9igFPEAis/4N1UPxxSIMCpVda9t0NiZM6QdoRCXVS552tQVN0Ic4geF2VLOKhSp3PqzOQSGjdWAfWOcqZWNThAQGRwADhbxM0xuHPyYN+HrXaGh+MaWmMOMeC2sew99aYGxzfIb+YAYP78+Zg/f77b361YsaLNYxMmTMDu3bs7POb111+P66+/XorlSYt4ApHpCqkqQDqoOGInlUYDnEpXDxyZPw4RycwkTrABtcVOI0QfmJyTjCU/H8eGoyWwWO3yDlZVuD26Q2KzgPzNygc4dsf/GSB7F9V6R3lqTM8E6cevxGezuUZyCY159iYyBTBFyfMcUhAgGRxni7jM5/tY3zsU/zCqO/7z8wkcLKjGlhNlGNtbO5WFAEgBBBhye3WIAY7MehGp0HyAI/OIBlcMRmcWxE+h8dBusUiMNKG2yYptp8okWFwHaCmDo1YnlYIuxuJ4BinLUxy5W8W5B46Wy1OASwZH4wFOtUvGXk54Bqe+1Gun9biIUPxuJAvA3tCY8R8FOFIjewYnQDqoOGKJ6py662gPpTqoOBIJjfV6ndhNJbvpn5YyOGp54XD9jcwuxrVNVuzMY6JSSQXGHLlbxcsCQGAMON/Lmg9wHBdCco2Q4YTFAaGR7L4PHcB3XJwNnY5lH48X10i8ON+hAEdqeAanvpQ5G0tNwAU4/nu/yIrYQdVDmeeTSGgMAJcNYBmVdYfOy1v71lQGx/tuD0moVcYDZ/PxUjTbBHRPCEePxAjpn0D2DE4ACIyBluMaNKYbaUGV+zENkqPTuehwvP9sdU+IwKWOgHz1b9rRNVGAIzVhsU7vFzlOwgEX4Dg+mPWlQHOjumtxh1IuxhyxZOd/Ruvi3okwGfU4V9mA3PMyXjVpKYMjeuGcUfaLSaEOKlm6p1zhGZzKfL+F7m7hY0i0LDAGWEcgwCwHlJiu7iu8RCW3BgfwS4cDANMGsvOD4nPyOoACHDmQq1VcEFwCnADwwAFY6tNoZve12CqudIAjUYkKAMJCDRjnEPTJWqYSMzgaCHB4wNxcD9SXK/e8NfJnsVzbwyUbz9Ca6AxAH8K+2OXIqgZCizgAGE3s3AQ4A3gtIoqM0+V/Lh87qTiT+idDpwP2n61CUZU2LmYpwJGDWJl0OA0VgMVR9pI7ZSkVOp2kZRlJsVmdJxAlRMaAZG7GHN4uvu6QTFdNdruiBnedEmJ2Bhk+pNJ9RoEMzomSOpytaECoQS+O45AcvUG+VvH6cqCxkt2P17gGB9B+q7gguEwS134GJynKhGGZsQCAH49oI4tDAY4cxPVgt1KXqHj2JiIJCAmT9thyolUvnJoC1hljCFUuOyFhBgdg7eIAsO9sJYprZLhqaigH7I6JyxEyiF59QQ0djgJlOp69uSg7HuGhMloW8POT1EJjnr2JSmdjWrSO1lvFGypYphIIiAwO4Lzgkr3xwUMowJEDuVrFA01/w5FQdyIpPMMWk6mcaaJrsCeBhiQl2owh3WIgCMDPR2Q4qfAv9vAEwBgq/fF9QY1OqlrlAhzZylMcuYTG4ogGjZenOFrP4PDzZXiCMhe04veW75+rKY7Gh1+Pl6LeYpViVX5BAY4cyNUqHvABjsYyOEq3iAPOrjIJJ6xP7u9wNZbjqkmcIq4B/Q1HDS8cmTM4DRYbtp5kfkayCYw5crWKa32KeGu0nsFRqkWcwz9XNQVs5qEP9EmORFZ8OCxWOzYeK5Vwcb5BAY4cuGZwpOz0EE3+AkRgzInSaAZHaYExAIRGOOcBSVSmumwAKx1tPFaCxmaJO2NqNKS/4ShdonJ1MZZJg7P1VBksVjsyYsPQOzlSlucQkTuDo3WBMUfrZn9KX9BGJLNyvWD3+WJUp9O5jJFR/3WlAEcOeCTcVC1tCyJlcKRFSRdjV3gWRyKh8YC0aKTHmNHYbMfmExJfNXFxrZYyOOLkY4UyOAq4GHP34kv6JkGn08nyHCJiBue0tBdggZrB0WqAwy8Ilcrg6PXO7xa/dDjsguunI8Ww2dX1GKIARw5CI5wnQil1OIE2h4qj9QBH7inirZFYaKzT6TA5R6YylZY6qDixvhuS+YToYpzMupBkQHb/G1e4yLipSroLMEEInBZxjjg2RaMaHCVbxDkS6NsuzI5HlNmIsjoL9p5R12OIAhy5kKNVPNA8cDj8CqT2PGvN1goVKpSoAOfrIVEGB3B2U/14WGJX4xoNanD4+7+xiv3IjcxBXl5ZHU6V1sGo12Fcb5naw10JCXMG2VKVqepKAEsNAJ0zgNI6Wi9RKdkizpFA3xZi0GOSw9VYFl2gF1CAIxe87CGVTsBqcX7ZBFqAE5EE6I2stquVk4nV4gwwlM7gyDC+YkyvBESEGnC+ugkHzkkjXgagzQyOKRIIi2f3lShTyeyBw7M3I7rHIcocIstztCFOYqExz97EZDKvokCAv6cttfKM1fEXfkGrVIkKcCn/+ve9xcfIqK3DoQBHLqRuFa8pACAABhMQoZ1x9B6h17sIjTVSpqo+ywIuo9lp264UEpeoAMBkNGB8H1beWHdIwpS7FjM4gLKdVDJ3UInTw+VuD3clXmKhsdgiHgAGfxxTFBDimPellQsvjiA4z5VKmrqKZn/+BTgT+iahZ1IExvdJQrPNLsHCfIMCHLmQulXcVWAstwhRDrTmhePaIq706ymxmzGHXzWtleqqSRC0mcEBlPXCkTHIa7LasPkEaw+f2FfBQFs0+zstzfECTX/DidKoDqe+DLA1AdA5Lw6VQAKzPwCICQvBT3+eiL9dOQAhBvXCDApw5ELqDE6gdlBxtDZVXA0PHI4Y7Ek7umJy/2TodcCRohqcKa/3/4CNVYDV4Y6suQyOTGaa7pAxg7PjVAUamm1IijIhJy1K8uO3i9St4mIGp7c0x1MKrZr98fN9ZLKyBptiZvQsG9MS4FCAIxeuXh1SCGtLclseN9AQHXw1ksFRS2AMOK/I6oqZFkgi4iJCcWEPpk2RZDYVz96YorVnva9kiUp0MZZeg8MnL09Qoj3cFanN/spOsttAaRHnaNXsT+kWcU50BrNDsFnY+SnAoQBHLuJ6MEM3ayNQtN//4x1fx257jPf/WGqgtVZxtVrEAWa9rneISSW+cuRW6ZIEOGJpRmPlKUCdEpXEZTq7XcB3B1gWb/pAhTNkPINTUwA0N/h3LEEIPJM/jlY7qXiLuNJDlQ0hzkBeyVEoMkEBjlzoDUD3Mex+3ib/jlVdABT9BkAH9J7s99JUQbMBjgoZHL1eFqExAEwdwE7Y20+Xo7Lez+yQqL/RWHkKkEwM2Sl2m8vrIG0GZ1d+Bc5XNyHKZMT4vgo3DoTHs8wc4P9rWFPIhkLqDMqbZvqLVs3+qlXooOLEKOwzJSMU4MhJ93Hs9vSv/h3nmCN7kzEi8DqoODJ4v/iFOKZBpROyxG7GnKyEcPRLiYLNLuDnXD9TzFrO4PDAtL4UsEigN2qPulLWbSeDi/G3+1lwO2VgCkxGeQwE20Wnk26qOBcYx2axDEAgoVWzvyqVSlSAy8UDZXCIjuhxMbvN28KuBH3l2Fp223ea/2tSC1dhrdriNWuT09tErStOmYTGgIRlKi1ncMyxQCgT5eadypXW3NAVmVyMbXYBq39jx545RB5/nU6RqlU80KaIuxKp1QyOSiUqQLJOKi1AAY6cpA5haeCmKkeJyQesFuDkena/zxTJlqY4kSnsKtjezK661YRfmYSEMz2MGsg4gJQHOBty/Ry+qaEMTlVDM3blleOj7fl45ptDmLNsO443xwEA/vrOd/jn2qPyPLFMHVQ7T5ejuKYJUWYjLu6toP+NK1KZ/QVqizjg/H/VWgZHFBmr0DUbRBkco9oLCGoMRiBrNMvAnP4VSB/m/THyNzOnzYhkIHWo5EtUDEMI+xtqi9iHV2lzPVdcy1NqeQqJJSrpMziDM2KQEm3C+eombDlRhkn9fXytVcrgVNZbsPq3IhwrrsGx87U4VlyD89VNbbY7HZKA3oZ8dNOV4rUNJ3D54DQMSI+WdjG18gQ43zqyN9MGpiLUqNJ1Ji9R+Z3BCdAOKsApMm4oZxeTSrZkt4fd7szsqpLBcZR/KYNDdIpYpvJRaMz1N32mMnFqIKMVobGaAmOOTCJjANDrdWIWxy/TPxUyOE1WG65buhmPr/wNyzedxq/HS8XgJi3GjEv6JuGOi7PxwqzBGDJwMADgkuQG2OwCFn6xX/rpxTJkcFh5ih33CrXKU4B0reKBNkXclfB4l45GjZSp6opZplunV8d/yjWDI1fpVyEogyM33V0CHLvN+zo+198EcnmKE50OFOzWQICjogcOR2bR9ZQBqXh/az5+OHwef7cPgl7vQ6ZKhQzO+1vzcbK0DvERobhueAb6pESiT0oU+iRHtp3TZOkNHAEmpDQiqtyIfWer8N6W07htXLZ0C6qR3gNn+6lylNY2ISYsBON6qdg0wEtUlXm+nZsAlm3gGaBALFHpdCyArz7L3u/8y11NuMA4Ko1VAZSGm8laaoDGSiAsTvk1SESApwQCgLShQGgkc4U9f9C7fctPAaVH2aDKXpPkWZ+SaMXsj2dw1GxpjXbJ4MhwlTS6ZzwiTUaU1DRh39lK7w9gqQeaHEM7FcrgVDU0498/HQMAPDqtH56cOQA3XJiFC7LaGULpEEOG1Z3DYzP6AwBe+j4XBZV++rq4IkMW69vfWFA7bWCKeuUpgH2R6UOYqZuvFx3V55jXlz4k8IYAc7Q2rkHNFnEACI0Awh2Bd4DrcCjAkRuDEchy+OF42y7Oy1NZYwBzjLTrUgMZO4e8Qk0XYw7PCNiagPpyyQ9vMhrE4Y0+dVNx7YnRrNh777X1J1BZ34w+yZG4foQH4kpxXMMZ3HRRFkZ0j0OdxYa/fXVQuq4qiSeJW212rDnAy1MKzhhyh97g/AxUnPbtGGXH2W1cD3WyDVKgNbM/sUVcxfeHkk7hMkIBjhL08NEP59j37DYYylOA9jI4anngAIDR5OzgkqlMNdWfdnFuXR+ZoogQ+1xlA5ZtYqWOv8zoD6MnA/r4SbimEHp7MxZdNxghBh1+OHwe3x+U6Gpc4jIdK09ZEBsegrG9VOrgc8XfVvFAbhHnaM3sT2wRV3HuoJJO4TJCAY4S8PEKeZs894Cx1AOnNrL7fQLY/8YVLYiMmxucM1bUnusVJW9Ga2K/ZBj1OhwrrsXp0jrvdpape6g9Xll7FBarHaOy43Gpp11fEUkswwQBqD6LvilRuPsS9kX7t68Oorqx2b9FtXAxluZ1WPWbczSDmlOWRfxtFeczqAJRf8PRmtmfWnOoXIkNjk4qDXzCugBpQ4GQCCbYKvZQh3N6IytfxGQBSf1kXZ5iuE4UV0udz7M3oVHqi+d4wCdTBicmLASjevo4fNM1gyMzhwqq8cUepjtYeHmO50Mndbo2V5r3Xtob2YkRKK5pwktrcv1bWF2JpC7GLctTKnZPuSJZBqenNOtRA62Z/ak1h8qVGIVGocgMBThKYAhhfjgAcNrDdvGjLuUptbxapIZnLKwNQEOFOmtwFRir/bq6BnwyMSWHt4t7eXWqYAbnH2uOQBCYo++wzFjvdm6lFTCHGPD3awcBAN7floddeX7om/gVvUQuxltPlqO8zoK48BCM6amB8hTg/7iGQDb542jN7E9Nkz+OUrPeZIYCHKXgfjinN3a+rSA4BcaBPJ6hNSFmp+5ErTIVF1OqXZ4CXEpUMgY4jinVu/IqUFbb1iyvXRTK4Gw8VoJfjpYgxKDDI9N8yFS6udIc2ysR14/oBkEAFn7xGyxWH0eDSOyBw7unpg9K80xjpARxfmRwbFbn5ymQNThayuDYrE5huxYyOFSiIjxCNPzb3LkOpySXTXI1mJz6nWBBbR2OFkz+ODK6GXMyYsMwMD0adgH48YgXwzcVyODY7QIWrT4CALh5dHd0T4jw/iC8fFu4v8XDT1yeg/iIUBw9X4s3N570bYG10nngNLuUp1SbPeUOnsFprPK+m6/qDDOkM5jUzTb4C3+P1xb7NzNQCmqLWFlUb2SZQ7XgGZz6MsDipX5PQ1CAoxTpw9nso4ZyoORwx9vy7qns8UBouPxrUxK1p4proYOKo1DbvE/DN8UMjnwBzlf7zuFQYTWiTEbcd2kf3w7S7UJ2e3ZHC11XXEQo/jozBwDw/348hlPeiqwBlwyO/1msLSfKUFHfjISIUIzKjvf7eJIRGu78P/Y2i8P1N/E9A9tlPSIZgA4QbOwLXU1Ek790dV9Tl2G2qDqr3jr8JIDflQGGIQTIHMXud9YuLo5nCKLyFEf1DI4GPHA4UfKKjDk8wNl4rAQNFg+vUGul+3J3R2OzDS9/zwZk/mlSL8RH+DgDKG0oYAhlA1xbfUFfMywD4/skwmK144mVv3nvjSOhB863+x3dU4NStVOe4vg6siGQRzS4YjACEQ5jO7V1OGpOEXdFpwuKoZsa+6QFOaIOp4MAp7EKyN/C7geL/40r0fJN0fYIfhLnqXk14SWqhgrWvi4TA9KikREbhsZmO3497sEkd6vFeSUrUwbnvS15OFfZgLQYM273Z7SC0QSkDmH3z+xo8SudToe/XzMY5hA9Np8ow+e7vXzP1UjTIt5ss2PNQY11T7ki6nBOe7dfmUsGJ9CJdClTqYkWWsQ5og4ncIXGFOAoiasfTntXkyd+BuxWIKGP88oqmFBAWNsu9eWsVR/QxknZHAsYw9h9GV8PnU7nUqby4AqV+wTpjU5RuIRU1lvEkQwPTukLc4ifHUqZF7Hbs9vb/CorIRwPTO4LAHju20PeCa1LHW3mfhqubTpeiqqGZiRGhmJUtka6p1zxtVU8GEz+OJEOvUutyhkcLbSIcyiDQ3hF+nD2hVZfBpQccb9NMHZPuaJmiYpfcUala0PbpNMpIjQGnGWqHw8Xdz5xm2cuIpJl0QEsXX8C1Y1W9EuJwqwLJBCnuupw3HDn+Gz0T41CZX0z/v5tJ/o3TnUBUH6SeeDw4/sIL0/NGJQGgy9DT+VGNPs77d1+wdAiztFKq7g4h0oDou0g6KSiAEdJjKFAVgc6HLs9uKaHu0Mc16BCgFOuwZS6+HrIG+BclB2PaLMRZXUW7M7vxINIRv3NmfJ6rNh0GgDwl8v7S/OFzzM4RQfcdnyEGPT4x6wh0OmAL/acw8ZjJZ0fk/tVpQ7xaxaXxWoXx0ZosjwF+JbBsTU7BftBkcHRSKs4ZXAkhQIcpenegR9O0T5WHgiNBLLGKrsupeAZi6ZqoLFa2ecud7QLa8l1lQtYZRYahxj04giETrupaqRrj27NK+uOwmKzY2yvBEzs6787MAAWJEalsS6Ygj1uNxmWGYtbx/QAADz55QE0Nncits5zXIBw3ZyPbDpeiupGK5KiTLiwh4a6p1zherTqAqC50bN9KvLY6x0SLsv7RHE0k8HRkgYn8Mc1UICjNKLQ2I0Oh5enek5k2Z5gxBQFmBxXxDKXZdqgxZS6Am7GnCkD2El83aHzHXcU1cpj8nfgXBVW7mEn8IUzvBjJ0Bk6nbOMdKatDofz56l9kRxlQl5ZPd78pRNvnNPSBDirHOWpywelarM8BTCdVWgUAMHZZdgZrtlQtR3BpUALGRyrxSlyVnPQJsdlmC1sfs51UwlZA5yKigrMmTMHMTExiImJwZw5c1BZWdnhPoIg4Omnn0Z6ejrCwsIwceJEHDzonN9UXl6O++67D/369UN4eDiysrJw//33o6qqSs4/RToyLnDocEqZoZ8r4niGqcqvS0nU0uFoURSpoOh6Qr8khBr0OFVahxMlte1vKLGDL8A+14u+Y/qXq4elY3A338s+bhGFxjvb3STKHIInrmDeOEt+Po4z5fXuN6wpAsqOA9ABWWN8XlKT1SaOyLhiSLrPx5EdnQ6I78Hue9oqHiwt4hwtZHBqCgEIzDhRBnG/10QkMwsGwa5e16ufyBrg3HTTTdi7dy/WrFmDNWvWYO/evZgzZ06H+7z44ot45ZVXsGTJEuzYsQOpqamYMmUKampqAAAFBQUoKCjAyy+/jN9++w0rVqzAmjVrcMcdd8j5p0iH0QRkOq4281x0OHWlwLld7H6w6m84agQ4gqDNyccKiYwBINJkxJhe7MS5tqMylQwZnF+OlWLT8TKEGvR4eKoMw2O7uXRSdZCdumpoOkZlx6PJasezqw653yiP628GA2GxPi/p12OlqGm0IjnKhJHdVR7s2hnejmwoO85utfRZ8gfXDI5ag4DF8lS6NrJier0zkxSgOhzZApzDhw9jzZo1eOuttzBmzBiMGTMGb775JlatWoXcXPdTfgVBwOLFi/HEE0/guuuuw6BBg/DOO++gvr4eH374IQBg0KBB+Pzzz3HllVeiV69euPTSS/H3v/8d33zzDaxWq1x/jrTwdnFXofHxHwEI7KQareGrPSlQsCwjUl8GNDmyfFrwwOEoJDLmeORqLHEGx2YXsGg1y97cMqY7MuNl6GBLGwroQ9gE8A78XHQ6HZ69ZhAMeh3WHjqPn3Pd+J5IVJ7i3VOXD06DXqvlKU68l144WsyG+gN/r1sbmReZGogCYw2UpzgB3kklW4CzZcsWxMTEYNSoUeJjo0ePRkxMDDZv3ux2n1OnTqGoqAhTpzpLNCaTCRMmTGh3HwCoqqpCdHQ0jEaj2983NTWhurq6xY+quBr+8auFY12kPAW4fKkrmPbkAuPoDG20iHOiXDI4CszB4QHO3jOVKK5pR1AqcQbnw+35OFJUg2izEfdM6i3JMdsQYgbSHIZ/7bSLc/qmRGHu2B4AgKe/PthWcMw7qLqP83k5jc02MYjU1Oyp9ojz0s1Yi9lQfwgJc2oD1TL7E1vENSAw5gR4J5VsAU5RURGSk9sOC0tOTkZRkfs6J388JaXliTUlJaXdfcrKyvDss8/i7rvvbnctixYtEnVAMTExyMzM9PTPkIeMEYDRzK42S4+xCbLHf2S/C8bxDK1Ro0SlVdfVyBTmtSLY2PtBZlKizRjaLQaCwDxx2mC3OU/wEmRwSmub8NIa5vn056n9EOfrSAZPEMtUHQc4APDAZX3cC45rix0Gfzqgu++djBuPlaKmyYrUaDMuyNJ4eQrwrlW8udF5RR8sGRxAfbM/LbWIc/jMvgB1M/Y6wHn66aeh0+k6/Nm5kwn93HVJCILQafdE69+3t091dTWuuOIKDBgwAE899VS7x1u4cCGqqqrEnzNnVI5GjSZn18fpjcC5ncxhNywO6DZS1aUpghpeOFpNqRtcpgYr9Hp0WKaqL2PBFnSSTDP+x3dHUN1oxcD0aNw8WuYBp5mdd1JxXAXH/1nvIjjm+puUgUC4723d3+5n/5cBUZ4CXDQ4ecyPqyMqTgMQWOdVhESt/lpAFBqr1EmlpRZxDi9RVQZmgOO+ptMB9957L2bPnt3hNj169MD+/ftx/nzbN0pJSUmbDA0nNZW9wYqKipCW5kzrFhcXt9mnpqYG06dPR2RkJFauXImQkJB212MymWAymTpcs+L0uJgFN3mbnNNae00G9H7a1gcCasyj0mKLOCc6nV01KtQ2P2VAKl5eexS/Hi9FXZMVESaX0wDX30QksuDLD3acLsdnu9h7m+teZIVfNJw/AFjqOy1FXjU0HR9uy8e2U+V4dtUhvHHLSGd5yg/9jWt5SrPmfq2JzmCjOWxNrFwekwmYIpknV2gEyzjzi0zxYiFIWsQ5otBYrQyO43tASxocPpQ4QEtUXp/BEhMTkZiY2Ol2Y8aMQVVVFbZv346LLmKp423btqGqqgpjx7pP/WZnZyM1NRXr1q3D8OHDAQAWiwUbNmzACy+8IG5XXV2NadOmwWQy4euvv4bZbPb2z1AfVx1OhEN0HazjGVrDA5yGcpbuDlHg/0+LLsac6HSgYLdiGZy+KZHonhCOvLJ6/HK0BDMGu3wJi/ob/8pTVpsdf/3yAABg9oWZypRpYjLZumuLmOFfj441NDqdDs9cPQiXv7pRFBxP4gJjP/Q3G46WoM5iQ3qMGcMzY30+jqIYjKwcUX4C+MjNBazOwIIdUyRgs7DHtHix4A9qt4rzz7+Wmky4BqfqLMvsyTC6RU5kW21OTg6mT5+Ou+66C1u3bsXWrVtx1113YebMmejXz9km2r9/f6xcuRIAO+EsWLAAzz//PFauXIkDBw7gtttuQ3h4OG666SYALHMzdepU1NXV4e2330Z1dTWKiopQVFQEm01+kaZkZIxkfge159kVJ3Qsg9MVMMcyB1RAdgdfAEzIzcWTWitRAU6hsUIBjk6nw5ScdspUYgeVfwLjFZtP40hRDeLCQ/DY9P5+HctjdDpnmcrN4E139Et1Co4Xf7UZKHHMqvIjwAmo7ilXJjzKujjjslnpKcQlAybYWBdi9TmnVszPGV2aQ02zv+ZG5o0GaKtEFZXOglt7s/qDSH3Avxx0J3zwwQe4//77xa6oq666CkuWLGmxTW5ubguTvkcffRQNDQ2YP38+KioqMGrUKKxduxZRUVEAgF27dmHbtm0AgN69W3ZknDp1Cj169JDxL5KQEDM7QXAvnG4jgQgNmDspgU7HvtTLT7AvdbmzKnWlbDQEdE6tgZZQ0AuHM2VACt769RR+yi2G1WaH0eC41uEnMT8yOOerG7H4BzYt/LHp/eUVFrem20XA4W86NPxrzQOX9cHX+wqQVrkdCAWQPMDnz2Jjsw0/HA6w8hRn6Gz244rdxuZ7WWrZbVMNu9XpgcxR7o8TqKiZweHl+pBwpsXUCgYjC7iq8lmZSkvZJQ+QNcCJj4/H+++/3+E2rS3jdTodnn76aTz99NNut584cWLHNvOBRI+LnQFOV+ieciU63RngyA0vT8V0U6Yc5i0KuhlzRnSPQ1x4CCrqm7HjdIVoACgKLP3I4Dz37WHUNlkxPCsWvx+pcMcidzQ+4zD880AjwgXH5Z+9AQCoTR2FSB+ffn1uMeotNmTEhmFYoJSnOkJvAMzR7CfYUTOD4yow1pquKTbTEeDkO4dFBwiBVVALNlw1AsHuXtwaJb1wtNoizuFXRQpmcIwGPS7t76ZM5WcGZ9PxUnyzrwB6HfDs1YOUL9GkDWVi2bpiz+cqgQmOLzUfBQB8cN73oOwbsTyVKt2sLUIZeAZHjQBHiy3iHC40DsBWcQpw1KTbRUDyQCBzNJA6RO3VKIuSXjhaFhgDLq+FssNHebv42kNFsNocrcF+ZHCarDb89SsmLJ4zujsGZUg8b8oTQsKcn6UznfvhcHQNFehuZTqtN/LSsN6dw3E7NFhs+N/OM7h26SZRf6Pp2VOEe3gGp7EKaG5Q9rlFkz8NdVBxYgLX7I8CHDUJMQPzNwN3fB9w6nS/UTTAcRi5aVFgDDhFxpYaoFE5l+1L+iYiPNSAsxUNuGXZdpTWNvmVwXlr4ymcLKlDYqQJD8kxb8pTMj03/BPJY07pJeYeKEMMnv76IJqsHTct5BbV4KmvDuCi53/AI5/tx578Shj1Oswd1wNDpR4mSsiPOYY1fgDKZ3E0ncEJXC+cLvatSmgGVUpUGg1wTJGAyaFxULBMFR5qxOIbhiEi1IDNJ8pw5asbYfexi+psRT3+/RMTFj9+eX/EhLXvSyU73bzrpAIgzp+KyZmEpCgTTrd2OHbQYLHhs11ncd3STZi2+Be8syUPNY1WZMaH4dHp/bB54aV46sqBVJ4KRHQ65/teabM/sUVciwEOL1EFXgZHVpExQbSLUmUZQdB+Bgdgr0dJNTvRJSmX/Zg6MBVf3TsOf3xvF0pLzkNvZh4nQmQKvPmKfuabQ2hstuOi7HhcO1zlkzQPcIp+Y6WGkLDO93GI/UN7jceT3XPwwMd7seTn47hmeAa6xYUjt6gGH23Pxxe7z6K6kQ31Nep1mDIgBTeNysK4XomB1RJOuCcylWUqlG6J1qKLMce1ROWhcF8rUIBDqAMPcGrPA7ZmwCDTFX9tMWtxhU5bU8RbE5UGlBxRNIPD6Z0cha/uGYdXPvwayAeqhHA8++VRPHfNIJhDOnfW/vlIMdYeOg+DXodnrx6kfvYiNovpKWrPM8O/zmZKNVQARUw7hO4X46rIZNHh+IGP9wIAduVViJtnxodh9oVZ+N3IbkiO0mBXHuE7amVwRBdjLQY43QDoAGsDs9yIDJzxHFSiItQhPBHQhwAQ5PWdEFvEM9kMMK2ixvgKF6LMIfjbBNYqXizE4bNdZzHrtc3OGU3t0Nhsw1NfHwQA3D6uB/qlRsm+1k7R6VzKVB7ocPK2ABCAhD5AVIrocGzQ67ArrwK78ipg1OswY1Aq3r39Imx4eBLumdSbgptghGvPlMzgWOrYLEJAmxkco8nZYRZgnVQU4BDqoNc7De7kFBqL5SmNdlBxRDdj5TM4HJ1DWJmUnoX4iFAcLKjGlUt+xYaj7U85X7r+BPLL65EabcYDl/VVaqmd4+qH0xl8wKaLbUO/1Cg8fnkOBmfE4JFp/bD5L5fitZtH4JK+SVSKCmbUyOBwgbFJw35DATp0kwIcQj2UEBprXWDMUcHNuA2Oq9bYpEysuu9iDM2MRWV9M25bvh3//vEY7PaWBpunS+vw+gb2+v515gBEmjRU8XbN4HRmDHp6I7vtMb7Fw3dcnI1v7ruYZWuiKVvTJVAjgyO2iGswe8MJ0KGbFOAQ6qFEq7g4+VjrAQ4P9pRzM26DiwdOemwYPr17NG4alQVBAP657ijuencnqhqaATAH8qe+PgiL1Y7xfRJx+WD/hnNKTvpwZvhXe77jq87GKiZGBvyaP0UECWqY/Wm5RZwjDt2kAIcgPEOJAKfMUaLSegYnSjsZHH4VazIa8Py1g/Hi9UMQatTjxyPFuGrJrzhcWI3vDxZhw9EShBr0+L+rNNgWHRLGBkcCHetw8rcCgp29P6IDbHYUIT2RyexWyRKVllvEOWIGh0pUBOEZ/AMt10Rx1xZxrboYc8SusmLWVaYGYganZTbm9yMz8cWfxiIjNgx5ZfW4dukmPPkl6zr64yU90TPJ18lNMtPNA8M/sTxF2RsCzhJVXQlgsyrznIFQooqhEhVBeEeUzCLj2vNAs2PysZZbxAHluso6QszgtDX5G5QRg1X3XYxL+iahsdmO0loLMmLDcM+k3gov0gu4DqcjofFph8C4+8Xyr4fQPhGJ7HwBgQU5ShBIJarK/M41bRqCAhxCPeTWnZS5toiHyvMcUqHXq1+maieDw4mLCMXy2y7EA5P7oGdiBF763RCEhXbuk6Mamdzwb7/72UKN1UDhPnafMjgEwKanRzjKVEoJjbVs8sfhXVSWGmdLewBAAQ6hHq5TtO0dz/3xiUARGHOUaJtvD0sdO3kBbjM4HINehwen9MVPD0/E2F6JCi3OR2K7sy8ru9UZyLhyZhsg2Fh2L0aDQw4JdVC6VVzM4Gj4PRgazrLMQECVqSjAIdQjMoWlg+1WedLBgdIizlEzg8PLYiHhgEkDZn1SoNN17IfjmD+FHlSeIlxQslW8scp5YaHlDA4QkEM3KcAh1MNgdJ5M5PDCCRSBMUdNN2PeFhuZElCzZjqlo8GbPMAh/Q3hipIZHJ69CYtjWRItE4BDNynAIdRFzlbxQBiy6YqabsbiFHGN+dn4iyg0bmX411TL5lQBpL8hWqJkBkdsEddweYrjOnQzQKAAh1AXuaaKt2gRD5AAx1WTpDSuGZxgQjT8K2p55cn1N7FZzitTggCcGZzaYvmfq1rDQzZbE9ud3VbmqbsOL6AAh1AXucoyNYVAcz2gMwBx3aU9tlwoYXzYHsGawQkNB1IGsfuufjhUniLagwf5Stg18BIV/+xrmQB0M6YAh1AXub7UucA4NgswhEh7bLlw9QVS2msiWDM4gIvQ2CXAEQdsUoBDtCJSwXENgdAizgnAgZsU4BDqIpcXTqAJjAFngGNrAhoqlH3uYM3gAG2FxpY64Nwudp/0N0RrxBLVefkvNHiwoOUWcQ7P4DRUMA1bAEABDqEucpWoAs0DBwBCzEBYPLuvdJkqmDM4PMAp3A80N7KWcbuVXZHGBkj5klAO/hmwWeS90BAEoPgwu5/YV77nkQpzDPsBAqZMRQEOoS6uJSopr5YCzQOHI87nUlhoHMwZnLgeQEQSYG9mhn+8PNV9XHC1xBPSYDSxtm1AXh1O7XmgvpR5gSXnyPc8UhJgQzcpwCHUxbUsU18u3XEDrUWco4absdUCNDhe+8ggDHB0OpfBm9tdDP6oPEW0gxKt4kVsYC0S+gAhYfI9j5TEUIBDEJ5jNLGra0C6MpXdHpgaHED+AaTu4OUpfQgQHq/c8ypJt5Hs9tQvLvobEhgT7aCE2d/539ht6iD5nkNqAqyTigIcQn2kHlFQUwhYG1mLeKB5nIheOCoEOMHmYuwK76Q6to5pK6LSgbhsdddEaBclMzgpA+V7DqmhEhVBeInYSSVRBocLjOO6B06LOEcu48OOEPU3QSgw5qQPZwEvHDqvHhcHbzBH+I8SZn/neYAzWL7nkJoAczOmAIdQH6m9cAJVYAywzAKgrMiYX6UGo/6GExrRshRA+huiI+Q2+2tuBEqPsfsBVaKiDA5BeIfUAU4gtohz1BAZc51BMGdwAKfQGCAHY6JjIl28cOSg5AgbFRIW7yzRBwI8wKkrZkGaxqEAh1AfqUtUZQE2g8oVfrJrKAeaG5R5zq6QwQGcfjiRKYEZ/BLKwe0S5Mrg8PJU6qDAKpWGxQEhEex+1Vl11+IBFOAQ6iN5BidAO6gAdgIxmtl9pcpUXSWDM+AqYOhNwPRFgfWlQiiP3OMaigJQfwOwz41YptL+0E0KcAj1kXJcg90OVJxi9xMCMMDR6ZQXGneVDE5IGHDta8CgWWqvhNA6PNi31MozlsA1gxNoBFCrOAU4hPpw3YmlFmis9u9Y1edYi7je6DSlCjSUFhp3lQwOQXiKKcpZipE6iyMIQJHDAyclEAOcwBEaU4BDqE9ohHPGib9ZHLFFvAdgMPp3LLUQhcYSz+dyh93GBINA8GdwCMIbomTqpKo+BzRWsouwpH7SHlsJAqhVnAIcQhtIJTQO5BZxjuhmrEAGp64UEOwAdE5HaYIg5DP74/qbxH7MyT3QoBIVQXiJVELjQJ1B5Yo4cFOBVnF+8o5ICtyMF0HIQWQyu5Xa7C8QRzS4Etud3VKJiiA8ROoAJxA7qDjRCmZwSH9DEO6Rq1U8EEc0uMJLVDWFgK1Z3bV0AgU4hDaQvEQVwAGOkiLjrtJBRRDeIpfZnziiIUAzOBFJgMHESttK6AT9gAIcQhtIkcGx21xaxAO5ROUyfNRul/e5KINDEO6RI4NjqXNehKUGmAcOR6936nA0XqaiAIfQBlESBDhVZ9mkaEOoM40aiESmANABditQVyLvc1EGhyDcI0cGp/gwAAGISHZqfAKRAOmkkjXAqaiowJw5cxATE4OYmBjMmTMHlZWVHe4jCAKefvpppKenIywsDBMnTsTBgwfb3XbGjBnQ6XT48ssvpf8DCOXgGRx/hLVcfxPXA9Ab/F6SahhCXIb9ySw0FieJU4BDEC2QI4NTFOACY06AeOHIGuDcdNNN2Lt3L9asWYM1a9Zg7969mDNnTof7vPjii3jllVewZMkS7NixA6mpqZgyZQpqamrabLt48WLoyHI9OOABTkMFYKn37RjlQaC/4SglNOZXp5FUoiKIFvCsZkM5YLVIc8zzjov1QNXfcAKkVVy2AOfw4cNYs2YN3nrrLYwZMwZjxozBm2++iVWrViE3N9ftPoIgYPHixXjiiSdw3XXXYdCgQXjnnXdQX1+PDz/8sMW2+/btwyuvvIJly5bJ9ScQSmKOcTqH+iquDeQhm62JkiCj5QmiBocyOATRgvB4QB/C7ktVphJHNASo/oYT08UzOFu2bEFMTAxGjRolPjZ69GjExMRg8+bNbvc5deoUioqKMHXqVPExk8mECRMmtNinvr4eN954I5YsWYLU1M5PzE1NTaiurm7xQ2iMFjOYfFTm8wxOIM6gao2YwZExwLE1O4NJCnAIoiU6nTOzKcXnUBCCKIPTxQOcoqIiJCe3FVElJyejqMh9TZM/npLSMl2ekpLSYp8HH3wQY8eOxdVXX+3RWhYtWiTqgGJiYpCZGcAC1GDG306qYHAx5igxcLMkF7A3A6ZoILqbfM9DEIEKz7Tku78o94rKPKCpmjVBJPbx/3hqwktU1edY96pG8TrAefrpp6HT6Tr82blzJwC41ccIgtCpbqb17133+frrr/HTTz9h8eLFHq954cKFqKqqEn/OnNF23bDL4o8Xjt0GVJxm9wO5RZyjRImqcC+7TRvKWj8JgmhJr0ns9uR6/4/FDf6S+rNGgkAmKo3N0rJbpTdClBCvvdnvvfdezJ49u8NtevTogf379+P8+bZ1y5KSkjYZGg4vNxUVFSEtLU18vLi4WNznp59+wokTJxAbG9ti31mzZmH8+PFYv359m+OaTCaYTAE486Or4U9ZpuoMy0YYQp2BUiCjhMi4cB+7TRsq33MQRCDTcyK7zdsCNDcAIWG+HyvQDf5c0RvYebYyj5WpYrR5zvU6wElMTERiYmKn240ZMwZVVVXYvn07LrroIgDAtm3bUFVVhbFjx7rdJzs7G6mpqVi3bh2GDx8OALBYLNiwYQNeeOEFAMBf/vIX3HnnnS32Gzx4MP71r3/hyiuv9PbPIbSEP2UZXp6Kyw7sFnGOFL5AnUEBDkF0TGJf9lmsKQDytzozOr4QLC3inNgsFuBUnQEwRu3VuEW2vHROTg6mT5+Ou+66C1u3bsXWrVtx1113YebMmejXzzkivn///li5ciUAVppasGABnn/+eaxcuRIHDhzAbbfdhvDwcNx0000AWJZn0KBBLX4AICsrC9nZ2XL9OYQS+FOiCoYhm67wDI6lBmhqa5HgN3ab84SbNkz64xNEMKDTObM4J3/271jBlMEBXITGeequowNkHR/8wQcf4P777xe7oq666iosWbKkxTa5ubmoqqoS//3oo4+ioaEB8+fPR0VFBUaNGoW1a9ciKipKzqUSWsAfkXEwzKByxRTFxL9N1SyjlSTx+7/0GNBcz1rzgyUoJAg56DUJ2PehfzqcxmqnRjDQW8Q5AeBmLGuAEx8fj/fff7/DbQRBaPFvnU6Hp59+Gk8//bTHz9P6GESAwjM4dcXMWMsY6vm+wZbBAZiQr6mapceT+kp7bF6eSh0cHCU9gpCL7AnstnA/UFcGRCR4f4ziQ+w2Kp356wQDPIOjYbM/ap0gtEN4AhMJA96b/QWTizFHTqEx76BKHyb9sQkimIhKAZIHAhCAUxt8O0aw6W+AgBi4SQEOoR1amP15UaayWZ3p32DwwOHEdme3pUelPzYJjAnCc/zV4QSb/gZwlqiqzjITQw1CAQ6hLeIcQvHN/wbsds/2qcpnfgxGc3C0iHMyLmC353ZKe1y7naXbAQpwCMITePfUifW+fZlzB+NgyuBEZwA6PWBtBOpK1F6NWyjAIbTFxIWsTJX7LfDDU57tw2dQxWUHl2Fdxkh2e26PtG6h5SdZd5bRDCT263x7gujqdB/L5lJV5Tv1fp5itwPnHRqclCARGANMIxnlKKNrtEwVRN8GRFCQNQq4eim7v/lVYNc7ne8TjAJjAEjOYV1Olhppy1Rcf5MyCDDI2mdAEMFBaASQ6Zir6G03VcUpoLkOMIYF3zlK4zOpKMAhtMeQ3wET/sLuf/tQ5ycUUWAcZD5IeoOzTHV2h3THJf0NQXiPrzocLjBOzgm+jsUYbQuNKcAhtMnEvwCDrmfamk9vAUo6yGAE05DN1mSMYLdnJdThUIBDEN7DA5xTv3hXMhYFxgMlX5Lq8E4qjbaKU4BDaBOdDrj6Pywt3FgFfPg75kHhDp7BCbb0LwB04zqcXdIcTxCcAQ61iBOE56QPB0wx7HxUsNfz/fiQzWAx+HNFLFFRgEMQ3hFiBmZ/yNqlK04Dn/wBsDa13MbWDFQ4rMKDMoPjCHCKDwFNtf4frzIPaKxkgsmkHP+PRxBdBYMRyB7P7ntTpgrGFnEOlagIwg8iEoGbPmVXTvlbgK/va9mmWZkPCDYm4ItKa/84gUp0GhDdDRDsQMEe/4/HszcpA7xziiYIwkWHs96z7RsqnOWboCxRubgZa9ALhwIcQvsk9wd+/w6gMwD7PwF+edn5O95BFR9kLeKudHPocKTww+GpdRqwSRDe09Phh3NmG2Cp63x77n8TkwWExcq2LNWI6cZuLbUsmNMYQfqNQAQdvSYBV/yT3f/5OeDA5+x+sA3ZdAcvU0khNCaBMUH4TkIvVpaxWYC8LZ1vL+pvgrA8BQAhYUBEMruvwTIVBThE4DByLjDmXnZ/5Z+AM9uDW2DM6eYS4PiTBnYVGFMGhyC8R6cDejqGb3qiwznvaBEPRv0NR8NDNynAIQKLKc8A/S4HbE3ARzc6r6KCUWDMSRvGynO1RUD1Od+PU30OqC9lxwpGPQBBKAEvU3miwwn2DA6g6aGbFOAQgYXeAFz3Jmu5rC91XiEFcwYnNNwZkPhTpuLZm+Qc1qFGEIT3ZDsyOOcPALXF7W9nswLFh9n9YM7giJ1UlMEhCP8xRQI3ftKyayqYNTiAix+OBAEO6W8Iwncik5yeNic3tL9d+QmWaQ6JcA4RDkaoREUQEhOTAdz4MRAaBcT1CM4WcVdEobEfhn/UQUUQ0uBJuzgf0ZAyIHg7PAEXs788ddfhhiB+1YmgJ30Y8MBe4O5fmPgvmOl2Ibst2MPMDX2BMjgEIQ2iDufn9oX/wWzw54qG3YwpwCECm4hEwByj9irkJ6E3Mzu0NjBXY2+pKWIiZeiCW/BIEEqQNQYwhDLhftlx99t0BYEx4NTgNFYCjdWqLqU1FOAQRCCg17tMFvdBh8OzN4l9gdAI6dZFEF2R0HAgazS7f6KddnExgxOEM6hcMUUCYXHsvsZ0OBTgEESg4M/gTRqwSRDS0pEOp64MqClk91MGKLUi9dBomYoCHIIIFLgO5+wO7/cl/Q1BSAvX4ZzeyFrCXeH2FXHZgClK2XWpgUaHblKAQxCBQoZjJlXpUaCh0rt9KcAhCGlJGwqYY4GmaqBgd8vfdRX9DSe2O7utogCHIAhfiEhkLfFA2xNqR9SVOWvjqUMkXxZBdEn0BufYhtY6nK6iv+HEatPsjwIcgggkfBm8WbiX3cb3AszRki+JILos7elwuloGh0pUBEH4jajD8SbAofIUQcgC1+Gc3Q401bD7VgtQcoTdD3YPHI5G3YwpwCGIQMJ1ZIOnk8V5Boc6qAhCWuKzmf7EbgXyNrPHSo8C9mbAFO384g92eImqrgRoblB3LS5QgEMQgUTqYGYwVl8GVJz2bB/K4BCEfPRyZHG4DkfU3wwMfod1jjmWBXSApnQ4FOAQRCBhNDkH/XlSpmqocAZCJDAmCOlprcPpKiMaXNHpnDocTy+8FIACHIIINLgOx5PJ4oX72W1sdyA8Xr41EURXJXsCAB1QchioLux6AmMOv/Dy5LykEBTgEESg4U0nFZWnCEJewuOdn69TG7peizgnaxS7zd+q7jpcoACHIAKNbg7Dv6L9gLWp420pwCEI+eE6nP2fMKGtTg8k56i7JqXJdMzmOruzrbOzSlCAQxCBRlw2EJ4A2CxA0W8db8s7qNKGyb0qgui6cB3OiZ/YbXwvNpCzK5HUHzDHAM11zlEVKkMBDkEEGjqdZ2Wqxmqg7Di7TxkcgpCPzNGA0ez8d1fT3wCAXg9k8jLVNnXX4oACHIIIRFz9cNqDawGiM4DIJPnXRBBdlRAzkDXG+e+u1EHlihjgbFF3HQ4owCGIQIQP3uwog1Owl91S9oYg5IfrcABnR1FXgwd5Z7Z5bkQqIxTgEEQgwgOcilNAXan7bUSB8TBFlkQQXRquwwG6bgYn4wJAHwLUFGpiLhUFOAQRiITFAol92f1zu9xvQx1UBKEcKYOBYTcDI+YC0elqr0YdQsKc5xsNtItTgEMQgUpHQmNLPVCay+5TgEMQ8qPXA9f8B7hycdcZ0eCOLEe7+BkKcAiC8BXuh+NOaHz+ACDYgcgUIDpN2XURBNF14QGOBjqpKMAhiECFj2w4uwuw21v+jspTBEGoAe+kKj4ENFSquhRZA5yKigrMmTMHMTExiImJwZw5c1BZWdnhPoIg4Omnn0Z6ejrCwsIwceJEHDx4sM12W7ZswaWXXoqIiAjExsZi4sSJaGjQzph2gpCd5IGAMQxoqnL63XBEgz8KcAiCUJDIZGZ0CAE4u0PVpcga4Nx0003Yu3cv1qxZgzVr1mDv3r2YM2dOh/u8+OKLeOWVV7BkyRLs2LEDqampmDJlCmpqasRttmzZgunTp2Pq1KnYvn07duzYgXvvvRd6PSWkiC6EwQikD2P3W5epCqiDiiAIlRDLVOrqcIxyHfjw4cNYs2YNtm7dilGjWMrqzTffxJgxY5Cbm4t+/fq12UcQBCxevBhPPPEErrvuOgDAO++8g5SUFHz44Ye4++67AQAPPvgg7r//fvzlL38R9+3Tp49cfwpBaJeMEcxU6+xOYNhN7LHmRjbZGKAMDkEQypM5Ctj7geoBjmwpjy1btiAmJkYMbgBg9OjRiImJwebNm93uc+rUKRQVFWHq1KniYyaTCRMmTBD3KS4uxrZt25CcnIyxY8ciJSUFEyZMwK+//irXn0IQ2kXU4bikgosPAXYrEBYPxHRTZ10EQXRduOFfxam2+kAFkS3AKSoqQnJycpvHk5OTUVRU1O4+AJCSktLi8ZSUFPF3J0+eBAA8/fTTuOuuu7BmzRpccMEFmDx5Mo4dO+b2uE1NTaiurm7xQxBBAR/ZcP4gaw0HnPqb9GFdu12VIAh1SOwD3LMdWHCAtc+rhNfP/PTTT0On03X4s3Mn0wPo3JxcBUFw+7grrX/vuo/dEQ3efffdmDt3LoYPH45//etf6NevH5YtW+b2eIsWLRKFzjExMcjMzPT2zyYIbRKdAUSmAoLN2TlFHVQEQaiJTgck9VM1uAF80ODce++9mD17dofb9OjRA/v378f58+fb/K6kpKRNhoaTmpoKgGVy0tKc3h3FxcXiPvzxAQMGtNg3JycH+fnuraEXLlyIhx56SPx3dXU1BTlEcKDTsSzOkVVMaNx9DAU4BEEQ8CHASUxMRGJiYqfbjRkzBlVVVdi+fTsuuugiAMC2bdtQVVWFsWPHut0nOzsbqampWLduHYYPHw4AsFgs2LBhA1544QUALHhKT09Hbm5ui32PHj2KGTNmuD2uyWSCyWTy+G8kiICCBzhndwBWCytXARTgEATRpZEtf5STk4Pp06fjrrvuwtatW7F161bcddddmDlzZosOqv79+2PlypUAWGlqwYIFeP7557Fy5UocOHAAt912G8LDw3HTTTeJ2zzyyCN49dVX8dlnn+H48eP461//iiNHjuCOO+6Q688hCO0ijmzYBZQcAWwWwBQDxGWruy6CIAgVka1NHAA++OAD3H///WJX1FVXXYUlS5a02CY3NxdVVVXivx999FE0NDRg/vz5qKiowKhRo7B27VpERUWJ2yxYsACNjY148MEHUV5ejqFDh2LdunXo1auXnH8OQWiT9OGATg9UnwWOfc8eSxtCAmOCILo0OkEQBLUXoTTV1dWIiYlBVVUVoqOj1V4OQfjP0rFA8UEguhsLdMbcC0z7u9qrIgiCkBRvvr/J+pcgggHeLl59lt2mD1dvLQRBEBqAAhyCCAZ4gMMhgTFBEF0cCnAIIhjIcAlwQiMdw+4IgiC6LhTgEEQwkNSPBTYAkDpEdYMtgiAItaGzIEEEA3oDkHEBu0/lKYIgCHnbxAmCUJCL/ghUFzinihMEQXRhKMAhiGAh50r2QxAEQVCJiiAIgiCI4IMCHIIgCIIggg4KcAiCIAiCCDoowCEIgiAIIuigAIcgCIIgiKCDAhyCIAiCIIIOCnAIgiAIggg6KMAhCIIgCCLooACHIAiCIIiggwIcgiAIgiCCDgpwCIIgCIIIOijAIQiCIAgi6KAAhyAIgiCIoIMCHIIgCIIggg6j2gtQA0EQAADV1dUqr4QgCIIgCE/h39v8e7wjumSAU1NTAwDIzMxUeSUEQRAEQXhLTU0NYmJiOtxGJ3gSBgUZdrsdBQUFiIqKgk6nk/TY1dXVyMzMxJkzZxAdHS3psQkn9DorA73OykCvs3LQa60Mcr3OgiCgpqYG6enp0Os7Vtl0yQyOXq9Ht27dZH2O6Oho+vAoAL3OykCvszLQ66wc9Forgxyvc2eZGw6JjAmCIAiCCDoowCEIgiAIIuigAEdiTCYTnnrqKZhMJrWXEtTQ66wM9DorA73OykGvtTJo4XXukiJjgiAIgiCCG8rgEARBEAQRdFCAQxAEQRBE0EEBDkEQBEEQQQcFOARBEARBBB0U4EjI0qVLkZ2dDbPZjBEjRmDjxo1qLynoWLRoES688EJERUUhOTkZ11xzDXJzc9VeVtCzaNEi6HQ6LFiwQO2lBB3nzp3DzTffjISEBISHh2PYsGHYtWuX2ssKKqxWK5588sn/3979hETVNWAAf8Z5ddT0VUfTUURREDW1UocgtSwqqUwMob9WxqwELU0QTaEscCojF2UoU+SmxFn0zxZBkuVkUYppiQVimVohEoSVpqJzvsXL68d8Bt+icW4enx/M4p6B8bmbOY9n7r0HYWFhcHNzQ3h4OE6fPg2r1ap0tEXNYrEgIyMDQUFBUKlUuHPnjs37QghUVFQgKCgIbm5u2LBhA3p7ex2WjwXHTsxmMwoLC1FeXo6uri6sW7cO27Ztw9DQkNLRpNLa2oq8vDw8f/4czc3NmJmZQVpaGsbHx5WOJq2Ojg6YTCasXLlS6SjS+fr1K5KTk+Hs7Iz79+/jzZs3uHDhAry9vZWOJpVz586hrq4ONTU1ePv2LaqqqnD+/HlcunRJ6WiL2vj4OFatWoWamppfvl9VVYXq6mrU1NSgo6MDOp0OW7ZsmdsPcsEJsos1a9aI3Nxcm7GoqChRWlqqUKKlYXR0VAAQra2tSkeR0vfv30VERIRobm4WqampoqCgQOlIUikpKREpKSlKx5Beenq6MBgMNmNZWVniwIEDCiWSDwBx+/btuWOr1Sp0Op04e/bs3Njk5KTw8vISdXV1DsnEFRw7mJ6eRmdnJ9LS0mzG09LS8OzZM4VSLQ1jY2MAAK1Wq3ASOeXl5SE9PR2bN29WOoqUmpqaoNfrsWvXLvj7+yM+Ph5XrlxROpZ0UlJS8PDhQ/T19QEAXr16hba2Nmzfvl3hZPIaGBjAyMiIzbyo0WiQmprqsHlxSW62aW9fvnzB7OwsAgICbMYDAgIwMjKiUCr5CSFQVFSElJQUxMbGKh1HOo2NjXj58iU6OjqUjiKt9+/fo7a2FkVFRSgrK0N7ezuOHj0KjUaDQ4cOKR1PGiUlJRgbG0NUVBTUajVmZ2dRWVmJffv2KR1NWv/Ofb+aFwcHBx2SgQXHjlQqlc2xEGLeGNlPfn4+Xr9+jba2NqWjSGd4eBgFBQV48OABXF1dlY4jLavVCr1eD6PRCACIj49Hb28vamtrWXDsyGw24/r162hoaEBMTAy6u7tRWFiIoKAg5OTkKB1PakrOiyw4duDn5we1Wj1vtWZ0dHReeyX7OHLkCJqammCxWBAcHKx0HOl0dnZidHQUiYmJc2Ozs7OwWCyoqanB1NQU1Gq1ggnlEBgYiBUrVtiMRUdH4+bNmwolklNxcTFKS0uxd+9eAEBcXBwGBwdx5swZFpwFotPpAPyzkhMYGDg37sh5kdfg2IGLiwsSExPR3NxsM97c3IykpCSFUslJCIH8/HzcunULLS0tCAsLUzqSlDZt2oSenh50d3fPvfR6PbKzs9Hd3c1yYyfJycnzHnPQ19eH0NBQhRLJaWJiAk5OttOdWq3mbeILKCwsDDqdzmZenJ6eRmtrq8PmRa7g2ElRUREOHjwIvV6PtWvXwmQyYWhoCLm5uUpHk0peXh4aGhpw9+5deHp6zq2aeXl5wc3NTeF08vD09Jx3XdOyZcvg6+vL653s6NixY0hKSoLRaMTu3bvR3t4Ok8kEk8mkdDSpZGRkoLKyEiEhIYiJiUFXVxeqq6thMBiUjrao/fjxA/39/XPHAwMD6O7uhlarRUhICAoLC2E0GhEREYGIiAgYjUa4u7tj//79jgnokHu1lojLly+L0NBQ4eLiIhISEnjr8gIA8MtXfX290tGkx9vEF8a9e/dEbGys0Gg0IioqSphMJqUjSefbt2+ioKBAhISECFdXVxEeHi7Ky8vF1NSU0tEWtUePHv3y+zgnJ0cI8c+t4idPnhQ6nU5oNBqxfv160dPT47B8KiGEcEyVIiIiInIMXoNDRERE0mHBISIiIumw4BAREZF0WHCIiIhIOiw4REREJB0WHCIiIpIOCw4RERFJhwWHiBadiooKrF69WukYRPQH44P+iOiP8v92Gs7JyZnb8NPX19dBqYhosWHBIaI/yr/7iwGA2WzGiRMnbDakdHNzg5eXlxLRiGgR4U9URPRH0el0cy8vLy+oVKp5Y//7E9Xhw4exc+dOGI1GBAQEwNvbG6dOncLMzAyKi4uh1WoRHByMa9eu2fytT58+Yc+ePfDx8YGvry8yMzPx4cMHx54wES0IFhwikkJLSws+f/4Mi8WC6upqVFRUYMeOHfDx8cGLFy+Qm5uL3NxcDA8PAwAmJiawceNGeHh4wGKxoK2tDR4eHti6dSump6cVPhsi+l0sOEQkBa1Wi4sXLyIyMhIGgwGRkZGYmJhAWVkZIiIicPz4cbi4uODp06cAgMbGRjg5OeHq1auIi4tDdHQ06uvrMTQ0hMePHyt7MkT02/5SOgARkT3ExMTAyem//7MFBAQgNjZ27litVsPX1xejo6MAgM7OTvT398PT09PmcyYnJ/Hu3TvHhCaiBcOCQ0RScHZ2tjlWqVS/HLNarQAAq9WKxMRE3LhxY95nLV++fOGCEpFDsOAQ0ZKUkJAAs9kMf39//P3330rHISI74zU4RLQkZWdnw8/PD5mZmXjy5AkGBgbQ2tqKgoICfPz4Uel4RPSbWHCIaElyd3eHxWJBSEgIsrKyEB0dDYPBgJ8/f3JFh0gCfNAfERERSYcrOERERCQdFhwiIiKSDgsOERERSYcFh4iIiKTDgkNERETSYcEhIiIi6bDgEBERkXRYcIiIiEg6LDhEREQkHRYcIiIikg4LDhEREUmHBYeIiIik8x9PrTVLKuagTwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -113,7 +114,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHFCAYAAAAzCLlHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1BElEQVR4nOzdd3gU5fbA8e9syaZXIAk9dOkISJMuTUWxKxbselHvxXp/6vWKDez9WrAgNsSCXaSogIL03jtJgJBKenazu/P7YzKThLTdzW4Cej7Pw5NkS97JkuycOee876uoqqoihBBCCHGKMjX2AQghhBBC1EaCFSGEEEKc0iRYEUIIIcQpTYIVIYQQQpzSJFgRQgghxClNghUhhBBCnNIkWBFCCCHEKU2CFSGEEEKc0iRYEUIIIcQpTYIVIRrZBx98gKIorFu3rrEP5ZT2+++/c/nll9OiRQuCgoKIiopi8ODBvPnmmxQWFnr9/bKysnjwwQfp2rUrYWFhREVF0aVLF6699lq2bNni9fdbunQpiqKwdOlSr58rhKidpbEPQAgh6vLoo4/y+OOPM3jwYJ544gnat29PUVERK1euZPr06ezZs4eXXnrJ4+9XUFDAwIEDKSgo4P7776dXr14UFxezZ88e5s+fz6ZNm+jZs2cAfyIhhDckWBHiL664uJjg4GAURWnsQ/HJF198weOPP85NN93EO++8U+nnmDBhAg888AB//vmn199z3759/Prrr4wcObLSfffccw9ut9svx94QioqKCA0NbezDECKgpAwkxGnijz/+YPTo0URERBAaGsrgwYP58ccfKz1GLyktWrSIG2+8kaZNmxIaGordbgdg3rx5DBo0iLCwMMLDwxk3bhwbN26s9D2uv/56wsPD2bdvH+eeey7h4eG0atWKe++91/g++uMURan23/Tp0/32cz/++OPExMTw6quvVhtwRUREMHbsWABGjx5Nly5dOHl/VlVV6dChA+eddx6glYAAEhMTqx3TZKr81ujJa3+yl19+GUVR2LdvX5X7/v3vfxMUFERmZqZx25IlSxg9ejSRkZGEhoYyZMgQfvnll0rPmz59OoqisGHDBi699FJiYmJo3759rcchxF+BBCtCnAaWLVvGqFGjyM3N5b333mPu3LlEREQwceJE5s2bV+XxN954I1arlY8++ogvv/wSq9XKjBkzuOqqq+jatSuff/45H330Efn5+QwdOpQdO3ZUen5paSkXXHABo0eP5ttvv+XGG2/kpZde4plnnjEe88gjj/Dnn39W+nfNNdcA0LVrV7/83MeOHWPbtm2MHTvWo+zBv/71L3bv3l3lJL9gwQL279/PHXfcAcCgQYMAuO666/jmm2+M4KU63r72umuuuYagoCA++OCDSre7XC4+/vhjJk6cSJMmTQD4+OOPGTt2LJGRkcyZM4fPP/+c2NhYxo0bV+VnAbj44ovp0KEDX3zxBW+99Vadr4sQpz1VCNGoZs+erQLq2rVra3zMwIED1WbNmqn5+fnGbU6nU+3evbvasmVL1e12V/pe1113XaXnJycnqxaLRb3rrrsq3Z6fn68mJCSol19+uXHblClTVED9/PPPKz323HPPVTt37lzjMX7++eeqoijqQw89VPcP7aFVq1apgPp///d/Hj3e5XKp7dq1Uy+88MJKt0+YMEFt37698Tqpqqo+/vjjalBQkAqogJqUlKTefvvt6ubNmys919PX/rffflMB9bfffjMed/HFF6stW7ZUXS6XcdtPP/2kAur333+vqqqqFhYWqrGxserEiROr/Cy9evVSzzrrLOO2Rx99VAXU//73vx69HkL8VUhmRYhTXGFhIatXr+bSSy8lPDzcuN1sNnPttdeSmprK7t27Kz3nkksuqfT1woULcTqdXHfddTidTuNfcHAww4cPrzKDRVEUJk6cWOm2nj17cvjw4WqPcdmyZVx77bVcc801PPXUU7X+PG63u9IxuFyuul4Cj5lMJu68805++OEHkpOTAdi/fz8///wzU6dOrVRGeuSRR0hOTub999/ntttuIzw8nLfeeou+ffsyd+5cwLfXvqIbbriB1NRUlixZYtw2e/ZsEhISmDBhAgArV64kOzubKVOmVHpd3G4348ePZ+3atVVmO538/yvEX50EK0Kc4nJyclBVtdr+iubNmwNUKWOc/Njjx48D0L9/f6xWa6V/8+bNq9Q7ARAaGkpwcHCl22w2GyUlJVWOYfv27UyaNImhQ4fy3nvv1fnz6CUq/d/o0aNrfGzr1q0BOHjwYJ3ft+L3DwkJMcoj//vf/wgJCeHGG2+s8tj4+HhuuOEG3nrrLbZs2cKyZcsICgriX//6F+Dba1/RhAkTSExMZPbs2cb3++6777juuuswm81A+f/NpZdeWuX/5plnnkFVVbKzsyt935p6bYT4q5LZQEKc4mJiYjCZTBw7dqzKfUePHgUweh90Jzei6vd/+eWXtGnTxm/Hlpqayvjx42ndujVfffUVVqu1zudMnz6dO++80/g6IiKixscmJibSo0cPFi1a5PGsl6ioKKZMmcK7777Lfffdx+zZs5k8eTLR0dF1PnfYsGGMHTuWb775hvT0dJ9e+4r0DMyrr77KiRMn+PTTT7Hb7dxwww3GY/Tnv/baawwcOLDa7xMfH1/p69N1ZpcQPmvkMpQQf3ue9KwMGjRITUhIUIuKiozbXC6X2qNHj2p7Vk7+XgcPHlQtFov6zDPP1Hk8U6ZMUcPCwqrcrvdL6E6cOKF2795dbdWqlZqamlrn9/XV559/rgLqTTfdVKnnRJefn68uXLiw0m27d+9WFUVRR44cqQLqpk2bKt2flpZWqY9E53Q61W7duqmhoaGq3W5XVdXz1766nhVVVdWdO3eqgPrGG2+o/fr1UwcNGlTl+KOjo9V//OMfdb4W+v9BRkZGnY8V4q9EMitCnCJ+/fVXDh06VOX2c889l5kzZzJmzBhGjhzJfffdR1BQEG+88Qbbtm1j7ty5dV5pt23blscff5yHH36YAwcOMH78eGJiYjh+/Dhr1qwhLCyMxx57zKvjnTx5Mjt27GDWrFmkpKSQkpJi3NeyZUtatmzp1feryWWXXcYjjzzCE088wa5du7jpppuMReFWr17N22+/zRVXXGFMXwbo1KkT48ePZ8GCBZx99tn06tWr0vf86KOPePvtt5k8eTL9+/cnKiqK1NRU3n33XbZv385///tfgoKCAOr92nfp0oVBgwYxc+ZMUlJSmDVrVqX7w8PDee2115gyZQrZ2dlceumlNGvWjIyMDDZv3kxGRgZvvvmmX15LIU5bjR0tCfF3p2dDavp38OBBVVVV9ffff1dHjRqlhoWFqSEhIerAgQONGSUnf6+asjTffPONOnLkSDUyMlK12WxqmzZt1EsvvVRdsmSJ8RhPMytt2rSp8ZgfffTR+r8wJ1m2bJl66aWXqomJiarValUjIyPVQYMGqc8995yal5dX5fEffPCBCqifffZZlft27Nih3nvvvWq/fv3Upk2bqhaLRY2JiVGHDx+ufvTRR1Ue78lrX1NmRVVVddasWSqghoSEqLm5uTX+fOedd54aGxurWq1WtUWLFup5552nfvHFF8ZjJLMi/q4UVT1p9SQhhPgLuOSSS1i1ahWHDh3yqJdGCHHqkjKQEOIvw263s2HDBtasWcPXX3/Niy++KIGKEH8BklkRQvxlHDp0iKSkJCIjI5k8eTKvv/66MUVYCHH6kmBFCCGEEKc0WRROCCGEEKc0CVaEEEIIcUqTYEUIIYQQp7TTfjaQ2+3m6NGjREREyBLUQgghxGlCVVXy8/Np3rw5JlPtuZPTPlg5evQorVq1auzDEEIIIYQPUlJS6lzx+rQPVvRN0FJSUoiMjGzkoxFCCCGEJ/Ly8mjVqlWtm5nqTvtgRS/9REZGSrAihBBCnGY8aeEIaIPt9OnTURSl0r+EhATjflVVmT59Os2bNyckJIQRI0awffv2QB6SEEIIIU4zAZ8N1K1bN44dO2b827p1q3Hfs88+y4svvsjrr7/O2rVrSUhIYMyYMeTn5wf6sIQQQghxmgh4sGKxWEhISDD+NW3aFNCyKi+//DIPP/wwF198Md27d2fOnDkUFRXx6aefBvqwhBBCCHGaCHjPyt69e2nevDk2m40BAwYwY8YM2rVrx8GDB0lLS2Ps2LHGY202G8OHD2flypXcdtttgT40IYQQIuBcLhelpaWNfRgNzmq1+m1vroAGKwMGDODDDz+kU6dOHD9+nCeffJLBgwezfft20tLSAIiPj6/0nPj4eA4fPlzj97Tb7djtduPrvLy8wBy8EEIIUQ+qqpKWlsaJEyca+1AaTXR0NAkJCfVeBy2gwcqECROMz3v06MGgQYNo3749c+bMYeDAgUDVLmBVVWv9oWbOnMljjz0WmAMWQggh/EQPVJo1a0ZoaOjfauFSVVUpKioiPT0dgMTExHp9vwaduhwWFkaPHj3Yu3cvkyZNArT/zIo/RHp6epVsS0UPPvgg99xzj/G1Pk9bCCGEOFW4XC4jUImLi2vsw2kUISEhgHZeb9asWb1KQg26N5Ddbmfnzp0kJiaSlJREQkICixcvNu53OBwsW7aMwYMH1/g9bDabsaaKrK0ihBDiVKT3qISGhjbykTQu/eevb89OQDMr9913HxMnTqR169akp6fz5JNPkpeXx5QpU1AUhWnTpjFjxgw6duxIx44dmTFjBqGhoUyePDmQhyWEEEI0iL9T6ac6/vr5AxqspKamctVVV5GZmUnTpk0ZOHAgq1atok2bNgA88MADFBcXM3XqVHJychgwYACLFi3yaOldIYQQQvw9KKqqqo19EPWRl5dHVFQUubm5UhISQghxSigpKeHgwYMkJSURHBzc2IfTaGp7Hbw5fzdoz4oQQgghhLckWGkgpe5STvMklhBCCNEoJFhpALn2XCZ8NYHbl9ze2IcihBBC1Klly5a88cYblW5buXIloaGhtS7cGigNus7K39X3+7/neNFxjhcdp6i0iFDr33sqmxBC/B2pqkpxqavBxw2xmr2elTNw4EDWrl1rfK2qKtOmTWPatGnGJJmGJMFKA9iZvdP4/EDuAbo36d6IRyOEEKIxFJe66PrfhQ0+7o7HxxEa5N3pfuDAgXzwwQfG1x999BHJyck8+OCDAPzwww/ce++9uN1u/v3vf3PzzTf785CrkDJQA8gpyTE+P5B7oBGPRAghhKjbwIED2blzJwUFBRQVFfHQQw/x5JNPEhERgdPp5J577uHXX39lw4YNPPPMM2RnZwf0eCSz0gDyHOWbLWYVZzXikQghhGgsIVYzOx4f1yjjeqtfv36YzWY2bNjAkiVLiIuL48YbbwRgzZo1dOvWjRYtWgBw7rnnsnDhQq666iq/HndFEqw0gFx7rvF5jj2nlkcKIYT4q1IUxetyTGMJDg6mV69ezJ8/n1mzZvH9999jMmnFmKNHjxqBCmjNuEeOHAno8UgZqAFUzKycKDnReAcihBBCeGjgwIG8+uqrnHPOOYwePdq4vbplOAK9rYAEKwGmqip59grBiv1E4x2MEEII4aHevXtjsVh47rnnKt3eokWLSpmU1NRUEhMTA3osEqwEWJGzCKfqNL6WYEUIIcTp4JNPPmHq1Kl07ty50u1nnXUW27Zt48iRI+Tn5/PTTz8xblxge3FOj+LZaaxivwpIsCKEEOLU5Xa7ycjI4L333mP37t18/fXXVR5jsVh44YUXGDlyJG63mwceeIC4uLiAHpcEKwFWVFpU6etCR2EjHYkQQghRu+XLlzNq1Ci6dOnC/PnziYqKqvZxF1xwARdccEGDHZcEKwFW4iqp9HWhU4IVIYQQp6YRI0bgdrsb+zCqkJ6VACtxasFKZJC2/XVhaSFu9dT7RRBCCCFOVRKsBJieWWkS0sS4rdhZ3FiHI4QQQpx2JFgJMD2zEmWLwqxoqwgWOAoa85CEEEKI04oEKwGmZ1aCzcGEWcMA6VsRQgghvCHBSoDpmRWbxWYEKyfPEBJCCCFEzSRYCTA9WAkxhxjBSkGplIGEEEIIT0mwEmBGGchSoQxUKmUgIYQQwlMSrASYUQYy2wi3hgMSrAghhBDekGAlwIwykCWEUGsoIMGKEEII4Q0JVgJMLwPZLJJZEUIIIXwhwUqA6ZmVSlOXJVgRQgghPCbBSoBVbLCVMpAQQojTQcuWLXnjjTcq3bZy5UpCQ0M5fPhwgx+PbGQYYHanHZAGWyGE+NtTVWiMdbasoaAoXj1l4MCBrF271vhaVVWmTZvGtGnTaNOmjb+PsE4SrASYw+0AtGDFbdU2MJRgRQgh/oZKi2BG84Yf96GjEBTm1VMGDhzIBx98YHz90UcfkZyczIMPPgjARRddxNKlSxk9ejRffvmlP4+2WlIGCrBSdykAVpPVKAPJonBCCCFOZQMHDmTnzp0UFBRQVFTEQw89xJNPPklERAQA//znP/nwww8b7HgksxJgDpeWWbGardiwAbLrshBC/C1ZQ7UsR2OM66V+/fphNpvZsGEDS5YsIS4ujhtvvNG4f+TIkSxdutSPB1k7CVYCTA9WgkxBBJmDANkbSAgh/pYUxetyTGMJDg6mV69ezJ8/n1mzZvH9999jMjVeMUbKQAFmlIHMVkItWnQrmRUhhBCnuoEDB/Lqq69yzjnnMHr06EY9FglWAkwPVoJMQUbPimRWhBBCnOp69+6NxWLhueeea+xDkWAl0IwykDnIyKwUOSVYEUIIcWr75JNPmDp1Kp07d27sQ5GelUAzGmwrzAayu+w43U4sJnn5hRBCnDrcbjcZGRm899577N69m6+//rrax40bN44NGzZQWFhIy5Yt+frrr+nfv3/AjkvOlgGmr7NSsWcFtL6ViKCIxjosIYQQoorly5czatQounTpwvz584mKiqr2cQsXLmzQ45JgJcCcbieg9axYzVYsJgtOt5Oi0iIJVoQQQpxSRowYgdvtbuzDqEJ6VgKsYs8KIH0rQgghhJckWAkgl9uFS3UBWmYFKJ8RJMGKEEII4REJVgJIn7YMWs8KVMisyPRlIYQQwiMSrASQ3lwLFTIrsjCcEEII4RUJVgJI71cBjGnKsjCcEEII4R0JVgKo1FW+eq2iKIA02AohhBDekmAlgCruC6QLsYYAklkRQgghPCXBSgBV3HFZJ5kVIYQQwjsNFqzMnDkTRVGYNm2acZuqqkyfPp3mzZsTEhLCiBEj2L59e0MdUsBVXL1WJz0rQgghhHcaJFhZu3Yts2bNomfPnpVuf/bZZ3nxxRd5/fXXWbt2LQkJCYwZM4b8/PyGOKyAq7gvkE4yK0IIIYR3Ah6sFBQUcPXVV/POO+8QExNj3K6qKi+//DIPP/wwF198Md27d2fOnDkUFRXx6aefBvqwGoTes6KvXguSWRFCCCG8FfBg5Y477uC8887jnHPOqXT7wYMHSUtLY+zYscZtNpuN4cOHs3Llyhq/n91uJy8vr9K/U5XRYCuZFSGEEKeRli1b8sYbb1S6beXKlYSGhnL48OEGP56AbmT42WefsWHDBtauXVvlvrS0NADi4+Mr3R4fH1/rCzFz5kwee+wx/x5ogOibGFYKVmS5fSGE+FtSVbVRFgQNsYQYy2d4auDAgZXO3aqqMm3aNKZNm0abNm38fYh1CliwkpKSwr/+9S8WLVpEcHBwjY87+QVUVbXWF/XBBx/knnvuMb7Oy8ujVatW9T/gANAzK/qCcFBhBdtSWcFWCCH+ToqdxQz4dECDj7t68mrjQtlTAwcO5IMPPjC+/uijj0hOTubBBx8kJSWFa6+9lvT0dCwWC4888giXXXaZn4+6soCVgdavX096ejp9+/bFYrFgsVhYtmwZr776KhaLxcio6BkWXXp6epVsS0U2m43IyMhK/05VemalumBFMitCCCFOVQMHDmTnzp0UFBRQVFTEQw89xJNPPklERAQWi4WXX36ZHTt2sGTJEu6++24KCwsDejwBy6yMHj2arVu3VrrthhtuoEuXLvz73/+mXbt2JCQksHjxYvr06QOAw+Fg2bJlPPPMM4E6rAZVbc+KNNgKIcTfUoglhNWTVzfKuN7q168fZrOZDRs2sGTJEuLi4rjxxhsBSExMJDExEYBmzZoRGxtLdnY2YWFhfj3uigIWrERERNC9e/dKt4WFhREXF2fcPm3aNGbMmEHHjh3p2LEjM2bMIDQ0lMmTJwfqsBpUdZkV/ZdGMitCCPH3oiiK1+WYxhIcHEyvXr2YP38+s2bN4vvvv8dkqlqMWbduHW63O+DtGAFtsK3LAw88QHFxMVOnTiUnJ4cBAwawaNEiIiIiGvOw/KbaMpBkVoQQQpwGBg4cyKuvvsr555/P6NGjq9yflZXFddddx7vvvhvwY2nQYGXp0qWVvlYUhenTpzN9+vSGPIwGU+1sIL3B1lmMW3VjUmTHAyGEEKee3r17Y7FYeO6556rcZ7fbueiii3jwwQcZPHhwwI9FzpQBVN1soDCrVtNTaZwpbEIIIYQnPvnkE6ZOnUrnzp0r3a6qKtdffz2jRo3i2muvbZBjadQy0F9ddZkVm9mGRbHgVJ0UlhYawYsQQgjR2NxuNxkZGbz33nvs3r2br7/+uspjVqxYwbx58+jZsyfffPMNoE1t7tGjR8COS4KVAKquZ0VvsMpz5FFQWkAzmjXW4QkhhBCVLF++nFGjRtGlSxfmz59PVFRUlcecffbZuN3uBj0uCVYCqLqpywDh1nDyHHkUOgI7L10IIYTwxogRIxo8EPGE9KwEUHWZFYCwIK30U1Ba0ODHJIQQQpxuJFgJICNYUSoHK+HWcAAKSyWzIoQQQtRFgpUAMspA5splIL2pVoIVIYQQom4SrARQdVOXoTxYkTKQEEL8tamq2tiH0Kj89fNLsBJAUgYSQoi/J6tVy6gXFf29VyvXf3799fCVzAYKoBobbCWzIoQQf2lms5no6GjS09MBCA0NRVGURj6qhqOqKkVFRaSnpxMdHY3ZbK7X95NgJYBqm7oMyNRlIYT4C0tISAAwApa/o+joaON1qA8JVgJIMitCCPH3pSgKiYmJNGvWjNLS0sY+nAZntVrrnVHRSbASQDUFK+FBWmZFdl4WQoi/PrPZ7LeT9t+VNNgGUE1loFCrtvOyZFaEEEKIukmwEkA1ZlZkNpAQQgjhMQlWAsipVt11GcqDlXxHfoMfkxBCCHG6kWAlgPTMysnBSmRQJAD5pRKsCCGEEHWRYCWASl3Vr2AbERQBaJkVt3rq7W4phBBCnEokWAkgvQx0crASadMyK27VLX0rQgghRB0kWAmgmhpsbWYbNrMNgDxHXoMflxBCCHE6kWAlgGqaugzlfSt5dglWhBBCiNpIsBJANWVWoHLfihBCCCFqJsFKAOmZleqCFSOzImUgIYQQolYSrARQTVOXobzJVoIVIYQQonYSrASQR5kV6VkRQgghaiXBSgB50rMimRUhhBCidhKsBFCtZSDpWRFCCCE8IsFKgKiqKg22QgghhB9IsBIgLtVlfF5dZiXKFgVArj23wY5JCCGEOB1JsBIgegkIqs+sxATHAJBTktNgxySEEEKcjiRYCRC9BATVZ1Zig2MByC7JbrBjEkIIIU5HEqwEiKeZlRP2E6iq2mDHJYQQQpxuJFgJED1YMSkmTErVlznGpgUrdpedYmdxgx6bEEIIcTqRYCVAatvEECDEEmLsvCylICGEEKJmEqwESG0LwgEoilKpFCSEEEKI6kmwEiB1BStQXgqSzIoQQghRMwlWAsRYEE6pJViR6ctCCCFEnSRYCRBjqX1z9T0rINOXhRBCCE9IsBIgnmRWmoY0BSCjOKNBjkkIIYQ4HUmwEiCe9Kw0DS0LVookWBFCCCFqIsFKgBhTl2spA+mZlfSi9AY5JiGEEKLEWcL7297nhwM/NPaheKzmy35RL0ZmpbYyUFlmJbM4s0GOSQghxN9bniOPKQumsO/EPgCKSou4vPPljXxUdZPMSoAYDbY1LAoH0CykGaD1rMiS+0II8ffjcDm4b9l9XP/z9Xyy85OAnwu+3vs1+07sI9gcDMDM1TM5Xng8oGP6gwQrAeJU6+5ZaRLaBIBiZzEFpQUNclxCCCFq93vq7yxPXd4gF5Gzt81m4aGFrD++nqfXPM2iw4sCNpaqqnyz7xsA7u9/P72b9sapOvlu/3cBG9NfJFgJkFJX7cvtg7bkfkRQBCB9K0IIUZNiZ3GDZZ9nb5vN1F+mcscvd3DvsnuN9/JAOFJwhFlbZgEQGRQJwEvrX8LusgdkvB3ZO9h3Yh82s43xSeO5pNMlAHy972vcqjsgY/pLQIOVN998k549exIZGUlkZCSDBg1iwYIFxv2qqjJ9+nSaN29OSEgII0aMYPv27YE8pAbjSWYFICEsAYBjhccCfkxCCHG6+X7/9wyZO4QrfriCbZnbAjrWurR1vLj+RUDbhHbx4cV8s/+bgI234OACHG4H/eL7sfjSxTQLacaRgiMsPrw4IOP9cvgXAEa2GklkUCRj24wlzBpGSn5KwF/b+gposNKyZUuefvpp1q1bx7p16xg1ahQXXnihEZA8++yzvPjii7z++uusXbuWhIQExowZQ35+fiAPq0F4MnUZoHlYcwCOFhwN+DEJIUR9/XL4Fx5Y9gCP/fkYDpcjsGMl/8LDfzxMqbuUndk7uWXRLQFdRHP+3vkATGw3kfv63QfAe1vfM2Z3+tvy1OUATEiaQKg1lEkdJwGw+FBggpXNGZsBGJA4AIBQayiDmw8GYOXRlQEZ018CGqxMnDiRc889l06dOtGpUyeeeuopwsPDWbVqFaqq8vLLL/Pwww9z8cUX0717d+bMmUNRURGffvppIA+rQXhSBgJoHi7BihDCN6qqsvjwYmZtmcXiw4sDXipZdGgR05ZOY8GhBXy550se/uPhgJYP3t78NioqF7a/kM4xnSkoLeD9re8HZKyi0iKWJC8B4PLOl3Npp0uJDY7lSMERIyPhTydKThjBw9AWQwEY22YsAH8c+YPC0kK/jud0O9mauRWAXk17GbcPTBwIwKpjq/w6nr81WM+Ky+Xis88+o7CwkEGDBnHw4EHS0tIYO3as8Ribzcbw4cNZubLmCM9ut5OXl1fp36nI0zJQi/AWgAQrQvxVbDi+gY92fGRcNQfSz4d+5p6l9/Daxte4Z+k9fLD9g4CNVeoq5eUNLwMwrOUwLCYLPx/6OWBrdezM2snO7J1YTVbu63cf/zrzXwB8tvszsoqz/D7e4sOLKXYW0yayDb2a9iLEEsLFHS8GCEjT64qjK3CrbjpEdyAxPBGATjGdaBvZFofb4fffn30n9lHsLCbcGk776PbG7YMSBwFa1qWotMivY/pTwIOVrVu3Eh4ejs1m4/bbb+frr7+ma9eupKWlARAfH1/p8fHx8cZ91Zk5cyZRUVHGv1atWgX0+H3laRkoMUz7JT1SeCTgxyTE39Gm9E3MXD2T7ZmB74f7eMfHTPl5Cs+ufZY7frmD7/d/H7CxMoszeWr1UwB0j+sOwMsbXmZj+saAjPfV3q9IyU+hSUgTnhv2HLf3vB2AD7d/GJCMjj5rZVTrUUQHR3N2i7M5I/YM7C57QHo69ODg3KRzURQFgHPanANomY4SZ4lfx9MzGXpWBUBRFEa2Hgn4vyyzOV3L4vRo0gOTUn7qbxXZihbhLXC6naw7vs6vY/pTwIOVzp07s2nTJlatWsU//vEPpkyZwo4dO4z79V8KnaqqVW6r6MEHHyQ3N9f4l5KSErBjrw9jBds6ykCSWRF/J6WuUr7Y8wWvbniVRYcWBbxs8fSap7l2wbV8uutTrv7paj7e8XHAxjqcd9jIPHSO6QzAf1f8lx1ZO2p5lu/e2/oeufZcusR24cNzP+S8dufhVt28veXtgIynZ1Bu6n4TodZQruxyJSGWEHbn7Pb7Sc6tullwUJuMManDJEA7V5zX7jxAyyj5k6qqbEjfAMBZCWcZt3eN7UpiWCLFzmL+PPqnX8fcnqUFz72b9a50+8AErSyz+thqv/59bMncAkDPpj2r3Kf/zIEKdP0h4MFKUFAQHTp0oF+/fsycOZNevXrxyiuvkJCgzYI5OYuSnp5eJdtSkc1mM2YX6f9ORcZGhnVkVlpGtAS0qyR/1yjF6UlV1QabpulwOXhq1VPcuuhW5myfQ7GzOGBjqarKU6uf4vE/H+edre9w77J7eWfrOwEbb8PxDXyy8xMUFHo06YFLdfHcuufYk7MnIOM9u/ZZ7C47AxIHMO/8eYxsNRKn6jSmpvqT0+00TuZ39bkLq8nKHb3vQEFhxZEVHMg94NfxMosz2ZKhnezGttVK91G2KC5ofwEAX+750q/j7c3ZS449hxBLiNEMCjCu7ThA+7/150JmKfkpZBZnYjVZ6dG0h3G7oiiMbj0agKWpS/02XrGzmP0n9gPQLa5bpft6N+uNxWThWOExUgtS/Tbm7uzd1Y4H5T0seg/NqajB11lRVRW73U5SUhIJCQksXlyeznM4HCxbtozBgwc39GH5nadloChbFLHBsQAcyj0U6MMSPigqLeJw3mG/p4Grk16Uzg0Lb2DgpwO5Z+k9fj/pVFTgKOCWRbfw2e7P+PPYnzy/7nnuW3ZfwBom5+2ex1d7v8KkmBjTZgwAr218jSWHl/h9LFVVeWn9SwBc0ukSPj3vU8a0GYNbdfPMmmf8HgymF6Xze+rvAPxnwH8wm8xMO3MaCgq/JP9inJj8ZW3aWrJKsoi2RTOoudZz0CqiFSNajQDg053+naSwLGUZKird47rTLLSZcfv57c4HtBKKP2cG6ZmaPs36VMpOJ4Ql0KdZH1RUfkn2X9OrnlXp3qQ7NrOt0n1DWgwBtEyHv+zO3o1bddMkpEml1xO0GTo9m2jZjzXH1vhlPJfbxcHcgwB0iO5Q5X49u7Mtc5tx7jrVBDRYeeihh/j99985dOgQW7du5eGHH2bp0qVcffXVKIrCtGnTmDFjBl9//TXbtm3j+uuvJzQ0lMmTJwfysBqEp2UggKSoJICAnpj+KlRVZWvGVt7d+i4/Hfgp4AsZrT62mlFfjOL8r89n6GdDjTp6ICTnJXPFD1ew/vh6ipxFLD68mNsW3xaQZkKANze/yYb0DYRbw7m91+0EmYJYnrqc97f5f7aF3WXnjU1vADDtzGm8OOJFru16LQCvbHgFl9vl1/FWHl3JpoxNBJuD+UevfwBwb797CTIFsSZtjd/LFgsOLkBFpVfTXrSNagtAu+h2jGo9CoCPdnzk9/FAmz1S8T3myi5XArDw0EK/nnR+S/kNwAiGdD2b9qRZSDMKSgv8OptkbdpaAPon9K9y3/CWwwH8WpbZcFwLVvo061PlvjObnYlFsXCk4Aip+f7JdOgloG5x3aptezgrUSvLrEnzT7BypOAIDrcDm9lmzECtKCkqiYigCIqdxQHLPNZXQIOV48ePc+2119K5c2dGjx7N6tWr+fnnnxkzRruqeuCBB5g2bRpTp06lX79+HDlyhEWLFhERERHIw2oQnmZWANpFtQMwIt/6crgcrDq2ym9/WLWxu+zMXD2TS767hLt+ucvvdd2TPbX6KSb/NJlXNrzCv3//N7cuujVg6y6sOraKqUumUlhaiEWxUOIq4b8r/svPB/1bL9e9sO4FMosz6RDdgTdGv0HbyLakFabx7+X/9nsmILM4k893fw7AM8Oe4Y7ed/Cfgf8B4M1Nb5JRlOHX8RYeWkiOPYeEsAQjSLmj9x1E2aI4lHeIBYcW1PEdvPPjgR8BuKjjRcaVa4vwFlzY4UIAvtjzRUDG03sqdJO7aBdeiw4v8lvmweV2GVmFCUkTKt13VsJZxNhiOGE/4beArNRVamQVTg5WTIrJCMj8lelwq27j2PvF96tyv74uyJq0NX5bXVbv1Tiz2ZlV7gu1hhqlIX8FD3qzd7cmVUsyUB40+asso2f2kqKSMJvMVe43KSajl2VT+ia/jOlvAQ1W3nvvPQ4dOoTdbic9PZ0lS5YYgQpo9cDp06dz7NgxSkpKWLZsGd27dw/kITUYT9dZgfLMij+CleWpy5n07SRuWXQLE+ZP4IafbwjYlXl2STY3/HwDn+76lD05e1iaupSpS6YGbPXF+XvnM2/3PBQUhrccToglhNVpq/nPH//x+8m81F3K438+jsPtYGSrkay6ehWXd7ocFZVHVz7q952yN6Vv4teUXzEpJl4Y/gJDWw7llZGvGD/jstRlfh1v9rbZlLhK6NmkpzEbYVKHSfRu2huH28Gc7XP8Ot7cnXMBuKLzFUYAH2YNY0rXKYDWLOqv/0O7y86vKb8C2syOii7tdCkASw4vIackxy/jHco9xM7snZgVs9FToesb35dmIc3Id+Tzx5E//DLe3hN7yXPkEWYNq5IJsJgsRvDgr4XFdufspsRVQpQtik4xnarcr8+YWZqy1C+Zzr05e8m15xJiCan2ZN45tjOxwbEUOYvYlLGp3uMVlhZyOO8woJWBqqM3oPore6Q3XVfXPwLQs0lPFBSOFBzxy3vN/lwtWNEvjKtzqvetyN5AAaKvs+JJsKL/AtW3DLQpfRN3/XoXKfkpRARFYFJMrDu+jqm/TA1I8+6Tq55ka+ZWomxRPDHkCca1HYdTdXL/svuNNKe/JOcl89QqbZrmnX3u5PXRr/PRhI8IMgXx+5Hf+WrvV34d77t935GSn0JscCxPD30am9nGwwMfpntcd4qcRfxv0//8Ot5rG18DtIChXbT2+9Auup1xZf7Gpjf8djIvcZYYmYXbe91upKEVReGWnrcA8Pmez/12Mt+ZtZNtWduwmqzGuhW6K7tcSbA5mH0n9hmzFeprxZEVFJYWEh8aX2XmQ9e4rnSN60qpu9Rv04r1Kab94vsZ/Wc6s8nM+KTxAPx08Ce/jLf++HpAu/qu7ipZX1hsSfISv5TX9CvtXk17VVuyOLPZmYRYQsguyWZvzt56j6cvXNazSc9q3z9Nisno0/FHJndvzl5UVJqFNCMuJK7ax+hNvmvT1tb779DhcnAo7xBQPmvsZOFB5Wuh6FOO6+PACe3cUnF9lZPpfTL+fu/2FwlWAkTPrHhTBkrOS/Y5rVlYWsiDvz+IW3Uzps0Ylly6hK8v/JoYWww7snbw6MpHffq+NVlzbA2LDy/GpJh4Z8w7TOowiWeGPsOoVqNwqS6e/PNJv/YhvL/tfRxuBwMSB3Bzj5sB7Qrrn2f+E4AX171IvsM/2zQ4XA7e2vIWALf0uIVQayigvUne3/9+QMvy+KtpMiUvhTVpazApJqO/Qjel2xRCLaHszN7pt+zKyqMrKXYWkxiWyNktzq5039AWQ+kS24ViZ7HfdmLVsxzDWw6vcjKPCIowrsz91Q+08NBCQJu1UnE9Cd1FHS7SHnd4oV/G00skA5sPrPb+c9tp2Z1lKcv8MttKD1b6xvet9v7+if2JsEaQXZLNtqz67/eiX2lXXPW0IqvZapRr/JF5MPo5aiiRQHkpyB/j7czeCUCXuC41PqZHkx5YTBYyizNJya/fchkHcw/iUl1EBkVWaa6tyJ+ZDj2z0j6q5mBFzyodzjtMrj233mP6mwQrAeJNZiUhLIHIoEicqpO9J3y7Mnl1w6ukFqTSPKw5jw1+jFBrKO2i2vH66NcxK2YWHlrot34Sl9vF02ufBuCyTpdxRtwZgHYV+Z+B/yHcGs62rG1+y3akF6UbJ847et9R6QR0zRnX0D6qPfml+X6bAfFL8i+kFabRLKQZl3W+rNJ9Z8afychWI3Grbr81TeprRgxIGGBsbKmLCY7his5XAPDZrs/8Mp4++2Z069FVrpQVReGyTtrP/PXer/2SzVmWogVZw1sNr/Z+fR2Nnw/+XO+Tucvt4vcj2qwcfcbRyUa3Ho2CwpaMLfWe/upyu1h7XGsGrbg+R0X6Wh0lrpJ6z+5QVdUIVqrr5wDtPUcPnPxRetJLLb2b9q7xMfqS7X8eq/97jNHPUUOJBMpf6+1Z2+t9kaJP6a0pywEQbAmmRxOtb0V//X2lN7B2iO5Q65pi/gpW3KrbaDHQs7bVibJF0TqiNUCDLKDoLQlWAsSbzIqiKMYfpi87X2YVZxnrHDw6+FEigsoblHs27WnMEJi5ZqZfGtKWpixlb85eIoMiubP3nZXuaxralDt63wFo+3r4o6nw4x0fU+ou5cxmZ1ap0ZtNZm7teSsAH+74kAJHQb3H0wOjizpeVGUaI8D13a4HtEWy/FEq0ZtLT26W1OkB08qjK+vdNF3qKjXWi6jpZD4haQLB5mD25+43UvK+Ol54nJ3ZO1FQKq3UWVH/hP60CG9BQWkBS1OW1ms8/eQVYY0wTi4naxra1DgR6FkfX+3K3kW+I59wazhd47pW+xhFUYwZLPqsGl8dzDtIdkk2NrOt1pO5/lr/kVq/YCWtMI20wjRMiqnGfg4ozyptOL6hXn/zdpfduGCrLbOSEJZA64jWuFW3MZPHV7uydwHQJbbmzAqUN9/q05x9te/EPgA6xnSs9XG9mmm/o9uzttfrfftY4TGKncVYTBZaRdS+4rv+f1zfv/tAkGAlQPTZQFZz3ZkVKP8l8WW1y7m75uJwO+jRpIexz0NFU3tPJTY4loO5B/n+QP3r9J/s+gTQNvuKDo6ucv/lnS+nWWgz0ovT+Xb/t/Uay+6y8+VeLRC7qcdN1T5mXNtxtI1sS54jr96LU2UWZxo9CBPbT6z2MX2a9aFrXFft2Oo53r6cfezN2YvFZGF0m9HVPqZVRCsGNx+MilrvbNWatDXkO/KJC46rMa0fERRhBDL6LrS+Wn5EW8K8R9MeNfYDmBST0Qhb35lWevZwQOKAWi8U9NJTfTeoW52mlYD6xferdTx9Fs3y1OX1akLVr+p7Ne1V63uLvjbI9qzt9Zotp1/Vd47pbJRDq9MxuiNxwXEUO4vrlQnYm7MXp9tJtC3a2JG+Jvq05vrM0HG6nUafTZ3BSnxZsFLP4MgIVqJrD1baRrYlMigSu8vO7pzdPo+nl6vbRrat8+JZD/B9uWgONAlWAqS0rOZnUerOrEB5ytPb5qZiZzGf7dbKA1O6Tak2rRgZFMmN3W8EtFkX9Vl/YXf2btamrcWsmI3yxMmCzEFG9uH9re/Xa7zfkn8j35FPQlgCQ5oPqfYxZpPZGG/urrn16pXR127p2bQnbSLbVPsYRVG45oxrAG2hs/qMp2dVzm5xNpFBNa/GXLE0U5/XU99VdnTr0dU2Z+r00kx9p9zqJaARLUfU+ji9CfX3I7/XK62vlyH0Bsya6DNm1h1fV6/smN6vUnGV1er0T+hPqCWUjOIMdmbt9Hm8uvpVdM1Cm9E5pjMqar32mNEDj+qWaK9IURQju1KfcnPFWTK1lUigvBSkr8nii4O5B3G4HYRZw4zVxGvSu1lvFBSS85PrNbVfD446xFRdnK2iitOJ6xMAetJcq6uYWWmoVbQ9JcFKIBSkU5qs/cFaD3v2RqGnPPfm7PWqlPHNvm/ItefSMrwl57Q+p8bHXdbpMqJt0STnJ7PokO87iH66S+sLOafNOVX6Kyq6pOMlxNhiSC1IrddUZr3p8oL2F9R6cj2v3XlE2aI4Wni0XqUEPfM0sV31WRXduLbjiLZFc7zoOCuOrvBpLFVVjUzChLbVl4B0w1tpzalZJVk+n3xcbhe/Jmtlj5qyOLq+8X1pFlq/KbfFzmKjAXJYy2G1PrZjdEfaRbWj1F1qHKO3CksLjZkTdQUrrSJa0SW2Cy7V5fPvS6mr1LjK1hfxqkmQOcjIdvi6bLuqqqxL09YfqStYAYzm6fr0reiv58n711RH71upz0qv+sVaTSW1ivTMyq7sXT43hOoloM4xnattxq4oMijSmLq9Pt23vpUCRwHHCo8B1a8kezKjb6UeM4I8aa7VdYntgkWxkFWSRVphzRsKNwYJVgIhcw/OslSvJfuwR0/Ra7Au1eVxA5fL7eLD7R8CcF2362o9mYdaQ41swDtb3/EpFV3gKDBWzryqy1W1PjbUGmo85qMdH/kUpacVphkn5kntJ9X62GBLMJd21NbQ0MtU3tqTs4dd2buwmCyMbzu+1scGmYOMMtFXe3wrzezI3kFyfjLB5uAqi22dzGqyGguO+TprZmP6RrJLsokMiqx2ZdCKzCazEUDpC555a82xNdhddhLDEqtdn6MiRVGM7Iqvm9StS1uHU3XSMrxlnbV5wNjzxdfFzDZnbKbEVUJscGydKX0oX3nV1+DoaOFRjhcdx6JY6sx0QHkpaOWRlT79vdtddnZka5mOmkqGFenByrasbT4HD3UtllZR09CmJEUloaL6vACe0VwbW3NzbUV6kOhrKUgvATULaUaULarOx/ujyVbPrNTWXKsLtgQbvTSnWt+KBCuBUHCc0rIUptWLLIl+debpdLxfkn8htSCVKFsUF7a/sM7HX3XGVYRbw9l3Yp9PjX4/HfyJYmcx7aLaVbvS48ku73w5QaYgtmZu9emP7fv936Oi0je+L60i6z75XNnlSsyKmbVpa403IW/8sF/bVXZ4y+HV9uKcTA+OlqUu8yktrGdVhrcaXms/gE7/P16aspQTJSe8Hk8vAY1oNcKjWWrGlNvUZT41LutTrYe1HFZnSh8wAsRVR1f5VJrxtASk0zORK4+u9GkdIr1X4qyEszz6+Ya2HIqCwq7sXT5dteoXMd2adCPEElLn43s36024NZwce45Pszt2ZO3A6XYSFxxHy/DaSySgXXAlRSVpK9CmeR88lDhLjJN5bc3DFdW3FLQrR8usnBF7hkePr2/fit48XFdzra5Hkx4oKBwtPOrTe4yqql5lVvQx4dTrW5FgJRDyj+Mse+/yJljR6956015tVFXlg+0fAHBl5ys9OtlFBkUaM4Pe2fKO19kOvZn0ko6XePTmHBcSZ2QfPtzxoVdjqapqZBA8CcRAe7PUr5b1cpWnXG6XkUGoqwSkaxfdjj7N+uBSXV5nO9yq28gg1FUC0nWO7UyX2C6Uuku9Xp5eVVVjynJNs4BOdkbsGbSNbFtpRVhvxtODlbqyRrqkqCS6xHbBqTqNwMobeq+EvgZHXdpHt6dtZFtK3aUsT13u9Xie9qvoYoNjjXKK3svjDU/7VXRWk9XIdvxx1PtSkF56qGkxuOrUZwrz7pzduFQXscGxxIfGe/QcPVjxpfSkqmp5GcjLzMqenD3kOfK8HnNfjhaMeVICAm1xOL23xZcLvuNFx43tQmrqwTvZqTojSIKVQCg4TinaH7elxPNmwQEJAzApJvbm7K1z4aEN6RvYmrmVIFOQEYB44tqu1xJsDmZ71navGuF2ZO1gZ/ZOrCZrjbNkqqOXnn5J/sWrxZQ2pm8kOT+ZEEtIlSXMax2vqzbejwd+9OrqfHXaatKL04myRTG0ZfVTbKtzScdLAPhq71depdo3Z2wmrTCNMGsYZ7c8u+4nlNEDt+/2ebdg27bMbRwvOk6IJcTjzIOiKEZ25acD3q2+uit7F+lF6YRYQuosOVWkZ1cWHvRuwba0wjQO5B7ApJjq7B/RKYricymoqLTIWHF3QIJnwQpUKAX50LfibbAC9etbMdZX8aBfRafPRvRlsbaK66t4Ghzpv1v7TuzzetbT8aLj5NpzsSgWj5pPAZqENKF1RGtUVJ/20NEzR3U111ZUn1KQXgJqHdna45mpemZle9Z2v28wWh8SrARCQTpOvQxU4nn0HRMcQ/947Y+vribYD7Z9AMAFHS6gSUgTj8eIDY419keZtXWWx8/TFyQ7p805xATHePy8DjEdGNJ8CG7V7dWibfqU57FtxnqUNdL1btqbM2LPwO6yezXNV196fXzb8QSZgzx+3ti2Y4mwRnCk4IhXV3d678/o1qOrXculJue2OxeLYmFb1jbjKs0TeqZiWMth3o1XNqV41bFVXu1Rop+MByUO8mo8vW9lTdoar9LeeuDdPa57rbOqTqZPYV6euhy7y+7x8zamb8TpdtI8rHmds0gq0rNMq4+tpqi0yOPnZRRlcDjvMApKtTsD10TvW9masdWr0qGqqnWuXFudfgn9MCtmDucd5mjBUY+fB56tXHuymOAYo6TibSlIz6okRSd59TvqaylIVVVjJpCnZSCoX7BilIA8DMZAy3CGWkIpdhbXewsYf5JgJRAK0ijVy0D2fPAiOh3bVtvXQ18yvDoHThxgaepSFBSu63qd14c3pdsUrCYr64+v9+gPLqckx9jXRN+rxhv6Mc7fO9+jaamFpYVGP4c+hdZTiqIY2ZW5u+ZS6q57MaWi0iLjytqbrBFAiCXEyD54Ghw53U7j/7euRt6TxQbHGpkfT5fDr1gC0k/OnmoT2Ybucd1xqS6vZpEtT9HKKp6WgHQtwlvQs0lPVFQWHfZ8PG/7VXTd4roRHxpPsbPYq0yjHpielehZv4quXVQ7WkW0otRd6tV4+uyTLrFdKi36WJeEsAQ6xnT0egqzvoGexWTxaGaOLiKofDE+b6cw17W5X0187VvRgxVP+1V0er+etyvZZpVkkWPPQUGpdUPBk+nByvZM7xeH09dY8WY8s8lsBIynUt+KBCuBUDGzoqpQ4nln/DltzsFqsrIze2eNkbS+6d3IViONHZu9kRCWwIUdtHKCJ9mVr/Z+hd1l54zYM7y6ytINaj6IDtEdKHIWeTRz5pt931DkLKJtZFuvUt668W3HExscS3pRukfp/SXJSyh2FtMmso2xmZc39EzVL8m/eJR9WJu2luySbKJt0TXuJ1Mb/f/u+wPfe7Tmyt4Te0nOTybIFFTjKrK10WcheboRX0ZRhrEnjTclNZ2eXaktYK/I6Xay4og2fdzTfhWdr6Ugva+spiX2axvPl1LQ+jTvS0A6X0pB+nvPGbFnEGwJ9mo8Y5NBL/pWikqLjKt4b4MVXxeH04Oj2pbZr46+zcG2rG2UOEs8fp5eAmoV0cqjBmld28i2RNmicLgdRoDlKf019SazAqdm34oEK4FQsWcFFYqyPH5qbHCssex6dXvPbErfxJLkJZgUE3f1ucvnQ7yx+42YFTMrjqxga0bNv5AOl4N5u+cBMPmMyV5dReoUpTwDNHv77FpnXrhVN3N3zQXg6jOu9mm8IHMQl3e+HIBPdtQ9jVnPUJzf7nyfxusS24WeTXridDuNY6/NDwe0WUdj2ozxaFbOyYa1GEaMLYbM4kyPGkP1jMjgFoMJs4Z5Pd74pPGYFBObMzZ7lBbW9+bp0aSHVyVK3dg2Y1FQ2Ji+kWMFx+p8/Kb0TeQ58oiyRfkUTOvZpt9SfvMo+Mu15xoLu3naXFtRxdVsPe0J0DMrPgUrzbVgZcXRFR73VflSAtLpwcrqY6s9Hm9r5lbcqpvEsESahjb1arx+8f1QUDiYe9Cr0qFedqptG4HqtIxoSdOQpjjdTq9O5r6UgEB7/9QvorwpBamq6lNmBU7NGUESrARCSV55GUhVodi7aZj6iX3RoUWVmrjsLjszVs8AtJ1jvWnSOlmriFbGFfMTq56o8U167q65pBWm0TSkaY1713ji/Pbn0zayLdkl2cYspuqsOLKCw3mHCbeGc0H7C3we7/JOl2MxWdiUsanWaZv7T+w3Uvrntzvf5/Gu7349oPX21NaLcKLkhJEx8PXns5qtTOo4CYCPd35c62PdqtsIxrwtOemahDQxFnX7YvcXdT5enxZf10JwNYkPizf6AjzJrugB29AWQ2tda6gmfZr1IcYWQ64916Or83Vp61BRSYpKqnXX3JqcGX+msSuyJye7XHuucaLTXxdv9GnWh1BLKNkl2cYOw3XR33f0/Wm80b1Jd8KsYZywn/A4E1Cf4CjKFmUsle9pKSijKIP0onRMiqnOZfZPpiiKT30r+nIK3gYr4FvfSlZJFnmOPEyKibZRbb0aTw9W9uTs8Sp7FEgSrPib0w4uu1EGsqiAF410oE2ju6D9BaioPLLiETKLM3G5XTy28jF2Zu8kMiiSqb2n1vtQ7+57NxFBEezM3sknO6tmIE6UnODtLW8DcFefu7xqQjuZ1WTln2f+E4A52+dUWy5xq25mbdHKUhd1vMirxtqTNQ1taswiemPzGzVO035v63uAtuaGN42SJxvVahStI1qT58jj631f1/i4b/d/i91lp0tsF5/emHWTu0zGolhYm7a21uXbVx9bzbHCY0RYI4xyhy8u76Rlqr7d/22tOyPnlOQY5Yb6jKdP5/ZkirZeTqlpV+e6WEwWo1dMb7SujV7e8GYWUEVWk9UozejTu2ujB1DtotoRGxzr/XjmClOYPdjYsKi0yNgZuLadlmscz2Q1Jgro5bm6eLqsf028LQXpJaCkyCSf3md82dRQDxS97ZGB8qDRm2BFz6q0imjl9Xt3fGg8TUKa4FJdXpeeAkWCFX+zaw2kehnIqqpQ6n1ken+/+2kS0oRDeYe49LtLufDbC/n+wPeYFTMvjHjBpyu6kzUJacL9/e4H4PWNr1dK8auqyovrXyTfkU+nmE71ynLozml9Dj2b9KTYWcyza5+tEkB8s+8bNmVsItQS6lPj8Mlu63kbFpOF5anLq10nJDU/1ejDuLnHzfUay2wyM6XbFAA+3P5htY1wbtXN57s/B+CKzlf4VHLSJYQlMKattl5KdeVCnb7+y7ntzvW696CiIS2G0CK8BfmO/Fo3G/zp4E843U66xnX16QpSd06bczArZnZk7eBwXs2rQCfnJXMw9yAWxVLj3lGe0KeELzm8pNYF8Nyqm9+StcyRHnD4Qi8FLTq0qM71jvTMkT6zxxf69Hh9Y8nabM7YjEt1ER8aX+uWGrUZ1krLqnmyWq+qqmzJ0KaB+xrA671D3gYr3sw8qkgvx21K3+RR6bDEWWIED940LOt6NOmBSTFxrPCYxwsK6j0y3paAQMsenWp9KxKs+Jtdm6psLAqH6nVmBSA6OJrZ42bTKqIVWSVZHM47TGRQJE+e/aRxleQPkzpM4qyEsyhxlXDdgutYc2wNLreLZ9c+a2QI7u9/v0/p9ZMpiqJ9L8XMgoMLjKwNaLsdv7j+RUDbJdrXN8mKkqKSuKHbDQA8vebpSuUZVVV5beNruFQXg5sP9vlNq6IL2l9AXHAcRwuPVvrZdIsOLyI5P5lwa7gxJbg+9IBuwaEF1b6B5dpzjaZRb2dVncykmIxG4nm759V4gv12nzbl3NOF/GoSFxJnNB/XNuX9x4PaQn59E/p6NUvmZN2bdCcpKokSV0mts5A2Z2wmvTidcGu41zOPKhrRagShllCS85ON9Uyq41bd/J6q9QD5WlYDbSNJBYUtGVtIzU+t9bF6NqReP1/ZxpVbMreQXpRe62MP5x3mhP0EQaYgn7IOoAUPZsVMSn6KRydzb/Ygqk6H6A5EWCMochZ5tCPy3py9Xi94V1GYNYyusdqxelrq8mYDw+ropSAJVv6q7Pm4AHelMlDNafPatI1qy1cXfMXb57zNzKEzWXDJgnr1VVRHURSeGfYMPZv0JNeey02LbqL3R72NXohHBz3q1+Cod7PePDTgIQD+t+l/vLDuBb7f/z1X/HAFufZcOsV04uozrvbbeLf0vIUW4S1IK0zjPyv+Y5QwPt75MT8d/AmTYuIfvf7hl7GCLcE8OOBBAN7d+q5x9QZa4PD06qcBbWG++pS4dN2bdKdffD+cbidPrHqiSgDxv03/M0pO3s6wqM5FHS4iyBTE9qzt1W42uDt7t7FwoD+CsSldtUzV/L3zq13wy+l2GqsqX9ThonqNpSiKEWDpAVd19GblEa1GeLUez8lCraFG6am28XZm7SSrJIswaxh9m3nfXKtrGtrUWCyvrr2X9I0565PJaRra1Cjp1JVd0UsbXeO6erxw2cnCg8KNwKOu7IqqquVruvj4d2E2mekTr61340nfSsUSkK8ZVf3/z9Pskb6VgKer5Z5Mz6ycKk22Eqz4W0mekVWBsjJQLTX+uoRYQhjcYjDntzvfq8WuvNEkpAnvjXvPaLjVx3188OPG1bQ/Xd75cq7vdj0AH2z/gIf+eIj0onTaRrbluWHPYTFZ/DZWiCWE/w78L2bFzOLDi7nmp2u4Z+k9PL/ueQDu7XuvVyt01mVc23GMbTMWl+ri4T8eJjU/FbvLzlOrnyKrJIt2Ue3qXXKq6D8D/4PVZGV56nJjlhFogYM+i+u+fvfVq+SkiwuJMxqJn1v3XJVF1N7Y9Aagncg92VupLgMTB9I1rislrpJqe6qWpy4nvSidGFuMx1sI1Ob8dudjUkxsSN/AwdyDVe53q25jB3F/jKeXVn8+9HONfUB6CWhQ4iCfT+S685K0v+/aNqZMK0xj34l9mBSTsRqtr0a2GglQ51YN+snXm8XuqqPPzKprhlxqQaq2hoxi8XiZ/eropSBP1pPRL1zOiPMtcwSVtxaoq3TodDuNhl5fAzL9eSn5KT7t1eVvEqz4mz3f6FeBsqnLPmZWGlKwJZinhz7Nb5f/xrIrlrHiqhVc1LF+V6u1ubvv3cwcOpPxbcfTJrINV3a+knnnz/NoZ1BvDW4xmHfGvkNscCx7cvaw+PBi3KqbiztezLVdr/X7eA8NeIjY4Fj2ndjHhd9cyLgvx7Hg4AIUFB4b/Fi9rshP1j66vZEZenrN0/xx5A+S85J5ZMUjuFU3Y9qM8Wl6bU1u6n4TzUKbcaTgiLHjN2hXz7+m/IpFsfgtU6UoihHYzd01t8qUd73/Z1LHSX55TePD4hnWQiu16IFXReuPr+d40XFCLaH1yjro+sb3pUV4CwpLC2tc46W+M6sqGt1mNFaTlX0n9tW40ae+cFyPJj082hW4NqNajwK0k2tNfUAut8toyK5PDxBoTe6gBSu1zWBZc0wLjno27enVeicn09csWpO2ptamc6gQrPhY5gItmLMoFo4VHiO1oPZS3v4T+7G77IRZw2gd2dqn8aJsUcY6Xr5sLeBvEqz4mz3fmAkE9SsDNYYmIU2IDY71af0Pb5gUE+e3O5/nhj/HDxf9wMMDH/ZLaaQm/RP6M+/8edzS4xbu7ns37497n+mDpvsl43CyuJA4Zo+bzYDEATjcDrJKskgIS2Dm0Jl+zeLoru9+Pd3iupHnyOMfS/7BxG8msjN7J2HWMO7rd59fxwq1hnJ337sBbZbVnO1zWH98vTGl/tpu19arsfZko1uPpm1kW/Id+ZVKXb8k/2KUKy7rdJnfxruzz50oKPx86OdK6W9VVXl94+uA1qxcn5lxOpNiMkpPn+/+vMrV8qb0TUZZzdeZThVFBkUaQU9NC/zpgUN9mpV17aLa0TayLU6301h752TbsraRXZJNuDXcKKv4qnuT7iSEJVDsLK51tV5jQT8P95CqSYfoDjQPa47dZTcCoOrYXXZjt+X6BCuh1lCjtFbbeFAeHHWN64pJ8f00ry+A5+2Ce4EgwYq/2cvXWDEBZvCpwVb4X0JYAv8885/c2P1G+if0D0igomsX3Y53xrzDW+e8xYyzZ/DjRT9WKrP5k9Vk5e0xb3Nd1+uwmqy4VTdDmg9h7nlzaR7e3O/jnZd0HhOSJuB0O3l+3fNc//P1HCs8RvOw5tze83a/jmVSTPxn4H+wKBZ+PPAjL214iZVHV/LwHw8DWv9Pq4hWfhuvc2xnY8uFF9e/aAQQy1KXsSF9Azazza8/40UdL8JmtrExfWOV7Iq+HtEF7S/wacpydfReou/2f1clG5BZnGnsBu2PTA6Ul8v03qKT6eMNaTGk3hdIiqJwTmttgT99e4mTqapqnOi9XX24uvH016m2Kej6jKGmIU3rtTwClAdYesBVE6OBONa3BmJjvLLXaN3xdfX6Pv4gwYq/2fMo1Zfa119eH6Yui9OfoigMaTGEie0n+rX0U50oWxT397+fBRcv4JNzP+HNc970aSsGTyiKwjNDn+GRgY9gM9uwmW1c0vES3h//fkCyYwMSB/Cfgf8BYPa22dy2+DYKSwvpF9/PyPL405297yTIFMTatLU89udjrD++nufWPgdoqyrHh3k/m6MmCWEJRv/W8+ueN/qADucdNpqY/TGNXzei1QiahzUnszizymrLn+/+HIfbQY8mPXyeJXOyyztfjlkxsyZtTbWlJ72/RN+CoL701YiXpi6tdvmAA7kHyCrJwma21WudI52e8VqWuqzGPhJ90ckBiQPqfYFkTNE+tqbWvhV97aX6znLsl6BlVnZn7ybX7vm2MYEgwYq/2fNx6kvtK2XTfSWzIhpIfFg8PZv2DGjWCLSA5fLOl7P40sX8dvlvTB88nRbhLQI23iWdLuH+fvfTIrwFzUKbMbj5YJ4f/nxAypWJ4Ync0+8eFBS+2vsV1/98Pcn5ycQGx3Jj9xv9Pt6N3W80+oCeXfMsRwqO8MiKR1BRGdZymF/7uILMQcaCku9ufdc4AZU4S4yG7Ou6Xue335+EsARjccCTg6OUvBR25+zGpJjq3a+i6920N3HBceQ78qstBem39WnWxy8XEP0T+hNiCSG9KL3GKcwVg5X66tW0F8HmYLJKsmpcrK3UXWrcV9+gs0lIE5KiklBRGz27IsGKv9nzy5faN4KV06dnRQhvxATH1Gt9E29c1+06fr7kZ3657BfeHvM2cSFxARvr6jOu1sYIjjN6Sz4777N6N51WJ9QaavQWfb7nc8Z/NZ6N6RsJs4ZxR+87/D7e+e3Op0N0B/Id+by84WWcbiezt80muySbxLBEr3fmrou+C/oPB36oNKvkjc1aE/OgxEHEBMf4ZSyzyWzsgj5nx5xK96mqyvy98wHvdwOvic1sM2ZN/XSgah9QviPf2NTTH0tABJmDjMCupq0o9uTsweF2EGGN8EuJ1CgFpUmw8tdSocHWapLMihCnq0HNB/HTxT+x6JJFPHn2kySGJwZsrAlJE3hu+HM0D9N6jNpGtuXT8z71WzmmIrPJzLQzpwFaL8nYL8cagcP13a7369IBoGU7zog9A7vLzszVM3GrbnZm7TSm2t91pu8bslbnuq7XYTFpW1FUXJ5+bdpa9p3YR4glxC8rcuv0BRe/3vd1len869LW4VbdtIls45eFLgHGJWnbiPx86OdqS0H6lgp9E/rWq7lW1y+hH+2i2vm0Kak/SbDibyV55Tsu65mVU2QjKCGEd0KtoX7tUanN+Lbj+e6i73jrnLe0afw+LJPuqeGthvPkkCcJt4aTUZyBxWThvn73cVWXq/w+lr5ytUWxsODQAh78/UEeXqE1SE9ImuCXBQsrSghLMBbPfHfru8btehnqgvYX+DUbOKzlMBLDEjlhP1El26EHZP5cWHNYi2GEWEI4UnDEaKStSO8D0lcRrq9xbcbx7aRvuanHTX75fr6SYMXf7PnlS+3rVyhSBhJCeMBmtjGkxZCATuPXXdjhQr6+8Gtu63kbH5/7MVO6TQlYr1P/hP48OvhRQJs2vTdnLyGWEO7q49+siu7G7jeioLA0ZSnzds1jxZEVxuJ0V3a+0q9jmU1mY/r8vF3zjNsP5x02FhG8vPPlfhsv1BpqBCILDlbe6DOzONNYHt9fM7oC3f/mKQlW/M2Rb8wGMtKpUgYSQpyCEsISuLPPnX7PblRnUodJPDTgIc5ucTZ39L6DeefP8+u084qSopKMbTueXP0kty+5HbfqZljLYXSI8W35+dpc1PEiLCYLWzK3GAHKB9s/QEVleMvhdIrp5Nfx9FLQwkMLK22k+MeRP1BR6RbXjaahTf06ZmPzb3FSgL2gfMdlfaaCTF0WQgiu6nJVQEpN1Xmg/wPEBMfw2sbXAJjcZTL/OvNfARmrSUgTru5yNXN2zOGh3x9ib85eY8+nQJRPzm5xNjG2GI4XHeeLPV9wVZerUFXVaPL111TwU4kEK/7mKDTKQEZmxeVovOMRQoi/IUVRuLXnrQxIHIDNbKNLbJeAjjet7zT25e5jxZEVvLn5TUDrVanvnkfVsZltTO09ladWP8X/Nv2Pc5PO5Y8jf/DnsT+xmCxMSJrg9zEbmwQr/uYopNRyUmalmsWJhBBCBJ4/Fn/zhMVk4flhz3Pf8vsoLi1mfNJ4YzuFQLi006XM2z2PfSf2ceviWzlScASA23veTtuotgEbt7FIsOJPqgqOAkqt2uZYFiNYkcyKEEL81YUHhfPWOW81yFgWk4WHBjzEbYtvq7RR4o09/L9w4alAghV/Ki0GVPQ8irGl+0lz74UQQoj66p/Qn+8mfcfSlKXsPbGXm7vfHPBNaBuLBCv+5NC2sC9fFK5sOWcpAwkhhAiAlhEtjVWC/8pk6rI/OQoAKLVo28db9L0npAwkhBBC+EyCFX/SMytlwYq1YrBSyw6ZQgghhKiZBCv+VBaslFq0IMVSsXYopSAhhBDCJxKs+FNZGchp1jMrtvL7pBQkhBBC+ESCFX/SMytls4AsFglWhBBCiPqSYMWfTgpWrOYg0LfoljKQEEII4RMJVvzJKANpM8ItJgsYTbay1ooQQgjhi4AGKzNnzqR///5ERETQrFkzJk2axO7duys9RlVVpk+fTvPmzQkJCWHEiBFs3749kIcVOPrU5bJgxWqyVghWJLMihBBC+CKgwcqyZcu44447WLVqFYsXL8bpdDJ27FgKCwuNxzz77LO8+OKLvP7666xdu5aEhATGjBlDfn5+IA8tMPSpy6aKwYosuS+EEELUR0BXsP35558rfT179myaNWvG+vXrGTZsGKqq8vLLL/Pwww9z8cUXAzBnzhzi4+P59NNPue222wJ5eP6n96yYtBhQKwOVNdlKsCKEEEL4pEF7VnJzcwGIjY0F4ODBg6SlpTF27FjjMTabjeHDh7Ny5cqGPDT/0HtWTGbgpMyKU4IVIYQQwhcNtjeQqqrcc889nH322XTv3h2AtLQ0AOLj4ys9Nj4+nsOHD1f7fex2O3Z7ebNqXl5egI7YB3pmRSnPrLhMVsyA22mXbmYhhBDCBw12/rzzzjvZsmULc+fOrXKfUrbxn05V1Sq36WbOnElUVJTxr1WrVgE5Xp/Y9cyK9rJaTVZScp0ALN91tNEOSwghhDidNUiwctddd/Hdd9/x22+/0bJlS+P2hIQEoDzDoktPT6+SbdE9+OCD5ObmGv9SUlICd+De0mcDlQVax044yC3VXuJlO4802mEJIYQQp7OABiuqqnLnnXcyf/58fv31V5KSkirdn5SUREJCAosXLzZuczgcLFu2jMGDB1f7PW02G5GRkZX+nTLs2gymUrRgJSPPRWlZpS09Jx9VNjMUQgghvBbQnpU77riDTz/9lG+//ZaIiAgjgxIVFUVISAiKojBt2jRmzJhBx44d6dixIzNmzCA0NJTJkycH8tACQ5+6XFbByixwUqpqL7HicpBZ4KBphK2mZwshhBCiGgENVt58800ARowYUen22bNnc/311wPwwAMPUFxczNSpU8nJyWHAgAEsWrSIiIiIQB5aYOhloLIvM/OdlFI2MwgnqTlFEqwIIYQQXgposOJJ2UNRFKZPn8706dMDeSgNQ2+wRfu5M/Kc2CnbJ0hxkppTTJ/WMY12eEIIIcTpSGbT+ovbDaVlU5fLgpWcIrfRsxKEk6Mnihvt8IQQQojTlQQr/lJavoWAU3UDYC9VKgUrWYWyMJwQQgjhLQlW/KWsBIRiolR1aZ+rJtymsjIQTrIKJFgRQgghvCXBir+UNdcSFIHTrS0Ep6oWzFatodaKk+xCe03PFkIIIUQNJFjxFz1YsYVT6i6bD6SasOjBiuIkW8pAQgghhNckWPEXvQwUFFYhWDETZAsGwCY9K0IIIYRPJFjxF6MMFG6UgbRgpbwMlCPBihBCCOE1CVb8xV5eBrK7tN4UVbVgDQoBtGCl0OHC5ZYl94UQQghvSLDiLxUabEtdehnIUimzAlBQ4myMoxNCCCFOWxKs+EtZsOKyhuJU9TKQBVtZz0qISbstr6S02qcLIYQQonoSrPhLWRnIYQs1blJVi9FgG2rWFoqTYEUIIYTwjgQr/lKWWXFYQ8pvc1sIDi7LrJi1heLypQwkhBBCeEWCFX/Rd1y2apkVVVUAE6HB2tfBJi1YySuWzIoQQgjhDQlW/EUvA5UtAodqBhRCQrRMix6sSGZFCCGE8I4EK/5SllmxW/RgxYKiUB6sKNJgK4QQQvjC0tgH8Jfh0HZddliCAK25NirEiqnsFbYpklkRQgghfCHBir/Y8wEorZBZiQ6xgllLXunrrEjPihBCCOEdCVb8RS8D6akUt4Xo0CAwa0FKUFkZSDIrQgghhHckWPEXvcHWYgW0MlB0aIXMiqplVPLtklkRQgghvCHBir+U9ayU6pkV1UJMaBCUra9iVvUykGRWhBBCCG9IsOIPqlpeBjKby24yExViBYv2tUXVy0CSWRFCCCG8IcGKPzgKAW03ZYdSNhtctZaVgbTbTWVloDzpWRFCCCG8IsGKP+g7LismHIqifa6ay8pA2p5AJrcDgAK7BCtCCCGENyRY8YeyfhWCwnG4tKBEdZc12Jr0YEULUgolWBFCCCG8IivY+kPZGisEheMoy6Cg6lOXtUXiKAtiihwu3G61EQ5SCCGEOD1JsOIPehkoKMzIrJQvCqdNZVZQMaFlWQodkl0RQgghPCXBij/oZSBbeWalfJ0Vq/GwkLLNDKVvRQghhPCcBCv+UKEMVFxaon1+chkIiCr7VPpWhBBCCM9JsOIPehnIFkG+vTxYibBZwFSeWYku2zaowO5q4AMUQgghTl8SrPhDSZ720RZJgd0OQLAlCJNJAZMJFG1huKggrbFWMitCCCGE5yRY8YeSXO1jcCQFjmLtU333ZTD6ViLLghXpWRFCCCE8J8GKP9jLMivBURSVapmVkErBitasElFWESqQVWyFEEIIj0mw4g9GZiWKYqcWrIQFBZffX7a5YYReBpKpy0IIIYTHJFjxBz1YsUVSXJZZCbNWzaxEWqQMJIQQQnhLghV/KCkvA9nLFoWLsIWU318WrIRZpcFWCCGE8JYEK/5QocFWD1bCbRXKQGatDBRu0YMVmboshBBCeEqCFX+o0LNSWhasRAZXDFbKMisWbbn9fGmwFUIIITwmwYo/6LOBbFGUurWelejgsPL7yxaG04MVKQMJIYQQnpNgpb7crkpTl0tVLbMSE1IhWDGfFKzIbCAhhBDCYxKs1JceqAAER+JGy6zEhVYNVkLMMhtICCGE8JYEK/WlzwSyBIPFhhsts9I0LKL8MWU9K/quy1IGEkIIITwnwUp9VWiuLSl1gVIKQJPw8PLH6JkVk1YGkhVshRBCCM9JsFJfFRaEyy4qQTFpgUiT0ArBSlmDbbC5LFiRzIoQQgjhMQlW6storo3keH6+cXOIteKicGXBil4GcrhQVbXBDlEIIYQ4nUmwUl9F2drHkBgyCgqMm23mqrsu28qCFZdbxe50N9ghCiGEEKezgAYry5cvZ+LEiTRv3hxFUfjmm28q3a+qKtOnT6d58+aEhIQwYsQItm/fHshD8r/iHO1jSCxZhYUAKKoVk1LhpS1rsLVSXv6RheGEEEIIzwQ0WCksLKRXr168/vrr1d7/7LPP8uKLL/L666+zdu1aEhISGDNmDPkVyimnvOKyzEpoLFlF2nGbCKr8mLKeFZPbSViQGZAZQUIIIYSnLIH85hMmTGDChAnV3qeqKi+//DIPP/wwF198MQBz5swhPj6eTz/9lNtuuy2Qh+Y/RhkoluxiLbNiMdkqP6asDISrlPBgC4UOlzTZCiGEEB5qtJ6VgwcPkpaWxtixY43bbDYbw4cPZ+XKlTU+z263k5eXV+lfo6qQWckpC1aClJODlbJMi8tBmE2LDyWzIoQQQnim0YKVtLQ0AOLj4yvdHh8fb9xXnZkzZxIVFWX8a9WqVUCPs05Fes9KDHklRQAEmYMrP0bPrLhLCdeDFVlyXwghhPBIo88GUhSl0teqqla5raIHH3yQ3Nxc419KSkqgD7F2FTIrJ0q0zEpwTcGKq5SwIC1YkQZbIYQQwjMB7VmpTUJCAqBlWBITE43b09PTq2RbKrLZbNhsthrvb3AVpi7n2YvABqHWk4IVU4VgxSgDuRrwIIUQQojTV6NlVpKSkkhISGDx4sXGbQ6Hg2XLljF48ODGOizvqGp5ZiUklny7VgYKCwqt/LgKPSsRwdKzIoQQQngjoJmVgoIC9u3bZ3x98OBBNm3aRGxsLK1bt2batGnMmDGDjh070rFjR2bMmEFoaCiTJ08O5GH5j6MQXNrGhYTGUugoBiCiSrBS9jK7SgmzaVOXZTaQEEII4ZmABivr1q1j5MiRxtf33HMPAFOmTOGDDz7ggQceoLi4mKlTp5KTk8OAAQNYtGgRERERNX3LU4u+IJzJSokSgt1dgg2IDK4hs+IuJSxUMitCCCGENwIarIwYMaLWPXAURWH69OlMnz49kIcROBWaa7OLSsGk7bgcWUsZKLyswVYyK0IIIYRnGn020GmtwoJwWQUOFEULVoItJzfY6mUgp9FgK8GKEEII4RkJVuqjMEP7GN6UzEK7kVmpEqxUzKxIg60QQgjhFQlW6qPguPYxrFlZZkVrtq204zJUWGfFUb4onExdFkIIITwiwUp9FKRrH8PjySqwg8mufWkNr/w4YwVbKQMJIYQQ3pJgpT6MYKUpGfl2lLJgJSworPLjTBUzKzJ1WQghhPCGBCv1UVgWrIQ143i+HcVcAlSXWdF7VkoJt2mBi/SsCCGEEJ6RYKU+KpSBjueVGGWgMOtJmZWKewNJZkUIIYTwigQr9VGhDJSeV4JiqimzUnXXZbvTTanL3VBHKoQQQpy2JFjxldsFRZkAqGHNOJ5nRzHX1GBbPnVZb7AFKQUJIYQQnpBgxVdFWaC6AYV8SzTFpaUoJm3qcnjQScGKqXxvIKvZRJBFe9mlFCSEEELUTYIVX+kloNA40gucRr8KVNezUt5gCxAha60IIYQQHpNgxVf5x7SPEQmk55VPWw4yBRGkBye6CovCAbLWihBCCOEFCVZ8lZuqfYxsQVpeSfm05ZNLQFBpUTgoD1akZ0UIIYSomwQrvtKDlaiWHMutZdoyVGqwBWRhOCGEEMILEqz4Ku+I9jGqJak5RTVPW4ZKK9iiqlIGEkIIIbwgwYqvKmRWUnOKy5farzazYi3/3O2qsJmhBCtCCCFEXSRY8dXJwUpNS+1D5WCl0s7LEqwIIYQQdZFgxRdut1EGcke04EhOcXnPysmbGEJ5zwqAu7RCGUimLgshhBB1kWDFF4UZZc2yChlKLA6XG3NtmRVTxcxKxWCltAEOVgghhDi9SbDiC70EFJFAap4WcISGaMFKTHBM1cebTKBoM4C0MpD2uSwKJ4QQQtRNghVfZO/XPsa2Izm7CIDg4GIAYmzVBCtQaRXbcJuWaZHZQEIIIUTdJFjxRVZZsBLXngMZhQBYg7RgJTY4tvrnGKvYlhJmZFYkWBFCCCHqIsGKL7L2aR/jOrA/o0D73KR9rLYMBBVWsS2V2UBCCCGEFyRY8YUerMSWZ1Ycaj5QS7BSYWE4vcE2X4IVIYQQok4SrHhLVSH7AACu2PYcyCwE3BQ6c4HaykB6z4qTyGAtcMkrlmBFCCGEqIsEK94qzAB7HqBwREnA4XQTFFSCigpAlC2q+ueZtWwKLgdRoWXBSolMXRZCCCHqIsGKtzJ2aR9j2rA3S9uYsGWcG4DIoEisFddUqajCZoaRwVrg4nC6KSmV6ctCCCFEbSRY8VbaNu1jfHe2H80DoHUzLVipsQQEVRpsTYr2ZV6xZFeEEEKI2kiw4q3j5cHK1iNan0p8tNZ7UmNzLVRosC1FURQiQ7SvcyVYEUIIIWolwYq30rZqHxN6sL0sWImO0PYFqj2zUr4oHEBUiPStCCGEEJ6QYMUbrlKjZyUnohNHc7Ul9rFkA5AYlljzc83lU5cBY0aQZFaEEEKI2kmw4o3j27VgIziKjfmRALRrEkZGSRoALSNa1vzcCivYQoXMikxfFkIIIWolwYo3UtZoH1v2588DWjblrKRYjhQcAaB5WPOan2s6KbMSos0IksyKEEIIUTsJVryRslr72GoAq8qClYHt4oxgpUVEi5qfaymfugwVMysSrAghhBC1kWDFU6pqBCsFzc5k+1GtubZHKxu5du3zWjMrZpv2UXpWhBBCCK9IsOKprH2QmwLmIJYXtcWtQrumYThNWYC2cm14UHjNz7cEax+d2swhmboshBBCeEaCFU/tXax9bDOYH3ZpmZRx3RJILUgFoEV4LSUgKC8DSbAihBBCeEWCFU/tWwJAadJoftuVAcC53RPZnb0bgA7RHWp/vlEG0oKVmLL9gU4USbAihBBC1EaCFU84iuDQHwAsKe1BcamL1rGhdG8Ryfas7QB0i+tW+/ewlAUrTq1nJTZUy7TkFDkCc8xCCCHEX4QEK544uBxcdtTIlry2xQzA1QNaA7A9syxYaeJpsKItJBctwYoQQgjhEQlWPLHtKwCSm41kR1o+wVYTV/RvRXpROlklWZgVM51jOtf+PYzl9suW5g/Tg5VSVFUN2KELIYQQpzsJVmrhcLq1EtDunwB4JlXLntx0dhLRoUGsO74O0PpVgvXZPjUxZgNpmZTosp4Vl1slr0RWsRVCCCFqIsFKDVKyixj70jI2/zoPHAVkWuL56UQrmkcFc/vw9gAsPqzNEBreanjd3/CkMlCw1UxokFZSyimUUpAQQghREwlWajB7xSEOZRVxbMUnAHxRchY2i5lXr+pDRLCVotIi/jiiNd2OaTOm7m9orryCLUCM9K0IIYQQdbI09gGcqh46twuu4hOM3L4JgD9DRjDnqrPo1zYWgC/2fIHdZad1ROu6+1WgyqJwADFhVo6cKJZgRQghhKjFKZFZeeONN0hKSiI4OJi+ffvy+++/N/YhYTGbeKzTYWxKKSXRHXjv3zcwsF0cAJnFmczaMguAm3vcjKIoHnzDyovCQYXMSqGstSKEEELUpNGDlXnz5jFt2jQefvhhNm7cyNChQ5kwYQLJycmNfWiw8zsAgntditWi9ZekFaYxdclU8hx5dIjuwAXtL/Dse520KByUByvZ0rMihBBC1KjRy0AvvvgiN910EzfffDMAL7/8MgsXLuTNN99k5syZjXZcRYUZZB5eRkGQldxmbTm0ay5bMraw5PASSlwlxAbH8srIVzCbzJ59w5MWhQNoEq7dlllor+4ZQgghhKCRgxWHw8H69ev5v//7v0q3jx07lpUrV1b7HLvdjt1efnLPy8sLyLF9s+ZFZiZqZR/Wzah0X59mfXhiyBO0jmzt+Tc8aTYQQJMILbOSkS/BihBCCFGTRg1WMjMzcblcxMfHV7o9Pj6etLS0ap8zc+ZMHnvssYAfW4SrlFC3SrglhPCI5rSOaE3HmI4MbTmU3k17e9anUlE1ZaCmemalQMpAQgghRE0avQwEVDnxq6paYzDw4IMPcs899xhf5+Xl0apVK78f08RznmeiayaUFkFwVP2/YXVloIiyYEUyK0IIIUSNGjVYadKkCWazuUoWJT09vUq2RWez2bDZbA1xeGC2gtkPgQpUWwbSMysZBRKsCCGEEDVp1NlAQUFB9O3bl8WLF1e6ffHixQwePLiRjipAqlkUrmlZZiW70IHbLfsDCSGEENVp9DLQPffcw7XXXku/fv0YNGgQs2bNIjk5mdtvv72xD82/qlkUTt/M0OVWySlyEBfeQBkjIYQQ4jTS6MHKFVdcQVZWFo8//jjHjh2je/fu/PTTT7Rp06axD82/9DKQ6gKXE8wWrGYTsWFBZBc6SM+3S7AihBBCVKPRgxWAqVOnMnXq1MY+jMDSy0CgzQgyay99fGQw2YUO0vJKOCMxspEOTgghhDh1NfoKtn8behkIKpWCEqO029NyS05+hhBCCCGQYKXhmC2glL3cFZps9WDl2InixjgqIYQQ4pQnwUpDMledvmwEK5JZEUIIIaolwUpDqmZhuISoEADS8iRYEUIIIaojwUpDslRdcr95WWblqJSBhBBCiGpJsNKQjDJQebCSUKEMpKqyMJwQQghxMglWGpKlarDSIiYEkwJFDpdsaCiEEEJUQ4KVhmSsYlte8rFZzDSP1vpWDmcVNsZRCSGEEKc0CVYaklULSiit3EzbNi4MgENZRQ19REIIIcQpT4KVhmQEK5WbadvEhQKSWRFCCCGqI8FKQ7JqQQmllTMoklkRQgghaibBSkOSzIoQQgjhNQlWGlJNmZUmWmblYGahTF8WQgghTiLBSkOqIbPSOjYUkwL5JU7S8+3VPFEIIYT4+5JgpSHpwYqzcrASbDXTrmk4ADuO5TX0UQkhhBCnNAlWGlINmRWAMxIjAdhxVIIVIYQQoiIJVhpSrcFKBAA7JbMihBBCVCLBSkOqocEWyjMrEqwIIYQQlUmw0pD0zIqjarDSrbkWrBzILCSvpLQhj0oIIYQ4pUmw0pCCtCnKOKqup9IsIpjWsaGoKmxMPtGwxyWEEEI47fDHS7Dg/2Drl+ByNvYRGSyNfQB/K0FaXwqO/Grv7tc2huTsItYdymZ4p6YNeGBCCCFOOaoK2QegOAea9wGTOXBjleTC3Kvg8Art69XAnoVw8SxQlMCN6yHJrDQkW1mwYq8+WDmrbSwAaw5mN9QRCSGE8Ibb1TDjFGbB20PhtTPh3dHw4YWQnxa48ZY8pgUqtkjodyOYLLD1c/j1icCN6QUJVhqSTVtLBXtBtXf3T9KClY0pJyi0nzrpNyGE+NvLPw5zLoAnmsCrZ8La9wI3lssJX94AaVvBHASWYDj0O8waCUUBuJg9kQwbPtQ+v+JjOP8lmPiK9vXvL8ChFf4f00sSrDSkOjIr7ZqE0So2BIfTzYp9mQ14YEIIcZrJPgAfXQQv9YAvrodjmwM3VkE6zBoBB5eB6obs/fDjPbB+TmDG2/CBNpY1DG5dBrf9DjFJkH8UfnvK/+OteAXcpZA0DNoN127rcw2cOUX7/NcntJJUI5JgpSHpPSvO4moblxRFYXSXeAB+2ZnekEcmhBD1s2cRfHIZvNIbfrgbSgK4DMPRjfDWUNj/K+Qmw/avYc5ESN8VmPGWztQChdj2cMuvMPif2u0/TIO9S/w7ltsNq97UPh/9CMR3haad4ILXtNvWve/fwMzlhG1faZ+ffXelu9Th/8ZttkHyn2xf9pX/xvSBBCsNSS8DQY1NtqPPaAbAL7uO43S5G+KohBB/RevnwOtnwat9YP5tWgNloOxZBHOvhL2LIOegdkJ9awhk7vX/WG4XfP8vcBRAqwEw+Qto2V/7+T6+BPKO+Xe8jN3lGZQLX4cWfWHM41rmQXXDggf8O2tm/6+QtU+7uO1zTfntSUNRu18Cqpusz/9JfrHDP+Md/kNr4A2Ng7bDjJsdTjc3zj/Cu/ZzALCuesU/4/lIgpWGZLFp9UeosW9lQFIcsWFBZBY4+F1KQUIEjtsNOYcgZS04/fTGXxOnXcs2PN4EHo8ra5Y8HrjxlkyH7/8Jmbu1csmWz+D98XAixf9j5RyGL6aA6oJuF8Gl70N0a60PYv6t/p/+umGOllmwRcEVn0CnsXDVPIjrAHmpsOhh/4636k3tZ+t8LrQZrN2mKDD+aVzBsZC9nzXfvE6+v9bH2ljWO9Ln6vLWAWD94WxuOnIBhaqNuJxN/GvmKzy3cBdqfcszO7/XPnY+F8zaBGFVVXn0u+38tjuD97iQX+MmUzRpdv3GqScJVhpaHX0rQRYTF/RqDsD8DUca6qiEaHwF6VrtfO27kLkvsGNlH4Q3BsArveC9c7RZF4f/DMxYTrvWW7Hufa0vwO2EA0vhnVFwfLv/xzuwVFsrA2D4/8FVn0F4PKTvgE8vB5efF538/QVtVe7Wg+Did6D7JXDjIi2YOLoBVr3hv7FUFVa+rn0+8kEIL1viISyO/PNnaZ9v+4rPf1xAbrEffk6nQysxAQy4rcJhqDy5OIUZ+ecC0GLLq5z34i8s3V3P8r3TAft+1T7vcblx8770fCa/s5pfj1n5Hi37cZG6hP/9tp///VaPvxVVhd0LtM/PuMC4+bO1Kcxdk4yiwIyrRzDqrjfp3aWD7+P4gQQrDS2orBTkqD6zAnDJmS0BWLg9jcwCe0MclThdOAq1K+VAN7u5nLBuNnx6Bbx7jhZAVLOnld+sm631Oiz+L/x4L7zeF5Y9G5ixsg/C7HMhc4+W6QwKh4xd8MG5sHex/8db+Vr5lNCrPtMaJvUswGeT/fu6upzagl4AZ92mndA7T4Cbf4GQWEjfQemfb9b/alx3Ihk2faJ9fs5jYLYCoEYkcODMBwGwL36C975dTEa+H97Lkv/UmluDwqHPtcbNhzILueCrfH5wDQQgZtVznPvK76w/XM+ZM/sWQ8kJCE+AtkOBskDlx528+8dBPnadQ5YpjhZKFkMKF3H97LX8Vp+A5fAKrUUgPF5bVwWtHDNt3ibsTjeD2sUx9jrt//dcyzpiyeP5RXtYvMPHLF3OIcg7AiYrtD0bgGKHixcW7QHg/nGdGX1GvO8/jx9JsNLQbNqy+thrbj7r3iKSXq2icTjdfLzqcAMd2F9IQ3WtZ+2H1bO0E2zK2sCOeyJFS+PPaKH1IMwaAfv83Ninczlh/i1a8+CenyF1rRZAvDlEy374275ftBJJaaH2Bl12UuC3p+C3mf4dS1W1nyv/KDTtAtO2wbSt0PVCrf/g69v9u5ZFzmFY/rz2+XkvaIFD895w02Kc4c0h5xA75z3CgYyaL168su0ryNipBSYjHzRuPkITZofeAEDJ4hlMfvFb1h/Oqf94a2ZpmaKk4dB6AKCdzB/6ehujfmvF767u2HAQte5Vzn7mVxZur+dru+Ej7WO3i4wewH3pBVz85koOZhbyScjVuDExxryeuNxtXDlrFRuT6/Fz6o2nPS41FmT7fssx3vvjIACPXtSXuNHTALg9YiUA93+x2ffAbM/P2seOY8GknZ7fXrafbUfyiA618vKVvYlt3w+an4lZdTKz3RYA/vPNVkpKfVj/5bB2zLQ4E4K0vevmrkkms8BOi+gQbhnazrefIwAkWGloIdHax+ITNT5EURRuPjsJgI/+PEyR4zRdc6X4BOz6STuhH/w9sCfzkjxY9hy80AWeaav1BOz/NXDjrXsfXu8HC+7XShfvnQOzJ2gLOflb+i54b4x2VYkKihmObdKaCfW1Efzpp/tg+3ztamvkf2DcDIhI1K5o517l30xAQQZ8dTOgalfKt/wG1/8AY8oWolr2NJmrPvVfs/men7UyiTlIy3JExENoLGmjXyUzrCMUZbLx1SuY/cd+/6x1tOJlbfZf26HQ4zJAO5m/viqLqTlXANBh7/vc8fInPLdwl28nnIrWl/UVDJwKITEA7DmezyVvrOTxI33Y6O5AhFLMZSfe4dK3VvLaL/VogHW7Ydt87fOzbjFufmPpfuauScakKGzqeCcAF5pXEunM5l+fbWRL6gnfxnPaYed32udljadut8qD87eQXeige4tIXrnrckw9tdf5vtgVlLpU7p63ybf/S7er/D3kjIkAlJS6ePqnnQD8c3RHJg9oDb2uBJOFNiU7Gdc0m8wCBw98udm37NW+X7SPncYBUGh38m5ZYDR9YjfiI4O1+/tpgeeY4p9pERXM8Tw7H/3pw4WtHqyU9eLYnS7eWrYfgDtGdsBqPnVChFPnSP4uwppoHwszan3YhO4JtIoNIavQwewVh+o/rtsFGz+G/w2AF87Qpv1tmhu4AOLAUni9P3x2lXZCn3M+vD8Ojm3x/1gledr3/+1JyD+mpW0PLNVO5n++4f+fcdVbWiZAdUPrwVqNvmx6H59c4t8pm0671ryYfwyangF3bYD79hjrH6jf382OlT/672SevLr8hHf5HBh+Pwy6g6zL5lNijYIj61jz8lXM35BKgb9O5sXZEN8dzn0eFAWH08277vN5h4sAcC54iCGPf8fna+vZHKqqWuMpwKA7IFa7INh2JJfz3ljLFdm3UqTa6FO6ic0/vcvQZ3/z/cQK2uyUzfO0z4c/AIqC261y/5dbeH7RHha5+rPSchZWxcXDpjn877f9THl/DaW+/l9m7NZ+BxWzcTLPyLdz1axVpOWV0L5ZJMGTtF6WSeaVNFczeGHxHn7e5uPsmeQ/tRKCLQo6jAHgj72ZPLdwNwDTL+jGXdddBS3PwoqTh5utoKTUzc1z1vlW3j68Qiufh8dDy7MA+HxdCmsP5RAaZObta/vRLCIY+mon8qGO32kfqXIoq4inygIMrxzbpM2SsUVCi34AvLP8AEdzS2geFczUEe21x4U3g07jAZjZbgtBZhO/7c5g1QEvS1AFGZC1F1CMkszcNcnkFpeS1CSMiWW9jAB0uxisYZhyDjC9v9ab88bSfd43+epL67cZAsCSHemk59uJj7RxSd8W3n2vAJNgpaGFlTWE1RGsWMwm7hnTCYC3lu0np7AesxVKi+GjSfDtHVptPv8opG2Bb26Hjy/2/4qIO76FDydBYbo2K6DjWO1knrIa5kzElbbDf2O5SrWr/WObIbQJXPwu3LoUel+tBRMLH2TvV4+xP6PAP3X69J2w6D/a50Pvgxt+gkvf5/DlCymyRMPRjWx54TxeX7KTw1lVN6z02u8vav9noU20jENce+y2GKart/KDewiK6qT5wlu4+OkvePWXvdid9bgyd7u0wBK0k12X8wBYuS+T4e+lcF3BP3GoZs4q/I1vv/yQUc8vZeexegRm+cfLVwE9ZzpYgyl1ubn1o3U8+eNOni+5kBQSSFByuNH1OQ98tYUH52/1/WR+cLn2WgaFw9n3ALA1NZer3llFVqEDS7Mu7Op4KwB3277lRGEJ189ey750H0s0m+dppa2mXYzS1od/HuLL9amYTQpPTurO4DveRTVZONu8nf62ZFYfzGaGLydWgI1lJZJO4yEyEYDp320nq9BBl4QIvrx9EGecOQzajcCEm+eT1gJw/xdbOJTpw+/qti+1j10ngjUYp8vN4z9oDcOTB7TmukFttfsHTQXggtKf6dbUSnq+nRcX7/F+vD2LtI8dx4DJRKHdyTM/a+uq3DOmEy2iy3a1bz0Q4jqilBby9platuHT1cnsSvPyd1XPqiQNA7OFIoeTd34/AMC/J3Qh2Fphn56y4DB273wm900A4FVvs1bJZQ3ezbpCSAylLjfvl2VVbh3WDrOpwv48tnDoqE0pHq2upl2TMHKKSvnIm7aBwkxtmjlAKy34+2pDKgCX9m2JzRLAfYh8IMFKQzOClbqnJV/YqwVdEiLIL3HyxlIfO77dLi3NfnC59iY95gm45TdcIx/BZQqC/b9y6H+TeHXhNlJzinwbo6LMffDNHYAKPa+EO9bA1V+w9sLf2GPtAiUnyHjzXG55dT5frEupf9r7z/9p6wTYIuHa+dDzMo6GduG2vBt42nkVAElbX+H+F9/hmvdWc+REPUoYbhd8e6c2o6PTBBj1H1AUPl+XwpiP0ri88D7y1RB6lm4h67f/MfqFZXy5PtX38XKPwB8vap+f+yyENTGulD/48zD3Om5hK+2JVgq5qeQDXly8h1s/XE+xw8fXdNeP5VNCR08H4OdtaVw/ey0Fdid58Wexs/VkAKbbPiUrv4gr3v7T996H1W9qJZIW/aDDOaiqysNfb2Xp7gyCrSYeu7gvza98GYCbrT/T3nSEuWuSjSt3r619V/vY60oIjqTI4eSuuRvIL3HSv20MX/xjEGde+gAER9NGPcLUppvJLnRw3XurfbtY0Keg9rsJFIV96fnMXKCdXB+d2JVrBraBmDYo3bQM0itttKvc2SsO8f3mo96Pt+unsp9PKy8t2p7Gj1uPYTYpPH9ZL6JDy5ZNGHA7AANzfmBImxDy7U7+/dUW74J5VdU2uQOtfwSYty6FPccLiA618u9xXcof22UiRLXGVJzFaz20k+Nna5LZnVb9jMiax9P7ObQSyby1KeQUldI2LpTrB7ctf6yiwJla822HlPmc20MLHl771cv30P2/aR87jAbgm41HyStx0jo2lPN7Nq/82A5jtIxPUSZ3JqVgNSv8eSCLtYe8uBDUg5XWWpPw8j0ZHM0tIS4siIv6VJPl6KKVpky7f2TqSG2mztw1ybjdHv4/6gvLxXWA4CjS80tYtke7iL64bJLHqUSClYYWGqd99CBYMZkU/j1e+6Of8+dh3060K16BXT9omY3J82DIP1lW2Irhq87kvOLHyVNDaFu4meZ/PMio55fy5A87fE/vu13w1U1aN3ubIXDh/yghiHs/38xlnx7isvx72O1uSYKSw12Zj/N/X27kojdWkpZb4tt4J5Jh2TPa5+OfhsRe7DyWx8VvrGThjnTeck5kmW0kFsXNK0FvsHlfCuNfWs4vO33snN/+NRxZpwVG570AisJLi/fwwJdbcDjdRLXvz+6e/wbggaAviXNncd8Xm3lp8R7fsjp/vg4uh/ZadruYklIXN89Zy4bkE0QGW3j9usF0u+V9VBQuNK9kkHUfy/ZkcP3sNb4FgfoU07NuhvCm7EvP5+55m3C43JzbI4Fv7hhCr8lPQkgsSWoK/266irwSJ9fPXuN9oOt2webPtM+H/NMI+j5fl4pJgdevOpMrz2qNucsE6DQes+rig/Z/ADBr+QEWeduomZ+mBWOgBQ/A0wt2cSiriMSoYN6d0p/IYCsER8Igrc/i7qBvaR8XzNHcEmYu8DLbkXNI29dFMUH3S4ymU7vTzbBOTbl2YJvyxw66A4DmqQt4YJDWNPr4Dzu867PI2q/1FJms0H4ULrdqZB1uHdaO7i2iyh/bcSxEt0EpOcHr3fcRZDGx+mC2d7NYMvdqJSCzDdoMweF0G5mEf43uSFSotfyxZgv0ux6Adke/Z0L3BNwqPPmjFxnW7ANaFsBkhfYjKXW5jSbXW4a1w3Jyb0Wvq7SN+I6s474ztZt+2nqMvcc9DJBKS7TGcoCk4aiqypyVhwC4blCbylkO/Wcs62tpkryIS/tqJ3uvphWf1D+iZzku7N2ichZH12ms9npk7mZi8zwigy2kZBfzh6frc+nBSmIvAL7bdBSXW+XM1tG0bxpeyxMbhwQrDc3DMpBuROemDEiKxeF0M+NHL98ws/bD0qe1z89/EdqezcerDnPjB2tJzSkmPbQDP3aegRsTl5qXczmLePePg1z97mpOFPlwJbnpU63Oa4uES97Drirc/vF6vtqQiqLApEHdcF/9FW5bFD1NB7krZFFZcLGCPZ6+iVT0yxNl6zsMht6T2ZdewOVv/0laXgkdm4Wz6O5hDL97DkS1ppWSzgvRX5Fvd/KPTzZ4d8UDWjOhPpV28D8hqgXfbDzCK2Vv0NPO6chHNw6g30X/gpZnEaIW82FzrfnwlV/28umaZO/GK8zUpvMCDLsPFXj4621sTs0lOtTK13cMYUzXeEwteqOUpaDfif+SSJt24nnK29+VIxu0KzuTFfrfQkmpizs/3UhxqYshHeJ47aoztTfMkGgY+RAAtzg/Y0DLYPJLnNw9bxMuT6/oQMv05R+D4GjoNJ70vBLjmO8f14VzulaYLjn8AQBaHfmRf/UPA+C+LzZzPM+LIHf719rCXi37Q3xXth3J5cOyhsTnLu1FVEiFk+uAWyE4CnPWHt4eoP2dfr4ulT/3e9E8rQdGrQdDWBy/7U5nzcFsbBYTT1/cA0WpcLJr3gfanA1uJ7cGL6FNXCgZ+XbeXLrf8/H0LEebwWCL4PvNR9mfUUh0qLW8t0JnMsNZWrkrZvuH3FCWlXh6wS7P/w/1EkmbQWAN4bvNRzmep/U6XD2gTdXHlzUXc+gPHh4aidWs8PveTM+nFh/SAlVa9gdbBAu2pXHkRDFNwoOMpR4qCW8G7bWMSLv0XxjfLQFV9SK7cnSjdqEQHg+x7Vh3OIfdx/MJsZq5rF+r6p/T5Xzt4+4F3HZ2WwCW7cngqCcXmaXFWnAL0HogJ4ocLNmhBY819o4ERxn7+Nj2/mRkQ+Z6+l5zUrCyaLt2EXdBr+Y1PaNRSbDS0LwMVhRF4b8Tu2I2Kfy49Ri/7fLw6kdVtY22XHZoNxJ6X83na1P4zzfbcLlVLu3bkpX/N4qrJt+Iaaw282J6yOd0Dsljc8oJrpy1iixvmuDs+eVbiQ9/ADUigWmfbTJS+h/fNIDHLuzOGZ27YBr3JAD/NH/B2XF5HM0t4br31pDuzckn+0B5zXz8THJLnNz64TryS5z0aR3Nl7cPplN8hPYHfZG2z8ZY+0Kua1+Mw+nmpg/Wen6VBbDzW201UFsUDLiVHUfzeOArrVn4HyPaM+2cTphMijbd8PyXQDHTOftXXjpLq5NP/267d1Mo172vlUia94F2I/lpaxpfbdB6Hf43+czKVz6jHoGgCMIzt/DZ2dobzkerDnvXOKmXSLpfDJGJvLF0P7vS8mkSHsRLV/SufCXZ93qISUIpzuLNrjsJt1lYeyjHu6vILfPKx7PYePyHHeSVOOnRIopbhiZVfmyLvlrPh9vJP8MW06tlFHklTmZ609thTEHVTpovLNJKSRf2bs7ZHZtUfmxwlNGk2eHw51w9oDUAD3+9FYfTw36ZnT9oH884H7db5dmftfGuH9yW5npvRUVlfR2WzZ/w8HgtuJj1+wHPM1Z6iaTTOFxulVd/1YLoW4a2IyLYWvXxvSdrgWnaVu7sVkpUiJU9xwuYv8HDsuWBshJJ+1Goqso7y7VejhuGJBFkqea0Et1aC9xQaZn6Exf30U6s7yw/6Nl4erBS1nj6WdkJ+eoBbarPOgB0LVvkbMe33DlKK5P8tPWYZ+8zekmm1QBQFON1Oa9nYuXAtqK2Z2vBd1EmbYu2MiApFlWFrzwpBR/bogXT4fEQ2YIftx7D4XJzRmIk3ZpH1fw8I0D6iSvP0oKoxTuOk57vwc9YIVjJLLCztixwHNstoe7nNgIJVhqaPhuoyPOrtG7No7hxSFsA/vPNNs+mMu//tXyK5vkvse5wDg9/o0Xutw9vz3OX9iz/Ix/4D2jZH4uzkK/afE3T8CB2peVz+8frPX9zXv0WFBzXdgY961be+f0AC7alEWQ28f6U/gzpUOGE0OdaSBqGyVnC7Kaf0b5pGGl5Jdzy0XrPyxd/vKw10HYYg5rYi/u/2MyBzEKaRwXzznX9Kqeh254NZ0xEUd08GjyXM1tHk1eiZVg86u9QVVjxatlrdTsOSwT3frEZh9PNqC7NuH9s58qPT+huTC2cdGIO47o2o9SlMvWTDZ6tqulywvoPysabSp7dyfTvtcbFO0a0r/xagjb9drBWuui6dxa3DW0LwANfbvHsTcteANu/0T7vdyMp2UXG9MXHLuiuzbCoyGw1ShexW2bx5AXaz//ar3vZ78l6IY5C2FE2BbXnlaw/nMMPW45hUuDpS3pUTekDDPmXNvSGD5gxoTWKAt9sOsqagx5cmecc0lL6igm6TmL94Wx+252B2aRw9zmdqn9O37LdZvf/wr8HBtMkPIgDmYXMW+vBVWtBBqSs0j7vfC4Lt6exKy2fiGAL/zg5y6HrOE5beKwoizHmjQxqF4fD6ea1XzwIAO355SWEjuNYsvM4BzIKiQqxMqViL0dFobFaOQiI2DvfyL68uXR/3dkVp0NbigCg3UhW7s9i9/F8woLMXHVW65qfVzalmC1fcHNZQLpwR1rdzb2qCofKxmt7NoezClm5PwtFgcv715DlAG35eJMFjm+je3AmfdvE4HSrzPNkVlly2f9f60GUlLr4YYsW+F9cXe+IzmzV1tEB2PUDV5Qd2+frU+ruIzm6QfvY/ExQFH4sG+/C3nVkOcr+DzmygS6R2oWa063y7cY6ep6KT5Q31yb05Jedx1FV6NEiqvpg+hQgwUpD0zMr9ryq+wNl7dc2HHvrbJh3DRxYZtw17Ryt2/3IiWKj9FAjVYVfHtc+738zR0wJ3P7xekpdKuf2SOCBcZ0rp6FNZpj4KpgshB9ayHejc4gI1q6WH/lmW939FvZ8rdEVYORDrEst5JmyK8n/TuzK4JNProoC578MJivWQ0v5dITWlLc55QT/+WZb7WMB5B3VSk4AQ+/li3WpLNpxHKtZ4e1r+9Ek3Fb1Oec8BiYL5v1L+GBYAU0jbOxLLzBmL9Qqda32ZmIOgv638L/f9rHzWB4xoVaeuaSnllE52dD7wBKMkvwnL/XLpm1cKMdyS3jKkzr9vsVaP0BILHS9kGd/3kVGvp12TcKMRroqBtymbXyWvp372h6ke4tI8kqcPPGDB9mHHd9qs1biOkCrATz54w4cZatl6s2JVfS+Wju+E4e50LaBkZ2bUupS+e+3Hvy+7PxBGy8mCbVlf+M1uaxvq5qvIjuco82ScBTQ7fh3XNlfOyk++t32uk+ueiDW9myIiOf5hXvKxmtJ2yZh1T8nth20HwVA5PZP+NfojoBW0quzl2TPAi2QTuiJGt2aN8rKOdcPblve5HoyswV6aw3hysZPuG+cFgB+tSG17uzK/t+0pu/YdtCkA+/9rp2Erh7QmnCbpebn9Sxbzn3LF1w9oBVRIVYOZBby87Y6+oFS12r/f6FNIL67sb7HJX1b1px1AOg6ScvmHN9KRyWVUV2aoarw7h8Hah8v+4BWMjQHQauz+HydFmwM69i0fAZQdUJjtZk8ADu+5ZqB2u/M3DXJtU/1d7u1mYsArQfy66508kucJEYFM7BdXO3Hqmc6dv7AhG4JhNu0PpJVB+u4OD2yXvvYoi8Z+XZWHdAef16PxNqfF9VCW9IAFfb/agRT39XVoJ1WtoREdGsIjTVKQGMrll9PMRKsNLSQ6PKAJaPCrIbDK7UgZctnWu1y5/fw4QWw5DFQVcJsFh6/sBsA7/5+sPb1H3Z8q/WOBIVTPGAat364jswCB2ckRvL8Zb2qP7nGd4Uh0wBI/PMx3ri8CyZF6/Cvc52XNe9o6xHEdSCr7fnc+elGXG6VC3s3N1LoVcS1N/baiF/1JG9c2ROTAl+uT+WLdXVc+ax8XXtzbjOE5PBePFaWdbh3bGd6tKzhZBfXHvprC1dFrniKly/vhaLA3DUpxlVMjfTt2ntcxva8IKPc8diF3WkaUU1gBNrU0bJGztA/ZvLsJT1RFK33oc79Q/RelT5Xs/5IEZ+s1q7mn7yoe80p75AYY2Eu6x/P8fRFPTAp8P3mo3WPpy+X3nsyv+/LZOH245hNCtMv6FY5qK0oKNQYT1n5Go9N7IbNYmLFviy+r+v13FLWWNvrSn7efpwNyScIsZq5Z2wNWQ7QAlx9b5a173L/2I5EBlvYeSyPL9fX8fui7+3S7SJW7MvkzwNZBJlN3FUWgNSo343ax40fc2XfBNrEhZJZ4DAaO2uk96ucMZHf92ay9UguIVYzNwxJqv15vct22N23mL4xJQzpEIfTrRpZrhrtLetX6TiOzSknWHMoG6tZqTmrous0Xusvy0slPG2N8fg3lu6rPeA0SkAjSct3sLisYf2aik3D1QmN1YJOgO3fGKujfrX+SO09cnpWpWV/nCYbX6zTyipX1pZV0Z1RXgqa0D2RmFArR3NL+LW2cnrmbm2tJmsoJPQw9mi7sHeL6t87K2o/CizBkJtMyIk9xtoo+jHX6EhZZqVFH37enoZbhV4to2gVG1r3z1g2W4n9v3Juj0TMJoWtR3JrXxW5Qgmo0O40Ns09VUtAIMFK42jWVfuYXnZVfyIZPr2yvFn0sg+MRb/440VtOXdg9BnxnNczEZdb5V+f1bAqo8sJv2o9IerAqdy34Ajbj+YRFxbEO9f1JTSoliutofdCVGvIS2XosTk8dO4ZgNa1v3xPDT029gJt7xPAPfQ+pn2xVVuAqmkYMy7qUfPJDmDYfVqNN2Mng/N/NtaVeeTbbTVPayzMMhYtcw25h3s+30Shw8VZbWPrXhp62H3a9O1jmxniXGWkvv9v/hZSsmu4es09ogV/QGm/27j388043SoTuicwsWcdVz1n36294R3dyFmO1cb0ygfnbyWvpsWbTiTDXm09idLeU3ho/lZUVVv3YHD7JtU/RzfoDm28Y5voXrzOODn+55ttNZe7sg9oC0MpJkq7X85j32tZjmsHtqFzQkT1z9Gddav2xnx0A60LNnJHWdbniR921Pzz5R3TypNAabfLjBkrtwxNKl+dsyY9LtN6hnIOEnvsD/5ZFmw8v2hPzdmO7ANa4K6YUbtM5PmyXpXJA1rXflUO2sk8PAEKM7Du+Yn7ysp9by/bX3M/lz2/fMprl/N4vayh86qzWhMbVkNWRdekg7YZoOqGzXO5a5T2832+NrXmGXNud/l+Rp3GGuuAnN+zed2vpzVY22YAYMs8bhjclhCrme1H81i+t5YZJXpzbbuRfLY2GZdb5ay2sVqPWF26TdI+7viWge1iOSMxkuJSF5/VVpox+lWGsnR3Bun5duLCgjzbs6bL+Vr579gmgguPcnlZc+zHq2sp5+kloBZ9yS5RjWD/4jM9WCQtKLR8u4i9i4xS0E9bj9X8N1F8QpvJBdD8TH7comVFzq0rq6KrEKzEhQUZZeJasysVgpXlezJwON20iQulU/ypNwtIJ8FKY4jXMiSk79RKNt/eCfZcbb2Ja+dr6xZc8CpMfEV73MpXjcWznprUncSoYA5mFvLQ11urXgFtnqutghgSy9ul5/LjlmNYTApvXtOXljF1ROlBoTC+bC+Wla9x0xluLuvbErcKd366ofpIfd172gqkse14PaM3v+/NJNhq4s1r+hJWWwoatGzAcG2qL78+xdTBCQzr1JSSUjdTP1lf/Qlo9VtaUJfYmzdTWrPucA7hNgsvXN6r6nTCk4U10fpzAH6bwbTRHTizdTT5JU7++dnG6hcbW/ee1vjWZgiv7QxhV1o+sWFBPDGpe+2BGGg7wpatacFvT3H/2I60KSsH1Tiza/0cQIWk4byzQ2H3cW28h8sCxzp/Pj0bsPxZ7jmnI82jgknNqaV0uGmu9rHdSOZsK2VfegGxYUHcPaaWLEfF8Xpr666w4lVuHdaOpCZhZOTbeammRb+2fqGdjFsN5NO9Zg5lFdEkPIhbh9fQy1FRUFj5eGvf4dpBbYyZM28vr6GUoJeAkobxa4qbjcknCLaamDrSg/HMVjjzOu3zde9zXo9EureIpNDh4vWamon3/aI1tccksaognjWHsgkym7h1mId7rJTN7GLjxwxMiuWstrE4XG7eXl5DdiVts9YrZg0jJaIPP23Vsloe7+nSU1uThe3fEhPkNnpO3qjp5yvO0WbKAM62w/lsjRZkXDOojqyKrtN4rRSUsRMlcw83lPXifbjyUPWlGVWt1FyrBzWX9G1ZfSPvycKbQitt3RJ2/6Qtj4+2hkmNizZWKAH9sOUoTrdKt+aRngVjUN5HsldrBu8UH47d6a557Zyy15OYthx3hrK6rA/rvLouhnStB4MlRCuVpe/gwrJsznebj9acITOCld4s2lFeAqrzPa0RSbDSGJqVnXiOb9dOhgeXab9sF88Ca4Wrvb7Xw2gtq8KCB+DwSqJDtdkZFpPCt5uOVl4J0lFkTFVe3/oGnv5N++N4YlJ3zkqK9ezYupynpWpdDpSf/82Tk7rRt00MeSVObp6zrnKDqKPQaDzd1v5WXvpVO2E8OamH53/Y/W/WmnIL0zGtfJWXLu9FQmQw+zOqCcZK8mDN2wDs6nQrLy7RTsDTL/j/9u48LspybeD475kBhkUWAdkEFBVlc0FcUlAzTU0zbVEz19dTHU1Ts3qtrFzOcTlpnnPKlqMt55zMtDJTWzUtcStNxb1SQ3EnFQEF2eZ5/7hnBhBUUGBG3uv7+cwnGG2em0G4r+e+r+u6Yyu2XApq9cHkDekHcD6wgn8+HI+nqxO70i6WnWALcm1bMmmRw2y/wGf0iy0/L6Y8HZ9US+1n9+F+6AvmPqS2n5ZuP162squowNaF9I9mj/BPy9c3pXc0dW90V17yepZuwR6ntzKjXxwAizb+XrbbrFndwQNkRQ2yXe9/eza7fu5BSR3GARoc+hbXjENMv08F4v/ZcpT9pzLL/n1LFVBuzEMlyr6bXj+3oqS2j6r//vYtpuzjPGfpQ7Qw+Uj5qw+WLSBzTH/mWU6SHdGxYdmk4WtpPVzdmR/diOHCYZ7rpX52F/94rPzVuF8sVUBRfXjNsqoyqG0YQd4VvF5Mf3D2UHfaaT/yZDe1WrXkp7TyD8ezdnVt3JV3fzyFWYdOkf7EhHhV7HoNEsGrvrpZOvQtj3WOwNmo8VPqhfKb/aUmq2CzXhTfnXTiTNYV/Ou40Kui2wduPtC4q/r4wCruaxmCn4cLpzKv2CbNUs4fseSrmDjr3dzWC2bgtcqHy2PpxMwvX9LAz4MuTdU2/JJrra5YV1bC7rBtAZXblO1aIu+2vM5WtLws21iveVxEieTar/aeRtehdbjPjW8urZxdbVVSHF5Hj9hATE4Gfv/jMvtPldO1N++S6pMDFAQ0t/WdcuQtIJBgxT5CLF2KUjeo02xBtRv3K+duL2mSOgfCXAgfD4fME9zRyI+Z96tJ6PX1h5m6cp+q2tk0H7JOkGUKZMie5gA8cWfj62foX03T4J5XVDLb4e8wHf6Gt4cmEOLtyu/nLjPy/W3F53r89C/IOceVOmEM3BqKrsPgdmG2hkgV4uQCd09XH295HT/zeV5/JB6jJRib9dXB4oDl53fhSib5Pk0YutEfs66SJCt1Pbe6kPik+nj9DMI8DfztwRYAvLXhSOntrr2fQO4FijxDGb7Zn0KzSlAu073yetx9bU3G+H4W7cK9bNtBT32cUjp58pcv4NJZdI8ARm8PJK/QTMfGfhVbfrbyDCpeDdjwCt1jAukVG0SRWR3oVqraKnUDZB5Hd/XmpV8akJ1XSItQ78pNBH6NiyeDra/TuWk9+rQIxqyr7adSVRBn9sLZfWB0YeH5lly4nE+jeh62pfIK8W+iSvHR4ef36BUXRNuGdblSYC7b2fb8EZVIqBn5qiCBg6ezqGNyYnTnCqyqWPmEFd8p7/g3SZH+JDXxp6BIL9syvjDfFjz8UrcLW46cx9moMfpaFUDlMdWBONURll2LSWriT6swH/IKzbyzsZzVI0vJck7DbrbE0wqv4oAqtbf2QNnzMcHebraJ+a3yumaX2AL679ajgAocKrTKYWXdejqwEldno2214/3N5eQClchX+XT3OYrMOm0b1qVJQCW2K6J6W15rE+Rm2HJrPi6vg/aldEuVjEaqWwwpxy9i0OC+G1XllOQbAX6RakX2yPfcH18fZ6PG7hOZ5bf8t+WrtLZVHVXqdwwUbwUd/g5PV2fuigoAKH815+w+QAfPYLb94UTWlUL8PFxoHV63ctesYdUarMycOZOOHTvi7u6Oj49PuX8nLS2Nvn374uHhgb+/P+PHjyc//xbOwbkdBMWpdu1WkT1sTZrK0DTotwACm6veLEsfgYJcBrUNL9XddvCcxRQk/wOAZ7MHc0V3YWTHhjzbs1n5r3s9fo3VHTrAN89Tz1TIohFt8LKsQPRbsJmVG7ZRZGmSNiWjDzmFBnrEBPIXy518pUTfp5ZqC3Ph2xdo29CXWfdbVwRSef6zvWRmZaJbKo7+mtmLczmFxIZ42VYOKuWOJ9QpwhfTYNu/6N08mMHtwtF1+PMHO9h06Jxa5dioWt1/qPfkaEY+4b7uzOzf/CauN0YFSecPwd5PmNwriub1vbmYU8CYxTvJzCkoVR79Q53e7DiZg7ebM3MHtKz80mziBLXUfnQjpP3IjP6x+FvK0Ut1DbX0VjkSdA8r95/HyXJezQ2TCMu7HsCejyH7DC/1icHDxciutIssK5ksbelYmxnejQVbVU7Ec72iKn+yq/WE350foBXmMaWPygH7bNcJdpbsZWNZVSls2JkZ69Xd49iuTSq+SmVl3VpL+RAKcm0/d5+nnORAyTvXoxvVCoVHAHP2qpXFB1uH3jg35mrxw2zj1/IvMd6yuvLvLUdLNxi7lG67K192MZqc/CKig71Iurr67kasW0G/fQs5FxjdpTGaBt8dTC87uVrycY76tGPLkfMYDRpDbpRYezVbSfFeOH+EoXc0wMmgsf1oBntPXLUaZ9kC0hsk2oKxQW0rcfMFqkoqIEYFD7+t4a6oAEK8XcnIKbBtm9lYV1UCYlhxQOXNdYqsV/GVOCvLqckcWotfHRPdolR+zcfby0m0tQQr57zj2HEsA02rxBaQlaUBHmlbIf+yrbHbqt2nypZNl8hXsXaC7h4deONtdDur1mAlPz+fAQMGMGbMmHL/vKioiD59+nD58mU2bdrE0qVLWb58OU8//XR1Dssx9Jmnkr+SnoKH3lN3ONfi4gEPf6ha9Z/eDavGg9nMmDsb887wNgS7FfFS/t9xpoANRS3Y4tKBfz7c6vrVHDfS6WnwDoPMNFg5jthgL1aMTaSBnzsnL+bg/N0UjIW5bDM3Y3lRJ/q3CuG1wfHl98i4EU2De+ao02L3r4B9yxnUNpypfdUktHT7cT59dSza5T84bq7Hktx2xNX3YvGf2uPmchOHbbl4qEZqAMnz4NIfTO0bQ+em9cgtKGLk+9v4ZNFsyEjlAt7MOZeIp8mJd0e0qfxEB6qFu3VC3zAHV4OZN4e0xsfdmb0nMxnwry38+tNXcGon+ZoLzxxrD8C8AS0rP9GBWg2wlMGSPJcAT1deHdgKgMU/pjHv21/RL6TaqlaePNwWgKfubkqLUJ/KXy+snWqeVZQPP71NkLcrkyzJqDNWH1DN8ApybeXmc8/EU1Ck0yMmkLtvplSyaS/1bzP3Auz/jFZhPjzQuj66DhOW7io+edaSr7K6sD3p2Xk08HNnlKWzaKU06W65XgYcWEnzUG/ubRGMrsPsr0us/Fm2gE4G3skPhy5gNGg8cec1Ss2vJ6y9KiMvuAz7P6drswDaNfQlr9DMvJKrR5bE2qLAFizYrvLJHu8cUfmf+cAYdeq1uQAOfE6jenXoHacmy1JddC/8DhePgcGZN1LV9+3eFsGV/zfq7gsRqvMqBz4n0MvVNjmXWl0pka+yyxjHsfM5eJqcrl1Ofz22raAvMBo022rz4qsP/rPkq5jD2rPcsgVUqZVNK+tW0OG1YDbbVg9X7DpR+rDR7DPqYFnNwOp0tRrStqHvjZOjr+Yfqf6NFuXD0c10jQrA0+TE6cwrZbt1W4IVPahFcb5KrOOWLFtVa7Ayffp0nnrqKZo3L/9udM2aNRw4cIDFixcTHx9P9+7defXVV1m0aBFZWbdwmuvtwDtUBSDdp4GpAvkddRvAgP+oCX3vx/DxMLj0B91DzWxu9G9aGX4n19kHl/vms2lyN/q1usXjvV084P631R3Q/s/g+5k09nNn9bhElkdtoLdxG4UY+Cx4EouGt+UfD8dfu6y2IkLiVbUOqK2xi2n8T2IEHz12B73rnmQkaiL4iz6SRzo05sNH77i5wMGq5WAIaqH63ax8AlejxqLhCdzXMgQXcy6dTr8HwGsF/Qiu58cnYzoQWdE8nPK0e1yVrGcchV2LCfN156PH7iDA08RvZ7M5+6VKbF5a0IWLBh9eebDFzU3kVkmT1L+Vw9/ByZ10aVrPlqS74PvDrFw4HdBJNrfgYGEwd8cEMroiSa7X0nG8+u/29yAvmxEdGtDFEvyN+vd2dn75DuRe4KxWj48yognwNDHnwRY3F0wbjLame2xbCLrO1L6x1Pdx4/iFXCYsTSH39C9wdi9mzYnph1RV1Ix+cTd3kqzBWFydZ8lheqZHM1vL+Hc2pqotIEvV2Lw0lZz8p6QIwv0qmHdQkqaVSrTVNI0pfdT37rNdJ4snH0twtFFrw/nL+TQJqFP57QOrEj1XAFvzutW7T5Fqbdpm2QK6HJjA8r0XgUok8l6txFYQYKtcW73nVHEu0PkjcOkMGE28elC1JHikffj1KxqvxRqsHF4HBVcY1C4MJ4PGzrSLpXOrLCsr+41RnLyYi4+7Mz1ibiI4Cu+gKg8vnYUzu+nctB5BXmo1x9pGHyjur1IvihX71argDasMy6NpJaqC1uHqbKRnnBp3mcNULcHKEafGnM68goeLsWyjSQdk15yVrVu3EhcXR0hI8Q9Yz549ycvLY8eOHXYcmYOK6KQCCKOL+kU1rwn8PRbDkXXg5Ibb8E/p0LZtxZMjb6RhkjqwDyB5LrzTDa9lD5BwdCEATr1mMWfMw7c2qZbU6RkVQORmwLs9IHUjHdjNG8Z5GDWdcxH9mDX5WWb0i7v1r9FggH5vqGTUQ2tg898xORl5bVALtjb9iCAtgwznQCJ7P8nqJ5OICqpgwuK1uHio1SqA76bB+SNEW1ar/hqxn87GvRToRn4KGsy//6ft9TtzVoRvRPEE9P0s0HUe69yIv/aPI8x4ge65XwPwXmFPHoivz5tDWt/aMnCz3uDbWG2D/Pw+TkYDbw5pTcswHzJy8nHZqbac3svvjq+nO++NbHvjUt7raT1Cfe9O7YLD6/B2c+a1wfG4GA2s/yWd1e/OBCC5MJaLeDKhW6QtsfLmrjdMBX/Hf4Sz+2no78FL96qVvznf/MK61R9AznkyNB9WXWpGQz/3a3fHrYiWg4uvd+4wLcN8bGfgjFuyk3N/pKtAFPjbcbUtNa1vbOW31KziHgI0SNsCGceIq+/Nnc3qYdZh8qd7VOM9y/lDqy9FYdaxVEddpxX89UTdq76+07vhQiqtwnxsuUBzLCdTczQZgCz/Vmw+eglno3bjXjXXEtxKJRIXXIbUDQR4utom87c3WHKBCnJtE/l7aep32qC2YTe3eutkgkZ3qo8PrcVo0Gy5de9u+r14Nc4SHF2o24I9JzJxMmjcU9GS5atZt4IOr7ONHeCLPaeLVxsLrqgqVGDFGfXz0DMu6NZuNGuIXYOVM2fOEBhYeqKrW7cuLi4unDlTfhfFvLw8srKySj3+X2kxEEZ+pSZ1UPuw4R1g2AoIa1v110sYqU40dqmj9setCW89ZhaXAVcVJxcY/JHqyJh9Gv5zL3xwP9qls1AvGv8B/6h4FU5FBLeA3nPVx+tmwEeD4YP78U5bC0YTdYcvZkhi05u7kytPm1HqILYrF1XuUdZp6uceYuiFBQDoXSbzxrgH6RR5C5NqSZ2eVitjh9faGtsNbR/Od1FfUEe7whmv5kweN475g1rd/CRnZTBA0kT18Q9zIOMYHiYnPnqsPQvapBNnOMoVXDgXOZAVT3S8+UnOysO/OHdl3XQwm0loUJePHm9PhEc+vQtUout/zb34c5dGtg60N80zqDhR82e16jbsjgY82DqUIrNO0U7VWO/jgkTq1nHjjSGtb26SK3k961ZCymIApveLpUlAHc5m5fHmv16DonwO6aEcLArlwdahZc84qgzv+upmCFRiOTDjvjg8XIxsO3qBf37xM7olX2XROdUA8Ll7om7+eh5+xRUsB9XRC1P6RGPQ4Mu9p1XemGULaMVFtXrzUEIlqqqupmmltoJAFR9olsaJe05cVLkj5gLy3QJYcdQJgwZDyzuUsaKs3z9L36ThHRrg4mRgZ9pFth+15FZZtp3WZKsgrHfz4Jv/HdeoiwoAzx+CjGO0aVCXxvU8yC0oKu65kr4f9CJ0dz8++kVtR/W/1VX4GlLp31DTpk1D07TrPn7++ecKv155y8C6rl9zeXj27Nl4e3vbHmFht3gHejsKawujN8Izh2HCHhj1jTr9tLrcMQae3AHdpqqVlid+sp1FU+W8Q9XXE9NfJaUaXVRnz8fWqb3uqtZ6OHR+Vv2Q//qVqpDRDND/TZWLUZWcTDDwA9Vo7I9f4B9x8K/OaisqtC0uXao4V8s/EnrOUh+vfUk17/vmOUxHvgGDM0FDFxEd4lN112s1VAXOBZdh1ZNgLsK9KJt7j6lEbNeOf+bVkXdVvCTzRpImqSMGzuyBAyqZNqGBL192PEQd7QoXPJrwv+PG8vw90ZVPGi6PtWx653/hwu9omsbch1rwaq9AuhpTADgU3JdPRne8/uFzFWXdCkr5CIoKqWNy4l/DEqjv40ZSnrpp+KKwPd2jA5jz4E0kfl/Nmmi7ZxnoOuF+7kztq0rRj/34GZq5gEPm+hzR6/PSvTEVbxdwLdatoH3qdPLoYC8etuSSjF28nbxDPwDwVVYT/OuYmNzrJooFSmpmCTZ//RrMRcSGeNsm6mmr9lNwVB1e+FNhJKDxcLvwW/sam1iClRM/w+XzBHi52lZXXl9/CL0g19Zj5d00la8y0tJ35qa4ehf/zjqyDk3TbMdS/HfLMZVoeyoFgHSPZlzIKSDA00THxjc4QsBBVDpYGTduHAcPHrzuIy6uYhUaQUFBZVZQMjIyKCgoKLPiYvX888+TmZlpexw/XoFDqWqrOvVULktN8AyCTpPUL+yAW7ijqgg3Hxj4H5h8FF5Mh/5vqG2U6qBpcNeLMGazyiu560UYsxWaP1Q91/MKhqGfquoncyGgqyaAgxar82GqWrvHVWmquRDWvKia6gF0fb64309VsW6tObmqoO+dbvDePWqVzK8JdJ1Stdfz8CuuWvviKVUafWIH7ltVFZfv3c8QFVwFQYNVRBdVNl2UD2tUgrbBoPFgxrs4U4Qe1p55YwcTca3zhiorsqc6f+fSGVv/ncb16rB+ZAh3GtXZLq16j+LtoQm3vjIGEN1Xfe/O/QbHtwHqoMC5D7XgXuftAKzR2zGtb8yNW+tXREw/VbV2OsU2ab/UJ4Z2DX2JLtiHKe88mbo7u7WmzLw/7trnKlVUwyTVY+nyHyqAAJ7uoXr87Ey7yOEtnwOwNqcJ3m7Oto7FN827vkpcRocjamvm8U6NcDKoXKf169dAUT5ZBh8OFQbQPsKX+DCfW7vmVVtBA9qE4mly4tez2azec0qd6wSsy1JB08jEhjdXFGEHlR6lv78/UVFR1324ulZsqa5Dhw7s27eP06eLy8fWrFmDyWQiISGh3P/HZDLh5eVV6iFqsZrqqBgQrbaEOj9b/cFYUHP407cwbgeM36WOV/CspoZMmgb934I+81V/n/ptYOjy4vyZqubXWOVVmbzUBPTHQbX6cf9VDQ+rSuJ4FfhdyYR3e6qtw8JcdVdrzdmpKpqmtkQ1o9pK2LZI5XHsVlVOmnUVq6o4uRQnna+bATkqsda0aS4GzND0HromJlXdZOPqXRykfz/T9vSASAPdnVQux8hHxzPyZvNGrubhX9x+f5vKaXJzMfLOyDZMDFInxP/omsSHf06iZ1U0LDM6F5cUH/gcgNC67iwcnkCg0yWa5qlDVDcb2vL3QS1vLafKyroVdHA1AA39PXjaEgTt2KR65GwtaIKL0cjM+yvQFftGmqjDN0lNhqICfNxdbH1+5n77K0VH1enc32RH4OFiZMitbHPVsGoNqdLS0khJSSEtLY2ioiJSUlJISUnh0iVVZtejRw9iYmIYNmwYu3btYt26dTzzzDM89thjEoSI2s+/ieoBUd2MztD2T/D492o7zXqYXHWJvR/GbVf9bO6eARP3QGj5Nx+3zNkNHlkGwS3V9pPlKAYGvK+qeKpaQBR0eEJ9/NUzsMQSEMUPg9A2VX+9to9CvShVpr16vNoS2rdc/VnXF6r+el0mq9WO1A3Fp75vmo9WlA8NEvEIj6/a61kOF2Xfp7ZgzMsZ7shV21w9B44hoUEVbv9ag7GUJarjN9CxsT+f3JWNUdM56RrJa2Pu466oKioaiLU0+PvtWxVQA3/u3Iju0QEkkQLAz3o0L/eNoUnALVQbWgW3Uqeh52XZVo/+J7EhQV6uFGScxJh5jCJdY6c5kondm1ZdMUYNqNZg5eWXXyY+Pp6pU6dy6dIl4uPjiY+Pt+W0GI1GvvzyS1xdXUlMTGTgwIH079+fefPmVeewhBDVzTNInTOVOKF6co1KcvOBR9erx2Pfw6PrKtYO4GZ1nwE9/qomdYOTyi2xnqlV1YzOliRwTd2dfz4a0KH5QJUgXtV8wovLwr94CnZ9aDmvChUcVfVKZ1g7tdJYeAV+fFM9t2eZCs7c/aFh56q9XpPu6mu8clG1ZLAIT1fJw/XbP1A1+UZWQS3Av5k6L+qgSuw1GDQWPdSIDk6WQzVHjK6abTVQAXpjy+qKpVrM3cWJD/7Ujm4equrpFz2c7q2a8GinKlohqyGaft2zwB1fVlYW3t7eZGZmymqMEKLmZJ5QAYtnDTTUSk2Gr55V+SRJk9QKiFMVbFOU51K6SvzOLtHdtXE3dchqddi3HD4dpRLb71sAa6ao9gXdpxdXmFWlTf+A76aq1bjHflDt9d9op/K6/ryx6oPADXPh+7+qUubhqq8MKUvg8zEqp2XM5qq9nvW1g1qoQgyL3JWTcNv1LmejRxAw8J8OcWhhZebv2yOzRgghHI13aM0EKgARnVXi9/+mQreXqi9QAagTAI9vUAnFmhHaj1F5VdUl7kFVSaabYeUTKlAJjFOHjlaH+GHq4NjTuyH5FZUPZC5UeU7VsVpl3XpKTVaH14Ith4Woe6v+epE9VBB9Zk9xa32zGbffVQl1YPNuDhGoVJYEK0IIcTswGNSWV03wDFSrAC+cVEdhuFbzqnWfeSo4cvNV5e8PLFJbYNXBw6+4v9IPsy3Jthp0n1o91/ONUOef6Wb4erJqBPfrV+rPYu6r+ut5+Be/7vZ31X/TtkLmcZX4bj2Y8zYjwYoQQoiyNK16KrjK4+wGI1bB5FTVZykwpnqv13oYtB+tPnb1hh5/Ubkz1aXnTFUWfnQjfGg55Tp+KATGVs/1rD2B9n6iEnv3qENEibmv5r6nVawaGjsIIYQQDq7XHNXw0iu0enocleQTrg5PXTNFVeq4+8Pdf6m+64V3UJ3A/zgISx4uPoOoxcPVd81qJsGKEEKI/380Deo2rLnrdRyn+q6cP6JWjqqzSk7ToNcsdYRImuqtQrPe0CCx+q5ZzSRYEUIIIWpCvWbqURMa3wUjVsPKsRDWXjWGNNy+mR8SrAghhBC1UVg71aCxFrh9wywhhBBC/L8gwYoQQgghHJoEK0IIIYRwaBKsCCGEEMKhSbAihBBCCIcmwYoQQgghHJoEK0IIIYRwaBKsCCGEEMKhSbAihBBCCIcmwYoQQgghHJoEK0IIIYRwaBKsCCGEEMKhSbAihBBCCIcmwYoQQgghHJqTvQdwq3RdByArK8vOIxFCCCFERVnnbes8fj23fbCSnZ0NQFhYmJ1HIoQQQojKys7Oxtvb+7p/R9MrEtI4MLPZzKlTp/D09ETTtCp97aysLMLCwjh+/DheXl5V+tqimLzPNUPe55oh73PNkPe55lTXe63rOtnZ2YSEhGAwXD8r5bZfWTEYDISGhlbrNby8vOSHoQbI+1wz5H2uGfI+1wx5n2tOdbzXN1pRsZIEWyGEEEI4NAlWhBBCCOHQJFi5DpPJxNSpUzGZTPYeSq0m73PNkPe5Zsj7XDPkfa45jvBe3/YJtkIIIYSo3WRlRQghhBAOTYIVIYQQQjg0CVaEEEII4dAkWBFCCCGEQ5Ng5RrefPNNIiIicHV1JSEhgY0bN9p7SLXK7Nmzadu2LZ6engQEBNC/f39+/fVXew+r1ps9ezaapjFx4kR7D6VWOnnyJEOHDsXPzw93d3datWrFjh077D2sWqWwsJAXX3yRiIgI3NzcaNSoETNmzMBsNtt7aLe15ORk+vbtS0hICJqm8fnnn5f6c13XmTZtGiEhIbi5uXHnnXeyf//+GhufBCvlWLZsGRMnTmTKlCns2rWLTp06cc8995CWlmbvodUaGzZsYOzYsfz444+sXbuWwsJCevToweXLl+09tFpr+/btLFy4kBYtWth7KLVSRkYGiYmJODs78/XXX3PgwAFeffVVfHx87D20WuVvf/sbb7/9NgsWLODgwYO88sorzJ07l9dff93eQ7utXb58mZYtW7JgwYJy//yVV15h/vz5LFiwgO3btxMUFMTdd99tO5+v2umijHbt2umjR48u9VxUVJT+3HPP2WlEtV96eroO6Bs2bLD3UGql7OxsPTIyUl+7dq3epUsXfcKECfYeUq0zefJkPSkpyd7DqPX69Omjjxo1qtRzDzzwgD506FA7jaj2AfQVK1bYPjebzXpQUJA+Z84c23NXrlzRvb299bfffrtGxiQrK1fJz89nx44d9OjRo9TzPXr0YMuWLXYaVe2XmZkJgK+vr51HUjuNHTuWPn360L17d3sPpdZatWoVbdq0YcCAAQQEBBAfH8+iRYvsPaxaJykpiXXr1vHbb78BsHv3bjZt2kTv3r3tPLLaKzU1lTNnzpSaF00mE126dKmxefG2P8iwqp07d46ioiICAwNLPR8YGMiZM2fsNKraTdd1Jk2aRFJSEnFxcfYeTq2zdOlSdu7cyfbt2+09lFrt999/56233mLSpEm88MILbNu2jfHjx2MymRg+fLi9h1drTJ48mczMTKKiojAajRQVFTFz5kwGDx5s76HVWta5r7x58dixYzUyBglWrkHTtFKf67pe5jlRNcaNG8eePXvYtGmTvYdS6xw/fpwJEyawZs0aXF1d7T2cWs1sNtOmTRtmzZoFQHx8PPv37+ett96SYKUKLVu2jMWLF7NkyRJiY2NJSUlh4sSJhISEMGLECHsPr1az57wowcpV/P39MRqNZVZR0tPTy0SV4tY9+eSTrFq1iuTkZEJDQ+09nFpnx44dpKenk5CQYHuuqKiI5ORkFixYQF5eHkaj0Y4jrD2Cg4OJiYkp9Vx0dDTLly+304hqp2effZbnnnuOhx9+GIDmzZtz7NgxZs+eLcFKNQkKCgLUCktwcLDt+ZqcFyVn5SouLi4kJCSwdu3aUs+vXbuWjh072mlUtY+u64wbN47PPvuM9evXExERYe8h1UrdunVj7969pKSk2B5t2rRhyJAhpKSkSKBShRITE8uU3//22280aNDATiOqnXJycjAYSk9dRqNRSperUUREBEFBQaXmxfz8fDZs2FBj86KsrJRj0qRJDBs2jDZt2tChQwcWLlxIWloao0ePtvfQao2xY8eyZMkSVq5ciaenp20ly9vbGzc3NzuPrvbw9PQskwfk4eGBn5+f5AdVsaeeeoqOHTsya9YsBg4cyLZt21i4cCELFy6099Bqlb59+zJz5kzCw8OJjY1l165dzJ8/n1GjRtl7aLe1S5cucfjwYdvnqamppKSk4OvrS3h4OBMnTmTWrFlERkYSGRnJrFmzcHd355FHHqmZAdZIzdFt6I033tAbNGigu7i46K1bt5aS2ioGlPt4//337T20Wk9Kl6vP6tWr9bi4ON1kMulRUVH6woUL7T2kWicrK0ufMGGCHh4erru6uuqNGjXSp0yZoufl5dl7aLe177//vtzfySNGjNB1XZUvT506VQ8KCtJNJpPeuXNnfe/evTU2Pk3Xdb1mwiIhhBBCiMqTnBUhhBBCODQJVoQQQgjh0CRYEUIIIYRDk2BFCCGEEA5NghUhhBBCODQJVoQQQgjh0CRYEUIIIYRDk2BFCGFX06ZNo1WrVvYehhDCgUlTOCFEtbnRiawjRoywHajo5+dXQ6MSQtxuJFgRQlSbkqeXL1u2jJdffrnUYX9ubm54e3vbY2hCiNuIbAMJIapNUFCQ7eHt7Y2maWWeu3obaOTIkfTv359Zs2YRGBiIj48P06dPp7CwkGeffRZfX19CQ0N57733Sl3r5MmTDBo0iLp16+Ln50e/fv04evRozX7BQohqIcGKEMLhrF+/nlOnTpGcnMz8+fOZNm0a9957L3Xr1uWnn35i9OjRjB49muPHjwOQk5ND165dqVOnDsnJyWzatIk6derQq1cv8vPz7fzVCCFulQQrQgiH4+vry2uvvUazZs0YNWoUzZo1IycnhxdeeIHIyEief/55XFxc2Lx5MwBLly7FYDDwzjvv0Lx5c6Kjo3n//fdJS0vjhx9+sO8XI4S4ZU72HoAQQlwtNjYWg6H4XiowMJC4uDjb50ajET8/P9LT0wHYsWMHhw8fxtPTs9TrXLlyhSNHjtTMoIUQ1UaCFSGEw3F2di71uaZp5T5nNpsBMJvNJCQk8OGHH5Z5rXr16lXfQIUQNUKCFSHEba9169YsW7aMgIAAvLy87D0cIUQVk5wVIcRtb8iQIfj7+9OvXz82btxIamoqGzZsYMKECZw4ccLewxNC3CIJVoQQtz13d3eSk5MJDw/ngQceIDo6mlGjRpGbmysrLULUAtIUTgghhBAOTVZWhBBCCOHQJFgRQgghhEOTYEUIIYQQDk2CFSGEEEI4NAlWhBBCCOHQJFgRQgghhEOTYEUIIYQQDk2CFSGEEEI4NAlWhBBCCOHQJFgRQgghhEOTYEUIIYQQDk2CFSGEEEI4tP8DD1aQF0toCu4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHFCAYAAAAzCLlHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACtfklEQVR4nOzdd3hUZfbA8e+0THoCpEIg9N5rQJGOgoJiXbCXtWBD13XFsmLvrL2g2FFBASkqTWnSe+8tQAhJSK/T7u+Pm3uTkDaTzCT483yehyfJzE3unQAzZ84573kNiqIoCCGEEEJcoIz1fQFCCCGEEFWRYEUIIYQQFzQJVoQQQghxQZNgRQghhBAXNAlWhBBCCHFBk2BFCCGEEBc0CVaEEEIIcUGTYEUIIYQQFzQJVoQQQghxQZNgRQgf+PLLLzEYDGzevLm+L0V44LbbbqN58+b1eg3av53jx4/X63UIcSGRYEUIIS4gl19+OevWrSM2Nra+L0WIC4a5vi9ACOG5goIC/P39MRgM9X0pwssiIyOJjIys78sQ4oIimRUh6tGff/7JsGHDCAkJITAwkAEDBvDLL7+UOUYrCyxZsoQ77riDyMhIAgMDKSoqAmDmzJn079+foKAggoODufTSS9m2bVuZn3HbbbcRHBzM4cOHGT16NMHBwTRt2pR//etf+s/RjjMYDBX+mTJlilcf+4YNGxgzZgyNGjXC39+fVq1aMWnSJABWr16NwWDg+++/L/d9X3/9NQaDgU2bNgFw9OhR/vGPf9C4cWOsVivR0dEMGzaM7du369/jcrl4/fXXad++PVarlaioKG655RZOnTpV5TX26NGDgQMHlrvd6XTSpEkTrr76av02m83Giy++qJ8jMjKS22+/ndTUVI9+L+eXgSZNmkRQUBDZ2dnljr3hhhuIjo7GbrcD0Lx5c6644grmzp1L165d8ff3p2XLlrz77rseXYMQFxoJVoSoJytXrmTo0KFkZWUxffp0vv/+e0JCQhgzZgwzZ84sd/wdd9yBxWLhm2++4aeffsJisfDyyy8zfvx4OnbsyKxZs/jmm2/Iyclh4MCB7N27t8z32+12xo4dy7Bhw5g3bx533HEH//vf/3jttdf0Y5555hnWrVtX5s9NN90EQMeOHb322BcvXszAgQNJTExk6tSp/Pbbbzz99NOcPXsWgIEDB9KjRw8++OCDct/7/vvv06dPH/r06QPA6NGj2bJlC6+//jpLly7lo48+okePHmRmZurfc9999/Gf//yHESNGMH/+fF544QUWLVrEgAEDSEtLq/Q6b7/9dv78808OHTpU5vYlS5aQlJTE7bffDqjB0JVXXsmrr77KhAkT+OWXX3j11VdZunQpgwcPpqCgoMa/qzvuuIP8/HxmzZpV5vbMzEzmzZvHTTfdhMVi0W/fvn07kyZN4pFHHmHu3LkMGDCAhx9+mDfffLPG1yBEvVOEEF73xRdfKICyadOmSo9JSEhQoqKilJycHP02h8OhdO7cWYmLi1NcLleZn3XLLbeU+f7ExETFbDYrDz74YJnbc3JylJiYGOX666/Xb7v11lsVQJk1a1aZY0ePHq20a9eu0mucNWuWYjAYlCeffLL6B+2BVq1aKa1atVIKCgoqPUZ73Nu2bdNv27hxowIoX331laIoipKWlqYAyttvv13pz9m3b58CKBMnTixz+4YNGxSgzGO79dZblfj4eP3rtLQ0xc/Pr9zjv/7665Xo6GjFbrcriqIo33//vQIos2fPLnPcpk2bFED58MMPK72+yh73sWPH9Nt69uypDBgwoMxxH374oQIou3bt0m+Lj49XDAaDsn379jLHjhgxQgkNDVXy8vLcvg4hLiSSWRGiHuTl5bFhwwauvfZagoOD9dtNJhM333wzp06d4sCBA2W+55prrinz9eLFi3E4HNxyyy04HA79j7+/P4MGDWLFihVljjcYDIwZM6bMbV27duXEiRMVXuPKlSu5+eabuemmm3jppZeqfDwul6vMNTidzkqPPXjwIEeOHOHOO+/E39+/0uPGjx9PVFRUmezKe++9R2RkJDfccAMADRs2pFWrVrzxxhtMnTqVbdu24XK5yvyc5cuXA2qJq7S+ffvSoUMHfv/990qvoVGjRowZM4avvvpK/7kZGRnMmzePW265BbNZbftbuHAh4eHhjBkzpszvoXv37sTExJT7u/DU7bffztq1a8v8m/jiiy/o06cPnTt3LnNsp06d6NatW5nbJkyYQHZ2Nlu3bq3VdQhRXyRYEaIeZGRkoChKhSs+GjduDMC5c+fK3H7+sVrJpE+fPlgsljJ/Zs6cWa68ERgYWC44sFqtFBYWlruGPXv2cNVVVzFw4ECmT59e7ePRSlTan2HDhlV6rNbDERcXV+XPtFqt3HPPPXz33XdkZmaSmprKrFmzuOuuu7BarYAagP3+++9ceumlvP766/Ts2ZPIyEgeeughcnJygJLfY2W/6/N/zxU9ttOnT7N06VIAvv/+e4qKisoEP2fPniUzMxM/P79yfxfJyclVlprcceONN2K1Wvnyyy8B2Lt3L5s2bdLLUKXFxMRUelt1j1WIC5WsBhKiHjRo0ACj0ciZM2fK3ZeUlARAREREmdvPX/mj3f/TTz8RHx/vtWs7deoUl112Gc2aNWP27Nll+iEqM2XKFB544AH965CQkEqP1Va6VNfcCmqvyauvvsrnn39OYWEhDoeDe++9t8wx8fHxekB18OBBZs2axZQpU7DZbHz88cc0atQIgDNnzpQLkJKSksr9ns936aWX0rhxY7744gsuvfRSvvjiC/r161emhyciIoJGjRqxaNGiCn9GVb8PdzRo0IArr7ySr7/+mhdffJEvvvgCf39/xo8fX+7Y5OTkSm/TfhdC/OXUdx1KiP+P3OlZ6d+/vxITE6Pk5+frtzmdTqVLly4V9qyc/7OOHTummM1m5bXXXqv2em699VYlKCio3O3PPvusUvppIDMzU+ncubPStGlT5dSpU9X+3Jpq1aqV0rp1a6WwsLDaYydMmKC0atVKadq0qXLVVVe59fO7d++u9OnTR1EURdm/f78CKA899FCZY7T+l6eeekq/7fyeFc1//vMfxWq1KqtWrVIA5ZNPPilz/7fffqsAyvr16926vqpU1LOiKIry22+/KYAyf/58JSYmRhk/fny5762qZyUkJER6VsRflmRWhPChP/74o8JJpKNHj+aVV15hxIgRDBkyhMceeww/Pz8+/PBDdu/ezffff1/tDJXmzZvz/PPP89RTT3H06FEuu+wyGjRowNmzZ9m4cSNBQUE899xzHl3vhAkT2Lt3L9OmTePkyZOcPHlSvy8uLq7a0o27PvjgA8aMGUNCQgKPPPIIzZo1IzExkcWLFzNjxowyxz788MP069cPUPs0Stu5cycPPPAA1113HW3atMHPz48//viDnTt38sQTTwDQrl077r77bt577z2MRiOjRo3i+PHjPPPMMzRt2pRHHnmk2uu94447eO2115gwYQIBAQF6z4zmH//4BzNmzGD06NE8/PDD9O3bF4vFwqlTp1i+fDlXXnkl48aNq82vjJEjRxIXF8fEiRNJTk6usAQEamlr7NixTJkyhdjYWL799luWLl3Ka6+9RmBgYK2uQYh6U9/RkhD/H2nvjiv7o71rXr16tTJ06FAlKChICQgIUBISEpQFCxZU+LMqy9L8/PPPypAhQ5TQ0FDFarUq8fHxyrXXXqssW7ZMP8bdzEp8fHyl1/zss8/W/hdTyrp165RRo0YpYWFhitVqVVq1aqU88sgjFR7bvHlzpUOHDuVuP3v2rHLbbbcp7du3V4KCgpTg4GCla9euyv/+9z/F4XDoxzmdTuW1115T2rZtq1gsFiUiIkK56aablJMnT5b5eZVlVhRFUQYMGKAAyo033ljh/Xa7XXnzzTeVbt26Kf7+/kpwcLDSvn175Z577lEOHTrk5m+l8syKoijKk08+qQBK06ZNFafTWe7++Ph45fLLL1d++uknpVOnToqfn5/SvHlzZerUqW6fX4gLkUFRFKWuAyQhhHDXzp076datGx988AETJ06s78u5oDVv3pzOnTuzcOHC+r4UIbxKykBCiAvSkSNHOHHiBE8++SSxsbHllh4LIf4+ZOmyEOKC9MILLzBixAhyc3P58ccf//L9FufPoqnojxCiYlIGEkKIOjBlypRqG56PHTtG8+bN6+aChPgLkWBFCCHqQFJSkj5DpzJdu3bFz8+vjq5IiL8OCVaEEEIIcUGTnhUhhBBCXND+8quBXC4XSUlJhISEVDtESwghhBAXBkVRyMnJoXHjxhiNVedO/vLBSlJSEk2bNq3vyxBCCCFEDZw8ebLa6dh/+WBF2yDs5MmThIaG1vPVCCGEEMId2dnZNG3a1K2NPv/ywYpW+gkNDZVgRQghhPiLcaeFQxpshRBCCHFBk2BFCCGEEBc0CVaEEEIIcUH7y/esCCGEEBcyp9OJ3W6v78uocxaLBZPJ5JWfJcGKEEII4QOKopCcnExmZmZ9X0q9CQ8PJyYmptZz0CRYEUIIIXxAC1SioqIIDAz8Ww0uVRSF/Px8UlJSAIiNja3Vz5NgRQghhPAyp9OpByqNGjWq78upFwEBAQCkpKQQFRVVq5KQNNgKIYQQXqb1qAQGBtbzldQv7fHXtmdHghUhhBDCR/5OpZ+KeOvxS7AihBBCiAuaBCtCCCGEuKBJsCKEEEKIC5oEK3XA5rThcDnq+zKEEEKIvyQJVnzM4XIwbt44rltwHS7FVd+XI4QQQlQrLi6ODz/8sMxta9euJTAwkBMnTtT59cicFR/LtmWTmJMIwInsE7QIa1HPVySEEKI+KIpCgd1Z5+cNsJg8XpWTkJDApk2b9K8VRWHSpElMmjSJ+Ph4b19itSRY8TGb06Z/vu/cPglWhBDib6rA7qTjfxfX+Xn3Pn8pgX6evdwnJCTw5Zdf6l9/8803JCYmMnnyZAAWLlzIv/71L1wuF//5z3+46667vHnJ5UgZyMfsrpJBOPvS99XjlQghhBDuSUhIYN++feTm5pKfn8+TTz7Jiy++SEhICA6Hg0cffZQ//viDrVu38tprr5Genu7T65HMio+VCVbOSbAihBB/VwEWE3ufv7Rezuup3r17YzKZ2Lp1K8uWLaNRo0bccccdAGzcuJFOnTrRpEkTAEaPHs3ixYsZP368V6+7NAlWfMzuLAlW9qbvRVGUv/1EQyGE+DsyGAwel2Pqi7+/P926dWPOnDlMmzaNBQsWYDSqxZikpCQ9UAG1Gff06dM+vR4pA/lY6SXLObYcTuf69i9UCCGE8IaEhATeffddhg8fzrBhw/TbFUUpd6yv34RLsOJjNpetzNd7z+2tpysRQggh3Ne9e3fMZjNvvPFGmdubNGlSJpNy6tQpYmNjfXotEqz4WOkyEEiTrRBCiL+GGTNmMHHiRNq1a1fm9r59+7J7925Onz5NTk4Ov/76K5de6ttenL9G8ewvrHSDLUiTrRBCiAuXy+UiNTWV6dOnc+DAAebOnVvuGLPZzFtvvcWQIUNwuVw8/vjjNGrUyKfXJcGKj2nBip/RD5vLxr70fdJkK4QQ4oK0atUqhg4dSvv27ZkzZw5hYWEVHjd27FjGjh1bZ9clwYqPacFK2wZt2Ze+j/TCdM7mnyUmKKaer0wIIYQoa/DgwbhcF97WMNKz4mPaBNsgvyBahbcCpMlWCCGE8IQEKz6mZVYsRgvtGqhNSkezjtbnJQkhhBB/KRKs+FjpYCXMqtb+cm259XlJQgghxF+KBCs+pi1d9jP5EWgJBCDfkV+flySEEEL8pUiw4mOlMyuB5uJgxS7BihBCCOEuCVZ8rEywIpkVIYQQwmMSrPiYVgaSzIoQQghRMxKs+JieWTFZCLIEAZJZEUIIITwhwYqPlZ5gK5kVIYQQwnMSrPiYFqyYjWbpWRFCCCFqQIIVH9Mm2FpMFgLMAQDk2fPq85KEEEKIvxQJVnysotVABY6C+rwkIYQQokpxcXF8+OGHZW5bu3YtgYGBnDhxos6vRzYy9LHSwYrWYFvgKMDpcmIymurz0oQQQtQlRYH66Fm0BILB4NG3JCQksGnTJv1rRVGYNGkSkyZNIj4+3ttXWC0JVnysoqXLAIXOQoKMQfV1WUIIIeqaPR9eblz3530yCfw8e71JSEjgyy+/1L/+5ptvSExMZPLkyQCMGzeOFStWMGzYMH766SdvXm2FpAzkY/pqIJMfVpMVo0H9lcuKICGEEBeqhIQE9u3bR25uLvn5+Tz55JO8+OKLhISEAPDQQw/x9ddf19n1SGbFx2yu4gZbowWDwUCgOZBcey559jwiiaznqxNCCFFnLIFqlqM+zuuh3r17YzKZ2Lp1K8uWLaNRo0bccccd+v1DhgxhxYoVXrzIqkmw4mMOpwNQgxWAQIsarMjyZSGE+JsxGDwux9QXf39/unXrxpw5c5g2bRoLFizAaKy/YoyUgXys9ARbQAbDCSGE+EtISEjg3XffZfjw4QwbNqxer0WCFR8rvRoIkMFwQggh/hK6d++O2WzmjTfeqO9LkWDF10qP24dSmRUJVoQQQlzAZsyYwcSJE2nXrl19X4r0rPha6Qm2UCqzImUgIYQQFxiXy0VqairTp0/nwIEDzJ07t8LjLr30UrZu3UpeXh5xcXHMnTuXPn36+Oy6JFjxsfPLQEHm4p2XJVgRQghxgVm1ahVDhw6lffv2zJkzh7CwsAqPW7x4cZ1elwQrPiY9K0IIIf4qBg8ejMvlqu/LKEd6VnxMm2BrNqpxobaZoWRWhBBCCPdIsOJjpSfYgmRWhBBCCE/VWbDyyiuvYDAYmDRpkn6boihMmTKFxo0bExAQwODBg9mzZ09dXVKdKFcGKl4NlGfPq7drEkIIIf5K6iRY2bRpE9OmTaNr165lbn/99deZOnUq77//Pps2bSImJoYRI0aQk5NTF5dVJ0pvZAiU2XlZCCGEENXzebCSm5vLjTfeyKeffkqDBg302xVF4e233+app57i6quvpnPnznz11Vfk5+fz3Xff+fqy6oRLceFQisfty9JlIYQQokZ8Hqzcf//9XH755QwfPrzM7ceOHSM5OZmRI0fqt1mtVgYNGsTatWsr/XlFRUVkZ2eX+XOhcrgc+ufnl4GkZ0UIIYRwj0+XLv/www9s3bqVTZs2lbsvOTkZgOjo6DK3R0dHc+LEiUp/5iuvvMJzzz3n3Qv1Ea1fBUo12MreQEIIIYRHfJZZOXnyJA8//DDffvst/v7+lR5nMBjKfK0oSrnbSps8eTJZWVn6n5MnT3rtmr1Nm14LYDaocaFWBpIGWyGEEMI9PsusbNmyhZSUFHr16qXf5nQ6WbVqFe+//z4HDhwA1AxLbGysfkxKSkq5bEtpVqsVq9Xqq8v2Ki2zYjKYMBlNgCxdFkIIITzls8zKsGHD2LVrF9u3b9f/9O7dmxtvvJHt27fTsmVLYmJiWLp0qf49NpuNlStXMmDAAF9dVp06f9kylJSBZDWQEEII4R6fZVZCQkLo3LlzmduCgoJo1KiRfvukSZN4+eWXadOmDW3atOHll18mMDCQCRMm+Oqy6tT5y5ahJLNS4CjA6XLqGRchhBBCVKxeJ9g+/vjjTJo0iYkTJ9K7d29Onz7NkiVLCAkJqc/L8ho9s2Iqn1kBKHQW1vk1CSGEENWJi4vjww8/LHPb2rVrCQwMrHIRjK/U6UaGK1asKPO1wWBgypQpTJkypS4vo87YXGqDbenMitVkxWQw4VSc5Nnz9CFxQggh/n9TFKVeWgACzAFVLlypSEJCQpmVvIqiMGnSJCZNmkR8fLy3L7FasuuyD1VUBjIYDASaA8mx58jyZSGE+BspcBTQ77t+dX7eDRM26C0I7kpISODLL7/Uv/7mm29ITExk8uTJnDx5kptvvpmUlBTMZjPPPPMM1113nZevuizZyNCHKioDAQRYindelhVBQgghLkAJCQns27eP3Nxc8vPzefLJJ3nxxRcJCQnBbDbz9ttvs3fvXpYtW8YjjzxCXp5vx3FIZsWHKloNBDIYTggh/o4CzAFsmLChXs7rqd69e2Mymdi6dSvLli2jUaNG3HHHHQDExsbqI0eioqJo2LAh6enpBAX5rq1BghUf0sbtlwtWZNaKEEL87RgMBo/LMfXF39+fbt26MWfOHKZNm8aCBQswGssXYzZv3ozL5aJp06Y+vR4pA/mQNsFWG7Wv0ZpqJbMihBDiQpWQkMC7777L8OHDGTZsWLn7z507xy233MK0adN8fi0SrPhQtWUgyawIIYS4QHXv3h2z2cwbb7xR7r6ioiLGjRvH5MmT62SQqwQrPiQ9K0IIIf6qZsyYwcSJE2nXrl2Z2xVF4bbbbmPo0KHcfPPNdXIt0rPiQxUtXQbpWRFCCHFhcrlcpKamMn36dA4cOMDcuXPLHbNmzRpmzpxJ165d+fnnnwF1aXOXLl18dl0SrPhQZUuX9WBFMitCCCEuIKtWrWLo0KG0b9+eOXPmEBYWVu6Yiy++GJfLVafXJcGKD2kNtpWVgfLsvl2XLoQQQnhi8ODBdR6IuEN6Vnyo0p4VKQMJIYQQbpNgxYcqLQOZS3ZeFkIIIUTVJFjxoWozK9KzIoQQQlRLghUfqixYCTIXD4WTMpAQQvy/pihKfV9CvfLW45dgxYcqW7oc5KcGK9lF2XV+TUIIIXzPYlGf9/Pz/95vSrXHr/0+akpWA/mQllk5f9x+A2sDADKLMuv6koQQQtQBk8lEeHg4KSkpAAQGBmIwGOr5quqOoijk5+eTkpJCeHg4JpOpVj9PghUfqqwMFG4NB9RgRVGUv9U/YCGE+LuIiYkB0AOWv6Pw8HD991AbEqz4UGVloHD/cACcipMcew6hfqF1fWlCCCF8zGAwEBsbS1RUFHa7vb4vp85ZLJZaZ1Q0Eqz4UGVLl60mK4HmQPId+WQWZkqwIoQQ/4+ZTCavvWj/XUmDrQ9VNsEWoIG/2reSUZRRp9ckhBBC/NVIsOJDlfWsQKm+lcLMOrwiIYQQ4q9HghUfqqwMBCV9K7IiSAghhKiaBCs+VFVmRZYvCyGEEO6RYMWH3CkDZRRKz4oQQghRFQlWfKiypctQ0mArmRUhhBCiahKs+FBlE2xBMitCCCGEuyRY8SG3VgNJZkUIIYSokgQrPuROGUjmrAghhBBVk2DFh6pcuixzVoQQQgi3SLDiQzZX9RNss2xZOF3OOr0uIYQQ4q9EghUfqqoMFGYNA8CluMix5dTpdQkhhBB/JRKs+FBVq4EsRgshlhBA+laEEEKIqkiw4iOKoujBitlY8ebWMnJfCCGEqJ4EKz7iUBz65xWVgaBk5L7MWhFCCCEqJ8GKj2j9KlB5sCKZFSGEEKJ6Eqz4iFYCgoqXLoNMsRVCCCHcIcGKj2jBigEDZkPFPSuy87IQQghRPQlWfKT0smWDwVDhMVoZSDIrQgghROUkWPGRqqbXaiSzIoQQQlRPghUfsTkrn16r0TMrMmdFCCGEqJQEKz5S1Y7LGj2zIvsDCSGEEJWSYMVHqppeq5HMihBCiLrmcDn+cr2SEqz4iCeZlRxbTpmlzkIIIYSvvLn5TYbOGsr6M+vr+1LcJsGKj1Q3ah8g1C8UA+pKoayirDq5LiGEEBeeQxmHeHH9i3XSFrD0xFIcioNpO6f5/FzeIsGKj7jTYGsymgi1hgLStyKEEH9nL214iZkHZvL5ns99ep6zeWdJyU8BYFPyJvae2+vT83mLBCs+4s7SZZDly0IIcSFaeXIldy25i6TcJJ+fKyk3iS1ntwCw+tRqn55rV9quMl9/s/cbn57PW3warHz00Ud07dqV0NBQQkND6d+/P7/99pt+v6IoTJkyhcaNGxMQEMDgwYPZs2ePLy+pzugNtsbKG2wBGvo3BNAjXSGEEGW5FBfvbH2HGftm1Mn5bE4bz697ng1nNvD9/u99fr5fj/2qf34487BPA6SdaTsB6BLRBYBFxxZxNu+sz87nLT4NVuLi4nj11VfZvHkzmzdvZujQoVx55ZV6QPL6668zdepU3n//fTZt2kRMTAwjRowgJyfHl5dVJ0pPsK1K87DmABzLPubrSxJCiL+k5YnL+WzXZ7y28TXSCtJ8fr5fjv5CSoH6BtLXmQ5FUfjl6C9ASY/jqlOrfHa+nalqsHJd2+voFd0Lh+Kok4CstnwarIwZM4bRo0fTtm1b2rZty0svvURwcDDr169HURTefvttnnrqKa6++mo6d+7MV199RX5+Pt99950vL6tOOFwOoPoyUKuwVgAcyTzi82sSQoi/GkVR+HTXp+rnKKw4ucKn53MpLj7fXdI3ciTrCKdzT/vsfAczDnI48zAWo4VbO94K+C5Ycbgceo9K18iu3NLxFgBmHZxFvj3fJ+f0ljrrWXE6nfzwww/k5eXRv39/jh07RnJyMiNHjtSPsVqtDBo0iLVr11b6c4qKisjOzi7z50LkToMtQKtwCVaEEH89O1J3cNOvNzH30FyfnmfdmXXsOVfSHvBH4h8+Pd/yxOUczz5OiF8IHRp2AODPU3/67HwLjy4EYHDTwYxuORqAjckbKXAUeP1cRzKPUOAoINgSTIuwFgyKG0SzkGbk2HKYd2Se18/nTT4PVnbt2kVwcDBWq5V7772XuXPn0rFjR5KTkwGIjo4uc3x0dLR+X0VeeeUVwsLC9D9Nmzb16fXXlDtzVqAkWEnMTtRLR0IIcSFbdGwRdyy6gx2pO/hox0coiuKzc3226zMALmpyEQDrz6wnz57nk3MpisL03dMB+Ee7fzCyufpmevVp35SCnC6n3q9yeYvLaRPehpigGIqcRWxK3uT182n9Kp0iOmE0GDEZTdzU8SYAvt37LU6X0+vn9BafByvt2rVj+/btrF+/nvvuu49bb72VvXtLlkqdvyOxoiiV7lIMMHnyZLKysvQ/J0+e9Nm114a7wUp0YDRBliAcioPEnMS6uDQh6p3dZWfr2a24FFd9X8r/C4qikG3L5nDGYRKzffc8oigK03ZO49+r/o3NpWaPz+Sd8VlmeHvKdjYlb8JsNDOl/xSahzbH7rLz52nfZDo2n93MrrRdWE1WJnSYwMAmAwHYcGYDRc4in5wvJT+FEL8QBsYNxGAwcEmTSwDflIJ2paorgbpGdNVvu7LVlYT6hZKYk8jKUyu9fk5v8Xmw4ufnR+vWrenduzevvPIK3bp145133iEmJgagXBYlJSWlXLalNKvVqq8u0v5ciNwZtw9qsKb1rRzOPOzz6xLifPURMDy75lluXXQrX+75ss7P7Sv59nzSCtLqZCK1w+XgjU1vcOfiOxkzdwz9vuvHRd9fxLj547hi7hX6i5I32Z12nl7zNO9tew+AmzveTP/Y/oDvMg9aVmVsq7HEBMUwpNkQwHelIC2rclXrq4gIiKBtg7ZEBUZR6Cxkc/Jmr59Pa6wdGT9Sf624JE4NVlafWu31jJXWXKutBAIItARyXdvrAPh679dePZ831fmcFUVRKCoqokWLFsTExLB06VL9PpvNxsqVKxkwYEBdX5bXuTPBVtMyvCUARzOP+vSahCjNpbi49bdbuWLuFT59N36+NafXsODoAgBm7JuhN6P7iqIoJOcls+LkCj7e8TEz98/0+otAcl4yQ38cypBZQxjw/QB6ftOTHl/3IOG7BK6YewWHM7z7RmT1qdV8vfdrNiZv5Hj2cb2/wWwwo6Cw+Phir54vqyiLu5fezfwj8zEZTDzd72ke7/M4g5oOAnyTBTiQfoCVp1ZiNBi5o/MdAAxtOhRQH7+3y+b70/ez5vQajAYjt3ZSG10NBoOeXfF2QFbkLGLpCfX17/KWl+u3943ti9VkJSkvyasZq1xbLkez1NeYLpFdytw3vv14zAYzW85uYX/6fq+d05t8Gqw8+eSTrF69muPHj7Nr1y6eeuopVqxYwY033ojBYGDSpEm8/PLLzJ07l927d3PbbbcRGBjIhAkTfHlZdcLdBluA1uGtAbXrXFxYDqQf4PFVj3Mg/UCdn3vvub28s/Ud0gvTffLzt6VsY2vKVk7mnOTOJXf6dMWDpsBRwAvrX9C/TslPYfnJ5V4/T2p+KlO3TOWuJXdxycxLGPHTCB7840E+2P4BL254ka0pW716vj8S/yjXR+FQHOTZ8ziRfYIfD/7o1fNtOqv2MwyKG8Tnl37OwnEL2XjjRl695FUAVp32bvDw3Lrn2Hx2M0GWIN4f9j43tL8BKMkCbEvZRo7NuyMnpu9Ssxwj40cSHxoPqCtYGvk3Isee4/WeDm0F0KXxl9I0pKQXcmBccbDi5SXMK0+uJNeeS0xQDL2ie+m3B5gD6BPTB/Du3+Puc7tRUGgS3ISIgIgy90UHRXNx3MWAWvK6EPk0WDl79iw333wz7dq1Y9iwYWzYsIFFixYxYsQIAB5//HEmTZrExIkT6d27N6dPn2bJkiWEhIT48rLqhLs9KwAtw9TMiqwIcp/D5WDK2ik8+MeDPqkla17f9Dq/HfuNu5fezfGs4z47T2mKojBz/0xu+vUmPtv1GW9sesMn51lwZIH+eXJeMncuvpPkvMqb273h4x0fczr3NNGB0Uxor74p+WH/D14/z9tb3+aL3V+w4cwGMosyMRlMtGnQhuahzQH0d7Teom0I93DPh9ly0xb+/MefLLt2Gc8PeB6AFSdXeDWbo5UkRrcYTZ+YPsSHxhNgDqB/4/6YDCaOZR3jZI53+vmcLidrTq8B4L2h73Fxk4v1+5qGNKV5aHOcipN1Seu8cj6AE9knWHxCzQ7d1eUu/XajwVhSCjrpvVLQyZyTejbq9s63l7kvITYBs9FMYk4iJ7JPeO2c2iqg0S1GYzSUfSnWgkBvZqy00mDpElBp3SK7AbA7bbfXzulNPg1Wpk+fzvHjxykqKiIlJYVly5bpgQqoKbYpU6Zw5swZCgsLWblyJZ07d/blJdUZfShcNXNWoGRF0PHs416pdb+x6Q3GLxxfZy+udU1RFF5Y/wKzD81mxckVzDk0xyfnOZB+gI3JGwFIL0znnqX3+HzScL49nydWP8GLG17U/y0sPr6YcwXnvHqeQkeh/uT86sBXaRbSjNO5p7lz8Z2k5qd69VyaA+kH+GrPVwA81e8pbut0G0aDkY3JG70aqLsUl96AeX/3+/nhih/YcOMG5oydw796/wtQgxVv9eo4XA79XX7/2P74mfwIs4YRHRTNZS0uw9/kT1JeEgczDnrlfNm2bD1V3zumd5n7Qv1C6RHVA8BrTaiHMw+T78gn2BJMz6ie5e7XMw9eLJN8sfsLXIqLgU0G0q5huzL3aaWg5YnLvfZ3+NWer3ApLgY0HkCHRh3K3BdkCdIzH97KrmQVZem/rytaXlHufi1Y2Z6y3Wub3FbUr1Jap0adgPLj+C8UsjeQj7g7bh8gNiiWQHMgDpej1u+GVp1axdd7v2b3ud3cs/Qen75TPpB+gDWn13A082idDhT6YPsHZQKUz3Z95pPsyrf7vgXUJZPNQpqRlJfEPUvv8dkO2UcyjzD+l/H8euxXTAYTj/V+jE6NOmF32Zl72LuzLFacXEGuPZfYoFhGtRjF9Eun0yS4CYk5idy15C6vB0dOl5Pn1z2PU3EyvNlwhjQbQmxwLIPi1J6HmQdmeu1c+87tI70wnWBLMHd2uZNOjTphNVkB6N+4P0GWIFLyU/Qn79ranbabXHsuYdYw2jdsX+a+AHMACY0TALw2zGzb2W0oKMSHxhMVGFXufi148Na78m0p2wC1BGMymsrdX7oh1BvBQ3Jesj7z459d/1nu/n6x/Qg0B5JSkMKetNpvz5JemM7Ph38G4M7Od1Z4jLf7VhYfX4zD5aBtg7a0adCm3P1NgpvQKqyV1zJWiqLoy5a7Rnat8JhOEWqwcjr3NBmFGbU+p7dJsOIj7m5kCGqGSSsF1abJ1ua08drG1wC1sTcpL4l7l97rkx2dT2Sf4B+//IN7l93LlfOupN93/Rj4w0CuX3A9D//xMJ/t+swnq0xm7p/JJzs/AeCJvk8QHRhNSn6K17Mr5wrO6Z3693W7j09GfEJEQASHMw/z4B8Pen1g08KjCxn/y3iOZh0lKiCKzy/9nFs73co/2v8DgB8P/OjVGQjzj8wH1Hd1RoORmKAYPhv5GTFBMRzNOso/l/7Tq/9uZh2cxc60nQRZgnii7xP67drjm39kvtdmZ2gvKAmxCeXKsFaTlcFNBwPeKwWtO6O+mPSN6Vvhi/mQpmrZwlu9OZvPqiWg3tG9K7xfe2HdlLzJK/9Ot6duB6B7ZPcK7+8Z1ZNAcyDnCs+xL31frc/33f7vcLgc9IrupWeJSvMz+ekBmTdKQStPrqTIWUSHhh30XpHzaefblLzJK2/MtOeWirIqGm+WgpLykkgvTMdsNJfLHGlC/UL1MmnpIXwXCglWfERrsHUnswIlK4Jqs3z5671fk5iTSERABDOvmElUYBRHso4w8feJXs98aKs4Qv1CCbGoPUaZRZnsS9/HHyf/4J2t73h9eeGyE8t4acNLAEzsNpEbO9zIP7uo77y8nV2ZdXAWdpedrhFd6RbZjbiQOD4e/jEhlhC2pWzj3yv/7bXlqT/s/4HJqydT4CggITaBWWNm0TNaTbdf1vwywqxhJOUlee2dclpBGmuT1CnRY1qN0W+PC4lj+sjpRAZEcijjEA8tf8grfRZn887yztZ3ALWnIzqoZDRBQmwCzUObk2fPY+GRhbU+F5SUP0r3VpQ2Il4tRS89sdQrj299ktqv0r9x/wrvvyTuEgwY2HNuj1c2jNNKTueXgDStw1sTGxTrtcFi21O2A9AtqluF9/uZ/EiIVbNH3iiTaL/PG9rdUOkxWinIG88xWsYhoXFCpTO+WoS2oElwE+wuu14arqmk3CS2pmzFgIFRLUZVepwWIP15+s9av1HR+lXaNWinZxkromVXLsRSkAQrPuLunBWNtiKoppmV5Lxkpu2cBsCjvR6lbYO2TBsxjTBrGLvSdvHw8of1AKq2sm3Zetr0rcFvsXbCWtaOX8vssbP5YNgH+n/AL/Z84bWmwi1nt/CfVf9BQeHattdyb7d7ARjXZpzXsys2p41ZB2YBcGOHG/Xb2zVsx3vD3sNqsrLy1EqeW/tcrR+foij6rJFbOt7Cx8M/plFAI/1+f7M/41qPA7xXKvn16K84FSddI7vSIqxFmfuahTbjs0s/w2qysi1lG3vT91byU9z36sZXybPn0TWiK9e3vb7MfUaDUX9R+uHAD7X+fWYVZelPtNrE0/Nd1PgiAswBnMk7U+t3kHn2PL2cpL1gny8iIEJPvdd26FauLVfPXlSWWSm93La2AW5qfiqnc09jNBjLDBI7n14KqmWZJN+ez4EMdeVdRVkVzcC4gZiNZo5mHeVYVu02gd2RugOAbhEVB2Nw3hLmWgZkWjDdI6oHMUExlR7XPao7IZYQMooyav3vVHuMlfWraLT7vVFe8zYJVnzEk6XLUGqPoBouX35r81sUOAroGdVTTy22Cm/FR8M+IsAcwPoz63li9RNeKSXMPTSXAkcBrcNb0y+mHwAhfiG0bdCWS+Iu4fE+j2MxWtiZulOvd9fGoYxDPPjHg9hcNoY0HcJT/Z7S3wH5mfy8nl1ZfHwxaQVpRAVEMaL5iDL39YruxRuXvIHJYGLekXl8s/ebWp1rR+oOTueeJtAcyAM9HqiwjHB92+sxYGBN0hqvrEbQZpyMbTm2wvtbhrXUSxe1zXYsT1zOssRlmA1m/tv/vxU+vrGtxxJgDuBw5mG9xFFTa5PW4lJctA5vXekLgb/ZX++VWXJiSa3Ot+XsFhyKg7jguDLLXc+nlZ5q27eyLWUbLsVFXHBclS90WvDw5+k/axUAaiWgNuFtCPYLrvQ4LYu1K3VXrZba70rbhUtxERMUU+XjC/ELoW9MX6B25bU8e54+A+f82SPnK91IXJvfqRZMl16uXBGL0aKXpbac3VLj85U+Z2X9KhqtyXZ32m6fbqFQExKs+IjdUQiAxc2/b61n5XjWcY+HZG08s5FFxxdhNBiZ3G9ymVRml8guvDPkHcxGM0tPLOWF9S/U6h+hw+Xgu33qrtg3dbipwrRpREAEY1upL4Rf7PmixucCNWN077J7ybHl0D2yO69f8nq5QXvezK4oiqIHIOM7jK8w2BzSbAj/7vNvAL7a+1WtykHa8sXh8cMJMAdUeEzT0KZ6lkDL+NTUgfQD7E/fj9lo5rIWl1V6nFYe+vXYr7V6fNoE0ps73VxuVYcm1C+U0S3UDdxqu4xZe9eqvQuujF4KOl67UpDW/Kg10VZGC/42nNlQq5KsFsxV1luh6RPTBz+jH6dzT+uDwGpCKwF1j+pe5XHRQdG0a9AOBUVf5lwTWgagsv6Y0rxRCtqdps4eiQ2KrbBZubQ+MX2wmqycyTtTq3J9dUuIS9OyS7V502d32tl3Ts3GVRestG/YHrPBzLnCcz4fY+ApCVZ8xJapvgO2HHMvDds4uDEB5gBsLhunck65fR67y84rG18B1Hfg569GALWW/trA1zAajMw+NFtvrqyJFSdXkJSXRLg1vMzUxfPd0ukW/fjaPFk+v+55UvJTaBnWkveHvY+/2b/cMX4mP30WQ22zK1tTtrIvfR9Wk5Vr21xb6XHXtb2Ohv4NSclPqfGTpd1pZ9HxRQBV/i5BnTAJMPfw3Fo1Teo7vMYNJswaVulxAxoPoKF/Q9IL02u8GuFUzil2pu3EaDDqW9FXRnt8fyT+UePl4aWXLFfWr6K5uMnF+Jv8OZV7qlYTO7X5KpWVgDQtw1rSNKQpNpdN7xeqCW2+SmX9KppAS6Ae0NSmbKFlVrQZHFXxRilI749x43xatmpn6s4ar17RSnjunC/AHKCX3mrat1LVFNmKaEHijtQdNQ6qD2YcxOayEWYNo1lIsyqP9Tf766uTdp+7sOatSLDiIw6H+u7Jr8C9Za5Gg1HvH9Bqtu74Yf8PHM48TANrAx7o8UClx41sPpL7u98PqEt/a/qCri3nva7tdRUGDpqWYS31J5Ov99Rsv4kdqTtYfXo1JoOJd4a8U+WL69VtriYqMKrW2ZVv96qP74qWVxDuH17pcX4mP65tqwYz3+//vkbn+vP0n2QVZREREKGX0ypzUeOLaBLchBxbDr8d+61G53O4HHqwUrqxtiJmo1nPdtQ0uNUCsb4xfctNzDxfu4bt6BHVA4fiYPbB2TU63750dclyoDmwyn4HUF/MtbR+TVcFpeancjjzMAYM1f79GQyGWq8Kyrfn670LlfWrlKYvYa7hFNQiZxF7z6k9S9VlVkqfb83pNTUqN7sUl97s6s75ooOiaR3eGgWlxsGDlsmpLuOg0YLEmjYuVzVFtiIdG3XEz+hHemF6jTe61R5j54jOVW4SrLlQm2wlWPERmzYUzoMUujZwyd19PdIK0vhw+4eAusqiqhdzUBs4owKjOJN3pkblhL3n9rLl7BbMBrO+5LQqt3dSJ0HOPzKftII0j8+nPbaxrcbSPKx5lcd6o3fldO5pfSnkTR1uqvb469ter++nUZNx/KUnWFbUy1GayWji+nZqc+oP+2vWiLrhzAbSCtIIt4ZXWyaBkoBmeeJysm3ZHp9v0TE1WLmseeXlptL+0a54mfbBH2tUevrzlJpVSYhNcGtkgFYKWnJiSY1+n1pWpUOjDlUGthoteF91alWNXsy3p2zHqThpEtyExsGNqz1e271329majcLfk7YHh8tBREAEccFx1R7fJaILoX6hZNuy9aDDE8ezj5NVlIXVZKVdg4pLhufTMlra34UnFEXRMyvuBitatmrz2c01Gs3gSQkI1Oc1LXioaSlI71epokG6tAu1yVaCFR+xK2rfiZ8HT0rj2qirPpYnLndrKNc7W98h155L50ad9e+tir/Zn4ndJgLw6c5PybXlun1toC5XBjVLU119F9R6a9fIrthddr3PxV1bz25lbdJazAYzd3e9263vqW125ft93+NSXPSP7U/rBq2rPT46KJph8cPU7/Uwu5Jty9abLauatVDauNbj8DP6sS99X41eDLQMyagWo9x6Me/QsAOtw1tjc9lYetyz7MPRzKMcyDiA2WBmePxwt75nRPwIGvo3JLUgtUalC70EFFd1CUhzSdwl+Bn9OJF9gkOZhzw+n/YCqe08XJ0eUT0I9QslsyhTf7frCW0/oOoaMzVNQ9VR+A7FUaMX89LzVdx5R242mvXeqpr8/e1IUX8nnRp1cuvfJ5QEKzXZz+ZUzikyijKwGC10aFjx7JHzdWzUkQBzAFlFWTXqW6luimxFtCyTViLz9Tm1Jts95/bUy47slZFgxUdsxUGKxeH+cuG2DdrSJaILDsVRZt+Wiuw5t4d5h9Upj0/0e6Lc3hKVubL1lTQPbU5GUYZH24GnFaTp5Qd3sg6gpr617MrMAzM9aizUsipXtbmKuJDq39VB+exKYXGTszvy7Hl6gHNTR/ceH5T0Wvxy9BePJtsuO7EMm8tG6/DWFfYZVaSBfwO9KXbmfs+WMefacvXeGq35uToGg0EPpLQVRO7SSkADmgyoNuOnsZgsXNnqSgCPg82soiw9gHMnawTqGHXtxdXTUpCiKG4312rMRrPe11GTUpDer+JGCUhTm2m27jbXljlf8e++Jku09eZaD87XO6Y3JoOJkzknPer1A9iRpp6vQ6MObo+YsBgteonR01KQO1NkK9IjUj1fTYKV1PxUEnMSMWCodE7O+VqFtyLAHECePe+C2rJFghUfsaNGpH5Oz1b2XN3magBmH5pdaWpaURRe3/g6CgqXt7zcreYwjdlo5sEeDwLqfhjujlWfdUAdktYtsptbjWGaIU2H0CykGdm2bLdfgDYlb2JD8gbMRjN3d3Evq6K5us3VxATFkJKf4tGy4p8P/0yOPYfmoc2rbc4srWdUT9o1aEehs5C5h9wfia+VgC5veblb71o1Wqlk0fFFHpXWlp5YSqGzkBZhLfR3Tu64vOXlGDCw5ewWt3dlVhRFD2zdLQFptAzh6tOrPRqgti5pXbVLlisysvlIAM8zR1lHSS1IxWqyVtsfU1pNlzDn2/P1hsfqVgKVpgUPf57+06N3yYqilMwf8eD5ZWCTgRgNRg5mHCQpN8nt7wPPmms1QZYg/YXf0+yKlslxtzyiqelyYn2KrMHs9hsUKBnGdyTriMdbfWxJUa+xXcN2hPqFuvU9ZqNZzzRdSE22Eqz4gsuJDTXQMHs4iG1Ui1EEmAM4nn280hrlssRlbE3Zir/Jn0k9J3l8eSPiR9CxUUfyHfn60tKq2Jw2fSCZJ1kHUHstbu10KwDf7P2m2mXZiqLwwfYPALimzTXEBsd6dD4/k5/+O/l016dubcp3LOsY7297H4AJHSa4naUCNfswoUPx7sEHfnCrF+FM7hn9XdnlLapeBXS+LpFd6BbZDbvLrm9pXx1FUfRAcWyrsR4FRzFBMfSNVedZuDtz5UDGAY5nH8dqsupNpe5qEdaCnlE9cSkujxp7tRUongSaAIPiBmExWjiSdcSjzRS1rErPqJ5VTgQ938VNLsZitHA8+7hHw8x2pO7A4XIQExRDk+Ambn9fr+heBJoDSStI82gUfmJOIumF6fgZ/ejYqKPb3xfuH64Hb54EZNm2bH3GlCfBCtS8b0XLcnh6Pi2ztTnZs74VrV+lbcO2VS5OOF9D/4b6GHxPy4dbktVgxd3SoUbrk7mQdmCWYMUXCjKxUzy0zOlZo2CQJUh/N1pRJqLIWcRbm98C4LbOt3n0LlJjMBj0F/SZB2ZW+475t2O/kV6YTnRgNMOaDfP4fGNbjaWhf0OS8pJYcrzqIVwbkjew5ewW/IwlJR1PjW4xmq4RXSlwFPDetveqPDbXlsvDyx8m155Lz6ieVS5XrsyoFqMI9QvldO5pt5Zt/nrsV0B90vM0GAN1ryJQs13uBGMz9s1ge+p2LEaL2/0xpWllowVHF7jViKplVS6Ju6TKQWKV0bKLcw7NcevFwKW49NkelU2trUyIXwgDGg8ASvZrcYfer1LJiP3KBFmC9GFmnryYl94PyJNgs/QofE+W2GtZjk4RndwukWi0ANWTx6f1VTQNaVpmgrM7+sWqK7E2Jm90O3gocBRwMF3dBdvTYKVTo04EmAPIKMrwKMDVgiNP+lU0WmnM0ybbrSlbASrcLbsq2jVKsPL/XUE69uLnE4vd81Up2pP1khNLynXxz9g3g9O5p4kKiNL7QWqif+P+9Ivth91l1/tDKqIoir5ceXz7ioekVcff7K/3dnyx54tKsw+KovDBNjWrcn2768vsIeMJg8HA430fB9Tyjrb88nwuxcVTfz7FsaxjRAVE8dbgt9xu7CstwBzANW2uAai2kVhRFL0EVJPAAdQZKN0ju1PkLGL67ulVHrsnbQ9vbVGD23/3+XeNgtvhzdSBdSeyT1S7nFFRFI9XAZ1vRPwIgi3BnMo95VZfwP70/ZwrPEeAOcDjJ2UoCcZ+OviTW6vI7C67fl3VzVepiFYKWnh0odurkLR+FU9KQBqtz+mXo7+4/WJe3eaFVdEe36azm9xu4vdkGNz5ukZ0JcAcQHphOocy3GuU3ntuLw7FQWRApMf/Jywmix7geDJxWcuseNKvotGyVZ70rWQVZem/D22vMXd1btQZUP9v2T18w+0rEqz4Qv457No4+Brsx9MtshutwlpR4CgoM1MjrSBN3//n4V4PE2gJrNVlatmVBUcWVPifPDU/ldc2vcb+9P34m/z1uSI18Y92/yDAHMD+9P1M/nNyhUtT1yatZXvqdvxN/tzZpeKt2t3VLbIbo1qMQkHhjU1vVPii8Nmuz/jj5B9YjBb+N+R/bs09qMwN7W/AgIF1Z9ZVOQTvYMZBDmcexmK0lBvl7y6DwcDE7uqqrh8P/Fhpb0eOLYfHVj6Gw+VgeLPher+LpwItgQxtpk4Lra40szNtJ0l5SQSaS+aY1OR82v5S7vQ5aauA+sX28zgLADC02VBig2LJKMrg16O/Vnv8rtRd5DvyaWBtUOlU3qqMajEKq8nKwYyDelBQlUJHoR4ketJcqxnSdAhBliBO5552+515dZsXViU+NF5dheRysCbJvWm2NelX0VhMFv334m4pqPSSZU8yVRotaHS3ydbusutluBplVoqDuN1pu91e1r8tZRsKCs1Dm3v83BYXEkeYNQy7y87BjIOeXq5PSLDiA868NJzF/wEsDs8zKwaDQW80/GjHR7y68VUWH1/M1M1TybPn0alRpxq/Ky+tc0RnRsSPQEHh3W3v6refyT3DS+tf4rLZl+nLlW/qeJPbqzoqEu4fzssXv4zZYOa3Y7/x2IrHymysqCiK3jdyQ7sbahU4aB7p+QhWk5XNZzfze+LvZe5bdWqVfr6nE56u0bud0poEN2FQU3W/mapGxusTZJsOdrvhrSIJsQn0jOqJzWWrsO9IURSeW/ccp3JP0TioMc9d9FyNnpQ12j5Ci44vqvKdlpZVGdJsSKXbB7hDy1QtO7Gs2qZCd0fsV8ZsNOuZv2/3fVtttmPdGbVfpV9sP4/6mzRh1jA9GHNne4GdqTuxu+xEBURVuf9QZfzN/oyMVxuJq1tlCMX9I8XljZpkOsCzUpDT5dSDB09WApWmZbi0v5vqeDK5tiKlm2zdyY4dzDhIkbOIUL9Q4kPjPT5f87DmhFnDKHQWsv+cexOXt55VS0Ce9quA+hqkZVculFKQBCs+YCvVR+BXgzIQqKnpEL8Q0grSmLFvBo+tfExfPvp4n8dr9CRZkQd7PIjJYGLFyRUsPLqQ/675L6PnjOaHAz9gc9noHtmdD4d9yEM9Hqr1uYbHD+edoe/gZ/Tjj5N/8NAfD+mj41edWsXuc7sJMAdwe+eal7dKiw2O1Zt739r8lh4cncg+wROrnkBB4fq21+tlt9qa0F5ttJ13eF6F6W+ny6m/c69uvH51DAaDPpF49qHZ5fbx+OnQTyw+vhizwczrg16vVWAE6gtzZEAkWUVZlU5Edbqc+kDDUc1H1ep8HRt1pG2Dtthctip7SbKKsvQSgqfNtaVd3eZqAswBHMw4WGVqP9+erwdkNSkBabShiktOLKl2RZ7erxLjWb9KadqAvyXHl1S7pH9n6k4UFJqFNPO4f0RTegBedU31hzMPk+/IJ9AcqO8+7ylt+fjWs1urLVuUXulU0zcpnRt1xt/kT3phulvbiZQeBleT526jwagHju5mx7TVSjUJVqBUk+0FsiJIghUfsOeVLCm1eDDro7QG/g1YOG4hb1zyBuPbj6d9w/YYMHBNm2s8rj9WpUVYC65qfRUAk1dPZu7huTgUB/1i+/H5pZ/z9aivGRg3sFbvyku7JO4SPhj+AQHmANYkreG+ZfeRa8vVVwCNbz++xk+QFbmz851EBkRyKvcUM/bNIM+ex8N/PEyOXd0Y8Ym+T3jtXAmxCbQIa0G+I595R+bptztdTrKKsvg98XdSClII9QutcRagtL6xfekT0we7y86nOz/Vbz+YcZDXNr4GqJONa/rusTST0aQHWJWtCtqaspXUgtQyTas1ZTAYql3Gvz99P7f8dou+ZNmdqa6VCbOGMaal+oKubblwPkVReHbtsxzPPk4j/0Y1ajbXdGrUSZ2p5HJUWerKKsri58M/AzXrV9H0iu5FbFAsOfYcVpxaUeWxNZmvcr5ukd0It4aTbcuu9sVVCxy6RHapdpJzZdqEt6Ghf0MKHAXVrphJzksmtSAVk8Hk0Uqn0iwmi14ic6cUpA9m82Dsw/n04XBulA7z7fl6r15NXy8utCZbCVZ8wFbqnZLFXrNgBdQla5e1uIwn+z3Jj2N+ZOvNW5kyYIoXrrCse7vdS6BZ7X8ZFDeIb0d/y2cjP6NPTB+vBSmlJcQm8MmITwi2BLPl7Baunn81+9L3EWgO5LZOt3n1XIGWQB7qqWaFpu2cxuOrHudI1hEiAyKZOnhqjRpqK2MwGPRywrtb32X4j8PpN6Mf3b/pzsU/XMy/Vv4LgEubX1qj3oqKaBOJ5xyeQ1JuEvn2fB5b+RhFziIGNhmobyjpDVrpccWpFRW+AGkZh+HNhnvl93pFyyvwM/pxMONgmSZpl+Lii91fMP6X8RzNOkpEQATP9n+21ue7scONgDqw7WTOyXL3f733axYdX4TZYGbq4KlujdivipZdmXVwVoVN54qi8PSapzmTd4amIU1r3LAM6jtz7e+vuiXotekf0ZiMJn0AXnWloNo012oMBoO+Kqi6vhVtGFzbBm1rVarUlzC70WSr9RzVpF9FUzqzUl3paWfaThyKutS9cVDNgvjOEWoZ6GjW0VrtFO4tEqz4gKM4WDErCoYaZlYqYjaavfazSosJimH22NksuGoB7w973yvvxKvTI6oHn438jDBrGGfyzgDqi0UD/wZeP9fYVmPp0LADufZcVp1ahdmovthEBkb65FwNrA3Id+RzNv8s+Y6S/+T+Jn/iQ+PdngDsjt4xvekX2w+Hy8G0ndN4ecPL+uqmly5+yWvlQlAHS2nZgFt+u4U7Ft/BuqR1KIqC3WXXp8Bqq09qK8wapm9noGUfkvOSuWvJXUzdMhWHy8HQpkOZM3ZOrbIAmpbhLbmo8UUoKOW2T1h/Zj1Tt0wF1FVV3shuXtr8UsKt4STnJVc48fXbfd+y4uQKLEYLbw56s0bLwEu7opUarPx5+s9KS08Ol0NfYuvJsLuKlB6AV9WLqzeCIyjZ9qC6YKW2/Sqa0k22VT2+rKIsjmcfB2oXrHSO6IzZaCatIK3acROlS0A1fcMZERBBdGA0LsWlb6BZnyRY8QFbgbpduZ+igOKEC2TpV1XiQuKq3SzQ2zpFdOLzSz8nKjCKJsFN9P4SbzMajPyn73/0r5/q95RXXtwqEmQJYtaYWUwbMY0fLv+BX8b9wsobVrL1pq1sumkTC8ctpGV4S6+eU+tdmXNoDvOOzMNoMPLaJa/5JPB7e8jbXNPmGsxGM5uSN3H30ru58dcb+Wj7R2QUZdDQv6E+R8QbtEbbX4/9yrzD87h6/tVsSt5EgDmAKf2n8PaQt736OLXsytxDc8mz5wGQlJvEv1f+G5fiYmyrsXr2rLasJqveSK8NXdTsSt2lB0eP93m8xuWK0lqGtaRzo844Fae+HUJp2kDGAkcBIZYQWoW3qtX5BjQegMVoITEnkWPZFQ/AO1dwTt9NuLZN7loP0e603VVu3Ojp5oWV6RLRBavJSnpheqWPT7seUGfI1Obfqr/Zn44N1X8H1ZXWtObamizlL00L6Gq6iaI3SbDiA/ZCdfWCRYu2vZhd+f+mbYO2LLlmCXPGzqnVaqPq9IruxfMDnufZ/s/Wagm2O2KCYujfuD+dIjrRLLQZDf0berXcdL4eUT0Y0HgASvHU5Pu63advZe9tUYFRTBkwhd+u/o0bO9yI1WRlV9ouPt2l9syMiB/h1Qxgn5g+NAluQq49l6fXPE2OLYcuEV34ccyPXNP2Gq+XKS9qchHNQ5uTa89l3uF5FDoKmbR8EplFmXRo2IFnEp7x6jmvb3s9BgysTVrLiewTgPpOXFtyPiJ+BDe0u8Fr59OyK+cvQVcUhdc3va6vLHuw54O1zsoFWYL06ceVlYK0wKFlWMta//+PDY4lPjQep+LU59Kcz+a06SXF2mZW/Ex+JfNWKjkf1G4Y3Pnc2dTQ7rTrpbWaLHUvTWvO9XRrAV+QYMUHbIWZQHFmBaAWfSt/ByajqdYzY9wxrs04nwcq9eWhHg/hZ/Tj4iYX13jyrydigmJ4ou8TLLpmEXd0voNAcyBmg5lxravf/dsTRoNRb7Q1Gozc0/Uevhr1VY2Wf7p7Pm37hBn7ZvDC+hfYl76PBtYGvD3kbY/GpLsjLiROn0cz88BMFEXhmTXPkJSXRFxwHM8NqN2S8/ONajEKs8HM3nN79eXJTpeT59Y9pw9/fKrfU17LHg2OGwxUHqzow+e8lOnUd2FOrnifoP3p+7G77DSwNqjRMvDzaW8Kqmqyrc0wuPO502S759weipxFNLA2oEVYi1qdT3t821K2uT3fxVckWPGBksxK8Q2SWRE+1imiEytvWMn7Q9+v8YqKmogIiOCRXo+w7Lpl/HL1L/pyR2+6rdNtPNb7Mb4d9S0P9HigRlOUPXFlqysJsYSQmJPI/CPzMRqMvDHojVqtNqqKljn5+fDPTN89neUnl6t9KoPfJMQvxKvnaujfUF/iveDIAhwuB0+teYrZh2ZjNBh54aIX9MZfb9D6Vnak7iC9ML3c/d5ori1Na7JdfWp1heMDajsM7nylm2wr6ltRFMUrzbUarY/oUMahSrfa0LIgPaN71voxtg5vTahfKAWOArfnu/iKBCvepijYiuulflIGEnUo2C+4TgOV0kL8Qnz2Yu5n8uPWTrfWatmnJwItgWVm7zzS8xH9RdAXLm5yMU2Cm5Bjy+Gdre8AahOvJ7tje0KbubLw6EIeX/U4vxz9BbPBzGsDX9PHGHhLTFAMHRp2wKW4+G7fd6w6tYpFxxfx8+Gf+WH/D+xJUxs3vdXU3zemLwHmABJzEhn781gWH19cJojwVr+KpmtkV/yMfqQVpDF99/RyAcupnFNkFmViMVo82mm5MhEBEXSN6IqCwpub36zwmNrOVynNaDDqzeT1XQqSYMXbinKwK+oyRLNW85VgRYi/lJs73kzz0OZc3/Z6nzV+a4wGY5m+lBHxI2q8NYI7BjUdRIglhLP5Z1l6YikWo4Wpg6d6bRXX+bTsyic7P+H+3+/n3yv/zTNrnuGlDS9R6CwkzBrmteb+MGsYHwz7gGYhzUgtSOWxlY9x3+/36UvRazsM7nxWk5V7ut0DwDtb3+GtzW+V2X9J61dp37C918YVPNnvSYwGI78e+5W1SWvL3Od0OfVmWG8EK1CSParvYMU3a2H/zgrSS/YFMhS/y5WeFSH+UqKDolkwrvrR9N4yrvU4vt77NWF+YV7vUzmf1WRlZPORzD40G3+TP+8MeYcBTWo3xK8qV7e5mjWn15Bnz8Pf7E+AOaDko8mfy1pc5tUl9n1i+jDnyjlM3zWdz3Z9xprTaxg3bxwTOkwgKS8JAwavlGQ0d3e9G6vJypub3+SrvV+RUZTBlAFTsBgtegnIW8ERqCXff7T7B9/t/46X1r/EnCvnYDVZATiUeYhcey5BliDaNfB836qKjIwfSZsGbbxWqqspCVa8Lb8kWLFIZkUI4YZw/3B+u/o3jAaj196BV+XebvfiUlxc3eZqny3j18QExTDj8hk+Pcf5rCYrE7tPZFSLUby0/iU2JG/gi91fANC6QWuCLEFePd+tnW6lgX8D/rvmv8w/Mp/MokzeHPRmyeRaLwZHoG6TsvTEUhJzEvls12f6+AIt+9E9qrvXSsKxwbHEBsd65WfVhpSBvC0/HZuWWdF+vTXYzFAI8ffib/avk0AF1ADi+Yue93mgUt9ahLXg05Gf8srAV2jo3xCAXlHeKY+cb2yrsbw79F38Tf6sOrWKu5fczf50tSm1a4T3Miug9qdps6Om75rOsSx1zosWrNR2yfKFSIIVbyuoKLNSUI8XJIQQf18Gg4ErWl7B/Kvm89LFL/FAjwd8dq5L4i5h2shphPiFsD11u75MOi4kzuvnGhk/koubXIzdZeeF9S/gUlwlK4FqOQzuQiTBirflp2MrLjf7aWk4yawIIUS9CrOGMbbVWJ8OnwR1efGXl31JZIC6nUeXyC4+6UEyGAw81e8p/E3+bErexPvb3ie9MB0/o5++r8//JxKseFtBOna0zEpxS5BdMitCCPF30bZBW74Z/Q0T2k/gwR4P+uw8cSFx+mokbYp018iudVZOrEsSrHhb/jm9Z0UPVqTBVggh/laaBDdhcr/JXpmvUpVbO95Kq7CSfZy8scnmhUiCFW8rtRrIzyjBihBCCN+xmCz8t/9/9a991UBc32TpsrcVpGMvLk9aJFgRQgjhYz2je/JE3yc4knlE3zzy/xsJVrytdGZFqxvKUDghhBA+dGOHG+v7EnxKykDeVpBR0rOibbgmmRUhhBCixiRY8bb8cyWrgYpHIEuwIoQQQtScBCveZC8Ee74+Z8ViksyKEEIIUVsSrHhTQToA9uLJtX5aZkV6VoQQQogak2DFm/LVYMVmVoMUKQMJIYQQtSfBijflnwPAYVZXAfmZ/NXbZdy+EEIIUWMSrHhTcRnIVtyrYrFIZkUIIYSoLQlWvKm4DGQvDlb8TAHq7RKsCCGEEDUmwYo3FWYCYCvebdliLi4DSYOtEEIIUWM+DVZeeeUV+vTpQ0hICFFRUVx11VUcOHCgzDGKojBlyhQaN25MQEAAgwcPZs+ePb68LN8pzAbQJ9haLIHq7ZJZEUIIIWrMp8HKypUruf/++1m/fj1Lly7F4XAwcuRI8vLy9GNef/11pk6dyvvvv8+mTZuIiYlhxIgR5OTk+PLSfKNIDVb0CbYWKQMJIYQQteXTvYEWLVpU5usvvviCqKgotmzZwiWXXIKiKLz99ts89dRTXH311QB89dVXREdH891333HPPff48vK877zMip9kVoQQQohaq9OelaysLAAaNmwIwLFjx0hOTmbkyJH6MVarlUGDBrF27doKf0ZRURHZ2dll/lwwijMrdhQALObiYEV6VoQQQogaq7NgRVEUHn30US6++GI6d+4MQHJyMgDR0dFljo2OjtbvO98rr7xCWFiY/qdp06a+vXBPFKmlKy1Y8fMLVm+XzIoQQghRY3UWrDzwwAPs3LmT77//vtx9huKyiUZRlHK3aSZPnkxWVpb+5+TJkz653hopLgPZFBcAFr8g9XaXncIiW31dlRBCCPGXVifByoMPPsj8+fNZvnw5cXFx+u0xMTEA5bIoKSkp5bItGqvVSmhoaJk/FwytDKQ4AfCzBOl3Xff+chRFqZfLEkIIIf7KfBqsKIrCAw88wJw5c/jjjz9o0aJFmftbtGhBTEwMS5cu1W+z2WysXLmSAQMG+PLSfEPPrKjBikUrAwGnUtPJKXLUy2UJIYQQf2U+XQ10//3389133zFv3jxCQkL0DEpYWBgBAQEYDAYmTZrEyy+/TJs2bWjTpg0vv/wygYGBTJgwwZeX5n0uV0lmxaUGJRazP06DGZPiwIqdrHw7of6W+rxKIYQQ4i/Hp8HKRx99BMDgwYPL3P7FF19w2223AfD4449TUFDAxIkTycjIoF+/fixZsoSQkBBfXpr32fMABRfgUIqDFaMFG34E4MBqsJNdaK/XSxRCCCH+inwarLjTo2EwGJgyZQpTpkzx5aX4njZjpXjUPoDJYCHfZSHAAP7YyCqQYEUIIYTwlOwN5C1aCci/pOH3eGoRBahlHyt2siVYEUIIITwmwYq3aM211pLy1faT2RQparDij43sAmmwFUIIITwlwYq3aJmV4mDFZDCx+XgWRfgBYDXYpQwkhBBC1IAEK95SqG4loGVWLCYLm46nU0hJZkWCFSGEEMJzEqx4izZq36oOgjMb/DibXYRNy6wgq4GEEEKImpBgxVu0MpAlQP1aUVcFWfzVzQz9DZJZEUIIIWpCghVv0ZYuW9TgxOVSg5XAQDXTYkV6VoQQQoiakGDFW4ozKzY/NbOiFGdWzNbizAo2WboshBBC1IAEK96iZVbM/urXLnXensmifi2ZFSGEEKJmJFjxluIGW5vFCoDLpf5qTcWZFavBRpbMWRFCCCE8JsGKt2gNtmY1WHEW96xYrGpZSFYDCSGEEDUjwYq3aHNWTOpSZadT/dX6+ZcEKzaHi0K7s36uTwghhPiLkmDFW/TMihqsOJxqZsXqr64GCjTYAKRvRQghhPCQBCveojXYmtTGWqW4DOQfoPasBJnUfhVZESSEEEJ4RoIVb1CUksyKFqwoJvzMRn3pcnBxsCKZFSGEEMIzEqx4g6MQXGowYjOoGRUUM+EBFgzFS5mDjBKsCCGEEDUhwYo3FJeAwIDdWPwrVUyEB1qgePx+oFENUmRFkBBCCOEZCVa8obgEhDUEm0sNRhTFTHiAHxQvZfY3qLdn5UuwIoQQQnhCghVv0DIr1lDsxcEKionQAAuY1cyKP8XBigyGE0IIITwiwYo3FKkzVvAPxe4sCVbCAy16ZsWKunRZykBCCCGEZyRY8YbiUfulMytKcYOt1rPih8xZEUIIIWpCghVvKCzVs+JUg5LzMysWRYIVIYQQoibM9X0B/y9oDbb+pXtWzIQF+oHZAIDZVQTIUDghhBDCUxKseEOpBlubS82gKIqJsAALmIt3X3aqwYpkVoQQQgjPSBnIG0pnVpwlmZXSPStGlw0DLsmsCCGEEB6SYMUbispnVvSeleJdmAEsOMkulKXLQgghhCckWPGGCuas6EPhSgUrftjJLXLgcLrq4yqFEEKIvyQJVryhVBmoyFGSWQkLtIDJoh9moXjnZcmuCCGEEG6TYMUbSmVWCvVgxUyI1QxGExRvbhiurmKWvhUhhBDCAxKseEOpzEqBXV31E+RnxWhUly1rpaAGxcGKrAgSQggh3CfBijeUyqwUFa8GCrJYS+43S7AihBBC1JQEK96gjdv3D9Un2AZb/UvuPy+zIvsDCSGEEO6TYKW2nHZwFKifW0OxFWdWQisIVsKtCiCZFSGEEMITEqzUllYCArCGYC+esxJSJlhRVwSF+UmwIoQQQnhKgpXaKspSP1oCwWTBoajLksMCymdWgs1qsJJXJEuXhRBCCHdJsFJbpZprAZzFQ+HC/QNKjtGDFXUYXF6Rs+6uTwghhPiLk2Cltko11wI40TIrgSXHFJeBAouDlVzJrAghhBBuk2CltvR9gUJQFAUFNbPSMLB0ZkVdBhRoUjMqUgYSQggh3CfBSm2VKgM5XCVBSNlgpTizYpTMihBCCOEpCVZqq9T0Wm0TQ4CGgaXLQGrPSkBxZiXfJj0rQgghhLskWKmtUpkVbSAcQERQ+QbbAKOUgYQQQghPSbBSW3pmJUzfcVlRDDQMKt9g618crEgZSAghhHCfBCu1VVSSWckoKJ5kq5gIC7CUHFOcWfE3SGZFCCGE8JQEK7VVWLIaKD0/X/1cMeNnLvWrNaurgfyMapAic1aEEEII90mwUlulGmy1YMWIuewxxWUgK2qQYnO6sDlcdXaJQgghxF+ZT4OVVatWMWbMGBo3bozBYODnn38uc7+iKEyZMoXGjRsTEBDA4MGD2bNnjy8vyfsKS5eBCgEwGs4PVtQykJ+hpPwjpSAhhBDCPT4NVvLy8ujWrRvvv/9+hfe//vrrTJ06lffff59NmzYRExPDiBEjyMnJ8eVleVepzEpmQXFmxWApe0xxsGJ02bAWl4fybBKsCCGEEO4wV39IzY0aNYpRo0ZVeJ+iKLz99ts89dRTXH311QB89dVXREdH891333HPPff48tK8Rxu3bw0lu/A0AOZywUrx1047wVYzRQ6b9K0IIYQQbqq3npVjx46RnJzMyJEj9dusViuDBg1i7dq19XVZnitVBjpX3LNiMVacWcFpI8iqxoeyfFkIIYRwj08zK1VJTk4GIDo6uszt0dHRnDhxotLvKyoqoqioSP86OzvbNxfoDpcTbCUbGabmqsGKv9mv7HF6ZqUkWJGeFSGEEMI99b4ayGAwlPlaUZRyt5X2yiuvEBYWpv9p2rSpry+xckWlemusoaTnVRasqEuXcdoJ8jMBEqwIIYQQ7qq3YCUmJgYoybBoUlJSymVbSps8eTJZWVn6n5MnT/r0OqukNdea/MDiT3rxULhAi7XscVIGEkIIIWqs3oKVFi1aEBMTw9KlS/XbbDYbK1euZMCAAZV+n9VqJTQ0tMyfelOquVZRFH01UJDf+cFKSRkouDhYkc0MhRBCCPf4tGclNzeXw4cP618fO3aM7du307BhQ5o1a8akSZN4+eWXadOmDW3atOHll18mMDCQCRMm+PKyvKewZNlyRr4dh8uBGQix+pc9TsusOGwEWdUykGRWhBBCCPf4NFjZvHkzQ4YM0b9+9NFHAbj11lv58ssvefzxxykoKGDixIlkZGTQr18/lixZQkhIiC8vy3uKSkbtn8kqgOKhb9ZyPSvly0DSsyKEEEK4x6fByuDBg1EUpdL7DQYDU6ZMYcqUKb68DN8ptWz5TGYhBqO667K/6fzMStk5KyDBihBCCOGuel8N9JdWlKV+9A/jTFYBBrPaw9IooFHZ40plVgL9tAZb6VkRQggh3CHBSm2UyqwkZRViMOcCEBkQWfY4s7Z02UawVZYuCyGEEJ6QYKU2ikoGwp3JLMBgVoOXiICIsseVKgPpPSuyN5AQQgjhFglWaqNUg21SViHG4jJQ+WBFKwMVSYOtEEII4SEJVmqjdINtVgEGU3XBiq1Ug630rAghhBDukGClNoozKy5rKMnZWRhM6mqgyMDzelYqKAPJnBUhhBDCPRKs1EZxZiWXQBwG9fMAcwBBlqCyx5XJrBQ32ErPihBCCOEWCVZqozizkuawVt6vAqWCFbu+dFl6VoQQQgj3SLBSG1mnAEhyhuszVsotW4YKJ9janQpFDulbEUIIIaojwUpNFWZBYSYAxxwRlQ+Eg7LBip9JvzlfmmyFEEKIakmwUlMZJ9SPgY04mWesJrNS3GCruDDjwt+i/tqlyVYIIYSongQrNZVZHKyEx5OUWeBezwqUXb4sTbZCCCFEtSRYqSkts9IgnjNZhXpmxZ1gRQbDCSGEEO6TYKWmSmVW1FH7VQUrlpLPS60Iks0MhRBCiOpJsFJTxZkVV3g8Z3OKSnpWzh8IB2AwVDxrRTIrQgghRLUkWKmp4sxKprUxTpcDgykPqCSzAhUuX5YGWyGEEKJ6EqzUhKJAZiIAZwxRGMx5GAwKRoORBtYGFX9PBSP38yVYEUIIIaolwUpN5KWCPR8wkOhoVDJjxb8RJqOp4u8ptfNysDbF1iY9K0IIIUR1JFipCW0lUGhjTuc6q26u1UgZSAghhKgRCVZqosyMlUKMZnWPoKqDldJlIGmwFUIIIdwlwUpNZBxXPzaI50xWAQaTZFaEEEIIX5FgpSZKZ1aqGwinqSBYkcyKEEIIUT0JVmqi1PTa5KxqBsJp9GDFXmrOijTYCiGEENWRYKUmijMrjtCmpOQU6fsCVTgQTqMFK44igvykDCSEEEK4S4IVT7mckHUKgFRzDIoCRnMuUMmOy5pSDbahAern2YV2n16qEEII8f+BBCueyk4ClwOMFk45wgEFg6V4zkpAo8q/r1TPSoNA9fPMfAlWhBBCiOpIsOIpvbm2KUnZNjAWgkENOtxtsG0QqGZWMvNtuFyKL69WCCGE+MuTYMVTGaV2W84q1PtVgi3BBJgDKv++UmWg8OLMikuBnELpWxFCCCGqIsGKpzJLVgKdyXRzJRCA2ap+dNrwMxsJ8lNXBGXk23x1pUIIIcT/CxKseCqjBjNWoFRmRQ1OtOyKBCtCCCFE1SRY8VSpzMqpjJLMSpUrgaBMzwpAuN63Ik22QgghRFUkWPGEywWpBwDI9I9jf3K23rMSEVhdZqVssNJAMitCCCGEWyRY8UTaAShIB0sgK7OiURQICy4AalIGUr/OkMyKEEIIUSUJVjxxYo36sWlflh/KACAsuBDwpAykBicls1YksyKEEEJURYIVT5xYC4Cr2QBWHUoDwOjOQDgAU8lqIECftSJlICGEEKJqEqy4S1H0YOVoYDfS82wEW83kOdQMS/WZlcpWA0kZSAghhKiKBCvuyjgGOWfA5MeijCYA9G8VSpYtC3CnZ+W8MlBQyRRbIYQQQlROghV3FWdVaNKL349kA9CrlRpwmI1mwqxhVX9/qV2XoVRmJU8yK0IIIURVJFhxV3GwUtC4H9tPZgLQTk2w0Mi/EUZDNb/KUuP2QRpshRBCCHdJsOKu438CsM3QEUWBdtEhKEY1w1JtvwpUMGdFli4LIYQQ7pBgxR0ZJ9TJtQYjC841BWBwu0jSCtQVQdUOhIMKJtiqXxfYnRTand6/ZiGEEOL/CQlW3LFvPgCFsX35eZ+aTRncLqokWKmuuRbAXLbBNtTfjMloAGTkvhBCCFEVCVbcsednAGYV9KbA7qRv84b0a9GQ1IJUoGZlIIPBQHiAzFoRQgghqiPBShW2n8zElnYcTm9GwcB7ZzriZzLy8tVdMBoNnmVW9AbbIv2mcBkMJ4QQQlRLgpVKzNhwgms+Wsu87z4EYDMdSCWcB4a2pnVUMIqicDL7JOBusFK2DASlVwRJGUgIIYSojAQrlYgN80dRFNqkLQVgnr0f3eLCuHdQKwB+PPgjR7KO4G/yp3NE5+p/4HllICg9xVYyK0IIIURlLohg5cMPP6RFixb4+/vTq1cvVq9eXd+XxND20Sy4OZ7uxqO4MNB31K38eO8A/MxGknKTeGvzWwA83PNhogKjqv+B581ZgZLly5JZEUIIISpX78HKzJkzmTRpEk899RTbtm1j4MCBjBo1isTExPq+NDplrQTAGD+AsRf3wM9sRFEUpqydQr4jnx5RPZjQYYJ7P6yCzEqDIG2KrWRWhBBCiMrUe7AydepU7rzzTu666y46dOjA22+/TdOmTfnoo4/q+9Jg7zz1Y8crAbA5bXy++3PWnVmH1WTl+QHPVz+5VnPerstQusFWMitCCCFEZcz1eXKbzcaWLVt44oknytw+cuRI1q5dW09XpTqRtJmd6buwBQeRZsjhxOonWXlqJdk2dc7Kgz0epHlYc/d/YAVloPAAGbkvhBBCVKdeg5W0tDScTifR0dFlbo+OjiY5ObnC7ykqKqKoqGT5b3Z2tk+ubeOe73g+qniVz76v9NujAqO4vu313NThJs9+4HkbGUKpnpUCyawIIYQQlanXYEVjMBjKfK0oSrnbNK+88grPPfecz68pOqQp/QnAGhhBeONexAXH0TWyK31j+mIymjz/gVqw4rKDooDBIKuBhBBCCDfUa7ASERGByWQql0VJSUkpl23RTJ48mUcffVT/Ojs7m6ZNm3r92i5JeIRLEh7x3g/UykCgloLMfjQIktVAQgghRHXqtcHWz8+PXr16sXTp0jK3L126lAEDBlT4PVarldDQ0DJ//hK0zAqU2nm5pGfF5VLq46qEEEKIC169l4EeffRRbr75Znr37k3//v2ZNm0aiYmJ3HvvvfV9ad5VQbCirQZyKZBT6CAs0FLRdwohhBB/a/UerNxwww2cO3eO559/njNnztC5c2d+/fVX4uPj6/vSvMtkBoMRFJe+IshqNhHoZyLf5iQj3ybBihBCCFGBeg9WACZOnMjEiRPr+zJ8z+QHjsIymxk2CPQj31ZARr6N5gTV48UJIYQQF6Z6Hwr3t1LBZoay87IQQghRNQlW6pI+GK4kMIkN8wfgdEZBfVyREEIIccGTYKUuVbA/UIsItfRzNC2vPq5ICCGEuOBJsFKXKhi53yIiGIDjEqwIIYQQFZJgpS5VsJlh84hAAI5JsCKEEEJUSIKVulRBGahlcWblZEYBNoerPq5KCCGEuKBJsFKXtDKQoyRYiQ61EmAx4XQpnMzIr6cLE0IIIS5cEqzUpQoyKwaDQW+ylb4VIYQQojwJVupSBcEKlKwIkr4VIYQQojwJVupSBauBQJYvCyGEEFWRYKUuVZNZkTKQEEIIUZ4EK3XJXEmwEillICGEEKIyEqzUpQr2BgJo0UgNVs5kFVJgc9b1VQkhhBAXNAlW6pIerBSVublBkJ++oeHxc5JdEUIIIUqTYKUumYsn2NrLb1ooK4KEEEKIikmwUpcCGqgfCzLK3aWVgiRYEUIIIcqSYKUuBTRUP+anl7tLX76cKsGKEEIIUZoEK3UpsJH6saCCYKV4RZD0rAghhBBlSbBSlwK1zMq5cndJz4oQQghRMQlW6lIVZaDmxT0r6Xk2svLt5e4XQggh/q4kWKlLehmofINtkNVMdKi6WuiYlIKEEEIInQQrdUkrAxVlg8NW7m6tFLQ3Kbsur0oIIYS4oEmwUpf8wwCD+nkF2ZWLWkUAsHhPch1elBBCiAtSUQ6kHqjvq7ggmOv7Av5WjCYICFcDlYJ0CIkuc/forrG8tfQgaw6nkZVvJ6x4qq0QQogLQE4ypO6HFoPAYPD9+WbeBEdXQMJEGPECmHz4kr3tW1jzDiiK+lplMKp/gqNh3CcQHOm7c7tBMit1TetbqaDJtlVkMO1jQnC4FJbsleyKEEJUKe0wZJyom3MpCnx3PXx9JSx5Wv3al9KPqoEKwPoP4dtxkFd+JanXrHwN0g7CuUNqQJayF87uhiO/w/KXfHdeN0mwUtcCKl++DDC6SywAv+46U1dXJIQQ3qEocHRlhW/GvC7rFHx8MXyYACfW+v58x1fDmR3q5+veh6X/9W3AsnOW+rFRa7AEwbFVMG1wyTV4U+ZJyEwEgwlumQe3LlQ/jnkHAGXr1yipB71/Xg9IsFLXtCbbCgbDQUmw8ufhNLIKZAmzEOIvZO178PVY9Y+jqPrja2P9R+AoAHs+zLgOEjf4/nwAUZ3Uj2vfhd+f803Aoiiw4wf180seh3/+Dg1bQlYiTL8Udv3k3fNpwV5sN2g5GFoMhJaDcfa4lbMxgzEoTlJ+fsq75/SQBCt1rYpZKwCto4JpFx2C3amwdO/ZOrwwIcT/Oy4nLH0W/tdZfWfuS0nb4ffn1c+Td8EfL/ruXIVZsOUr9fNGrcGWC99eA6e2+OZ8547Agd/Uz6//Cka/qX7+5//Ux+ntgOXUJsg4pmZUOlwBUR3gn39A6xHgKMA1+26c545573wn/lQ/Nr+ozM3/mb2Tm06MZrerOZ/nD/Te+WpAgpW6VsUUW82oLjEA/CalICF8T1EqXJ3ns3Ptng2fDff+u+PzFWbD9+NhzduQdRIWPOy7bIctH2bfBS47RHdWb1v7nu8CpM1fgC0HIjvAPaug+UD162/GqUGTt22cBijQZiREtIG+/4RRr6v3rX6TRR9MIq/I4b3zaVmVDmPATx1pQUADFnV7m02uthhxsnzuZ9473/E16sf4i/WbDp7N4actpzhMHEsvnsV9/7zXe+erAQlW6ppeBqr8yfHy4lLQ6kNpZBdKKUj8Tbhc8Nt/YPY/oSi3bs6ZfUZ9gXutOWya7uNzJcEPE+CnO9R3zgsmQW6qb86VcQI+vxQOLQazv7rje/pR2PCJb863+Em1MTMkFm5dAD1vBRSYe6/3A0GHDTZ8rH4+4EH1xXz8D9CsPxRlkfvp5TzzyfcUOZzeOV9hlrpSBiDhPv1mpe/d/NbkIQAuS/uS6bMXeOd8DhvsmaN+3u0G/eaT6fk8PnsP850DAGiQuJhZm07W/nw5yZB+BDBAswT95o9WHAHgsk4xPDKyHeGBfrU/Vy1IsFLXqikDAbSJDqFNVDA2p4tlUgoS5yvKUZ9gfElRfL/a4XwbP1FfhHbNKn6X7qUXm8rsWwAf9Yejy9Wvlz7rm9+ry6VmAj7oBwd+BaMFQhqrmYAVr3j/fInr4dOh6mqO4Bi4/VcYWbyaY+XrkJvi3fPt/wW2fKF+Pu5j9Q3ZpS+rPRbZp0n85j6u/3gtc7ae8s75dv0IOWfUwKjLdept1mBOjf6a3cZ2BCu53J80mbcX7/HO+bZ+o5aZIjtAyyH6zVOXHuS+IwkscfYCQNk7nz/2e+H5+tASNcALiVWXSAN2p4uHfthGdqGDU9HDAOhlPMS7P69k0/FaNjOfKM6qxHRWR2sAiefymb8jCYCJg1vX7ud7iQQrda2aBluNrAqqBZcLnD7OSCkKpB70/XnOl7ge3u4K73SD0z6qz+enq+d4sy38/oK6UsDXUg/AsinFXxjg4G+waLJvzlWUC/MfVGdYFGRATFeI6aIGD0ue8e65spPUZtOFk9TJ1U16w72r4ZriFP6WL7079GvfQvhqDOSnqY/rn39Ak14o3f6BM6Y72HJIX/AMaw6n8cf+sxTaaxkQ5iTDvAfUzwc8qDZnAkWmABa1ewEHRpol/UZs4gImz9lF4rn82p1PUdTyEkC/e8Gsvts/mprLdV/sYnz+v0kjnBhDBvvXzq/9C7nTUZKNSrhPn60ybdUR3vvjMACB3a8G4FLjJh7/aRfncmtZattZXALqcq067wR4c8kBtiVmEuJv5vmbhqPE9QVgCJu495stnEyvxe+1ghLQx6uO4HQpXNI2ki5xYTX/2V4kwUpd0+esVL1e/vKuarCy4kAqR1PrKCX+/8G5I/BBH3i3p2/nL6x9Tz3Ph/3h0DLfnae0XT+pL0QF6eAoVMsJhT7YmmHz5+qqg7wUWP0mvNMVvvuH+jhdLpwuL2dcnHaYe4/6mFoPh+uK36Vv/ERfgaF4K8uTtB0+GQhbvwYMcNEkuOt3lDHvql/vmgXH//TOuQB+eUxd8moJhEtfgTuXkBrQkkc3BLEz+GJQnJz44VFmbznFyoOpZOSV34bDbYqilmOcNmh/BdyxCMKaMHNTIh2eXcJ1J64CIHz/TF6ePpM7vtzMk3N31fx8LldxmSddDfaGPoOiKMzYcILBb6zg3uUG3rGrL+Qv+31JhOMsz87fXbu/y0NLIXUf+IVA79sBOJCcw/WfrOdMViHRUVF68DDKsJF/zdpRu16SA7+q/xcCGkLX6wH4fmMiL/+6H4DHL2vHxaNvQjGaaW88SUjecSbP2VXzx1iQAQcXq593/QcAyw+k8MnKowC8cW1XmjYMxNBxLADXBmzlXJ6Nf369ueaPU8usFDfXns0u5KfNahbsgSEXRlYFJFipe26UgQDaRocwtH0UDpfC64u89M5r69fw+WVwcIl3fp67bHmQsl99ovHFjADNmZ1qnf7cYfUJ5vvxasnE2/LS1HQ6qHX6GdfAdzeogZIvKAqsegNm36m+ELW7HMKaQcZx+OVR75ZrHEXFzYRA37vVxkXFpWY6ZlxDyssdef2FR1l90IulhNVvQdI28A+Hse9Dp3Ew/DkAlEWTef/Dt2nz1G+88tu+2p3HaVf/ntKPQmgTtbdixHN8vzWZth8m84NLTa8f/eo+xry9nOs/WcfsLbUoXRRmw+Gl6ue3LYT+E8Fo4vmFe5mz7TQPnxuHXTERf+5PZs+ewa2fb+Tyd1eTb6vhi07KPsg8ofaoXP0p+AWRVWDn5V/3U2h3sVVpy3zXRRgNCq8EfgsozNl6mt2ns2p2vgO/qiU0sz9cMx3MVmZvPc1Tc3ergUOolUaXPYErri9B5PNfvxksP5DKktqUtte+q37sdSv4h7HrVBY3TFtHWm4RHWNDmXl3AoHdrwHgMvMWktKzefnXWvy70ZYr974DLAH8uuuMHuDdN7iVWiIJCMfQ4hIARps3s2TvWX6s6b+bPXPV/+PRnSGmM2ezC/nXLPU585b+8VzWWX0TS4cxAHR17qZVUBH7k3N4ZOZ2XJ6+kchLUwfAATRTe2E+XXUUm9NFn+YN6NuiYc0ehw9IsFLXtDJQYWa1NfnJo9pjNMCiPcm1T2ee2qI29CWug++uU98R+Wpw09558MON8Mkl8FoLeLkxfNgPZlyLMm0InNrs/XOeWAdfXgF5qRDdRR0RnbIH5tytvgP0plVvqCWDmK7Q/wEwmuHgIvigH+d+foK7pi1nwqfrycyvxbtkjcMG8+4vWQba/wHSr5jOzoS3UAwm2PUje379mEW7k/lt15nap6B3z4bcs2q9fORL6ovs/ZvI7/FPcg1BRDnOMFn5nLnfvMvqQ15oDj29pSTwu2IqhMayJymL59KHM9swAgMKd5x9mQ7KET5ZeZRVB2txzqMrITdZzW7etwZaDORsdiEvLtyL3anwqu06MpRgWiqJ9EmdzcZj6Uyes4sTNd0F/eBi9YUnoi007gnA5uPpLNiRhMEAY4ZewrZo9YX1laAfCPc3kpRVyKerargk9WDx0toWl4BfIADTVx8lq8BO66hgdj93KWMe/QTMAXR17uXZluqQr1d+21ezTMDBRerHXrdBZDsUReGTlWrAfvtFzVn57yHcNrANxiv+B8Aw0zZCyeO5+XtqFpCd3qpmqYxmSLiPrAI7N3++gcx8O92bhvP9PxNoFGxVG22Doggll4uMe5ixIZEVB2oQXCdtg8S16vn63IXTpfD8gr0oCtyU0IzHL21Xcmxx8HBLuBrIPDd/T81KMztmqh+7qo21z/y8m/Q8Gx1jQ3lydIeS4xo0h5iuGBQXn/dPwc9sZMnes0xd6uHgNm2+SmQHCGpERp6NGRsSAZh4AWVVQIKVuqdlVhSX2mVehTbRIdzQpykAL/9awycUUDMbc/4JilN94sQAO75XJz/u/4VCu5Nfdp5hzeG0mv380jIT1ebI/QvVLEpxb47LGsY5Q0MMipPU7+7hXJYXMx4Hl6grOoqyoFl/Mq+fy+b+7+M0+sGBX9k34zG+WX+C6X8eY21tH2P6sZJVIyOeh0tfgvvW4Wo1DFx2Gm3/iJdP30b4sV+47YtNtUtBF2apWZvtM9Q9Oi5/i8yBz3L5+2sZO8/OGzb1ha7Fxmd5Y8Z87puxlRumra95H4KiwNr31c/73l3SD0BjRu4fTZ+C95hluAyAuwzzueurTfx5qBa/T3sBzLlH/XfZ+RpcHa/mn19v5vJ3/+SLtSd4vOAW1hm6E2goYkbgVJqQyuM/7az5sMTdxUuFO41TV8cAL/2yjzybkx7Nwlnw+FgKB6k9K08GzOHSZgo2p4sXFtbwnfnen9WPHcaCwYDLpfDcgr0A3NC7KY+OaEvf214D/zDi7Uf5sqf6Qv/JqiOk5BR6fr4DxcFDW/Xv6FxuEdP/VAOfR0e0JdhqxhDeFC5+BICbcz4jxORgzeFzrPQ0CFQUOPKH+nmbEQCsPJjKoZRcgq1mHhnRFn+L2m9BTGeIbI9ZsXN9yC6Ssgp55/dDnj8+LavS+RoIi2Pe9tNk5ttpGRHEt3f1K9lLzWiC4jLJw7Fqk+1/Zu8kK9/Dfzfa//NOV0NoLGsOp5GcXUhYgIVnruiIofTeQO0uBwxE5+xmVFMneTYnj8zc7lnJNP0YnFyv/l/vch1puUX8vl8Nsqbe0K3k96npoD7G+LO/8+rVXQB4f/lh9p3xoDR8Xgnoi7XHKbA76dQ4lMFt63cvoPNJsFLXzH5qvRXcymw8MrwtgX4mtiVm8uuuGq5UWPK0ujQtpDHcsRjuXKIGLbln4YcJLH9pDE9/t4IbP9tQ+6Vwy19R30026a0uJ7x3DafuOcBg01cMK3iFNCWUyPzDfPPWv3hx4V7OZtfgSbm0XT/BD+PVSZZtRnJy9LcM/mAb1y6w86/CuwDocGQ6W+Z/zAsL93Lj9A21ywgsf0mdJdFyCLRSVwZsyY9gZMpD3GF7jGOuaKIMmbzv9x5Fp3Zw9zeba76EcsnT6pwKv2CYMAv63MUz8/ZwJkt9wlwZeSM7zN0INBTxWdBHRPi7OJySy2uL9tfsfEdXqNkoS5DeD7D9ZCbXfryOUxkFRDdqyIC7pqJYguhoPEGCazt31iZgWfacWkYLjoHRb/LT1lMs3XsWi8nA5V1i+ey2BPr8ex5EdybUmc7UoK9Izi7kufk1WOVhL1CbTwE6XwvA2iNpzC/OcrxwZWeaNgwkdvDd0LgnZkceb4TPxmw0sGzfWc/fmdvy4PDv6ufFL5yzt55i1+ksgq1m/jWy+F15YEO45N8AdDv4Hn3j/Mm3OXl7mYcv5rmp6nJo0IOVj1ceIc+mvvBc1imm5NgBD0JoHOac07zTfB0Ar/6237MX1tQDkH1aLQHFqy90n61WA6Mb+jQl1P+8TVg7jQPg3oidAExffYyDZz14w5JzVs3YFl+/oih8V5wBuKV/PMHW8zb463gVAD3y19AmwsrZ7CL+O3+3++crHYx1Hw/AT8WlnSu7N8ZqPi9wCInWl/2+3PEEwVYzm09k8MkqD0rDu35UP7YYBKGx/LbrDE6XQte4MNrHhJY/vvjfFUeWc3XHEC7tpG6M61HpUm+uvYicQjtfrlH/Du8f0rpsMHYBkGClPgSq7+qqWxEEEBXqz92XtATgtUX7PX/hO7BIbZgEGPcRhZYwfk5rwo3mN/nIMQanYmAUa/jd/3FGGDfznzk7a77E8OweNWMD6sCkdqM4Zm7B9V/uITE9n9CG0Rzu+TQA9xlms3zNnwx8bTlP/7yL05kFnp9v8xfFS1wd0OU6Cq/5hntn7SMz3050qJVTTccwP0RNp75h/ZQbYpNRFHjo+201O9+ZHSVPKMOnkFvk4Nl5u7n243UcTs1jZ2AC+8ctRWk3CiMKj/nNZs3hczz8/XYcTg9LUbmpJSnhf3wHbUYwf0cSC3YkYTIa+OqOvvwyaTDdHpoJgY1o4TjKz23Vxrwv1hyvWZZsXXFWpcdNENCAFQdSGD9tPel5Nro0CeOn+wYQ16QJhl63ATA5dBFFDlfNApZjq2BDcT/AlR+QawrljcVqb9bjl7bngxt7MqR9FObAcLj+azAY6efcSjvjKeZsO82i3R4G7oeWqKW70Dho2g+708Wz89Sg56Z+8XRuUrziwWiEy98EDIQenMMzXdQZIc8v3IvN4cHf4aGlagBdnK7PLXLwevHje3BoayJDrCXH9r0bGjTHkJvM1CbqELWZm05yOMWDF/NDSwBFLU2GNeFsdiFfr1MbzB8b2Q6jsdQLj18gDHkSgEF5vxHqb2J/co5n/+8PFzeVxw8ASwB7k7L583AaJqOB2y9qXv744mAl4uwarmwXiMOl8PTPHjTbHvldzUbHdoeYLmw/mcn+5BysZiPjesSVPz5+AARFYSjI4OOL8jAZDczbnsQvO91cXZl+VA3GTH7QNIHsQjuL96j/5q7tVcH5QC8FNTixmClj1ZH8/1t60P2eoEPFvYSd1YyptnR4TNfGFR8f2U590+myw8ElXNdLzcL/vD3Jveebggx1o0KA+IuYsSGR7EIHLSODuLR0cHuBkGClPrjZZKv558CWRIZYSUzP55t1HqxwyU2F+cXLChPu56eM1iS88juTZm5nzfFc3nCO59Um75Mb1oaGZPOx3zt04DiP/bhD/4/ikWXPAQp0vBLienHwbA7Xf7KOpKxCWkUGMeue/iSMvRulzUisBgfvB3+J3eng2/WJXPa/VZ690zp3BH59TD1fn3/CuGlM+eUge5KyaRjkx9yJF/HTfQMY+8jH0O5yLIqdV22vMjimiIx8OxO/3eJ54Kctre1yHfsMLRk5dSVfrTuBosB1veJY9uggRvWIxzD8eTAYGWbYTE/zMRbtSfZ8hcDm6eAsgia9oMUlJGcV8szP6hPL/UNa071puHpcaCxcpQ7Iijv4DS+0V99tPvbjDs/KJSn7il+ADJBwL3O3neKurzZTYHcysE0E39+dQERw8Qts/4lgNNO+cAf/bJmuByweBUjLi+eL9LoN2gznoxWHSc0ponmjQG4d0LzssY1aQfvLAXg9Tn0n+NTcXaR50p+jTYvtfDUYjXy55jiHUnJpGOTHYyPblT22SS+1gRO4KWsaEUEWjqbm8eVaD3pJtCxAcQnow+Xq44tvFMht57+Ym60wfAoAcfs+44r2IThdCq/+5kGGTOtXaTcKgPf+OESRw0Wv+AYMbldBOr/TVWAJwpR5nOd7qYH7W0sOul9CPFKcNWo9HIDP/lRXq4zqHENcg8Dyx0e2U/fUcdl5ts0xAiwmNh5LZ87W0+6dT8tStVaboL/fqP47v7xrbEn5pzSjSQ8eWqUsZeLgVgA8/fMu90psx1aqH+P6gl8gv+w8Q5HDRZuoYLpoge352l+hfjyxhmvaWbmsUwx2p+JeprMoV+3JAWg5iNOZBWw6noHBAFd0i638+4pLQeybz6B2kTQM8iMtt4jV7vxfTFwPKNCoDUpwlJ6pundQK0zGCyurAhKs1A83ly9rgqxm/jWiLaCutz/kzou6osCCh9SG06iO/NHkXh7/aQeZ+XYah/nz6Ii2rH1iGE/dfRPBD66BdqMx4eST8K9BcfHIzO2ejfs/vkadlmkwwdD/svt0Fjd8so7UnCLax4Qw857+xIT5g8GA4fKpYAmig30Pvw86RpcmYeQUObjzq02ku7t0c9mzakal9QgY/QY/bj3ND5tOYjDAO//oTuPwAPU4oxGu/gSiOmHIS2GaZSoRAbDjVJbeP+CWI8vVtLDRQv5FTzBxxlaSsgpp2jCAb+/sxxvXdSuZ8BjZFrqoyxw/iVuE0QA/bjnFS7+42XdkL4RNxXM4EiaiAI/PVns1usaF8eDQ8xrf2o6EhPsBuDHtbdo1NHEmq5Bn53mQ9l73gfqxwxVsyWnAo7N24HApXNm9MdNv7VM2zR4Wpz++J0IXMbxDFEUOF3d8uYm9SW7Uy8/uURsXDSYY9B9OpufzaXEJ4cnRHfAzV/C0VPz4up5bRL8oF+fybDw1180AsDC7ZDlol+tIzirk7WVqI+ITl7Wv+MVu6DNgsmJK3s6rCeq/yXeWHSLFnbKlvbDkXXLHK0k8l6+XSJ4a3aF8CQHUskWjNmDL5b/N92EyGli2L4X1R914jnAUqf8+Adpexsn0fH7YqJZzHxvZruJ0vl/xnjPAFfxJk/AAkrML9R6Xqh9fQUljZqthnM0uZEHxm5u7Bras/PuKsysNj//CQ8PaAGovXrW9JC5XyeC+VsPILrSzYIf63DShb7MqzneV+nH/Qh4c1JxOjUPJyLe7t7pS2yageJWPVgK6tldc5eWRBvHqRoCKC8PB33jq8g4YDOok8mNp1TRpJ65Xe7fC4yG8Gb/sVH+ffZo3JDYsoPLvKw7IOLwMi7OQsd3ULMxcd4JAbYl+/AB2n84mMT0ff4uRK7pWERzVIwlW6kNlg+FS9sGK19T0/5md6pNeset7N+Xi1hEU2l088N226t8Bbf1KXVpo8uPQRf/j/ll7cSlqY9/q/wzloWFt1OAB1Hd2V/wPrGE0LdjP1OYbcboUHvx+G0v2uJFuVxQ1eADodStb8xsx/tP1ZOSrL64/lH5XDhDeFIarx7fc9jrfXNeU+EaBnEwv4N5vt1Sfbj+xTp0+ajDCyBfYeyaHp4uzDo8Mb8vANue9k7SGwIQfIKAhfqm7+LHzBgwG+G5DIj9udqNHx+UqeXx97mTKn3kcS8sjNsyfBQ9czMVtIsp/z+D/gMFEZPJqPhui/l199ucxPlh+uPrz7Z6tBpmhTaDjlXy7IZFVB1Oxmo1Mvb4bFlMF/22H/RfCm2HMTeaL9hswGtR08MKdbmTIclNgp1pysvW9jydm70RRYGy3xvzv+u4VBw8XqWPGTft/4cPLQrmkbSRFDhePz95RfQp646fqxw5XQGhjXv1tPzaHi4taN2JEx+iKv6dZAjTuicFZxHtttmI2Gli85yw/b3fjSXn/QjVLFdEWYrrw0q8lTbWVpvSDItShXMCwrJ/pFhdGns3Ja+680B35Q514GtoEGvfk5V/3YXO6uLh1ROWPz2DQszlRB39gfN+Sxvpql6Me/1M9X3AMxHbn7WWHcLgULm4dQf9WjSr/vuK5Iea9c/j3iOaAOmK92hVlx9eoM3FCm0BkO75aexy7U6FP8wYlGb+KFAcrHF3BnT3DaBMVzLk8G28sqSbzcGa7+sbOLwSa9mXe9iQK7E7aRgfTK75B5d8XfxEERkBBBn4n/+SFq9Q9i+ZtP01yVhVBp8sFx1arn7e4hGNpeWw5kYHRAON6NKn6WtsXBw/7FtK0YaDepPrdhmoy4se14EjdLFDLbGvBR6Viu0F4M3Xn6SO/c3VP9foW70kmp7qtWvTm2otZuEs937D20QT6mav4pvojwUp9qKgMlJsCX18FK16GuXerg6tejoUfbwOHDaPRwNQbuhER7MeBszlVZwXOHdGnf2YNmMyEhbl6Ov/FcZ0rTvGFxMCIKQBceW46t3Uy4XAp3P/dVpbvr6a5cP9CtbnPEsiOlvdw82cbyCl00Du+Ad/e1a/iPSX63AVxfcCWQ/jyJ5h+Sy9CrGY2Hkvn6Z+reMesKLCkeKvynreQHdqaiTO2UORwMbhdZOVDjMKbweg3AGix9yOe66++m376593V15T3zFH7VfxCWBJxM7M2n8JggP/d0L3y/TIatoQeNwIw9MynPHNFRwDeXHKQH4pT2JU+vvUfqp/3/SfHMmy8/Iu6GuU/l7WndVRIxd9n8YdhakDVeNcn/PuicACemru7+ibmTZ/pTdHvH4rgUEouEcF+PH9lp7K9DqVFdShu5FTw2/ABb17XlbAAC7tPZzNt9dHKz1WYBTtnqZ/3uYuNx9L5ZdcZjAZ4+vKOlb9rNRigv5pdidr/LY8MiQfgv/P2cCarmv4jvQR0LWuPnmPBjiSMxU21lT4+UHtJAMPen3lxuPqiM3vrKbYmVrPXzb756scOY1l3LINFe5IxGii/guR83caro/iTtvJolyKC/EzsPJXFguoCTm0JcdtLOZyWx9xtahbgsUvbVfFNQIvB6hL/gnTGBu6nU+NQcosc+mTWSh0pKcnk2536UtcqsyoAEa3V4XEuB36HftGDh+83nqx6ebh2vhaXoBjNerlifN9mVf8+S5WC2PszPZs1oG/zhtidCl9UVdJL3adOALYEQpNeesPqJW0jiQr1r/oxauc7uhwKs7kpQf13+uOWU1W/wdSCo+YDOZqay+7T2ZiNBn2SeaUMhpJS0N75dGkSRuuoYIocLn6rakFGUY4+80qJH6D38lx+gWZVQIKV+nH+zssupzrwKzdZHfbVbIA6IEtxqUOCfn0MFIWoEH/+d0N3DAa1Zlvhu2Z7ofqz7Pk4ml3MDTt6kppTRLvoED64sWfF78o1PW+DpgkY7Hn81/g5l3dWa673fLul8gyL01HcqwKn29/B+B+Ok2dz0r9lI76+s2/5VQEaownGvqc+OR/4ldZpv/PehB4YDTBr86nK09F75qizOSxBKIMn89isHRw/l0+T8AD+d333ql98Ol+j7prqtHFz6lsMbduIIoeL+2ZsqTwV7bDBHy8AkNXrPv71i/pO/oEhrUloWcW7VlBXeRgtcGwVdzY5qZdvnvp5d+UNqcdWqU1vlkAc3W/lkZnbKbA7uah1I247v5ejosfXpDfY87jHOZPOTULJKrDz7592Vh782Qv0ktPpjnfxUfGcjOfGdq5+47KLJqkfd3xPFJk8O0YNyN5edojDKZVMXd7xA9jzILI9rmYX8/xCtcn1H32b0SG2ghUPpXW8Un03n5fCvY220S0ujJxCB49X9fjy0tRVTkBB+6v0DNyNpZtqK9O4u9qz4LLTJflnrivOwkyZv6fybIfDBvt/BaCo7RU8/fMu/XztYioJNDVBEXpppuH+77l3kNpn8cbiA5X3VylKyZLldqN4c/FBXAoM7xBddZYDwGTWV0YZd8/S53h8u/4Ex6sqW2j9I62G8ePmU2QV2GneKJDhHSrJGpWmZVf2zCWhZSMGtY3E6VKqzjgeLl6V03ooO05lse9MdnFjbTVZDigpBe1bCE67vljhu/WJlWcetBJQs/64jBa98bjSLFxpke3Ucp7TBoeWMLhdFE3CA8jMt1fe3FuYpWaPAJoP1LMqF7eJoGGQG5sHagHSwUUYnHY9uzK7qobpxA3q60uD5uzKCeZURgEBFhND2kVVf756IsFKfdB6VrQy0IpX1P8gliC46Se44zf4z3F1FQgGtaRTPElxYJtI7it+Eps8+7y9NhQFFj4CSdtQAhrwL/u97E/JIzLEyue396k8cNAYjTDmHTBaMB5azDvdEhnZMRqbw8Xd32zhmZ93U2A770lz+7dw7hB2awOu3N6LfJuTi1tH8PltfapPJ0Z1gIGPqp//8i8Ghybz9OXqC97Lv+4rn9FxFOlNrs4BD/O/dVks2XsWP5ORD2/sSYPq/mMbDHD5VPALxnByPR+03U7ThgGcTC9g0sxtFb8ArXsfMo6jBEUx8Uh/cgod9GgWrtfcqxTeTG0gBfjjJR4d3oarujfG6VK4b8aWinuPirMqzm7jeXrxKbafVPcDeePablUHYtrju1TdsM64/Rs+GOaP1Wxk1cFUvt1QSTZnx/eQfw4lrCkPbmuC3akwomM0o7u4sRogvj807ac+Ma//iHE9mjC4XSQ2h4vHf9pRfimsopT04vS5i9nbTrP7dDYhVjOPFvdkVclkgb7/VD9d/yFvXdcNq9nI6kNpfLO+kjT7nrlqL0DjHjyzupCjqXlEhVjLN9VWpji7wubPeXxEK0KsZnaeyuLHLZWUD4+tUuf9BEXx/qGGHEnNIyLYyr9GuvH4oOTfy85Z3NUvWl3VllHA12sreXwpe9VpzWZ/Vtg7sGhPMiajgccudfN8xaUgDvzGRXEWBrWNxOGqoik08ySkHQCDEWfzQfqbijsubuFeU6YWrBxbBXlp+v+jOVtPVzxErTAbTm1UP281jO+L/x1f3iXWvV2A4y9Wn28L0uH4aoa2j6JVZBA5RQ5mVjam4Whxc22LS1h39BxJWYWE+pvdC8YMhpLgYd8CTEYDE/qpfTXfVlYKSlyvBg4NW6KENtb7fypdBXS+uL5qhqwoG46t5KruTTAYYMOx9MoH053Q+lUu0oOooR2iCPCroJ/qAiHBSn0oHkjF8TUw6xZ1IiqogUJk8ZOowaCugBhZPLl0yVP6mPxHR7SlV3wDcoocPPD9VnafziI1pwjX+o9hx3coBhOfxfyXeceMBFhMfH5rH5qEV9GkVVpUe31olHnxf3j/6lbccVELAL5Zf4Ir3ltdUjax5eurOt4oGEOa3crANhF8dmtv9//RD/yXWnfNPwdfjOb22OOM79sUlwIPfr+t7AqhjdMgM5F8ayQj13fh3eJ09TNjOtKtuneRmvCm+sqLgFUv8NmVsVjNRpYfSC2f/j68TM+qLIu9mzWJBQRbzbxzQ4+qM1TnPz6zP5xcj+HoH7x2bVf6NG9ATqGD27/cRGpOqf6AtMN6Sv+xxP56w/BL47qUNAxXp1mCmhZWXMRvfZX/XNYegJd+2Vt+jylbvr4p3IboG9h6KocQq5kXruzs/owFLbuy+XMMRdm8PK4LwVYzWxMz+Wrt8bLHHlsJaQfBL5jc9teULOUd1rpsT1NVet2mpudT9tA6bwuPFz++5xbsrXjH292zAdgZPpyftpzCaIB3x/eouKm2Ih2vhKAoyE0m8tRiHh6uvri+vuhAxauR9qmrgNLjL+XDVccBeOHKTu69sAI0v0Rd7lyUTcChBfxrhPp88N4fhyreN+iAugrI2XwQTy1Uy293Xtyi4rkcFYntBhHt1B6UvfN5onhq9m+7kyvOpmolmbg+/LQ3h8T0fMICLO5lHUAtj8Z2VwPIffPpFd+AgW0icLgUPlxRQXbl2Cq1kb5hK3IC4/Ssw/h+VTTWlmYylwQPe37GaDTwz+Jy1ed/HsN+fn+V01HSy9FykN5YO6Zb4/JD2Sqjne/QUrAXcH3vplhMBrYlZrInqYKSs5bJaT6QvWeyOZKah9VsZGQnN4IjUN9kaiuR9s2ncXgAA4p7leZV1tNVHJAp8QNYWBysXFFdyameSbBSH6KKxyYXpJcscex9J3S9rvyx/e+HHjerkfdPd8DZvZhNRvUJN8DCzlNZXPHenzz0yju4FqmzE6b538FL+6IxGuC98T083zVz4L+gUWvIPYvfiuf575iOfH1HX6JCrBxJzWPch2v4eOURNTjKTeaUEsGXtmEMbhfJp7f0dv8/NajNvbfMV/egseVgmHEtL7TYQ78WDckttUIoJ+MsRX+8BsCzueM4kqUQEWzl2TEducndJy5N7zvVjIAtl3abn+XFK4tnIiw7yLgP1/DOskPs27UF5cfbQXGR2uZ67tmj/p29NK4zzRpVsDSzMqGx6vkA/ngRq8nIJzf3Jr5RIKcyCvjn15tLatkb1CXIa4y9mZsYSLDVzGe39K6+ye58w6eo5afDy7gt+igXtW5Eod3Fg99vY/vJzJKSya//hvSjOAMjuX+f2j8weXSHksZrd7S9DCLbq+/qtnxJ4/AAJo9WA4g3Fh8om/krzqqktRrHrTP260uVbxvQwv3zBTSA7movEOs+5PYBzbm6RxM1W/XtVjYeK9UHlnkSEtehYOCh3eoL1MPD2lZfvivN7KcPyGPjp9w6oDmtixtDb56+seyWCk6HPnjuzZPtcLoURnWOYZQnLwJGI/RUG23Z+hXX9IqjfUwI2YUO7ptRwXL74uB2sb07pzMLaBIewKThbmT9NAZDSXZl50w6xIbyz+JSydM/7y5fHi0uAWXEDtT75iYObuVZU2apUhDAw8XZlR83n+JUxnmZgFL9MVpjbeuoYHpX1Vh7vuIBcWqjtYOrejQhIthKUlZh+VL6mR3qv2X/MHLCO/DbbvWF/Bp3gzGAxj3UeT72PDiynMgQqz63ZEZFGc7jJc28WjA2tH0UIdVlwss8xuK+lf2/gNPB1cWzZ+ZsPV2+RJqbAknqMuk9/9fevcdFWaaPH//MDDAMCMNR8ISieUZFwBOSh/JU5i+k1Dybbd/VtDyUa+rupm1i5eq2ZVrY6rqZaWXrocOmrSaSmkqipuYhTcxDZiqgyGnm+f1xD4MoKejADLPX+/XilQy+uG+eZJ7rue7rvm6fdpy+fA0fLwPdXHgJCCo5WJk9ezbx8fH4+PgQEBBQ5t/JzMykX79++Pr6EhISwjPPPENBgQPOVHFlYS1h3E51+FePWapte585Zf/d4qWL+gmqqdWS3rD/I+oEmEgZHktMRACta2Txpuff8dBZWW1JYM6lbgD8+aEW9Pit3Qe34umtsjygGsqd3E6XJqH8Z2IXHmwRRGftW0K/nEDhJjXnvxYO5N5mdXh7eGzFApVipgAYtlrVXFiL8Fg7hqWN04gIVEs0A9/ezpq/T8RYlMMhawQ7avTiLw+3JG1qdx7vHFnxTot6vaqXMXjB0S8Y4L3Tvpa9J/My//jyW4wfDkGXn80PpigGZD6KVdOR1LYOD0eXY538RgmTVDbgzB44/DlBvl4sHdUOs8mTjFOXefaDvVivXsLy7XIAFuT1JiLIh4+fiuf+8qSebxTcyL5cot/4J+YmReHv7cGBM9kkvvk1fV9PY/tHr0HGcjSdnpd9pvBroRcdIoN4zHa8Q7np9RCvdgaxfSEUXmNwuwg6NgziWqGF5z+21ZNknUaz1XIMzmhF+slLeHvqeSmxVdm7jW6l41hAB0e/QH/xGK882pr7m9W093uxb5+2ZVX2G1ryY4GZ+EbBjL9x23d5xD6uzofJ3I7n+e94e3gsITWMHDqbzYglO8kurn04+TVcu8g1DzOrfqmP2eTJLFsgXCHRQ9V4p77BcOF7/jYomhpGD3Ycv8jU6+tzrvxiP2frL0dVwP5SYlTFd3MUBys/pkHWT0zq0YSGob6cz8nnxU+uK+S3FNmfyJMP1yK3wEKHyKDbF9beqLiO5Mc0uHKeuAZBdL4nmCKrxqKvruv4qmn24Mja8L7yF9beqMG9aiko91c4mYa3p4FR8arwNSX1ROmbeXF/lQb38tmB8+QVWmkY6kvb8mZu4aalIMBeaLtmz+nStTLXLqmdn4A1ojOf2LZkV/gBpX5ntXEj91c4/hV9osIxeRo4fuEqGacul/67R22Ha9Zqw9pjKvi9v3mYSy8BQSUHKwUFBQwYMICxY8eW+XWLxULfvn25evUqaWlprFy5ktWrV/Pss89W5rRcQ2hTtTUyYSJ0nqAyDL/FwwsGvauyAfnZqoB2zVN0qOPFx79ry7rghQTprlBQszWRo95h4dBYlo1uz6jOFXhivVGDBJXRAVg/AY59SdCXk3nzzGP802sujxi2YqSArZYocpv2Z+GwmLL7R5SXhxGS3lGtwAGf1JdY12gNZqOewl+OMUhTfTIuxP+ZTX+4n+GdGtxZYFQstKm9zTmfT2V6tzC2PX8fryQ2Z2Xg2zTUq4zRwEvj+DGriIggnzu78QDUCIUOv1d/3pwMVisNQ2vw9vBYPA06Pt1/llUpf8FgucYhawTWiATWjOtMk7DbFGTeSpcp4G2G8weo/eO/+WhsPP3b1lGBwbl9tN2vlhc/8h/J4p/qYvTQ8/IjrW9fF1OWVgNU4euVc7D8UfT5WbzySGu8PfVs++FXdSbTB3PRaRZ2WJtzVKtLUkwdNj/Xrext37cT3Mje/IwdC/E06HlzaAztGwSRk1fEiCU71e4S21lA7+d1IKSGF68Nir6zZlf+tUp2XOxMoVFoDVY82YEgXy/2/ZTFqCU7uZJfZN8F9ElBDBYM/OmhFtT0q0CWqphfmL1lPunLaF7Ln4VDYzDodazJOMO8DbbD6o5+AWgc9biHs9ZA+rauRfdmd/B0HBBha5mvwf6P8PY0MPfR1uh0qkhzc/FRA6d3Q34W1zz8Wf1zGP7eHvztTq5pYAPVeE+z2jPLz9ynsisf7D7FmeLu0hePw+WTaHpPpu0xc/BsNl4eepLKU1h7PYNHyTLJgTWACh58vAwcOqs679rZlmTOBLZjtm0X3i17q/wWW6E0hz8DSyEdIoO4p2YNcgssrNlz3dLMye0UN2bbc9nI6ctqqbnC/x8Nnur3EGDPv/A1etAnSmVzbmq8d1S9l2qNe9mPcOnr4ktAUMnByqxZs5g0aRKtWrUq8+sbNmzg4MGDLF++nLZt29KjRw/mzZvH4sWLyc6uwGFM/wt8gmDUZ9DlD6q/SMZ76lTjD0bAz/vBNxSvoe8T06gWD7aqRVdHHELV80XwDVUFdcsfgT3vosu7DL41yWr1OHPC/8YXbReyYGjc3QUqxfR6VaPT52VAR8B3y9gcsYQ3glfjpbOg3dOTe/sMKH+9yO10ngg1W6htiv+ZRu0AE4MupdDiWjqapw+X/98yBnePpWeLMN4eHluxtOyN4p9RfSJ+3g/zmsAHI+l44WMW9jDhSRFdL6uU+HcRw3j3dx3LtwvgVnyC1L8VgE0v0SRAx98GRfPN5Ha8H7AIb10hmyzR/OFn1RF0Yo8mRIb43tlYHl6QlKJ+vpNpsPRB6ntm2YtYX/l0P41/+hiA7cH9+eTpBOYPjL51s6vb6fiU+m/G+5B7EW9PA4tHxtG8lj8XruQzffFqOLefQs3Af6zt+dug6NtvO72V4kLb/R9C7kWahPnx7hPt8fdW9Tm/W/oN1oPqKfrTonZ0bRLKIzF3kIUrFmtbetr7PhTm0aVJKHP6lxxWt3Jnpr1e5dO81vh5e/CCbXv8HbluKQhNI7Z+kL1Wbdrq/Sp7ZMtyfJnfAit65iS1Ln8t1Y3sS0FrAOjQMJiODdW2Ynt2xTbeIc+WrNp7CQ+9jrmPtr59IX2Z4yWq/x5aD5YiAny8GBinsogpqbat9kX5tq6u8PQOtfQWVz/w9rvwyhLRSfV4ybsMP6ah0+kYWlxouyOzJJtjWwLKqxvPnM9UUXOvlmF39iAWM0L99/vP4Mov9l1B6/edKeldZSm0NxA84h/P6cvX8PUylN3l2MU4tWZl+/btREVFUbt2Scqrd+/e5Ofnk56e7sSZuSiDB9w3A0Z+otZELx6HYxtVynjgv1RnUUfyCYK+81Rw5BOs3kBHrodnv8f8yGtMGzOal5LaVDyNfzsdx8KAf4LBSNCpDbS+8jXo9Oh6vujYcTy81HIQOti3EtaOt59Xo+v/NlGxCTzXuymLR8Tdflvt7fgEqT4vHt6q4dvBNfDZc/TcksgB3zHU1l3kmlcwj46c4Ljr2f5J9RR75Zza1aRpBG6YgPnaKTRzPfyGLKF/TD2GdIjgyXvvIgsHKhP3+GdqV8L5A/BOTx5vUkBMRAAP6HcSqssiz7smE8dNuv2W4fKOF95Knb+TvhQAs8mTZY/H8Yj5MFNyXwMg1dqaId2ib24UWFERHW3j5cGedwFoWdvMu090INRYxGOnX0J/9WeyNR8yPNowu38FipTL0qg7mOupm50tYzOwXT379vdZa76l8KgteLDEMLVPs7sLxlo8rJZFzx+0nxfzXK+mNAj24Vx2HsmfHqLItnyQam3No7F1764nR3EdycmvIUc93U+4X+1gWrXrFGezrlFwWI237kozTLZg9I6WYUEtBZkC1YOJrYD2iYRI9LYOswfPZKsltaJr/IqZ9Gtq6/fSx8uxq7EsegM0e1D92XZeWlJMXUyeBg7/nMPuk7ZePbb+KrMPhrL75CV8vQz2ILHCwqNUxspaCHvfJ75RCGH+Ri7nFpZkxzK3q+y8TwgfnlXZmx4t7jA4qmJODVbOnTtHWFjpNfnAwEC8vLw4d67svh75+flkZ2eX+vif06AzjE1Tv/B6TxVQ1I+vnLFaPAzPHYVnD0O/11T7aX0V/MNumQgj1qilDFBLUmF38eT4W+rG2WogsN+E6Da9pGDNkaIHw/OZ8Pjn0P2P0LAbePrgZVFFhabOY9F53sUN50bXnTnD139XXXi//wT0nugGLqNd80bMHxhNcv9WeDgiW1WrNTyxUfWZyP4Jw9LeLO+t4y911NOqd8cn0HncZcaomE4HnWznXu1crJ6KD62n5soHmJc/i2j9D+RrHnwVMphJPcq5jfd24xVnV3a9o3ojAW1MF0gNnE2iYRtFmp6/FA1j8gNRZZ+PUxF6Q8kybPoy+8uTezZhZJSRZR7JeFqucVYLwqtu21u3nS8PU2DJ0pOtm7HJy8Arj7QG4ItdB9DbeoH84N/RflDfHQuop7bcotmXgjo2DKJ9gyAKLFZeXr8Xy3G1JLPHK4YVT3a4ux4gBs+SpaCv5kBhHvWCfOxN1xZvPc7FA+pwxq8tLWhVJ4Blo9vfXTa1rS3TsW8VnNyG2eRpr0VZvuOkagr6s+rD83lOIyJDfFkzrvPdBfPF2ZVv/4VBB4m2JTP7IZW2Yye0e3rw2Xdq91x1WAKCOwhWZs6ciU6nu+XH7t27y/39ynr60DTtN59K5syZg9lstn/Uq1fBgkB3YQqEgctg+pmS3gyVxTdE/bJXtfrx8ORmdYLzbxUgO0L3GaoZH6gAsOsfKm8sD6P6ubpOgRFrYepJdYN/dIl9y7hDtUhUN4XCXBWwgLqWdWIdPxao81FGf6G6E+ddxmdFIuZfdqvsX/EuF0dpmaRazOechddawaphqojZw0RWmydZ0XEtE58Y5ZhADFRNgCkQLmeqN/1Dn8Di7pguH6bAFMoYw0wuNx3EsA71HTNe22Eqq3kyDS4cBUB3Ygszz46hvf4w2ZqJGUVPMueRcvTgKY/W6oRy9n9kD8Y6NAxmZKf6JOi/Q4/G99Z6/GnwfaXPirpTxUtBu5dC7kV0Op19a/j5g6mYyONXAkgeO5i2ERXY/fNb4p8Bo7/KLvz7/8Bq5fddVM+q9XvPkLlbLaud8Ivl3SfaYzbd5XtevXYlwcP6iVCUby+0/Xz/OZavWgHAEWsd2jRrzJpxnWl8N3VqoDYpePrCr0chc4d9V9Cm78/z3Id7ubzvUwAO+XXiTFYeNYwedHFEyUAVqPBv8fjx4zl06NAtP6Kiosr1vcLDw2/KoFy6dInCwsKbMi7Fpk2bRlZWlv3j1KlynO3izhz1pOqqghup4lSvO6ynKA9jDdWMr3cyJC5ST9FVxcML6rVXbzKGSjiT47pGcYDqWNrud44f53q+wWo7epM+6kweUE+1/g5+gvPwgva2n+XKz+pGdO+zMOk7zP3/yuMPJBBc3v4t5eFpKsl2fDIRVg1VKfWITng9lcaiGU+TMjzWMYEDgLmO6rgMkP5P1Y/p3f7orv6CJbQl/2ixhKRBo27fGbe8GvdUnbNzzqpaivwc+GEzM3zX8axR1VTlRnRzTOAA6t+80aza2y++D345QnyjYOLqB9JVr3bI+DTvSaOad7kEWyy0CQxarrLRB9fCF9NoVcefTg2D8bReo6VVFS6PHDKi/H1xbuf6ur+vX6dVXTNt6popsFgp/EFljnJrx7N4RNzdB0egzkGLsgWB3/6LpuF+xNYPpNCi8c236QRcPUGRpuex/6rMX89qsgQEUOF3x5CQEEJC7qCCvwydOnVi9uzZnD17llq11BvZhg0bMBqNxMaW/eRnNBoxGh34BiQEqN1BxQ353E299mrZ6ZdDakt6VQRjXj4w6D34Yhp893FJp2JH6zAWss+qG3vcE2obfGVq9zvVSO+KrQFdx3HQcxYYPKmU3GPMSNVLZfuCktfaDsfw4Fwmed5FgXJZPIwq25G+VJ1JlpcFmhUvoIHtr0T3GuG48fzC4IkvYMUguHQC3umBbsBS3hqegP7tI5ADpua9HDceQMOu0P8ttaPym7fAvw7jug8h5cdNeOosWPzqElDHAcuGxUyBasPA6idUsNmyPyPjGzD5g710Nqht4dFd+oGjAlxQ/2b2LFd9bB54mWWj27Pt2AU8dy+GE7BP35xs1MNfcZFxdaDTynXG+p3JzMzk4sWLrFu3jrlz57J1qyomuueee6hRowYWi4Xo6GjCwsKYO3cuFy9eZNSoUSQmJvLGG2+Ua4zs7GzMZjNZWVn4+zsoAhdCiN/y+fPqRtBnDkQlVe5YliJ4LUplOzy8VX1a22GVN96pnfCPniWfmyMgooNqmxDZVWUnHO3qBbWEl7ldLXt1+QNseVl97bljauu/o21bUHIgatI7XDyeTlDGIogeBolvOnYsTYPlSeo07sguaMPXsnXvYbqs7ai+PuW4ykY6cryFndTDSd95JZnUd5NUk72eL3Ipeiy5hZbydzavJBW5f1dqsDJq1CiWLVt20+ubN2+mW7dugAponnrqKTZt2oTJZGLIkCH89a9/LXf2RIIVIUSVKn7LrKrlwqNfqlYF9z6rdnxUtiNfQMFVtQPKv4LNye5UUb461yzjvZLXarWB36dW3pj/mQ473lTLQj7Batdc/xRoM8jxY108AQs7qt1kiW+pxpsfjoKaLeGpbY4fb/tCldUsvoYFV+GVSLUs+9Q36lgVF+AywUpVkGBFCCHcgKbBttdh4wuABgmToccLlTee1QqrR9vb/gMw+VDlBWhb58N/Z6lOsw27qnE7jIEHXnH8WFd/hfnN1CGj/7cFss/AysGqAeCEfVVbl3cLFbl/y9lAQgghnE+nU928h34IrR8r6fpcWfR66P+26sECast9ZWaS4p9WTSivXSwJkIrHdjTf4JKt2nvetXetpXFvlwlUKkqCFSGEEK6jcU9Iehv8wit/LA+j2iHUaTw8NL9yxzJ42s5cKw4WdJXXHwtKtk3v+9DeX4UmvStvvEomwYoQQoj/XaYAtb0/skvlj1WvPcSNVn8Ob6U6W1eWyK4QUB/ys2wF2ibV+bmaqoTGDkIIIYQoU88XS3cMrix6PcQMh03q0FIadlW9gqopyawIIYQQVcVYA+7/k+pwW9mih6rt4FDSYLCakmBFCCGEcEf+tVVhb63okuMNqilZBhJCCCHclaNPq3cSyawIIYQQwqVJsCKEEEIIlybBihBCCCFcmgQrQgghhHBpEqwIIYQQwqVJsCKEEEIIlybBihBCCCFcmgQrQgghhHBpEqwIIYQQwqVJsCKEEEIIlybBihBCCCFcmgQrQgghhHBpEqwIIYQQwqVJsCKEEEIIl+bh7AncLU3TAMjOznbyTIQQQghRXsX37eL7+K1U+2AlJycHgHr16jl5JkIIIYSoqJycHMxm8y3/jk4rT0jjwqxWK2fOnMHPzw+dTufQ752dnU29evU4deoU/v7+Dv3eooRc56oh17lqyHWuGnKdq05lXWtN08jJyaF27dro9beuSqn2mRW9Xk/dunUrdQx/f3/5ZagCcp2rhlznqiHXuWrIda46lXGtb5dRKSYFtkIIIYRwaRKsCCGEEMKlSbByC0ajkRdeeAGj0ejsqbg1uc5VQ65z1ZDrXDXkOlcdV7jW1b7AVgghhBDuTTIrQgghhHBpEqwIIYQQwqVJsCKEEEIIlybBihBCCCFcmgQrv2HhwoVERkbi7e1NbGwsW7dudfaU3MqcOXNo164dfn5+1KxZk8TERA4fPuzsabm9OXPmoNPpmDhxorOn4pZOnz7NsGHDCA4OxsfHh+joaNLT0509LbdSVFTEH//4RyIjIzGZTDRs2JAXX3wRq9Xq7KlVa6mpqfTr14/atWuj0+lYs2ZNqa9rmsbMmTOpXbs2JpOJbt26ceDAgSqbnwQrZVi1ahUTJ05kxowZ7Nmzh3vvvZcHHniAzMxMZ0/NbWzZsoVx48axY8cONm7cSFFREb169eLq1avOnprb2rVrFykpKbRu3drZU3FLly5donPnznh6evL5559z8OBB5s2bR0BAgLOn5lZeeeUV3nrrLRYsWMChQ4d49dVXmTt3Lm+88Yazp1atXb16lTZt2rBgwYIyv/7qq68yf/58FixYwK5duwgPD6dnz5728/kqnSZu0r59e23MmDGlXmvWrJn2/PPPO2lG7u/8+fMaoG3ZssXZU3FLOTk5WuPGjbWNGzdqXbt21SZMmODsKbmdqVOnagkJCc6ehtvr27evNnr06FKvJSUlacOGDXPSjNwPoP373/+2f261WrXw8HDt5Zdftr+Wl5enmc1m7a233qqSOUlm5QYFBQWkp6fTq1evUq/36tWLbdu2OWlW7i8rKwuAoKAgJ8/EPY0bN46+ffvSo0cPZ0/Fba1bt464uDgGDBhAzZo1adu2LYsXL3b2tNxOQkIC//3vfzly5AgAe/fuJS0tjQcffNDJM3NfJ06c4Ny5c6Xui0ajka5du1bZfbHaH2ToaBcuXMBisRAWFlbq9bCwMM6dO+ekWbk3TdOYPHkyCQkJREVFOXs6bmflypV8++237Nq1y9lTcWvHjx9n0aJFTJ48menTp7Nz506eeeYZjEYjI0aMcPb03MbUqVPJysqiWbNmGAwGLBYLs2fPZvDgwc6emtsqvveVdV88efJklcxBgpXfoNPpSn2uadpNrwnHGD9+PPv27SMtLc3ZU3E7p06dYsKECWzYsAFvb29nT8etWa1W4uLiSE5OBqBt27YcOHCARYsWSbDiQKtWrWL58uWsWLGCli1bkpGRwcSJE6lduzYjR4509vTcmjPvixKs3CAkJASDwXBTFuX8+fM3RZXi7j399NOsW7eO1NRU6tat6+zpuJ309HTOnz9PbGys/TWLxUJqaioLFiwgPz8fg8HgxBm6j1q1atGiRYtSrzVv3pzVq1c7aUbuacqUKTz//PM89thjALRq1YqTJ08yZ84cCVYqSXh4OKAyLLVq1bK/XpX3RalZuYGXlxexsbFs3Lix1OsbN24kPj7eSbNyP5qmMX78eD7++GM2bdpEZGSks6fklu6//372799PRkaG/SMuLo6hQ4eSkZEhgYoDde7c+abt90eOHKF+/fpOmpF7ys3NRa8vfesyGAyydbkSRUZGEh4eXuq+WFBQwJYtW6rsviiZlTJMnjyZ4cOHExcXR6dOnUhJSSEzM5MxY8Y4e2puY9y4caxYsYK1a9fi5+dnz2SZzWZMJpOTZ+c+/Pz8bqoD8vX1JTg4WOqDHGzSpEnEx8eTnJzMwIED2blzJykpKaSkpDh7am6lX79+zJ49m4iICFq2bMmePXuYP38+o0ePdvbUqrUrV65w7Ngx++cnTpwgIyODoKAgIiIimDhxIsnJyTRu3JjGjRuTnJyMj48PQ4YMqZoJVsmeo2rozTff1OrXr695eXlpMTExsqXWwYAyP5YuXersqbk92bpcedavX69FRUVpRqNRa9asmZaSkuLsKbmd7OxsbcKECVpERITm7e2tNWzYUJsxY4aWn5/v7KlVa5s3by7zPXnkyJGapqntyy+88IIWHh6uGY1GrUuXLtr+/furbH46TdO0qgmLhBBCCCEqTmpWhBBCCOHSJFgRQgghhEuTYEUIIYQQLk2CFSGEEEK4NAlWhBBCCOHSJFgRQgghhEuTYEUIIYQQLk2CFSGEU82cOZPo6GhnT0MI4cKkKZwQotLc7kTWkSNH2g9UDA4OrqJZCSGqGwlWhBCV5vrTy1etWsWf//znUof9mUwmzGazM6YmhKhGZBlICFFpwsPD7R9msxmdTnfTazcuA40aNYrExESSk5MJCwsjICCAWbNmUVRUxJQpUwgKCqJu3bosWbKk1FinT59m0KBBBAYGEhwczMMPP8yPP/5YtT+wEKJSSLAihHA5mzZt4syZM6SmpjJ//nxmzpzJQw89RGBgIN988w1jxoxhzJgxnDp1CoDc3Fy6d+9OjRo1SE1NJS0tjRo1atCnTx8KCgqc/NMIIe6WBCtCCJcTFBTE66+/TtOmTRk9ejRNmzYlNzeX6dOn07hxY6ZNm4aXlxdff/01ACtXrkSv1/POO+/QqlUrmjdvztKlS8nMzOSrr75y7g8jhLhrHs6egBBC3Khly5bo9SXPUmFhYURFRdk/NxgMBAcHc/78eQDS09M5duwYfn5+pb5PXl4eP/zwQ9VMWghRaSRYEUK4HE9Pz1Kf63S6Ml+zWq0AWK1WYmNjee+99276XqGhoZU3USFElZBgRQhR7cXExLBq1Spq1qyJv7+/s6cjhHAwqVkRQlR7Q4cOJSQkhIcffpitW7dy4sQJtmzZwoQJE/jpp5+cPT0hxF2SYEUIUe35+PiQmppKREQESUlJNG/enNGjR3Pt2jXJtAjhBqQpnBBCCCFcmmRWhBBCCOHSJFgRQgghhEuTYEUIIYQQLk2CFSGEEEK4NAlWhBBCCOHSJFgRQgghhEuTYEUIIYQQLk2CFSGEEEK4NAlWhBBCCOHSJFgRQgghhEuTYEUIIYQQLk2CFSGEEEK4tP8PgIkbpO6TPFMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -123,18 +124,17 @@ } ], "source": [ - "for diffeq_name, (cy_diffeq, nb_diffeq, args_, y0, timespans, CySolverClass) in diffeqs.items():\n", + "for diffeq_name, (cy_diffeq, nb_diffeq, args_, y0, timespans, CySolverDiffeqInt) in diffeqs.items():\n", " \n", " time_span = timespans[0]\n", - " CySolverInst = CySolverClass(time_span, y0, args_, rk_method=1)\n", - " CySolverInst.solve()\n", - " y_len = CySolverInst.y.shape[0]\n", + " result = cytester(CySolverDiffeqInt, time_span, y0, args=np.asarray(args_), method=1)\n", + " y_len = result.num_y\n", " \n", " \n", " fig, ax = plt.subplots()\n", " for i in range(y_len):\n", - " ax.plot(CySolverInst.solution_t, np.real(CySolverInst.y[i, :]), label=f'$y_{i}$')\n", - " ax.set(title=f'{diffeq_name} - CySolver', xlabel='Time')\n", + " ax.plot(result.t, result.y[i, :], label=f'$y_{i}$')\n", + " ax.set(title=f'{diffeq_name} - cysolve_ivp', xlabel='Time')\n", " ax.legend(loc='best')" ] }, @@ -148,13 +148,13 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "id": "10905d75", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHFCAYAAABSEJsFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACeVUlEQVR4nO2dd3xb1fn/P1fTki1vOx5xJllkQ4AQAiSMUPYoezelwBcoBAo/CIUSOkihlFJIgYaWUWaAhllWIItNSEgI2QkZTrzteFv7/P44uleyLcu60r2617rP+/XyS7Is33tsPz7nc551BMYYA0EQBEEQRIowaT0AgiAIgiCMBYkPgiAIgiBSCokPgiAIgiBSCokPgiAIgiBSCokPgiAIgiBSCokPgiAIgiBSCokPgiAIgiBSCokPgiAIgiBSCokPgiAIgiBSCokPIq157rnnIAgCvvvuu6SvtXnzZixYsAB79uzp9bVZs2ZhwoQJSd9DLYYNG4arr75a+ryqqgoLFizA+vXrNRuTnliwYAEEQUBDQ0NS1xEEATfddJNCo0qcWbNmYdasWVoPgyD6hMQHQcTJ5s2bcf/990cVHwONqqoq3H///SQ+CILQBBIfBEEoRldXF/o6LqqzszPFo0kdXV1dWg+BIAYUJD4IAsDnn3+OE088ES6XC06nEzNmzMD//vc/6evPPfccLrjgAgDA7NmzIQgCBEHAc8891+c133zzTTidTlxzzTXw+/1wu934zW9+gylTpiAnJwf5+fk4+uij8fbbb3f7vqlTp+LYY4/tdb1AIIDy8nKcd9550mtNTU244YYbUF5eDpvNhhEjRuC3v/0tPB5Pn+NauXIljjjiCADAL37xC+lnWbBggfSe7777DmeddRby8/ORkZGBqVOn4rXXXut2HTGk9fHHH2Pu3LkoKiqC0+mEx+ORwlCrV6/GjBkz4HQ6MXfuXADAkiVLMGfOHJSWlsLhcGDcuHG466670NHR0eeYE0UMg7zwwgsYN24cnE4nJk+ejPfeey/q+ysrK3HeeechOzsbOTk5uPzyy1FfX9/tPcOGDcMZZ5yBpUuXYurUqcjIyMD9998f9XqMMdx9992wWq14+umn4x53MBjEQw89hLFjx8Jut6O4uBhXXnkl9u/f3+v6Dz30EIYOHYqMjAwcdthh+OCDD6Jes7W1FbfffjuGDx8Om82G8vJyzJs3T5XfO0H0CyOINObZZ59lANiaNWv6fM/KlSuZ1Wplhx9+OFuyZAl766232Jw5c5ggCOzVV19ljDFWV1fHHnjgAQaA/eMf/2BfffUV++qrr1hdXR1jjLHjjz+ejR8/XrrmI488wsxmM/vDH/4gvdbc3Myuvvpq9sILL7Dly5ezDz/8kN1+++3MZDKx559/Xnrf3//+dwaAbd++vds433//fQaAvfPOO4wxxrq6utikSZNYZmYme/jhh9nHH3/M7r33XmaxWNhpp53W7XuHDh3KrrrqKsYYYy0tLdLv5Z577pF+lsrKSsYYY8uXL2c2m40de+yxbMmSJezDDz9kV199NQPAnn322V6/2/LycnbttdeyDz74gL3xxhvM7/ez448/nuXn57OKigr2+OOPsxUrVrBVq1Yxxhj7wx/+wP72t7+x//3vf2zlypXsqaeeYsOHD2ezZ8+O628qBwBs2LBh7Mgjj2SvvfYae//999msWbOYxWJhu3btkt533333MQBs6NCh7I477mAfffQRe+SRR1hmZiabOnUq83q93X6XpaWlbMSIEeyZZ55hK1asYN9++610vxtvvJExxpjb7WYXX3wxc7lc7IMPPpA17muvvZYBYDfddBP78MMP2VNPPcWKiopYRUUFq6+v7zXuX/7yl+yDDz5gixcvZuXl5aykpIQdf/zx0vs6OjrYlClTWGFhIXvkkUfYJ598wv7+97+znJwcdsIJJ7BgMJjIr5cgEobEB5HWxCM+pk+fzoqLi1lbW5v0mt/vZxMmTGCDBw+WJubXX3+dAWArVqzodQ1RfAQCAXbTTTcxm83GXnzxxZhj8/v9zOfzsV/+8pds6tSp0usNDQ3MZrOxu+++u9v7L7zwQjZo0CDm8/kYY4w99dRTDAB77bXXur3vwQcfZADYxx9/LL0WKT4YY2zNmjW9xITI2LFj2dSpU6X7iJxxxhmstLSUBQIBxlj4d3vllVdG/X0AYJ9++mnM30EwGGQ+n4+tWrWKAWAbNmyI+X65AGCDBg1ira2t0ms1NTXMZDKxhQsXSq+Ji/itt97a7ftfeuklBqDb33Lo0KHMbDazbdu2Rb3fjTfeyBobG9nMmTNZeXk5W79+vawxb9myhQFgN9xwQ7fXv/nmGwZAsouDBw+yjIwMdu6553Z73xdffMEAdBMfCxcuZCaTqdf/wRtvvMEAsPfff1/WGAkiWSjsQhiajo4OfPPNNzj//PORlZUlvW42m3HFFVdg//792LZtW1zXcrvdOOecc/DSSy/h448/xmWXXdbrPa+//jqOOeYYZGVlwWKxwGq14t///je2bNkivaegoABnnnkmnn/+eQSDQQDAwYMH8fbbb+PKK6+ExWIBACxfvhyZmZk4//zzu91DrGr59NNPZf0uAGDnzp3YunWrNHa/3y99nHbaaaiuru71+/j5z38e9Vp5eXk44YQTer3+008/4dJLL0VJSQnMZjOsViuOP/54AOj2e4hG5Hj8fn+f+SWRzJ49Gy6XS/p80KBBKC4uxt69e3u9t+ff7MILL4TFYsGKFSu6vT5p0iSMHj066v12796No48+Gq2trfj6668xefLkfscYiXivyOokADjyyCMxbtw46e/61Vdfwe129xrzjBkzMHTo0G6vvffee5gwYQKmTJnS7fd3yimnQBAErFy5UtYYCSJZSHwQhubgwYNgjKG0tLTX18rKygAAjY2NcV2rrq4OH330EY4++mjMmDGj19eXLl2KCy+8EOXl5XjxxRfx1VdfYc2aNZg7dy7cbne3986dOxcHDhzAsmXLAACvvPIKPB5PtwWpsbERJSUlEASh2/cWFxfDYrHEPe5IamtrAQC33347rFZrt48bbrgBAHqVo0b73fX1ent7O4499lh88803+OMf/4iVK1dizZo1WLp0KYD+Ezd7jun555/v92cqKCjo9Zrdbo96r5KSkm6fWywWFBQU9Ppd9vUzA8C3336L7du346KLLsLgwYP7HV9PxHv1ZZPi18XHnmOO9lptbS1++OGHXr8/l8sFxljSJcYEIReL1gMgCC3Jy8uDyWRCdXV1r69VVVUBAAoLC+O61pAhQ/DII4/g3HPPxXnnnYfXX38dGRkZ0tdffPFFDB8+HEuWLOkmGKIlh55yyikoKyvDs88+i1NOOQXPPvssjjrqKBx66KHSewoKCvDNN9+AMdbtenV1dfD7/XGPOxLxe+bPn98tsTWSMWPGdPu8p/iJ9fry5ctRVVWFlStXSt4OAGhubo5rfGvWrOn2+fDhw+P6vnipqalBeXm59Lnf70djY2MvAdPXzwwAF110EUpKSvDb3/4WwWAQ99xzj6wxiPeqrq7uJV6qqqqkv5H4vpqamqg/x7Bhw6TPCwsL4XA48Mwzz0S9ZyK2QhDJQJ4PwtBkZmbiqKOOwtKlS7vthIPBIF588UUMHjxYcq/b7XYAsXfnc+bMwUcffYTVq1fjjDPO6FZJIAgCbDZbt4WrpqamV7ULEA77vPXWW/jss8/w3XffSdUiIieeeCLa29vx1ltvdXv9P//5j/T1vujrZxkzZgxGjRqFDRs2YNq0aVE/IkMYchF/dvH+Iv/85z/j+v6eY4nm1UiGl156qdvnr732Gvx+v+yGXffccw8effRR/O53v8P8+fNlfa8YqnrxxRe7vb5mzRps2bJF+rtOnz4dGRkZvcb85Zdf9gopnXHGGdi1axcKCgqi/k0jhQpBpALyfBCGYPny5VGbg5122mlYuHAhTj75ZMyePRu33347bDYbnnjiCfz444945ZVXpAVT7GC6ePFiuFwuZGRkYPjw4b0WwJkzZ+LTTz/Fz372M8yZMwfvv/8+cnJypPLMG264Aeeffz4qKyvxhz/8AaWlpdixY0evsc2dOxcPPvggLr30UjgcDlx00UXdvn7llVfiH//4B6666irs2bMHEydOxOeff44HHngAp512Gk466aQ+fx8jR46Ew+HASy+9hHHjxiErKwtlZWUoKyvDP//5T5x66qk45ZRTcPXVV6O8vBxNTU3YsmUL1q1bh9dff13ur19ixowZyMvLw/XXX4/77rsPVqsVL730EjZs2JDwNZVk6dKlsFgsOPnkk7Fp0ybce++9mDx5Mi688ELZ17rllluQlZWFa6+9Fu3t7XjsscdiekxExowZg2uvvRaPP/44TCYTTj31VOzZswf33nsvKioqcOuttwLgXrvbb78df/zjH3HNNdfgggsuQGVlJRYsWNAr7DJv3jz897//xXHHHYdbb70VkyZNQjAYxL59+/Dxxx/jN7/5DY466ijZPyNBJIy2+a4EoS5iRUZfH7t372aMMfbZZ5+xE044gWVmZjKHw8GmT5/O3n333V7Xe/TRR9nw4cOZ2WzuVi3Ss9SWMcZ+/PFHVlJSwg477DCpPPLPf/4zGzZsGLPb7WzcuHHs6aefliotojFjxgwGgF122WVRv97Y2Miuv/56VlpayiwWCxs6dCibP38+c7vd3d7Xs9qFMcZeeeUVNnbsWGa1WhkAdt9990lf27BhA7vwwgtZcXExs1qtrKSkhJ1wwgnsqaee6vW7jVZJFO33IfLll1+yo48+mjmdTlZUVMSuueYatm7duj6rb5IBEaWvkfT8fYh/g7Vr17IzzzyTZWVlMZfLxS655BJWW1vb63tPP/30uO/3yiuvMIvFwn7xi19IlUL9EQgE2IMPPshGjx7NrFYrKywsZJdffrlUDi0SDAbZwoULWUVFBbPZbGzSpEns3XffZccff3y3ahfGGGtvb2f33HMPGzNmDLPZbCwnJ4dNnDiR3XrrraympiaucRGEUgiMxZEuThAEQRAEoRCU80EQBEEQREqhnA+CIIgUEQgEYvYmEQQBZrM5hSMiCG0gzwdBEESKGDlyZK9eG5EfsSqUCCKdIM8HQRBEinj33XdjHvqXTBkzQQwkKOGUIAiCIIiUQmEXgiAIgiBSiu7CLsFgEFVVVXC5XHE15CEIgiAIQnsYY2hra0NZWRlMpti+Dd2Jj6qqKlRUVGg9DIIgCIIgEqCysrLfQxV1Jz7EhKvKykpkZ2drPBqCIAiCIOKhtbUVFRUVcSVO6058iKGW7OxsEh8EQRAEMcCIJ2WCEk4JgiAIgkgpJD4IgiAIgkgpJD4IgiAIgkgpusv5IAiCIAg9EwgE4PP5tB6GJlitVkXOHyLxQRAEQRBxwBhDTU0NmpubtR6KpuTm5qKkpCSpXlwkPgiCIAgiDkThUVxcDKfTabhGmIwxdHZ2oq6uDgBQWlqa8LVIfBAEQRBEPwQCAUl4FBQUaD0czXA4HACAuro6FBcXJxyCoYRTgiAIgugHMcfD6XRqPBLtEX8HyeS9kPggCIIgiDgxWqglGkr8Dkh8EARBEASRUkh8EARBEASRUkh8EARBEASRUkh8EGlNIMgQDDKth0FoSDDI4AsEtR4GoSHBIIPHH9B6GEQEJD6ItMUXCOKSxV9j5oPL0dJlzG6EBDBvyXpMvv9j7G7o0HoohEbc8cYPmPr7Zdha06r1UDRj8ODBeOKJJ7q99uWXX8LpdGLv3r0pHw/1+SDSlue+2INv9zQBAFZtr8dZk8s0HhGRaj7f0YB3NlQBAF7/rhL/72djNR4RkWqqmrvw33X7AQAPf7Qd/7pqmmLXZoyhy6eNR8VhNcuqOpk+fTrWrFkjfc4Yw7x58zBv3jwMHTpUjSHGhMQHkbb86/OfpOerSXwYksWfRdjAjnoSHwbkjbX7peert9ejod2Dwiy7Itfu8gVw6O8+UuRactn8+1PgtMW/hE+fPh3PPfec9PkLL7yAffv2Yf78+QCA9957D7/5zW8QDAZx55134pprrlF6yN2gsAuRltS3eVDb6pE+X729HoxR7oeRYIxh4/5m6fMfD7SipsWt3YAITVi+tU567g0EsaGyWbvBaMj06dOxZcsWtLe3o7OzE3fffTf++Mc/wuVywe/347bbbsPy5cuxbt06PPjgg2hqalJ1POT5INKSLdU8tlue60B9mwd1bR7sP9iFinzqTmgU6to8ONjpg0kAhhZkYndDB7ZUt6IkJ0ProREpgjGGnXXtAIDhhdwGqhQUoA6rGZt/f4pi15N7bzlMmzYNZrMZ69atwyeffIKCggLMnTsXAPDtt99i/PjxKC8vBwCcdtpp+Oijj3DJJZcoPm4R2Z6P1atX48wzz0RZWRkEQcBbb70lfc3n8+HOO+/ExIkTkZmZibKyMlx55ZWoqqpScswE0S+i+JhSkYvibO5irWvzxPoWIs0QbWBEURaGFnDRWddGng8jUd3iRrvHD4tJwPQR/DyW6uYuxa4vCAKcNosmH3K7jGZkZGDy5MlYunQpHn74YTzyyCMwmbgEqKqqkoQHwJNTDxw4oNjvKRqyxUdHRwcmT56MRYsW9fpaZ2cn1q1bh3vvvRfr1q3D0qVLsX37dpx11lmKDJYg4mVzaOEZV+pCsYuLj3oSH4Zia00bAGBsSdgG6lrJBozEjgivx5CQ17PawKG36dOn47HHHsNJJ52EE088UXo9Wkha7TbyssMup556Kk499dSoX8vJycGyZcu6vfb444/jyCOPxL59+zBkyJDERkkQMtkWWnjGlWZj44EWAEA97XoNxVZJgGajy8srEsj7ZSx21PJ54JDiLJTl8nBblYKej4HGlClTYLFY8Je//KXb6+Xl5d08Hfv378dRRx2l6lhUTzhtaWmBIAjIzc1V+1YEAYCr+H1NnQD4jqeIPB+GZHcjt4GRRZkYJIXeSIAaCTHfY1RxFkpz+FHwRvZ8vPTSS7jhhhswZsyYbq8feeSR+PHHH3HgwAG0tbXh/fffxymnqJvLomrCqdvtxl133YVLL70U2dnZUd/j8Xjg8YQXhdZW4zaBIZThYKcPnaGdblmuA8UuvuOhXa+xOHCQ73AH5zkBcBcy2YCxEBvLjSjKQmko0bimxY1gkMFkMsbptMFgEPX19fj3v/+Nbdu24c033+z1HovFgr/+9a+YPXs2gsEg/t//+38oKChQdVyqiQ+fz4eLL74YwWCwV1e1SBYuXIj7779frWEQBkRcdIpcdmRYzeT5MCBuXwAN7fzvXZ7rgDfUXp1yPoxFVYsoQB0oycmAIPBy26ZOr2K9PvTO6tWrccIJJ2Ds2LFYunQpcnJyor7vrLPOSml+piphF5/PhwsvvBC7d+/GsmXL+vR6AMD8+fPR0tIifVRWVqoxJMJA7D/I3e3ludzNKiWcttPCYxQOhOL6mTYzcp3WbknH1O/FGASCTOrrUpbrgNVsQlFIcFQ3Gyf0MmvWLASDQWzevFn1PA45KO75EIXHjh07sGLFin5dN3a7HXa7MRQokRrEhWdwHhcfRVTpYDhE71d5ngOCIEg24A0E0dzpQ16mTcvhESmgod0DX4DBbBIk8VmQZUddmwdNnV6NR0fIFh/t7e3YuXOn9Pnu3buxfv165Ofno6ysDOeffz7WrVuH9957D4FAADU1NQCA/Px82Gz0D0+oz/5usf6w+Gho9xgq1mtkRAEqer/sFu4Bae70oa7NQ+LDAIg2UJKdAYuZO/ldGXzJa3PTQZNaI1t8fPfdd5g9e7b0+W233QYAuOqqq7BgwQK88847AHhJTyQrVqzArFmzEh8pQcSJFHYJeT7E2K4/yHCw04sCg8R6jYxoA6IABYCiLDuaO31obPcAcGk0MiJViCW1YoktAGRL4sOvyZiIMLLFx6xZs2LGTCmeSmjNgVA8d3Bo12s1m+DKsKDN7UdLl4/EhwGIDLuIZIkLj4cWHiMQFh9hG3BlWAGQ50MP0MFyRNohVrWIbdUBIMvOF552WngMgdjLoTTiHBfJBmjXawiqmsPJpiIu8nzoBhIfRFoRCDI0dXDxEVlKR+LDWIgCdFB2WHyIC0+Hl2zACIg5H2U5vW2AxIf2kPgg0oqDnV4EQ5G//Iikwkza9RqK2la+640UH6IApYXHGNRFsQEx7NJKYRfNIfFBpBViY6k8pxVWc9i8xYWHdr3pT7vHj45Qh1uxxBKIEKDk/TIEdVL4lTwfeoTEB5FWNLbz+v2e3QvDYZdAysdEpBbR6+GyWyTBIX4OAB0kPtKeYJCFc78iBCglnOoHEh9EWiF6PgqyuvdxoLCLcRDFR1F2DwGaQTZgFA52euEPxV8jNyLk+dAPJD6ItELc7fT0fEjJhrTrTXukZFNXRrfXRQFKpbbpjxhyKci0wWYJL3PU50M/kPgg0oqGPsIumXYzAIr3G4FwsmkfoTdaeNIeUXwUuXpuQowbdhk8eHCvQ16//PJLOJ1O7N27N+XjUe1UW4LQgsb26JNOlp1POiQ+0p/a1t5ltgCV2hoJsdKluA8baHP7wRiDICR51AJjgK8zuWskitUJyBj/9OnTsWbNGulzxhjmzZuHefPmYejQoWqMMCYkPoi0Qsr56HF2R5bo+aBdb9pT28fCIwlQsoG0py5KsikQ9nz4gwxuXxAOmzm5G/k6gQfKkrtGotxdBdgy43779OnT8dxzz0mfv/DCC9i3bx/mz58PADj33HOxcuVKnHjiiXjjjTeUHm0vKOxCpBV9h11o12sU6vtwuYuhN8r5SH8kz0dPG7CZIZ4rabTQy/Tp07Flyxa0t7ejs7MTd999N/74xz/C5eLnHN188834z3/+k7LxkOeDSCtEz0dhr7ALJZoZBckGelQ8ucjzYRj68nwIgoAsuwWtbj9a3X4UZyd5I6uTeyC0wOrs/z0RTJs2DWazGevWrcMnn3yCgoICzJ07V/r67NmzsXLlSoUH2TckPoi0gTEW0eejZ9iFql2Mguj9KurZ6yUU7+/yBRAIMphNScb7Cd3SIOV+ZfT6mivDila3XxnPhyDICn1oSUZGBiZPnoylS5di8eLFePfdd2EyaRf8oLALkTa0uv3wBoIAojQZo1JbQ+D1B9HSxReVnqcXi2EXgBKP052GPjYhgLF7fUyfPh2PPfYYTjrpJJx44omajoXEB5E2iLudLLsFGdbuiWTU48EYNHXwRcdsEpDrsHb7mt1ihi3Ucp/ER3oTbjZo7/U1I3tBp0yZAovFgr/85S9aD4XEB5E+NLRFj/UD3SccxlhKx0WkjshqJ1OUsAp5wNIfty8geTV6ht4ASBUubr/xjlp46aWXcMMNN2DMmDFaD4VyPoj0obEjeqULEBYfQcZj/k4bmX46EmvHC3A7aOrwGtLlbhRE75fVLCDb0fv/3G7h4qPLG0zpuLQiGAyivr4e//73v7Ft2za8+eabUd93yimnYN26dejo6MDgwYPx5ptv4ogjjlBtXDQDE2lDX+e6AIDTZoYg8J5A7R4/iY80JVasH6CTbY1A2Ptlj9pETPJ8+Izh+Vi9ejVOOOEEjB07FkuXLkVOTk7U93300UcpHRfNwETa0NDHuS5AqMTOZkGbx492tx/FrlSPjkgFje192wBAzeaMgFjxFm0TAgAOK8826DKI+Jg1axaCQf15eSjng0gb6vtoMCYiNRrzGGPSMSJ99fgQERORjbLrNSL1/QhQsgF9QOKDSBsa+2gwJiK6W42y4zEifXW4FZEWHgMmGxqF/j0fJD70AIkPIm2QGgv1MenYQ0dr06STvvSXcBpeePTnhiaUITwPRLcBu5U2IXqAxAeRNjRIOx5ytxqV/hJOM6wkQNOdxhiJ50DyApRK9ZX5HZD4INKGhn5jvaGFx0+73nSlv4RTUYB6SHykLf2F3hJNOLVaedO6zs7OJEaXHoi/A/F3kghU7UKkBZ1ePzq9fDLpL9mQFp70JBhkMXu9AJE5HyRA05X+Qm+SDXjlzQNmsxm5ubmoq6sDADidzqilvOkMYwydnZ2oq6tDbm4uzGZz/9/UByQ+iLRATDKzW0xSQ7GeZFho4Ulnmrt8CAS5O7gvl3sG5f2kPVL4NbOPsEsSHU5LSkoAQBIgRiU3N1f6XSQKiQ8iLYgsr+trNyKGXcjzkZ6IIZdcpxVWc/SIsp3yftKaYJChqUM80baPhFOpw6l8GxAEAaWlpSguLobPp8CpuAMQq9WalMdDhMQHkRbEOtdFRJx0aOFJT+ojznXpiwyqdklrDnZ6EXJ+Ib8/z0cSNmA2mxVZgI0MJZwSaUF/sX4gstKBFp50pL9EQ4CqXdIdcR6I5f2iPh/6gMQHkRbEaq0uQqW26U1/lS4A5f2kOw1xeb9IgOoBEh9EWhDrUDkRO3W3TGv6a60OkABNd+LxfjmoyZguIPFBpAXyXO60601HGmXYACUdpydxeb9IfOgCEh9EWtDQz7kuQITLnSadtKS//g4AJZymO/K8X0HqVqohJD6ItEDOpOOheH9aUt9Pa3UgssstCdB0pLGfIxaAcLULQHOBlpD4INICqnQg+jvVGKBy63QnntwvsdEcQHagJSQ+iAGP1x9ESxdv+BNPrNdDLve0pLGfzpYAhV3SnXg2IRazCVYzb0RIeR/aQeKDGPA0hWr7zSYBuY6+DzqyW8jlnq50ev3SQkLeL+MST/gViEg6TaDLKaEMJD6IAU9kbb/J1PdBT1Rmmb40tHEBmmE1wWnru/NkZN4PJRumH2HvV98CFCAPmB4g8UEMeOrjqHIAqNQ2nWno6P9sHyC86ACUbJhudPN+xcj7AajXhx4g8UEMeOI51wWgZMN0Jp4qB4CSDdOZyJOtM2N4vwDq96IHSHwQAx7xPIeifj0fJD7SFanSJUayKcCTDS2h0Bx5wNKLeE62FiHPh/aQ+CAGPJLnox9Xq7TbIXd72iEK0FglliIkQtOTxjj6vIhQl1PtIfFBDHjiOUwKoGTDdCae7qYiogilhSe9aJRlA5RwqjUkPogBTzy1/QAlG6Yz8fT4EKHcn/RE8n7FYQMUdtEe2eJj9erVOPPMM1FWVgZBEPDWW291+zpjDAsWLEBZWRkcDgdmzZqFTZs2KTVeguhFPOe6AJRsmM40dvR/oJgIVT2lJ4l4vyjhVDtki4+Ojg5MnjwZixYtivr1hx56CI888ggWLVqENWvWoKSkBCeffDLa2tqSHixBRKMhzlivxWyCmZIN0xKxz4esnA9qNpdWyMn5EM93oSZj2mGR+w2nnnoqTj311KhfY4zh0UcfxW9/+1ucd955AIDnn38egwYNwssvv4zrrrsuudESRA8CQYYmObteiwkd3gB5PtIM0fPRX3MpILLNPtlAOtHQHv88IIXeSIBqhqI5H7t370ZNTQ3mzJkjvWa323H88cfjyy+/jPo9Ho8Hra2t3T7UwO0L4KJ/foVz/vEFLTxpxMFOL4Kh3NH8OGK9tOtNP7gAlVPpQGGXdCTc6yWevB9uA17K/dIMRcVHTU0NAGDQoEHdXh80aJD0tZ4sXLgQOTk50kdFRYWSQ5IwmwR8s7sJ6yub6WCxNEKccPKcVljN/ZszZbmnH81yBSglnKYlcrxfNhIfmqNKtUvPBi+MsT6bvsyfPx8tLS3SR2VlpRpDgsUkQDz2wxOgSSddkONqBQA7HSyWdohVDnlOKyyyBCjZQLog1/tlC9mJN0DiQytk53zEoqSkBAD3gJSWlkqv19XV9fKGiNjtdtjt8S0cySAIAmwWE9y+IHk+0ohwhnv/Ew4Q3vVSqW36IKfKAYgQoGQDaUOk9ysvDu+X6PmgeUA7FPV8DB8+HCUlJVi2bJn0mtfrxapVqzBjxgwlb5UQdlp40o76NnmeDzpSPf2Q0+MDIM9HOtIgM/xKYRftke35aG9vx86dO6XPd+/ejfXr1yM/Px9DhgzBvHnz8MADD2DUqFEYNWoUHnjgATidTlx66aWKDjwR7JLapUknXWjsiK/BmAgtPOmH3NBbOOeDFp50QU53U4DEhx6QLT6+++47zJ49W/r8tttuAwBcddVVeO655/D//t//Q1dXF2644QYcPHgQRx11FD7++GO4XC7lRp0goruVDC59EM91KeqnwZhIuMySbCBdkFPlAJD3Kx1pkNHdFKCcDz0gW3zMmjUr5rkYgiBgwYIFWLBgQTLjUgXR4Cjskj7Ee66LiOj9olLb9EFOlQMQDr/SwpM+NMr0fpHnQ3sMdbYL5XykH/Ge6yJCYZf0o0Gm54MWnvRDrveL+nxoj7HEB4Vd0o7GOM91EaFJJ/0I73pJfBgVOWf7ABE2QN4vzTCU+AiHXWjXmw4wxuI+10WEFp70QzrNlFzuhqVextk+AGAzh0JvZAOaYSjxYadkw7Si1e2Xdi5x73hEAUo7nrShUWbozU7JhmmH3LwfEqDaYyzxQY1l0gox2TTLbpFyOfqDJp30wu0LoN3jB0A5H0ZGzom2AGA183bXtBZohyHFh5fCLmmB3AkHoIUn3RAFqM1sgsseX/Ee2UD6kXCfD/J+aYahxAe11E0v5DaXAmjhSTciqxz6Oj+qJxR6Sy+6vAF0ePmGMt6NCCWea4+hxAeV2qYXCYkPivenFVKsn7xfhkXyfllMyIrX+0UJp5pjMPFBk046IXY3lbPwkA2kF1KPjzgTDYFI8UHh13RAOmIhU4b3i8IummMo8UEGl140yDzXBaBdb7oht7kUQPNAuiE33wMI20AgyBAI9t2xm1APY4kPMy086YTo+Yi3wRhAC0+6IbetNkDzQLqRjAAFyA60wljigxJO0wox1lskZ9IxU95POtEo80AxoJ/QW3MlEPArMjYiNTTI7G4KhAUo0MMO9n0D/G0isOlNxcZHRMeQ4qObsX3+N2DxLOC1q4Cm3doMjEiI8JkeSYZddq8GXjgPeHwasPV/io6RUJeGJFzu3WzA3QL891fAoxOA/92q6BgJdUnE8yH2+QAATyAi9+eZOUDLPmDpdYqNj4iOscRHz0oHxoBVfwGqvgc2vwWs+Zd2gyNkk5DLPdrC88kCYNenQOMOYO3zSg6RUBm57fWBPkJvKx4ANr7Gn+/8VLHxEeojVb3JSDoWBKH3XNCwI/yGgIevD4RqGEp8WHtmubtbAF9H+A1NP2kwKiIREqntB/ootW2uDD9v3KnI+IjUkEzOhy/AEBSTDWs2ht/QXgsEfIqNkVCXRDwfQESbfVF8rH2u+xtaq5IdGhEDQ4mPXsbW07hIfAwYxN2OXUZtPxDF8xHwAR314Tc076WY/wAhGGRo6kgy2VAUoW3VERf2Uwh2AJFI6A0I24EvEBKgB9Z1f0PND0mPjegbQ4mPXu5WUXzYsvhj024gSImIA4H6iB1vvLX9QJRkw7YaAAwQzIDZzhee5r1KD5dQgVa3D/6Q5yJfRsJpL/HBWMgOANhc/LFxR5TvJPSI1OdDpuej10ZE3ITkVPDHahIfamJM8SF5Pg7wx4ojAZOFx/nE1whdk8i5LkAUASrueLPLgIJD+HPygA0IxHwPV4ZF6l4cD70qHTxtgK+TvzD82NDFSXwMBCK9X3JCb0DkXBAKw4viY+Rs/kieD1UxlvjoK+ySOwTIG8af08IzIEiktToQwwZcpUDBSP6c8j4GBInkewChZMNIOxC9HvYcoHRy6OIkPgYCLV0+qUlYnlPmRkQ848cf5OFXdzP/wsgT+GPtJqWGSUTBWOKjZ58P0cuRXQ7kj+DPSXwMCKQGY4nudvzRPB+i+NilyBgJdUmkx4dINzsQbcA1KOz9Is/HgEDchOQ4rN3CafHQzQY6G/mLggkomcSft1VTxYuKGFJ8RHW5k/gYUISTzBIPuzDGwp6P7DIgPyQ+mkh8DAQaE7QBoMdcIHo+XCVA4Sj+nMTHgKAhwUoXoIf4EEMuzgI+FwCA3x32hhCKY0zx0dPlTuJjwJHIuS5AlGRDadcbEXahSocBQX0CTeZEuoVd2kXxURpONuxqAvweRcZJqEdjAt1NRbqV3Xc08BcziwCrA8jI4Z+31SoyTqI3xhIfveL9EWEXcdKh2u4BQSLnugBRkg1bI7xfWYP48/Y6RcZIqIuU85FE2MXj7+H5cOQBJiv/nOxA9ySaeA709HyI4qOQP2aV8EdRmBKKYyjxYY90tXo7eJMxgO94sor588ieD4RuCSecJpZkBojx/oiEU9EGfB3cPghdIy08MgUo0EfOR1YJIAgRcwGJD70jhd5kdDcVsUcNu4TEhyu0ESHPh2oYSnx0m3BE4SGYAbsrrHjb6yjJaAAQbqstb9IxmQTpXIdu7tasQbzfi8XBP6ddr+4RXe6JLDzdXO7iAuMK7XYzi/gj2YDuqVci5yMQBDojwi4A34wA5PlQEeOKD087f9Hu4rudzNBuJ+ABPK0ajZCIB68/iJYu3v46qVivL8B7PABhOyAP2IAh0bbaQB+VDpLLncJvA4XGBLubAj3C8OL/uyg+RBtoI/GhFsYSHyFj8wcZgu6QwLCHOhranOFOp+JumNAlYsjFahaQ67DK/n6prbK7HUDIy2UP/e1F8UELj+6pTzD0BvQQH97QRsRGNjDQEMuti5KwAU+3nI8C/ih6wUh8qIaxxEdEpYO/KxR2EcUHQO7WAUJ9RI8Pkyn+1uoioh34u0ICVDABVid/LnrA2inWq2fcvgDa3PwMniJXhuzvt0d2t4z0ggIR4oNsQO8k5fmImnDaw/NBNqAahhUfvq4Id7sIJZoNCETxUZRAoiEQtoOA6P2yhUIuAJAVmnwo7KJrRBuwWUzIzoj/YEGRbqE3b2gukDwfoYWH5gHdI4XeEql4MvOW/DznIxR6c4qej1DOB3k+VMNY4iOi0iEgej7ECQcgz8cAoS608BQnKj5CdhCUBGikDZDLfSAg2kCRzIMFRSQB6u0EWKj0XrQDmgcGBF3eANo83PuVdMWTt4f3Swy7kOdDNQwlPiLPdOiV8wFQsuEAIXnPB9/xMDd5vwYq9W1uAEBxdnLeL+ZuD79ozeSPlHA6IBDngQyrCS57At6vbuIjVFpv62ED3vZwUjqhKIYSH0DY4ILuHkoXoF3vAKG+nS88RQnEeYGIhcfTw90OULLhAKE+wvORCOImhEUmm5pC0yGJjwGBNA+4EvN+iXk/Pp8/QnyE5gJ7VliMkh2ogmHFB4vq+aB4/0CgrjW08GTLTzQEAHvPhYcE6IBDFB/Jej6EnpUuQHge8LYB3s6Ex0ioizgPFCeQcAxA6vfD/F2Qqt5EzwcQzv/oOpjoEIkYGE98iHkfPTPcgfDCQ+JD14gllsl6PgRPlJwPCr0NCMI5H4ktPKINmLxRQm/2bMASui7F/HVL0vOAWRSgYjdjIdxkEACc+fxRTEYlFMV44kOsePGKlQ7kch9oKFXtEt71Rim39rbTrlfHKG4DkQJUEMJttjubEh4joS6S5yNh7xfP/RJ8of9zW2Y49AaEPR8kPlTBsOJDiOr5oLCL3mGMKVbtIkTd9boAc6hsjyYd3ZKsDYihN7OvR6xfxJnHH7tIfOiVujZlcr9M/h7JpiIkPlTFeOLD3HPHE7HwOEITjrcd8HtTPDIiHlrdfulU4mR3vSZx4em563WE3K208OgWpTwfZnHhiZwHgLANkOdDtyiV9xMWoCQ+UonxxIe08ETZ9Wbk8m6XACUZ6RRxwnFlWJBhNSd0jfCkE0WAAmERSjagS4JBJrXYV27h6eH5IBvQPXXJCtDQRtTijwi7RELiQ1UMKz6iLjwmExcgAE06OkV0tSbqbgfCNmDxRal0ACISzWjXq0cOdnrhD/LqhEROtAUiF54o3i8gbAPk/dItkucjwWoXsdTWEhDFB80DqcRw4kMyOF9f7laK9eqZZN3tQLSFh2xgICFWOeQ5rd2OTJCDmGxoDfTl+aCFR88EIr1fSYberIH+PB9kA2pgOPHRa+EhtTugCIuPxHY7QFiAWvsVH+T90iPJ9ncAwguPTXS597QByfNBNqBHmjq8CDKeopWfwLkuQKT46Aq9QGGXVGI88WExwYwALKLB2bO7v4EWHl1Tn2SVAxA56fQnQMkG9Igi3i9RfAT7cLmT90vXiOHXgkw7LOYEvV+h77P1GXYh8aEmhhQfmXCHX+gZ66VKB12jZNhFmnT6qnQgG9Al9Um624FoNkBhl4FEssmmQKQADa0HfXk+upqAYDDh+xDRMZ74MJuQhZDXw2wDLD2MlzwfukaRhSc06dj7FB9kA3pGaq+fhA2IobeMvjwflHCqa5T0gNpZXzkfIRtgQcDdnPB9iOgoLj78fj/uueceDB8+HA6HAyNGjMDvf/97BHWiHG0WE7IEMeTi6v0GyvnQNUosPHzSYbD3t/CQDegSqa22EgtPsD8B2pzwPQj1UNIDau/L82G2AvYc/pzmAsWRfw5xPzz44IN46qmn8Pzzz2P8+PH47rvv8Itf/AI5OTm45ZZblL6dbGwWE5zghiudWhgJ7Xp1jVILjwMemBASxL1c7mQDeqa+LXyaaaKI4sPJ+sr5CAlQTysQ8PGFiNANSng+RO+Xg4kJp1m93+TMAzwtobyPQxK+F9EbxcXHV199hbPPPhunn346AGDYsGF45ZVX8N133yl9q4SwWUzIEELdS62O3m+ghUe3+AJBNHXwv11SlQ5mExyI6GDbU4RSzoeuUSTeb+6x8PTyfOQCEAAwPheI5z4RuqBOQQHqQB+eD4DnfRzcQ0mnKqB42GXmzJn49NNPsX37dgDAhg0b8Pnnn+O0006L+n6Px4PW1tZuH2piN5uQIXk+oixg5HLXLWJdv8UkINeR+E7UZjHBDh//xGzrfpgU0L3MUifhQiJMss2lgPDCI80FNmf3N5jMQEbI5U4bEd2hpA1kSjYQzRNOJddqobjn484770RLSwvGjh0Ls9mMQCCAP/3pT7jkkkuivn/hwoW4//77lR5Gn9gsJmSIC4/V2fsN5PnQLeKEU5hlh8kkJHwde6T3yxJl8hJtgAW5292Rm/C9CGVx+wJoc/sBKJT3Iy48lj68oO5m2ojokLokz3UBwt4vpyB6PqKEXWg9UA3FPR9LlizBiy++iJdffhnr1q3D888/j4cffhjPP/981PfPnz8fLS0t0kdlZaXSQ+qGGO8H0MfCQy53vZLsQVIi3Twf0WzAYg+HYsgOdIVoAzaLCdkZie+dbGYTLAjADN6mPaYXlGxAVzDGwonnCZ5oCwAWswkmAeHWC1E9HyQ+1EJxz8cdd9yBu+66CxdffDEAYOLEidi7dy8WLlyIq666qtf77XY77PbkFhM52MyROR8xPB9+N+Drip4XQmiClOGexIQDADazGRmI4fkA+MLT0sEbjeUndTtCQeoiEg0FIUnvV2TeT8yNCC08eqLDG0CXLwAgOe8XECpAEOIRHyRAlUZxz0dnZydMPWLoZrNZR6W25nCyYbTdjt0FmEKajNytukKJREOgh+cjmg0A4VALLTy6QolKF6CHDQCxw280D+iKulZuA5k2MzLtye2fbeaIppNRq11IgKqF4p6PM888E3/6058wZMgQjB8/Ht9//z0eeeQRzJ07V+lbJYQtcscTzashCHzH01HH1W5OeWoHSPSJEuV1QI+Kp55N5kQo/KZLFLWB0DzAzH14USjsokvC4dfEk01FbGYTnP5YCacUdlELxcXH448/jnvvvRc33HAD6urqUFZWhuuuuw6/+93vlL5VQvCFJ0aSGcANrqOODE5nKNFYCOATjl0Ku8SwAYB2vTpDURsQuOeDWTIQNYBDLdZ1SZ1C4VcAyLQEYQ3wEA61XkgtiosPl8uFRx99FI8++qjSl1YEmzmy2qWPhYfKbXWJErX9QI+Kp748H+Ru1SXhhSe5Xa/FbIIj5P1iZAMDCkmAJpl4DgAuix9i/UGfFU8AHTKpAoY728UeWe3Sl/ggtatLwt1Nk1t47BYT7LEazQEUdtEpSlU8AUCWme94mbmvvB+aB/SIkp6PLBMv22YQom9EyAZUw3Dio9+cD4AWHh3CGFM03m/vz/NBk44uUdTlbuYLT9Dcjw2QB1RXiB5QJQRoNxuIlvcj2oC3jbfZJxTDmOJD6C/en8sfaeHRDW0eP9w+XjGlZM5HsC8boNCbLlHU8xHa9Qb68nxQ2EWXKNHdVCTTzAVFnzaQkQOIGUF0yKCiGE98mOPwfEgLD006ekGccFwZFmRYzUldKzLnI2iyRX8T1ffrjmCQSS32kxWgQMSul2xgQKFU0jEAZIaSjgOmPq7Vrc0+2YGSGE98xBV2oUlHb0gdDRWYcGwROR997niowZTuONjphT/IO5IWZCqw8Jj4wuPvzwb8bsDbmfT9CGVQKvwKAE7R89GXAAXIA6YShhQfjriTDcnY9EJtqLFQiQK1/RaTAEfI8+Hva9Ih75fuEPM98jNt0qFgyeAQwy592UBkw0GaC3SBLxBEY+hkayU2Ik5BnAdiXIvyv1TBeOIjMuxC8f4BQ01IfAxSQHwIggCHqR93qzjheFqAgD/pexLJo6QNAIDT1M/CIzYcBMgLqhMiT7bOd8bwVsSJKD588YgPWg8UxXDio3upLZXYDRRqWlRaeIQ+JrCM3PBzd7Mi9ySSo7ZF9H4pcxaUQ1x4+rIBgBYenSHOA8Wu5E62FhE3IXGJD1oPFMVw4oPH++OM9XY1AYylaGRELMJhF4UXnr4mHbMlnGhGC48uED0fJTkKCdB4dr3UYl1XSJsQhWxADL/6hFjig8LwamBI8SF6Pvo0OFHpBv2Apy1FIyNiofTCI2vXSwuPLqhVOOySEZcN0MKjJ2oUzP0CILVd8AnWvt9Eng9VMJ74iMj56HPHY3OGT7kkg9MFtQqHXcILD+14Bgo1LSotPKCwy0BB6U2IaAPemPMAbULUwHDig1c6hAwOZHADgWCQSZUOik06IXerN54dDy08uqAmVG6tlMvdHo8NOGnXqydqlRagobXAE48AJRtQFMOJDwS8MAk8j8NNu94BQUOHB/4ggyAo01YbiHPHQ/F+XaFkuTUQufDEMQ+QANUFSns+RAEaU3xQnw9VMJ748IWbBXlixXqp3FY31LbwHW9hlh0WszImG550Ynk+yAb0gscfQFOov4NS4kPyfMS0Adr16ola0fulkA3YGHk+tMKA4oMrZz8zwRuM0aabznfRDUonmQGAjdytAwqxw63NYkKuM4ZYkIFoA27a9Q4IGGOK5/3YQ8UHMW1ACr+SDSiJ8cSHvwsANzZvIEYZLYVddIPSzaUAwC7ueFiseD/ZgF6IFKBCtNNHEyC86yXPx0CgtcuPLl8AgHJhF1k2QCfbKorxxIePi48u2OANBPt+H006ukFKMstRJt8DCE86ce14yAY0R+kdLxC2gS4WT6kthd60RhSgOQ5r0odLilgZ93zEtAE62VYVDCg+uAF7YIPXH0N8UM6HblAj7GIVXe6xPB+08OgGqceHQjteIF4biBCg1HBQU8R5oFRJGwiKAjSGDXQ72ZY2IkphQPHBE067mD22+KBdr25QurkUEOekI9lAs2L3JRKjRuHW6gBgDYbi/czS95vETQg1HNQcpXv9AGHPR2ewnzwiar2gOMYTH35uwG5Y4YkpPmjXqxdqFS6vQzAAC/hhcTHFh5P6fOgFNfJ+LKGwS2csl7vVQQ0HdYIaHlBLSIB2xpoHANqMqoDxxEfI8+GmnI8Bg9KHyokCFOhnxyPagK8D8HuUuTeREIoLUIQ9H13BGJ4PgHa9OqFGhdCbRbKBfsQHJZ8rjvHEh190tVLOx0CgyxtAq5t7KRQTH74I8RHL5W7PAYTQvwhNOpqixq7XHAq99e9yp4VHDyjd3RQAzCHx0RFv2IXWA8UwoPgQE06t8eV8uJuBYIz3EapS1cKrkzJtZmRn9LNDjZeQDXiZGZ5AjLJNkwnIyOXPaeHRjGCQKd5cCgDMAW4HHXF7PsgGtCTc3VS5vB+yAe0woPjgkxgXH4G+3ycaGwsCnpYUDIyIRnVzKMM916FYf4ewAO3H+wXQjkcHNHZ44fUHIQjKhl1Ez0d7vy53sgE9oHj4FYApELKBAOV8pBoDio+IhSdWzofFDlgz+XOadDSjqpl7PpQsr4tMOu5XfFCsV3OqQ96vYpcdVoXa6yPgh4nxcF5nIN5db7My9yZk4/YF0Bhqr1+W41DsuqaQ56N/8UHzgNIYV3wwOQtPs7pjIvpEDLuU5yo34XTr9RJLgAKUbKgDqkTvl4KLTmTScXvc4oNsQCtEr4fDalasvT4QKT7IBlKNAcVHZNilv4Unlz+SwWlGtYoLT1wClHY8miN6vxQVoLLEB9mA1og2UJarXHt9MAYhZAdtgX46plLYRXEMKD7CCaeefne9NOlojej5KM1VMuzCr0k5HwMDMeyiRujNwyzwxEj9AkA2oAOqQp6PMiUFaMAHgfH//1a/BSxWB1sSH4pjQPEhx/NBk47WqLPrFU+ytPYfdqGcD80Rwy6KLjxy5gGyAc2RPB+KekC7pKce2OCLddAoheAVx4DiQ9zxxLHrpUlHUxhjqG5R/jwH8XBBN7PF7nILUKxXB4jerzIlvV++CO9X3Hk/NA9oRTjsorwADTKBi9B4mk56WulkW4UwoPhIwPNBC48mtHb50enlPnFlcz4SsYFm5e5PyELNhSc+G6CjFrRGDLsoGn6VBKgVgBDbDsSD5QCaCxTCgOIjoskY5XzoGnHHm59pg8OmzBHaACR3q1tOzgfZgCb4AkHUtXGhoKwADXu/ZNkANRzUBDWTjrn4QGw7oJNtFceA4oNyPgYKqvT4ALrbQLw5H2QDmlDT4gZjgM1iQkFmjAPg5NJjExJXsiELcrc7kVIYYyp5v8Il90A/4gMgD5jCGFB8JNLng5SuFqiS4Q50y/kgz4e+icz5MZkUKrEEpF4vbnHhiSVCrRmA1cmfkx2knO7hVyUrnvgmxCuINtBP2RPNBYpiQPEh7nqpwZTeqZYy3FX0fMS72/F3SaKFSB3qeb/CmxAgnl0vLTxacSBkAwWZNmRYlQy/chvwhcIu8Sefkw0ogQHFR0SfD2owpWukhUdpz0dkzkd/AtTuAoTQhEd2kHLClS5K20APzwe53HVLtRq9fgBpE+ILeT5IfKQWA4qPBHI+3C1AwK/ywIieqBZ2kWMDgkC5PxoidrhVtL8DEN71CnGEXYCIbsfNyo6D6BdVenwAvW0g3jA8zQOKYEDxIae1dl74uZtOtk014o5H8bCLnJwPgHJ/NESVRENAyvnwxrvwkADVjANqNJkDwp4Pk0wboHlAEQwoPmRUOpgtgD2bPyd3a0oJBpl0mJTyYZfuNhCz0gGg3B8NUaW/AyBtQvxyd7208KScajWazAGSDQRMdgAkPlKNAcVHxImm8ex6yeA0oaHdA1+AwSQAg1x2ZS8ecbYLEI/LnRYerVClvwMQdrmHFh7qdKtfVPN+ieIj7tAbrQVKYkDxEXGuhxzxQe7WlCJmuA/KzoDFrLCZRng+AHK565VOrx8tXbyVtVrVLgETCVC9o8rZPgDg9/KHuMMulHSsJP2cJZ2GRJzt4u9vwgHI3aoRlQe5+KjIcyp/8YicD4Bc7nplf8gGXBkWuDKsyl48lPPhJ5e7rgkEGWpa1U06DprJBrTAWOIj4AeCvGrFAysCssIupHZTyf6DnQCAwfkKTzhArxK7+CsdyAZSiWgDqghQyfPBPSpU6aBPalvdCAQZLCYBRYqHX/k8IOZ8eOIOuzQrOw6DokrY5cCBA7j88stRUFAAp9OJKVOmYO3atWrcSh4Bj/Q0rjJLgNytGlHZxHe9g1VZePi1A3HveOg4bS0QbaBCFQEaEh9mqnTQM5VNXICW5zlgVrLDLdDL8+HxxdnhlE62VQTFPR8HDx7EMcccg9mzZ+ODDz5AcXExdu3ahdzcXKVvJR9/WHx4YUUwVOkgCDGMmuL9mhDe9arn+ZDtbiUbSCniwqOm5yNoDnk+qNuxLlE1/NpzHojXAwrwjUhWkfJjMhCKi48HH3wQFRUVePbZZ6XXhg0bpvRtEiM04TCTFcGQ08cbCMJuidGyl+L9miDG+1XxfPi6u9z7rXQgG9CESlGA5qtnAywR71cwCJiMl6uvBZIAVdH7xSxx2oB4sq27hc8FJD6SQvH/oHfeeQfTpk3DBRdcgOLiYkydOhVPP/200rdJjJCxwRKOHcbvbqUdT6oIBhkOHFTf5S5NOlRip0vCAlQ9G5A8H3E3HGSAu1n58RBREQWoOuHXkCc8XgEK0FygIIqLj59++glPPvkkRo0ahY8++gjXX389br75ZvznP/+J+n6Px4PW1tZuH6ohGpslXLYX/46HjC1V1LV54A0EYTYJKMlWuMQSCC88lngXnogSu/4akhGKEd71qhd2EQVov8mGFhtgy+LPaS5IGfulvB/1bUCe+KDNaLIoLj6CwSAOO+wwPPDAA5g6dSquu+46/OpXv8KTTz4Z9f0LFy5ETk6O9FFRUaH0kMKEjE2wZMASSl6Ke9fbSRNOqhB3O2W5KvT4AMKTjtycj4AX8HUqPx6iFy1dPrS6eWWamp4PFq8ABajaQQMqU5D7JVjizPsBwhsRyv9KGsVn9tLSUhx66KHdXhs3bhz27dsX9f3z589HS0uL9FFZWan0kMJIng87bJZQzgfF+3WHuOMdnKvCbicY4CICkDxg/dqALRMwhfpM0KSTEsSE44JMG5w2FToC+MQQbCLig2wgFXj8AanHh5qeD8jxfDgL+CPZQNIo/l99zDHHYNu2bd1e2759O4YOHRr1/Xa7HXa7wvXbfeEPTzg2iwmd3kD8u15vG++IZ7GpO0ZCivWrk+8RrnjiOx53/zseQeAitL2Wi9BcFb1zBICIUms1Fh0gbAfWRMQHbURSQVWzG4wBDqsZBZkqzLuJ2IAoPjoblR+PwVDc83Hrrbfi66+/xgMPPICdO3fi5ZdfxuLFi3HjjTcqfSv5RHo+Qu78fisdMnIAhEpxKdEsJaSixBJAggsP7XhSgaql1oDU60WQSm376fEAUMl1ipE8oHmO2O0QEiUiDA/EkfcDkPhQEMXFxxFHHIE333wTr7zyCiZMmIA//OEPePTRR3HZZZcpfSv59PB8AHHE+cTyKoAmnRQhVTmoWOkCkwUWS5xnuwCUeJxiVE02BcLxfpucXS+d7ZFKVC21BiQbMIniwyfDBmgtSBpV2qufccYZOOOMM9S4dHIkkvMBcINzN9PCkyIq1WyrHTrXBRaHZANx7Xho15tSVC2zBSQRarI6ALSRy12HSB1u1bYBm4yEU9EGOhrUGZOBMFannEjPh1mG+CCXe8rwB4KobuF/J1Vr+y122ELN5WTtekl8pARVBWhE0rFg5QubrIWHxEdKSJXnwyyFX+MIvWUW8keygaQxmPgILzx2WZ4PmnRSRXULP0jKZjahWOmDpAAp1g+rQ54AlSYd2vGoDWMs4lwXFQUoAJM1zi63AOAM2QDtelPC/iYVG4wBvT0ftBakFIOJjwRyPgCadFKIuNspz3PApPRBUkASoTeadFJFU4cXXb4ABIH3elGciKRjs5yFJ1O0AfJ+pYJKNavegLDnw5aA96vrIPegEQljUPEhc+HJpIUnVage64/I+ZC8X/FUOpAATRniojPIlRH73KVEiUg6ttriPNUWiBCgZANq0+Hxo6mDh8bUC7twO7CI4kNOCB6Mms0licHER7i9uiyXOy08KUN9V2uCng8Ku6QMVQ8TA7onHZsT8IB2NlKbfZURNyE5DiuyM6zK34AxIMDnAosc75fZGlH9SJvRZDCY+Ojt+Yir0oGSjFJGpepVDgnmfFDCacpQNdkUSD70FvTzk00J1VBdgEbk/VjsMjwfAIVgFcJg4iPC8yGr0oHcralid0MHAGBYQaY6N4i28MjN+6Fdr6pI3U1TIEBlJZ5bM8KHy9HCoyrqC9Bw3o8oPuJKOgZIfCiEwcRHhOcjobALGZva7GkMiY9ClSYdyeUeTjqOa9IRvV8BD+BtV2dsBABgT0iADtWbAAUiPGA0F6iJqtVOQITnQ4DNKuNsF4DEh0IYTHxEej4SSTglz4eaNHd60dzpA5AKz4fMvB+rUzqEjHJ/1EUUoMOLVLKBbjkfMjygQPe8D0I19oZsYIjKyaawZMAeOrgwrhA8QDagEAYTH2HPh+hu9clxufs6AS8dqa4WYshlULYdmXZVmu9GuNxlClBBiJh0KO9DLbq8AanJ3PBUej7k7npJgKqKOBeMKEyBDURsQlg8IVXyfimCwcRHFM9HPOLD7gLMoVMVyeBUQwq5qLXoAInbAEAesBQg2kCu04o8NU4yBbonHcsJvQFU9ZQCfIEg9oUSTlXzfkXp+cTvHY/4oLCLEhhMfCTYXl0QKOk0BexuCE04au12gG45H7KSDQHa9aaAPWonHAPRd71xu9xp4VGb/Qe74A8yOKxmDHKp0GQOiNrtGqA2+6nEYOKjt7s1/gxnSjpVG2nhUVN8JJrzAVCsNwX8FLKBVAnQxMMuZANqEU44dqrT5RiIuhEFqNtxKjGY+IjSXj1udyt5PtQmNWGXKDkfcYddyOWuNntSIT4iBKhs7xf1/FEdUYCOUCvkAnTbiJpMAiwhkUPiI3UYTHwk426lLqdqwhiTksxStfDI3/WGEs1o16sau1Pi/UpCgFL4VXV2N/BSdnXngfBGFECEJzyeoxbojB8lMJj4iOb5iPNwINrxqEpjhxdtbj8A7m5VjUiXO4VddIdUZpuqpOOQDQSCDIFgPMmGZANqs0fK/cpS7yYRlY8AZHa6DW1CPK2A36vG6AyBwcRHMiV25HJXE9HdXp7rQIZVhcPERKJ4PqjSQR+0un1oaOeTuWpN5oCoOR+ATJc7eb9UI+wBVdEGAiHREPJ82OXMBRm5gBCao0iEJoyxxEe0Sge5nQ1p0lGFsLtdxQkHiFpmSaE3fSAK0MIsO1xqHCYmEkWAAjIbDnrbup0PQiiD2xfAgWb+P6qJ5yOeucBkCm9EOurUGJ0hMJb46KOxTFzQrldVUpJsCkQtsaO2yvpA9cZSIv7wJsRiEiCECio8gThCsLTrVRVxHshxWJHnTI0ABQB76Kwvjy/e9aCYP3bUKz0yw2Aw8ZFEtQvtelVlTyp6fADJtdYWBSjFelUhdd6v0MJjzYAgCEn0/CHxoTSR5faCoFKZLdAr4dQuJ+EUCM8F7SQ+EsU44iPgB1jIsBLp80EJp6qi+mm2IskcKpaRCwihfxmyA8VJSZ8XoFv4FZCZbAhEuNxpI6I0P6XM+xWeBwCZOR8AkCV6PijskigGEh9eIHsw92BEVjrIjfe7m4GAT50xGhTGWMRptilyuUfkfMRd6WAyAQ7xXAdaeJRmdyP3fqVu4em+65VdbkviQ3F216eg3B7o5fkQk9zdvng9H0X8sZ3ER6KodHqXDrE5gds2hT+18Ako7t2OIxeAAIDx+m7XIMWHaFTq2zzo9AZgElQ8xVIkiucD4HbgsMVRZZNZyIUHLTyKwhjD7nre3yFlAlT0fMjN/8oK/e/TrldxUtLrB4iYB/j5QYl7PijskijG8Xz0QLar1WSO2PGQwSmJOOGU5zm6CQJV8Ik7Hof8tsoATToqcbDTh1axz0t+ihYea4JhF9EG2muVHpnhkfq8pDD3Cwh7Pjxxez5EGyABmiiGFR+yXa0AxflUImWVLkC3EjurOZzQFlelAxAx6dDCoySiAC3LyYjPA5UMyeZ8SOKDBKiStHRF9nlJVdglwZwPMexCm5CEMaz4kF3pAERMOiQ+lCRlSWbBIBAQd70OXukge+EJudxJfChKStqqi/RVZhn3wkMCVA3EhONilx1ZdpUzAkTxYe3u+Yg75yOLxEeyGFd8yF10AFp4VCJlVQ6BiKZQ4o5Hdryfdr1qkDIbAPoss4x/4RHnAdqEKEnK8j2AiPBrAh1OgYg+Hw18U0PIxvDiwx9kCMZT6QCQ50MldqUqw110twNSrNdulZtoRgJUDVLWYAyI2PV2r3SI3wbEXS/NA0qSUvHRI+lYfrVLqPqRBYAuOmAuEQwrPuwRiY3yFx6adJTC4w9Iu94xJS51bya62wUzYOZuXdHlHv+ulwSoGuyqT8FJpiK9yiwT9Hx01APBOL+H6JfUio/uSceyPR9ma7jsnuaChCDxgUTcrbTrVYrdDR3wBxlcGRaUZGeoe7OIHh8i4YWHKh20whcISuJDdQEK9Ha5y931OgsBCAAL0rHqCvJTQwoFaI9qF9k2AFABQpIYVnxYzCZYTLzawR1vS13a9SrOtpo2AMDoQS512ykDvboaAhHu1rhtICRAOxt511wiafY0dMAXYMi0mVGe6+j/G5KBsXDuj+j5EL1fce96LeGyexKhihAIMuyo5eJj9KAUCNBkO5wCEY3GKP8rEQwrPoDIOB/F+7UipRNOj90OkEB9v7Mg1GKdUZdThdhWGxKgJakQoO7wc9HlLjfsAlCjMYXZ09gBjz8Ih9WsfqNBoJcX1G6VebAcEFFuSzaQCAYXHzInHTHDuauJDhZTCHHhGTNIxeOzRaJ6PmTueEzmiB0PiVAl2F4j2kAqdrwR4qOn50POwpNF7bWVZLvkAc2CyaSyAAV6hd4yxIqneD2gADUcTBJDiw/ZyYaOPMAUqj8ng1OE7bXhsIvqRMv5kGsDAHU3VJhtqbQBcdERzDxpEAlsQgDygirM1poU2gDQu9w6Gc8HhV0SwtDiQ3ayoclEDYYUpMsbwL4mfpjY6FQkGsbK+ZC16yUbUJLttSlMNu2x6AAJlNoCdLCYwoi5XymxAaB3uXVSng+ygUQwuPiQmWwIUNKpguysawdjQEGmDYVZ9v6/IVmi5HwkFe8nG0iaLm9Aaq+fGu9X90UHiAi9kQ1ohugBHVuSrf7NGFPI80FrQTKQ+ECikw7tepNFdLePSkW+B6CC54MmnWQRBWh+pg2FWTb1bxjD80G7Xm1w+yIEaEkKc7+A5HI+6HyXpDC4+JAZdgFo4VGQHbUpTDQEYud8yFp4SIAqRTjfI0v9ShegV6IhkGjCKc0DSrGjth3BkAAtSoUH1B/R6TiZapfI811YnF2yCQlji49Ekg1p4VGMyBLLlBDF85FY2IUWHqXYnnIB2lt8JGQDlPulGNsibCClAlQwSQUE4aq3BGwg4AXczQoO0BgYW3wk1NWOxIdSbE91hnu0Ph/J7HrJ5Z40UpM5jRINgQSq3oCIZnNNQMCn1OgMybaaVgAaJJtaHEBI7EgnG8uZB6wZgD2Uo9JBPX/kYmjxIe14ZJ1sS7teJWhz+1DVwieB0cXaeT6SSzYkAZosevB8JBR+debzcl0wWniSZKvGlS5AhA3I8XwA1PMnCQwtPhLzfNCuVwnE8sqS7AzkOK2puWnUs12SSDZ0t4RduIRsWrp8qA4J0FEp837FKrWVYQMmc/hkU5oLkkISoKkSH5IHtLf3yxdgCMR7yjkAuEr5Y2u1UqMzDMYWHwm53KnETgm2p7rSBYjp+ZBlAxm5gDlUmUELT8KICcdlORnIcaRKgMaodpFjAwB5QRWgudOL2lb+f5m6BmPdz/YBep5yLkOEZofER1uVEiMzFMYWH8kkG3rbAU+7CqMyBil3twMxz3aRZQOCQDX+CpDyhGMgQnxEa7Ev1+VOSafJIoZcBuc5kGW3pOamUTyg3cSHHBFKno+EUV18LFy4EIIgYN68eWrfSjYJuVttWYA1dPAR7XoTZrsmC0+UapdEkg0B2vUqQErPdBGR4v2RC0+ing/ygiZLuLmYtvNA5CnnsjrdZpfxR/J8yEZV8bFmzRosXrwYkyZNUvM2CZOQy10QaOFRgG01KTzNViRqzkcCNgBQ0qkCpPRMFxFf354P2QLUFbKBNtr1JkrKz3QBonpAgQS9oOT5SBjVxEd7ezsuu+wyPP3008jLy1PrNkmRkLEBtPAkSVOHFw3tfPcxqljrnI8EvF9AWIC21SgxMsPBGEv9eR5A9zLLEGLulz/I4A/I2fWW88dW2vUmirY20L2hmRh6SczzQeJDLqqJjxtvvBGnn346TjrppJjv83g8aG1t7faRKhJqMgbQwpMkoqu1It+BzFTFeYF+cj5kej7EhYfcrQnR0O7FwU4fBAE4JKUCNJrnwyw9T2jhIfGREIwxKfSWkjNdRKKE3oAkPR9t1UBQ5hxicFQRH6+++irWrVuHhQsX9vvehQsXIicnR/qoqKhQY0hRsSfqcpd2PAcUHpEx2FrNBWbK+nuIxOrzIdfzQQtPUogCdFhBZrfFX3Wi5nyEp0FZCw/ZQFJUtbjR5vHDYhIwvDAzdTeOUm4NJOj5cJUAEICgH+ikfi9yUFx8VFZW4pZbbsGLL76IjIyMft8/f/58tLS0SB+VlZVKD6lPEurxAITFRwuJj0TYsL8FADBxcE5qbxzrbBfZAjS08JANJEQ41p9CrwcQNefDZBJgsyTQcFCcB9prqctpAoidTUcWZUm//5Tg793nAwif7yJLgJqtYU84iVBZKO7zXrt2Lerq6nD44YdLrwUCAaxevRqLFi2Cx+OB2Rze6djtdtjtKThMKAoJu9xzKNabDOsrmwEAUypyU3vjmKfayhSgOYP5I9lAQmwI2cD4slQL0N45HwDf9Xr9QXl24CwETFYg6OMh2NzUeW3TATHpPKX5HkB4HrAq4PkAeOilvTaU9zEl+fEZBMXFx4knnoiNGzd2e+0Xv/gFxo4dizvvvLOb8NAa8RhlWa21gYiwy36FR5T+NHd6sbuBH589eXBuam8etbMhtwEx2dBijnMHJno+PC2Apw2wp3gCHeCIAnTqkNzU3jiKAAW4CG1z++WJD5OJN5lq3sdFKIkPWWypTvGZLiJR5gEgiaqn7DKgej1tRGSiuPhwuVyYMGFCt9cyMzNRUFDQ63WtSXjXK4mPUJKRydC92mQhhlyGFTiRl2lL7c2leL9Teiky38DtDyIrXvFhd/FDpTytfNIpGqPkSNOaxnYP9jV1AgAmpVqARgm9AUmUXGeXh8QHhd/k8n3lQQAabEKidLkFkuj5E5l0SsSNoVfNcM6HXDebmGTkAzrqlR9YGrN+XzMADUIuQHjHo0SyIUCJxwkiej1GFmWmrq26SJScDyCc+yPfC0pJp4lQ3+ZBZVMXBAGYVKFR6K1H2MVp4zbQJdsGqNdHIqSkznHlypWpuI1sEnazma1cgLRV84VHbDZE9MuG/c0AgMmaiA++2470fIjJhrLj/QBfeOq30MIjk3DOjwb9fyQb6F5dEe73kmDiMdmALEQbGFWchewMrQRod++XIyQ+Or1yPR/U5TQRDO35cESEXRiTcZIhQLveBGCMaZdsGvDxcjigt8vdkqjLnSpeEkGzfA8gqvcLSCbeT/NAIny/j4dcpmohQPtoMuZMVHyQ5yMhDC0+xNKqIONHKcuCFh7Z7D/YhaYOL6xmAYeWpbCpEBDe8QLdPB+AEhUvZAPxEgxqKECBGOIj0bJ78nwkwveh8KsmArSPJmNOGw8EdHn98q5Hno+EMLT4EHc7QAKTDi08svk+tOgcWpotJXelDHHREcw8bBZBwi3WaeGRzU8N7Whz+5FhNaX2MDGRKKE3IJz7k3jDQbKBeAkEmRR+nTpEi9Bb9GoX0ROesOfD3QJ4O2O/l5AwtPiwmU0Q+EGGicX7ARIfMtA22TRi0RH/6CESr3QgG5CLuOOdWJ4Tf1mzkogLjy2696tL9sITcbZHUOb3GpRtNW3o9AbgsltSe7aTSB/VLlLCqVwbsGeHc4io4iVuDC0+BEGIyHKnHY/aaJtsGt3dDiRTck3eL7mE8z002PEGgxGltt3FR6bock/kkEnBDLAAnXIdJ1KJbUUuTCahn3erQB9zQcI5H4IQkfdB60G8GFp8AOFdr+xJRwy7UM5HXPgCQfx4gPf40FOsHwi7W+WX2IV2ve4WwNOezOgMg6b5HqLwAHovPHZuAx0emfF+kzlUeg9aeOJE03wPIOwFtXWveHKEBGin3HkAoF4fCWB48RFOMkrU3VpFpxnGwdbqNnj8QWRnWFJ7iJRIH7F+ANLJup0emTaQkQ3YQnkLtPD0S5c3IJ3poqkABXqVWSa86wUo/CYTqdJFK/Eh5mX04fmQnXAKkA0kAImPkMF1yDW4rBJAMPHyzQ5yt/bH+oiQiyDox9UKJGEDQMQ5PzTp9MfGAy0IBBmKXXaU5vR/6KTiiALUktGrK7G4CelMauEhAdofLZ0+7Krnxyto0ucFiJgLeno+khCgoie8OXUHow50SHyEdr0dcne9ZgsXIACFXuJATDadqsWOF4jt+ZAWnmR2vbTw9Mf6yvCOV28CNFMSoInYAAnQeBE3IcMKnMhP9fEKIj4ufnp5PhJNOgaA3KH8sXlfMiMzFIYXH5mS2qVdr5pommwKxPZ8JBrvB8jdKgNNO5sCMQWoUwq9kedDTcIhF41sILLZYI+KJ2cym5A8UXzsTWZ0hsLw4kM0ONmeD4B2PHHS6vZhVz1PyNQk1g9ELDy93f3JeT6o4iVevtey1BqIK/RGOR/qsk7rZFNvR/h5DxHqSGYjmjuEPzbvA+R2yzYohhcfWfYkDI7ER1z8UNkCxoCKfAcKsuz9f4Ma+KKXWAIKeT4o9BaT2lY3qlvcMAnApMEpPkhMxBc90RBIUoCSyz0ugkGG9Vq2VQd6NBvsHvZJ+GA5AMip4DmAfjfQXpvsKA2B4cVHwjkfQDjs0rJfwRGlH1LIJdVHZ0cSM96fzMJTwR/J3RoT0esxepBLqi5KObEEaDJJx3nD+GNrVfjQMqIXPzV0oFXsbluqQXdbIGazQdEGfAEGX0BmBaPZGt6MkgiNC8OLj6RyPsQdz8E9yg0oDdHc3Q7EjvcntfAM548H91LJdQw0PUxOJJYATbTcGgCcBYAtCwCjhScGYr7HpPJcWLXobgtE9PjoPQ+IYRcgSQ/YQdqIxIPhxYeU85HIwpMvLjx7lBtQmhF5km1aLjw5g7kLN+ChBkMxECtdNBWgYrzf2rvPTFLxfkEIez9oLuiT7/UwD/TR4wPgx22YQx1XE6t4EfM+9iQ4OGNhePGRKeZ8JLLwiEq36yDQ1azcoNKIqhY3Gto9sJgEjC/TKNYPxIz3J+X5MFvDoRdaeKISCDL8sF/sbqtRrB+IO/TGEkkYJPHRL5p3NgUi5oHeAlQQBKncNiERmkeeDzkYXnwk5fmwZwGZxfz5wd0Kjip9EPt7jC11SWeoaEKMeL/k+UhktwNELDxkA9HYXssPEsuyW3CIFgeJicQSoKFNiD/I4JUb7wdIfPRDh8ePbTWtADQsswVi2gCQZKMxSjyWheHFh+T5SHThEUMvTbTwREMXyaZAfB1OE6l2ASLyPvYk9v1pjhh2mzQ4R3Jra0KshNMIYZyQy53ER0w27G9GkAFlORkYlK1Bd1uRPk41Fkmq4oV6fcjC8OIj3Ocj2YWHxEc01ush2RRQr8MpQAK0H/RjA30LUIvZBJuFT4cJdTklARqTcMhFQ68HEJH3E118OJKqfAvlfLTsB4IJziUGwvDigxYe9fD6g9gYOslW0zgvEF+HU6+f4v0q8L0ekk2BmAIUiKh8S2QjEmkD1GSqF7rI9wBier+AJA+Xc5UCJivvoEq9n/rF8OIjcuFJCNrx9Mm6fQfR5QugINOGEYUaxvqBuDwfjAFuXyLxfvJ+9UVLlw876kLdbXWz8ESP94fzvxLt9yLwc0M6GhIcYHrCK940PslWxBfb85FUp1uTOaLvD+V99IfhxUdmMu3VAdr1xmDV9noAwLGjCmHSMtYPxFx4HBHx/qSaTHU2Au7WBAaXvny5swGMASOLMlHs0jDWD/SbbOhMptzWYg83maK5oBuVTV1oaPfCata44g2IO+cjYU849fqIG8OLj6STDcWwS8t+wO9RaFTpweqQ+DhudJHGI0FM8WEyCZIASajkOiObN5oCaOHpgShAjx9drPFI0L/LPZl+L0BE3x/ygEXy+U7uCZpYnqNtxRsQs88HEPZ+JZR0DET0+iDx0R+GFx9imaXHH4Q/kRK7zKJQzTh1N4ykvs2DTVXcC3DsKD2Ij37i/UmH34bxR1p4JBhjYfExRg82EDvskplMvxcgos/DnsS+P01Zua0OADBrjB4EaN99PoAkS20B6vUhA8OLD2dkS91EyqsEgZJOo/D5Tr7ojC/LRpFLo8PkIolzx5OQyx2g3J8o7KhrR3WLG3aLCUcNz9d6OP0K0KR3vRSC7YXXH8QXIc/HLF0I0H7mAdED6ktwHqBeH3FjePFht4Rb6ibsbqVJpxert/MJRxchl2AA8Iux3uiJr+HwW5I2QAJUYtU2LkCnjyjQ3t0OxJ3zkVDCKUACNArf7W1ChzeAwiwbJmid7wHEPNsFiKx2oYaDamN48SEIQnLttQEyuB4Egwyf7Qjle+gh5OJtDz/vQ3yEu5wmmftDC49EON9DBzYAAJ6QHfRpA0mU2gK0CYmCKECPG12kfdI50G/ejyPZAoSCQ/hjWzUln/eD4cUHAGQplWhGu14AwObqVjS0e5FpM+PwoRo3FQLCjYVMFl6VEIWks9yp3LYbnV4/vt3dBEAn+R5AWITa+/J+heaBRMKvQFh8tFYBPndi10gzVobEhy7yPYB+w6+uDG4D7R5fYtd35AJZg/jzhh2JXcMgkPhAkgeLAbTw9EDc8R49skDqGqkp0o43k+foRCEzmR4PQHjhaa4EAgnaURrx9U+N8AaCGJznwIjC6Ml9KYWxsPjoJ/SWsOfDWQDYXKDkc05Vcxe21bbBJADHjSrUejicfhJORfHR2pXE/3DhaP7YsC3xaxgAHawM2qOoyz2YQMVMmrFab+52bxt/tLn6fIszWZe7qxQw2wEWAFoqE7tGGiG6248fXQShD8GXUvwe3nkS6NfzkbAAFQSgYAR/3ki7XtHrMaUiF7lOm8ajCdFP3k92hhUA0Jao5wOIEB/bE7+GASDxAQWSDXMqAMEM+N081mdg2j1+rN3LuxnqItkUCIdd+lh0AAU8HyYTkB9aeGjS0V++R1x5P0k0GRMpGssf67Ykfo00QVcltiKe2KG3bAefB9rcydjAGP5YT/NALEh8IPJ8lwQNzmwFCkby5/VbFRrVwOSrXY3wBxmGFjgxtEAH7nag30RDQAHPBwAUj+OPBl949jR0YE9jJywmATMO0Ym73RPyflmdvA12FJzJJhsCYfFh8HlAdyW2IqId2LOjftkV8ny0dinh+aCwSyxIfCDc2TCpSYcWHgARXU31UOUi4o3I+eiDpD0fQNgGDL7wrA5VOk0bliclc2tOP/keQDjxvF0RAWpsG9BdiS3AQ+L92IGY89HmTvCQSSDs+WjaDfi9iV3DAJD4QMRplsm4W4sP5Y9GFx87dNRSXUTa7fSd85GpxMIjudw3J36NNCCc76FDd3sMASq63FuS2fWKC0/DdkMfqy6V2I7SSYktEDpULiQo+pgLxJwPf5AldsgkwPO/bC6e/9X0U2LXMAAkPhBeeNqUWHjqjSs+9jR0YG9jJ6xmAUePLNB6OGHEnI8Yu97sDAUWHlGA1m83bOKxxx/Al7saAego3wOIK+8nx6GAyz13GGBxAAGPoft9iMmmuimzBsICVDDFbDQnNp1sdSdoB4IAFI7izyn00ickPqDQpCN5PrYaduERvR6HD9WRux2IK+wi2kBS4iN/OK948XcBzXsSv84A5rs9B9HlC6DIZce40r49TSknjooncdeblA2YTEBRKOZvUC9o9xJbHYkPqc+Lq8+Se0EQpLmrLVHxAVDSaRyQ+IBSC88IwGzjrr0WY9b46+oU20j6yXAHwjbQltTCYw4nmxl04YmsctFFia1IPDbg5Dbg8QfhTrTRGAAUibk/xraByRW5yMvUSYktAHhCHUdjCFAgHH5rTabihZJO+4XEB8ILT3NnEguP2QIUhtSuARcerz+Ir0Ludl3tdoAIz0ffk4648CQlQAHDJx5H9vfQFfEknNos0oY4YZc7EN71GjTpVCqx1VPODxAhQGOLD5ddyYoX8nz0BYkPKOT5AAy98Hy+sx4dXu5uP7Q0ehmbZvTTVhvobgMJZ7kDQLFxSy0j3e0z9VJiKxKH58NkEqTQS3IhWNHzYbxdLy+x5ZuQ2WN1JkClxPO+bQDoXvGSMFLi8Q7DhuH7g8QHgGzFxIdxGwy9+X0VAODMSWX6yW4XiaPSQRQf/iBL/HwXwNBVT+9s4DYwbWi+vtztQETOR+yFJyxCFUg+N2DFy3d7mtDu8eurxFbEG5/nQ1wPkhIfecMBk5V3VG3dn/h10hgSHwByFXO5G3PhaXP78PGmGgDAuVPLNR5NFOKodnFYzbCauWhKrtQyYuEx0BkvjDG8ue4AAOAcPdpAHI3mgIh4f1IVL0PDFS8GO2zyrfXcBk4cO0iHm5D4BKh0vksyoTezJaLxJIVeokHiAxHJhm4/AsFkXO4hd2vDNkMtPB9tqoXHH8TIokxMKNdZyAUI73pj7HgEQVAm/JY7lHfRDHgNddDg5upWbKttg81swukTS7UeTm/iKLUFFArBRla8GCjptMsbwPsb+Sbk54cP1ng0Ueinu6mIdL5LMuIDoHLbfiDxgfCEAyS548kZwk9LDHgN1Vzmre9DO94p5fqqcBCJe9er1MIjJhwap9mYaAMnjiuWknd1RRwJp0B44Ulq1wtEVLwYJ/fn4801aPf4UZHvwLSheVoPpzepzPkAgOLx/LHmx+Suk6aQ+ABgNZukw+WSXniKjdVsrLbVjS928TMczp6iQ3c7EBF2iX3WjGKJx0XGarEdCDK8vZ7ne+gy7AbE1eUWiLCBZCrfgIj8L2PYAAC8sZbnNpw3dbD+Qi5A/DkfSiQdA0DZVP5YtS6566QpiouPhQsX4ogjjoDL5UJxcTHOOeccbNumf7dTruILjzHExzvrq8AYMG1oHoYUOLUeTnTiqHYBlKx6MpYA/WJnA+raPMhzWvV1gmkk8Xo+HOT5SISaFrd0kNx5h+lVgMZnA4p5Psqm8Mf6beF7ExKKi49Vq1bhxhtvxNdff41ly5bB7/djzpw56OjoUPpWiqJcxYsoPozhcn/zex0nGQI890YSH7Gz7xXpdAuEE49rjWUDZ0wqg82iU2dqHKW2gIICdFDI5V6/FfB1JXetAcBb6w8gyIAjhuXp5zTrnohNxvoNuyhQ7QIArhLAVQaAATU/JHetNETxHtgffvhht8+fffZZFBcXY+3atTjuuOOUvp1iKN7rwwBxvm01bdhc3QqrWdBnkiEQnnAAICN2opliNlAykT827uDu/n7cvAOZDo8fH/4YqnTS644XANwt/DEjtgBVbBOSMxjILAY66oDqH4AhRyV3PR3DGMN/xZDLYTpMNBWRNiH9JJw6FKh2ESmbCmyrAqq+B4bOSP56aYTq25SWFv5Pn5+fH/XrHo8Hra2t3T60QLGFR4zzNe0COpuSHJW+EcvqZo0p1l9fB5Gug/zRlgWYYydCKmYDrhIgpwJgQT7ppDEfbapBly+A4YWZmFqRq/Vw+sbdzB/7Ex9imWUyfT4AfnbI4Gn8+YHvkruWzvnxQCt21LXDZjHh9Ek63YQAcZfaijkfSXW8FikX8z7Sex5IBFXFB2MMt912G2bOnIkJEyZEfc/ChQuRk5MjfVRUVKg5pD5RrNeHMx8oCJVY7U/fSScYZHg75G7XbZIhELHo5Pb7VsXEBwCUH84f969J/lo65k29VzoBgM8N+N38eT92oI4NpO88AAD/Xce9HnMOHSQt3LokzqTjgiy+kWrq8CbX7RiISDol8dETVcXHTTfdhB9++AGvvPJKn++ZP38+WlpapI/Kyko1h9Qnik46g4/gj2m88Hy7pwlVLW647BacMFanSYZA3O52ICLZUFEbWJv8tXRKbWs4yXBACFAIcbjcFUo4BQzh+fD6g1JnW1329oikq5k/OnJjvq0g0w4A8AaCaPMk6QErDYmPxp3huYgAoKL4+PWvf4133nkHK1aswODBfRul3W5HdnZ2tw8tUKzEDghPOmksPsS+DqdNLEWG1azxaGIQ54QDqChAk9096ZS3Q0mGuq50AsI2kJHDy+FjoOg8UDYVgAA07wPa65O/ng5Ztb0eTR1eFLnsOFZv5/lEwlg4BOuI3YPEYTMjM9R6obHdm9x9MwuA3CH8edX65K6VZiguPhhjuOmmm7B06VIsX74cw4cPV/oWqqDowlNxJH88sDYtDxVy+wL438ZqADquchFJIOzSrIQNlE4CTBaecNi8L/nr6ZCloXbquk40BcI2EIcALQjlLrV5/PD4kzyXJSMnfLppmno/xETTc6aUwWLWaaUTwM9YCYb+r/sRHwBQkMW9H43tnuTvTaGXqChuLTfeeCNefPFFvPzyy3C5XKipqUFNTQ26uvRdbpbr5JPOwc4klS7Aa/ytmbzSIg1b6368uRZtbj9KczJw1PDoicS6QUbYpTAU6016twMAVke46iUNF54t1a3YWsPbqZ8xsUzr4cRG8nzk9vvWHIdVOuOnQQk7kEIv6Rd+a+704tOttQB0XuUChL0eZhs//qAfxLwPRWyAxEdUFBcfTz75JFpaWjBr1iyUlpZKH0uWLFH6VopSGFK69UooXbMFKD+MP0+z0AtjDP9ctQsAcNERFfrsZBiJjLBLUVYGAO79SnrXC0SEXtJPfPznqz0AgBPG6rSdeiSiAI3DBgRBkOaChjYF5oI0Tjp9d0MVfAGGQ0uzMa5Uh2c6RSKKj4xcXonUD2LeR2MHeT7UQpWwS7SPq6++WulbKUpxdkh8tCpgbEDa5n18tqMBm6pa4bCacdXRw7QeTv/ICLtkOyywhVzHiux4ytPTBmpb3fjvWh5yuebYARBWlWEDAFDkCs0FSogPyfOxLq1CsIEgwzNf7AEAnK/3RFMgYhMS35kzinpBSyfzx+a9ad9+QQ46DtKlluLQhNPm8aPLq8SuN5T3kWY7nqdCXo+Lj6zQb2+PSCKTDftBEARp4alrdSd/b3Hhqf4B8CskanXAvz/fDW8giCOG5WHaMJ2H3QBZNgAARUp6QYvHAxYH4GnhFQ9pwvsbq7G7oQO5TisuOkKb9giyiDPZVKRAEh8K2IAjD8gfwZ8foHNeREh8hMiyW5Bh5b8ORXc8dVvSpsRqQ2UzvtzVCItJwDXHjtB6OPEhw+UOAIVK7nrzRwCOfCDgSZuOty2dPrz09V4AwA2zDtF4NHEiI+EUgLJhF7MlfMZHmuT+MMbwjxVcSP1ixnBk2hVvlK08csVHKOzS0KGA5wMAKkIdbvd+rsz10gASHyEEQUCxi8f869oU2PVmFQO5QwGwtFG7otfjrMllKM91aDyaOJHpchc9YIrseiO7XKZJ6OX5r/agwxvAuNJszBpTpPVw4kNGwikQEXZRwgaAtMv7+HRLHbbWtCHTZsbVM4ZpPZz4kMRHblxvV9TzAQDDj+ePP61U5nppAImPCBSN9QJplXD4U307PtzEz/C47viRGo9GBnJd7qrZwLfKXE9DOr1+PPvFbgDA/80aqd+Opj2R6flQzQb2fqnM9TSEMYZFIa/H5UcP1X+ysYhkA/HmfIiltgp5PkaExEfV+rAQMjgkPiIQd711Sk06aeRqW7z6JzAGnDi2GGNKBtBBaXIXniyFF54hR/PH3asHfMLhkjWVONjpw9ACJ06bUKL1cOJHpudDCrsotus9DhBMQP0WoOWAMtfUiK92NWJ9ZTPsFhOumTlAQq9A4jkfSoVdsstCPV8YsGfgrwdKQOIjAinZUImwCwCMmMUf934JeDuUuaYG1La6pYZS/zdrAHk9Av7wwuOMr/tikRoC1JYFdNQP6GO1vf4gnl79EwDg2uNG6LuhVE9kLjyKez6c+UBZqPR+13JlrqkRotfjoiMqpN/TgCDBnI+DnV74AwptGij00o0BNIOoT7HSk07hKN5aN+AFdn+mzDU14JlQdcO0oQOkukGksxEA47tOZ3zjVnzhsdjCk87OT5S5pga8vf4AqlrcKHLZ8XO9N5TqSUcdf8yK7wwixW0AAA45kT/u+lS5a6aYdfsOSgnn1x43gLweQPc+H3GQ57RCEHhX9iYlGk8C4c3oT6uUud4Ah8RHBOGEU4UmHUEADjmZP9+5TJlrppiWLh9e+oa3Bx9QXg+AexsAwFkAmOI7f0bVhWeAio9gkEnJxtfMHK7vs3x6EvCHeytkxpcgK9pAhzeATm+SB4uJjBTFxwogqEApvwY8EfJ6nDO1HIPzdHyWTzQ65Xk+LGaTtBmtblbIEz5sJt8INe4Y8OE3JSDxEUG4x4OCC8+okPjYsWxAHjD2wld70O7xY/SgLMweo+PTa6Mh7njjXHSA7j0ekj5OW0QUH5XfhsNAA4iPN9diV30HsjMsuPSoIVoPRx7dvF8FcX1Lps2sbNk9wCte7Dk8B2kAdrrcUt2KT7bUQRAG4CYEkO39AiAJrP0HFToaxJEb7na6m7wfJD4iUDzeD/BkM7ONd7cbYE2G6lrdeHIl3/H+36yR+m+l3pMOfty7LPERsgGvP4hmJU42BYC8YUDBKIAFBtyk4wsE8deP+flEVx49DK6MAVLdICIuOjK8X4IgoDSHl5JXKbXrNVvCFQ87B17o5fHlOwAAp00oxciiLI1HI5NgIOwFzRoU97eJ7QQONHcqNxYp72NgzQNqQOIjgtIcHnZp7PDA7VPINWrLBIbO4M93DKzQy58/2IoObwCTK3Jx9mSdn1wajXb5no8Mq1kSIJUHFZx0RA/YAAu9PPfFHuyoa0d+pg2/GiiN5SIRF51MeV67iny+661sUtAGBmjexxc7G/D+xhqYBOCmEwZIY7lIOhsBFuTer8z4Es8BYHAeFx+KeT6AiLyPlQPSE64kJD4iyM+0IctuAWPAfiUXngGY97FmTxOWfn8AggD8/qzxA8/rAUQsPPKaYQ0JLTz71Fh4dn46YCad2lY3Hv1kOwDgrp+NHTg9HSJpF20g/kUHAIbk84VHURsQ8z72rxkwvR68/iB+9zbvznvF9KH6P0AuGu385F04C+P2fgHhsMsBJcVHxVGAJQNorwFqNip33QEIiY8IBEGQFp69jSrsevd8AXgVvK5KBIIMv3t7EwDg4iMqMLkiV9sBJYoYdsmSJz6GqmEDQ4/hk07rAaB+q3LXVZEH3t+CDm8AUypyB8bhYdFIINYPqCRAcyuAwjF8Fz5A3O7/+vwn7KrvQGGWHbfNGaP1cBJDFB8yQi4AUK6G58OaARxyEn++6U3lrjsAIfHRg6EFfNLZo+TCUzgayBnCz/jYvVq566rEy9/sxZbqVuQ4rLjjlLFaDydxEkg4BYAhIRvYp6QNWB082x0Atn+o3HVV4qtdjXh7fRUEAfjD2RMGpucLSDjsoor4AMIbka3vKXtdFTjQ3IXHP+V5anefNhY5jgHo+QLC4VeZm5Bw2KVTueRzAJhwHn/88b8DxguqBiQ+ejC0IBMAsK9RwaZgggCMPoU/17naberw4uGPuav99jmjkT8QTq7tiyQXnr1NCjeGG3s6f/zhdWWvqzC+QBD3vcNd7ZcdNQQTB8fXml6XJBh2USXnAwDGhxaeLe8BnjZlr60wv393E7p8ARw5PB/nTh2AOV8iiXo+QgmnHd4AWroUSj4HgNE/A6xOXoRQlR7nfiUCiY8eiJ6PvUpPOpMu4o9b3gE87cpeW0H+8tFWtHT5cGhpNi49aqjWw0mO9sRyPkQbqGxS0N0KAOPP5ZVPdZt0He99/ss92F7bjjynFbcPVFe7SIJhF1F8NHZ40e5RqNcHAJQfBuSPBPxdwNb/KXddhVmxrQ4fbaqF2STgD2dPGDjn+ESjPTEbyLCapVb7ioZebJlcgADAj0uVu+4Ag8RHD8R4v6Iud4Cfbpo/EvB1AlveVfbaCrF8ay1e+bYSAHD/2eNhHqiudoA3l2qr5s9z5O3ahuRz71dVSxc8fgUbQjnywpPOhleVu66C7Kpvx19Dnq87fzYWuc4B7PkCgNaQDbjknUWTnWFFbijBVlHvhyCENyI/LFHuugrS5vZJSaZzjxk2sM5yioYkPuR5PgCgIpR4rGj+FxAOvWx6a8Cf+ZQoJD56IMb7Kw92IhBUMB4nCMDkS/jzDS8rd12FqGt14/bX+dkjvzhmGI4YSG3Uo9FWzftqmKyywy6FWTY4beZQ1ZPC3o/JF/PHjW/ortOl2xfATS9/jy5fADNGFuDCaRVaDyl5WriYRo785miq5X1MuoA//rQSaKtV9tpJwhjD3W/+iMqmLpTnOnDLSaO1HlLytPHTuOXOAwAwqpj3NNlWq3CI7JCTAZsLaN2fFideJwKJjx6U5jhgM5vgCzBUNSu88Ey6kD/u/gxorlT22kkQDDLc+tp6NHV4cWhpNu46dQAnmYq07OePOeWASZ6ZR1Y9/VSvcN7HIScDjnxeaqezA6b+/MFWbKluRX6mDX+7aMrATTIV6WoGPK38uUzvFwCMKOQesB1KLzz5I4DBR/Kqlx//q+y1k2TJmkq8u6EKFpOAxy+diiy7ReshJU8LPx4CufLF9NgSXlq8tbpVyRHxqhcxB8ygoRcSHz0wmwSMDKndzUobXN5QYOhMAAzY+Jqy106Cf67+CV/sbITDasZjl0yF3TKAzu7oC2nHm9ju/dBQP4PNVQrbgMUWdrnqKPSybHMtnvtyDwDgrxdMxqDsDG0HpASiDTgLeJxdJoeWcRvYpLQNAOGNiI5CL9tq2rDgXV5if/spY3DYkPjOQdE1AX/4HJVc+TlsY0MhJ8U9HwAw4ef88cc3AJ9CnXQHECQ+ojBBnHQOtCh/cdHtvuFVXZRZfb/voNQ++/6zxuOQ4gHWOrkvkhUf0sKjhg2Ewm9b9VHxUN3ShTve2ACAHxw3e+wAO8OnLyTvV2I2ML6MV/kovgkBePKxyQJUrwdqNyl/fZl0eQO46eV1cPuCOH50Ea4diN1so9G6n4dfzfaEcj7EfJd9TZ3KHTIoMvIEbpudjbrajKYKEh9REEsLf1Rjx3Po2YDFATRsB/Z8rvz1ZXCguQvXvbAW/iDDGZNKccG0AdpIKhpiWCsnsZ9pQjm3AVV2veWH87NefJ3A9y8qf30ZdHr9uP6FtWju9GFieQ7+38/SIOQmItpAAu52IOz92tvYiVa3gqWWAC/9HXMaf/7VP5S9tkwYY5i/9AfsqGtHscuORy6cPPBDbiLNESEXmeFXACjIsqMwyw7GgO21Clcpmi3Akdfy518/qYvNaCoh8REFccezUQ3PR0Y2MOVS/vzzR5S/fpy0un2Y++wa1LV5MGaQCw+cN3Fgl9P1RNz1JrrwhDwfB5q7cLDDq9SoOIIAHH0Df/7lIsCv8PXjxB8I4uZXvseG/S3Ic1qx6NKpsFnSaEoQY/0Jej7yMm0oC533tLVaBQ/VMbfwxx9e0/SI9Yc+2oa31vM8j79fPBUFofLStODgXv6YQMhFRAy9KJ73AQCHXQlYM4G6zbrLAVObNJpplOPQ0myYBH6cdl2rCrG4Y24GBDOwa7kmx2t7/UH834trsa22DcUuO579xRHIHminlfaHuONJ0PORnWGV+n2o4v2YfCl3A7fu5zHfFMMYw4J3N+GTLXWwW0z411VHSA320obm5EJvAHBomegBU2EjMngazwEL+oCvn1D++nHwn6/2SCdXLzxvIo4eWaDJOFRD8nzIr3YSEcWHKptRRy4w9TL+/Osnlb++jiHxEQWHzSzlPqhicHnDgInn8+efpdb7EQwyzF+6EV/sbESmzYxnrj4CZaFOfmlDwAc0/cSfFyR+CueEMjH8poINWDOA6SHvx+ePprzW/6lVP+HFr/dBEIC/XzwFhw9Ng+TCnjTyRRX5wxO+hOgB+2G/CjYAhL0fa5/j1Tkp5MMfa3DfOzzf5Dcnj8YF6VBa3ZPmkOcjL3HPxxHDeduBr39qVGJEvTnqegACsOMjoGGHOvfQISQ++mDy4FwAwDe7m9S5wcxb+eOWd4H67ercoweBIMPdb27Ef9fth9kkYNFlh0m5DWlF026+m7RmAtmJ57FMHZILAPhyl0qTzrS5gD0HaNgGbHtfnXtE4V+f/YQHP+SH2917+qH42YTSlN07ZQQDPK8KAIoSz2OZHlp4Pt/ZoOz5HiKjTgaKDwW87cB3zyh//T5YsbUON7/6PRgDLjlyCG46IXGRrmvExTwvcQE6fXgBBAHYVd+hjie8YGS4+WCKN6NaQuKjD44dzVtyr9pWr84NiseFEs4Y8Pnf1LlHBP5AEL95bT1eXVMJkwD85fxJmD0mTaoaetLAq3dQNDqhJDOR40M28M1PjXD7VGgIlpENHPFL/vyzh1Pi/Vi0fAf++L8tAIAbZo3E3JmJT8q65uAefpCjxZGUy/3wYXnIsJpQ3+ZRp9xSEMLej6/+AbhV8rBE8P7Galz7wnfw+oOYc+gg/OHs8emV7yUSDIZPkB40PuHL5DitUvLxV2p5P467nT9ueAWoWq/OPSLYVd+ufBdvmZD46INjDymESeD13Yo3G5Nu8hv+uOEV4MBade4BnuNx86vfS0llj10yFecdlkaVLT0RJ5wkdrwAcEhxFkpzMuDxB9XzgE3/P+6hqfoeWP+SOvcAz/F46MOt0qGBt508GnecMsDPbYlFHRdYKBwFmBLvW2O3mDF9BM+D+Gx7gxIj682En/Pqp84GYMVCde4R4o21+3HTy+vgCzCcObkM/7jsMFjMaboMHNzNK8osGbyxWxIcHbIB1UIvg6cBEy8AwICP7la18mXt3ib8/MkvcdWz36JJ6WR6GaSp1SVPXqYNkytyAQCrtqvk/Rg8LXTOAwPeu02VdtuN7R5c/q9v8P7GGtjMJjxx2WE4Y1KZ4vfRFfWi5yO5xVUQBMn7oZoHLKsYmHUXf/7JfUCn8iLH7QvgN69vwBOhxMLfnjYON584Kj13uyKiAC0el/Sljh3FbWD1DpVswGwFTnuIP/92sSp9PxhjWLR8B25/fQOCDLj4iAo8etEUWNNVeAC8ggTg80ASAhSAlIi7ertK4TcAOPE+LpT2fqHa+V/vb6zGpU9/g+ZOH7IdVvV+ljhIY8tLnlmjeVhi+dY69W4y54887l+9Hljzb0UvvbmqFWct+gLf7mmCy27Bv66ahjnj5R2wNSCRdr3J7+xF8bF8a616/6jT/w8oGsebDS3/g6KXrmlx46J/foWl6w7AbBLwx3Mm4FfHpUkDqVhI3q/kbeC4UYUAeP5Xc6dKO8WRJwDjzuINsd6/Q9Gdb4fHjxteWid5va6ZORwLz5s4sA+OjIfakPgoTjzkIjJjZCGy7BYcaO7Cmj0Hk75eVHIrgBm/5s+X3Qv4PYpd2h8I4s8fbMUNL62Dxx/ESeOK8cqvjtK0rJrERwzmjOcd8VZsrVMn0QjgO98T7+XPl/9BkYOmGGNYum4/fv7klzjQ3IVhBU68eeMMHDda3tHyAxJPW3jHUzY16csdO7oImTYz9jR2qhfvNVuB0x/mz797VrEQ3Nc/NeLMRZ9jw/4W5Dqt+M/cI3H59MSz/gcU+7/jjyWTkr7UIcVZGFeaDa8/iKXrVOzHccqfeI7K3i947w8F2FXfjvOe+BIf/FgDq1nAn8+biHvOODS9vV4itfxkXiW8Xw6bGadN5Bu3N9aqeC7XMfOArBKes/Tp7xW5ZEO7B1c+8y2eWsU9n3OPGY6nLj8cTpu25/aQ+IjBuNJsTBuaB3+Q4eVv96l3o2lz+ULpaQXeviGp8MvBDi9ufHkdbnttA7p8ARw7qhBv3zgThxQP8GOx4+XAWn5gV84QIDv5Ko4suwXnTOWHkr349d6kr9cnw2aGQ3BLrwXcifcWcfsC+NP/NuOSp79GfZsHowdl4Z0bZ+KYQwqVG6+eaa/j8X4IwOAjkr6cIAi49CietPryt/vU84DlDgGOC+WBvX97uFQ4AYJBhue+2I3TH/sM22rbUOSy49Vrj8bFRyaefDugYAzY9zV/PniaIpc8/3Beivz+xhp0eVU6kdqeBZz5KH/+1SJg+8dJXW7Z5lqc9vfP8OWuRjhtZiy6dCp+d+ahusjz0X4EOueKo/lO8eVv9sEXUKkawWQGzlrE4307PwFW/ln2JRhj+GhTDU55dDXe31gDi0nA7XNG49mrj0COM80aiMWiMnQ8dcWRil1S9BZ8vKkWtWp5wADglIW8NLhxJ/DW/yXkev9+30GcvegLPP3ZbrBQbH/pDcdgSKhhmiEQF53icbyJkwKcM6UMTpsZO+va8a1ayccA3/kOOZpvRJZcAXjlVyRUNnXiime+wYJ3N8PtC2LmIYV479cz07OXS1807gI66viZLmWHKXLJI4blYUi+E+0ev7rejzGnhnp/AHjreqC1WvYlmju9mPfq9/jVf75DXZsHI4sy8faNx+gq34/ERz+cOqEUhVl21LV58OoaFQ2uZAJw5mP8+eqHgK3/i/tbd9W346pn1+C6F9ZKhvbmDcfgphNG6ULhphRx4ak4SrFLRnrAHvtUxSZAmQXAhf8BzDZ+6NwXj8b9rfVtHtz++gac+8SX2FbbhsIsG/515TT8+eeT0uNYdDlUfsMfFbQBV4YVZ0/hE/dDH21DMKiS98NsBc5/FsgsBuo2Af+7LW4R2un14+GPtuHER1bhi52NyLCa8Puzx+M/c49Mj1OK5bD3C/44eBpv6KcAgiDgl6HS9Ec/2aH8eT+RnPx7oGQizwP77zVx53/4A0G88NUenPDXVXhrfRVMAnDd8SPwv5uPxahB+vJ+G2xlko/NYsKNs0cCAB76YCtqWlTc+U6+KKx4l14HVP8Q8+01LW787u0f8bNHV2P19nrYzCbcNPsQvPfrY6XD8QyFtxPY+yV/PnSGopf+zRyeuPjSN/uwdq+KO9/BhwOnhiofPv19v1nvbW4fHvt0B054eCXeWMvPs/n5YYPx0bzjcNKh8k/xTAt2LeePCtvAr08YBafNjLV7D+J1NXe+2aXA+c8AgomX4a9+OObbvf4gXvl2H0786yosWrETXj/3dnxwy3G48uhh6XNInBzEQzuHHqPoZS89aghGFGWiscOLf6zYqei1u2GxcxFqzQT2fg7895dAoO9TdRlj+GRzLU79+2e49+1NaOrwYlRxFt74vxmYf+o4ZFiTq/ZRAxIfcXDl0cMwpSIXbR4/7nnrR3XLk+b8kf/DeNuA58+MevZLZVMnFryzCcf9ZQX+89Ve+AIMs8cU4eNbj8Ptp4yBw6Y/Q0sJuz4F/F08dp5EU6FoHD2yABccznujzF+6UZ2mYyKHX80PnGJB4PWrgc1v93rLwQ4vFi3fgZkPrsAjy7ajzePHxPIc/Pf/ZuCvF05Or8PB5NCwkyccmyzAIScpeumyXAduO3k0AGCh2huR4ccCc/7En6/4Y1QB4vYF8NI3ezH74ZWYv3QjqlvcqMh34J9XHI4Xfnkkhhem2Vk98eL3ANs/4s9HzFL00lazCb89jSewPvP5bvX6fgC8R83FL3FP6JZ3gbdv7NWIMBBk+N8P1Tjtsc9xzX++w466duQ5rfj92ePx/i3H4rAh+g21CUzLQt8otLa2IicnBy0tLcjOztZ6OBLbatpwxuOfwRdguOroobjvzPHq7SjcLcCLPwf2r+FluFe8iWDZYfj6p0Y8/9UeLNtcC9Hre8SwPNx60mgcPbLAGBnssVh6LfDDEmD6jcDPHlD88gc7vDjxkVVo6vDi2FGFePrKaertKAJ+nvex8TV+COH5/wbGn4tNVS34z5d78db6A/D4+UQ0sigTN584CmdMKkv/8sn++PxvwCcLgBGzgSvfUvzy/kAQZy76AluqWzGiKBOv/mo6itUMaXz213DVwwn3AMfejsqDXXjxm71YsqYSzZ3c9V/ssuP640fi0qOG6HKXm1K2vg+8egngKgVu3ZxUl+NoMMZw48vr8P7GGrgyLHj9+qMxtkTFtWrr/3j+DwvwAynPfBQNbuC17yrx8jf7sP8gb4KZaTPj8qOH4objD9Esz0/O+k3iQwavfrsPdy3dCAC4aFoF/njuBPWa9LhbwV66AELl1/CaHFhovhbPtoVj2MeOKsR1x43EMYeQ6ADABdsj47nH6BcfKO5yF/n6p0bMfW4NOr0BzBhZgH9ecThcap0IHAwAb90A/PAqGAS8mHEJ7ms+DcGQw/LQ0mxcd/wIEh0ijAFPzuCej9MfCbeuV5jKpk5cvPhrHGjuwsiiTDw/90gMzlMxoXf1w1L/l9UZJ+Da5ivgBvdsDc5z4Jczh+OSI0l0SLwxF/jxv/zgxp+p0zHW7Qvg8n99g+/2HkSxy45/XHYYjhiWr8q9AAA/vA725rUQWBA77eNxeftNqAnw0HqOw4qrZgzDL2YMQ16mTb0xxAGJDxX579r9uOMN3iVwVHEWfnfmoVIHRCVodfvw3Z4mrN7egC+37ME97QtxnJkLnjfYidg46W5cPnOM7pKHNOeLx3hjnqKxwA1f8zMzVGLNniZc/cy36PAGUOSy466fjcW5U8sV84S5fQGsr2zG5zsasHxzFS5pXIQrLJ8AAD4LTsJ7h9yP84+bgmlD80h4RrLjE+Cln/M4+W2bAId6Lud9jZ24aPFXqG5xI8Nqws0njsI1M0fAZlFmM+IPBLG5uhWf72zA8i11mHzgZcw3vwSLEMTWYAX+XXY/5hw3EyeMLSbhGcnBvcDjhwFBP3DtSkV6/fRFc6cXF/7zK2yvbYcg8P4ZN58wSjGvA2MMu+o78PmOeqzcXg/LT5/iEdNjyBY6UcXy8XjunZh67Ok4c1KZbkLtJD5U5sMfa3D3mxulvvgTyrNx+sQynDiuGCMKM+OuMGnu9GJ3Qwe2VLfhx6oW/LC/GZurWhGZSJ9hAR4q/BBnNr8AAQzIH8nV/OhT1PjRBibeTmDRNKD1AHDW4zxfQmXWVzbj1iXrsbuhAwBQke/AmZPKcMr4EowpccW9C+3w+LGnsQNbq9uwqaoVGw80Y0NlC7wRZd0mAbiteB2ub1sES9ANOAt4K+aplyfdNjptYAx47gyenKfijjeSyqZO/Oa1Dfh2D09Azs+04fSJpThtYikmlGfH7RFz+wLYf7ATW2u4Dfx4oAXr9h5ER49eEhcW7sUC78Nweht5Wf7MW/mhdFaH4j/bgOW9W/npwCNmAVf2zpVSmpYuH/743ma8Hkr2tltMkg1MGZKLwjhzr/yBIKqa3dha04ptNW3YsL8F6/Yd7HX2ysy8g/g7ewgF7lDPoalX8MoYp4peFxmQ+EgBLV28yuD5L/fAH6EWbBYTDiniB5JlO6zIslvAwODzM7j9ATR1eFHf5kF1ixstXdFLtYYVODF9RAFOGFuMmaMKeSe6XSuAN68D2kMdUA85GTjxd0Bp8h0cBzwf3wN8+TiQXQ78ep1ipXX94fEH8OwXe7Bo+U60e8KZ6GaTgBGFmSjLdSDHYUW2g5e6+gMMHn8QTR1eNHZ4UNPiQUN79BK6YpcdR40owAljizBrdDF3p9Zu5i7l+lD7+NIpwEkL+ERrdA/I+pd5jozZDvx6LW9VnQIYY3jz+wN48MOtqG3t/rccVuBERb4TOQ4rchxWCAJPEPT4g2ju9KGpw4vaVjdqWt1Rq2ldGRYcOSwfs8YW44SxxSjPdQBtNXwe+Gklf1PuUOCEe4Hx5wJmg5VU92T/WuDfJ/PciKv/xxv3pYjlW2vx0IfbsLWm+8nH5bkOlOVmoMhlR47DBtFJ5fYF0dLlQ0uXF9UtblS3uBGIUr5tt5hw2JA8zBpThFljijF6UBYETyuw7HfA2uf4m5yFwDE382aVdm094iQ+UkhjuwcfbarF+xursXbvQXTJrIIYlG3H6EEujC/LwYTybEwbmo+SnD4WT3cr7wHy9VNAMCRchh8HHH0Tz+w34i54xyfAyxfwypBLX9PEI9Tp9WP51jq8s74K3+5pkpIA4yU/04ZDirJwaFk2xpdlY9qwfAwrcEYPqQR8wLdPAysX8kZUADBoInD0jXwBSpHw0hV1W4Fn5vC8nxPvA469LeVD8AeC+GJXI97+/gC++qkR1TIrYTJtZhxSnIVDy3JwaFk2Dh+ShzElrughFcaAzW8BH/2We/sAIKeCe3ymXKJquEm3dDYB/zoJaNoFjD8PuODZlA+BMYYN+1vw+neV+HZ3E3bUtcv6fpvZhEOKszC2xIVDy7Jx2NA8TCjL6TuUt/cr4L154XOMHHnAkdcBUy/jFX8aQOJDI4JBhsqDndhW04amDi/a3H60uX0QBAE2iwl2iwn5mTYUZNkxKNuOIfnOxPrrN+wEVvyJl2CykNjJGgQceg5fgAYfYYxd0I5lPAvc3wVMuRw45x9ajwiMMdS2erClphUNbR60dPnQ6vZDAGA1czvIddpQkGlDsSsDQwr4zlg27fXA6r8A37/Ajw0HAJsLGHcGn3yHH2cMIVK7CXjhPKC9htv9Lz7Uhe03dXixpboVdW1uNHf6JC+nWRBgMZuQ57QiP9OGQpcdQ/OdyM+0yc/f8bQDXz8JfPtPoCN04q7JCow6GZjwc74hUajDq65prwNePA+o2Qi4yoD/+0IXYYiWLh+2Vreivt0Tmgv8YODLrc1ikjxiJdkZGJznRLHLLj9vLODj5wB99lcuvESGHQtMvIDbQnbquprqQnw88cQT+Mtf/oLq6mqMHz8ejz76KI499th+v28gi4+U01zJJ551LwDu5vDr9mzuchx2LFB+OO+eakujmv+2WuCzh/nx4wAwag5w8cu8O6TR6GwC1j4LrHkGaN0fft1sB4YcBQw/nnd5LJmkiwlZMTzt/O+/8s9AwAMUH8pd7en0M8aLrwvY8Cr3iNVtCr8umHhr8RHHc2FWNhVwpdGp1gEfsPF17gHqauJdYa96Fygeq/XIUk8wwL1ha58Ddn8GIGJZLz6UzwNlU4HSybx/iEpecs3Fx5IlS3DFFVfgiSeewDHHHIN//vOf+Ne//oXNmzdjyJDY7iASHwng9wI/rQB+XAps/4C7n7shcIMrHA0UHAIUjOSx4uwyXgtvz9Jk2LJoOQBUfs1r3rf+D/CH3NpH/Io3ZjPCLj8WwSCw/1teYrjlXaAtynkQuUN5NZBoA3lDeZ5MdhkXrHrPG+ls4r1vtn3AJ9qu0NHmo+YA5zwJZBrk4LxY1G4GfnyD20DD9t5fzyrhi3PBIfwjbxj/+2cP5sJN7zbgaQeq1/MmYpveBFpCnWYHTeShlsJRmg5PFzRX8v5A2z4Ine7cY4m3Onnr9tIp/ER1BfNENBcfRx11FA477DA8+eST0mvjxo3DOeecg4ULY2ehk/hIkmAAqN4A7PmMtxqv3hB9IYrE5uLxwowc7qbNyAEyckPPc4GMbN5lz2Lnj7Gei4paMivW9+f+Lr5r83Xx0IH46Gnnh0K11/HSuaZdYbeyyOAjgNl3AyNPSPY3ln4wBjTsAHav4m2mq9fzI7pjYXWGbSDybx9pA9Lf2Q5YQo9ma+j1iNeEyBh1xPTSc6phQS4iRRvwR9iCpw1orQJa9vO8hpYDPLQSSf5I4LjbgcmX6H/R1IKWA9wGdn/GbaB+K/+d94XZFrKB3Ii/f14f80DE31t6tIe/LsRZcsyCob+9OzQHuMPPPe187mqtCn0c4GIj8mfILOK5LkffxMdBdKeziR83sH8NULWeh6Z8vEIP1kxgfqWiXhBNxYfX64XT6cTrr7+Oc889V3r9lltuwfr167Fq1apu7/d4PPB4wlnira2tqKioIPGhJG213Ogad/KFvHFXeFL3ykuK0gzBzFumjzie57aUH04Ljhy6DoZtoHEXf2yuBNqqwh6EgUDBITycOO4M3sXUiEnWieLt4J6Rhu0hO9jBbaC1iov9gUJ2OW8iOPZ0YPTPqNRYDsEA//+vXs+FyfTrFb28HPGheGZWQ0MDAoEABg3qfqjVoEGDUFNT0+v9CxcuxP3336/0MIhIXIP4x6goZ124W3n5rrsF6GrmuSPu5tDzltDnrUDAyz/8Hh5rDXh4uCfgjXju6b67lcSBEP1zqyPiwxl+tGXyHU1mEZAzmIcICkenV95KqnHk8STU4cf1/pq3k3sVIm1AsoXQa57W0N/eG34MeMN/98iv9XTzoodIjLQDS0YUG3Dwv7WrhIcDcsr5gpM/3JiVHEphywQqjuAfPfF7uKfR3czFaE876DrIvVGRf2e/p/v/fkwb6Ash/De3iHaQEbIFJw8LZ5eFPsp5mMhl0AMTlcBkBopG8w+NUS0tvGfmNmMsajb3/Pnzcdtt4dI40fNBpIiMbP5BGBebE8gfofUoCC2x2EO9UWjuJVKD4uKjsLAQZrO5l5ejrq6ulzcEAOx2O+x2g57ASRAEQRAGRPFT0Ww2Gw4//HAsW7as2+vLli3DjBnqHPZFEARBEMTAQZWwy2233YYrrrgC06ZNw9FHH43Fixdj3759uP56ZZNbCIIgCIIYeKgiPi666CI0Njbi97//PaqrqzFhwgS8//77GDp0qBq3IwiCIAhiAEHt1QmCIAiCSBo567fiOR8EQRAEQRCxIPFBEARBEERKIfFBEARBEERKIfFBEARBEERKIfFBEARBEERKIfFBEARBEERKIfFBEARBEERKIfFBEARBEERKIfFBEARBEERKUaW9ejKIDVdbW1s1HglBEARBEPEirtvxNE7Xnfhoa2sDAFRUVGg8EoIgCIIg5NLW1oacnJyY79Hd2S7BYBBVVVVwuVwQBEHRa7e2tqKiogKVlZWGODeGft70xmg/L2C8n5l+3vQm3X5exhja2tpQVlYGkyl2VofuPB8mkwmDBw9W9R7Z2dlp8YeOF/p50xuj/byA8X5m+nnTm3T6efvzeIhQwilBEARBECmFxAdBEARBECnFUOLDbrfjvvvug91u13ooKYF+3vTGaD8vYLyfmX7e9MZoP28kuks4JQiCIAgivTGU54MgCIIgCO0h8UEQBEEQREoh8UEQBEEQREoh8UEQBEEQREoxjPh44oknMHz4cGRkZODwww/HZ599pvWQVGPhwoU44ogj4HK5UFxcjHPOOQfbtm3TelgpY+HChRAEAfPmzdN6KKpx4MABXH755SgoKIDT6cSUKVOwdu1arYelCn6/H/fccw+GDx8Oh8OBESNG4Pe//z2CwaDWQ1OE1atX48wzz0RZWRkEQcBbb73V7euMMSxYsABlZWVwOByYNWsWNm3apM1gFSDWz+vz+XDnnXdi4sSJyMzMRFlZGa688kpUVVVpN2AF6O9vHMl1110HQRDw6KOPpmx8WmAI8bFkyRLMmzcPv/3tb/H999/j2GOPxamnnop9+/ZpPTRVWLVqFW688UZ8/fXXWLZsGfx+P+bMmYOOjg6th6Y6a9asweLFizFp0iSth6IaBw8exDHHHAOr1YoPPvgAmzdvxl//+lfk5uZqPTRVePDBB/HUU09h0aJF2LJlCx566CH85S9/weOPP6710BSho6MDkydPxqJFi6J+/aGHHsIjjzyCRYsWYc2aNSgpKcHJJ58snYM10Ij183Z2dmLdunW49957sW7dOixduhTbt2/HWWedpcFIlaO/v7HIW2+9hW+++QZlZWUpGpmGMANw5JFHsuuvv77ba2PHjmV33XWXRiNKLXV1dQwAW7VqldZDUZW2tjY2atQotmzZMnb88cezW265ReshqcKdd97JZs6cqfUwUsbpp5/O5s6d2+218847j11++eUajUg9ALA333xT+jwYDLKSkhL25z//WXrN7XaznJwc9tRTT2kwQmXp+fNG49tvv2UA2N69e1MzKJXp62fev38/Ky8vZz/++CMbOnQo+9vf/pbysaWStPd8eL1erF27FnPmzOn2+pw5c/Dll19qNKrU0tLSAgDIz8/XeCTqcuONN+L000/HSSedpPVQVOWdd97BtGnTcMEFF6C4uBhTp07F008/rfWwVGPmzJn49NNPsX37dgDAhg0b8Pnnn+O0007TeGTqs3v3btTU1HSbv+x2O44//nhDzV+CIKStZw/gB6peccUVuOOOOzB+/Hith5MSdHewnNI0NDQgEAhg0KBB3V4fNGgQampqNBpV6mCM4bbbbsPMmTMxYcIErYejGq+++irWrVuHNWvWaD0U1fnpp5/w5JNP4rbbbsPdd9+Nb7/9FjfffDPsdjuuvPJKrYenOHfeeSdaWlowduxYmM1mBAIB/OlPf8Ill1yi9dBUR5yjos1fe/fu1WJIKcXtduOuu+7CpZdemjYHr0XjwQcfhMViwc0336z1UFJG2osPEUEQun3OGOv1Wjpy00034YcffsDnn3+u9VBUo7KyErfccgs+/vhjZGRkaD0c1QkGg5g2bRoeeOABAMDUqVOxadMmPPnkk2kpPpYsWYIXX3wRL7/8MsaPH4/169dj3rx5KCsrw1VXXaX18FKCEecvn8+Hiy++GMFgEE888YTWw1GNtWvX4u9//zvWrVuX9n/TSNI+7FJYWAiz2dzLy1FXV9drN5Fu/PrXv8Y777yDFStWYPDgwVoPRzXWrl2Luro6HH744bBYLLBYLFi1ahUee+wxWCwWBAIBrYeoKKWlpTj00EO7vTZu3Li0TaC+4447cNddd+Hiiy/GxIkTccUVV+DWW2/FwoULtR6a6pSUlACA4eYvn8+HCy+8ELt378ayZcvS2uvx2Wefoa6uDkOGDJHmr7179+I3v/kNhg0bpvXwVCPtxYfNZsPhhx+OZcuWdXt92bJlmDFjhkajUhfGGG666SYsXboUy5cvx/Dhw7UekqqceOKJ2LhxI9avXy99TJs2DZdddhnWr18Ps9ms9RAV5ZhjjulVOr19+3YMHTpUoxGpS2dnJ0ym7lOV2WxOm1LbWAwfPhwlJSXd5i+v14tVq1al7fwlCo8dO3bgk08+QUFBgdZDUpUrrrgCP/zwQ7f5q6ysDHfccQc++ugjrYenGoYIu9x222244oorMG3aNBx99NFYvHgx9u3bh+uvv17roanCjTfeiJdffhlvv/02XC6XtGvKycmBw+HQeHTK43K5euWzZGZmoqCgIC3zXG699VbMmDEDDzzwAC688EJ8++23WLx4MRYvXqz10FThzDPPxJ/+9CcMGTIE48ePx/fff49HHnkEc+fO1XpoitDe3o6dO3dKn+/evRvr169Hfn4+hgwZgnnz5uGBBx7AqFGjMGrUKDzwwANwOp249NJLNRx14sT6ecvKynD++edj3bp1eO+99xAIBKT5Kz8/HzabTathJ0V/f+OeAstqtaKkpARjxoxJ9VBTh7bFNqnjH//4Bxs6dCiz2WzssMMOS+uyUwBRP5599lmth5Yy0rnUljHG3n33XTZhwgRmt9vZ2LFj2eLFi7Uekmq0trayW265hQ0ZMoRlZGSwESNGsN/+9rfM4/FoPTRFWLFiRdT/16uuuooxxstt77vvPlZSUsLsdjs77rjj2MaNG7UddBLE+nl3797d5/y1YsUKrYeeMP39jXtihFJbgTHGUqRzCIIgCIIg0j/ngyAIgiAIfUHigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIRVmwYAGmTJmi9TAIgtAx1GSMIIi46e/UzauuugqLFi2Cx+NJ+zM5CIJIHBIfBEHETeTpqkuWLMHvfve7bofcORwO5OTkaDE0giAGEBR2IQgibkpKSqSPnJwcCILQ67WeYZerr74a55xzDh544AEMGjQIubm5uP/+++H3+3HHHXcgPz8fgwcPxjPPPNPtXgcOHMBFF12EvLw8FBQU4Oyzz8aePXtS+wMTBKEKJD4IglCd5cuXo6qqCqtXr8YjjzyCBQsW4IwzzkBeXh6++eYbXH/99bj++utRWVkJAOjs7MTs2bORlZWF1atX4/PPP0dWVhZ+9rOfwev1avzTEASRLCQ+CIJQnfz8fDz22GMYM2YM5s6dizFjxqCzsxN33303Ro0ahfnz58Nms+GLL74AALz66qswmUz417/+hYkTJ2LcuHF49tlnsW/fPqxcuVLbH4YgiKSxaD0AgiDSn/Hjx8NkCu91Bg0ahAkTJkifm81mFBQUoK6uDgCwdu1a7Ny5Ey6Xq9t13G43du3alZpBEwShGiQ+CIJQHavV2u1zQRCivhYMBgEAwWAQhx9+OF566aVe1yoqKlJvoARBpAQSHwRB6I7DDjsMS5YsQXFxMbKzs7UeDkEQCkM5HwRB6I7LLrsMhYWFOPvss/HZZ59h9+7dWLVqFW655Rbs379f6+ERBJEkJD4IgtAdTqcTq1evxpAhQ3Deeedh3LhxmDt3Lrq6usgTQhBpADUZIwiCIAgipZDngyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlELigyAIgiCIlPL/AfaCVsjDSWJTAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAHFCAYAAABSEJsFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgEUlEQVR4nO2dd3hb5fm/b21vO3YSJ84mhCQkjECAEKCEXWaBUsooo+mAH1CgdFBoaYG25EtpKWUX2gJlldIGyioQCCRQVkgIM2TvxLGdxNuWNd7fH0fnSLJlWeMcSZae+7p8aViRXtsn53zeZ3wem1JKIQiCIAiCkCHs2V6AIAiCIAiFhYgPQRAEQRAyiogPQRAEQRAyiogPQRAEQRAyiogPQRAEQRAyiogPQRAEQRAyiogPQRAEQRAyiogPQRAEQRAyiogPQRAEQRAyiogPYdDx8MMPY7PZ+PDDD9N+ry+++IIbb7yRDRs29PnenDlzmD59etqfYRXjx4/n4osvNh5v27aNG2+8keXLl2dtTbnEjTfeiM1mo6mpKaOf2/vvkg0uvvhixo8fn9U1CEI8RHwIBc0XX3zBTTfdFFN8DDa2bdvGTTfdJOJD4IYbbuCZZ57J9jIEoV+c2V6AIAi5TVdXF0VFRdhstj7f6+zspKSkJAurEuIxceLEbC9BEOIikQ8hb3n77bc55phjKC8vp6SkhNmzZ/Piiy8a33/44Yf5xje+AcBRRx2FzWbDZrPx8MMP9/uezzzzDCUlJXz3u9/F7/fT3d3Nj370I/bff38qKyuprq7m0EMP5T//+U/Uv5sxYwZHHHFEn/cLBAKMGjWKM88803hu165dXHbZZYwaNQq3280ee+zBz3/+c7xeb7/revPNNznooIMA+Pa3v238LDfeeKPxmg8//JDTTjuN6upqioqKmDFjBv/85z+j3kdPab366qvMnTuXYcOGUVJSgtfrNdJQixcvZvbs2ZSUlDB37lwAnnrqKY4//nhGjhxJcXExU6dO5Wc/+xkdHR39rjlVbDYbV1xxBY8++ihTp06lpKSE/fbbjxdeeCHm6zdv3syZZ55JRUUFlZWVfOtb36KxsTHqNQsXLmTOnDnU1NRQXFzM2LFj+frXv05nZ6fxmlT+Lo2Njbjdbm644YY+3/vyyy+x2WzceeedxnP19fVccskljB49GrfbzYQJE7jpppvw+/1J/Y56p10SPf42bNiAzWbjd7/7Hb/97W8ZO3YsRUVFzJw5k9dffz2pNQhCXJQgDDIeeughBaglS5b0+5o333xTuVwudeCBB6qnnnpKPfvss+r4449XNptN/eMf/1BKKdXQ0KBuueUWBah77rlHvfvuu+rdd99VDQ0NSimljjzySDVt2jTjPW+//XblcDjUr3/9a+O55uZmdfHFF6tHH31ULVy4UL388svqxz/+sbLb7eqRRx4xXvenP/1JAWrVqlVR63zppZcUoJ577jmllFJdXV1q3333VaWlper3v/+9evXVV9UNN9ygnE6nOumkk6L+7bhx49RFF12klFKqpaXF+L384he/MH6WzZs3K6WUWrhwoXK73eqII45QTz31lHr55ZfVxRdfrAD10EMP9fndjho1Sn3/+99X//3vf9W//vUv5ff71ZFHHqmqq6vVmDFj1F133aXeeOMNtWjRIqWUUr/+9a/VH//4R/Xiiy+qN998U91///1qwoQJ6qijjkrob5oMgBo/frw6+OCD1T//+U/10ksvqTlz5iin06nWrl1rvO5Xv/qVAtS4cePUT37yE/XKK6+o22+/XZWWlqoZM2aonp4epZRS69evV0VFReq4445Tzz77rHrzzTfV448/ri644AK1e/futP4uSil1xhlnqDFjxqhAIBD1up/+9KfK7XarpqYmpZRS27dvV2PGjFHjxo1Tf/7zn9Vrr72mfv3rXyuPx6MuvvjipH5HF110kRo3bpzxONHjb/369QpQY8aMUYcffrj697//rZ5++ml10EEHKZfLpd55552k1iEI/SHiQxh0JCI+Zs2apYYPH67a2tqM5/x+v5o+fboaPXq0CgaDSimlnn76aQWoN954o8976OIjEAioK664QrndbvXYY4/FXZvf71c+n0995zvfUTNmzDCeb2pqUm63W11//fVRrz/77LNVbW2t8vl8Siml7r//fgWof/7zn1Gvu/XWWxWgXn31VeO53he5JUuW9BETOlOmTFEzZswwPkfnlFNOUSNHjjQujPrv9sILL4z5+wDU66+/Hvd3EAwGlc/nU4sWLVKA+vjjj+O+PlkAVVtbq1pbW43n6uvrld1uV/PmzTOe08XHD3/4w6h///jjjyvA+Fv+61//UoBavnx5v5+Zzt/lueee6/Mav9+v6urq1Ne//nXjuUsuuUSVlZWpjRs3Rn3G73//ewWozz//PN6vJYre4iPR408XH3V1daqrq8t4XWtrq6qurlbHHntswmsQhHhI2kXIOzo6Onj//fc566yzKCsrM553OBxccMEFbNmyhZUrVyb0Xt3d3Zx++uk8/vjjvPrqq5x//vl9XvP0009z2GGHUVZWhtPpxOVy8de//pUVK1YYr6mpqeHUU0/lkUceIRgMArB7927+85//cOGFF+J0auVXCxcupLS0lLPOOivqM/TuiVRC32vWrOHLL7801u73+42vk046ie3bt/f5fXz961+P+V5Dhgzh6KOP7vP8unXrOO+88xgxYgQOhwOXy8WRRx4JEPV7iEXkevx+P0qpAX+mo446ivLycuNxbW0tw4cPZ+PGjX1e2/tvdvbZZ+N0OnnjjTcA2H///XG73Xz/+9/nkUceYd26dX3eI52/y4knnsiIESN46KGHjOdeeeUVtm3bZqStAF544QWOOuoo6urqon4fJ554IgCLFi3q9zMGItHjT+fMM8+kqKjIeFxeXs6pp57K4sWLCQQCKa9DEHREfAh5x+7du1FKMXLkyD7fq6urA2Dnzp0JvVdDQwOvvPIKhx56KLNnz+7z/fnz53P22WczatQoHnvsMd59912WLFnC3Llz6e7ujnrt3Llz2bp1KwsWLADgySefxOv1RrVl7ty5kxEjRvQp7hw+fDhOpzPhdUeyY8cOAH784x/jcrmivi677DKAPu2osX53/T3f3t7OEUccwfvvv89vfvMb3nzzTZYsWcL8+fMBrWA1Hr3X9Mgjjwz4M9XU1PR5zuPxxPysESNGRD12Op3U1NQYv8uJEyfy2muvMXz4cC6//HImTpzIxIkT+dOf/mT8m3T+Lk6nkwsuuIBnnnmG5uZmQKutGTlyJCeccILxuh07dvD888/3+X1MmzYN6Ps3SpZEjj+d3r8z/bmenh7a29vTWocggHS7CHnIkCFDsNvtbN++vc/3tm3bBsDQoUMTeq+xY8dy++23c8YZZ3DmmWfy9NNPR+0IH3vsMSZMmMBTTz0VdWGKVYR4wgknUFdXx0MPPcQJJ5zAQw89xCGHHMLee+9tvKampob3338fpVTU+zU0NOD3+xNedyT6v7nuuuuiClsjmTx5ctTjWJ0t/T2/cOFCtm3bxptvvmlEOwDjQjsQS5YsiXo8YcKEhP5dotTX1zNq1Cjjsd/vZ+fOnVEC5ogjjuCII44gEAjw4Ycfctddd3H11VdTW1vLOeeck/bf5dvf/ja33XYb//jHP/jmN7/Jc889x9VXX43D4TBeM3ToUPbdd19++9vfxnwPXTinSiLHn059fX3M59xud1Q0URBSRSIfQt5RWlrKIYccwvz586N2wsFgkMcee4zRo0ez1157AdpuGeLvzo8//nheeeUVFi9ezCmnnBLVwWGz2XC73VEXpPr6+j7dLhBO+zz77LO89dZbfPjhh1Fhd4BjjjmG9vZ2nn322ajn//73vxvf74/+fpbJkyczadIkPv74Y2bOnBnzKzKFkSz6z65/vs6f//znhP5977XEimqkw+OPPx71+J///Cd+v585c+b0ea3D4eCQQw7hnnvuAWDZsmVAen8XgKlTp3LIIYfw0EMP8cQTT+D1evn2t78d9ZpTTjmFzz77jIkTJ8b8G6UrPhI5/nTmz58fFblra2vj+eef54gjjogSTIKQKhL5EAYtCxcujGkOdtJJJzFv3jyOO+44jjrqKH784x/jdru59957+eyzz3jyySeNC6buYPrAAw9QXl5OUVEREyZM6HMBPPzww3n99df56le/yvHHH89LL71EZWUlp5xyCvPnz+eyyy7jrLPOYvPmzfz6179m5MiRrF69us/a5s6dy6233sp5551HcXEx3/zmN6O+f+GFF3LPPfdw0UUXsWHDBvbZZx/efvttbrnlFk466SSOPfbYfn8fEydOpLi4mMcff5ypU6dSVlZGXV0ddXV1/PnPf+bEE0/khBNO4OKLL2bUqFHs2rWLFStWsGzZMp5++ulkf/0Gs2fPZsiQIVx66aX86le/wuVy8fjjj/Pxxx+n/J5mMn/+fJxOJ8cddxyff/45N9xwA/vttx9nn302APfffz8LFy7k5JNPZuzYsXR3d/O3v/0NwPh9p/N30Zk7dy6XXHIJ27ZtY/bs2X2iTTfffDMLFixg9uzZXHnllUyePJnu7m42bNjASy+9xP3338/o0aPT+l0MdPzpOBwOjjvuOK655hqCwSC33norra2t3HTTTWl9viAYZLfeVRCSR+/I6O9r/fr1Siml3nrrLXX00Uer0tJSVVxcrGbNmqWef/75Pu93xx13qAkTJiiHwxHVLdK71VYppT777DM1YsQIdcABB6jGxkallFL/93//p8aPH688Ho+aOnWqevDBB41Oi1jMnj1bAer888+P+f2dO3eqSy+9VI0cOVI5nU41btw4dd1116nu7u6o1/XuqlBKqSeffFJNmTJFuVwuBahf/epXxvc+/vhjdfbZZ6vhw4crl8ulRowYoY4++mh1//339/ndxuokivX70HnnnXfUoYceqkpKStSwYcPUd7/7XbVs2bJ+u2/SAVCXX355n+d7/z70v8HSpUvVqaeeqsrKylR5ebk699xz1Y4dO4zXvfvuu+qMM85Q48aNUx6PR9XU1KgjjzzSaD/VSefvopTWDl1cXKwA9eCDD8b82RobG9WVV16pJkyYoFwul6qurlYHHnig+vnPf67a29sT/h317naJJN7xp3e73Hrrreqmm25So0ePVm63W82YMUO98sorCX++IAyETakESssFQRCEvGfDhg1MmDCB2267jR//+MfZXo6Qx0jNhyAIgiAIGUVqPgRBEAYJgUAgrg+KzWaTglBhUCBpF0EQhEHCnDlz4pqNjRs3Li8mNAv5j4gPQRCEQcLKlStpa2vr9/sej4d99tkngysShNQQ8SEIgiAIQkaRglNBEARBEDJKzhWcBoNBtm3bRnl5eb8Wz4IgCIIg5BZKKdra2qirq8Nujx/byDnxsW3bNsaMGZPtZQiCIAiCkAKbN28e0I0358SHPmNi8+bNVFRUZHk1giAIgiAkQmtrK2PGjEloVlTOiQ891VJRUSHiQxAEQRAGGYmUTEjBqSAIgiAIGUXEhyAIgiAIGUXEhyAIgiAIGSXnaj4EQRAEIZcJBAL4fL5sLyMruFwuU+YHifgQBEEQhARQSlFfX09zc3O2l5JVqqqqGDFiRFpeXCI+BEEQBCEBdOExfPhwSkpKCs4IUylFZ2cnDQ0NAIwcOTLl9xLxIQiCIAgDEAgEDOFRU1OT7eVkjeLiYgAaGhoYPnx4yikYKTgVBEEQhAHQazxKSkqyvJLso/8O0ql7EfEhCIIgCAlSaKmWWJjxOxDxIQiCIAhCRhHxIQiCIAhCRhHxIQiCIAhCRhHxIQiCIBQEXT0BlFLZXoaAiA9BEAShAFi9o439bn6Vm1/4IttLyQqjR4/m3nvvjXrunXfeoaSkhI0bN2Z8PeLzIQiCIOQ9Szfupscf5O3VTaa9p1KKLl/AtPdLhmKXI6muk1mzZrFkyRLjsVKKq6++mquvvppx48ZZscS4iPgQBEEQ8p6mdi8A25q7UEqZ0i7a5Quw9y9fSft9UuGLm0+gxJ34JXzWrFk8/PDDxuNHH32UTZs2cd111wHwwgsv8KMf/YhgMMi1117Ld7/7XbOXHIWkXQRBEIS8p7FNEx8dPQFaugpvKNysWbNYsWIF7e3tdHZ2cv311/Ob3/yG8vJy/H4/11xzDQsXLmTZsmXceuut7Nq1y9L1SORDEARByHua2nuM+1ubu6gqcaf9nsUuB1/cfELa75PqZyfDzJkzcTgcLFu2jNdee42amhrmzp0LwAcffMC0adMYNWoUACeddBKvvPIK5557runr1hHxIeQ93b4Alz62lJnjhnDF0ZOyvRwhg7R2+3hw8TpO26+OSbXl2V6OkEX0yAfA1t1dTKurTPs9bTZbUqmPbFJUVMR+++3H/PnzeeCBB3j++eex27Xkx7Zt2wzhAVpx6tatWy1dj6RdhLzng/W7eHNlI4+8m/mKbiG7PLd8G3ctXMMdr63O9lKELKPXfIBW91GIzJo1izvvvJNjjz2WY445xng+Vvux1TbySYuPxYsXc+qpp1JXV4fNZuPZZ581vufz+bj22mvZZ599KC0tpa6ujgsvvJBt27aZuWZBSIov61sB6PD6s7wSIdNsb9EuMlsL9GIjhImKfBTo8bD//vvjdDq57bbbop4fNWpUVKRjy5YtjBw50tK1JC0+Ojo62G+//bj77rv7fK+zs5Nly5Zxww03sGzZMubPn8+qVas47bTTTFmsIKTCiu1tAHT2BAgGxWCokGhq0/L8Da3dWV6JkE26fQHaIjYf25oL83h4/PHHueyyy5g8eXLU8wcffDCfffYZW7dupa2tjZdeeokTTrC2liXpZNWJJ57IiSeeGPN7lZWVLFiwIOq5u+66i4MPPphNmzYxduzY1FYpCGmwYnurcb/LF6DUMzhytEL66KH2hjYvwaDCbpeJpIVIZNQDYEsBRT6CwSCNjY389a9/ZeXKlTzzzDN9XuN0OvnDH/7AUUcdRTAY5Kc//Sk1NTWWrsvys3BLSws2m42qqqqY3/d6vXi94QOjtbU15usEIRV6/EHWNLQbjzu8fhEfBURjSHz4g4pdnT0MLfNkeUVCNmhsjxYfhVTzsXjxYo4++mimTJnC/PnzqayMXWh72mmnZTRLYelZuLu7m5/97Gecd955VFRUxHzNvHnzuOmmm6xchlDArGloxx+RaunoyY4boZAdmiJ2vDtau0V8FCj6cTC2uoRNuzppbPPS7QtQlGS76mBkzpw5BIPBbC+jD5Z1u/h8Ps455xyCwWAfP/lIrrvuOlpaWoyvzZs3W7UkoQDRi011pOi0cFBKRXk77JC6j4JFj3zsVVtm+GPUt8jxkE0siXz4fD7OPvts1q9fz8KFC/uNegB4PB48HtmNCNYQWe8BIj4KidZuPz2B8I5vR6s3zquFfEav+RhW7qGuqoi1jR1sbe5i/NDSLK+scDE98qELj9WrVxsuaoKQLb6sb4t63Clpl4Khd5GhRD4KF73weFiZh1FDSoDCbbfNFZKOfLS3t7NmzRrj8fr161m+fDnV1dXU1dVx1llnsWzZMl544QUCgQD19fUAVFdX43anb2crCMmgRz7KPE7avX7aJfJRMDS19xYfEvkoVHQhOrTcw6iqIkBzORWyR9Li48MPP+Soo44yHl9zzTUAXHTRRdx4440899xzgGZmEskbb7zBnDlzUl+pICRJQ1s3Te092Gyw7+hK3lm7k84eER+FQm/xIV4fhYte+zOszENrVTFQWB0vuUjS4mPOnDkxrVh14n1PEDLJlyFzsQk1pdSEuhw6vJJ2KRT0DocSt4POngA72kR8FCqRkY8un3YO2NYi4iObyGwXIW/RUy5TR1ZQ5tEq3KXgtHDQOxymjtQK3iXtUrhE1XyEIh+SdskuIj6EvEUvNp06styYPCk+H4WDbq0+rU4TH03tXvyB3PM7EKylw+s3Cs21bpdQ2qWlW8YtZBERH0Leokc+poyooNStRT6k5qNwaDK8Hcpx2G0oRZTvh1AY6CmXYpeDUo+TEZVF2G2a+3FTh0TDsoWIDyEv8foDhq361LoKw1Jdul0KB1181FYUMbxcq/mRdtvCw0i5hI4Bl8NObYXW8VKoA+ZyAREfQl6ytqEDf1BRUeSkrrKIkpD46JSC04JBj3IMLXMzPHSxEfFReBjFpmVhq4c6qfvIOiI+hLzESLmMrMBms4ULTiXtUhAopSIuOh5q9chHm4TZC43ekQ/AKDotpHbb0aNH9xl18s4771BSUsLGjRszvh4Z7ynkJfpMl71DnQ5GwamkXQqCSGv1YeUeI8wuXh+FR6S1uo4R+UhXfCgFvs703iNVXCVgsyX88lmzZrFkyRLjsVKKq6++mquvvppx48ZZscK4iPgQ8pIVIY+PKSPKASgNiQ+xVy8M9N1uucdJkctBbYXUfBQqest15ETjUUNMEh++TrilLr33SJXrt4E78dk0s2bN4uGHHzYeP/roo2zatInrrrsOgDPOOIM333yTY445hn/9619mr7YPknYR8hI98qF7PJSG0i5ScFoYNEWYSgERNR+Sdik0GkMt19Fpl8KzWJ81axYrVqygvb2dzs5Orr/+en7zm99QXq5t0K688kr+/ve/Z2w9EvkQ8g7dVt1u09osAaPbRSIfhUF4t6sVGdZKwWnBEjPyUaUNl0vb5dRVokUgsoGrJKmXz5w5E4fDwbJly4yhr3PnzjW+f9RRR/Hmm2+avMj+EfEh5B16ymX80FKKQ/4eJW5xOC0kmtqiLzh62qVBCk4LjqaYNR+aGG3u9NHh9Rubk6Sx2ZJKfWSToqIi9ttvP+bPn88DDzzA888/j92eveSHpF2EvONL3VZ9RIXxXFno5OL1B8XlsgAIt9mGxEe5drHZ1dGD1y/Rr0JBKWVEPoZFRD7Ki1xUFGnnhELqeJk1axZ33nknxx57LMccc0xW1yLiQ8g7wjNdyo3n9G4XEIv1QqB3e2VViQu3UzvdNUjdR8HQ2u2nxx/ueorEtI6XQcT++++P0+nktttuy/ZSRHwI+Ud4pks48uF22nE5tLY0sVjPf5p65fltNltE6kXqPgqF3l1PkYwqQPHx+OOPc9lllzF58uRsL0VqPoT8ItJWfUqE+ACt6FTP8Qr5TSxXy9ryIjbv6pKOlwKisVfXUyR6u22+p12CwSCNjY389a9/ZeXKlTzzzDMxX3fCCSewbNkyOjo6GD16NM888wwHHXSQZesS8SHkFWsa2qNs1SMpdeviQ9Iu+Y5R8xFx0ZGOl8KjKUa9h06hWKwvXryYo48+milTpjB//nwqKytjvu6VV17J6LpEfAh5xZe6uVjIVj0So+NF0i55TX9FhsMNozGJfBQKsdxNdcIW6/ktRufMmUMwmHtF9lLzIeQVerHp3r1SLhD2+pDIR37T5o1dZCgW64VHU3vf9JtOIRac5hIiPoS8Qi821W3VI9FdTqXgNL/Rd7tlvYoMDYt1KTgtGOJFPkaHaj7qW7ul/T4LiPgQ8galVESbbd/Ih95uKxbr+U1TjGJTCHt9SNqlcGhs6+tuqjOszIPLYSMQVDLtOAuI+BDyhsY2Lzs7om3VI9GNxjol7ZLX6MWmvXe7w6XgtODo71gAsNttjKxMvuNFKWXO4gYxZvwORHwIecOK+r626pFIwWlh0NvjQ0dPu7R1+yX1ViDEi3xA2GY9kY4Xl8sFQGdnp0mrG7zovwP9d5IK0u0i5A3xUi4QWXAqF558pr8LTpnHSYnbQWdPgIZWL+OHyukvnwkGFTs7+q/5AH3A3K6Eik4dDgdVVVU0NDQAUFJS0qejLt9RStHZ2UlDQwNVVVU4HH03eYki//uEvCE806VvygU0nw8Qe/V8p7/Ih+ZyWsT6pg52tHYzfujgGAgmpEZLlw9fQEsP1MTodgEYpUc+Eky7jBgxAsAQIIVKVVWV8btIFREfQt6gT7PtP/IR6naRyEdeY4iP8r4XnOHlHk18SIFh3qN7vVQWu/A4Y+/Qk3U5tdlsjBw5kuHDh+Pz+cxZ6CDD5XKlFfHQEfEh5AW+QJC1jbFt1XX0tEu7FJzmNY16kWGMPL94fRQOTXHabHXqqlKzWHc4HKZcgAsZKTgV8oKd7T34gwqH3cbIiqKYr9ELTqXYML9pijPPw/D6EPGR9zTGMRjTqSjSCibFeDDziPgQ8gI91F5T6sZuj10EJjUf+U9/1uo64fkuknbJd8IGY7E3I6BNuwbw+sVkLNOI+BDygsZ+igwjkW6X/CfSWj3WsSDD5QqHeCJURxcfPX7ZkGQaER9CXrAzlOfvr6odpOC0EGiKsFaP5fVi1HxIwWne09SmTzbu/5zgdkjkI1uI+BDygnijs3VKJO2S9+iOlv3l+SNrPsSpMr9JJPLh0SMfgaAcDxlGxIeQF8QrMtQpi0i7yIkmPxnI0XJ4KP/f2ROgTSJgeU1jAucEPe2iFPiDck7IJCI+hLxgZ0co7VLaf4i1JJR28QcVPTLFMi/pz2BMp9jtoKJIE6HSbpvfJBIN1cUHYNQKCZlBxIeQFwx00QEoiRivLq11+YlxwYmz25WOl/wnEFTsDB0Lw+NFPhwiPrKFiA8hL0gkxOp02ClyaYe8dLzkJ4mIUOl4yX92d/YQVGCzQXWcaKjTYccRas2XaGhmEfEh5AV62iWeoRCEvT46peg0L2lMoMNhuFF0KpGPfEXfjFSXuHE64l/m9OiHRD4yi4gPYdATDCp2GeKj/x0vhOs+2iXykZck4vcikY/8Z6DC40jEaCw7iPgQBj27O3sIhCrV44VYITLyIeIjH2lK4KJTG0rNNbSJ+MhXEqn90QmLD4mGZhIRH8KgR/d2GFLiwjVAiDXscionmnxDKWVcdOIVGUrBaf7TmMBQOR1Ju2QHER/CoEevaq9JIMSqD5eTgtP8o93rN0Ln8SIfwyXtkvc0JTBUTscwGhPxkVFEfAiDnkSmV+roRmOSdsk/9N1uqdsR01pdR3c5bWj1itlcnpJU5CPC5VTIHCI+hEFP2FI7kciHWKznK8ZxMMAFR78g9QSCNHf6LF+XkHmSOSe4JfKRFUR8CIOenQl0OOjow+Uk7ZJ/JOJoCeBxOozC5B1SdJqXJBP5kLRLdkhafCxevJhTTz2Vuro6bDYbzz77bNT3lVLceOON1NXVUVxczJw5c/j888/NWq8g9CGZ/K4UnOYviRiM6UjRaX7TmEK3i6RdMkvS4qOjo4P99tuPu+++O+b3f/e733H77bdz9913s2TJEkaMGMFxxx1HW1tb2osVhFgkE2ItDdUCSM1H/hF2uR1YhEZOtxXyC18gyO7OJNIuDvH5yAbOZP/BiSeeyIknnhjze0op7rjjDn7+859z5plnAvDII49QW1vLE088wSWXXJLeagUhBsmlXbRDXkzG8o+kIh+h6bYyXC7/2NXRg1LgsNsYUjKwEJWaj+xgas3H+vXrqa+v5/jjjzee83g8HHnkkbzzzjsx/43X66W1tTXqywq8/gA/efpjrvrHR2Imk2fokY+aBNIuxaHhcl1ScJp36NbqiYTaa8ViPW8xrNVL3cbclni4ndo5QSIfmcVU8VFfXw9AbW1t1PO1tbXG93ozb948Kisrja8xY8aYuSQDGzaeXrqF/yzfRrdPDrJ8QSmVkKW2juR385dkIh/i9ZG/NCZYeKwjJmPZwZJuF5stWm0qpfo8p3PdddfR0tJifG3evNmKJeFyhD9fDrL8oc3rN/6eMsehsEmp4LRNIh/5RiITriORtEt2SLrmIx4jRowAtAjIyJEjjecbGhr6REN0PB4PHk9iB0k62Gw23E47Pf6g7HrziJ2hlMtAxlI6+i7HJ8dAXqGUCrdXJiQ+QmmXFol85BuJtlzrGK22AUnFZhJTIx8TJkxgxIgRLFiwwHiup6eHRYsWMXv2bDM/KiU8elWzTw6yfMHY7coup6CJslZPoNulstgFQFu3mIzlG8l4fID4fGSLpCMf7e3trFmzxni8fv16li9fTnV1NWPHjuXqq6/mlltuYdKkSUyaNIlbbrmFkpISzjvvPFMXngpupx28ku/PJxKZYhqJiI/8pCkiAqa72MZDan/yl3Dr/cAiFOSckC2SFh8ffvghRx11lPH4mmuuAeCiiy7i4Ycf5qc//SldXV1cdtll7N69m0MOOYRXX32V8vJy81adInKQ5R9NHaFOl9LETjQeuejkJUlHwIz0myIYVNgT6IoQBgeNIdfaRCMfRsGpnBMyStLiY86cOXGHMdlsNm688UZuvPHGdNZlCRJeyz+akiwuc0lle17SmGQEzOMK1wf1BIIU2QeuFxIGB3rkI+FuFylCzwoFNdtFIh/5RzIdDiDHQL6SjMU+hHe7IBedfCPZmg8RH9mhIMWHV8JrecNOY5eT3EVHxEd+0ZTkBUda7/MTrz9AS5dWRJys+JDjILMUlviQC0/eoe94a5KNfIgAzSsak5jvA+HWe5BjIZ/QNyMuh83oaBoIuS5kh8ISH6Jw846U0y6BYNzaJWFwkexxAOHWezkf5A96yqWm1NOvsWVv5LqQHQpMfIiHf76xM8m2Oo9DOwaUAn9QxEe+kGzBKchFJx9pCB0HwyuSEKESAcsKhSU+ZKeTV3T7ArSFptMmm3YBOQ7yCcPVMsE8P4j4yEd0ETo8iePAE9qUynGQWQpKfIRbbcXhNB/QLzhuh52KosS6xkV85B9KqaQttSEyBSfng3yhwfD4KEr434gIzQ6FKT4kvJYXRDoZJprfddht6H5SchzkBx09AWNSdSLW6jr6+cArU67zhoYku55AitCzRUGJD1G4+cXOJDtddOQ4yC/0UHtJgtbqOtJ6n380tCafdnHHm/m1eyPs+NyUtQnRmDrVNteRi05+kayxlI7bYafbJ9ON84UdrVqofURF4qF2kBqwfES3Vk9KfMSKfHTugkW3wpK/aNXp13wB5SNMXWuhU1iRD0c/O50N/4NVr2RhRUI6NCXp7aDjlgKzvEIXH8mE2iHGZmTtQvj9ZFj5sqnrEzKHUXCahBDt43Dq64L7ZsP790PQDyoAO9fEeQchFQpLfMSKfCgFT54DT56rqV1h0JDsMDEdmfGTX+ih9tpkIx+9Rejq16C9Hj6fb+r6hMyglKKxPfW0i3EctG6Dtu3gcMOQCdpz7TtMXasg4gO8rdqXCkDzpiytTEgFPfKR6ERbHSkwyy/0yEdtEt4OEGOaqa9Du2380rS1CZljd6cPX0Dz7knKbK638aCvS/tGURXUzdDut4n4MJuCFB9RJmNdzeH7bfWZXZCQFsnO89CRXH9+oXc4JBv56BMB0y86jasgKMfGYENvsx1S4opqqR8I3efDMB7UjwNXcbjOo12uDWZTWOIj1kWnuzl8Xw6wQcXOjuRdLQFcTq3XVsRHfqBHPpLJ80MM8dETinz4u6Bls2nrEzJDuNMl2fRbL+8fX6f2wFUCZbXafYl8mE5BiQ+PK0ahoUQ+Bi1G2iWFbhcQm/18wYh8pFhw6tVNB/UdL0DjSlPWJmSOxhSs1SGG+PBrYhZXcVh8SM2H6RSW+Oid4wXo2h2+37Y9wysSUsUfCLK7M9VuF+048EnNx6BHKRVR85HajjecdukMf1PqPgYdqRiMgWY86Ag5D3qjIh/FUC7iwyoKSnzELDiNTLtIaG3QsKujB6XAboMhJckWnEqrbb7Q7vXT2aNFLpLe8fZuvdfTLiCRj0FI2Fo9ueMAeqXkI2s+ykI1HxIVNx0RH1FpF4l8DBb0lEt1qdvYtSRKny4HYdCyI5TnLy9yJuVuCrEiHxFplyYRH4MNY6JtkjUf0GvOT1TkIyQ+unaBv8eUdQoahSU+YpmMRaVdRN0OFsLupsnvcsTnI39oSDHlAgOlXVZq7Q/CoKExBWt1nahOSJ9e81ECxUPA7tIedzSYsk5Bo7DEx0Bpl44GCMqEy8FAOuJDbPbzhx1tqXl8wADiw9sqkdBBRkMK1uo6MdMuziKw2aTjxSIKUnwY1e0QnXZRQehozOyihJTYGTHRNllcjlCrraRdBj162qU2lVB77/Rbjx5uL9Vupeh0UJGKtbqOxxUpPiJabSGi6FQi42ZSkOKj38gHyG5nkNCU4kRb6MdsThiUpOrxAb1a74MBCGjHFCP3024bV5myRsF6Orx+OkKFx2kVnAZ6FZyCFJ1aREGJj5i5/siaD5DQ2iChMZ20i0O76Eir7eAnPNclhdqfSL+XyJSLbqktkY9Bg15sWuJ2UOZJflh71LXBr4uPUOSjbLh22y41H2ZSmOIjEKPbpaRGu5XIx6AgnbSL1HzkD6l6fECv40BPuWCLiHxIx8tgQS88TqXeA3oXnPaKfIjFuiUUlPjQd7wx0y7Dpmq3ElobFFhacLrjc2jZkvLahMyxI50iQ2c/ef7hU7T7EvkYNKTTZgv9HQuh95KCU0soLPHR+6ITDEB3i3ZfP+FI5GNQYFmr7c618MAceOysdJYnZADN3TS1oXLQq/U+0tuhZhJg07wdOprMWq5gIXqx6bAU0m/Qn8mYXnAqkQ8rKEjx4Q8qgkEVFh4Aw0LiQ2x0cx6lVDjtUp5C2iWeydjnz0CgRzOZksmmOU1Ll88QkCkVGcZKu7hLtK8h47THEv0YFBjW6ilsRiAi7RKz4FRqPqygIMUHhC48esrFVQpVY7X7EvnIeVq6fNroazSH02QxWm1jRT5WPKfdqmDfTighp9AvOFUlLopCnSvJEBYfgb7tlcMk9TKYMDw+Uo18RI5c6B350Ltd2nfIhsRECkt8OMI/rtcXDBebFleFQ2tS85Hz6CmXiiInHmcqFx3t3/Rptd29AbZ/HH7cuxNKyCmMYtN08/yBYF/xMXQv7VaKTgcFjWnWfESlYiNNxiAU+bBB0K+l4gRTKCjxoe94AbyBQPjiUlQVVrcdjRDwZ35xQsI0tukpl/RCrH1abVc8H/1YxEdOo9d7pLrb1S84Xl+E+HCHDMaMyIeIj8FAQxrW6hCn+BjA4YrohpTNqVkUlPiw2WzRClcPqxcPgdKhYHOIy+kgYGdH6sWmEKfb5Yvnoh93yi4nl0mnzRZ6td73RBScgoiPQYbu+5Ny2sWoAwv0rfmAcMeL1ASaRkGJD+h14YlMu9gdES1VUveRyzS16eIj+XoP6KfgtHUbbPlAu69feCTEmtOEh8qlesGJzPP3rvkIpV3a6yUCluP0+IPs6tCioakWnEZFwfz6YLkI8WFYrEvRqVkUnPiI2u1Epl0g4gATdZvLNBkGY+mdaKIiHyte0G7HHALDQ54vctHJadJps4UBQu2ecqgYpd0Xm/WcRq8Bc9ptDClJcUMSs/4nQnwUV2u3ck4wjYITH1H93EbapUq7LR+p3UrkI6exJO3yxX+026mnhU80knbJacIGY+mJD39QobwdoSdLwi8YNlm7bZLUSy5jtNmWe7DbbQO8Ojb6dcHv69EKS6GX+Bii3Yr4MI3CEx/9pV1AOl4GCXrBaU2KaRdX77RLeyNseke7P/VUKNF3OSI+cpl05rpAdOt9oKdX5AOk7mOQkK61OkQcCz0RM34ijwURH6ZT2OJDj3zoaReZXjgoSMfdFGJEPr58QSs0Hrm/Zi4lkY+cJxhUhrdDymmXiNb7gB75cMWIfIjXR04TjnykdhxA+Jyg9KFyNjs4IjY3Ij5Mp2DFhzcq8hE6sCTyMShIO+3SO/KhG4vtfZp2KyeanGd3Zw++gGY0l4q7KUS33queGGmXobr4kMhHLtMYkXZJFcMvKNJgzBaRwpFzgukUnvhwxBIfVdqt1HwMCpraUp9oC71Tb7th/WLtG1O/pt1K2iXn0YtNh5a5jTRaskS23gdjpl1C4qNlM3jbU16rYC3hoXLpp11svQ3GdER8mE7hiY/IqmYj7SKRj8FCh9dPly8AmNTtsvK/WoHZ8GkwdE/tBUbaRU40uUq6xaY6fXL9keKjpDpsLrV7Q1qfI1hHY5rW6hA+Duz+iMhHJCI+TKfgxIcn0sNfP5B6F5yKy2nOotd7FLsclHqcKb1HlAD9olfKBSTyMQgwigzTuOBAWIiGHU57XXRKhmq3ctHJWRrStFaHcETc5o9hMAYiPiyg4MSHYa3d44WeUChVLzgtCbmcoqBDzGRykaY0ptnq6Cea4mAHau1C7cmpEeJDP9H0tIO/J+XPEazD8PhIN/Lh6CU+ZMc76EjXWh3CItQeiGEwBuHjoLsFgoGUP0cIU7DiI2piaVGldmu3R6RepO4jF9EjHzWlqZ9oXKFj4Gj7cmwBL9TsGTYWg9DxECo2k4tOTrIjTXdTnXCuX8THYCQYVMY5wYy0i6Nf8VEVuqM0ASKkTcGJD09op2P3hg4gTwU4IsL3hsW6uJzmIum22UJ4t3uQPdRCuddXoyvb7Y7wyUZSLzmJEWpPsc1WR3L9g5vdnT34g1rXUzobEkN89Jd2cbjAXa7dl2PBFEwXH36/n1/84hdMmDCB4uJi9thjD26++WaCweDA/zgDGCeb3h4fOtLxktPsDKVdhqWRdtFbLEts2gVMG5ndC/H6yGka0hwqp9Ony6F3zYeIj5xGF6HVpe4o07hk0TckzqAe+Sjp+yJjQ9Kc8ucIYVKr2IvDrbfeyv33388jjzzCtGnT+PDDD/n2t79NZWUlV111ldkflzSG+NAjH0Y4LYR0vOQ0ZqRdbDYbbqcdD6F6jt5tdaAVne5aK5GPHGVHmu6mOvpFxxGQyMdgxIw2WwCPSxcfoQ1J78gHaNeKls1yLJiE6eLj3Xff5Wtf+xonn3wyAOPHj+fJJ5/kww8/NPujUsJQuAOJj3YRH7lIOO2SeuQDtPSbJ+jTHsQSHzJIKmcJBJUxQj3dyIfH6cBGMCLX31t8VGm3chzkJHoELB2DMYgR+Yh5ThAhaiamp10OP/xwXn/9dVat0iZBfvzxx7z99tucdNJJMV/v9XppbW2N+rISPfLh6gmJjz5pF4l85DLhbpf0Cw09xBMfoRONpF1yjp0dXgJBhd0GNaXpiVC3004xER1NknYZVOgi1Cy/F7cR+YiVdpFjwUxMj3xce+21tLS0MGXKFBwOB4FAgN/+9rece+65MV8/b948brrpJrOX0S+6z4fLHxI5fSIfUvORy5iRdgHtZFPkC110XP2kXUDSLjlIQ2u46NiZorupjiY+vOEnnP35OzSn9TmCNejHQtqRD31TGuzWtuQx0y56u21zWp8laJge+Xjqqad47LHHeOKJJ1i2bBmPPPIIv//973nkkUdivv66666jpaXF+Nq8ebPZS4rCULg+XXwMiX6BdLvkNE3GHIf0drwux0CRDyk4zVV2mFRsCiHxoRceO4u1dvtIZLeb0zSaVfPh0DalRhRMIh+WY3rk4yc/+Qk/+9nPOOeccwDYZ5992LhxI/PmzeOiiy7q83qPx4PHk96Bkwy6+PDo4qO/bpeORgj4tBYrISfo8Qdp7dacZ9NptYVQ5CNuwamcaHIVs4pNQav9MS44vVMuIBecHKfBBGt1CF8Ximy6+IgT+ZBjwRRMj3x0dnZi77V7cDgcOddqW9xf2qWkBuxOQEG7uJzmEvo0W6fdRkVReqLQnWjkQ040OccOw1rdnMhHCfHaK0MXHF8H+L19vy9kFTOs1SFCfBCv20XEh5mYHvk49dRT+e1vf8vYsWOZNm0aH330Ebfffjtz5841+6NSQjcZKwq0aU/0TrvY7VA2Alq3aEWnlaMyvEKhP7a36MPEPNjttgFeHR+30x7e5Thj7Jqk4DRn0Xe76VqrQ0h82OIUGXoqwGYHFZqCXV6b9mcK5mFW2sVht+Gw2yLSLiI+rMZ08XHXXXdxww03cNlll9HQ0EBdXR2XXHIJv/zlL83+qJTQ+7lLdPHRO+0C2gmmdYu02+YYW3drXgyjh8S4SCRJVLdLrBONFJzmLGamXdyOiPRbrOPAbtfOEV27tIuOiI+cod3rp7NHm7OSbsEpaPNdipWIj0xhuvgoLy/njjvu4I477jD7rU1BHyBUGtQjH1V9X1QacryUtEtOsbVZEx+jhsQ4MSSJJ6rmI1bkI6LgVKlo+3Uhq5hZcOpx2SnRQ+3u0tgvKh4SFh9CzqB7fJS6U59wHYnbaafILwWnmaLwZruEWm1Lg70m2kZSIvn+XESPfIyqSl98uO22iJqPOJGPoA96OtL+PME8dpjUXgngdjjC3S6xLjggF50cxaz5PjpaFEzvfBrAZEwpUz6zkClA8WHHjQ+PfpD1rvmIfE5C7jnFlt3a5FEzIh/FjgB2W+gEEivy4SoBR+h5OQ5yBl8gaBQem9ZqG6/IEER85CgNbeaJUOhlOBcv8hH0Q0+7KZ9ZyBSe+HDZqUTfydq0grLeyMkmJzHSLiZEPkrs/vCDWBcdm02KTnOQpnYvSmkFgum6m4Le7ZJA2gXkfJBj6GmXdItNdaI8X2KdE1zF4YiIHAtpU3jiw+mg0qanXCr7mgpBOOTeKQdYrqCUCqddTIh8lDg08aGwgaOfi5gUneYcuqOlGR1PkMAFB2S+S46iW6ubFvlwDBD5ABGiJlKA4iMi8hEr5RL5vBxgOUNLl4+OUGW7OZEPrd7Db3f3X0wqLqc5h5keH6CbjEnNx2Ck0RCiJh0LkZOuY41cADkWTKTgxEeRy0GlTRcfVbFfVCw73lxjSyjqMbTMTZHLkfb7ldhC4sMWZ9ckLqc5x45Qnr/Wijy/pF0GFQ0meXzoFDkUHlsoHStC1HIKTnx4nHaqiNPpAnKA5SBm1ntAhPiwx6kbEJfTnKPBxDZb0M4HJQOmXeR8kIuYZa2uU+4YoA4M5FgwEdN9PnIdreZDi3wEi6piq68S8XjINcys9wAoCqVdfLZ44kMKTnONsMeHeZGPoGGvLpGPwYRZ1uo6ZQ5f+EGsVluQ+h8TKbzIh8tuiI+ApzL2i4yWKvF4yBX0yIcZ7qYARSQgPqTgNOfQPT5M83aIaq+U3e5gwesP0Nyp/R82q+C0VI+GOori1IHJsWAWBSc+3I5wwanP3Y/4EI+HnMNMgzGAotCJpidezYekXXIOM91NQTsfGGmXWFNtIeKC02zKZwrp09SuCUaXw8aQEnMmj5fatff02+McWyI+TKPgxIfdbqPaHhIfrhgeHxDt8SAHWU5gds2HJzTDoccW58RVIt0uuYYeajcz7RKeZDpA2sXbAgF/7NcIGUWv/RlW5sFmUlq8JCQ+fPZ4GxIRomZRcOIDoMquOWX29Bf5ALnw5BhmupsCeEKRDy8J1HxI9Csn8PoD7OrQLhBmTLSFXiZj/aVdIgvTu1tM+VwhPQx3U5MiYAAlNl18SOQjExSm+AilXbzOfiIfIAdZDtHZ42d3KL9rmvgIXXB64ooPEaC5hD4+3e2wU2VSqD2q26W/VluHM+yELOeDnMDsNluAYl182ER8ZIKCFB+6w2m3o7z/F8muN2fQ6z3Ki5xUFJl00QkVnHaTQNqluwWCAVM+V0idcLGpeaF2t8MRnm7cn7cDSJdDjtFo8lwXgBL0VGwi0VA5DtKlIMVHRSjy0ZWQ+JCDLNtsMbneA8AdqvnwqgRONCgJt+cAZnt8gNb9NmDaBeR8kGM0tpk71wXCkY+ehGo+5DhIl8ITH0pRrrTIR6cjTtpF5rvkDHrkY7RJKRcAV1A70XTFi3w4XOFwu6Ress4OkweJAbjtNiPtEnDGi3zIRSeXaDDZWh0wCo+9JJB28XeDr8u0zy5ECk98+LpwoVWsd9jL+n+dnGxyBrM7XQBcoRBrd3CANI4RbhfxkW0Ma3UTIx9uPerBQG3Xcj7IJayo+dDFR3e8tIu7DOwhb045FtKi8MRH6IDxKzudcRWuGEzlCma7mwK4gtqJJm7kA6ToNIdoiKj5MAt3sNu43yOFhoMGs63VIdx+H7cDTmwYTKPwxEd3MwAtlOL1q/5fJwdYzmC2uymAM3Si6Roo8lEiRmO5gn7BMavNFsAZ0I6tbuXCG+d0IOeD3CEQVIbJmJkFp24V2pCoAd5TjgVTKDzxETKHaVZldPvjdDCIz0fOYLa7KYBTj3yoAcYbSQQsZzDb3RTAFsrbd+Ghxx/s/4VywckZdnf2EAgqbDYYWmZm5EOPhor4yAQFKD60A6aVUrw+OdnkOj3+IDtCO14z0y7OUMFpR6KRDxGhWUdvtTXL3RQAn2Ze1yniY9Cgp9+qS9y4HOZdwlxKO890qYFSsXIsmEHhiY8erdOlTRXjjXuyiQi3q3jxWMFK6lu6UQqKXHZqSuPkYpPEEdBONJ2BgSIf4veSC3T7ArR0ad4sZg2VAwzx0a3cA5wP5IKTK+jpNzNTLhDugOuM134PciyYROGJD7924Hpx442XdtEPMBUAb2sGFibEQrdVr6sqNs1YCsCeaORDhsvlBPput8hlp6JoAMGYDD0S+RhsGJ0uZopQwpEPER+ZoQDFh97L7Yq/03EVhR0PJeSeNawwGANwBLTjoDPoIhiME9mStEtOoKfeaiuKTBWh4bRLET0BER+DgUYL2mwBXHo0VNIuGaEAxYce+XDFr/kAOchyACsMxgDsoRNNN64BLjpScJoLGMWmJna6AFFpl4QiH93NEBzgvCFYihXW6gDOUNt1e1AiH5mgAMVHKPKhXPG7XUAuPDmAFQZjALaAHgFz44snPkpCJxpxus0qOyzw+AASLzjVJ9uqoKRhs0yDBdbqEK4D6wiI+MgEBSg+kol8VGm3ofZcIfNYYTAGYAsdB93KlWCuXwRoNrFirgtg1Hx04Uk8DSsXnaxihbU6hMVHe3CgIvQq7VaOg7QoQPER3vHGLTgFyffnAOHIh3kGYwC2iOMgobSLrxN83f2/TrCUsMeHNZGPLuWJfxyA7HhzhHDBqbnHgt2vnWvaEo58NJv6+YVGAYqPiMhHvJ0OyMkmywSDiu0t1tR8EDrRdDNArr+oEmwO7b4cB1kj7PFhTc1HJx68voHSsHI+yDZKKcvSLnodWGtACk4zQeGKD5WI+JCaj2zS0ObFF1A47TbzLzoRXU9xxUfULAc5DrLFDuOCY1XaZYAIGMhFJwdo9/rpDqXLzS44DUc+nKh43k76cdDTDv4eU9dQSBSg+IhotZWdTk6ztVm7MIyoLMJhN7G9Eoxx2AmJUEm/ZR0rhsoBxnHQpYrii1CQXH8OoKdcyjxOStwm+r0QWQfmxheIIz48lUDofBSaFSYkTwGKj3DapVsuOjnNFgtmugAQ8GvmcYTSLrLjzWk6vH7avX7AirRLBxCKfCSchm02dw1CwugF6CMqTT4OgkFDfHQxQP2P3S5C1AQKUHxI5GOwsMWiThe93gO048An6becRt/tlrodlHnM3e0m7HAKcj7IAdY1auMxJgwtNfeNI84JyQlRORZSpQDFRzi0NvABJhedbKJ3uow2O/IREqAQqvkYKPIhEbCsYsU0WwPpdhlUrG/SIlV7DDNZfPjC4mPAInSQY8EEClB8JGivDnKAZRmrPD50AerDicKexIlGxEc20MWH6fUeEBYfEvkYFKwLiY+JQ8vMfeOQ+OhWLhT2gW0Y5FhImwIUHwkOloPwjrerGYIDvFYwHas8PnS/jh6bdjEb8KJTIsPlskmDVW22YFx0OgcyGQO54OQA6xo18THBosiH16Z5fIgQtZ4CFB+RNR8DHGC6pTIKulssXZYQjVLK+siHfqJJNNwuFutZwdK0S492MetWbhEfOU63L2BsSPYwu+ZDn/GDtiGRY8F6ClB8hH0+Bpzt4nSDu1y7LwdZRtnd6aMrVBA80uzKdkN8JHqikdqfbLLDoimmQPRUW7ng5DR6vUdFkZPq0gFcSJMlFPkwoqFS/2M5hSc+fOFWW19AEYg3Th3kIMsSetRjeLmHIpfD3DcPiQ+/PcEQqxScZhVrC07DaZekLjjxTKgESwgXm5Zhs5nt+6OJUK9NO8ZEiFpP4YmPCJ8PSOTCo4fc5cKTSXSDMdNTLmAIUL9d2+XEnWoLEvnIMpYNlVPKSLt0KTc9iRYZBn3GvxMyh95ma3qnC/RNxYrni+UUoPgIDxQDpKo5R7HMYAySj3yUDtVuO3dBcIDXCqailIqY62Jy2sXvBbQIRkLdLq4ScITC/XI+yDh6p4vp9R4QTrvYE4x86PWAchykTGGJD6X6KFzJ9+cmRqeLFZGP0DEQtCfa7VKj3aqA2ClnmDav36j9MX2uSyjUDgm4WkKvOT9y0ck0eqfLHsNMbrMF41jw6+JDaj4sp7DER8CHvtOxOUPFhgN1vMhBlhX0yIfpBmNgiI+AQzsGugZyunW4tOm2AB1N5q9H6Bc95VJR5KTYbXLtTyh1ErS7COAYWISCnA+yhFLKOndTMCIfvkQjH3IcpI0l4mPr1q1861vfoqamhpKSEvbff3+WLl1qxUclR+iiA4BTO8gG7HiRYsOsYFmbLRgnGhUSoJ09CXi4lIRSLx2N5q9H6JcdGfD4CDg1H5kBo6AgF50ssaujh9Zubb6PleJDrwNLOB3f3SIeUCli8qAE2L17N4cddhhHHXUU//3vfxk+fDhr166lqqrK7I9KnghbbS3y4ZXIR45imcEYhI8DpyZsuhIRH6XDYNda6JTIRyaxttMlFPlwJLjbBTkfZAm93mNUVbH53W8QFqKJHgv6YDmUVnRaWmP+mvIc08XHrbfeypgxY3jooYeM58aPH2/2x6SGHvlwePCEDuCBFa7UfGSadq+fli4fYG3Nhx796hwo7QLholNJu2QUPfJhjceHdsEJujSBK+Ijd1nfaNFMFx295iMkPgaMgjlcWtFpd7O2IRHxkTSmp12ee+45Zs6cyTe+8Q2GDx/OjBkzePDBB/t9vdfrpbW1NerLMowdbxEepy4+JPKRa+gpl8pil/lTTMEQHzaXdqLp6vEP/G/0otPOneavR+iXjTtDO14rRGhooq0KRcAk7ZK7rG0KtdlakXKBsBANHQsDFpwClA3XbiUVmxKmi49169Zx3333MWnSJF555RUuvfRSrrzySv7+97/HfP28efOorKw0vsaMGWP2ksIYO14PHpf2oyc830VqPjKG4fFhRbEp9BEfHd5kIh9yoskkq3a0ATCpttz8Nw+lXXBpF7SELjh6uF3ER0YxZrpYJT78IfGRTAqudJh2295gzZryHNPFRzAY5IADDuCWW25hxowZXHLJJXzve9/jvvvui/n66667jpaWFuNr8+bNZi8pTETko0iPfCRc89Fs3bqEKPTIx2grdrtgmIw53Fq4PbG0S+hEI2mXjKGUYnWDtuPdq9aK9srQGHW3pF1ynUh3U0switCTER+Sik0H08XHyJEj2XvvvaOemzp1Kps2bYr5eo/HQ0VFRdSXZcSIfAzY7aLXfHhbIJBAeF5Imy1WenyAcRw43MmkXXSjMTnRZIodrV7auv047DZrdry6S6krFGpPSnw0m78eISb+QNBIv1kW+TDqf5I4FowNiURDU8F08XHYYYexcuXKqOdWrVrFuHHjzP6o5IkoNPQ4Q2mXASfbVobvi8FURthqpbspRIgP7f0TarXVC8o6pOYjU+gpl3E1JUaNlqmELjg2dzJpF4l8ZJqtzV34AgqP027dOUE3nAu1XSd0LIj4SAvTxccPf/hD3nvvPW655RbWrFnDE088wQMPPMDll19u9kclj5F28SRecOpwhgWI1H1kBL3N1rK0S0h8OD1JtNqKz0fGMVIuwy2o9wDjgmMPpV0CQYU/0Tk/EgHLGJH1Hna7yQPldPQUXCjyMeCmFKQOLE1MFx8HHXQQzzzzDE8++STTp0/n17/+NXfccQfnn3++2R+VPLEiHwOlXUB2OxkmHPmwwOMDjJoPl17zkajPB2jdLjLfJSOsDkU+LKn3ACPtYveEQ/kD7njLarXbjiY5DjLEWiudTXUM8ZGgvTpIHViaWNDHCKeccgqnnHKKFW+dHnrkw1UU7nZJROEWV8PuDeL1kQG6fQEa2rS/k9U1H64iTXx0+QIEgyr+rqr3fBe9C0qwDD3ysacVnS5gXHAckeLDH6TEHeff6LtdFdDOB/pjwTLCxabWiw9bMp4vpdJqmw6FNdslKvKRYNoFJPKRQba3aH+jYpeDISUuaz4kdBy4i8LiZsDCY6cbPDLfJVMopYyaD8siH6FWW7u7BF13DnjRcbjCqZf2HdasS4ginHax6DiAPvU/CV0XpOYjLQpMfETUfOjdLom0WYrXR8aInOlis1mU39XFR8SON7HUi3S8ZArLO10gotW2FLeRhk3EXCqUehF/h4yQmciHXv+ThMmYfj7wthqpXCFxCkx8SOQj17HcYAwMEWp3F1EcstlPbL6L9PVnitUNFne6gOFwiqsYt0M7FSbmbCk73kzR4fVTH5rvY5m7KRjXBrvh+ZLA+aCoEuyh6KxsSJKmwMRHZLdLMgWnMt8lU1huMAbhXYqzmJLQmPakJtvKicZyVu2wuNMFohxO3SGBk1SuX9IulqNHPapL3VTFLcZJA6WMyIfDk0TNh80mqZc0KDDxEavbRSIfuYTlBmMQZTZXHBIfHYkYjRleHyI+rGZNg26rbn2eH3eJcT5I6KIjaZeMoU+zzUTUAyLERyIRMJBoaBoUmPiIrPlI0F4dpOYjg1huMAbhk40rHPlILO0irXWZQo98WDLTRScy7ZJUzYfsdjPFuky22QLOUNoloesCSOQjDQpMfIQOMvH5yFksNxiDXpEPrdtc0i65Q2Sny6ThVkY+dPFRGq75kLRLTmH5TBcIHwd2F263ltpJPPIh4iNVCkx8hCMfRaHIR3eiPh8gkQ+LCQQV9aFWW8sMxoIBCPRo953FlLj0mo9E0i4SYs0EDW3hTpdMdDjgKja633oCCYhQI+0iFxyr0dtsrT0O9EhoiREBS0iEQjgKJim4pCkw8ZGiw2lZxE5HKYsWJ+xo7cYfVLgcNoaXe6z5EF2AAjg9yaVdSqTmIxNYPtNFR0+7uJOMfBhpF7ngWIlSyki7WFrz4eubfktYfEgqNmUKTHzE6nZJosAs6JPoh4VsCdV7jKwstm6GQ0RxGc4io+A0OYt1OdFYyWq93sPKlEtEh0Pkjjcxc6kIZ8tgAseNkBKNbV46egLYbTC2xqJIKETNdfEk0/UEknZJgwITHyn6fDjd4V1ve71FixMy4/EROgbsTnA4w5GPRMzmDJMxme9iJbrHx15WFpsGejSLdEh+x1s6FLCBCspmxELWhlIuo4dYHAGLJUKl5sNyCkx89HU4TSjtAlA+Urtt227BwgSIdje1DF+46BigxCg4TaDmQxegQb8230WwBL3TZc9MFJtCdNolkYuOwxXugJPUi2VkxNkUIrrfiqLSbyqRFLvUgaVMgYmPGDUfibZU6amXNqlwtwq90yUT7qZh8ZFE2sXpAU+Fdr9zpxWrK3iUUhHTbDPQZmt3gsMV3vEm3GIpHS9WE673sFCEQszIB4AvkIj4iIh8SD1gUhSo+IjsdpHIR66wJRPuphECFEiu4BRkp2MxDW1eWrv92G2ZmeWBS/sMI+2SaLjdKEKXcLtV6AZjE6yOfETVfIQviQlFxfX2+6APulssWFz+UmDiI7zrTargFKB8hHbbJjUfVrE1k+6mLk18JOXzAeL1YTF6sen4mlJr8/xeLbqCR9tVJ+VwCmHxIWkXy9DTLhOt7HSBKPGhp10gwWPBVRSOhsqGJCkKTHzELjhNKLeniw8pOLUEpRTbdIMxqzw+oN/IR0I1HxAR+ZAdrxUY5mJW2qoD9GgiB7cuPpLtcpC0i5X0+INs2qVFpzIW+XBqXXbOUKdd8kZjIkSTocDER9+CU0jwIJPIh6Xs7Oih2xfEZoMRlUXWfZCvP/GRbNpFaj6sQO90mWTlQDmIiHxonyNpl9xi8+5OAkFFidvBiAoLzwcQFfkA0vD6kGMhGQpMfPQtOIVEvT5EfFiJ3ulSW14UVfRlOr0iH8WuJMWHpF0sxfD4sDry4Q1FPkJpl6RMxkDSLhajO5tOGFqKzWaR549ORMEppJCCk2hoShSY+AjXfLgddvRjOqEK98jIh1Q1m05G6j2gT82H3morBafZJ3Kmi6WdLgA9ochHKO2SlMkYRKRdRHxYQUYGyun0E/lI/FgQl9NUKBzxoVTUrtdmsxkKN6GOF3E5tZQtuzNgMAZ9fD4Mh1NfgjUfJbLLsYrGiE4Xyy86RtpFKxZMfqaHiA8rychAOR0j8qGdE5JOwUnaJSUKR3zow8RA82sAcTnNITJiMAYRkQ/tc1JutRWfD9NZFdHporfCW0Y/aZeETQd18dHZJBbrFmAMlMtE5MM4J2hpl6RTcCI+UsKZ7QVkDht89VbtQAtdeJIaLgea10fnTs3ro3aaVQstSDJiMAZRQ6QgnYJTCbGaTcY6XaBPt0vSkY+SXhbr+rA5wRTWZcrdFGKkXZLYlIKcE1KkcMSH0w2zLo16KmyxnoTL6Y7PpOjUArZkKvIR0VYH4bRLly+AUmrg4rbIglOlwOpiuAJidYM+UM7ieg/oG/lINtTucGqR0M4mrd1WxIdptHb7aGrX6vMyU/MRXXAqKbjMUDhplxgYaZdELZUNl1MRH2ajRz7GWC4+otMupaGCU6WgO5HjQN/lyHwX01mdyciHt1W7DdV8JN3hANLxYhF6ymVYuYfyIpf1H9gr8uGRtEtGKHDxkWzaRdptraCp3Utbt1bwWZextIu2yymOqC1IyGgscr6LeH2YhlIqs5GPPiZjKYgP/aIjXh+msr5Jn+mSgagH9ImGhqNgiaZiQ8dBdzP4e+K+VAhT0OIjPN8lSYt1KTg1lWUbdwOwV22Z0fpqGb12OXa7jaJQ+i1xr49Q4bF4fZhGY5uXli6f9TNddNJNu0C4A05cTk3FKDbNxHEAfSMfyQrRoiqwhTYxUoieMAUtPiTykRss3aSJjwPHDbH+w/zRJxqI8PpIdMigmAqZTkY7XaCvw6kjSXt1kLSLRRjFplZPs9UxxEeKNR92u5wTUkDEB8kUnIr4sAI98nHA2AyID19f8aGnXjq8yXp9SOTDLHRb9T2HZ+iCY6Rdou3VEz4XgKRdLCLzkY/oDri0jgURHwlT4OIjyZYqcTk1nR5/kI+3aKOoMxL5iCE+Uvf6EPFhFnrkw3JnU51eU22T3u2CpF0sIBhURs1HRjpdoI/rseHzkUwKTtptk6awxYfeaptouF1cTk3n820t9PiDDClxZdZK2dlXfMhwueyxpiGDnS5KxUi7pLDbLZPdrtnUt3bT7QvitNsYU23hdGsdpfpttU24CxJksm0KFLb4SDa8Ji6nprN0Y7jew/IBUhA77WJYrCc5XE4uOqagzXTJYKeLvxtU6G/dx2QsCbdSme9iOnrKZWx1CS5HBi5PgR7NKA76TrVNKvKh1//IOSFRClp86IVtCUc+IMLrY7sFKyo8loWKTQ/IRMoF+uxyIHK4XII1H5J2MZWsdbpA31bbVLpdxGLdNIw220zXe0DqBacgaZcUKGjxkXTkA8InHCk6TRulVDjykYliU+iT34WIyIekXbKC7u8xLlOdLvpEW1ep1qlAij4fJTWELdblWDCDtY0ZHCgH4UiozQEOzdAsaZMxkILTFChw8ZFkwSmIy6mJbG3uYkerF6fdxr6jqzLzobEiH64kxUeJRD7MxJjpkqlOl171HhDe7QYV+JO1WAdJvZiEPs02Y8WmvdpsATyuFNquRXwkTYGLjyR9PkC8PkxEj3pMq6swog+WE6Pmo9Sjp11SGC4nXU9pYzibZqLYFPoYjEFYfIAYjWWTddlyN404H6TW7aKLD9mQJEphiw9XClXN4nJqGoa/R6bqPYIBrcAMonY6Sadd9MhH0AfdLWausCDRZ7pkrM22l7U6hC84kOT5QDpeTKPbFzAGTE7IuLtpOA2bXs1Ho2xIEqSwxUdKaReJfJiF7mw6c1x1Zj5QP9EAOMMnGz3t0uVLsODUVWSYU0muPz0y3ukCMdMuTocde6jZKqUuB0m7pM2mXZ0oBeUeJ8PKPJn5UL3+x903BZecyVhIfPi7w8eXEJeCFh/6TI/uZLpdxOXUFDq8flZs1/6THjCuKjMf2o/4SDryAVAayvVLmDUtGtsz3OkCMcUHpGo0posPSbuky7rGkLnYsNLMtN1D7PofRwrpeHepVsAMEgVLkIIWH2lHPiS8ljIfb2kmEFSMqipmZKXFk2x19GJTZ7HR5QDhVtsObxInG/H6MIXVOzLc6QIx0y6QqtGY+DuYRXimS4ZEKETU//SNfCQlQiEiBScbkkQocPGRgsIVl1NTWLohw/UeELPNFiLs1RNNu0C4wEw6XtJidaY7XaDfyEdqXQ6SdjGLdZlus4W4nU9Jpd9AOl6SpLDFhyuFnU6ky6kYjaWMMcl2bFXmPjRGmy1I2iWbrMp0pwvE7HaBFLscykR8mIWRdslo5CN6xg+kEfkQ8ZEUhS0+9LRLMtXtEPb6kI6XlAgGldHpcmCmik0hZlsdpDBYDmSyrUlkvNMFYhYZQopGY0baRcRHuugeHxmr/QHwtmq3ngrjqZSOAxCX0yQpcPGRQtoFxOU0TdY2ttPa7afY5WDKyAxedGIMlYMUBsuBWKybQGSny54ZTbv0E/lI5Xygp106d4rFehrs7uhhd6cPyHDko6dvzUdKVvsgkY8ksVx8zJs3D5vNxtVXX231RyWNHvnoTjXyIeIjJXRzsf3GVGZmeJROP5GPYpdWcJqc+JAuh3SJ7HSZmOU8P6Th72Czi8V6mujFpiMri4wC8IygHwtRni8p1P6ATLZNEkvP/EuWLOGBBx5g3333tfJjUqbIlWLko1wiH+kQOck2owyYdkmi4LRqrHa7e6MZKytI1mSj0wUG7HZJ6qJjd0RYrIsQTRW93iOjKReIX3CasviQaGgiWCY+2tvbOf/883nwwQcZMiTDF5kESanVFmSybZoYxaYZFx+xC05LPKG0iy+ASrR9esh47bZlCwR8Ji2wsNBnumQ05QIDpl2SD7dL0Wm6rMv0TBcdM1ttS6X9PhksEx+XX345J598Mscee6xVH5E2KXW7QITFuux0kmVXR4/RUjdjTIbFR7+ttlqYV6kkjoWyWs2oTAU0ASIkjd7pslcmO10gZpEhpDjlGsTrwwTW6222Q7N/LOjHQXeyEfFSOQ6SwZLk2j/+8Q+WLVvGkiVLBnyt1+vF6/Uaj1tbW61YUkz0gywQVPgDQZyJ1h+Iy2nKfBSKekwcVsqQUndmP7y/VtuIkH9nTyCxFIDdDlXjoGkl7N4A1RNMXGhhsCbTtuo6/aVdUjaXkvqfdNEHymVspotOjFbb0tBmxBdQ9PiDUUMH42J4/+yCgF+beiz0i+mRj82bN3PVVVfx2GOPUVRUNODr582bR2VlpfE1ZswYs5fUL3raBcTlNFNkrd4D+q35cNhthhDtTKbuQ0+97N6Q/toKDKUUqxpCBmMZj3z0l3ZJs9BQ0i4pEQgqNuzUNgYTMx35iNHtEjlhO7n2+2rABijoEgPKgTBdfCxdupSGhgYOPPBAnE4nTqeTRYsWceedd+J0OgkEov+Y1113HS0tLcbX5s2bzV5Sv3giFG1y813E5TRVckJ8OPuK4pTabXXx0SxFp8nS1N5Dc2cWOl38PRAIRVp7d7ukYjIG4fOBhNtTYltzlxZhcNgZNSRDoxZ0+ik4dTm02TKdybgeRxYfy7EwIKbHhY455hg+/fTTqOe+/e1vM2XKFK699locjuiQtsfjwePJ0ATDXtjtNtwOOz2BYGoup507taJT3e1SiIsvEOTjLc1AtiMfJX2+VeJ2srvTl5r4kMhH0ujmYmOrS7LT6QJ9TMYMn49kW+8l7ZIWaxv1rqcSHPYMDZQDTYjqdWC9UnDFLge+gD+5eU+gRcE6m7QoWO00kxaan5guPsrLy5k+fXrUc6WlpdTU1PR5PhfwOFMQH6B1vHTuDLmc5t7PlYus2N5Kty9IZbEr84Vl0G/aBSIt1pNJu4zTbkV8JI3e6TIpk86mEN7pOov65OTD5lIpXHAA2mW3mwpZcTaFaCHaKwpW6nHS2u1PLu0CWsdLI9JumwAF7XAKkR0v4nJqNXrK5YCxVdgzucPR8fcvPlKyWJfIR8qs1me6ZLzNtq+plI4n5ciHnnaRmo9U0LvfJmS800UXosXgcEV9S9+MdCSzGQExGkuCjJTjvvnmm5n4mJRIe76LiI+E0cXHzPEZnOcSSbzIhyuFmo+qUOSjazd0NUNxVXrrKyBW79DbbLPU6eLp+7llHu102O5N8oJjtNo2SZdDCmQt8tGP0y2EO16SjnxUjtZuxXxwQCTykWpvv7icJs0yI/KRJdO5flptIcXIh6csvNORotOEycVOF4CKYm3329qdpGlcSY1msY4Si/UU0N1NJ+ZAm61OSaqRj5qJ2u2udemsrCAoePGR0jApEJfTJNnW3MW2lm4cdhv7janMziLiRD50o7Gkaj4gIvUi4iNRstbpAv1OtAWoKNaOgdauJI8BuyNiyrGE25Ohs8fPthat6DPjaZc4UTCj+y3ZgtNqXXysTWdlBUHBiw+90j754XLicpoMy0LmYnuPrMjs4KhI+plqCxEnm2RarkHqPlIga50uEDfUXhmKfLR0pWCXLx0vKbGhSYtGVpW4qM606WA/TrcAJZ4UNyPVe2i3uzfK2IUBKHjx4Uk18iEup0nx4YYs+nvoxI18pJB2gXDdh4iPhNGLTffMtLMpxE+7FKWYdgHpeEmRL7ZrAmCPTM90gbhCtMSlp11SiIg7i7WxC82b0l1hXiPiw5Vqwam4nCaDHvk4IEfFR7GRdpHIh9XobbYZn+kC/VqrQ7qRD+l4SYWFX2qRosP3HJr5D4/T+VTqSbHg1G4PRz92SuolHiI+Uh4mJS6nidLZ4+fzbdoOJ6uRjwRabUV8WE/WOl0gItQeq+YjFPno8iU+3VinTCzWk8XrD7BopRYpOnbv2iwsoP+aj5RbbQFqQuJDik7jIuIj1bSL7nIKUnQ6AJ9saSEQVIyoKKKucuB5P5aRQNol5YLT5k0QTPIYKkAiO132zLTHB8S94OiRj6BKIdyuTzQV8ZEw763bRUdPgOHlHqbXZaEIPW6rbYppWAhHPqToNC4iPnSfj2QjHxDueGmXuo94RM5zsdmyYC4GWmosTqttcaqRj4o6sLu0CFjrtnRXmfdEdrpkRXzESbt4nHZjvkvSqZeKOu22ZUs6qysoXvtCS7kcM7U2O6aDRhSs77Ggp2GTFqEQ7niRtEtcCl58FIUcTpMaLKcjLqcJYfh7ZDXl4g3fjzNYLvkcrwOqxmr3xetjQFY3ZLHTBeJ6O9hstoh22yTFR82e2u3O1emsrmBQSvH6Ck18HLf38Owswmi17dvtUmq02qaSdpF220QoePFhSuRD0i79opRi6aZc6HTpDN+P6XCaYmsdSN1HEuj1HlnpdIG4aRcI130kHfnQxUdHo9SAJcAX21vZ1tJNkcvO7IlZKDaF+N0unhQL0CEc+WjepA2vE2Ii4kOf7ZJstwtEuJxKb39/rGvqoLnTh8dpZ++RfXcYGUOv97C7+sxxgDQKTkEGzCVBVjtdIK7JGES02yYrPjxlUBGy1t65JtXVFQyvfaHVxhwxaVh2ImCQUKttSpuR8hFaalcFpd02DiI+Ui04BYl8JIBe77Hf6CrDTTYrGMWmfes9ICLtkkr6TSIfCWMMlMuW+Ijj8wHhotPW7hQuOkMnabeNK1NZWUHxeqjF9ripWehy0YnTalviSWMzYrNJ0WkCiPhIK+0iLqcDkRP1HhDRZhu72yblglMQ8ZEgSinD3XRS1tIu/e92IY20C8DQvbTbplWprKxgqG/p5pMtLdhscNSULNV7QIQQjeFwmqrvj454fQyIiI9UfT5AXE4TILLTJavEabOFNKZYgoiPBNnZ0cPuTh+2bHW6QNxuF4CKohQLTiEc+WiSotN46FGP/cdUMazck72FxPF8KU219V5HBswNSMGLj/Bsl1TSLuJyGo+WTp8RZj9gbFV2FxOnzRaifT6SNpjSxUdHY3g3JfRBF6Lja0qzk+cPBsLHQT+Rj7RcTiXykRCvr9DqPY7NZspFqbidT2GTsTQjH5J26ZeCFx/pRT7E5TQeyzZrF5sJQ0upKcviDgfAp03OjNVmC+GTTVClcCwUVUJxKLIjBWb98uInWm3U0dkKtesXGxgw7ZLSfJdhk7Xb3RuiW7sFg84eP2+vaQLguGy4mur4u7X5K9BP5EOLgPX4g/gDKVwbxOtjQER8GN0uKShccTmNy7JcSblAApGP8KTdlFIvMmAuLt2+AK+FfB1O2Xdkdhahp1zsLnDGFsNGwWlXCuH2slqtfkAFYNf6VFeZ17y1uokef5Ax1cVMylbqDSKEqA1cfYfa6ZsRSGHSNYTTLi2bpd22H0R8pFNwCuJyGoecqfeAAWs+HHab0Y2T0jwHqfuIyxtfNtDZE2BUVTH7j6nKziIG6HSBNFptQetyMOo+JPUSC91Y7NiptdlzO4bowmN738ugx2nHEXJd7fSmaEDpKg2124r5YCxEfKSTdgFxOe0HfyDI8s3NQI6IjwG6XSANl1MQ8TEAL3yqRQZP2Xdk9i463vgeHxDZapuC+ICIug9pt+1NIKiMeo+stthCuNi0n8Jjm82W+rwn7Q2k42UARHyk4/MB4ciHzPWI4sv6Njp7ApQXOdlzWBbDqzoD+HxApLGQiA8z6ezxszB00Tk5WykXCBuM9VPvARj26ikVnIJ0vMRh+eZmdnb0UF7k5KAJ1dldzABOt5Cm8SBETLcV8RELER+hC05KDqcQzu01fmnSivKDZSFL9QPGDsnO0KjeDJB2AfH6sIqFXzbQ5QswtrqEfUZlYXqpjtVpF5COlzjoNT9zJg/H5cjypWcAvxcIF52m7vUhRafxKHjxoQ+WSznyUTtdu63/zKQV5Qcfbsiheg8YsOAUwkWnXb40aj6aN0rbdS9e+FhLuZyczZQLDOjxAeG0S0dPILUuB0N8rJbjoBfheo8sGovpxGmz1Qm324rXhxUUvPgwCk5TjXyMCImPnavDu2sht4pNYcBWW0gz8lE5Gmx2rYVPHG8N2r1+3lippVyy1uWik8But7wo3PWUksX6kAlgc2hCRzrgDDbu7GDVjnacdhtz9soB8ZFACi4t40EQr48BEPGRbsFp+UgortaqmiX1Amj2yVubu7DbYL9sdTb0JqHIRxriw+HSBAhI6iWC11fswOsPMmFoaXYHC0JCu12nw06ZJw2XU6c7fNGR1IvBa6Gan4PGV1NZ0newY8YxjoX+j0kj8uFNMfKhp11atojvSwxEfITER08gSDCYQpjUZgtHPyT1AoTrPaaMqDBO5FkngZqPtHc6UvfRhxc+yYEuFx0j7RJ/roxusZ560Wko9dIo4kPHSLlk01gskkRqPtIZLgdQNlxL8amgnBNiIOIjwua5J5UcL0DtPtrtDhEfkIMpF0io1TattAuI+OhFW7ePRSsbgSx3uegkcMGBNF1OQbw+etHS6eP99ZoDdE7Ue0DcibY6xa40C06jpttK3UdvRHxEjHlPab4LQO007VYiH0COio9EWm0Nn48Uw6wiPqJY8MUOegJB9hxexuTaLE2xjSSBbhdIc7ItSMdLL95c1UAgqJg0vIxxNX3dRLNCAq224chHiucDEK+POBS8+HA57LhDbV/tqeb29LTLjs8KvsK92xfg820tQK6KD4tabUHERy/0WS4n75MDKRdIqNsFItttUzwfRHa8COFBcrmScoG4E211StJttYWIjhcRH70pePEBUF3qBmBXR4oe/MOmgN0J3c3QutW8hQ1CPt3agi+gGFbuYfSQ/i/0GUcXH87+11QSCrOmPMnSEB9ip9zS6WPxai3lkvUuF50ELjhghsvpntpt27boYXYFiC8QNLqdsjrFtjcJFJym5XCqI14f/SLiAxharomPpvYUK5KdnvBup8BTL0bKZeyQ3Njt6iQQ+Ug77VI1Xrtt2xZu7S1QXv2iHl9AMbm2nEm5kHKBhELtYILLafEQKA3VNhR49GPJ+l20dfsZWubO3kyfWPQMnIJL2+EUIiIfMmiwNyI+gJpSbcJlU1sa0wd1s7Edn5qwosFLTtZ7QEKttmmnXUqqw50UzZtSe488Qe9yyYlCU50E0y7hybYpig+Q1EuIBaEul6MmDzcGteUECRQf62mXjlQGy+noNR8tmwt+Q9IbER/A0LKQ+OhIoxdbik5RSrEsJD4OyDnxkUTkI9XCY5tN6j6A3R09/G9NE5Bj4iMBnw8I13ykHPmAiI6Xwh0wp5QyLNVzqt4Dkmy1TSPtUjostCFRBX1OiIWID2BoWSjtkk7kwyg6/dyEFQ1ONu7sZGdHD26nnemjsmwo1Rt/aNeRgPhIK8w6ZJx2W8Anmlc+r8cfVEwdWcHEXBgqqGOkXeIfm+FW2zQuOsMma7cF3PGyuqGdzbu6cDvtHDFpaLaXE01CrbYmnA9sNhkw1w8iPghHPnamFfkIeX3sWgs9nSasavChp1z2HVVp2NbnDEbaJV63iwnV7RL54MVPw8ZiOYNSGU67yHTbBV9oUY/DJtYYKYycIBiMqPnoX4iWevTzQRoiFMJFp+L1EYWID6CmLM2CU4DyWi3EpoLQsMKklQ0ulm7K0XqPgA+CoROIlQWnED1grgDZ2e7lnbU7gRwTHz0dQKgNfsC0Sxr26jp6zcfOtRBI8+I1SMk5V1MdXXhA3LRL2jVgOuL1ERMRH0REPtrTSLtAuO6jQItOc77eA+K32pqSdhmv3RZo5OPlz+sJBBX7jKrMHUMpCIfZbfa4RceAMXsk5VZbgIrR2rEW9BWkEG1s8/LR5mYAjpmSY+JDPxbsLq1TsR9KzYiEgnh99IOIDyIKTtOJfEBEx0vh1X20dvtYuUP7T33A2FwVH7a4J5uSdGe7QLT4KEDDuRc+zsEuF4ie6zJAC3hkwalK9W9ot4f9Pgqw7uONLxtQCvYZVcmIyv5HGmSFyDbbOMeCKT4fEOH1IWmXSER8EC443dXRQyCV4XI6I0J1HwXY8bJ8UzNKwbiaEoaV93+BzwqRbbaJnGx8gdQvOpVjAJt2guvcmdp7DFIa2rp5f732M5+8T46JjwQ7XSBccOoLKLp9Kc57goK2WTe6XHLJWEwnwRk/+vmg2xdM77qgRz5at0RHYQscER+EHU6DCnZ3muH18XnB7XojzcVyDqPTJf4OTM/xBoIq9SGDriKoqNPuF1jq5ZXP6gkq2G9MFWOq46c2Mk4C3Q06pW6H4UmRVuqlQKfbdvsCvLVaa7U+du8cGSQXieF0G7/rqTRiInda0Y+SmvBnFdg5IR4iPgCnw86QUJ43rbqPoXtpeURvS8GZTC3blKP1HgBd2toGOtmUREw47kzHWKhA6z6eDxmLnZprKReICLUP7LZqs9mMolNzvD4KS3y8s7aJLl+Ausoi9h6ZYy33EG65HkCIepx2I1CaVio2crqtFJ0aiPgIYUrdh9Md7u8voLqPQFDx0aZmIAc7XSAsBKvGxH2ZM2LIYGeqRmMQIT4Kx1J5R2s3SzZoY9NPzLWUCyQ80VbHnHbbCK+PAoqEvhYaJHfM1NrcGrGgk2DaxWazGUWnKc970pGi0z6I+AhhSrstRKReCqfuY2V9G+1eP2UeJ3vlyhyPSAzxMXbAlxab2W5bQAPmXvp0O0rBAWOrGFWVQwMFdfRQewJpFwjXfaQV+aiZCNi0gZMdTam/zyAiGFS522Krk6D4AMyJgIF4fcRAxEeIcOQjzXZb3em0vnDabXV/jxljq3JrfoOO3upYNW7Al5rSbltVeC6nL36iG4vVZXkl/ZCAqVQkaU+2Bc1TRhe8BZJ6+WxbCztavZS6Hczaozrby4lNEuKjOrQp3ZnuplTSLn0Q8REi7PUhkY9kMfw9crHYFFKKfIjXR+Jsa+7iw427sdngpFxMuUDSaRe93ba1K802ywLreHkt5Gr6lb2G5Z7LsU5P4uJDHzq6syPNTWmNRD56Y7r4mDdvHgcddBDl5eUMHz6c008/nZUrc3+40lCz0i56u+2u9eETXh4TDCo+WK/l+nOy3gOSEh9hl9M0xMewyZqZVctmaNmS+vsMEl4K2akfNK469zwddBK0VtepKDYp3F5g0231eo+cbLHVSSLyUWNEPtIUH3rapXVrwY7f6I3p4mPRokVcfvnlvPfeeyxYsAC/38/xxx9PR0eH2R9lKqalXUqHQlktoArCZv21FTvY2txFqduRm50uwUBYACQiPlwmuBoWV8Hog7T7a15L/X0GCS98kqPGYpEkccGBiOFyaYuPwpluu7W5iy+2t2K3wVFTcrDFVicZ8VFqUtqlpBqKKrX7BRIRHQjTxcfLL7/MxRdfzLRp09hvv/146KGH2LRpE0uXLjX7o0ylxqy0C0SkXvK77kMpxZ0LtR3dRbPHU+bJoeFROm3btbkudieUD3xxLDFjjDbAnsdqt3kuPjbv6mT55mZsNjhxnxHZXk7/JCs+ikwoOIWCSrvohaYzx1Ub3kk5iTfxtmv9urAr3bRLZLutdLwAGaj5aGlpAaC6OnbxkdfrpbW1NeorG4TTLmkeZBBRdJrfdR9vrGzgs62tlLgdfPeIPbK9nNjoKZfK0WAfOAdtpF3SabWFsPhYt0gbbJen6CmXQyZUM7w8R1MukHTaxZSCUwiLj+bNeR9uD7fY5nDUA5IynNMjH03pig+IsFkX8QEWiw+lFNdccw2HH34406dPj/maefPmUVlZaXyNGRPfi8EqIn0+UrbW1qkN1X3ksdeHUoo/vb4GgAtmjcvdnU4S9R4AxWakXQBG7q85G3pbYfMH6b1XDvPipzne5aKTctolzQhY6VAoqgJUXu9427p9vLtWdzXN4XoPSNjhFMI1H7s6TIiIi9dHFJaKjyuuuIJPPvmEJ598st/XXHfddbS0tBhfmzdvtnJJ/aIfZF5/kHZvmiccY7rt5xBMYzZEDrN4dRMfb26myGXP3agHaDtOSFh8mNJqC9pgsYnHaPfXLEjvvXKUjTs7+GRLC3YbfHV6DqdcIIVuF5MKTm22sPFgHqde3lrdhC+g2GNoKROHJfY7zhpJ1XyYNPEcwteFDf8rKNO5/rBMfPzgBz/gueee44033mD06NH9vs7j8VBRURH1lQ1K3E7jwpP2gTZ0EjjcWktXHo7TVkpx5+tarcf5h4zLvUFykSTh8QER4iNdAQow6TjtNk/rPvSox+yJQ43IYc4SOdU2AUxLu0BE0Wn+drzog+RyPuUC0VNtByCy2yXtiPjEo7Xrwq610Phleu+VB5guPpRSXHHFFcyfP5+FCxcyYcIEsz/CMkyxWAdwuGDYFO1+Hvp9vLt2J0s37sbttHPJV3I46gHJp10iJtumzcSjAZtmONdWn/775RgvDoYuFx0j1J5Bh1OdPC869QeCvPHlIGix1Ukh8tETMCEi7ikPnROAFc+n9155gOni4/LLL+exxx7jiSeeoLy8nPr6eurr6+nqyv1RwuYWneZv3cefQlGPcw8aw/CKHC4yhKTFhyk+HzqlQ6Fuf+3+mtfTf78cYn1TB59va8Vht/HVaTmeclEqqQ4HCEc+2r1+gumMU4e8n267bFMzuzt9VJW4ctfrRyfgC0+5TuBYKHY7zIuIA0w9Vbtd8Vz67zXIMV183HfffbS0tDBnzhxGjhxpfD311FNmf5Tp1JgV+YBwu22e2ay/t24n76/fhdth59I5E7O9nPgk6fEBUOzWC05NSLsA7JmfqZcXP9kGwGF7DmVIrhYb6/i7QYXEZKImY6FWW6WgLd0dry4+dq7Wjsk8Q0+5HDV5OE5Hjptm61EPSDgFZ6RezCg63etEzYCw/tOC9/uwJO0S6+viiy82+6NMJ2yxbmJxUZ6lXe4K+Xp8Y+ZoRlbm4ACxSNrqIehL2OMDoMRlUsGpjt5yu3ZhXl14dGOxU3LVTj2SSKfhBMWH22mnOHQspG00VjVOM5jyd8Omd9N7rxxEFx+DKuXiLAZHYr5E1WYWnZbWwLjDtPsrXkj//QYxOS5TM4tpFusQTrvs3gDd2fEuMZsPN+zif2t24rTb+H+5HvWApD0+wOS0C8CoA7ULT3czbM1to71EWdPQxpf1bbgcNk7I9ZQLRE+0tSd+yjPNYt3hhCmnaPc/m5/ee+UYaxvbWdfYgcth4yt7Dc32cgYmyZZrgKG6y6kZXh8AU0/Tbgu87kPERwRG5MOM8FpJNZSHvA/yxGb9zoWar8dZB45m9JCSLK8mAZKs9wCTBstF4nCGi8zyJPWiRz0O33MolSWuLK8mAZI0GNMJD5czoeh02pna7Rf/gYBJKb0cQHc1nbVHDeVFg+BYSEF81Jg12VZnysna7eb387IQPVFEfESgH2RNbSYpXN3pNA9s1pdvbmbxqkYcdhuXzdkz28tJjBTER2nIIj5th9NI8sxqXe9yyXljMZ0kPT50TG233eNIKK6GzibY8Fb675cjDIpBcpEk0WarU23WZFudylEwaiag4MsXzXnPQYiIjwiMVlszIh8QUXQ6+Os+7gp1uJwxYxRjawZB1AOS9vgAjDy/aQWnEDYb27oMOprMe98ssLK+jdUN7bgddo6bNkguOCnsdsFEl1PQ2u/1TofP8yP1srujhw83aBOtB4W/ByTlbqoz1KzJtpFMDaXhCjj1IuIjAqPmo80s8ZEfRaefbW3h9S8bsNvg8qMGSdQDUop86Lvd3R0+/AGT3GkrRoYs9xWsfcOc98wSepfLV/YaZqQlcp4U0y6VZnp9AEwPpV5WPJ8X837mf7SVoIKpIysGRxoW0ku7mLUpBZgSEqIb3oKu3ea97yBCxEcEeuSjtduP129C2N3w+vhiUNus626mp+1Xx4ShpVleTRKkID5GVRVT4nbQEwiyYWeHeWvZU7daH7ypF6VUuMtlMBiL6aQa+QhZrJuSdgEYdziUDtMuNuveNOc9s8TW5i5uf3UlAOcfkvj/r6yTpN8LmNztojN0Txi+tzZxe9Ur5r3vIELERwSVxS6cdhtgwghl0KYYOovB1wH1H6f/flngi22tvPrFDmw2uOLoQRT1SMHjA8ButzF5hHZiWrG9bYBXJ0Fk3ccgFaIrtrexrqkDt9Oe+8PDIkliimkkprqcglZ8vPfXtPuDuOtFKcUvnvmUjp4AB40fwnkHDybxkfyxUGN2t4uOYThWmKkXER8R2Gw2c4tOHU6YcpJ2/8O/pf9+WeDuN7Sox8n7jGTP4cntHLNKCh4fOlNGaPnglfUmio8xh2imRp1Ng1aIvviplnI5avIwyjyJeSTkBD3J73YhouDULPEB4a6XL18Ev4lh/Azy3MfbeGNlI26HnXln7os9tGEbFKTSahuKiO/u6Enf7TYSXXyseQ16TIyyDhJEfPTC9KLTg7+v3X7yNHTuMuc9M8TK+jZe+lRrBfvB0ZOyvJok0VMuFaMS9vjQmRKKfHxZb6I/i9OtdTwArB58qZftLV08+q5WwDtoulx0Uux20WtaTIt8AIw9VBPD3pZBabm/q6OHm57/AoArj9mTPYfn+ATb3hgFp4mLjyGl2nHgDyrzUnCgNSRUjdPM5wZxOjZVRHz0wrBYN6vodMwhWu2HvwuWP27Oe2aIu9/QfD1OnD7CSEUMGlKo99CZYkXaBQZt3UcwqPjRPz+mtdvPfmOq+Or0QWAsFolhMpZit0u3iZ1Pdjvsfbp2fxB2vdz8/Ofs6uhhyohyLjlyEBgN9iaFKJjH6aA8VP9jytwvHZstIvVSeG6nIj56YbRVmZXfs9nC0Y8lfxk0FttrGtp5IdTZMKhqPXQM8ZF4m62OnnbZ2txl7k5Hr/vY8sGgqnD/2//W887anRS7HNzxzf1x5fr8jt6kmHbRHU5NTbtAuOtl5X/Bl/sDN3XeWNnAs8u3YbfBrV/fd/AdB5By8bEeETelFjAS3e101cvgN/m9c5xBePRYy1CzIx8A08+CoirNan2Q7HrvfWMNSmnmQdPqKrO9nOQxPD6Sj3xUlrioq9Sm9Zpa91E1FoZOBhUcNN0OK7a38ruXta6GX5669+DqdtLJpbQLwOiDoHKMJopWLzD3vS2i3evn5/M1s8S5h01gvzFV2V1QqqQoPqpLTRy9Ecnog6CsVovOrV9s7nvnOCI+emF65APAXQIHXKDdf//P5r2vRWxo6uDZ5VsBLa87KEkj7QIwZaQW/fhyu8lzeQaR22m3L8DV/1hOTyDIsVNrOeegMdleUmqk6fNhavQLtGjotNO1+4Mk9XLby1+yraWbMdXFXHP8XtleTuqk0GoLMLZa8zFZtcPkVKzdHp77s+I5c987xxHx0YuaUE+36Qp35ncAG6x9HZrWmPveJnPPG2sIKq2rYd/RVdleTmqkKz70ug8zIx8Ak3Tx8bo2rz2Hue2Vlazc0cbQMg+3fn0fbLZB1NUQSZoOp92+oDm+P5HoXS+rXsn5ToelG3fx9/e0SOK8M/alxD2IOp16Y7TaJncszBhbBcBHm5rNXQ+E3U6/fHHQpOXNQMRHL4aW6+LD5Pxb9QTY6wTt/pK/mPveJrJ5VyfzP9KiHj84ZpB1uOik6PERiWWRj7GzNe+Xtu2w43Nz39tE3l7dxF/fXg/A787axyjEHpSkKD7KPU50vWWKxXokdTNgyHjwdWr5/hzF6w9w7b8/RSn4xoGjOXzSIJhcG48Uul0AZowZAsBHm3ab224LMP4IbfJ1Z5M2bK5AEPHRC8Ni3ezIB8DB39Nulz8eDv/lGPe+uYZAUHHEpKEcMHZItpeTGml4fOhMDUU+Vta3mXuycRXBhCO0+zmaemnu7OFHTy8H4FuzxnL0lEFkKBaLFNMudruN8pCfiemFhjZbOPqRw4Zj9yxcw5qGdoaWefjFyXtneznpoVTKQnTKyHI8Tjut3X7WNZkcqXK4YHLID6qADMdEfPQisqrZdIW7x9Ga66m3FT55ytz3NoGtzV38a6kWMbhqsEY9INrjw5FaiHj80FLcDjsdPQG27Da5I2HP47TbHBQfSimuf+ZTdrR62WNYKT8/aZBfcCDigpO8J4Xe+fTRJgu6k/Sul9ULoNvkCJsJfFnfyr1vrgXg5q9No7JkkMzy6Q9/N6hQWiNJ8eFy2Nl3tFZ4b8mxEOl2muPpWLMQ8dELvao5EFQ0m13lbreH224/eDDnDrL73lyDL6CYPbGGmeOrs72c1Emz3gO0k41uoGSq2RiE/T42vRe+MOYI85dt5aVP63Habdzxzf0pdidn0JZz+HsgEIpaJHnBAZi1h/b/4N11O81clUbtdKiZBAGv1nabQwSCimv//Sn+oOL4vWs5cbB5u8TC+L9mA3fyXVt6JPijzc3mrUln4tHgKoGWzbB9ufnvn4OI+OiFy2GnKqTwd1qRetn/XHCVQuMK2PC2+e+fIv9euoXH3tMu2oPOzbQ3aXh8RDJlpO50arJAqJkIQyZoqaEcaq/bvKuTXz2n1aH88Li9Bm+xcSQ9EenNJIsMAWZNrAHg3bU7UWZvFmy2cPQjx7peHvrfej7e3Ey5x8nNX5s+eIuNI4lMuaTw81hadOoqDnfCFUjqRcRHDPTUS6MV4qOoEvY7R7v/wQPmv38KvPxZPT/99ycAfPuw8RwaOuEOWtLw+IhkaijkbnrkA2BSKPWSIz4PgaDimn8up93rZ+a4IVw6GN0rY6EXGDqLUkrBHTB2CG6nnYY2r/m5fgjXfax5PWeM5zbv6uQPr64C4LqTpjIi5Hkz6Emx3kNnRijysbK+lXavyQXIEDYcKxC3UxEfMdCnGNa3dFvzAXrh6ZcvhrsyssTbq5u48smPCAQVZx04mhsGe1EZaKFLSFt8GJEPs23WIcLvIzdabu9ftJYlG3ZT5nHyx2/uj2MwDQuLR4q+DjpFLgcHhHa87661IPUyfEpotLpPOx9kGb3mp8sX4JAJ1YPX2yUWKU431qmtKKKusoiggk+2NJu3Lp29jge7C5pWQuNK898/xxDxEYN9RmmFRW+tbrLmA4ZP1dqrVAA+fMiaz0iApRt3872/f0hPIMiJ00fwf2fuM7gmVPaHCTUfEC42XL+zg64ek/vvxx8ODje0bIKm1ea+d5J8uqWFPy7Qdro3nTaNMSFDpbwgxU6XSA7dQ2svfc+Kug/Iqa6Xfy/bylurm/A47fzf1wfZxNqB6G7RblMUogAzxuktt80mLKgXRZWwxxztfgGkXkR8xOCEUHHV6yt24AsErfkQvfB06cPgsyjCEocvtrXy7Yc+oMsX4IhJQ7njnP1xDsZZDb0JBqHZnMjHsHIPQ8vcKGWBs6G7FMYdpt1fk73US1dPgKue+gh/UHHyPiM584BRWVuLJaRorR6JXnT63rpd5td9QLjuY92b0GGRwEmAxjYvv35Bm1h79bF7DU4r/Xhsele7rUk9pTgjZCtvifiAsOGYiI/C5ICxQxha5qa122/dbmfySVoraGcTfPGsNZ/RD+sa27nwb+/T2q3l9/98wYF4nIO8q0GnPX2Pj0imWFn3oadestjpcMtLK1jX2EFthYffnpEnhYWRGKZSFSm/xf5jq/A47TS1e1nTYIE/T81EGLGvFgnNksW2PxDkF89+SkuXj2l1FXzviAlZWYdlKBX+3eptrSmg1318tGm3NUJ08smATet40SO4eYqIjxg47DaO21szVnrl83qLPsQJM+dq9zNYeLq1uYtv/eV9mtp72HtkBX+9+KDBbZfcGxM8PiKZrNusW1H3MflEsNlhw1vwydPmv/8AvPFlA4+GbLP/8I39qSpxZ3wNlmNC2sXjdDBzvHbRsaTlFrLa9dLW7eO7f/+QVz7fgcNu49av75sfUdBItn+snRucxTDxmJTfZlpdBS6HjZ0dPWzeZcFE4rJhMG62dj8HaoCsJM+OMPM4fpqWenn18x3mm43pHHCRlvffuhS2LLXmMyJobPNywV/eZ1tLN3sMK+Xv3znYGJ6VN5hU76Gjz3ixJPJRMxG+8lPt/ovXaFOPM8SSDbv40dMfA9qU0kFvm90fm0J21ZWj03qbQ/cIt9xawrQztNsNb0N7gzWfEYMtuzs56753eXNlI0UuO/ecN4PpowbhFOuB0NMYk47VBn2mSJHLwd6hKd8fbbaoOynScCyPEfHRD7Mn1lDmcdLQ5mW5FZXNoKlcvdhsyYPWfEaIli4fF/7tA9Y1dTCqqpjHvnOI0VKcVxhttul5fOhM1We81LdZE2b9yk9gzCFaeuDf34OABS18ESil+Nvb6zn3gffY1dHDPqMq+elXJ1v6mVmjpxO++I92f/rX03orvf38/fW7rNmMDBkPow4EFQyv2WI+2rSb0+95h5U72hhW7uGflxzKV6enn6rMSfQL+dSvpf1WB1jp9wHhKbcb38moEM00Ij76weN0cNSU4YCFqRcIF55+9m/osKa7prPHz9yHl7BieytDyzw89t1DqKsqtuSzso7JkY89h5dht0Fzp4+GNgt8XxxOOPNBrSZhywew+DbzPyNEZ4+fq59azs0vfIE/qDhtvzqeumQWRa48qffpzcqXoKdNOxbGHprWW+0zqopil4NdHT2sarDIlVbfiGSgCP3FT7ZzzgPv0dTuZerICv5z+WH5YSoXi8aVWvuq3aW1s6ZJZN2HJVSNgZH7Awr+9ydrPiMHEPERhxOmaXUfr36+w5pdL8DoA6HuAM0Cetkjpr+91x/gkkeXsnTjbiqKnDz6nYPzr4o9EpPFR5HLwR7DtHqBFWZPuNUZMg5O+aN2f/HvYOO7pn/EhqYOzrz3Hf6zfBsOu41fnrI3fzpn//yq9+nNx//Qbvf9pjbaIA3cTnu47sOq1Ms+39DaLXd8Bv+53BL/F6UU97yxhsufWIbXH+ToKcN5+tJD83czAuFC04lHab/fNNE7Xj7f1kq3z+QWfJ3Dr9Zu370bPnrMms/IMiI+4jBn8nDcTjvrmzpYbUWVu44e/VjyN1PD7r5AkKueXM5bq5socTt4eO7BRhohbzFZfEBk3YeFc1j2OQv2PUcLu8//PnQ1m/bWr6/Ywal3v82X9W0MLfPwxHcPYe7hE/KvsyWS9gZYu1C7v+85przloRMtrvsor4WzH9U6tT77F7xxi6lv7/UH+PHTn3DbK5qB1dzDJvDghTMp8+SxAAX4Iv0ul0hGDylmaJkHf1Dx2dYWU96zD9PO0FKyAM9fnVOjOMxCxEccyjxODt9TK8R75TMLUy/TzoCSGmjdAqvMabt8Z20TJ/3pLV7+vB63w84DF8w0BiPlLSZ6fERi1H1YFfnQOek2LfffskkrQE1z5xsIKm5/dSXfeeRD2rr9HDC2ihevPJxD9hjk9vmJ8Om/tNbVUTNh6J6mvKVedGpZ3QfAHkfCqaFQ++LfwfInTXnb3R09XPCXD/j3si047DZ+ffp0fnnq3vnjZNsfuzdA/SdaV5k+tj5NbDab9XUfAHOu164NQR889S3YudaUt1VK8dh7G3nof+tNeb9UEfExAHrq5ZUvLBQfriKt8wXg/T+nddHZ3tLF5U8s47wH32d1QzvVpW7+fMGB+dvNEInJHh86euTjk60t1qXfAIoq4My/gM2h1QDpaYMUaO7sYe7DS7hz4RoALjp0HP/4/qHUVuTJnI6B+CT0u9vPnKgHaM7HpW4HLV0+VljR/aQz41tw+A+1+8/9IO1d79rGds649398sGEX5R4nf7v4IC6YZU5Bds6jz0kZdxiUmncONOo+rOp4AS1VePp9WiFy12544uy05/9sa+7iwr99wC+e/Yx5L33JeivmFSWIiI8BOHZqLXYbfLa1lS27O637oJlztYvOhrfg+auSTr/0+IPc9+ZajvnDIl78ZDt2G1x46Dje+NEco3A27zHZ40NnvzFVuJ121jV28Pd3N5r2vjEZcxDMuU67/9KPU9rtfLa1hVPvfptFq7T2yT9+cz9u+tp03M4C+e/esELzdbA7w0WcJuB02DloguZ2alnqRefoX8Lep2ti+h/nQ9OalN7m7dVNnHHP/9iws5PRQ4r592WzOXKvYeauNZcxjMVOM/Vt9Qm3yzY2W7shcRXDOU9CxWjYuQb+eSEEfEm/jVKKfy3dwgl/XGzY5//sxCmMy+IohQI5G6VOTZmHmeO1E84rn++w7oOqxsDJv9fCg8segX+cG7aGHoC3Vjfy1T8t5taXv6SzJ8CB44bw/A8O5+avTaeyJM98POJhQb0HaFOOrz9xCqA5gpputd6bI66BsbM1g6z530v4ZNPjD/Loexv5+n3vsHlXF2OrS5j//w7jjBnpeVwMOvSI0aTjodTcFJOeells1dwnHbsdzrhfSxt1N8MT30jYel0pxbtrd3LBX9/nW3/VnIwPGFvFs5cfxl61qc81GXS01cPmkM+LbltuEvuOrsTttFPf2s0Di9eZ+t59KK+F857SjPLWL04qJRsIKl76dDun3f0/fvz0x7R5/ew/poqXrjqCuYdPyOrsHhEfCXBCyHDs6Q8309qdvOpMmJlz4ZuPaS58q1+Fh0+O2+e9tbmL//fYUi746wesa+xgaJmbP3xjP/516aFMq8tDo6CBMDw+zBUfABfNHs+Rew3D6w9y5ZMf4fVbVOUOYHfAmQ9olflbl8Kb/xf35bs6erjr9dUcdutCbnj2M7z+IEdNHsbzVxzO3nV5XmDcm2AQPg25xZqYctE5crIWNVi8qpE/vWbxQEBXMZz7pHY871qn5f39/bd7K6VY+OUOzrr/Xc598D3eWt2Ew27jvEPG8sT3ZuWnr088vgylXEYfBBV1pr51idvJdaENyf+9/KW1dgwAI6bDWX8LbU7/rnXBxKHHH+SfH27muD8u4rLHl/Hp1haKXHZ+csJk/nXpoUwclrrjr1mI+EiAk/cZSanbwZf1bZx+z/+szZNNORkuel4rQN2+HP5ybJ+pp15/gLsXruaYP7zJfz+rx2G38e3DxvP6j+bw9QNH53cXQzwsinyAVmR22zf2pbrUzZf1bfz+FYtHXleNgVPu0O6/9YeYef/VO9q4bv4nHDrvdf6wYBWNbV5qKzz84uSp/PWigwor6qWz4S1o3aoJt72+avrbTxlRwfUnaRedP762inveSC0dkjBlw+G8pzUfmE3vaDUgvXa9gaDihU+2cdKdbzP34Q9ZunE3bqedC2aN480fz+GWM/bJXy+XeJjc5dKbi2eP54JZ41AKrv7Hcus6X3T2OgGO/612/9Ub4MuX+ryks8fP395ez5G3vcFP//UJ6xo7qChycuXRe/LOz47h8qP2zBnrfJuyNGGVPK2trVRWVtLS0kJFRe7s2j7d0sL3H/2Q7S3dVBQ5uef8AzhikoW5051r4bGvw+71UDyEwDefZElwL/776Xb++1m9YXh18PhqbvratPxvoU2Ev39Nmwx6+n2w/3mWfMRrX+zgu3//EIDHvnOI9YW8z14Oyx/T6lj+3/9QRVUsXt3EX99ez+JVjcbL9hlVyXcOn8BJ+4wsnNqOWDzz/+DjJ+DAi8NdIxZw75tr+N3LmgD92YlTuPTI1CelJsTahfDYWVoHz5zrYc61+AJBnvloK/e/uZZ1oQ1RqdvBt2aN4zuHT2B4oRQXx6JzF9y2p/b7uvIjqN7Dko/xB4LMfeRDFq9qpLbCw38uP5wRlRb+3pXS0i4f/g1cpTD3ZRi5Ly2dPh55dwMP/W89uzu16Pzwcg/fPWIC5x0yLmPt1Mlcv0V8JEFDWzeXPLqUjzY147Db+MXJU7l49njLIg3+1ga6HjmL8p0f48XFVT2X83LwYEAb9/7zk6bytf3rCjfS0Zs7Z2jh6YtfhPGHW/YxP3/mUx5/fxO1FR5evuorDCm1cCCbtx3+/BXYtZbd5ZO5JfAtnt6lXejsNjh+7xF854gJzBw3RI6Dnk74/SStVubbL8O49FxNB+Luhav5/aurAPj5SVP53lesucAZLH1YK0YHFk2/hevXTGVrszbcrLLYxcWzx/Ptw8bn54DAZPnoMc2orXYf+H/WemS0dvv4+r3vsLqhnWl1FfzzkkMptfJiH/DB49+AdW/gLx3JvZMe4M/LOuno0VLB42pKuOQrEznzgFEZj3iJ+LAQrz/A9fM/49/LtgDwzZljuPn0aaaNpO/xB/nf2iZe/rSeV7+op6uznbtcd3OcYylBbDw34goq5vyAw/Ycatpn5gXNmzXxEfTB1Z9aknrR6eoJcPJdb4XqbDyctl8dZx4wiml1FaYJgHavn483N7Ns4252rn6fa+p/QgVat9Xbaj8+3/tHnHTccYzJYrV6zvHJ0zD/u9pcn6s+hgyIsTteW8UdodqPX56yN3MPN38U/Y7Wbt5du5P31u1kvy//wLm+Z/EqJz/1fZ93i+fwna/syfmzMre7HRQ88U1Y9bIRJbKazbs6Of2e/7Gzo4fj9q7lrnNnmH7hV0qxaVcn763byfLVG/n+6kuZoLbweXAc1/u+g7d2BpcdtScnTR+RtdSKiA+LUUrx17fXc8tLKwgqOHDcEL550BgmDC1lXE0Jw8o8cS9CSima2nvY2tzF1t1dbG3uZOvuLrbs7uKDDbto6w632VaXuvnq3kO5ovtB6lY/rj0563I4/jdpW0bnDQ0r4NEzoW0b1EyCy9/XijYt5IttrVz80AdR814mDS/jzANGc/qMOkZWJm5XrZRifVMHyzY1s2zTbpZt3M2qHW1E+lhV08r1Zc9zRuAVHMoP2DTb8KN/bqnQGlQ8eiasfR2OvBaOuj5jH3v7qysNP5UTptVy0Phq9h9TxfRRlSldgBrbvLy3bifvrtvJe2t3GikVABtB7nP9ia86lgAQrBqH/dArYMb54M7jsQnJ4G2D3+2hjay47D0YPjUjH7t0427OffA9evxBPE47s/ao4St7DePIvYYycVhZ0hsTpRQbd2piQ/vaRX1reObPGNsO/uP+JdU2rftOjTsM22FXw6TjMiK8YyHiI0O8sbKBK5/4iDZvtCdHqdvBuJpSxg8tYVxNKcUuR0hkdLGtWbv1+oP9vu+wcg9fnTaCE/cZwcHjqzUVq0JDhl77lfaiiUdr3TF7HqeZlBUqm97XzHe6m2HoZLhgftrj0xPFFwiyaGUjz3y0lQUrdtAT+pvabFpL5rS6CnwBhT8YxOdX+AJBfEGFzx/EHwzSE1B4fQFW7Wgz8rSRjKoq5sBxQzhgbBUHjBvCtLpKHM3r4fVfw+fztRc53Jo9/xE/gpLqjPzcOUlbPdw+VbOn/8EyqLG4BiMCpRS/f3Ul97wR7cnitNvYu66CGWOqmDF2CMPLPbR0+Yyv5oj7raHbXR09bNndFfU+NhtMq6vg0D1qOHRiDQeNLqF8yd3wwQPQtUt7UfEQOOi72rFQViC+Pv3x6b/g39+Bmj3hig8zeiF+9fN6fvXc52xviR4MWFdZxJGTh3H4nsModttp6/bT7vXTHrqNfNzRoz3e3tLFjtbo7iaXw8b+Y6qYtUcNs/ao4cDyZorevR0++acW9QUYvjfMvlKb5OzMbApOxEcGWdfYziPvbGBtYwcbdnawrbmLRJyXbTaoLS9i1JBiRlUVG7dTRpQzY+yQ/m2PP/0XPHNp+EBzl8OUkzQzpYlHZ/xgyyorX4anLwZ/F4w+WOuFz9IFuKXLx38/3c78j7bywfpdSf97t9POvqMqOUAXG2OHxC8Y3LpME6LrF2uPPZVwxA/hkEu1Fs1C45274dWfa8fBdxdkZQnLNu3WQuKbmlm2qZmm9tSnIE8dGRYbB4+vjt251NMJyx+Hd+/RCtMBHB6txXj2D2DopJQ/f1Dzz4vgi2c1l9hjb8z4xyulWLWjncWrGlm8upH31+8yNibJ4nLYmDFmCLP2qGbWHjXMGDuEYneMaFrLVnj/PvjwYW2SM2hF6rMugwMvAk9m/F1EfGQRrz/Alt1dbGjqYMPOTjY0deD1B6irCouM0VUljKgsSr0roWGFVlD1+TNaW6FOUSVMOUUTInscCY48brX86PFQ22FAM5P6xiPgzo36h827Onnx0+3s6ujBabfhcthxO+3GfZdDv7XjdNgYW13CtLrK5I8HpWDN65oI2fGZ9lzFKDj0chgzC2qnFUZUrK0eHj0DGr6Ak/+gRQCyjFKKrc1dfLSpWfvavJu2bj+VxS6qil1UFruoCN1GfZW42HNYWXJFzMGA5mnxvzth64fh5yefpO2Ax87KWhg+oygF2z6Ch08BXwd87w0YdUC2V0VXT4D31+9k0apGlmzYhd1mo8zj1L6KnJSHbks94ftlHhdDSlxMq6uMLTb6/bBmWPoQvHcftIdMMYsqQ1GxSzTDMgvJCfFx7733ctttt7F9+3amTZvGHXfcwRFHHDHgvxvs4iOjBIOwZYkWgv/8WW22iU7xEK2/fdoZUDcDiqry4wTUO/2037lw2l35LbQGIhiET/8JC38DLZvDz9udWgi2boZ2Eq6boT3Oh99V02rtgrvihfAF1+GGH60s3PSTUrDpPXjnLlj5EhA6tdfsCbXTtdqH4VO1Y2DIBFNHEGSVli3wyVOas22T1n3EkAlai20+nPNSwe/Vfif/uxN2hnyiHG5NiI49VLsdfZDpEZGsi4+nnnqKCy64gHvvvZfDDjuMP//5z/zlL3/hiy++YOzY+MVxIj5SJBjQTjyfz4cv/gMdjdHf91RohYmVY7Rb42uM1h1QPCQ3/6MG/FohafMm7Wv9W5qPA2i7uuNuzs11ZwNft9aOueY12LYMOmPYcTs8mlti3Qztq2ZPKK7W/v7FQ3L3ghQMaj/Tly/Aly+GLzI6o2ZqI8gnm28sNihpWq25YC5/EgIx0j8Ot1YjNXyKJkiGhYRJ1VjLi7VNwdsGK56Hj5/Uzgm60HIWaUaNR/4Mhu2V1SXmBMGgNin97TtgywfR37M54CdrTBXrWRcfhxxyCAcccAD33Xef8dzUqVM5/fTTmTdvXtx/K+LDBAJ+2Pg/TYisegXatg/8b9xl2omnbLhmXuMq0moHXCX93EbcdxZru2mlAKUV/anQbdzHvV7ftSssMpo3aXbpLVu11Epvjv+NltcWYqOUtiPc9lHoa5l22z2AC6OnAoqrQmIkQpSUhO57ysHu0qIqdkfo1tnP435eE/SDv1sTS/6Ir/4et++A1QuiI3t2F0z4inahmXwSVJg3xTiv6Nyl1Qc1rtDStQ0roPFL8MUZkuku1yYseyr6v42873Bptt82u/b3tdm1C1vU4/6+Z9Pu+72aP0tPh/blbY9+HHm/a7dW6+SPKMwdd7hW67L317R1CX1pXAkb39E2qZve1X7/V35k6kdkVXz09PRQUlLC008/zRlnnGE8f9VVV7F8+XIWLVoU9Xqv14vXG1bmra2tjBkzRsSHmfR0auH45s3aBV2/uLds1m713GCu4nBHR2ymnAJ7HZ/tVQ0+lNIKEw1Bslw7Brp2DyxKcgF3udZGOOVk7baoAOcXmUEwCC2bwmKkYYUmThpXxY6S5Co1e2qCY5+zYci4bK9m8NHdarpQS0Z8mB5jbWpqIhAIUFsbXdhSW1tLfX3f4Tvz5s3jpptuMnsZQiTuEhg2WfuKha9L2yU3b4KOJm1H4evSdke+WPdjfC/gC+1qbOHdDLaI53o/tkU/xqb9RzDSQeNCX2OhrFY8TczAZtNspqv30NrwIgkGtGK1rt0RX7vC9ztD971tWuQi6Nf+jXHfr0Woej/X+3HAr6V2nEXhL1dR/MfuUhh3GEw4ApwFNhzNCux2GDJe+5p8Yvj5gD/0N27VxKi3VbtA9bltCT/2tmn/91VQ+woGQvdDt8Fgr8eR31fhx64iLfrqLo34Kut1X39cAiP3h1EHSso1HbIcIbIswdvbUEUpFdNk5brrruOaa64xHuuRDyGDuIq1trxCbc0TtBBsaY3pI+iFQYTDCWXDtC9BsBjTxcfQoUNxOBx9ohwNDQ19oiEAHo8Hj0d2M4IgCIJQKJgey3a73Rx44IEsWBBt9LNgwQJmz55t9scJgiAIgjDIsCTtcs0113DBBRcwc+ZMDj30UB544AE2bdrEpZdeasXHCYIgCIIwiLBEfHzzm99k586d3HzzzWzfvp3p06fz0ksvMW6cVCQLgiAIQqEj9uqCIAiCIKRNMtdv6V8UBEEQBCGjiPgQBEEQBCGjiPgQBEEQBCGjiPgQBEEQBCGjiPgQBEEQBCGjiPgQBEEQBCGjiPgQBEEQBCGjiPgQBEEQBCGjiPgQBEEQBCGjWGKvng664Wpra2uWVyIIgiAIQqLo1+1EjNNzTny0tbUBMGbMmCyvRBAEQRCEZGlra6OysjLua3JutkswGGTbtm2Ul5djs9lMfe/W1lbGjBnD5s2bC2JujPy8+U2h/bxQeD+z/Lz5Tb79vEop2traqKurw26PX9WRc5EPu93O6NGjLf2MioqKvPhDJ4r8vPlNof28UHg/s/y8+U0+/bwDRTx0pOBUEARBEISMIuJDEARBEISMUlDiw+Px8Ktf/QqPx5PtpWQE+Xnzm0L7eaHwfmb5efObQvt5I8m5glNBEARBEPKbgop8CIIgCIKQfUR8CIIgCIKQUUR8CIIgCIKQUUR8CIIgCIKQUQpGfNx7771MmDCBoqIiDjzwQN56661sL8ky5s2bx0EHHUR5eTnDhw/n9NNPZ+XKldleVsaYN28eNpuNq6++OttLsYytW7fyrW99i5qaGkpKSth///1ZunRptpdlCX6/n1/84hdMmDCB4uJi9thjD26++WaCwWC2l2YKixcv5tRTT6Wurg6bzcazzz4b9X2lFDfeeCN1dXUUFxczZ84cPv/88+ws1gTi/bw+n49rr72WffbZh9LSUurq6rjwwgvZtm1b9hZsAgP9jSO55JJLsNls3HHHHRlbXzYoCPHx1FNPcfXVV/Pzn/+cjz76iCOOOIITTzyRTZs2ZXtplrBo0SIuv/xy3nvvPRYsWIDf7+f444+no6Mj20uznCVLlvDAAw+w7777ZnsplrF7924OO+wwXC4X//3vf/niiy/4wx/+QFVVVbaXZgm33nor999/P3fffTcrVqzgd7/7Hbfddht33XVXtpdmCh0dHey3337cfffdMb//u9/9jttvv527776bJUuWMGLECI477jhjDtZgI97P29nZybJly7jhhhtYtmwZ8+fPZ9WqVZx22mlZWKl5DPQ31nn22Wd5//33qaury9DKsogqAA4++GB16aWXRj03ZcoU9bOf/SxLK8osDQ0NClCLFi3K9lIspa2tTU2aNEktWLBAHXnkkeqqq67K9pIs4dprr1WHH354tpeRMU4++WQ1d+7cqOfOPPNM9a1vfStLK7IOQD3zzDPG42AwqEaMGKH+7//+z3iuu7tbVVZWqvvvvz8LKzSX3j9vLD744AMFqI0bN2ZmURbT38+8ZcsWNWrUKPXZZ5+pcePGqT/+8Y8ZX1smyfvIR09PD0uXLuX444+Pev7444/nnXfeydKqMktLSwsA1dXVWV6JtVx++eWcfPLJHHvssdleiqU899xzzJw5k2984xsMHz6cGTNm8OCDD2Z7WZZx+OGH8/rrr7Nq1SoAPv74Y95++21OOumkLK/MetavX099fX3U+cvj8XDkkUcW1PnLZrPlbWQPtIGqF1xwAT/5yU+YNm1atpeTEXJusJzZNDU1EQgEqK2tjXq+traW+vr6LK0qcyiluOaaazj88MOZPn16tpdjGf/4xz9YtmwZS5YsyfZSLGfdunXcd999XHPNNVx//fV88MEHXHnllXg8Hi688MJsL890rr32WlpaWpgyZQoOh4NAIMBvf/tbzj333GwvzXL0c1Ss89fGjRuzsaSM0t3dzc9+9jPOO++8vBm8Fotbb70Vp9PJlVdeme2lZIy8Fx86Npst6rFSqs9z+cgVV1zBJ598wttvv53tpVjG5s2bueqqq3j11VcpKirK9nIsJxgMMnPmTG655RYAZsyYweeff859992Xl+Ljqaee4rHHHuOJJ55g2rRpLF++nKuvvpq6ujouuuiibC8vIxTi+cvn83HOOecQDAa59957s70cy1i6dCl/+tOfWLZsWd7/TSPJ+7TL0KFDcTgcfaIcDQ0NfXYT+cYPfvADnnvuOd544w1Gjx6d7eVYxtKlS2loaODAAw/E6XTidDpZtGgRd955J06nk0AgkO0lmsrIkSPZe++9o56bOnVq3hZQ/+QnP+FnP/sZ55xzDvvssw8XXHABP/zhD5k3b162l2Y5I0aMACi485fP5+Pss89m/fr1LFiwIK+jHm+99RYNDQ2MHTvWOH9t3LiRH/3oR4wfPz7by7OMvBcfbrebAw88kAULFkQ9v2DBAmbPnp2lVVmLUoorrriC+fPns3DhQiZMmJDtJVnKMcccw6effsry5cuNr5kzZ3L++eezfPlyHA5HtpdoKocddlif1ulVq1Yxbty4LK3IWjo7O7Hbo09VDocjb1pt4zFhwgRGjBgRdf7q6elh0aJFeXv+0oXH6tWree2116ipqcn2kizlggsu4JNPPok6f9XV1fGTn/yEV155JdvLs4yCSLtcc801XHDBBcycOZNDDz2UBx54gE2bNnHppZdme2mWcPnll/PEE0/wn//8h/LycmPXVFlZSXFxcZZXZz7l5eV96llKS0upqanJyzqXH/7wh8yePZtbbrmFs88+mw8++IAHHniABx54INtLs4RTTz2V3/72t4wdO5Zp06bx0UcfcfvttzN37txsL80U2tvbWbNmjfF4/fr1LF++nOrqasaOHcvVV1/NLbfcwqRJk5g0aRK33HILJSUlnHfeeVlcderE+3nr6uo466yzWLZsGS+88AKBQMA4f1VXV+N2u7O17LQY6G/cW2C5XC5GjBjB5MmTM73UzJHdZpvMcc8996hx48Ypt9utDjjggLxuOwVifj300EPZXlrGyOdWW6WUev7559X06dOVx+NRU6ZMUQ888EC2l2QZra2t6qqrrlJjx45VRUVFao899lA///nPldfrzfbSTOGNN96I+f/1oosuUkpp7ba/+tWv1IgRI5TH41Ff+cpX1KeffprdRadBvJ93/fr1/Z6/3njjjWwvPWUG+hv3phBabW1KKZUhnSMIgiAIgpD/NR+CIAiCIOQWIj4EQRAEQcgoIj4EQRAEQcgoIj4EQRAEQcgoIj4EQRAEQcgoIj4EQRAEQcgoIj4EQRAEQcgoIj4EQTCVG2+8kf333z/byxAEIYcRkzFBEBJmoKmbF110EXfffTderzfvZ3IIgpA6Ij4EQUiYyOmqTz31FL/85S+jhtwVFxdTWVmZjaUJgjCIkLSLIAgJM2LECOOrsrISm83W57neaZeLL76Y008/nVtuuYXa2lqqqqq46aab8Pv9/OQnP6G6uprRo0fzt7/9Leqztm7dyje/+U2GDBlCTU0NX/va19iwYUNmf2BBECxBxIcgCJazcOFCtm3bxuLFi7n99tu58cYbOeWUUxgyZAjvv/8+l156KZdeeimbN28GoLOzk6OOOoqysjIWL17M22+/TVlZGV/96lfp6enJ8k8jCEK6iPgQBMFyqqurufPOO5k8eTJz585l8uTJdHZ2cv311zNp0iSuu+463G43//vf/wD4xz/+gd1u5y9/+Qv77LMPU6dO5aGHHmLTpk28+eab2f1hBEFIG2e2FyAIQv4zbdo07PbwXqe2tpbp06cbjx0OBzU1NTQ0NACwdOlS1qxZQ3l5edT7dHd3s3bt2swsWhAEyxDxIQiC5bhcrqjHNpst5nPBYBCAYDDIgQceyOOPP97nvYYNG2bdQgVByAgiPgRByDkOOOAAnnrqKYYPH05FRUW2lyMIgslIzYcgCDnH+eefz9ChQ/na177GW2+9xfr161m0aBFXXXUVW7ZsyfbyBEFIExEfgiDkHCUlJSxevJixY8dy5plnMnXqVObOnUtXV5dEQgQhDxCTMUEQBEEQMopEPgRBEARByCgiPgRBEARByCgiPgRBEARByCgiPgRBEARByCgiPgRBEARByCgiPgRBEARByCgiPgRBEARByCgiPgRBEARByCgiPgRBEARByCgiPgRBEARByCgiPgRBEARByCgiPgRBEARByCj/H05i84y/oJYyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -164,7 +164,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHFCAYAAAD/kYOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxYElEQVR4nOydd3hb1fnHv1fTW94rtmNnOzs4O4QsMtmjZQYoo0CgkKRAG/i1pMwySlOahjASZgq0QBhpCAmBLOLsvadjxyPee2jd3x9H50q2ZVvjLsnn8zx+rizfe3QkS0fved/v+74cz/M8GAwGg8FgMIIIjdITYDAYDAaDwRAbZuAwGAwGg8EIOpiBw2AwGAwGI+hgBg6DwWAwGIyggxk4DAaDwWAwgg5m4DAYDAaDwQg6mIHDYDAYDAYj6GAGDoPBYDAYjKCDGTgMBoPBYDCCDmbgMBgK8cEHH4DjOOFHp9MhLS0Nv/nNb1BYWCj7fDZt2gSO47Bp0yavr83LywPHcfjggw9En5fauOeeexAREeHXGPT1ev3110Wale9kZmbinnvuUXoaDIbo6JSeAIPR3Xn//fcxYMAANDU1YcuWLXj55ZexefNmHD58GOHh4UpPj8FgMAISZuAwGAozePBgjBw5EgAwZcoU2Gw2PP/88/j6669xxx13KDw7hpjwPI/m5malp8FgdAtYiIrBUBljx44FAFy4cAEA+VJctmwZhg8fjtDQUMTExODmm2/GuXPnWl03efJkDB48GLt378bEiRMRFhaGXr164a9//Svsdnurc0+cOIFZs2YhLCwM8fHxeOihh1BXV9duLh2FLyZPnozJkyd3+jzuueceZGZmtrt/8eLF4Diu1X0cx+HRRx/F+++/j/79+yM0NBQjR47Ejh07wPM8XnvtNWRlZSEiIgJTp07FmTNnOn1sb3ENGb3xxhvCY40bNw47duxwe83Ro0cxbdo0hIeHIyEhAY8++igaGxvdPq/ly5cjOzsbRqMRH374odvxLBYL7r77bkRERGDNmjUez725uRmLFi1CVlYWDAYDevTogUceeQTV1dXtxn/qqaeQnJyMsLAwXH755di1a5fbMUtKSvDggw8iLS0NBoMBWVlZ+Mtf/gKr1erxvBgMpWEeHAZDZdAv74SEBADAgw8+iA8++ACPPfYYXnnlFVRWVuK5557D+PHjcfDgQSQlJQnXlpSU4I477sDvf/97PPvss1i9ejUWLVqE1NRU3HXXXQCAS5cuYdKkSdDr9Vi2bBmSkpKwatUqPProo/I/WRfWrFmD/fv3469//Ss4jsMf/vAHXHXVVbj77rtx7tw5LF26FDU1NVi4cCFuuukmHDhwoJ2h5C//+te/MGDAACxZsgQA8Kc//Qlz5szB+fPnYTKZhPMsFgvmzJmDBx98EH/84x+xfft2vPDCC7hw4QK+++67VmN+/fXX2Lp1K/785z8jOTkZiYmJ7R63uroaN954I44fP47NmzcjJyfHo/nyPI/rr78eGzduxKJFizBx4kQcOnQIzz77LHJzc5Gbmwuj0QgAeOCBB/DRRx/hiSeewPTp03HkyBHceOON7QzbkpISjB49GhqNBn/+85/Ru3dv5Obm4oUXXkBeXh7ef/99b15SBkM5eAaDoQjvv/8+D4DfsWMHb7FY+Lq6On7NmjV8QkICHxkZyZeUlPC5ubk8AP5vf/tbq2sLCgr40NBQ/qmnnhLumzRpEg+A37lzZ6tzBw4cyM+cOVP4/Q9/+APPcRx/4MCBVudNnz6dB8D//PPPwn09e/bk77777nZznzRpEj9p0iTh9/Pnz/MA+Pfff1+47+677+Z79uzZ7tpnn32Wb7v0AOCTk5P5+vp64b6vv/6aB8APHz6ct9vtwv1LlizhAfCHDh1qN7av0PkPGTKEt1qtwv27du3iAfCffvppq+cFgP/HP/7RaowXX3yRB8Bv27at1fMymUx8ZWWl28d77bXX+PPnz/MDBw7kBw4cyOfl5Xk173Xr1vEA+FdffbXV/Z9//jkPgH/nnXd4nuf548eP8wD4BQsWtDpv1apVPIBW/+MHH3yQj4iI4C9cuNDq3Ndff50HwB89etSrOTIYSsFCVAyGwowdOxZ6vR6RkZG4+uqrkZycjO+//x5JSUlYs2YNOI7DnXfeCavVKvwkJydj2LBh7TKekpOTMXr06Fb3DR06VAh3AcDPP/+MQYMGYdiwYa3Ou/322yV7jp4wZcqUVqLq7OxsAMDs2bNbeWro/a7PyR2ur5fVagXP813O4aqrroJWqxV+Hzp0aIeP1VYfRV+/n3/+udX9U6dORUxMjNvH27dvH8aOHYukpCT88ssv6NmzZ5dzdOWnn34CgHZhxF/96lcIDw/Hxo0bW82p7Zx//etfQ6dr7chfs2YNpkyZgtTU1Fav3+zZswEAmzdv9mqODIZSsBAVg6EwH330EbKzs6HT6ZCUlISUlBThb5cuXQLP863CUK706tWr1e9xcXHtzjEajWhqahJ+r6ioQFZWVrvzkpOTfX0KohAbG9vqd4PB0On9nYl18/Ly2j3Hn3/+uUvdUNvXj4Z3XF8/ANDpdO3Opa9fRUVFq/td/59t2bBhA8rLy/HGG28gOjq607m5o6KiAjqdTghnUjiOQ3JysjAXemz7P3b3PC5duoTvvvsOer3e7WOWl5d7PU8GQwmYgcNgKEx2draQRdWW+Ph4cByHrVu3Cl+2rri7ryvi4uJQUlLS7n5394WEhKClpaXd/eXl5YiPj+/0cTq7VmpSU1Oxe/fuVvf1799ftPGtVisqKipaGQf09WtrMHSmE3ryySdx9uxZ3HXXXbBarYJOylPi4uJgtVpRVlbWysjheR4lJSUYNWpUqzmVlJSgR48e7Z6HK/Hx8Rg6dChefPFFt4+Zmprq1RwZDKVgBg6DoWKuvvpq/PWvf0VhYSF+/etfizLmlClT8Oqrr+LgwYOtwlT//ve/252bmZmJQ4cOtbrv1KlTOHnyZJcGTmZmJkpLS3Hp0iXBA2U2m/HDDz+I8Cw6x2AwdGg0isWqVavw2GOPCb/T168rL5ErGo0Gb7/9NiIiInDPPfegoaEBDz/8sMfXT5s2Da+++io++eQTLFiwQLj/yy+/RENDA6ZNm9ZqTqtWrWolYP7Pf/7TLjPq6quvxtq1a9G7d+8OQ2sMRiDADBwGQ8VMmDABv/3tb/Gb3/wGe/bswRVXXIHw8HAUFxdj27ZtGDJkiFdfiAAwf/58rFy5EldddRVeeOEFIYvqxIkT7c6dO3cu7rzzTsybNw833XQTLly4gFdffbVdSMQdt9xyC/785z/j1ltvxZNPPonm5ma8+eabsNlsXs1XjRgMBvztb39DfX09Ro0aJWRRzZ49G5dffrnX4/3tb39DZGQk5s2bh/r6ejz55JMeXTd9+nTMnDkTf/jDH1BbW4sJEyYIWVQjRozA3LlzARAv4Z133oklS5ZAr9fjyiuvxJEjR/D6668jKiqq1ZjPPfccNmzYgPHjx+Oxxx5D//790dzcjLy8PKxduxbLly9HWlqa18+RwZAbZuAwGCrn7bffxtixY/H2229j2bJlsNvtSE1NxYQJE9oJij0hOTkZmzdvxuOPP46HH34YYWFhuOGGG7B06VJcd911rc69/fbbUVRUhOXLl+P999/H4MGD8dZbb+Evf/lLl4+TlZWFb775Bk8//TRuvvlmpKSkYOHChSgrK/PoejWj1+uxZs0aPPbYY3jhhRcQGhqKBx54AK+99prPYy5evBgRERF48sknUV9f79FrxHEcvv76ayxevBjvv/8+XnzxRcTHx2Pu3Ll46aWXWoUwV6xYgaSkJHzwwQd48803MXz4cHz55Ze49dZbW42ZkpKCPXv24Pnnn8drr72GixcvIjIyEllZWZg1axbz6jACBo73JLWAwWAwGAwGI4BgaeIMBoPBYDCCDhaiYjAYDBXSVVsEjUYDjYbtURmMjmCfDgaDwVAher2+0597771X6SkyGKqGeXAYDAZDhbSt49OWrtL0GYzuDhMZMxgMBoPBCDpYiIrBYDAYDEbQ0S1DVHa7HUVFRYiMjOy0jDqDwWAwGAz1wPM86urqkJqa2qXIvlsaOEVFRUhPT1d6GgwGg8FgMHygoKCgy4ra3dLAiYyMBEBeoLZlyhkMBoPBYKiT2tpapKenC9/jndEtDRwaloqKimIGDoPBYDAYAYYn8hImMmYwGAwGgxF0MAOHwWAwGAxG0MEMHAaDwWAwGEFHt9TgMBgMBoOhZmw2GywWi9LTUASDwSBKnzVm4DAYDAaDoRJ4nkdJSQmqq6uVnopiaDQaZGVlwWAw+DUOM3AYDAaDwVAJ1LhJTExEWFhYtytGSwvxFhcXIyMjw6/nzwwcBoPBYDBUgM1mE4ybuLg4paejGAkJCSgqKoLVaoVer/d5HCYyZjAYDAZDBVDNTVhYmMIzURYamrLZbH6NwwwcBoPBYDBURHcLS7VFrOfPDBwGg8FgMBhBBzNwGAwGg8FgBB3MwGEwGAwGgxF0MAOHwWAw1ALPA+YGpWfBYAQFzMBhMBgMJbHbgYJdwPo/AW+OAF5KBQ5+rvSsGAyvSUtLw7Jly1rdt337doSFheHChQuyz4fVwWEwGAwl+fRW4PQPre/b+jdg6K+Bbp5NwyCVjZss/qVL+0qoXutVRtPYsWOxe/du4Xee5zF//nzMnz8fPXv2lGKKncIMHAaDwVCKqgvEuOE0wKAbgX6zgO8eB8pPAhe2A5kTlJ4hQ2GaLDYM/PMPXZ8oAceem4kwg+dmwtixY/HBBx8Iv3/88cfIz8/HokWLAABr1qzB73//e9jtdvzhD3/A/fffL/aUW8FCVAwGg6EUJ9aQY88JwM0rgKG/Ij8AsGelcvNiMHxg7NixOH78OOrr69HY2Iinn34aL7zwAiIjI2G1WrFw4UL89NNP2LdvH1555RVUVlZKOh/mwWEwGAylOO4wcAZc7bxv5L3A3g+AY98A9X8FIhIUmRpDHYTqtTj23EzFHtsbRo4cCa1Wi3379uHHH39EXFwc7r33XgDArl27MGjQIPTo0QMAMGfOHPzwww+47bbbRJ83hRk4DAaDoQT1pUB+Lrmd7WLgpAwDeuQAhXuBA6uAy+crMj2GOuA4zqswkZKEhIRg2LBh+Oqrr/DOO+/gu+++g0ZDAkVFRUWCcQMQQXJhYaGk82EhKgaDwVCCE/8DwAOplwGmtNZ/G0l2vdj7PsmyYjAChLFjx+LNN9/ElVdeiWnTpgn38zzf7lypW1IwA4fBYDCU4Ph35OjqvaEMuhEwmoCqPODcz7JOi8Hwh+HDh0On0+G1115rdX+PHj1aeWwuXryIlJQUSefCDBwGg8GQm6Zq4PwWcjv72vZ/N4QBwx3ahH0fyjYtBsNfVq1ahXnz5qF///6t7h89ejSOHDmCwsJC1NXVYe3atZg5U1ptUWAE9hgMBiOYOL0esFuAhAFAfF/35wy+Cdi5HLiQSyocs5o4DJVit9tRVlaGFStW4OTJk1i9enW7c3Q6Hf72t79hypQpsNvteOqppxAXFyfpvGTx4CxbtgxZWVkICQlBTk4Otm7d2un5mzdvRk5ODkJCQtCrVy8sX7683TnV1dV45JFHkJKSgpCQEGRnZ2Pt2rVSPQUGg8EQj+PfkuMAN+EpSvIQgNMCDaVAbZE882IwfGDLli1ISUnBJ598gq+++gomk8nteddeey1OnTqFM2fO4Le//a3k85Lcg/P5559j/vz5WLZsGSZMmIC3334bs2fPxrFjx5CRkdHu/PPnz2POnDl44IEH8Mknn+CXX37BvHnzkJCQgJtuugkAYDabMX36dCQmJuKLL75AWloaCgoKEBkZKfXTYTAYDP8wNwJnNpLb2dd0fJ4+FEgcCFw6DBTtB0w9Oj6XwVCQyZMnw65CMbzkBs4bb7yB++67T6hYuGTJEvzwww9466238PLLL7c7f/ny5cjIyMCSJUsAANnZ2dizZw9ef/11wcBZuXIlKisrsX37duj1egBQpAw0g8FgeM3F3YClEYjqQVLCOyN1uNPAcSdGZjAYHSJpiMpsNmPv3r2YMWNGq/tnzJiB7du3u70mNze33fkzZ87Enj17YLFYAADffvstxo0bh0ceeQRJSUkYPHgwXnrpJdhs7vt1tLS0oLa2ttUPg8FgKMKlo+SYOqJrXU3qCHIs2i/tnBiMIERSA6e8vBw2mw1JSUmt7k9KSkJJSYnba0pKStyeb7VaUV5eDgA4d+4cvvjiC9hsNqxduxb/93//h7/97W948cUX3Y758ssvw2QyCT/p6ekiPDsGg8HwgVKHgZM0qOtzXQ0cN3VEGAxGx8giMm5bzIfn+U4L/Lg73/V+u92OxMREvPPOO8jJycGtt96KZ555Bm+99Zbb8RYtWoSamhrhp6CgwJ+nw2AwGL5DPTiJA7s+N2kQoNEDTZVAdb6082IwggxJNTjx8fHQarXtvDWlpaXtvDSU5ORkt+frdDohpSwlJQV6vR5arbNPRnZ2NkpKSmA2m2EwGFpdbzQaYTQaxXhKDAaD4Tt2G1B6gtz2xIOjM5Lzig8QL04M0xoyGJ4iqQfHYDAgJycHGzZsaHX/hg0bMH78eLfXjBs3rt3569evx8iRIwVB8YQJE3DmzJlWqu1Tp04hJSWlnXHDYDAYqqEqD7A2AboQILaXZ9cwHQ6D4ROSh6gWLlyI9957DytXrsTx48exYMEC5Ofn46GHHgJAwkd33XWXcP5DDz2ECxcuYOHChTh+/DhWrlyJFStW4IknnhDOefjhh1FRUYHHH38cp06dwv/+9z+89NJLeOSRR6R+OgwGg+E7NDyVMADQeNipmRo4xQckmRKDEaxIniZ+yy23oKKiAs899xyKi4sxePBgrF27VkjrLi4uRn6+M7aclZWFtWvXYsGCBfjXv/6F1NRUvPnmm0KKOACkp6dj/fr1WLBgAYYOHYoePXrg8ccfxx/+8Aepnw6DwWD4TukxcvQkPEVpKzRmFY0ZDI/geHctPoOc2tpamEwm1NTUICoqSunpMBiM7sLnc0kV4xkvAuMf9ewamwV4qQdgawEe2+95aIsRcDQ3N+P8+fNC5f/uSmevgzff36zZJoPBYMiF4MHxIIOKotUDyYPJbabDYTA8hhk4DAaDIQeWJqDyHLmd6EWICmBCYwbDB5iBw2AwGHJQdgLg7UBYHBCR6N21goFzQPRpMRhikZaWhmXLlrW6b/v27QgLC8OFCxdkn4/kImMGg8FgALjkCE8lDvReKExFyWUnxZ0TQ/3wPOldpgT6MK/eq2PHjsXu3buF33mex/z58zF//nxF+kUyA4fBYDDkwJcMKgoVFjeUAi11gDFSvHkx1I2lEXgpVZnHfroIMIR7fPrYsWPxwQcfCL9//PHHyM/Px6JFiwAAN9xwAzZt2oRp06bhiy++EHu27WAhKgaDwZADb1o0tCXEBITFk9tUx8NgqIyxY8fi+PHjqK+vR2NjI55++mm88MILiIwkBvljjz2Gjz76SLb5MA8Ow8mh/wDmBmDEXEDL3hoMhqhc8qLJpjviegON5UDFWSBlmHjzYqgbfRjxpCj12F4wcuRIaLVa7Nu3Dz/++CPi4uJw7733Cn+fMmUKNm3aJPIkO4Z9izEIhfuArx4gtw9+Btz4Dut7w2CIRUM5CS+BI1WMfSG2N1Cwk3lwuhsc51WYSElCQkIwbNgwfPXVV3jnnXfw3XffQaNRLlDEQlQMwta/OW8X7ACWXw4c+q9y82EwggnqvYnJBIwRvo1BdTjMwGGomLFjx+LNN9/ElVdeiWnTpik6F2bgMMjie2INAA644wsgfQzQUgt8dT9w9GulZ8dgBD5ljg7ivuhvKHHMwGGon+HDh0On0+G1115TeirMwGHA6b0ZeB3Qdzpwz1pgxJ3kvsPMi8Ng+E3leXKM6+37GNSDU3HW//kwGBKxatUqzJs3D/3791d6KkyD0+0pPw0c+YrcvsLRsV2rA3LuBfZ/ApzfAtisTHTMYPhDtaPIWXSG72O4poo31wIhrI8eQx3Y7XaUlZVhxYoVOHnyJFavXu32vJkzZ2Lfvn1oaGhAWloaVq9ejVGjRkk2L/at1d3Z9ncAPNBvNpA8xHl/6nAgNAZoqgIK9wAZY5WaIYMR+FQ5DJyYTN/HoKnijeVA1XmWScVQDVu2bMHUqVMxYMAAfPXVVzCZTG7P++GHH2SdFwtRdWeq84FDn5Pb1HtD0WiBXlPI7bM/yTsvBiOY4HkXD46fmYk0xMXCVAwVMXnyZNjtdhw7dgxjxoxRejoCzMDpzpz4H2C3Aj0vB9JGtv9776nkeGajvPNiMIKJxkrAXE9u+xOiAkiqOABUMgOHwegKZuB0Zwp2kWPvye7/Tg2con1kkWYwGN5TnUeOEcmAPsS/sYRU8fP+jcNgdAOYgdOduehoipY22v3fTT1IUTLeDpzfLN+8GIxgQtDfiFA4M45lUjEYnsIMnO5KbTFQUwBwGqDHZR2f19tRqInpcBgM3xBLfwOwYn/dBJ7nlZ6Cooj1/JmB012h3pvEgZ13JhZ0OD8RsSSDwfAOMT04bVPFGUGFXq8HADQ2Nio8E2Uxm80AAK1W69c4LE28u3LRob9J66IGQc/xgNYI1F4kNXMS+kk/NwYjmBDTg+OaKl55jpRzYAQNWq0W0dHRKC0tBQCEhYWB4ziFZyUvtKZOWFgYdDr/TBRm4HRXLu4hx/QO9DcUQxjQcxxwbhNwdiMzcBgMbxHTgwM4u4p3RwOnYBegNQT1805OTgYAwcjpjmg0GmRkZPht3DEDpztiNQNF+8ntrjw4ANHhnNtEdDhjH5Z0agxGUGG3E60bII4HB3DpKt6NhMbNNcD3fwQO/pt4lH+3F4hOV3pWksBxHFJSUpCYmAiLxaL0dBTBYDCI0oWcGTjdkUuHAWszqVQc16fr83tPBTb8CcjbBtgsgFYv/RwZjGCgrhiwmQFOC0T1EGfM7pYqnrcNWP0wUJNPfre1ADveAma9pOy8JEar1fqtQenuMJFxd4SGp9JGAZ64AJMGAYYIwNLYfRZVBkMMqP7GlCZeP7fulCqe9wvwwdXEuInuCUz5P3L/3g9YbS5GlzADpztS4KHAmMJxQHxfcrv8lDRzYjCCEbH1N4CLB6cbGDj7PwHAA31nAg//QlrKJA0GLA3AnhVKz46hcpiB0x0RCvx50cU13iEuZgYOg+E5YmZQUehYDWWApUm8cdWG3QacWkduj/8dKWfBccCEx8l9O98O7ufP8Btm4HQ36ksdiy4H9Mjx/DrBg3NakmkxGEGJFB6c0BhAH05u1xaJN67aKNgFNFUCIdFAxljn/YNuAEwZxMA7+Kli02OoH2bgdDdoeCoxGwiJ8vw65sFhMLxH8OBkijcmxxFND+DM0ApGTn1Pjn1ntE5s0OqBcY+Q29v/STw9DIYbmIHT3SjcS47uuod3RpyLB4dVNGYwPEMKDw7gYuBcFHdcNXHSYeD0n93+b5fNJZ6synPA8e/knRcjYGAGTneDemCShnh3XWwv0reqpYaEuRgMRudYzUBtIbktpgYHII1wgeA1cMrPkLVKowf6TGv/d0M4cNld5PbJtfLOjREwMAOnu0ENnHgP6t+4og9xLtIsTMVgdE1NAQAe0IUAEYnijm1yFLkLVgOHhqcyLyftKdzRcwI5Fh+UZ06MgIMZON0Jm8VZxybeh5YLTIfDYHiOoL/J8KzelDcEe4hKCE/N6ficlGHkWH4KMDdIPydGwMEMnO5E1QXAbgH0YUBkqvfXs0wqBsNzqh2Vd8UOTwHOqsjBaOA0VgL5ueR2/1kdnxeZDEQkA7wdKDkiz9wYAQUzcLoTFQ7DJK434EufD+bBYTA8hxo4YguMAacHp7Yw+ET/p9cToyVpCPF+dQZtull8QOpZMQIQZuB0JwT9jY8dwel1FcyDw2B0Ca1RI1YPKlfomJZGoKlK/PGV5MxGcuw3s+tzaZiK6XAYbmAGTneChpZoyre3UAOnugAwN4ozJwYjWKEZVFIYOPoQINwhXA62Wjglh8gxfXTX56YMJ8eiA1LNhhHAMAOnO0ENnHgfDZzwOCA0FgDfPfrgMBj+UFtMjlEp0owvpIoXSjO+ElianetU0uCuz6cenLITrG0Dox3MwOlOVPhp4ABMh8NgeALPSxuiAoIzk6rsBMDbSBG/KA8SIaJSgfAEcs2lo9LPjxFQMAOnu9BYCTRWkNtxXtbAcYVlUjEYXdNcQzpeA0CkVB4cWgsniEJUlxzZUEmDPUut5ziXMNV+yabFCEyYgdNdoAZJVBqpAuorzIPDYHRNnSM8FRINGMKkeYxgTBWn6d7JXlRaZ0JjRgcwA6e7IEZ4CmAGDoPhCVIKjCmuqeLBgqsHx1NYqjijA2QxcJYtW4asrCyEhIQgJycHW7du7fT8zZs3IycnByEhIejVqxeWL1/e4bmfffYZOI7D9ddfL/KsgwwhRdxfA4eGqM4Adrt/YzEYwYqgv5EoPAUEX7sGngdKDpPbyV4YODREVXocsLaIPi1G4CK5gfP5559j/vz5eOaZZ7B//35MnDgRs2fPRn5+vtvzz58/jzlz5mDixInYv38/nn76aTz22GP48ssv25174cIFPPHEE5g4caLUTyPwKT9Djr7WwKFE9wS0BsDaBNQGycLKYIiNkEHlQ8VwT6EenLpiwGaV7nHkorYQaK4GNDogYYDn15nSSHan3cqExoxWSG7gvPHGG7jvvvtw//33Izs7G0uWLEF6ejreeustt+cvX74cGRkZWLJkCbKzs3H//ffj3nvvxeuvv97qPJvNhjvuuAN/+ctf0KtXL6mfRuBDPTj+CIwBQKsDYnu3HpPBYLRGjhBVeALpts3bnZqfQIbqb+L7ATqj59dxHAtTMdwiqYFjNpuxd+9ezJgxo9X9M2bMwPbt291ek5ub2+78mTNnYs+ePbBYLMJ9zz33HBISEnDfffd1OY+WlhbU1ta2+ulW2CxAFW2y6WeIynUMlknFYLiHGhxSZVABpN2KKYiExpcc4amkQd5fy4TGDDdIauCUl5fDZrMhKSmp1f1JSUkoKSlxe01JSYnb861WK8rLywEAv/zyC1asWIF3333Xo3m8/PLLMJlMwk96eroPzyaAqcoj7lt9uG9NNtvChMYMRudIXQOHEkw6nBIfBMYUVtGY4QZZRMZcm3oGPM+3u6+r8+n9dXV1uPPOO/Huu+8iPj7eo8dftGgRampqhJ+CgiCqG+EJ5X422WwL9eBUnPF/LAYjGBFCVBJ6cACnARUMejiaQeWNwJhCQ1SlxwCrWbQpMQIbnZSDx8fHQ6vVtvPWlJaWtvPSUJKTk92er9PpEBcXh6NHjyIvLw/XXHON8He7I5tHp9Ph5MmT6N27d6vrjUYjjEYvYrrBhr9NNtsSTLtGBkNsLE3OBphSioyB4KlmbG4AKhztX5K8qIFDie5Jag41VwNlx50hK0a3RlIPjsFgQE5ODjZs2NDq/g0bNmD8+PFurxk3bly789evX4+RI0dCr9djwIABOHz4MA4cOCD8XHvttZgyZQoOHDjQ/cJPnkA9LWLob4DWPXAc3jUGg+GAhqf0YeRLV0qCxcApPQGAJ8LpSPeb307hOGfmVQXrk8cgSOrBAYCFCxdi7ty5GDlyJMaNG4d33nkH+fn5eOihhwCQ8FFhYSE++ugjAMBDDz2EpUuXYuHChXjggQeQm5uLFStW4NNPPwUAhISEYPDg1i7M6OhoAGh3P8NBVR45xmSJM15kKgAOsLUADeVARII44zIYwQA1cCJTPGs34A/B4k0VBMZ+rOExmUDBDud6x+j2SG7g3HLLLaioqMBzzz2H4uJiDB48GGvXrkXPnj0BAMXFxa1q4mRlZWHt2rVYsGAB/vWvfyE1NRVvvvkmbrrpJqmnGrxUO17f6AxxxtMZgIgkoL6ExP6ZgcNgOKmToQYOJViyqEr80N9QYsh3Cqov+D8fRlAguYEDAPPmzcO8efPc/u2DDz5od9+kSZOwb98+j8d3NwbDgc3qFDzSBUAMTGnEwKm5CKSOEG9cRvDSUgeUnQR65Ejv2VASOWrgUOhjNFeT19cYKf1jSkHpcXL014MDMA8OQ4D1ogp26opIirjWAEQkizeuqw6HweiMxkpg01+Bvw8G3psG5C5VekbSIlQxljiDCgBCooAQE7kdyJ/FynPk6E8hUsHAYR4cBoEZOMEODU+Z0sVJEacIsf9ulnLP8I69HwJLhgCbXiZeBgDY/s/g7hkkpwfH9XHqiuR5PLExNzrnHutHVfpoh4e6piA4Wlcw/IYZOMEO3c2Ipb+hCPU3AnjXyJCW5lpg7ROAuZ6EHm5aQQTq9ZeAI+17ywUNriJjOYh0eGbr3BdPVT20ynpINBAW6/s4kSnEU223snWJAYAZOMGP2AJjSrCkpzKk4/R6wGYG4voCD20DhtwMjPkt+dv2pcFbYkBOkTHgNKRqA9SDQ8NT/nhvAOKhpuscExozwAyc4Id+0MUUGANMg8PommPfkOPAa52i4px7SMuQ0qPAuU1KzUw6bBanJ0WuEBU1cALVgyOWgQMwoTGjFczACXYED47YBo5Dg1NXTBZ1BsMVcyNw5kdyO9tZdRyhMcCIO8ntYBQb118CwAMaHSlaJwdCiCpAO4qLaeDQdY4JjRlgBk7wI5WBExZP4t3gA3dhZUjH2Y2ApZGEDGgjRMrYhwFOQwwgmh4cLNS6dBEXU9TfGTQUFqifQ+bBYUgEM3CCGZvFKbYTW4Oj0Thd8EyHw2jLsW/JMfva9jVvYrOAAVeT28HmxREyqGTS3wCBLzKudIiMRTFwqAcnz/+xGAEPM3CCmZqLAG8HdCFARKL44zOhMcMd1hbg1DpyO/ta9+eMe5QcD38RXN2f61w8OHLhqsGx2+R7XDGwNDvXDzE9OExkzIBMlYwZClHtkiIuReXYTgycCxUN+MfG0zhTWo/4CCOSooy4ZlgqxveOF38eDHVxbjPQUksKS6aNcn9O+miix2mqAi4dAXpcJu8cpYJ6USJFLKrZFeGJJOTH20hvOF+aVSpF9QUAPGCIBMJFWBuogdNQBrTUA8YI/8dkBCzMwAlmpNLfUNyEqGqbLXhj/Sms2nkBFlvrNOBPdxXg3glZeGpWf4TotdLMiaE8x2l46uqOdSgcR1o2nPkRKNwbPAZO/SVyjJDRyNDqiJFTX0IK5gWSgSPob7LE2YSFmEg9neZqsv4lDWz156NFNfjr9ydQUNkIHkBMmAHzJvfG9IFJ4IK5fUg3hRk4wYxURf4o1IPj0B1YbHb89qM92HGuEgBwRb8E3DoqHTVNFuy9UIUv9l7Eyl/OY/vZcnz227GIDjNIMy+GctjtwMm15HZH4SlK6mXEwCnaL/285EIJDw5A2kLUlwSeDkdo0dBbvDFjMoHiA0SH4zBwmi02/GPjabyz5RxsdufG60JFI3778V5c3iceL90wBBlxYeLNg6E4zMAJZqQq8kdpE6J6fs0x7DhXiXCDFsvn5mBiX2ea7G2jMzBnSDKe+uIQTpTU4fHPDuD9e0ZBo2G7pqCi6jzQWEF0Xz3Hd35ujxxyLNwr/bzkQgkPDuDQ4ewPvEwqMTOoKDE9nQYOgIr6Ftzyzg6cKa0HAFw1NAV3j8uEhgN+OlGK97aex7Yz5bjt3R34+pEJSIg0ijcXhqIwkXEwQw0csYv8UVxCVJ/uysdHuRfAccCSW0e0Mm4oUwck4aN7xyBEr8HmU2VYsvG0NPNiKEfJYXJMzAa0+s7PpWGpspOkrUMwoJiB4/AY1TIDx1VobLPzmP/5AZwprUdCpBFvz83Bv26/DKOzYjEyMxZPzRqAHxdOQs+4MBRWN+GBj/ag2RJgQm1GhzADJ5iplilE1VyNv36zBwDw++n9MH1gx4v7wNQovHzjEADAmxtP46cTl6SZG0MZLh0hx6TBXZ8bkQiYMgDwZMcd6FjNxHsFyB+iigzQWjhSGDjRzlTxpT+dwdbT5QjRa/DJfWMwc1D7/0tGXBjev2cUTKF6HCioxsL/HIDdHqRtRLoZzMAJVqwtzsUuOlOaxwiJAm+MBADE28tx1ZAUPDKlT5eX3TAiDXeNI4vQH748jEYz6/wbNJQ4DJzkoZ6dT704wRCmaiglR40OCPWjaaQvBGI1Y6vZ6WWWwIPTcOkslmw8BQB48foh6J8c2eElvRIi8M7cHOi1HNYeLsEX+1jpi2CAGTjBSnUBOerD/evQ2wU1euKtyQ6twas3D/U4E+GZq7KRHhuKsroWrNh6XrL5MWSGhqiSPfDgAMFl4NDwVHiifFWMKVEB2I+qpoDU6dKHiRvScxg4mpp88DyPW0el46actC4vG9MrDk/M6A8AeO2Hk2hoYRuvQIcZOMGKa5NNidIfmy02HGuMAgDc2l+DcKPnmnWjTissJm9vOYfy+hZJ5siQkcZKoNax800a5Nk1gtA4CDKp6hwGjhJp2kKxvwDy4LiGp8Rco0zp4MEhFC0YnWDF4ms9fC8CuGdCJnrGhaGsrgVvbTor3pwYisAMnGBFav0NgE935eO8OQYAMDau0evrrxmaiiE9TKhvseKfTHAc+Fw6So7RGaQeiSekDCdF6movBpb3wR31jvlHyKy/AZwGTmMFCU8HAq41cESktMmOIj4OAPDk6BCvam4ZdVosmp0NAHh36zkUVjeJOjeGvDADJ1iRuMhfk9mGf/18VlhIdPXe7xw1Gg6LZg8AAKzamY+88gZR58iQmUte6m8AUmk2gbwHULhP/DnJSb1DgyNFW5SuCI0BtI705kAxFKUQGAN4a9NZFPAki3NkVI3X188clIQxWbFosdrxyvcnRJ0bQ16YgROs0OrCpq5jz77wUW4eyutb0BLu2DnWFPg0zvg+8ZjULwFWO483mRcnsKH6G08yqFwJFh2OUkX+ABLiCTShMW2yGSOeB6e4pgmrduYj306MTI5u9LyA4zj86eqB4Djg24NFOFNaJ9r8GPLCDJxgRUIDp67ZguWbSXx6Ys5wx+MV+jzewun9AADfHSpCaV2zv9NjKIW3AmNKsBT8U6oGDiUqwFLFJajTtfSnMzBb7eBpaN7HruKDe5hwZTb5P364nTXuDFSYgROsUINDAgPnv3suoqrRgl4J4ZhADZzaQoD3rXbEsPRojMiIhsXG49OdvnmCGApjswBlDnd+8hDvrk11eHCK9vn8HlIF1MBRwoPj+riBEKLieaeBYxJHJ1hQ2YjPd5P1I2f4CHKnH13FfzM+EwDw5b6LqGmy+Ds9hgIwAycYsdtI0z3AWW1YJHiex2e7ycL0mwlZ0EU7xrc2O4uc+cA9jsXkk50XYLba/Z0mQ27KTwM2M2CM8l73lTSI6Eeaa5y6jECkTmEPDhUa1xYp8/je0FQFWByaO5E2Yf/86TSsdh4T+8ajTz+HF9FHDw4AjOsdh/5JkWg02/DfPWzjFYgwAycYqS8F7FaA04q+m9xfUI1Tl+oRotfguuGpgM7oXNB91OEAwOzBKUiMNKKsrgXfHwkQFzvDiaC/GeR9yq9WD6QMI7cDNUzF88qHqCIDqBYO9d5EJAH6EL+Hq6hvwdf7iWE3/8p+TqOprpg0gPUBjuNwz4RMAMCHuXmtmnQyAgNm4AQjju7eiEwBNJ6nSHrCZ7vIwnTVkFREhTh6DdHYvx87R4NOgzvHkp3/B9vz/JkiQwku+SgwplChcaB2Fm+sBOyOMIYSWVRAYNXCEcJT6aIM98XeizDb7BiaZkJOzxhiOHEastFrKPN53OuH90B0mB4FlU346USpKHNlyAczcIIRQWAsbniqrtmC7w6SxfPW0S4LU4Q4sf/bRmfAoNVgf341DhRU+zUWQ2aEFg1e6m8oNFW84ow485Eb6r0JjSFeTSWICiADh3p7RajTZbfz+Ldj43XHGMd4Wh2pKA04w/U+EGrQ4tZRZMz3f2EV1wMNZuAEI9SDI7L+5ruDxWiy2NA7IRwje8Y4/0DDYPX+Nc5MiDTi6qFkkf44l2UuBBS0yJ+3GVSUOEcPs4A1cBQs8kcJxBBVtP8enF/OluNCRSMijTpcMyzV+Qdq8PnZYX3uuJ7QcMD2sxXIr/C+oClDOZiBE4xI5MH53CEuvnVURuueUyJmb9wxluyWvj9SzHrBBArNtc5Gk/H9fBuDGjhVF0gTxkBDyTYNFPo5NNeT/4maob3yRAhRrdpB1qUbL+uBMINLuxjaYb3W9xIWANAjOhQT+sQDAL454N9YDHlhBk4wIhg44sS3AeBYUS0OXqyBXsvhxsvaGE5UVOmnBwcALsuIQWZcGBrNNvxwNAB2ogygyuG6D4sHjB13bO6UyGTSGJa3+ZXaqxhKC4wBwBAOGB0tMtTuxakRp9L6pdpmbDhOXvvbx7QZS8SQ3fXDyZq3+kAh+EAuZdDNYAZOMCJBiIp6b2YMTEZcRBuNgYgVVDmOw42XkQyIr/ax3VJAQCvS+tNTiOOAuN7kdiCGqdRg4AAun0WVp4qLFKL6z+4C2Ow8RvaMQf/kNsZ1pDghKgCYOTgZIXoNzpU14HCh9+0fGMrADJxgRCjyJ46B02K1YfV+MuYto9wsSHRRr/PfgwMAN4wg8/7lbDmKWLM79UNrjfhbcj+QdThKtmlwJSoAdDjNNeQH8MvLbLPz+JSKi8e6ESsLlZ39N/YijDpMH0j+t3QtZKgfZuAEG1azczcZJU4BrV/OlKO22YqkKCMud8SiW0F3Sg2lpMign6THhmF0Vix4HviaxbzVT5UIHhwgsA0codGm0h6cAMikovqb0FjSbNVHNp0sRVFNM6LD9Jg9OKX9CSJ6cADghhHEYPruYDGsNlaMNBBgBk6wUVcMgCeVYcPdGCM+sPYw2Q3OHpwCjcZNEbfwBAAcwNuBhnJRHvNmlzCVKmPedjtQfgY48T+g3vc6G0GBWE0TBQPnrH/jKIGQRaW0gePwIIn0pS4JQoq4f+Gp/+4hWsObL0tDiN5NvS+Re3NN7JuA2HADyutb8MtZ36u2M+SDGTjBhqC/SfW+oqwbzFY71h+lBk4H7netzmHkwLnQ+8nsIckw6jQ4U1qvrph3TSHw0fXAXzOApTnAZ7eTHzUaYXJBPTgxmf6NE8genDqF+1BRIgOg4aYIGVQ1jRah8N5NOR14qqmB01ILtNT7/FgUvVYjlLH4moWpAgJm4AQbIjfZzD1XgdpmK+IjjBiZGdvxiZHi6nAiQ/SYOYh8WXy596IoY4rC9n8C534GzHWALoS0w7i4C7i4R+mZKYPV7Mza8ztE5RAZ1xWL8oUkG+YG8n4A1OPBUbWB48iS8yODau2RYphtdgxIjkR2SpT7k4yRgMEhPBbp9bjeoQ/84WgJGs2sjIXaYQZOsEHdvyIZON8fJgvDrMFJ0LoLT1FogTORPDgAhHT07w6pJOZtbQEOfUZu3/AOsKgQGHYr+X3ncuXmpSQ1BSQ0qQ/z/8s9NNrpCQwkLw7VvOlCfU+TFwshLKNikbEIISoq9KUGR4dEiduAdER6NNJjQ9FotmHzyW4emg4AmIETbIiYIm612YVaNHPcifhcETw44i2sl/eJR0yYHpUNZuw4VynauD5zYg3pghzVAxhyMwnNjf4t+duxr9Wte5CKSpfwlAgh0YAMU7kW+RPjNfAH16KbPjaZlBwhRdy3Ng0Xqxqx63wlOA641rVysTtEFl1zHCcImtexOl2qhxk4wYaIKeI7z1eiqtGC2HADRmd1Ep4CJCkTr9NqMMuxmKw5pIK6Hvs+IscRdzqbmKYOBzLGkaZ+e99XbGqKUSWSwJgi1MIJIKGxGto0UCKSAHCk8WejSoWwfmpwvjlA1oKxWXFIjQ7t/OQocaoZu0JD5z8dL0WL1f+sUVFpqAA+uQn450jg9f5EK7htidKzUgxm4AQbtQ49hAgp4msd4akZA5Og03bxVhGxmrEr1wx17pYsSoapqvKAc5sAcMDwO1r/bcyD5LhnJQljdSdoDRx/9TeUQPTgCCniCnURd0Wrd4b51KjDMTcCjY5MSx9CVDzPC+GpG7oKTwGip4oDJEyVGGlEXYsV29WWTbXzLeDMj0DFaWJ4N9cAm1911h3qZjADJ9gQyYNjs/NCeGr2kC7CU4Co/ahcGdMrDvERRlQ3WrDtjDgp6D6x/xNy7DUZiGkjjhxwNQlbNZQBR1fLPjVFqRQpg4oSiAaOWor8UdQsNKb6G2MUEBLt9eVHi2pxprQeBp0Gs4Z48HqLnCoOABoNJ3hxfjiiojCVtQXY+wG5PeMF4MEtQMIAwNIA7F+l6NSUQhYDZ9myZcjKykJISAhycnKwdevWTs/fvHkzcnJyEBISgl69emH58tYCznfffRcTJ05ETEwMYmJicOWVV2LXrl1SPoXAwNwINDm0Kn5qcHbnVaK83gxTqB7je8d1fYEgMhbXg6PVcJjjWMjWHFRowbbbnAvEZXe1/7tWD4y6j9zubmJj0UNULrVwAiX1Xi1tGigSfKmLhmt4yge9Ek3Pnp6dhKgQfdcXRIorMqbMcpTMWH/sEmx2lbxPj35NNlmRqcCYh4CUYU6N4O531avJkhDJDZzPP/8c8+fPxzPPPIP9+/dj4sSJmD17NvLz892ef/78ecyZMwcTJ07E/v378fTTT+Oxxx7Dl19+KZyzadMm3Hbbbfj555+Rm5uLjIwMzJgxA4WF3bw2Af0QGyKAEJNfQ9HsqekDk6DvKjwFtBYZi/zFdJXDg7T+WIkyMe9zm0i599BYYMBV7s+57B4AHFC0X7RUedXD8+KHqGKyAHBAS41oRSMlR20GjkTeVFEQUsS9D0/Z7Dy+OUjWuC6zpygiNtx0ZXRWLKIdCRC781SQAAEAu94mx1H3kk0XQLI8jSag8hwJXXUzJDdw3njjDdx33324//77kZ2djSVLliA9PR1vvfWW2/OXL1+OjIwMLFmyBNnZ2bj//vtx77334vXXXxfOWbVqFebNm4fhw4djwIABePfdd2G327Fx40apn466oe7fqB5+ZXPY7Ty+d7he53jiBgaci7vdAjSK+4EflRmLpCgj6pqt2HpKgS+9C9vJsf9sQGd0f054HJDQn9wu2ifPvJSm/hJgaQQ4jXid6/Uhzi+/QAlTqaXIH0Uir4Uo0JpJPrxftp8tR1ldC6LD9JjUL8Gzi6gnu/4SYBOvbo1eq8GV2WTNW6eGMNXFvUDhXkBrcGy2HBjCgcvmktvUAOpGSGrgmM1m7N27FzNmzGh1/4wZM7B9+3a31+Tm5rY7f+bMmdizZw8sFovbaxobG2GxWBAb6z7Tp6WlBbW1ta1+gpJacYr87S+oQmldCyKNOkxw13vKHToj8XAAotbCAUjMe84QBbOpCh1F/NJGdn5ejxzH+d3EwKH6G1MaoDOIN26g6XDU0qaBIkFGo2gIBo73axQVF189NAUGnYdfXeEJpBgnbye98kRkFtXhHC1Rvp3MrnfIcdCNQEQb42/U/QA44sEpPy371JREUgOnvLwcNpsNSUmtP/hJSUkoKXH/4SspKXF7vtVqRXm5+937H//4R/To0QNXXnml27+//PLLMJlMwk96uki7TbUhksCY9p66cmASjDo3PV46QkLX+NVDia5gw7FLaLbIGKay250GS48uDJzUEeTYXTw4YnURb0sgGTg2qzOUpjYPjghdtEXHRwOn0WwVBL0eZU9RNFrJ+nNd3jceYQYtimuacfCigllKjZXA0a/I7TG/bf/32Cyg3yxye9e78s1LBcgiMubahEt4nm93X1fnu7sfAF599VV8+umn+OqrrxASEuJ2vEWLFqGmpkb4KSgo8PYpBAYipIjzPC/obzrsPdUREqWKAyQ1M9UUggazDZvkrCBafor0stGHAYkDOz+3x2XkWLg3cASy/iBWD6q2BJKB01AGgCdhujAPxPhyEKViD06tbyGqDccuocFsQ3psKC7LiPHuMSUy+EL0WkzpT0oDrFey6N+FXwCbmWRMUS9yW2gSxIn/yTcvFSCpgRMfHw+tVtvOW1NaWtrOS0NJTk52e75Op0NcXOsF5PXXX8dLL72E9evXY+jQoR3Ow2g0IioqqtVPUCKCB+fgxRoU1TQj3KDFFZ7GuSkSenA0Gg5XDVUgTEXDU6kjSOXizkgaDGj0pNox9W4EMzREJZbAmBJIxf5oeCo80Vn8UWnoF3pDGWBzH9ZXBLvNqQvyco2i2VM3DO/R6ebYLSK3a3BlxiDyPbbhmIKJBQU7yTFjXMfnZIwjRnjtRXUavhIhqYFjMBiQk5ODDRs2tLp/w4YNGD9+vNtrxo0b1+789evXY+TIkdDrnWmBr732Gp5//nmsW7cOI0d2ETroLojQpoF6b6ZmJyFE7+WCLaEHB3CGqTYeL5Wv0d3F3eTY0c7IFZ0RSB5MbneHMJXQU8i3kvsdQj04lefUn9pKi/xFqkR/AxAtnMaxVqrpy6y+lFT85rReVX0ur2/BltMkDHidN+EpCu2wLoGBM7l/InQaDqdL65FX3iD6+B5R4CiRkj6643OMEUBCNrndjRoDSx6iWrhwId577z2sXLkSx48fx4IFC5Cfn4+HHnoIAAkf3XWXs7bIQw89hAsXLmDhwoU4fvw4Vq5ciRUrVuCJJ54Qznn11Vfxf//3f1i5ciUyMzNRUlKCkpIS1NcHUAdiKfCzkzjP81h7hBg4c7wNTwGi931py9A0E9JjQ9FkseGnE+IKBjvk4l5yTBvl2fndSWhM328iVM1uRVQa+RK0tUhmLItGncoExgCg0ahTaEz1N5EpXXtDXfjfoWLY7DyGpZnQOyHC+8eVKFUcAEyheozpRZIrFPHiWFuAogPkdvqYzs9No2sTM3BE45ZbbsGSJUvw3HPPYfjw4diyZQvWrl2Lnj1JNdji4uJWNXGysrKwdu1abNq0CcOHD8fzzz+PN998EzfddJNwzrJly2A2m3HzzTcjJSVF+HFNJe92NNcA5jpy20cPztGiWhRUNiFUr8Xk/j6UnRdq4UjzQec4DlcNIbsxWYr+mRuA0qPkdlcZVJRUhw6naL80c1ILdptT0yBC37NWaHXOMWndFLWitho4FCFcrCKhca1vAmOPO4d3hIQeHIAUHQRInS7ZKT5ENgJhcUBsr87PpUkS3ciD47kZ7Qfz5s3DvHnz3P7tgw8+aHffpEmTsG9fxzvgvLw8kWYWRNDdUWgsYAjzaQjae2py/wSEGnzQEwjVjKX7oF89NAXLN5/FzydLUd9iRYRRwrdw0X6SXhqZ6qwO2xVUaFx0gBgBatFliI0QbtBI02QyuifpOl2dD2SMFX98sVBbmwaKGoXGQgaV54bK+fIGHCiohlbDCSFqr5HQgwOQbNPF3x3D3gtVqKhvQVxEB7WypIDqb9LHdF37jG7SivYH99rkAutFFSz4KTDmeV4wcDzqPeUOVw+ORFlEg1KjkBUfjharHRuPS+wSvuhh/RtX4vsB+nDS/6XspDTzUgNU7+VluMFjoh39vpgHxzckDhf7hA8h9NX7iFF0eZ94JET6aDhQD45EnuW0mDAMTImCnQc2yhU6pwgGTif6G0rCAFLl3lwf3GuTC8zACRb8TBE/UVKHvIpGGHQaTB3gY1dkupO3NpHUagngOA5XO7KpvpM6TOVpgT9XNNruUQ+H7sb97HnWIVS4XO2+pYtqUK2BI03tF78QKq17tkbZ7Ty+3EeMoptz/NB50S7v5joSdpaA6QMVyKbi+dYenK5wXZu6iQ6HGTjBgp8eHJo9Nalfgu9hH0MY6RIMSNqPiaaLbzlVhpomCdNgvRUYU3rQRSSIDZxacYpKdkigGDhqa9NAiWzdcLOywYztZ8txrKgWpbXNylTe9bLS+o5zFSisbkJkiE4wIHzCGAnoQsntemk8LHR+W0+XocksUyHS6nxiYGt0TsOlK2gSRDfR4ciiwWHIgJ8p4mu97T3VEZHJxHtTXwIk9PNvrA7onxSJPokROFNajw3HLvm3u+uI2mIi0OS0QMpw764VhMZBbOD4mbHXJYFg4PC8iwfHR6+nVDgMLkt1IV745gg+31OAZosz5b5XQjiemtkfMwcle19Xxle81OB8sZecf+2wVO9LVrjCceT/U32BGDhi120CCZ33iA5FYXUTtp0p988g8xSaHp4yDNCHenYN9UYX7pVmTiqDeXCCBT96vJy+VIczpfXQazlMy/bzg0ld9RKKG13DVN8elChLpOw4Ocb28l60TYXGJUdIGmcwIkLV7E4RDJwCIohUI83VJIMFkEZo7Q8OUXxzZSE+zL2AZosdqaYQxEcYoOGAc2UNeOiTfbh5eS4uVjVKPx9Ls6PqMzyqYlzXbBFKVoiygZG4RhfHcS5hKpmE3TQ8leaB/oZCM6lKjwEtwV9WhRk4wYIfHhzaOXxi3wREhei7OLsLJKxm7Mp1w8nz3Ha6DGV1EhgRZafIkXYI94boniSbzW4hRk4wIlLfsw6JSiWud7tFXZlArtDwVIiJdEFXEd+cJd6aSK4J03qFY9X9Y/DLH6diz/9Nx8FnZ+B3U/sgRK/B3gtV+NXyXJwprZN2QnR90ocBoV23Wvj+cAmaLXb0TgjH8PRo/x+fetgkrKtEDZyNx0ths8sQArzoQYG/tkSlkPAlbweKD0gyLTXBDJxggOf9+sJZ62vvKXdIvFOiZMWThc/OS+TFKXcYOPE+hNk4zhkTv3RYvDmpCalFxhqt0xup1jCVEJ5Sl/fm55OlWPjNWdTzxOhacWMaJvSJF0JRkSF6/H5Gf/y4cBL6JEaguKYZv1qei0MXq6WblOv7xYOQGA1P3ZyTLk4ITViXpMtyGp0Vi6gQHSoazNiXXyXZ4wAgLTguHSO3Pamy7kpa99HhMAMnGGgod7jKOae40EPOldXjREkddBpOnLixDAsJhXYVpn1qRKXcDw8OAMT3JcdA6KfkLVaz88tdKg0OoH4djgr1NwcLqjHvk32w2Xk0GB3z6iBVPC0mDP95cByGpZlQ1WjBHe/txNkyicIWXgiM88obsCuvEhrOy87hnUH/Rw3SrUt6rQZTHBmokmdTVZ4n3k19uNeNS4UwVTfIpGIGTjBA9RARSYDO4NWlNDw1vk88osO8u9YtMiwklKuHpkCn4XC4sEZ8FzutE0ENFW+JdTSMrDwnznzURF0xAB7QGoCweOkeR+0GjsqK/Fltdvz+vwfRZLHhin4JSEh11BLqpBZObLgBqx4Yi5yeMahrtuKBj/agtlmCzEQvBMZfOmrfTOybgGSTSKE/IUQl7brkmi4uaaZa2QlyTOhHWnN4AxUaXwx+oTEzcIIBP8JT3/vTe8odMi0kABAXYcQkR8fz1WJ6cZqqnAaaLyEqAIhzlE0PRg+OoPdK9X5x9Qah2F+edI/hDyqrgfPZ7gKcKa1HTJge/7xtBDRRrVPFOyLCqMPyO3OQYgrBubIGLPjsAOxia0gEA6dzb4PZasenu0i9nF+NFNE7KFPofFK/BOi1HM6XN0jnDQOAcroB88HDnDyUHOuKSIufIIYZOMGAjwLj/IpGHCmshYaDeGmNMi0klBsuo2GqIvEW5fLT5BjVg9TQ8AXaF6bqPPLK6vCX747iN+/vwqwlW3Dt0m14b+s5VDaYxZmv3EjVZLMtavfgqMjAqWu24O8bSFj18Wl9YQrVeyX4T4g04u25OTDqNNh4ohR///GUuBP0ULP1/ZFilNe3ICnKiJmDRPSMyRQ6jwzRY1xv4tVcL2WYinqYfQmhh0Q5X4+KM+LNSYUwAycY8DFFfM1hIs4d2ytOvP4p4Q4PTmMlEcJJzJXZSYg06lBY3YTdeZXiDCqEp/yo42PKAK/RAdZm3P2Pr/H+L3n4+WQZTpTU4dDFGrzwv+MY+9JG/G39SWWKrvlDrXf1THxG8OCo1MBRUYhq2aazqGgwo1d8OO4Y63jdaLsGD5tMDk2Lxl9vGgIAWPrzGew4VyHeBD3U4Hy4PQ8AcMeYntBrRfx6cs2ikvjzJktVY8HAGeDb9XF9yDEYPcwuMAMnGPDRg/PtAbLwXTvMxyZ27giLJcXxwBPxs8SE6LWY7ShOKFqYqtx/A2fvxToU8GRRTbUXY2LfeLx84xB88JtReP76wRjcIwpmmx3//OkMnl59RJ60UrGo8a+opMdQD07NRXXWwlGJB+diVSNWbDsPAFg0J9tpGAj9qDxPs79hRBpuGZkOngd+/5+DqBNDj8PzHm3CDl+swb78aui1HG4d7aVwtivoxstmJvWLJIR2Fz9QUI3SumbxH8Bu8z8Jgho41FsdpDADJxjwoUvviZJanCipg0GrwezBPjbXdIdGC4Q7hKcyCI0BsigDwP8OF6PZIsIXIf3Q+1iJeV9+Fe5asROnrWShWzRaj4/uHY3bRmdgcv9EzB3bE2t+NxGv3DQEGg74dFc+Fnx+ABabvYuRVYLUbRookcmARk+6lqupaSRFJQbO6z+chNlqx9hesbgy2yWjSzBwvCuj8KdrBiI9llTl/ct3x/yfYHMNafAIdGoUf+Dw3lw1JAWJkSLXFdKHkHpFgORhqmRTCIalmcDzpCaO6FTnA9ZmQGsEYjJ9G0Pw4LAQFUPtCCJjz3c93zi8N5P7J8AU5mdxv7bIKDQGgDFZsUg1haCu2SqIpv2izHcB39GiGtyzchcazDaYTZkAgKGh5W5redwyKgNv3jYCOg2Hbw8W4R8/BshuqkbiKsYU11o4VSrrKm5pcgo0I5UzcIprmvDdIfKef2bOwNbvsygXD44XYZkIow5v/Ho4OI7Uo1nn72eKvl/C4jqsCl5R34LvDpE16a7xmf49XkfIqA+UNEwl1OjqSz4jviCUsWAGDkPN2G3O3a2HIQO7nRfCU7QisKjILDTWaDjcNpqEMz7K9fOL0NJMetYAXrt/z5TWYe6KXahttmJUZgymjR9L/tBJqvjVQ1Pxxi3DAQBvbT6LI4UBkNUglwcHUK/QmL63tUYgJFqxaXy2qwA2O4/RWbEYkmZq/Uf6ObSZSWagF4zKjMVDk0ipg0VfHfYv1OJBCP2z3QUwW+0YmmbCCDEqF7tDxhpd0weSsPm2M+VoaLGKO7iQIu5jeAporcEJNA2gFzADJ9CpKwF4Gylr72HBsX35VSisbkK4QYtp2RIUKQuX14MDALeOzoBey2F/fjUOX/TDSKg4Q8qYh5iA8ASPLyuta8ad7+1CZYMZQ9NMWHHPKBgSPSv2d+2wVMwenAybncdTXxxSd6jK0gQ0OsSnUmtwACBGpUJj+t6OSPKoMq8UWG12fLabvC53jMlof4LOSLwmgMdCY1cWXNkP2SlRqGq04I9fHvZdDF9D0r478jA3tFjx/i9EQ3T3uEzpmn/K0K6B0i8pAhmxYTBb7dh0skzcwf3wMAtE9yRaSUuDOsO/IsEMHBFpttjwy5lyHCmsgVWuLym6O4pM9dhdScNTMwcn+9eltyNkDlEBJM11zhDikv8oN8/3gQT3b3+Pv7isNjse//QASmqb0ScxAh/+ZjTp6RXnKPZXdb5LkexfrhuE6DA9jhXX4p0tKi4OWONdTyG/UasHR8igUi489ePxUlyqbUFcuAGzOqpjRSub+9DPy6DTYMktw2HQafDTiVKhPo3XdFGn68PcPJTXm9EzLgzXDhcx4aEtMnqWOY4TWt/877DIrWT8SRGn6AxO/U4QC42ZgSMil2qbccd7O3H1P7dh1Is/4sn/HpS+J4mXAmOLzY7/OXpPXS9FeAqQPURFuWtcJgDgm4NFqPK1xoyQneC5wPjvP55C7rkKhBu0WH5nDmLCHRWhTemk2q/N7DREOyAxMgR/vnogAOAfP55GQaUMHZ59QQiHpsrjuRBSxVWmwVGBwHjVTvKa/HpUOoy6DjYqQi0c375k+ydH4qmZ5Iv0+TXHkFfe4P0gnWRQ1TRZ8PZmYtDPv7KvuKnhbZF543X1UGKs/XSiFPVihal43v8UcUo3EBozA0dEbHYe/ZIiEBWiQ1WjBf/dexE3vbUdr6w7AbNVIo+Olyni206Xo7LBjPgIA8b3jpNmTkK7BpFds11wWUY0Sb+22vH5Hh93m166f386cQn/+pmEoF6+aSj6JEY4/6jROndJHtSbuGFED4zvHQezzY63t6i0PoXguRAx864z1OrBoQaOQjVw8sobsPV0OTgOuH20m/AUJcr7VPG23DshC+N6xaHJYsOC/xzw3jvdyRq1Ytt51DRZ0CcxAtcOkzjkKfPGa3CPKGTGhaHZYsfG4yI9Zm0RYK4j4SVaTNRXuoHQmBk4ItIrIQLrF0zCvj9Nx78fGIPrhqeC54G3Np3FDct+kWZX7mWbhv/uJV/8Vw9NhU6q3ZKMsW5XOI4TvDgf517wrbYMFQTT3U0nFFY3YcHnBwEAd43r6b6eEF2EKrs2WDiOw++mkkXnP3suoqyuxbM5ywn14Mht4NRcBGwiizX9gRoMCnlwPt1FDL5J/RKQHus+MwmAS6q47zoLjYbD678ehsgQHfbnV+O19Se9G6ADDU5lgxkrtpLP28Lp/aDVSOwRlNmDw3Gc4MX57qBIOhdaoyuut9d9B9tBQ+jMwGF4g06rwfje8fjHrSOw/M7LEBOmx9GiWtz+3g4UVTeJ+2BdCPhcKa1txvqjxOi4ZZTIhbRcUUBkTLl2WCqiw/QorG7Czyd8ePyqPHKMzer0NJudx/zP9qOmyYJhaSY8c1W2+xNp080Kz3Q1Y3vFYkRGNMxWuyC8VBVyV++NSCZhPt7mc5hFEhQMUbVYbfiPw0N5x5ienZ9M/0+1/n3B9ogOxas3kR5Gb28+h/VHPfQI2W3Ox26zCVv60xk0mG0YlBqFWWK2ZegIGbOoKNc4Nj1bTpWhpkmEooli6G8oLETF8JdZg1Ow9vGJyIwLQ0FlE257dwdKakSsbulFiOo/ewpgtfPI6RmD7JQo8ebQFrpTaq4GrPJ6IUL0WsF4e3vLWe8yP5qqnFVOozv/4lj60xnszqtChFGHf952WccaiDjPPTgA2fU97EjP/Tj3gjSdnf1Bbg+ORuPUblT7GHaUAgVDVFtOlaOq0YKkKCOmDugiC1IQGfvvQZg9JAX3XU4M/9//9yDyKzzwSNeXAnYLCalEOF+rnecq8P52YsA/ObM/NFJ7bwCXNjLlslXG7p8cib6JETDb7J4bhZ1BPcx04+QPcY4QVdUFwBqgffG6gBk4MpBiCsW/HxiL9NhQXKhoxO3v7fBdBNsWD0NUNjsvZEG4TSkVk9AYUoEWUMSLc8/4TBh1GuzOq/KukigtJheR1GFBMgDYk1eJf2wkYuQXrh+MjLhOQgSCB8dzTc2V2UnomxiBuhYrVu1QmfZEif5L1MChYlU1UEc9OBKUWeiCtY4kgauGpHYd1hFExuKESP44ewByesagrtmKh1ft7bpyuGvnea2OTKXZgt//9yB4Hvj1yDRM7i/TaxgeD3AaUgZChjYyFOrFWXNIhP+Bhx5mj4hMBgwRxDtKxw0ymIEjE6nRofj3/WORagrBubIGPPbZfv9Tya0tznYIXVSV3XSyFIXVTYgO0wvp1JLBcS5CY/kNnBRTKH4zgSwAr6w74bkWh37IOyl/XtNkweOfHYCdJ6Lg60d04TkTUsXzPN41ajScUGRtxbbz4rSfEAu5PTiAM/xaoxIPjt3mfF9HyOvBabbY8KOjOu5VQz147CiHB6e+VBQNk16rwdLbRyA23ICjRbV4ZNU+tFg7eX/S/5mLh/n5NcdwsaoJ6bGh+PM1g/yek8dotECYo42MjPrAq4eSz8q2MyTBwy8qHWHrGBEMHI5z0eEEZ6o4M3BkJD02DCt/MwphBi22ni7Hqz94KdZrCy3epQshTS47YdVO4gn4VU6aNLVv2qJALRxXHp7cG9FhepwurceXez3c+Xdh4PA8jyf+exCF1U3IiA3Dc9d5sDhH9SAaErvFqy/oa4enIsUUgvL6FvwoVgaGv/C8Qh4clRk4DeXECwDOq2KQYrD1dDnqWqxIjgrBiHQP6hCFxbs0vxXns5hiCsXS20fAqNNg44lS/PajTjw5bVLEv9h7Ef/ZcxEcB/ztV8MRYdSJMiePUUCH0yshAoNSo2Cz81h3xI8wld3uLJfgaw+qtjh0OHv378ZrP5zAoq8O44u9F9FoVpGg3w+YgSMzA5Kj8NrNwwAA72w5h28O+NEB21V/00lNkotVjfj5JPlA396VKFEsFKqFQzGF6vHoFPLhfWPDKTSZPfCCVNHdUabbPy/ffA4bjl2CwbGLjQzxoIeXRuvcbXkRptJrNbjxMrLr9dhAk5rmGsDqEMl35xAVfU+HxwthF7mg4ak5Q1I8061oNKIJjV0Z3zse798zCqF6LTafKsN9H+52/xlzCaF/uD0PT/yXZB0+NKk3Rmd1vimTBIUyPGk21bcH/Vjv64pJTS2NTpQq4pdqm/FDCSlrceroAfzr57P4dFc+nvjvQYx64Uf839eHxW8zITPMwFGAq4amYN5k4hr8w5eHcKKk1reBPNTffLIjHzwPXN4nHlnx4b49lrfQnW29vLVwXJk7rid6RIeipLZZEDR2SicenO1ny/HaD6QHzOJrB2FoWrTnE6Fu4E56UrnjpsvIF/uW0+UorRVRmO4r1HsTEg3oQ+V7XLWJjIUMKpWHpygipIq7Y3yfeHzwm1EIN2jxy5kKXLN0G74/XNxa2O/wum0sMuDZb48CIBq5J2eIkAXkCwptvK4dngoNB+w4V4lzZfW+DUI3YNEZfhnWPM9j+eazmPL6JvyviBg4I8LLcde4nnhwUi/0jAtDg9mGT3bk4/b3dvofVlMQZuAoxO9n9Mekfglottgxb9U+3ypdCvHtjvU3lQ1mfOxoXXDXOJm8N4DiHhwAMOq0eGImqUi87OezON9VFdYODJzC6iY89ul+2HlidNw22ssUe1oLxwsPDkBc25dlRMNm5/G1P54+sVBCfwO0roWjhsaACrVp8Do8RRFZaOzKmF5x+Oi+MYgJ0+NMaT0eXrUP1yzdhrc3n8XHuXkoLiDv+U9PEr3h49P64tlrBsqTNeUOhULnPaJDBTE1rWHkNR5oBLvCbufxf18fwV+/P4FGsw3GJJJJNUB3Cc9dNxiLZmdj0xOT8eG9oxEdpsfBgmr8avl2FIpd3kQmmIGjEFoNh7/fMhzJUUR0/MxqH5rZCV2dOzZw3tlyTqg1MX2gjAuyQq7gtlw3rAdG9oxBfYsVD368p2OXq83q9BC4LCBldS2Y+95OlNebMSA5Ei9cP9j7ZoA048GHdgM35ZD/7Zd7C31vdigWSuhvAKdQ1tLgdVdsSVDIg0PDU7OHJHtnIESJlyrujpyeMdj05BQ8NrUPwg1aHCmsxcvfn8CfvjkKXT1Zo6yRPfDazUOxYHo/6ZppeoKCGy9acfqLvRd9Sxzw08Cx2Xn88atDWLUzHxwHPH/dILz64I3kjw2lJAQNUqpiUr8EfPHQOKSaQnC2rAFz39vpWZhfZTADR0Fiww1YevsIaDUcvjlQ5H0zuy5CVOX1Lfhwex4AUilU1oVFoXYNbdFoOCy74zIkRhpx6lI9nvzioHtDofYiSZfUGoUvrppGC+5auQvnyhvQIzoUK+8ZhVCDDwJtE/VAeB9iuXpoKgw6DU5eqsPRIh9DmWKhlAdHH+oMeapBaFwvf4q4a3iKZuV4jODBEaEOSweYQvVYOKM/tjw1BY9P64sbRvTANQNjkcCR9+yK312PX42UsLiopyiY/DBlQCJSTSGoarTgB19q4lR2rhHsDJudx+//cwD/2XMRWg2HJbcMx9xxmeBCTM6O823aofRJjMQXD48nm/DyBryy7oT3c1YYZuAozMjMWDzpaGa3+LujOHyxxvOLBZGxew/O25vPosliw7A0U9cFwcRGBSEqSmJUCN668zLotRzWHi7Bsk1uQkXC7qgnoNGgtK4Zd7+/C8eLaxEfYcQn949BarSPuhM/NCSmUL3geftCabGxUh4cwCWTSgVCYwVeh+1nfQxPAU6DtFb6StBxEUYsmN4Pf79lOP55lWPN0YdBG66AoNgdCq5LWg2HW0aRzY5P9a2ENcr7FPG/fn8cXx8ogk7D4Z+3jcB1ro2WO+n3lhodilduJhWsP9ieh9yzFV4/tpIwA0cF/HZiL0wbkAiz1Y4HP96D8noPq/920km8tLYZH+WSkIgibmGhXYOyHhxKTs9Y/OXawQCA1344iWdWH0ada5VgF/fv5lNlmPOPrThQUI2oEB0+vm+0f+JsauA0VwMtdV5ffrNDbPztwSLpmrZ6glIeHEBdQmO6+5exTcNPjrYjVw5M9F6/IoiMpfPguMU1hK5kWMoVBdLEXbllVDq0Gg678ipx+pKXa4GPIaov9l7Eu1uJ9+fvtwxvXweti4a2k/olCLrDJ784GFCZVczAUQEaDYc3bhmOXvHhKKppxrxV+2DpqgigucHZVsBNyuBrP5xEi9WOyzKiMamfvLU6ADhdweY6MlcVcPuYDDzsyF5btTMfM/++Bd8cKMTx4lo0XSJenU2l4bh75S5Bc/PVvAn+t7UIiQJCTOS2Dx6IiX3jkRBpRGWDGb+cka8CazuU9OBE+x7mE516eRtt8jyPn0+QjYJPnljBwJG5lxd9r4uQ0iwadF1qqQEs8gtnk00hwv/w396IjVvqSIsJgHiZPWTvhUo8/dVhAMBj0/oKVZVbQb2jnWwenrlqIHpEh+JiVRNe97bZqoIwA0clmEL1eOeuHEQYddh1vhIvrDnW+QVUf2OMIl+gLvxwtAT/3UuKaS2ak62MqM8YCegcIR2Fdkvu+MOsAfj3A2OQHhuKoppmPP7ZAcz+x1ZszN0FANhSTtIm7xybga8fmYA+iRHiPLAfIRadVoOZg8iX6fpjMu/CXREMHAU9OEqHqHje2aZBpiyqU5fqUVjdBKNOg3G94r0fIMrx/2quAcwe9I8Si5qukyBkJ8REdHaAYusSbZXzpTcF9aj3JjTWuVnqguKaJjz48T6YbXbMHJSE+dP6uj+R9t3rJAkiwqjDyzcOAUA2h6ooW+EBzMBREX0SI7HkluEAgA9zL+C9rZ3UTXFTAh0gWT+LHBb7b6/ohVGZCsW+OQ6IcHiOFBYat2V873j8MP8KPDipFwamRCEmTI90jix2/bOHYM3vLscL1w8Rt+Kzn9V4Zzq6LW84dsnz1hNiwvMuISolNDjUwFHYg9NS5yx2KJMHh4anxvWO803kbowC9I5+afUyGsj0f6UmA4fjnP83hdalK/omoGdcGGqbrYKMoEu87EFlttrx8Cf7UF7fggHJkXjj18M7Dm12EaKiTOwbj5E9Y2C22vHOFu9qeikFM3BUxpUDkwTR8Qv/O453tnRQO8VNijjP8/jjl4dQ2UDCKwun95N6up2jIqFxW8IMOiyanY21j0/E/j/PwNBwkn58y/SJGNzDsx2SV/ipIRnbKw5RITqU15uxL1+BVOnGStJuApBVeyKgFpExfS8bIgGDPEUzf3YYOD4nCnCcJNWMu6RNmwbVoHAJC42Gw++mEm/K8s1nUeuqBewILzOoXvzfMUFD+M7ckQjvrCVGtGebL47j8OhUUh1+1c58VHiqFVUQZuCokHmTe+NxhzvxpbUnsGzTmfYntUkRt9t5PL/mODaeKIVBq8GSW4fDqJOh51RnhKujFk6XNFWDo/VVvIhve0W0f1/Qeq0G07IdYSpfUkz9hXpvwuIBnUH+x6cGTv0l0mRWKWQu8lfTaMFeh0E7xZ+u29TTK0MmlQD1CJhUkB7uigpqdN0wogf6JEagutGC97b6V2W9Ld8cKMSHDs/Q328Zjoy4sM4voP+fpqoukyAm9UvA0DQTmiw2rNjmwbwVhhk4KoTjOCyY3g8LriQemFfXncRTXxxsbTHXUgFfGsxWO+Z/fgArfyFvuGevHYgByX4KY8UgQl2ZVB1CF4/wBOl25SKEWGY40sV/OHpJ/qJ/SupvANJMlmq6lPTiyFzkb/PpMtjsPPomRiA9tosvqs4QDByZXjued/6fotVq4CinDdRqOPze4WFfsfVc1+0QPDRwTpTU4o9fEonC76b2ETZFnRISBYQ6Sg904WHmOE7o8fdR7gVUN6q7jQMzcFTM41f2FcJV/9lzEVP/thkf5eahtK4ZfBXZHe2tjcCv3s7FtwdJjYO/3zIMd8jVULMrVByiaoWwEGdI9xgihFgm9U+AUadBfmUjTpR4n27uF0rqbwASZvHTCyYKMr8OfoenKLSUhFyvXUO5Q6vEddpKRhFUsi7NGpyMwT2i0GC24S13XnpXhEbAHWtwKupbcN8He9BkseHyPvGYf6UXEgUhk6rrzK4rs5MwIDkS9S1eaIgUghk4KueRKX3w34fGITslCjVNFvz5m6MY/eJGXDxPqkq+vL0RBwuqEWbQYsU9o3DDCBUtJioVGbfDg5YXfkMXkNoi0hbCB8IMOkzsS17T9UdlXpyVTBGnqEFoLOPrYLPz2HSSGDhT/DZw6GsnU0+zGscXZWSKMiHNzlCBBwcg3pAnHE1HP8q9gKKO+j3ZbS5tZNxvXs1WOx5etQ+F1U3oGRcmVMj3GA+FxgDRED00iZTb+GxXvjJJDx4ii4GzbNkyZGVlISQkBDk5Odi6dWun52/evBk5OTkICQlBr169sHz58nbnfPnllxg4cCCMRiMGDhyI1atXSzV9xRmVGYvvHp2A564bhPTYUOg5G5JBKkpaojLw+LS++HHhJGXq3XSGSnZKXeJB01K/iUgCNHrSDsKPnkA0XdynUu/+QOcc5aaOhlyoIVVcxmKHBy9Wo6rRgsgQHXJ6elm9uC30vS1XiIp+IastPAWoal2a1C8BozNj0eKQGVjd1T+rv0QE/pwWiGz/+eN5Hs9+exS7zlciwqjDe3eNRHSYl0YlTRWv8aw2z6zByYgK0aGoplnZ2lxdILmB8/nnn2P+/Pl45plnsH//fkycOBGzZ89Gfr77F/L8+fOYM2cOJk6ciP379+Ppp5/GY489hi+//FI4Jzc3F7fccgvmzp2LgwcPYu7cufj1r3+NnTt3Sv10FEOn1eCucZnY+tRUHHtyGPScDbxGj6+euhELpvfzvY2AlKhoIekUObI9NBpRwgTTspOg4YBjxbUoqJSxpkmdvMXt3OJHTy/RoK9DlPQGzpZTxPM5sW889Fo/l2q5Q1RCijgzcDqD4zj89aYhQv2z19efan+SUDAxFdC2zobieR6v/nASn+4iDTT/edsI9E2K9H4iXnhwACBEr8X1I8h76vM9Kii+2QGSGzhvvPEG7rvvPtx///3Izs7GkiVLkJ6ejrfeesvt+cuXL0dGRgaWLFmC7Oxs3H///bj33nvx+uuvC+csWbIE06dPx6JFizBgwAAsWrQI06ZNw5IlS6R+Op1jaQKK9gPnt0j6MHrHLoyLTodWq3CmVGfQBon1ZUR0qFbkSmf1sxYOQBq0js4itY1+PC7jAk2/DNQQolKyXYOMHpxtp8nOmIYl/YK+dk1V8hT7o1+UqvTguISoVLAu9UqIwCs3kX5Pyzefxca2n2shG631+kSNm7ccvfX+cu0g30OZ0Z5rcCi/djRP3XD0Eqq6EkkrhKQGjtlsxt69ezFjxoxW98+YMQPbt293e01ubm6782fOnIk9e/bAYrF0ek5HY7a0tKC2trbVjySUnQTemQx8cZ8041NoxUkpRbFiQBcSa5NPPZhko4uu7KIhgoEDANMGkB3oppMyapuE7CEFPThKi4x5XjYNTl2zBfsLqgEAl/fxoXpxW0JMpHYP4NScSUm1ij04tHyFtRlokei7wEuuGpqCe8ZnAgAWfH4Ax4td5iVswJyvpdlqx/Nrjrcybu4al+n7BAQPjudr0+AeJgxKjYLZZsfXB2TSdnmJpAZOeXk5bDYbkpJaL4pJSUkoKXGvISgpKXF7vtVqRXl5eafndDTmyy+/DJPJJPykp0v0oaNvwIZSwCJhKWthd6RyA8cQDhgcrQ5U1K6hFTaLc1cu9WIskgdiUn+yo99xrgLNFpu/s+oanleHgeOqwbEr0HS0pRawOLwfEqeJ7zhXCZudR2ZcmH/p4a4IYSoZPGD0MdS4RhnCSHVnQFXr0tNzsjE8PRq1zVZc969fsHLbedjtfDsP8+lLdbhh2S9CWZC/XDsIdzuMI5+ha19juVe9A6kX5/PdBfKXrvAAWUTGbXsh8TzfaX8kd+e3vd+bMRctWoSamhrhp6BAog94WKyzJLqUuyTBwFFJOnhnUC9Og3oWklbUFgHgSX+aMBF2yp0hkki2b2IEUk0haLHakXuuQoSJdUFzNWBzuKAj/Mzm8YfIVAAcYGtxNh6UE+q9CTGRL0kJ2XaaeOcu7yvie1LOTCo1e3AAVRT7a4tBp8GKu0di6oBEmK12PLfmGO54bycunCfNLffXRuDhT/biqn9uw9GiWkSH6bHsjsv8N24AIDQaMDoquHuxAbtueCoMOg1OlNThSKE6vGGuSGrgxMfHQ6vVtvOslJaWtvPAUJKTk92er9PpEBcX1+k5HY1pNBoRFRXV6kcSOM5ll+5Fp1hvCSgDRz2CPrcIu6MeRAgsJSKFWDiOwyRHVdvNcoSp6C43JBrQGaV/vI7QGZzaFyWExjLqb7Y6MlMu7yNiZqRQ7E9iA6e5hnTrBtSpwQFUuy7FRRix4u6ReP66QTDqNMg9V4HG0jwAwD/2NOP7IyUwW+2Y0j8B6+dfgTlDRHwvRnsv4o8OMwh98v6jQrGxpCu6wWBATk4ONmzY0Or+DRs2YPz48W6vGTduXLvz169fj5EjR0Kv13d6TkdjyoocPXMCRYMDtBYaqxG62EdJrL8BWmtw/HTnTnaEqWidFElRQ3iKoqTQWCb9TVF1E86VNUDDkQaboiGSBqxL6P8mLE62fl1eo5JaOO7gOA5zx2Vi7eMT8bupfdBTVwkACI3vid9N7YNvH52AlfeMQmJUiLgPLOhwvCved3MO+Ux+f6RYdTVxOunAJQ4LFy7E3LlzMXLkSIwbNw7vvPMO8vPz8dBDDwEg4aPCwkJ89NFHAICHHnoIS5cuxcKFC/HAAw8gNzcXK1aswKeffiqM+fjjj+OKK67AK6+8guuuuw7ffPMNfvzxR2zbtk3qp9M1HjYu8xmb1eliDgQDR6U7JQE501npl7O5noR9Qn2vbTKhTzx0Gg55FY3IK29AZryEXyR11MBRMDxFMaUBF3cpIzSWyYNDs6eGpUfDFKoXb2BBgyOxB0etPahcEdYl9Rk4lN4JEfj9FSnA9noAwFuPXAcYfUgB9xQhk8q7767xveNgCtWjvN6M3XmVGNtLRKPcTyTX4Nxyyy1YsmQJnnvuOQwfPhxbtmzB2rVr0bMnCa8UFxe3qomTlZWFtWvXYtOmTRg+fDief/55vPnmm7jpppuEc8aPH4/PPvsM77//PoYOHYoPPvgAn3/+OcaMGSP10+ka+qGukqiEdW0hKRanNapjR90VqjdwZOx4rA916nz89EBEGHUYmUkMpM2nJPaOqSFFnCL1BqIzZPLg0PDURDGyp1yRK0QlCIzVbOCo14PTCro+hURLa9wAXtfCoei1Gkx39Mn7/rCM3eo9QHIPDgDMmzcP8+bNc/u3Dz74oN19kyZNwr59+zod8+abb8bNN98sxvTEhTZD89LN5zGu9SWk1oyIgdrbNciVIk4x9SAC2doiIGWoX0NN7p+IHecqselkqThCw45QVYhKwVRxGTw4djsvVIadILaB4ypy53miGZQCwYOjYg+z2jdeFDcp4pLhhwE8Z0gyvth7Ed8fKcGz1wyCxps2ERISAN+QAQY1cKTy4ARKijhF7QuJnB4cwFlqva7I76GoDidX6nRxustVS4gKCFoPzrHiWlQ2mBFm0GJEhp/tGdpCv8AsjaTgn1QEggcnXH1ZVG4RQugyrE/0MWq9X5sm9IlHpFGH0roW7MuX8L3lJczAERua2VRXLE0tnEASGAMuC4lKXcFy7pAAZy8nHxaRtvRPikRyVAiaLXbsPF/p93gdUq+CNg0Uk286AVGQwYOzzeG9GdsrDgadyMuzPsQZIpU0CULlKeJA4IWo5DAWXdcmu3cbJqNOiytpmOqIzH3yOoEZOGITHu+ohcNLs8sMOA+Ousqit6K51pnOKkcWFeDsYVTrf6ya4zihwaqk2VRq9OA0VXpVkMxvZKpiTAXGolQvdoewS5dQhxMIHhxqrDeUef1lLityenAikgCNjmg8ffBszR5MPhffHy5WTdE/ZuCIDcdJG6YKpBo4gPNL0W6R1i3uC3SRD4kGjBHyPKbIQk9a1Zh+MUqCoMFRgcg4NNpZhVaOgnWUpiqXYofSeLKaLTbsyiOeuIliFvhzReqO7OZGp95OzZuw8HgAHPkyb5TQ++kvcobQNVqnd9IHD/MV/RIQbtCiqKYZBy/WiDw532AGjhRQ46M6T/yxA83A0RlJ5VdAfUJjucNTgNMNXCdOtsH43nHQcMDp0noU1zSJMmYrbBag0VEtWQ0hKsDlS1rCYpptof+vsDjJih3uzquE2WpHUpQRfRIlMrilNnDouIZIsnFQK1o9+V8C6tbhCGuUTMYiXZ98eH+E6LVCs0+1ZFMxA0cKYhzGh9geHJvFufNX8+6oLWoVGsvp/qVEiqfBAUgl0SFp0QAk8uJQo1Sj86tuj6hI/SXtDjn0N6ed1Ys7a2XjF1KnileR/kiIyZQuS0sshHVJPZqRVtisznVCrjVKeH/4tj7RysrrjpaoIkzFDBwpEEJUeeKOW3MR4O2ALkQdeghPUWtRLdc2DXJBNTgttaJ1WL/CEc7YKoWBQ3Un4YnqKUughNBYBv0N/f9JFp4CpC/2V3mOHGOzpBlfTAR9oMo8y5S6YhJC0+jl854KQmPf3h+T+iXAoNXgQkUjzpbVizgx31DJihVkCCEqkT04rgJjte+OXBHaNajNwKE1cGT04BgjnRoSEYTGADCxr0OHc6acdB8WE/o/i1RJeApQ2IMjjYFTXt+CY8WkWaHo9W9ckbqOUKXDgxMQBo5KPcsUOfvkUfz8bIUbdRjraC/y43Hl13tm4EiBVCGqQMugoqh1IVFCgwP4vUtqy4iMaIQbtKhsMAtfkqKhpiJ/FCWK/QkeHGlCVLS434DkSCREStjQlK4dtYUk5C02NEQV20v8scVG7aniimgE/QtRAcCV2eR13Xhc+fWeGThSQD04zdVAU7V441L3b6AIjCkRavXgKKDBAUQXGuu1GqEpo+hhKjWliFOEdg1yioylDVFtkyM8BRBDVRdCQh9SGIh0jYphHhy/oe9vOdcnETRaUx1C470XqlDVYBZjVj7DDBwpMEa49BwS0YtTcYYc4/uKN6YcCDUnVGTg2O3OXYpcNXAokeJ6cABnmGrraZH1BGoq8kdxrbgqVw0TaoxKkCrP87xQ4O9yx/9RMlqVscgTd2y7zem1ZiEq/5G7yjrg1GjVlRCRsw+kxYRhQHIk7Dyw6ZSyaz4zcKRCijAVNXDi+og3phyocSFpKCW1eTiN5N2h2yGEqMRLpbzcsfPfk1eFJrOIX/pqDFFFpgCcFrBbnZ4VqZGwZ9nZsgYU1zTDoNVgdGas6OO3Q8okCLsF0Brk3zT4QsCEqGQ0cMIT/Cr2R7kym6wXSutwmIEjFWILje02oOIsuR1oBo4gMlZRtgJdPCJTAa0sPWedRPleTKsjesWHo0d0KMw2O3aerxBtXGeISkUGjkbr/AKVQ4djNTsX+yjxv2y2ObxuIzNjEGrQij5+OwQD57y449LxonuS/5HaUePGyxUlkiA0WlE8zNMcOpwtJ8tgsdnFmJlPMANHKsSuZlxzEbC1kN1RoIqM1VQWXdDfKLDTpF/OIjTcpHAcJ+g3RNXhqNGDA8jbdLOuGAAPaI2OCrji4gxPSay/oUjlwRFSxANAYAw4PTjN1YC1RdGpuIUaGHJ7w0RIghiWFo3nrxuE/z02EXqtcmYGM3CkQghR5YkzXsVpcoztFRi7I1fUWBZdid0RxY9y6J0hpIuLZeDwvDpFxoDTyBe7FIM7qJcoKlX08gwWmx07zjnaM/SRWH9DkczACaAUcYAUrtToyW21hanMDcTwAuQ3cESolaTRcJg7LhMZcWEiTcrHeSj66MGM2CGq8gDV3wCOsugObYFahMZKxLcpdMFqKBN15zi+dxw4Djh5qQ6XakXoZN9SB1gayW21GTh0A1EtQyZVrXTG8L4LVahvsSI23IBBqVGij+8WqQycQEoRB4ixqtYipHTzY4gEQmR6X1CkrnYtI8zAkQr6Ia8877MavRXUgxNoGVQUtcW7hRCVAh2Pw2JJuAMQVSQbE27A0B6k75coYSq66BsiAUO4/+OJCfXgSNHQti0SGsNbXbqHazQyFe8UyljUiNsAl3pwAiFFnCIIjVWyLlFcvYZywwwcRpeY0gFdKMkqEMOLE6gZVBS1VTMWFhAFNDgcJ4nQGHANU4kg6KaLvpqqGFOiFfDgSPBe2eL4P13RT6bwFAAYwpwbDrG8ODzvEqIKEA8OoL6NF0XoQaXA+iR1Ow8ZYQaOVGg0QLzDGCk76f94Qogq0D04KjFwJAw7eIQEQmPAKVQVpW2DigTGPM/jfHkD/runAJtOlqI2xGEg1hSQmkZSIlGKeGWDGYcLawDIUOCvLWKHqepLAUsDKbsQSEkQak0VF4xqJTw44jYEVhKZ82O7GfH9gJLDQPkpAHN8H8fcANQ6PA4BG6JSkSvY0uTskq2UgSOR0PiyjBiEGbQorzfjeEktBqWafB9MMHCU099YbXYs/fkM/rvnIgqrm4T7tbDhVIgGWpuZFCOU8ouAfvZEThHfdqYcPE/aMyRFhYg6dpfEZAIFO8UzcKj+xpQG6AzijCkHqvXgUANHCY2g4zHrHcX+5C6jISLMgyMl8f3Jsfy0f+PQ9MvQGKdYN9CgX5INKqiFQ40KfTh5TZVAgmJ/AGDQaTCul0htGxT24FQ2mHH3+7uw5MfTKKxugl7LYWTPGGTFh8MGLYrs5Hm+990mNJpF0Ll1hERd57ecUiA8RRHbgxOI+htAXRsvV4Qq6wp4cMITSHYZbxetnYxSBK5pFghQb0u5nyEqaiAFangKUNdOybUGjlJd2SUU8k3sG4+NJ0qx7XQ5HprU2/eBFEwRP1JYgwc/3ovC6iaEGbT4y7WDcNXQFIQZyJJVUd+CmuXpQH0Zjhw9jF9XpuPTB8YiMkQv7kTMjU4hrogaHJ7nhbYasoenAAkMHFoDJ9AMHJWFzikSVs7uEo2GaASr88n6FK1AIoZIMA+OlCRQD84pIsLzlUDtQeWKmmLdStbAoUgkMgac/Yx25VX617ZB8OBI02CyI05fqsOv385FYXUTMuPCsHreBPxqZLpg3ABAXIQRvfoMBAD0M1biSGEtHv5kH8xWkfU41AA1RAIhfoT72nDqUj0u1bYgRK/BKDnaM7RFbAMn0FLEKWraeLmiVJE/ighdxdUAM3CkJLY3AI6kY/rzxR7oGVQAEK4mA0fBGjgUWg5dgl5KvRPCkWoKgdlqx648PworKhCiajRbMW/VPjSabRidGYtvHr0c/ZMj3Z/sqIVza187wgxabDtTjqe+OOi/uNoV1/CUiN4+6r0ZkxWHEL0ChTupgVNdIE4Zi0DqIu6K68bLn02omLQq8qdAiApwagQDPETFDBwp0Yc4C5KVn/J9HCFEFcAGDv2SbKwAbBZl50JDVEoI+CiRDq9IXbHoCytp2yBCunid/CLjZ785itOl9UiINOJfd1wGU2gnISdHtk6spQRv3ZkDnYbD1weKsPTnM+JNSKKd9OZTCoanAOKV0xpJdfFaEfp5BWKKOOB8b1ubSGFLNdCqyJ94XkOvCJJMKmbgSI0gNPZRh8PzwRGiCoslKaTggQYReyX5gtIp4oDTwLFbiNEnMjRdfMspH19ruw1odFwrkwfni70X8d+9F6HhgH/cOhwJkcbOL3Ap9jepXwJeunEIAODNjadxtKhGnElJIDButtiw6zzxrE1SQmAMEJ2FWO1kmqqBJoenkHqGAgVDODEkAHV4lwFli/xRmIHD8AhBaOxjJlV9KdBSC4ALvN2RKxqts9if0u0a1BCi0uqdr4cEbuDL+8QLbRuKa5q6vqAtDeUki4LTSNJgsi1nSuvwp6+PAAAen9YP43t78Ji02F9tIWCz4lc5aZg9OBlWO48n/ntInC7GNeKniOeeq0CL1Y4UUwj6JEaINq7X0HCSv1meVH8TkQQYFXw+vqK2TColi/xRWIiK4RFUaOxrsT/qvYnOAHRd7GjVjhqExjyvDgMHcKmFI/4iEhNuwIj0aADAppM+hKnoYh+eIHlzV57n8edvjqLJYsOEPnF4dKqHodjIZJLOarcCdcXgOA7PXTcYMWF6HC+uxbKfz/o/uVrxs1k2Hiev7dQBieCUyuID/F+bKGWO8HusHxl7SqI2obGSKeKUIGnXwAwcqYnvR46+7pICvQeVK2oQGjdVORtIKpWhQJF4lzSlP3m9fz7hw+stY4r4TydKsf1sBQw6Df5641BoPe3JpNE6U1gd7VASIo1YfO0gAMDSn0/jeHGtf5MTOeOO53lsPE5e2yuzFa4QnZhNjmUn/BvnEvG8IXmwf+MohZpqdAGSFZb0CprlWVeiHvG1DzADR2qogVN7EWip9/760uOtxwlk1LBTot6b8AQiAlcSV6GxBEwZQBbubWfK0WL1Ml283pHdJbH+xmKz48W15D3+mwmZSI8N824AqsNx6Ul17bBUzBiYBIuNx1++Owre1wWa50WvKHu0qBbFNc0I1WsxrnecKGP6TMIAcqRrjK9cOkqOSYP8G0cp1LAuuaIGDw4tDWEzS6IRlAtm4EhNWCwQ5tATVPjgxSncS46pl4k3J6VQQ4hKLeEpwLmASWTgDEqNQmKkEY1mG3af97JrtEwp4p/uyse5sgbEhhvwyBQfsgSpDselqzjHcfjzNQNh0Gmw41wlfvLFgwWQ8g5mx6ZEpC+bHx3hqYl945VJD3eFhqgay/0T/lMPTlKAe3DUYuDUKFwDByDtNqjHPYDDVMzAkQNfw1RWM1B8iNzuEUQGjpIiYyW7iLeFenAk0OAA5It+cn8iZP75pJevuQwhqpomC/6+geg3FlzZF1G+VCF248EBgLSYMNw7gYhoX1p7HFZfBMf0vRIaSzpwi4AQnhqofANTGMKdr5+vYar6ModhwDk9QoGG2qoZS6D78oko6TSCcsEMHDlIdHzwSw55d13pUcDWAoREB3YGFUUNC4nQpkEF5ccjpfXgAH7ocGSoYrzs5zOoarSgT2IEbhvtYwdqoWBdfrs/zZvSGzFhepwta8Bnuwu8H1vkL5qSmmYcLqwBxxGBsSpIcOhwfA1TlTrCU7FZgZlBBagrRKWGIn8UugmsC9xUcWbgyEGPkeR4cY9319HwVI8c5XomiQlNi1ZyIVFDDRyKoMERv5ox5fK+8dBpOJwrb0BeeYPnF0pc5K+4pgnv/5IHAHh6zgDotD4uRUItnLx2f4oK0WP+lcR7uuTHU6hr9rLApMgp4htPkNd0RHo04iNUkhFJN1++ZlIJ+psADU8B6gidU9RQ5I8iZHkyA4fRGWmjyLFov3dVfAv3kWOPHPHnpASq8OCoUIPTUCZZdefIEL3Q62iTN2EqiTU472w5B7PNjtFZsYKXySeoZ7O2ELC0r/dz+5gMZMWHo7zejHe2nPNubJGN4R+Pkdd0mtLZU64k+JlJVRLg+hug9bpkF7mXmbcIonaFvTcAC1ExPCSuD7HGrc1OQZ4nuHpwggG6U2quBqwtysxBTQZOaCyp4wJeUq/WlAHEc/aTN/VwBA2O+F/GFfUt+HQXCSk9OqWPf7VgwuIAowkA72wX4IJeq8FTM4mYduW286hsMHs+tohVjBvNVvxylmSjTFeD/oZChca+hqgEgXGAZlABjkKWHGlb0eRH7zYxULKLeFuCoBYOM3DkQKNxenE8DVM11zrdxsEgMAaA0BjHFzqUqTlhszr1LmowcDQayYXGgFPvseNcBRrNHjRWNDcAZkdfHglCVO//kodmix1D00z+92LiOCDO4cWpdF/Yb9bgZAxKjUKD2Ya3N3tR/I8aTCK0H9h6uhxmqx3psaHoq2T14rb4k0llszo9P4Fs4Gj1xFAGlNfhqCFFnBIE1YyZgSMXgoGz27Pziw8A4AFThqzNDiWF45zPRULdSYfUFZP2Axq9MwVSaWRYRHonRCAtJhRmqx2/nPGgpgX13ujDAGMHnbx9pLbZgg9z8wAA8yb76b2h0Aq6Fe6NF47j8PsZRIvzYW4eSuuaPRuXGkwiCPzXHCL/3+nZycpWL26LIdyZau9tmKriDKmTYoh0jhGoqEVoXKuiLE/Bg8MMHEZXpFGhsYcGDvX0BIv3hiKDsLZDXJvYaVTy1pe42B9AvuBp1dzvD3vwOPUuAmORv4w/zr2AumYr+iRGYIZYoZo4h4HTgQcHINlkw9Oj0Wyx461NHnhxmqqdBc78NHAaWqzYcIy8368broKdeVsSfcykEsJTA9XzefIVtQiNBQ+OGgwcx+arpca3IrUqIMDflQEE1dFUngMaPNhFB5v+hqKk21PQVKggRZwicbE/ylVDyeu+4dilrqsaSyQwbjLbsHIbCfvMm9wbGk9bMnSF4MHpWETs6sVZtSO/6wak1FiKSPLbi7Xh2CU0W+zIjAvD0DSFM2Pc4WtPqmDQ31DU4sFRQ5E/ijHS2Wk9QMNUzMCRi9AYZ8G/Qg90OMGWQUVR0oNTqyKBMUWm1yMnIwZJUUbUtVix7XQXWguJivx9vjsfFQ1mpMWE4tphInoyPPDgAKTD+ujMWJhtdiz96UznY1JjSYQGkl8fIF9a1w3voa7wFMXXTKpAb9Hgimo8OCoSGQPODViACo0lNXCqqqowd+5cmEwmmEwmzJ07F9XV1Z1ew/M8Fi9ejNTUVISGhmLy5Mk4evSo8PfKykr87ne/Q//+/REWFoaMjAw89thjqKmpkfKpiEPaaHLsKkxVW0SKK3EaIGWY9POSEzWEqFRl4NAFRNpaExoNh9mDiRfnf12FqSTw4JitdiFN+6FJvX2ve+MOGkKqKyYC6Q5w9eL8Z08BCiobOx6z0mHgxPkXnqqob8FWh0F5rRrDU4CzFo7XIaogqIFDUYMHR01F/igBniouqYFz++2348CBA1i3bh3WrVuHAwcOYO7cuZ1e8+qrr+KNN97A0qVLsXv3biQnJ2P69OmoqyNZHUVFRSgqKsLrr7+Ow4cP44MPPsC6detw3333SflUxMFTHQ713iRkB2510I5QRYhKJbsjQFaDb84QD8NUdC4iVjH++kAhimqakRBpxM05IhuYYbHEQwo4DZMOGNMrDpf3iYfFxuOfP3XSOkUQGPvnwVl7uBg2O48hPUzonaDSz3J8f0CjI5lUbipCu6Wx0rmrTxwo3dzkQg0GjpqK/FGEauuBWexPMgPn+PHjWLduHd577z2MGzcO48aNw7vvvos1a9bg5En3sV6e57FkyRI888wzuPHGGzF48GB8+OGHaGxsxL///W8AwODBg/Hll1/immuuQe/evTF16lS8+OKL+O6772C1epACqyRCJtVewN7JF4ygvwkygTGgEg9O99PgAMDInjFIjDSirtmKX850EqYSOURls/OCsPeBiVnSNJnsIpPKlYUOL86X+wpxvqPqzhXiZFB9fYB8MahSXEwxhAGpI8jtvF88u4Z6b6J7AiFR0sxLTtQQolJTkT9KlDweZqmQzMDJzc2FyWTCmDFjhPvGjh0Lk8mE7du3u73m/PnzKCkpwYwZM4T7jEYjJk2a1OE1AFBTU4OoqCjodDq3f29paUFtbW2rH0VIzAYMEaTGSEcF/3geOP4tuZ0xVr65yYUqPDhqClE5DL6WWskzFUiYijze/w51YmCKHKL6/kgxzpc3wBSqxx1jJEon9lCHAwCXZcRg6oBE2Ow8/vHjKfcn0XHifPfgFFQ2Yu+FKnAccI2YmiMp6DmBHPO2eXZ+MIWnAHV4cGrUaOCwEJVbSkpKkJjYfgeYmJiIkhL3iyu9Pymp9cKalJTU4TUVFRV4/vnn8eCDD3Y4l5dfflnQAZlMJqSnK7SD12iB3lPI7f2fuD8nbyupL2GIAAZeJ9/c5IIaOE2V8lYzbqlziW+rKERljCT/a0DmMFUJzNYOytKL6MHheR7/+pkYC7+ZkIlwo/tNiN94kEnlysLpxIvzzcEinL5U1/qPjZVAU5VjXN89OKv3ky+s8b3jkBQV4vM4spA5kRwveGjg0DB7crAYOI73elOVclXWqZdETSH0AG+46bWBs3jxYnAc1+nPnj0kS8hdxgDP811mErT9e0fX1NbW4qqrrsLAgQPx7LPPdjjeokWLUFNTI/wUFPjQWVgsRjq0Qgc+db9j37OSHIf+WvQia6ogNAbQGshtOcNUdHdkNKnPpS6jV2tkZiwSIo2o7ShMZbcDDeK1adh0sgzHi2sRbtDinvGZfo/XIV54cABgcA8TZg5KAs8Df2/rxaE6nsgUUgjPB1qsNny84wIA4Fc5KgqJdkTGGIDTkqal1NPZETYLcGYDud17quRTkwWlq6wD6iryRwnwhpteGziPPvoojh8/3unP4MGDkZycjEuX2rv7ysrK2nloKMnJxH3e1ltTWlra7pq6ujrMmjULERERWL16NfR6fYdzNhqNiIqKavWjGFmTSG8qcx1w+D+t/1ZfChz/jtweea/8c5MDjlNGh6PG8BRFhmJ/FK1rmMpdNlVTJWB3aNn89ODwPI+lP5N07DvH9kR0mMGv8TqFelo80OBQFkzvB44D1h4uwaGL1c4/VPqfIr7mYDHK6lqQFGUUvGaqxhgJpA4nt7vS4eTvAJprSHsDqisMdDhO+TCVmor8UWi4rL5UsobAUuK1gRMfH48BAwZ0+hMSEoJx48ahpqYGu3btEq7duXMnampqMH78eLdjZ2VlITk5GRs2bBDuM5vN2Lx5c6tramtrMWPGDBgMBnz77bcICVG5+9cVjcbpxdn1HtHcUPZ9RL5c0kYByUOUmZ8cKKHDUWMNHIqMQmMAuMrxhbvuSAnqW9oI8+niHhZHevT4wS9nKrD3QhWMOg3uuzzLr7G6hHpwGkpJHzcPGJAcheuHky+Txd8ehd3u+CwKAmPf5szzPFY4ChreNS4TBl2AlBsTdDhbOz/v5Pfk2HcmCbsHC0oLjdVo4ITFOxsCK5EY4ieSffKys7Mxa9YsPPDAA9ixYwd27NiBBx54AFdffTX69+8vnDdgwACsXr0aAAlNzZ8/Hy+99BJWr16NI0eO4J577kFYWBhuv/12AMRzM2PGDDQ0NGDFihWora1FSUkJSkpKYLN1UaFVLQy/HdCFAqVHyW4IIFlVez8kt0cGQMq7PyjqwVHR4kGR+fUYnRWLXgnhqG+xYvW+NuEIkQTGPM9jiSP0c/uYDCRKrUEJMZHFGOgyVdyVP8wagDCDFvvyq4WCfP4KjHPPVeBYcS1C9VrcMSbDpzEUIfNycrzQiQeH54GTa8nt/rOkn5OcKO3BUeMapdEEdNNNSbcWq1atwpAhQzBjxgzMmDEDQ4cOxccff9zqnJMnT7Yq0vfUU09h/vz5mDdvHkaOHInCwkKsX78ekZFEj7J3717s3LkThw8fRp8+fZCSkiL8KKqt8YbQaGDor8jtXW8TAezJ74GafCAkGhh0vYKTkwElPjCqDlHJm4rJcRzmjiXZTB/vuADe1YsoksB4+9kK7LlQBYNOg4cm+V8N2CO81OEAQLIpBL+b2hcA8PL3J1DXbHHx4Pg2b9qO4qacHtKG5cQmYywpLlp5ruP3YvkpoOo80dEFi/6GoqQHR41F/igBnCouUUoDITY2Fp980kG2kINWiyvI4rt48WIsXrzY7fmTJ09ud01AMvI+EpI6upr8UIbfAehDlZuXHCjqwVGh4FOB1+PGy9Lw6rqTOHWpHjvPV2Jsr7jWc/CjyF8r783oDPkyiGJ7AwU7Pc6kotx7eSb+s6cA58sbsHTjaSzyw4NzvrwBG0+QL8jfTJA4LCc2ISYgeShQfIDocOgmzBUansqcGHxJEEp6cIQifxGAUWVJEFGBKzQOkOBwEJI6vH0aeGgMMPoBRaYjK8yD0xrh9ZBvATGF6nH9COIKp9k+AFp3EveR7WcrsDuPeG8eniyT9wZwGiTlHdS26QCjTos/X02q8X61/TAR0AJAjPcGyqvrToDngakDEtVbubgzaJiqIx0ONXD6z5ZnPnIieHCUMHBcmmyqrV9ZAFczltSDw+iCX38EWM0Abyc/WgOg7Qb/Erk9FnZ76wVEbdAdUl0J0TjItMDNHdsTn+7Kxw9HSlBa20x0MvR/EumbB0cx7w3gbPp46Wjn57lhyoBETB2QiKqTpH0DH5UKzhDm1RibTpbi+yMl0Go4PDmzf9cXqJHMy4HcpcDpDYClGdC7/P8ayoGLjqSRfkGmvwFcPDgKhKjUWOSPEsAhKubBURqdgSwihrDuYdwATo9FvUwGTkMZYDMD4NS5gNBwkM1MiszJxMDUKIzsGQOrncenuxz6NT9Fxj8cLRG8N7Jpbyi0qm75SZ+Ktf356oHopydfbvm8dwZes8WGZ78lhtU94zORnaKyMIOnZE0iO/a6ImDHv1r/7fR6shFLHgJEqzDU6y9qCFGpSWBMCeBqxszAYcgP9Q401wDmTjo6iwVNEY9M8Tv1WRJ0BmcGkMyZCnPHEbHxv3ddgMVmd/HgeF+7pdliwwv/Ix2pH7yiF5JNMpdvMKURHYndCpS573fXGZnx4bh/INH3/VJlwjc0q8oD3t58DhcqGpEUZcT8K/t6/diqwRAGTP8Lub3lb62/1Gj2VL8gDE8BrUXGcus81exhDuAQFTNwGPJjjAL0Dve/HF4cNaZftkWhVMxZg5MRH2HApdoWfLXvol8hqne3nMPFqiakmELk1d5QOA5IctSP6qjXWxf01ZHdex6fjD98eQhHi2q6uALYn1+Ff20iBQ3/76qBiAxRoRHtDUN+BaSNBiwNwMa/kAJv6552FiEdMEfZ+UkFNXAsjYBZ2r5w7VCzgSOEqIrlN/z8hBk4DPmRu5qxmgXGlChlDByjTiuEkpZ+f4B8qQFeh6iKa5qwzNEx/I+zByDMoFC4lRbILPHNwKEp4uEp/dFsseO3H+1FUXVTh6cfvliDu1bugtlqx5T+Cbh6aABULe4KjgNm/5XcPvgp8N6VznDVxCecnceDDUM4YHBkhsmtw1FjkT8K3XzZWmQNoYsBM3AYyiCnxyIQDBwlUucd3D0+E30SI6BrcizqhgjA6F0G0Iv/O44miw2jMmNwrZKds2nzx5JD3l/L80AlqWFz77VXomdcGAqrmzBzyRas3n+xXXmKfflVuHPFTtQ1WzEqMwb/uuOyLvvsBQw9ckjJCoCkjRsigV9/DEz7k6LTkhzqxZH7c6hmL7POAIQnkNu1nodt1UA3UbUyVIciHhwVCyNlLvbnil6rweJrBuGfK0mH6JbQBBi9uP6LvRex5lAxNBzw7DWDlP2Sp0LjS0e8z0hrrABaSEgqMqUPPr63N3732X4cLKjGgs8PYvX+IozsGYPYcAPWHCrCjnNkNzsiIxrv/2a0cl4rqZj2ZyBvG9E13bQCSOin9IykJzKZFIqU05Oq5iJ/lMgUkqxRVwykDFV6Nh4TZJ9IRsCghAdHje5fioIeHAC4vG88TvW0AyXAmaYIDOR5jwyVkyV1+L+vDwMA5l/ZD4N7mKSeauckDCBdsZuqiLHozY64nKSIIyoN0IciIw748qFxWL75LJb8eBpbTpVhyylnp2mthsOcISl44frBiDAG4VIamQw8tj+4+k11hSJ98lRc5I8SlUq8ogGWKh6En0pGQMA0OK1RoNhfW27qpwdKgLNNETiwKx93jOnZ6fkNLVY8vGovmi12TOwbj0en9JFppp2gDwHi+wFlx4kXxxsDp3APOaYME+7SaTV4dGpfzBiUjHVHSlBQ2YiS2mYM7mHCnWN7okd0kFcd707GDaBMSrSai/xRArQWDjNwGMoQ6VLcTkqsLaTDNKBuAydKptejE0zWCgBAKR+NF78+Ag3H4bbR7ptF1jRZMG/VXpwra0ByVAiW3DIcGo1KFufkwcTAKTkM9Jvp+XUFjiJ26aPa/alfUiT6JQVZawJGe5RIiRYExioNTwEBmyrORMYMZaAGDvWuSEW1o4CdPgwIi5P2sfxBKH5YStJylaCOpEinZWSB54FFXx0WGke6cqGiATcu+wW/nKlAmEGLf90xAnER3qh2JMZVh+MpPE/6WAFA+hjx58QIDJTw4NAqxmoUGFNcU8UDCObBYSgD9abUFpFWChqJbO3qPHKM7qle9y9ACv1pdKRIXX2pMoudQ3cwc8xwPJjWC29vOYfn1hzDuiMluKJfPNJjw/DziVJsOHYJDWYbkqNCsOKekRiUqrDupi1CJpUXBk51Pqlgq9EFbxo0o2sU8eCouAYOJUAbbjIDh6EMUakAOEdthXK/mjt2SpWjkWRM53oSxdFoSMuGWkexPSUMHEeJei4yWahl8/cfT2FXXiV25bWufzEsPRrvzM2Rt9eUpyQ7sjwqzpAMFUN419fQ8FTKMEAf5LoaRsco0ReuVsV9qCgBGqJiBg5DGbR6EpapKwJqCqQzcKodBk60yg0cgCyutRcdi0iO/I/vCFEhMhkcx+HxK/vihhE9sPl0GbaeKkNBVRMm9I7D7CHJGJEeox7NTVsiEoHwRKK9Kj0OpI3s+hoWnmIAbfrCVQDh8dI/ZiAkQVDjq7nG802DCmAGDkM5TGkOA+ciKSwmBYHiwQGUTRU3Nwo1YFyrGGfEhWFuXE/MHRsAr58ryYOBsz8RobFXBs5oaefFUDe0qF1DGQnHSG3g8LxTJ2hyL+hXBSFRJI3dXE90OPEqyJj0ACYyZigH3bFIKTQOJA9OpIJxbtoTTBdKCrsFOjTVO39H1+e21DsFyWnMwOn2UG+FHLVwmqsBcx25rWYPDqCKUhbewgwchnLIYeAElAdHwVRxITyVpG4xtqf0nkaOZ34kIvbOKNwL8HZS6VrNmSwMeZCzqjj13oTFk07uaiYAa+EwA4ehHLR1Qk2BNOO31AFNDnFsIHlwlNghUQ9OhPddxFVJxljSP6mxHCja3/m5Qv0b5r1hQN7Gt4Ggv6EwA4fB8AKpPTjUexMaQ2LIakfJYn+uHpxgQKsHek8ht0+v7/xcJjBmuCJ4cGRoLEk3d9Eq7pNHYQYOg+EFUhs4gaS/AVw0OAoU06K7VTqHYKDvDHLszMCx24GLpMko8+AwAMhb7K86nxzVLDCmKKkR9BFm4DCUgxo4DWWApUn88QNJfwM4F5AWRyqmnDhq4LhmUAU8faeTY9E+UjzRHRWnidBTH+asgMzo3sjaCJhmUAVAiEoozipx9XkRYQYOQzlCYwC9o56CFLuCQPPgGCOdr4fcYSr6eJFBosEByHOh2VRnNro/h4aneuSQsBaDIWcohnqvAyFEJXjcZQjdiQQzcBjKwXEuHxoJhMaB5sHhOOVKogejBwfoOkzF6t8w2kI9OM3V0niWXRFq4ASAgUNbSTSWS/+6iAQzcBjKIqUOR/DgZIo/tlQoJeQLRg0O4DRwzm4EbNbWfzM3OD07rP4NgxJiIiFLQNrPoaWZVNsGgOgA0OBI7XGXAGbgMJRFKgOH5wPPgwMAUTTOLaMb2NoCNFWR28EUogJI6Ck0hpSYp2JiyuZXiWFnygB6TVJmfgz1wXHy6HDomqcPI+9RtcNxzjpRUtYuExFm4DCURapaOI0VgKWh9WMEAlEypqhSaHhKawiMhdYbNFqgz5Xk9o5lzqJ/pceB3KXk9pxXWYNNRmuEz6GUBo5LeCpQimtGMQOHwfAcqTw41HsTmQLoVdjxuiOUCFHVuehvAmWh9YaR9wKcFjj+LbD2CWLk/O/3gN0K9L8K6D9b6Rky1IYcRTcDqQYOxaSAh9kPmIHDUBapDJzqPHIMlAwqihILCHXDB5vAmNJzPHDjOwA4YM8K4MOrgQu/kNDA7FeUnh1DjchRCyeQBMYUKZNCJIAZOAxlcY3p8rx44wai/gZwenDkTMWkIapg09+4MuRm4Jol5PaFX8hx0h8Ca/fMkA9azVgOD04g1MChBFiqODNwGMpCY7rWZqKbEYtAq4FDaZWK2SzPYwZjDRx35NwDzHyJ3E4aAox7RNHpMFSMHB4coQZOAGRQUQJMg6NTegKMbo7OSEIj9ZfIjiY8XpxxA9WDExoD6EKIwVdXDMRmSf+YwdZoszPGPQL0mU48h6ywH6MjBA+OlCEq2qYhgLyIdK61hcTjrnLNHvPgMJRHCh1OoHpwOM65S5JLhyN4cIJUg9OWhH6AIVzpWTDUjGtHcZp5JyZ2m/PzHUhhUhpCN9eT0gsqhxk4DOUR28Cx25wCvkDz4ADyZ1IJBk6QFfljMHwlIhngNCTTjmrUxKSuhIzNaQPLc2oIA8LiyO0ACFMxA4ehPEItHJE+MHXFgN0CaHROb0ggIbcHh77ugfhaMRhSoHVZO6TIGHL9zGkDTCki9/rkB8zAYSgPNXCq8sQZj+pvTGmk0FugIWSWybCAmBtIzx3Xx2UwGE7xL9XKiEkg1sChSFWcVQKYgcNQnrje5Fh5TpzxqKEUaPobiqzdjB1GlCGS9OBhMBgEun5QPZ+YBKLAmCLnBsxPmIHDUB5q4FScFUfQV36SHOP7+T+WEsjpAq51uMqZ94bBaA314FRJYODQEFUg1cChBFCqODNwGMpjygA0esDW4vzC9YeyU+SY0N//sZRAVgPH4SWiXiMGg0FgISr3BFC7BmbgMJRHq3PWe6k44/94ZSfIMdANnIYy0ulbSqibmQmMGYzWSGngBGKbBkoAtWtgBg5DHcT1JceKs/6NY2lyanASBvg3llKExZJif4C0hcYAlxBVALrKGQwpoQZOTYG4tXB43mk0BVIVY4rgwZGoRpCISGrgVFVVYe7cuTCZTDCZTJg7dy6qq6s7vYbneSxevBipqakIDQ3F5MmTcfTo0Q7PnT17NjiOw9dffy3+E2DIh6DD8dODU34aAE8qAocn+D0tReA4+XpSMQ8Og+GeqB6kTo3NLG4tnPpLgKWB1NkJxEQIoUaQBWgoVXo2nSKpgXP77bfjwIEDWLduHdatW4cDBw5g7ty5nV7z6quv4o033sDSpUuxe/duJCcnY/r06airq2t37pIlS8CpvFQ0w0Pi+pCj3waOQ38T31/1ZcQ7RdDhSJxJRePoTGTMYLRGq3N+LsQMU1EvtSkd0BnEG1cutDpnKwuVC40lM3COHz+OdevW4b333sO4ceMwbtw4vPvuu1izZg1Onjzp9hqe57FkyRI888wzuPHGGzF48GB8+OGHaGxsxL///e9W5x48eBBvvPEGVq5cKdVTYMiJWAZOoOtvKEKquFweHBaiYjDaIUWqeKXDwKFe60DEFBiZVJIZOLm5uTCZTBgzZoxw39ixY2EymbB9+3a315w/fx4lJSWYMWOGcJ/RaMSkSZNaXdPY2IjbbrsNS5cuRXJy12WuW1paUFtb2+qHoTKogVOd75+wVjBwAlR/Q5Ejk6q5BjA7PKPMg8NgtEcQGoto4FAPTmwgGzgS9A+UAMkMnJKSEiQmJra7PzExESUlJR1eAwBJSa2b/iUlJbW6ZsGCBRg/fjyuu+46j+by8ssvCzogk8mE9PQAVK4HOxGJpNgcb/evonGZwzsYNB4cCUNUdOyQaNZ8ksFwhxSZVMHgwQmQWjheGziLFy8Gx3Gd/uzZswcA3OpjeJ7vUjfT9u+u13z77bf46aefsGTJEo/nvGjRItTU1Ag/BQXqT2/rdnCc/0Jjq9lZDTngDRwZPDhMYMxgdI4kBs55coztJd6YcuOaYaZivO7y9eijj+LWW2/t9JzMzEwcOnQIly61V56XlZW189BQaLippKQEKSnOzsalpaXCNT/99BPOnj2L6OjoVtfedNNNmDhxIjZt2tRuXKPRCKPR2OmcGSogrg9QfMCRCeUDledIh15DROB/acuRRcWqGDMYnSO2gcPzzk1YIIeoYjLJUaz+gRLhtYETHx+P+Pj4Ls8bN24campqsGvXLowePRoAsHPnTtTU1GD8+PFur8nKykJycjI2bNiAESNGAADMZjM2b96MV155BQDwxz/+Effff3+r64YMGYK///3vuOaaa7x9Ogw1EU9r4fjowXEVGAdyBhXgjHE3lBLPlBTZFsyDw2B0jmDgOGrhaPxUddQVA5ZGkn4eE4Ap4hRq4FSeJ0abStdbyfq0Z2dnY9asWXjggQfw9ttvAwB++9vf4uqrr0b//s7wwYABA/Dyyy/jhhtuAMdxmD9/Pl566SX07dsXffv2xUsvvYSwsDDcfvvtAIiXx52wOCMjA1lZWVI9HYYcCJlUPhb7o/qb+AAPTwFAWBygNZL2FXVFzgVFTFiKOIPROZGpgEZHar7UFfv/WaFrW3QGoNX7Pz+liM4AwJF6Pg3lQIQ6a45JWgdn1apVGDJkCGbMmIEZM2Zg6NCh+Pjjj1udc/LkSdTU1Ai/P/XUU5g/fz7mzZuHkSNHorCwEOvXr0dkZKSUU2WoAX81OOVBIjAGyI6IenGkKBUPOAWCLEWcwXCPVuf0cIrxOQwGgTEA6IzO10XFYSrJPDgAEBsbi08++aTTc3ieb/U7x3FYvHgxFi9e7PHjtB2DEaDQmHRDKUlhDjF5d72QQRXgKeKUmJ5kQay6AEjhnGQeHAaja6IzSJp4dT7Qc5x/YwVDijglJpPo+KrygPRRSs/GLawXFUM9hEQBEQ4BurdhKpvVKU4OBg8O4FJkTAIPDs+7dBJnBg6D0SFifg6pwDjQPTgAEJtJjlXnFZ1GZzADh6EufNXhVF8gehVdSGA2sHOHFEXGKE1VROwIMAOHwegMMT+HwebBAVQdomIGDkNd+KrDEQTGfQGNVtw5KQXNsqiSwMCh4amwOEAfIv74DEawIFaquN3u9HbEBkFCTIzjOTADh8HwkDhHqnjZce+uC5YWDa5EZ5KjFB4cliLOYHhGjEj9qOqKAGszycoKxC7ibWEeHAbDS1JJ/SNc3OPddcGUIk6hC2tdsX/9udwhFPljGVQMRqcIVXsvEq2frwgp4j1JdlagQz04tUWApVnZuXQAM3AY6qLHZaQIVm2hd31OqMcnWATGgCN85OgRVS1ySXTmwWEwPCMyFdCHkSrp/ghqgyVFnBIWS/oHgpeulIWfMAOHoS4M4UDyEHK7YJdn17TUASVHyO2UYdLMSwk4ziX+nyfu2CxFnMHwDI3GuXEqPeb7OMEkMAbI+qTyMBUzcBjqI30MOXpq4FzYDvA24voN5PLn7pBKaCykiLMQFYPRJQnZ5Fh6wvcxgilFnCKsT3mKTqMjmIHDUB/ppHcZCnZ6dv65zeTYa5I081ESqWrh1LBGmwyGxyQ6khe8TX5wRfDgBHAX8bbQbDCV1sJhBg5DfVAPTskhwNzY9fnnt5BjVhAaOGJlcLjCivwxGN6ROJAcffXg2G1OIyCoPDiZ5Mg8OAyGh5jSiLDPbgWK9nd+bkM5cOkwuR2MBk60BCGqhnJSFBEcEJki3rgMRrBCy09UnAasZu+vr7kI2MyARh9cYWFm4DAYXsJxnoepqPcmcZBqO9r6hRTVjGmKeEQioDOINy6DEayY0kjGkN3qzIbyhgpHG5mYzOBIEae4FvtTYU9IZuAw1ImnQuPzDv1N1hXSzkcpaIiqsQJoqRdnTLrbCpaWFgyG1HCcU4dT6oMOp+gAOdIM0WDBlA5wGtL2pb5U6dm0gxk4DHUiGDg7O98ZUA9OMAqMAdJRPSSa3BZLaEzFjrTvF4PB6JoEfwwcR6i9x2XizUcN6AzOkJsKw1TMwGGok+QhpHFmU2XHjTerC0jqJacFek6Qd35yIrbQONjqcTAYcpDoSBX3JZOKGji0UnswoeJUcWbgMNSJzgCkOnY7HelwaHiqx2VASJQ881ICsYXGQkXVIEpXZTCkJtHHWjh1lxyFNbngKkRKEYTG6ksVZwYOQ710JTQO5vRwV8TqZkxhISoGw3tosb/Kc971XqLem4T+gDFS/HkpDa2FU8kMHAbDc6gO59QPgLmh9d943lngL1gFxhS6QxIjRNVUDTSWk9vBVHCMwZCayGSiieNtzqwoTyjaR47BGJ4CnKHu8lPKzsMNzMBhqJfeU4n3or4E+OXN1n8rP0Xu14U4DaFgRcwQFQ1PRSQF526SwZAKjvOtZYOgvwkygTElaRA5lp0A7HZl59IGZuAw1Is+BJj+PLn9yz+c7QXsNuDnF8nt9DHkvGDGVWTsb62JCkc/HCYwZjC8x1uhMc8DhcHuwelFNpqWRtXpcJiBw1A3A68DMsYD1ibgx7+QBWPtE8Cxb0hV0ElPKT1D6aEanJZaoLnav7EqzpBjMJWLZzDkQhAae2jg1FwkIWGNDkgeLN28lESjFafbugQwA4ehbjgOmPUSAA44/B/gy/uAPSvJ7ze+A2RervQMpUcfCoQnktv+pmIKGVTMwGEwvMbbWjhUf5OYTT7HwUqiI0x16aiy82gDM3AY6id1BDD8DnL7yJfkeNXrwOAblZuT3MT3JccyP4V8rAYOg+E7tOlmVZ5njYCDXX9DSWIGDoPhO9P+BBgiyO3JTwOj7ld2PnJDd46+FBmj8DxLEWcw/CEiAYhIBsB33ScPcOpvgq2CcVuSaLd1FqJiMLwnMhm46xvg5ve7h+6mLb4WGXOlsQJoqSG3ae0KBoPhHX2uJMfT6zs/j+edPaiCVWBMoSGqynOApUnZubjADBxG4JA2koSlOE7pmciPGB4c6r2JSgtuPQCDISX9ZpDjqR86P6/yHNlQaI3O0FawEpEIhMUBvJ2ki6sEZuAwGIEANXCqLngW+3cHy6BiMPyn1xSSwVl5tuM+eYBTf5M8BNDq5ZmbUnCc04hTkQ6HGTgMRiAQkUB2SOB9rxjKMqgYDP8JiQJ6jiO3O/PidBf9DUUQGqtHh8MMHAYjUKBVVH11AbMMKgZDHPrOJMfTHRg4PA+c3UhuB3sGFYV6cEqZB4fBYHhLopc1ONpSyTKoGAxR6DeLHPN+AVrq2v/97E9kI2KIAAbMkXduSpHkKGTIPDgMBsNrBKHxSe+v5XlnmwYWomIw/CO+D2lRYLcAZ39u//cdy8hxxJ2kQWd3IHEAAA5oKAXqy5SeDQBm4DAYgYM/mVR1JYClAeA0zuadDAbDdzoKU5WdBM78CIADxjwo+7QUwxAOxGSS2yoJUzEDh8EIFGgtHF8yqWh4KronoDOIOy8GoztC08VPb2jdRZt6bwZcRbw83QmVCY2ZgcNgBArh8UBYPEgmlZdhKpYizmCIS88JgD4cqL8E5G0h9zVUAAc/I7fHzlNubkqhMqExM3AYjEBCaPbnZSYVy6BiMMRFZwT6OcJUH98I/PAMkPtPwNoMpAwDeo5Xdn5KQFs2lBxRdh4OdEpPgMFgeEHiAODCNu9TxVkPKgZDfGa/CtjMwIk1QO5S5/3jHu2eFdfTRpFjySGguUZxgTXz4DAYgYQgNPbCwOF5oMhRdIzqeBgMhv9EJAC3rgLu+AKIcfR3i0wFBl6v6LQUw5RGdEe8naTQKwwzcBiMQEJouulFJlVNAVBXDGh0QI8caebFYHRn+k4H5u0AbngHmLu6ewv5syaR4/ktys4DzMBhMAIL6sGpvgCYGzy7Jn8nOSYPBQxh0syLweju6EOAYbc4C3J2V3pRA2ezsvMAM3AYjMBCyKSC5wX/CnaQY8ZYaebEYDAYlMyJ5Fh6DKgvVXQqzMBhMAINGqbytGsv9eCkj5FmPgwGg0EJjweShpDbCoepJDVwqqqqMHfuXJhMJphMJsydOxfV1dWdXsPzPBYvXozU1FSEhoZi8uTJOHq0/UKem5uLqVOnIjw8HNHR0Zg8eTKampokeiYMhoqgmQp5W7s+t7nWWZOCeXAYDIYcqCRMJamBc/vtt+PAgQNYt24d1q1bhwMHDmDu3LmdXvPqq6/ijTfewNKlS7F7924kJydj+vTpqKtzNjTLzc3FrFmzMGPGDOzatQu7d+/Go48+Co2GOaQY3YDeU8jx7M8kQ6ozLu4mGQ3RPYHIZOnnxmAwGFlXkOM5ZQ0cyergHD9+HOvWrcOOHTswZgxxjb/77rsYN24cTp48if79+7e7hud5LFmyBM888wxuvPFGAMCHH36IpKQk/Pvf/8aDD5K+HgsWLMBjjz2GP/7xj8K1ffv2leqpMBjqIn0MoA8jTe0uHQWSB3d8boEjPMW8NwwGQy56jgf6zQayJgJ2G6DRKjINyVweubm5MJlMgnEDAGPHjoXJZML27dvdXnP+/HmUlJRgxowZwn1GoxGTJk0SriktLcXOnTuRmJiI8ePHIykpCZMmTcK2bds6nEtLSwtqa2tb/TAYAYvOSMrEA8DZnzo/N98hMGb6GwaDIRfGSOD2z4Bxjyhm3AASGjglJSVITExsd39iYiJKSko6vAYAkpKSWt2flJQk/O3cuXMAgMWLF+OBBx7AunXrcNlll2HatGk4ffq023FffvllQQdkMpmQnp7u8/NiMFRB76nkeO7njs+xWYHCveQ28+AwGIxuhtcGzuLFi8FxXKc/e/bsAQBwbkpV8zzv9n5X2v7d9Rq7o2vrgw8+iN/85jcYMWIE/v73v6N///5YuXKl2/EWLVqEmpoa4aegoMDbp81gqAtq4FzYDlia3Z9TehQw1wNGE5DAKhgzGIzuhdcanEcffRS33nprp+dkZmbi0KFDuHTpUru/lZWVtfPQUJKTiQiypKQEKSkpwv2lpaXCNfT+gQMHtro2Ozsb+fn5bsc1Go0wGo2dzpnBCCgS+gORKaRCcX6uU3jsipAePgpgAnwGg9HN8NrAiY+PR3x8fJfnjRs3DjU1Ndi1axdGjx4NANi5cydqamowfrz7LqtZWVlITk7Ghg0bMGLECACA2WzG5s2b8corrwAgxlNqaipOnmxd5OzUqVOYPXu2t0+HwQhMOI54cQ6sIjocdwZOAdPfMBiM7otk27rs7GzMmjULDzzwAHbs2IEdO3bggQcewNVXX90qg2rAgAFYvXo1ABKamj9/Pl566SWsXr0aR44cwT333IOwsDDcfvvtwjlPPvkk3nzzTXzxxRc4c+YM/vSnP+HEiRO47777pHo6DIb66OUwajrS4bACfwwGoxsjWZo4AKxatQqPPfaYkBV17bXXYunSpa3OOXnyJGpqaoTfn3rqKTQ1NWHevHmoqqrCmDFjsH79ekRGRgrnzJ8/H83NzViwYAEqKysxbNgwbNiwAb1795by6TAY6qLXZHL8//buP6bqcoHj+OdAcgCBo6BwZIjhLhMCTYXaVSlzKbdSp+Mu0/xB4y82NIjNadoSu9dD2eKPovQeW/5jXtluWfZHW0yNI7WUS5JOW84iQb1c1taAJGVwvvcPJl2urh+3w3nk4f3azvQ8hx0+59nk+fjw/dFxdvCS6HH/dVD/5X9K3ZclV6SUlm8kHgCY5HKcX7pSmH26u7vl8XjU1dWlhIQE03GA/9/egsGCU7RPmrVqcGygX9q3SOo4I81aLRX9zWxGAAiR37J+c+QhMJr9YfHgn0f/InX/a/Dvp/yD5SZ6glT4V2PRAMAkCg4wms3bJCVOl7rapAN/lv59Xjq+a/C1JTuluMlm8wGAIRQcYDQbnyStPyzFpQxe98a/cPDaN1P/KM3ZYDodABhDwQFGu4l3S2v/IbkTpIE+KeIuaVkN174BMKbxExCwwZRZ0pq/S5OzpD/5pJQc04kAwKgRPU0cQBjdXSCVnTSdAgDuCOzgAAAA61BwAACAdSg4AADAOhQcAABgHQoOAACwDgUHAABYh4IDAACsQ8EBAADWoeAAAADrUHAAAIB1KDgAAMA6FBwAAGAdCg4AALAOBQcAAFjnLtMBTHAcR5LU3d1tOAkAAPi1bq7bN9fxnzMmC05PT48kaerUqYaTAACA36qnp0cej+dnv8bl/JoaZJlgMKirV68qPj5eLpcrpO/d3d2tqVOnqr29XQkJCSF9b/yEeQ4P5jk8mOfwYa7DY6Tm2XEc9fT0KDU1VRERP3+UzZjcwYmIiFBaWtqIfo+EhAT+8YQB8xwezHN4MM/hw1yHx0jM8y/t3NzEQcYAAMA6FBwAAGAdCk6Iud1u7dixQ26323QUqzHP4cE8hwfzHD7MdXjcCfM8Jg8yBgAAdmMHBwAAWIeCAwAArEPBAQAA1qHgAAAA61BwQuiNN95QRkaGoqOjlZeXpxMnTpiOZJ3q6mrdd999io+PV3JyslauXKmvvvrKdCzrVVdXy+VyqaKiwnQU61y5ckXr1q1TUlKSYmNjNXv2bDU3N5uOZZX+/n4999xzysjIUExMjKZPn64XXnhBwWDQdLRRLRAIaPny5UpNTZXL5dJ777037HXHcVRVVaXU1FTFxMTooYce0rlz58KWj4ITInV1daqoqND27dt1+vRpPfDAA3r00UfV1tZmOppVGhoaVFZWps8++0z19fXq7+9XYWGhrl27ZjqatZqamuT3+zVr1izTUazz/fffa8GCBRo3bpw+/PBDnT9/Xq+88oomTJhgOppVXnrpJe3du1e1tbX68ssvtXv3br388st67bXXTEcb1a5du6Z7771XtbW1t3199+7dqqmpUW1trZqamuT1erVkyZKh+0GOOAchcf/99zulpaXDxrKyspytW7caSjQ2dHZ2OpKchoYG01Gs1NPT42RmZjr19fXOwoULnfLyctORrLJlyxanoKDAdAzrLV261CkpKRk2VlRU5Kxbt85QIvtIcg4fPjz0PBgMOl6v13nxxReHxq5fv+54PB5n7969YcnEDk4I9PX1qbm5WYWFhcPGCwsL9emnnxpKNTZ0dXVJkhITEw0nsVNZWZmWLl2qxYsXm45ipSNHjig/P1+PP/64kpOTNWfOHO3bt890LOsUFBTo6NGjunDhgiTpiy++UGNjox577DHDyezV2tqqjo6OYeui2+3WwoULw7YujsmbbYbad999p4GBAaWkpAwbT0lJUUdHh6FU9nMcR5WVlSooKFBubq7pONY5dOiQPv/8czU1NZmOYq1vvvlGe/bsUWVlpbZt26ZTp07p6aefltvt1oYNG0zHs8aWLVvU1dWlrKwsRUZGamBgQLt27dKaNWtMR7PWzbXvduvipUuXwpKBghNCLpdr2HPHcW4ZQ+hs3LhRZ86cUWNjo+ko1mlvb1d5ebk++ugjRUdHm45jrWAwqPz8fPl8PknSnDlzdO7cOe3Zs4eCE0J1dXU6cOCADh48qJycHLW0tKiiokKpqakqLi42Hc9qJtdFCk4ITJo0SZGRkbfs1nR2dt7SXhEamzZt0pEjRxQIBJSWlmY6jnWam5vV2dmpvLy8obGBgQEFAgHV1tbqxo0bioyMNJjQDlOmTNE999wzbCw7O1vvvPOOoUR22rx5s7Zu3arVq1dLkmbOnKlLly6purqagjNCvF6vpMGdnClTpgyNh3Nd5BicEIiKilJeXp7q6+uHjdfX12v+/PmGUtnJcRxt3LhR7777ro4dO6aMjAzTkaz08MMP6+zZs2ppaRl65Ofna+3atWppaaHchMiCBQtuuczBhQsXNG3aNEOJ7NTb26uIiOHLXWRkJKeJj6CMjAx5vd5h62JfX58aGhrCti6ygxMilZWVWr9+vfLz8zVv3jz5/X61tbWptLTUdDSrlJWV6eDBg3r//fcVHx8/tGvm8XgUExNjOJ094uPjbzmuafz48UpKSuJ4pxB65plnNH/+fPl8Pq1atUqnTp2S3++X3+83Hc0qy5cv165du5Senq6cnBydPn1aNTU1KikpMR1tVPvhhx908eLFoeetra1qaWlRYmKi0tPTVVFRIZ/Pp8zMTGVmZsrn8yk2NlZPPvlkeAKG5VytMeL11193pk2b5kRFRTlz587l1OURIOm2j/3795uOZj1OEx8ZH3zwgZObm+u43W4nKyvL8fv9piNZp7u72ykvL3fS09Od6OhoZ/r06c727dudGzdumI42qh0/fvy2P4+Li4sdxxk8VXzHjh2O1+t13G638+CDDzpnz54NWz6X4zhOeKoUAABAeHAMDgAAsA4FBwAAWIeCAwAArEPBAQAA1qHgAAAA61BwAACAdSg4AADAOhQcAKNOVVWVZs+ebToGgDsYF/oDcEf5pTsNFxcXD93wMykpKUypAIw2FBwAd5Sb9xeTpLq6Oj3//PPDbkgZExMjj8djIhqAUYRfUQG4o3i93qGHx+ORy+W6Zex/f0X11FNPaeXKlfL5fEpJSdGECRO0c+dO9ff3a/PmzUpMTFRaWpreeuutYd/rypUreuKJJzRx4kQlJSVpxYoV+vbbb8P7gQGMCAoOACscO3ZMV69eVSAQUE1NjaqqqrRs2TJNnDhRJ0+eVGlpqUpLS9Xe3i5J6u3t1aJFixQXF6dAIKDGxkbFxcXpkUceUV9fn+FPA+D3ouAAsEJiYqJeffVVzZgxQyUlJZoxY4Z6e3u1bds2ZWZm6tlnn1VUVJQ++eQTSdKhQ4cUERGhN998UzNnzlR2drb279+vtrY2ffzxx2Y/DIDf7S7TAQAgFHJychQR8dP/2VJSUpSbmzv0PDIyUklJSers7JQkNTc36+LFi4qPjx/2PtevX9fXX38dntAARgwFB4AVxo0bN+y5y+W67VgwGJQkBYNB5eXl6e23377lvSZPnjxyQQGEBQUHwJg0d+5c1dXVKTk5WQkJCabjAAgxjsEBMCatXbtWkyZN0ooVK3TixAm1traqoaFB5eXlunz5sul4AH4nCg6AMSk2NlaBQEDp6ekqKipSdna2SkpK9OOPP7KjA1iAC/0BAADrsIMDAACsQ8EBAADWoeAAAADrUHAAAIB1KDgAAMA6FBwAAGAdCg4AALAOBQcAAFiHggMAAKxDwQEAANah4AAAAOtQcAAAgHX+A7yddlpEUMzVAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHFCAYAAAD/kYOsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACs00lEQVR4nOydd3hUZfbHv9Myk94rSUhASiA0QSAo0pRmL7sqih1FdBVZV0X9rayNtS7rIrpW1u6uCioiggqI9I70TigJ6b3OzP398c57Z0ImyZTbZnI+z5NnJpM7d96ZzNw595zv+R6dIAgCCIIgCIIgggi92gsgCIIgCIKQGgpwCIIgCIIIOijAIQiCIAgi6KAAhyAIgiCIoIMCHIIgCIIggg4KcAiCIAiCCDoowCEIgiAIIuigAIcgCIIgiKCDAhyCIAiCIIIOCnAIQkIWLlwInU4n/hiNRqSnp+OOO+7A6dOnFV/PqlWroNPpsGrVKq/ve/z4ceh0OixcuFDydWmN22+/HREREYo/rk6nw5w5cxR/XFdGjx6N0aNHq7oGgpADo9oLIIhg5IMPPkDv3r1RX1+PX3/9FXPnzsXq1avx+++/Izw8XO3lEYTIggUL1F4CQcgCBTgEIQO5ubkYMmQIAGDMmDGw2Wx49tlnsXjxYtx8880qr44gnPTp00ftJRCELFCJiiAUYPjw4QCAEydOAAAEQcCCBQswcOBAhIaGIjY2Ftdffz2OHj3a4n6jR49Gbm4uNm/ejJEjRyIsLAzdunXD3//+d9jt9hbb7t+/HxMnTkRYWBgSEhIwffp0VFdXt1pLVlYWbr/99la3e1KquP3225GVldXq9jlz5kCn07W4TafT4YEHHsAHH3yAXr16ITQ0FEOGDMGGDRsgCAJefvllZGdnIyIiAmPHjsXhw4fbfWxv4SW2V155Ba+99pr4WHl5ediwYYPb++zZswfjxo1DeHg4EhMT8cADD6Curq7FNv/73/8wbNgwREdHi/+PO++8s8U2+fn5uOWWW5CUlASz2YycnBy8+uqrrf5nruzcuRM6nQ7vvfdeq7/98MMP0Ol0+Pbbb8XbDh06hClTprR4jDfeeMOblwhAy/97c3MzkpKSMHXq1FbbVVRUIDQ0FLNmzQLgLH9+/PHHmDVrFlJSUhAaGopRo0Zh+/btXq+DIKSGAhyCUAD+5Z2YmAgAuPfeezFz5kxccsklWLx4MRYsWIA9e/ZgxIgROHv2bIv7FhYW4uabb8Ytt9yCb7/9FpMmTcLs2bPx8ccfi9ucPXsWo0aNwu7du7FgwQJ89NFHqKmpwQMPPKDck3TDkiVL8O677+Lvf/87PvvsM1RXV+Oyyy7Dn//8Z6xduxbz58/H22+/jb179+K6666DIAiSr+GNN97AihUrMG/ePHzyySeora3F5MmTUVlZ2WK75uZmTJ48GePGjcPixYvxwAMP4N///jduuOEGcZv169fjhhtuQLdu3fD555/j+++/x1//+ldYrVZxm+LiYowYMQLLly/Hs88+i2+//RaXXHIJHnnkkXb/HwMGDMCgQYPwwQcftPrbwoULkZSUhMmTJwMA9u7diwsuuAC7d+/Gq6++iiVLluCyyy7Dgw8+iL/97W8+v1Ymkwm33HILvvrqK1RVVbX422effYaGhgbccccdLW5/4okncPToUbz77rt49913cebMGYwePbpVsE4QiiMQBCEZH3zwgQBA2LBhg9Dc3CxUV1cLS5YsERITE4XIyEihsLBQWL9+vQBAePXVV1vc9+TJk0JoaKjw6KOPireNGjVKACBs3LixxbZ9+vQRJkyYIP7+2GOPCTqdTtixY0eL7S699FIBgLBy5Urxtq5duwq33XZbq7WPGjVKGDVqlPj7sWPHBADCBx98IN522223CV27dm1136efflo493ACQEhJSRFqamrE2xYvXiwAEAYOHCjY7Xbx9nnz5gkAhF27drXat6/w9ffr10+wWq3i7Zs2bRIACJ999lmL5wVA+Oc//9liH88//7wAQPjtt98EQRCEV155RQAgVFRUtPm4jz/+uNv/2X333SfodDrhwIED4m0AhKefflr8/fXXXxcAtNimrKxMMJvNwp///GfxtgkTJgjp6elCZWVli8d44IEHBIvFIpSVlbX30rTg3P/7rl27BADC22+/3WK7oUOHCoMHDxZ/X7lypQBAOP/881v8L48fPy6YTCbh7rvv9ngNBCEHlMEhCBkYPnw4TCYTIiMjcfnllyMlJQU//PADkpOTsWTJEuh0Otxyyy2wWq3iT0pKCgYMGNCq4yklJQVDhw5tcVv//v3FchcArFy5En379sWAAQNabDdlyhTZnqMnjBkzpoWoOicnBwAwadKkFiUtfrvrc3KH6+tltVo9yvhcdtllMBgM4u/9+/dv87HO1Ufx12/lypUAgAsuuAAA8Mc//hH//e9/3XbG/fLLL+jTp0+r/9ntt98OQRDwyy+/tLnWm2++GWazuUXn2meffYbGxkYxc9LQ0ICff/4Z11xzDcLCwlq8HpMnT0ZDQ0ObJThP6NevHwYPHtwik7Rv3z5s2rSpVSkOYK+R6/+ya9euGDFihPiaEYRaUIBDEDLw4YcfYvPmzdi+fTvOnDmDXbt24cILLwTAykmCICA5ORkmk6nFz4YNG1BSUtJiX/Hx8a32bzabUV9fL/5eWlqKlJSUVtu5u01J4uLiWvweEhLS7u0NDQ1t7uv48eOtXq/Vq1d3uIZzXz+z2QwALV4/ADAaja225a9faWkpAODiiy/G4sWLYbVaceuttyI9PR25ubn47LPPxPuUlpYiNTW11TrS0tJa7MsdcXFxuPLKK/Hhhx/CZrMBYOWpoUOHom/fvuL9rVYr/vWvf7V6PXgJ69z3kLfceeedWL9+Pfbv3w+AdQWazWbcdNNNrbZt633X3vMkCCWgLiqCkIGcnByxi+pcEhISoNPpsGbNGvHL1hV3t3VEfHw8CgsLW93u7jaLxYLGxsZWt5eUlCAhIaHdx2nvvnKTlpaGzZs3t7itV69eku3farWitLS0RZDDXz/X26666ipcddVVaGxsxIYNGzB37lxMmTIFWVlZyMvLQ3x8PAoKClrt/8yZMwDQ4Wt8xx134H//+x9WrFiBzMxMbN68GW+++ab499jYWBgMBkydOhX333+/231kZ2d7/sTdcNNNN2HWrFlYuHAhnn/+eXz00Ue4+uqrERsb22rbtt537gJzglASCnAIQmEuv/xy/P3vf8fp06fxxz/+UZJ9jhkzBi+99BJ27tzZokz16aeftto2KysLu3btanHbwYMHceDAgQ6/fLOyslBUVISzZ88iOTkZANDU1IQff/xRgmfRPiEhIW0GjVLxySef4MEHHxR/56+fu+4ys9mMUaNGISYmBj/++CO2b9+OvLw8jBs3DnPnzsW2bdtw/vnni9t/+OGH0Ol0GDNmTLtrGD9+PLp06YIPPvgAmZmZsFgsLTInYWFhGDNmDLZv347+/fuL2S8piY2NxdVXX40PP/wQeXl5KCwsdFueAlgJbdasWWKZ6sSJE1i3bh1uvfVWyddFEN5AAQ5BKMyFF16Ie+65B3fccQe2bNmCiy++GOHh4SgoKMBvv/2Gfv364b777vNqnzNnzsT777+Pyy67DM899xySk5PxySefiCUGV6ZOnYpbbrkFM2bMwHXXXYcTJ07gpZdeEju82uOGG27AX//6V9x44434y1/+goaGBrz++utiOSWQCQkJwauvvoqamhpccMEFWLduHZ577jlMmjQJF110EQDgr3/9K06dOoVx48YhPT0dFRUV+Oc//wmTyYRRo0YBAB5++GF8+OGHuOyyy/DMM8+ga9eu+P7777FgwQLcd9996NmzZ7vrMBgMuPXWW/Haa68hKioK1157LaKjo1ts889//hMXXXQRRo4cifvuuw9ZWVmorq7G4cOH8d1337Wr8/GUO++8E1988QUeeOABpKen45JLLnG7XVFREa655hpMmzYNlZWVePrpp2GxWDB79my/10AQ/kAaHIJQgX//+9+YP38+fv31V9x444247LLL8Ne//hW1tbWtxKmekJKSgtWrV6NPnz647777cMstt8BisWD+/Pmttp0yZQpeeukl/Pjjj7j88svx5ptv4s033+zwixdgpY9vvvkGFRUVuP766/GXv/wFf/jDH4LibN1kMmHJkiVYsWIFrrrqKrz++uuYNm0a/ve//4nbDBs2DIWFhXjssccwfvx43HPPPQgNDcUvv/wiamQSExOxbt06jB07FrNnz8bll1+OH3/8ES+99BL+9a9/ebSWO+64A42NjSguLm7Vlg0wc75t27YhNzcXTz31FMaPH4+77roLX375JcaNGyfJ63HJJZcgIyMDp06dwm233Qa93v3XxQsvvICuXbvijjvuwJ133onU1FSsXLkS3bt3l2QdBOErOsGTNgSCIAiCcGHVqlUYM2YM/ve//+H6669XezkE0QrK4BAEQRAEEXSQBocgCCIIsdls7foE6XS6Fv5ABBFsUImKIAgiCMnKymrXOHHUqFGtTCUJIpigDA5BEEQQ8t1337n1LOJERkYquBqCUB7K4BAEQRAEEXSQyJggCIIgiKCjU5ao7HY7zpw5g8jIyBZD4giCIAiC0C6CIKC6uhppaWltejNxOmWAc+bMGWRkZKi9DIIgCIIgfODkyZNIT09vd5tOGeBwcd3JkycRFRWl8moIgiAIgvCEqqoqZGRkeCSS75QBDi9LRUVFUYBDEARBEAGGJ/ISEhkTBEEQBBF0UIBDEARBEETQQQEOQRAEQRBBR6fU4BAEQRCElrHZbGhublZ7GaoQEhLSYQu4J1CAQxAEQRAaQRAEFBYWoqKiQu2lqIZer0d2djZCQkL82g8FOARBEAShEXhwk5SUhLCwsE5nRsuNeAsKCpCZmenX86cAhyAIgiA0gM1mE4Ob+Ph4tZejGomJiThz5gysVitMJpPP+yGRMUEQBEFoAK65CQsLU3kl6sJLUzabza/9UIBDEARBEBqis5WlzkWq508BDkEQBEEQQQcFOARBEARBBB0U4BAEQRAEEXRQgEMQBKEmts5p5kYQckMBDkEQhFrsXwo8mwBs+0jtlRCE36Snp2PBggUtblu3bh3CwsJw4sQJxddDPjgEQRBqcfAHdrlhAXD+VHXXQmgSQRBQ3+xfu7SvhJoMXnU0DR8+HJs3bxZ/FwQBM2fOxMyZM9G1a1c5ltguFOAQBEGoRclhdlm0Fyg+ACT2Unc9hOaob7ahz19/VOWx9z4zAWEhnocJw4cPx8KFC8XfP/roI+Tn52P27NkAgCVLluDPf/4z7HY7HnvsMdx9991SL7kFVKIiCIJQi9LDzut7Fqu2DIKQguHDh2Pfvn2oqalBXV0dnnjiCTz33HOIjIyE1WrFrFmz8Msvv2Dbtm148cUXUVZWJut6KINDEAShBg2VQG2R8/c9i4DRj6m3HkKThJoM2PvMBNUe2xuGDBkCg8GAbdu24aeffkJ8fDzuvPNOAMCmTZvQt29fdOnSBQAwefJk/Pjjj7jpppskXzeHAhyCIAg1KD3CLi3RQFMdULwPKNoPJPVWd12EptDpdF6VidTEYrFgwIAB+Prrr/H222/ju+++g17PCkVnzpwRgxuACZJPnz4t63qoREUQBKEGPMBJ6gucN45d37tYteUQhBQMHz4cr7/+Oi655BKMGzdOvF0QhFbbyj2SggIcgiAINeD6m/juQJ+r2fU9i1RbDkFIwcCBA2E0GvHyyy+3uL1Lly4tMjanTp1CamqqrGtRJMBZsGABsrOzYbFYMHjwYKxZs6bd7VevXo3BgwfDYrGgW7dueOutt1ptU1FRgfvvvx+pqamwWCzIycnB0qVL5XoKBEEQ0sIDnIQeQK9JgCEEKN4PFO1Td10E4QeffPIJZsyYgV69WnYEDh06FLt378bp06dRXV2NpUuXYsIEebVFshf2vvjiC8ycORMLFizAhRdeiH//+9+YNGkS9u7di8zMzFbbHzt2DJMnT8a0adPw8ccfY+3atZgxYwYSExNx3XXXAQCamppw6aWXIikpCV9++SXS09Nx8uRJREZGyv10CIIgpKH0ELuMPw8IjQG6jwUOLmPdVEk5aq6MILzCbrejuLgY7733Hg4cOIBFi1pnIo1GI1599VWMGTMGdrsdjz76KOLj42Vdl05wVxiTkGHDhuH888/Hm2++Kd6Wk5ODq6++GnPnzm21/WOPPYZvv/0W+/Y5z2KmT5+OnTt3Yv369QCAt956Cy+//DL2798Pk8nk9ZqqqqoQHR2NyspKREVF+fCsCIIg/EAQgLnpQFMNcP8m5n+z83Ng0b1AQi/ggU1qr5BQgYaGBhw7dkyseAQKq1atwtixY9G7d2988MEHGDZsmF/7a+918Ob7W9YSVVNTE7Zu3Yrx48e3uH38+PFYt26d2/usX7++1fYTJkzAli1b0NzMZrZ8++23yMvLw/3334/k5GTk5ubihRdegM3m3u2xsbERVVVVLX4IgiBUo+YsC250eiA2i93Gy1QlB6hMRQQUo0ePht1ux969e/0ObqRE1gCnpKQENpsNycnJLW5PTk5GYWGh2/sUFha63d5qtaKkpAQAcPToUXz55Zew2WxYunQpnnrqKbz66qt4/vnn3e5z7ty5iI6OFn8yMjIkeHYEQRA+wvU3MZmA0cyuW6KB7o6uExIbE4TfKCIyPrcVTBCEdtvD3G3vervdbkdSUhLefvttDB48GDfeeCOefPLJFmUwV2bPno3Kykrx5+TJk/48HYIgCP8QO6jOa3l732vY5Z7FrIxFEITPyCoyTkhIgMFgaJWtKSoqapWl4aSkpLjd3mg0ioKk1NRUmEwmGAxOl8WcnBwUFhaiqakJISEhLe5vNpthNpuleEoEQRD+01aA02tiyzJVch/l10YQQYKsGZyQkBAMHjwYK1asaHH7ihUrMGLECLf3ycvLa7X98uXLMWTIEFFQfOGFF+Lw4cOw2+3iNgcPHkRqamqr4IYgCEJzcJO/cwMcSzRw3iXsOpn+EYRfyF6imjVrFt599128//772LdvHx5++GHk5+dj+vTpAFj56NZbbxW3nz59Ok6cOIFZs2Zh3759eP/99/Hee+/hkUceEbe57777UFpaioceeggHDx7E999/jxdeeAH333+/3E+HIAjCf0pcWsTPxdX0j8pUBOEzsvvg3HDDDSgtLcUzzzyDgoIC5ObmYunSpejatSsAoKCgAPn5+eL22dnZWLp0KR5++GG88cYbSEtLw+uvvy564ABARkYGli9fjocffhj9+/dHly5d8NBDD+Gxx2hQHUEQGsdmBcqPsevuApxekwCDGSg5CBTtBZL7Krs+gggSZPfB0SLkg0MQhGqUHgH+dT5gtABPFAB6N4n0z24CDiwFLn4UGPuk8mskVCFQfXCkJiB8cAiCIIhz4PqbuO7ugxvApZuKylQE4SsU4BAEQSiJ65DNtug5kZWpSg+xMhVBEF5DAQ5BEISStNUi7oolytlNRaZ/BOETFOAQBEEoiesU8fYg0z+C8AsKcAiCIJTEkwwO4DD9c5Spzu6Rf10E4Sfp6elYsGBBi9vWrVuHsLAwnDhxQvH1yN4mThAEQThoqgWqTrPrHQU45kigx6XA/iWsTJWSK//6CO0hCEBznTqPbQoD2hmrdC7Dhw/H5s2bxd8FQcDMmTMxc+ZM0RpGSSjAIQiCUIqyo+wyNBYIi+t4+z5XswBn72Jg7FNefdkQQUJzHfBCmjqP/cQZICTc482HDx+OhQsXir9/9NFHyM/Px+zZswEA11xzDVatWoVx48bhyy+/lHq1raASFUEQhFJ4Wp7iiGWqw8DZ3fKtiyAkYPjw4di3bx9qampQV1eHJ554As899xwiIyMBAA8++CA+/PBDxdZDGRyCIAil8DbAaVGmWgyk9JNtaYRGMYWxTIpaj+0FQ4YMgcFgwLZt2/DTTz8hPj4ed955p/j3MWPGYNWqVRIvsm0owCEIglCKtoZstkffa5w6HCpTdT50Oq/KRGpisVgwYMAAfP3113j77bfx3XffQd+WmaUCUImKIAhCKdobstkWPSewsQ5lR4DC3+VZF0FIxPDhw/H666/jkksuwbhx41RdCwU4BEEQSiAIrOUb8C7AMUc6Tf/2LpZ8WQQhJQMHDoTRaMTLL7+s9lIowCEIglCEujKgoZJdj+vm3X1pNhURIHzyySeYMWMGevXqpfZSSINDEAShCFxgHJUOhHgn3kTPiY4y1VFWpkrtL/36CMJH7HY7iouL8d577+HAgQNYtMj9eJEJEyZg27ZtqK2tRXp6OhYtWoQLLrhAtnVRgNOZaaoDqgvaH/pHEIQ0eDJksy3MEaybat93LItDAQ6hIX799VeMHTsWvXv3xtdff43o6Gi32/3444+KrotKVJ2ZJTOBf50PbP9Y7ZUQRPDjbYv4ufAy1d7FVKYiNMXo0aNht9uxd+9eDBs2TO3liFCA05nJX88uv38EKNqv7loIItjxdMhmW/SY4FKm2iXduggiSKEAp7PSXA9UnGTXrfXAl3ew2wiCkAd/MzjmCKDHeHZ9j3uNA0EQTijA6ayUHQMgACERQHgSULQXWPa42qsiiODEbncx+fND89b3ana5ZzGVqQiiAyjA6azws8nEXsC1bwPQAVsXAru/VnNVBBGcVJ0CbI2A3gREZ/q+nx4TAEMIUH4MqDgh3foITSF08uBVqudPAU5nxdVwrPsYYOQs9vt3DzmyOwRBSAY/oYjLBgx+NK+aI4DodHa9SqX5RIRsmEwmAEBdXZ3KK1GXpqYmAIDBYPBrP9Qm3lk5dybO6CeA42uBkxuYHufO5YAxRL31EUQw4csMqraITGNCYwpwgg6DwYCYmBgUFRUBAMLCwqDrZLPHuKdOWFgYjEb/QhQKcDor5woeDUbguneBty4CzmwHfv4bMOF59dZHEMGEPx445xKVyi4pwAlKUlJSAEAMcjojer0emZmZfgd3FOB0VtwN/YvJAK5+E/j8JmD9fCD7YjbojyAI/xADHB9bxF2JSmOX1QX+74vQHDqdDqmpqUhKSkJzc7Pay1GFkJAQSaaQU4DTGakrA+rL2PVzzyh7TwaGTQc2vgUsmg5M/w2I7qL8GgkimPBlinhbRDoCnKrT/u+L0CwGg8FvDUpnh0TGnRGuB4jqAoSEt/77pc8AqQNYEPT1NMBmVXZ9BBFMWBuBinx2XYoARyxRUQaHINqDApzOiNhB1YYewGgGrv+AeeScWAv8+pJyayOIYEP0nIoEIpL8318klagIwhMowOmMeOKoGt8duHweu776JeDYr7IviyCCEleBsRQdMa4aHLvd//0RRJBCAU5nxFPBY/8/AINuASAAX00DaoplXxpBBB3+jmg4l4hkQKcH7Faglj6TBNEWFOB0Rkq8OOBOeglI7A3UFAKLp9MZI0F4i9QBjsHIxqsAQHUnbhVvrgc2vAUU7VN7JYRGoQCns2G3A2VezMQJCWd6HKMFOPwTsP5f8q6PIIINLur3dYq4O3iZqrN64TTVAZ/dCCx7DFj6F7VXQ2gUCnA6G1WnAWsDm4kT09Wz+yT3ASa9yK7//Axwaot86yOIYKMjUb8vdOYAp6kO+OwG4Ogq9jvPkBHEOVCA09ngB1tvZ+KcfxvQ9xpW91/7T3nWRhDBRn2FUycTJ2GAE+loFe9snVRNtcCnf2RND8ZQdlt1AWvFJ4hzoACns+HrTBydDuh/A7vOPT0IgmgfXg6OSAYsUdLtV8zgdKIAp7EG+OQPwPE1rOX+1m8AUxj7W+UpdddGaBIKcDob/ggeO+tZI0H4ipRDNl2J6mRuxo3VwCfXM18ucxQwdRGQOQyIyWR/rzih7voITUIBTmfDH8t4flCtKQJsnXNGCkF4hZRDNl3pTCcbDVXAx9cD+esBczQwdTGQcQH7G9cRllOAQ7SGApzOhj8ZnLAEJk6GANSclXRZBBGUSN0izolyzIcL9hJVQxXw8XXAyQ2AJRq4dTGQPtj5dzGDQ2VzojUU4HQmmhucBwJfWlb1eiAyhV0P9gMrQUiBlFPEXeHzqJqqWRAQjDRUAh9fC5zaBFhimOamy/ktt6EAh2gHCnA6E+WOmTjmKCA80bd98ACnM6TGCcIfBEE+DU5IOCvXAMH5WayvAD66Bji1GQiNBW77Fkgb1Ho7CnCIdqAApzMhxUyczlT7Jwh/qC4EmmrYWIXYLOn3H6xeOPXlwEdXA6e3AqFxwG3fAakD3G9LAQ7RDhTgdCZEgbEf6fJgPagShNTwE4qYroAxRPr98zJVMH0W68qAD68CzmwHwuJZcJPSr+3tuci4ppCV4AnCBUUCnAULFiA7OxsWiwWDBw/GmjVr2t1+9erVGDx4MCwWC7p164a33nqrzW0///xz6HQ6XH311RKvOgiRIl1OGRyC8Ay5BMacSD5VPEgCnOZ6FtwU7GQNDbctAVJy279PWBxgCmfXyQuHOAfZA5wvvvgCM2fOxJNPPont27dj5MiRmDRpEvLz3acUjx07hsmTJ2PkyJHYvn07nnjiCTz44IP46quvWm174sQJPPLIIxg5cqTcTyM4kKJllTI4BOEZcgc4wWb2d2gFULiLlaVuX8JGxHSETgfEOrI45IVDnIPsAc5rr72Gu+66C3fffTdycnIwb948ZGRk4M0333S7/VtvvYXMzEzMmzcPOTk5uPvuu3HnnXfilVdeabGdzWbDzTffjL/97W/o1q2b3E8jOOBjGvwZ+kciY4LwjFIvhtr6QrCVqMqPscvuY4GkHM/vR2Z/RBvIGuA0NTVh69atGD9+fIvbx48fj3Xr1rm9z/r161ttP2HCBGzZsgXNzU5zuWeeeQaJiYm46667OlxHY2MjqqqqWvx0OurKgLpSdt2fmThiWrzQ/zURRDDDMzhSThF3JdhKVNysL9bDIcAcEhoTbSBrgFNSUgKbzYbk5OQWtycnJ6Ow0P0XZGFhodvtrVYrSkpKAABr167Fe++9h3feecejdcydOxfR0dHiT0ZGhg/PJsApO8ouI1MBc4Tv+xH9N2qC13+DIPzF1uzMSFCJyjN4gMIDFk+hAIdoA0VExrpzWpIFQWh1W0fb89urq6txyy234J133kFCQoJHjz979mxUVlaKPydPnvTyGQQB/oxocCXY/TcIQgoq8gG7lU285pkWqeEBTm0RYG2S5zGUhJeYYiiDQ0iDUc6dJyQkwGAwtMrWFBUVtcrScFJSUtxubzQaER8fjz179uD48eO44oorxL/b7XYAgNFoxIEDB9C9e8sSjNlshtlsluIpBS5SCh6jUoHiSlb7T+zl//4IIthwFfTrZTqPDIsHDCGArYm1SXub+dASguAMUKhERUiErBmckJAQDB48GCtWrGhx+4oVKzBixAi398nLy2u1/fLlyzFkyBCYTCb07t0bv//+O3bs2CH+XHnllRgzZgx27NjROctPniBlgEOt4gTRPnIN2XRFp3N+FgO9TFVzFrA2MFPEqHTv7it64ZxlreYE4UDWDA4AzJo1C1OnTsWQIUOQl5eHt99+G/n5+Zg+fToAVj46ffo0PvzwQwDA9OnTMX/+fMyaNQvTpk3D+vXr8d577+Gzzz4DAFgsFuTmtvRGiImJAYBWtxMuSCl4jAyy7g2CkBq5W8Q5UWmstFN1Wt7HkRuefYlM894UMTQWCIlkc7kqT8kn6iYCDtkDnBtuuAGlpaV45plnUFBQgNzcXCxduhRdu7Kou6CgoIUnTnZ2NpYuXYqHH34Yb7zxBtLS0vD666/juuuuk3upwYvdLu1MHC40pk4qgnCPUgFOsGRTfe2gAlgmKyYTKNrD9kMBDuFA9gAHAGbMmIEZM2a4/dvChQtb3TZq1Chs27bN4/272wfhQvUZwFoP6I3S1OmD5aBKKEfFScAUBoTHq70SZRBPKGT+sg0W482K4+zSW4Exhwc45IVDuECzqDoDvIMqNhswmPzfX7AcVAllqCkGFuQBH0xkYtJgp6nWWTKSU4MDBM9n0Z8MDkBCY8ItFOB0BqROl1MGh/CGU5uYPqLkIFC0T+3VyA/P3oTGsVlJchIsn0VfPXA4FOAQbqAApzMgtWU8P2usOQvYrNLskwheCnY6rx/7Vb11KIVS+hsgeDI4vnrgcCjAIdxAAU5nQIoZVK6EJwI6AyDYgdpiafZJBC8Fu5zXO0WAI6GgvyN4gFNdELjlP7vNOQmcSlSEhFCA0xmQ+oxSbwAiHEaNwTIHh5AP1wzO8d+CP+unhAcOJ8Ix/NbW5Jw1F2hUnWauz3qTs+TmLTwwqi0iLxxChAKcYMfa6DyrkfKMMipIDMYIeakpcgTBOuZV0lgJFO7s8G4BjZIlKmMIy6gCgVum4sen6HR28uQLlhjAHNVyf0SnhwKcYKfsGCslhUQ6sy5SECziRkJeeHkq/jwg+2J2PZjLVIIgfUm4I1zLVIGIvx1UgNMLB6AAhxChACfYcU2XtzPg1GuCRdxIyEvBDnaZOgDoNopdP7pateXITl0p0FDJrsd1U+Yx+TDPQHUz9ldgzBEDHPLCIRgU4AQ7cqXLKYNDeALX36QOcGZw8jew0mkwwj9v0RmAKVSZxwz0crEUGRyAMjhEKyjACXbkSpd7GOAUVNbj4w0n0NBsk/bxicDANcBJ7A2EJzFX7VNb1F2XXCgpMOaIJaoAzaaKHjgU4BDSQgFOsCNXy6oHZ431TTZMfW8Tnlq8G/+3eLe0j09on/pyZ7kgtT8rkYo6nCAtUykpMOZEBni5WPISVdsBTn2TDc02u3+PQwQMFOAEO3KdUUZ2LGx8ZskeHC6qAQD8b+spLNsdoCl0wjcKf2eXMV3ZxGcg+IXGagQ4gVyisjY6AzO/S1SO+7cR4JTVNuGS11bjwr//gn0FVf49FhEQUIATzNRXOI345MrgNFYBjTWt/vzdzjP4bNNJ6HTAuN5JAIDHv/4dZ6sapF0HoV3E8lR/5208wDm1mc1sCjaUNPnjRHVhl4FYoqo8BUAAjKHOdndf4Rmc2mK3761Xlx/A6Yp6FFU34qZ3NmD36Ur/Ho/QPBTgBDP8YBuRApgjpd23OZK1ngOtsjgny+rwxNfs7P3+0efhzVsGo29aFCrqmvHI/3bCbg9Qx1XCO1z1N5y4bPZFZLcCJ9arsy65sNulH4viCVwP11AZeEGjWJ7K9L/LMzQGMEc79nuyxZ/2nqnCZ5tYZqdbYjgq6pox5Z0N2HGywr/HJDQNBTjBjNzpcjE17jxzbLbZ8afPtqO60YohXWMx85IeCDHq8c8bB8Js1GPNoRJ8uP64POshtIUY4AxseXuw6nDqSgGbozssOkO5x7VEASER7Hqglamk6qDiuNHhCIKAv323B3YBuKxfKr65/0IM6RqLqgYrbnl3I7aeKJPmsQnNQQFOMCN2UMkU4EQ6bOKrC8WbXl1+EDtOViDKYsS8GwfCaGBvsfOSIvHE5BwAwNwf9uPQ2Wp51kRog8YaoMTx/nPN4ABAtsMPJ9gCHJ7JDE8EDCZlHztQO6mkEhhz3HjhLP29EBuPlcFs1GP25N6ItJjwnzuHYlh2HGoarZj63iZsPBqgYy6IdqEAJ5iRO4MT2fKguuZQMd5azVL0L13fH+mxYS02vzWvK0b1TESj1Y6HPt+BJit1MwQtZ3cDEFj5JCKp5d94BqdgF1AXRGfPNWfZJZ8PpSSRrbOpAQHPtMiUwalvsuGFpfsAAPeO6i4ek8LNRiy8YyguOi8BdU023PbBJqw9XCLNGgjNQAFOMKNYiaoAxdWNePgLVpK4eVgmJua2Hpqn0+nw8vX9ERtmwt6CKry24qA86yLUh49oODd7A7DMX0IvAAJwYq2iy5IVnsGJVCHACVRn8XIXDY4UnBPgvP3rUZyuqEdatAX3jWqpiwoNMeDd24ZgdK9ENDTbcefCzVh9sFiadRCagAKcYKWF4FGmmTiODI5QdQaz/rsDJTWN6JUcif+7vE+bd0mKsmDutayr5t+/HqHUcLDiTmDsCs/iBNPYhmpHBidSwplvnhKo86ikLlHFOlvFT1fU483V7CRv9uQchIa0HuRpMRnw76mDcUlOMhqtdkz7zxb8vO+sNGshVIcCnGClugBorgN0BunSv+fiyOAUnTmGNYdKYDHpMX/KIFhM7U8Enpibgj8OSYcgALP+uxNVDc3yrI9QDx7gpPR3/3c+lyqY/HDEDE7r7KXsBGKJqqnWaWMheYnqBOYu3YeGZjuGZsXh8v5t/0/MRgMW3Hw+JuWmoMlmx/SPt2LZ7sI2tycCBwpwghVenorNkk/w6Dio2ivZQfXpK/qiR7Jn7eh/vaIvMuPCcLqiHk9/s0ee9RHq0NwAFDPdQ5sZnK4XAtABJQdaiNQDGv48qETlGbyV2xztNIL0F969VleKX3Ydg04H/PWKPtB10IIeYtTjXzcNwhUD0tBsE3D/p9vw3c4Aei0Jt1CAE6zINYPKheoQZsyViApcnpuMGy/wvDU2wmzEP24YCL0OWLT9NB1MgomivcznJjQOiE53v01YnNMAMFiyODWOAEcNkXEglqgqJNbfAEBoDAQL88LpoivBjRdkIrdLtEd3NRr0mHfDQFw7qAtsdgEPfb4di7afkm5thOJQgBOsyOyoKggCnvqpCDZBB6POjhcmpHR4lnQug7vG4oExbH1PLvodBZX1ciyVUBpX/U1774lgaxcXMzhqlKgcAU7NWcBmVf7xfUFqDxy+WxN7/XuYy/DI+J5e3deg1+HlPwzADUMyYHeU0P+75WTHdyQ0CQU4wYrMU43/t+UUvtlVhBKws6OoZt+6D/40rgcGpEejqsGKP/+XXI6Dgo4ExpzsINLh2O3ONnE1SlThiYDeCAgu69A6UguMAVTWNWNHdRQAYGovID7C7PU+DHod5l7bD7cMz4QgAI99tQv7C2l2VSBCAU6wwk3WZOigOlxUjae/ZboZnVj79y01bjLo8Y8bBiLUZMC6I6V4f+0xqZZJqEVhOy3irnTNY1/KFflAWYD/3+tKWVkOuta+P0qg1zszR4FSpqqQPoPzz58P4Zg1HgAwNK71jDxP0et1ePaqXIzplQhBAL7ZQSX0QIQCnGDE2uQ8eEhcompotuGBT7ejvtmGi85LQGJaFvuDHw6q3RIj8NTlzOX4pWUH6GwpkLE1A4W72fWOApyQcCD9AnY90LM4ootxgvIuxpxA66QqlzaDc7ioGh+uP46TAtMGGir9Ky3pdDpcN5hpyJb+XgBBoOxyoEEBTjBSfpylqkMiJE+Xv7B0H/YXViMhIgSv3TAAOvGs0b9OmClDMzGudxKabHbM/HwHGpptEqyWUJySg2weU0gkEJvd8fbiXKoAD3DULE9x3MyG0zQSiozZvKm9sNoFxHdxZK1d5lH5ytjeSbCY9DhRWoc9Z+jEK9CgACcY4R1U8d39n9DrwvojpfhwPTsovfrHgUiKtLRwM/YHnU6HF6/vj4SIEOwvrMa3lBIOTET9TX9WNukIVx1OIJ8h8wyOGh1UnKgujrUEwGenvoJNPwckCXB+2leENYdKEGLQ47pxeezG8hPt38kDwkKMGNublRy//z1ASn+ECAU4wYhMIxr+t5WlfG+8IAOjerI08LnzqPwhIcKMOy5kZ/3fUtt4YOKpwJiTPgQwhgK1RUDxfvnWJTdqeuBwIqU52VAEnl0JSwDMEX7tqtFqw3Pf7wUA3DUyG2ldHZ1T9WVAo/9DfSf3Y68rlakCDwpwghExwJFOYNxotWHFXpaG53VpAJJlcDhX9GcB07ojJSiqbpBkn4SCeBvgGM1A5nB2PZDHNmghwAkksz8JBcbv/3YcJ0rrkBRpxv1jzgMs0YAlxvE4/rd4U5kqcKEAJxgRPXCkaxFfe7gE1Q1WJEWaMTjTxXVUwgwOAGTGh2FgRgzsArB0VwCciRJO7Hag8Hd23dMABwiOsQ1aCHBEPVwABDgSDdksqmrA/F9YSf6xib0RYTa23K8EOpywECPG9KIyVSBCAU4wwj/UsVmS7fL7XewAPik3BXq9i66HZ3AaKoGmOkke68oBLGiiMlWAUXYUaKphJSdvsodcaHz8N8AeoOLyGhVN/jiulg1aL6VI5IHz92X7Udtkw8CMGFwzqIvzDxIGOABwWX8qUwUiFOAEGzarM0Xdlk2+lzRZ7Vixlx3AeT1axBwFmMLYdYn8Ny7vnwqdDtiWX4GTZdIETYQCFOxglym5gMHo+f1SB7J5RI2Vzn0EGtUqjmng8ODKWg/Ul6u3Dk8QT8J8D3B2n67E19tOAwDmXNm35YkXP7mr8F9oDFCZKlChACfYqCkEBBszUItIlmSXa4+UoKrBisRIM4ZkxbX8o04nucFYUpQFw7OZWdcSKlMFDh1NEG8LvQHIuohdD8QyldouxhyThc3/ArRv9ieBB84Xm5m+5rL+qRiYEdPyjxJncKhMFZhQgBNsVDqGw0WlsS8OCeBamEm5KTDo3bSd++lm7I4rB1KZKuDwVmDsSiD74ajtYuwKbxXXcieVIPhdomq02vDdLnZscDvkVwxwpMngAFSmCkQowAk2eIATLc2E3mabHcsd3VOtylMcGcSNk3JTYDLosK+gCoeL/G/1lI2Sw8DiGYE/asBfBEGaAOfEesDaKN26lEALLsYcsavxtLrraI/aEqC5DoAOiHETnHjAyv3FqKhrRnKUGSO6J7TeQOIMDkBlqkCEApxgg9uTS6S/WXu4BJX1zUiIMOOCc8tTHIlbxQEgJiwEF/dgXjuaNv37fhaw4xNg/Rtqr0RdKvKBhgpAbwKScry/f1IOGxhprQdObZF8ebKihQ4qTiDMo+JBR2Qqswnwga+3sRO5qwd1cZ9VjnYETvXlQIM0wQiVqQIPCnCCjQppA5yljg/yxNxk9wcSQPJWcY5rmUqTKeGCXcAxh3fL2T3qrkVtePYmKce3Ly2dLnDLVDUaEBhzxBKVhk8KKo6zSx8FxmW1TVh5oAgAcO2gNo5zligg1GFn4edMKlfI9C+woAAn2BBLVP4HOB6VpwDnmauf86jO5ZKcZFhMehwvrcPvpysl3bckrJ/vvH52j/Zbc+XE0wni7SEGOAFm+KelDE4gzKPy0wNnya4zaLYJ6JsWhV4pkW1vSGWqTg8FOMGGGOD4Vtt2Zf2RUlTUNSMhIgTDHF1NbpFBZAwA4WYjxuWwTrDvtCY2rjwN7P7K8YuOtThLeKYYcPijv+HwuVSnNgNNtf6vSSmqNeCBwxGzqRouofgpMOat4dee38FJHN+/hAFOuNlZplpKZSrNQwFOsMEDHB/Fe67wD/CEvm10T3Fc6/52u9+P6wo3/VuyqwB2u4YyJBvfYp0zXS8Ckvuy2zpzmUoMcAb6vo/YLCaOt1uB/PVSrEoZxABHGlsGvwiEcQ1+eOAcKa7BjpMVMOh14rGhTWTI4ADObPb3WitTNVQB6xcAdWVqr0QzKBLgLFiwANnZ2bBYLBg8eDDWrFnT7varV6/G4MGDYbFY0K1bN7z11lst/v7OO+9g5MiRiI2NRWxsLC655BJs2rRJzqcQGDRUskwC4KzF+0izzY4f97Rh7ncukSkAdIC9mbXMSsjoXomItBhRUNmAzcc18sFtqAK2LmTXRzzgEuDsVm1JqlJdyHxgdHrna+ELrjqcQJpLxbMlWsjg8BJVfRnQXK/uWtrCDw+cRY7szaieiUiM7EDrxfdfftzrx2mPsb2TYDZqsEy1YQHw42xg8X1qr0QzyB7gfPHFF5g5cyaefPJJbN++HSNHjsSkSZOQn+8+qj527BgmT56MkSNHYvv27XjiiSfw4IMP4quvvhK3WbVqFW666SasXLkS69evR2ZmJsaPH4/TpzXcGqkElY7nHxrr94TejUfLUF7XjLjwEAzLbqN7imMwsQ4YQHKhsdlowMS+TNugGU+c7R8BjVVsHEGPCZTB4dmbhJ5ASJh/+wrEuVRaMPnjWGLYqAxAm2Uqu91ZyvVSg2O3C1i0nZenPDiBkymDE242YmxvDZapTm9llweXOa93cmQPcF577TXcdddduPvuu5GTk4N58+YhIyMDb775ptvt33rrLWRmZmLevHnIycnB3XffjTvvvBOvvPKKuM0nn3yCGTNmYODAgejduzfeeecd2O12/Pzzz3I/HW0jYYv49y7lKaPBg7cJP3OUWGgMAFc4UtFLfy9As03aEpjX2KzABkdGMe9+QK8HknPZ7509wPFHf8PJGuncZyCk2u12bYxp4Oh0smniJKG6ALA1ATqD11nmjcfKcLqiHpEWIy7J8aAcKFOAA2i0TMUH3QLAqhfVW4eGkDXAaWpqwtatWzF+/PgWt48fPx7r1q1ze5/169e32n7ChAnYsmULmpub3d6nrq4Ozc3NiItzn2lobGxEVVVVi5+gRAxw/NPfWF3KU5d1VJ7iRMrXvTGiezwSIkJQXteM3w6XSL5/r9j3DVCZD4QlAANuZLfxAKf0sHbLAnIiZYATlQrEZgMQWh6wtUpdCRuNogUXY46WdTg82IhO925eGZzeN5f3T4XF5IFLO9chNlSw8r2EaK5MVVvizNjpDMChH4FTlMWRNcApKSmBzWZDcnLLaDs5ORmFhe7P9AsLC91ub7VaUVLi/svt8ccfR5cuXXDJJZe4/fvcuXMRHR0t/mRk+C/A1SQStYhvPFaGstomxIaZMLxbB+UpjowGY0aDXjxjUrWbShCAdf9i14dOA0yOUkBEEgt4BDtQvF+99amFlAEOAMRls8tA6Erj2ZvwRPVdjDkyOItLBu+g8lJgXN9kE8tBHXZPccyRztlcFdK+lzRXpuInA3HdgP43sOur/67eejSCIiJjna5lB44gCK1u62h7d7cDwEsvvYTPPvsMX3/9NSwWi9v9zZ49G5WVleLPyZMBcOD0BYlaxL0uTwGynzXyjonle86iodkmy2N0yIl1wJntgNECXHC383adrvPqcOrKnIFISj9p9snfvxJ/KcmCljqoOFouUfnogbN8byFqm2zIiAvFkK6xnt8xVvpWcY6mTP94g0NKP+DiRxxZnOWB5wouMbIGOAkJCTAYDK2yNUVFRa2yNJyUlBS32xuNRsTHt/RieeWVV/DCCy9g+fLl6N+/7QnGZrMZUVFRLX6CEgkyODa7gB93e9g95YrMFvHnZ8aiS0woahqtWLm/SJbH6BCevRlwE5s75Epn1eHw7E1cN8ASLc0+eWkhEDI4NRrywOGIAY4Gmy5ED5wsr+72Ffe+GZTe7slxK2TU4fAy1XEtlKl4Bie5HxDf3Vk+X9W5sziyBjghISEYPHgwVqxY0eL2FStWYMSIEW7vk5eX12r75cuXY8iQITCZnCngl19+Gc8++yyWLVuGIUOGSL/4QESCDM7GY6UorW1CTJgJed3bMfc7FxnmUbmi1+twuWOaryrdVCWHgIM/sOt597f+e2dtFecBTkrbJxheI4NBm2yIAmMNZXC0PI/KBw+cs1UN+O1QMQDgmkFe2l/IMFWcoynTv0KXDA7gzOIcXgGc3KzeulRG9hLVrFmz8O677+L999/Hvn378PDDDyM/Px/Tp08HwMpHt956q7j99OnTceLECcyaNQv79u3D+++/j/feew+PPPKIuM1LL72Ep556Cu+//z6ysrJQWFiIwsJC1NTUyP10tIvN6iwP+ZHBEc39+qTA5Gl5ClDkoMq7qX7eX4TqBveCc9ngwzR7TgISerT+Ow9wCnd3rpENUutvAJcSVSAEOBrywOGI86g0GOD44IHzzY7TsAvA4K6xyEoI9+7xZA6WL+uvgTKVtREoOcCupzgyyXHdWKYZAFbNVWddGkD2AOeGG27AvHnz8Mwzz2DgwIH49ddfsXTpUnTtyt54BQUFLTxxsrOzsXTpUqxatQoDBw7Es88+i9dffx3XXXeduM2CBQvQ1NSE66+/HqmpqeKPayt5p6O6gHVz6E0+n03a7AKW7WaeHpP6ednyGulqMNbg0+N3RN+0KHRLDEeT1Y7le87K8hhuqS0Bdn7Gro/4k/ttEnszo7v6Mlla5TWLHAEOL1FVnQbsKumtPKVaQx44HJ5NrSnU1utnawaquNO65xoc52gGH8xLZczgABopUxXvZ+7fobEtW+8v/jPL4hz5GTjZOY1wvevT85EZM2ZgxowZbv+2cOHCVreNGjUK27Zta3N/x48fl2hlQQQvT0WlMW8WH9h0rAwlNY2IDjXhwvMSOr6DK6GxTHxrbWDBFu+EkRCdjtmzz/vpEL7deQbXDZZmYnqHbH6XPa+0QUBX96VVmCzM+K/kANPhRGnojF4uGqqAsiPsupQBTmQqoDeyg3Z1IRDtnyu3rIgZHA0FOOFJLNi2W4HaYu2srfIU6zQ0mD0+Cdt7pgr7C6sRYtDj8n4djGZwh4waHMBZplq2pxBLfy9AbheJdGjeIOpvclnDAyeuGzDwJmD7xyyLM3WR8mtTGZpFFSxUen9mdC4/7GYH6/F9kr0rTwHsg6Vgmeq3wyUoq22S7XFEmuuBTW+z6yP+1PIAci6dTYfDD6xR6a1F1/6gdzGB03qZSkuTxDkGo9N0UEteOPx/GZPp8UkY9765pE8SosN8aMPn5c6GSqC+wvv7e4DqZSpRf+NGBzfyEXaycOQXIH+jsuvSABTgBAt+uhjb7AJ+4N1T/X3MPihgMNY9MQJ906JgswvKCPt2fs7ma0VnAjlXtb9tZ2sVL9zFLqXM3nB4oK7lTiq73WVMg8YydlEaFBp76YFjtdmxeAc7llw7yMdsrTmCeVQBsr2XXMtUewtUKFPxEw2uv3ElLrtTa3EowAkW/GwR33K8DMXVjYiyGHFhdx/PxhXq3uCeOLJ3U9ntTnHx8OkdO692tlZxOfQ3HJlLC5Lg6mIcrhEXY46MzuI+46XAeM3hEpTUNCIuPASjeiX6/rgKlakA4PtdCgeUggCc5QFOGz5UFzuyOEdXAvkblFubBqAAJ1jwM4PDsyGX9klBiNHHtwVP08sssr3cEeBsPl6GgkoZRyMc+hEoPQSYo4Hzb+14e57BKTkAWBUon6mNGOBI2CLOCYROqhYuxorIGT1H7KTSUIBT4Z3JHxcXXzkgzfuSuSsKBMuT1SpTVZ5k5Te9CUjo5X6b2Cxg4BR2vZNlcSjACRb8yODYXcpTl/X3Q0ug0AycLjGhuCArFoIALNkp4xnTuvnscvBtzPa9I6LTmdmd3QqUHJRvXVqgqc45lkKWDE4AmP1p0cWY4yhRVRXnY8Tcn3H9m+vw68FidR13vfDAqWpoxnLHPLzrPB3N0BY8wCmXp5MKAMapVabi+pvE3oAxpO3tuBbn6CrgxHpFlqYFKMAJFvww+duaX46i6kZEWoy46Dw/UsEKGozJXqY6vQ048Rs7KAyb7tl9dLrOU6Yq2ss6YsIT5dGfBMK4Bi164HAi2efj5PHDOFPZgC0nynHr+5tw7ZvrsFqtQMeLEtUPvxeg0WpHj6QI5Hbx03legQyOamWq9vQ3rsR2BQbezK53oiwOBTjBQEMl0Og4a/Ahg8M/kJf2Sfa9PAUoOsV4Ur9UGPQ6/H66EsdKaqV/gL2L2WWfq71rU+4snVQFO9hl6oD2O8t8xVVkrFXjxBoNeuBwHBkcS/1ZhBj0uHlYJsxGPbbnV+C29zfhmgXrsOpAkXKBTnO9c6xFbFaHm4ujGc73cjSDOxRyxlalTNWR/sYVrsU5tprN1esEUIATDPDsTWgcEOKd0ycrT7EAZ3Kun2eiYganUPYvpYQIM0Y4RknIMmG87Bi7TL/Au/t1lk4qOQXGgENDomP+Q7XF8jyGv/AMToT2ApzGMLamFF0Z7r4oC89f0w9rHhuDuy/KhsWkx46TFbj9g824esE6rFQi0OGZuJAI5pnVDifL6rDpWBl0OuDqQT5435yLQoL1cb2TYDGxMtXOU5WyPpaIqwdOR8RkAoNuYdc7SRaHApxgwA/9zbb8cpytakSk2YiRPf30MuFnsrZGoL7cv315AC9TfbPjtPQHaFfPDm8QS1TBnsGRsUUcYHoCHjBrtUylRQ8cB//Z3QgACNc14v4RTCOUFGnBU5f3wZpHx2LaSBbo7DxZgTs+2Iyr31iLlftlDHTEz1PXDjN+i7ez7M2I7vFIjQ71/7H5Z7hRPi8cgJWpJvZl7wXu3yMrDVVA+XF23ZMMDgCM/DMTJB/7FTi+VralaQUKcIIBfvDwQX+z9Hd2kL6kTzLMRoN/6zCagTDHgE4FylQTclMQFmLAkeJa/CL1hHFfA5zE3gB0rHxRo9HMg79Ym5gGB5AvwAFcylQa7aQSAxxtaXDOVjVg3urTqBTCAADhjS0/G4mRZjx5GQt07rm4G0JNBuw8VYk7Fm7GdW+uQ2lNo/SLqjjOLjsQGAuCgK+3OyeHS0JIGNOKAbJnca51CKK/3XkGjVaZx2TwLHFUFyAszrP7uGZx1gT/aCMKcIIBHzM4LcpT/SQ6SDvEjUoIjaMsJtyalwUAmPfTIenOPhur2UwpwPsAxxzhHFNR1LJM1Wyz40yFjG3tSlG8H7A1sY4xL4Ymek2MxlvFNdpF9eIP+1HXZEOF0fGlXu3+ZCMx0ownJudgzWNjcK8j0NmWX4HHvtolfSbHQ4Hx9pMVOFZSi1CTARNzJcyMKVSmuvC8BCRHmVFR14yV+2U+wSn0Qn/jygV3s8tTW6VdjwahACcYEMc0eJfB2X6yAgWVDYgwGzGyh0RW+1HKGoxNG5mNUJMBv5+ulC6Lww+CobGAxYcODjc6nBOltZj0zzW48MVf8L8tGi25eArX36T0l0dgzNFyJ5VGXYy35ZeLGZDYlCx2YwefxYQIM2ZPzsHXM0YgxKjHT/uK8PFGiQMBDz1weGlnUm4Kws0SegvJPHSTY9DrcPUg1pQge5nqrBf6G1f4CVhjJWtQCWIowAkGfMzgcHO/cTlJsJj8LE9xFGwVB4D4CDNuHcHOCv/5s0RZHC8dV1txTqv4xqOluPqNtThcVANBAJ5ctBvb8+XXKMkGP3OUszwFaNsLR4Muxna7gL99y95zfxicjqgkPpXds89iTmoUHp/YGwDw3JK9OFxULd3iPPDAabTa8J3D1+paf71vzkVBZ2xeWlt5oEjeeXm+ZnBCwllDCqDNkwcJoQAnGPDBA6eh2SaK+S6TqjwFKNoqzrlnJEuv7zpViZUHJMji+Kq/4bi0iv93y0nc8t5GlNc1o396NMb0SkSTzY7pH29FUVWD/2tVA/5+k2FifAu0PK6BB/AacjH+atsp7DxViQizEX+Z2MvpZtxGicodt4/IwsU9E9FoteNPn+2QTkfiwUnDxxvyUVnfjJQoC/IcHZKSoeB7qVdKJHK7RKHZJsjT4QkANitQtI9d9zbAAbR98iAhFOAEOjar8wDmRQbnu51nUFrbhLRoC8b2lvAM1LVVXCHiI8y4NY8dOCXR4kgU4FgL92H2l9vRbBNwWf9UfHFPHv415Xz0SIrA2apG3PvxVvmFiHLA/Uzkbo+O5l9KGvTCqdaWB051QzNeXHYAAPCnsechKdLi0zwqvV6HV/7QH3HhIdhXUIVXfjzg/+I80LQdKa7BS8uYM/YDY8+DQS9x6VMhLxwOz+LIVqYqPcwsFEzhQKwPJxpaLv9KCAU4gU71GeYoqzd5nCoXBAEL1x0HAEzNy4LRnzkv5yIGOMrOwJl2sTOLs+qAn+I+cepxlk93rwlLR4POAqPQhCxdIR4a1wPzbxqE0BADIsxGvHPrEERZjNieX4G/Lt6jrn2+Lyj15c4D9qZqoKFC3sfyFtHFWBsBzvyVh1FS04jshHDccaHjC8/HbGpSpAUvX8/mi72z5hjWHPL389S+ps1qs2PWf3ei0WrHyB4JuHmYjycW7eEa4CjwebtyYBqMeh12nqqUttTH4TYUKbmA3ofjt0KaJLWhACfQEctTXTx+o285UY49Z6pgNupx4wXet5a3iygyVnaqbkKLLM5B/4IGL4cCunKqvA7Xv7UBe23sy/nFi/R4+NKeLdxYsxLC8a8p50OvA77YchIfrg+gg4wgOMW1ETJ3D7Vo79XYmaaGXIyPldTi/d+YMeVTl+U43cijfO9oHJeTjKnD2efpz//d6Z+WpIPy1L9/PYqdJysQaTHipev7++9c7A5ekmmsUiRYTogwY7RjAjp3ZZaUQocPlbcCY040laiIQMAH/c3CtccBANcM6oLY8HYGtPkCbxOvKwGsMvhptMM0F08Pv7I45S6mZF6wLb8cV7+xFvsLq3HcwM6ih1jcnz2P6pmIxxyCzmeW7MX6I6W+r1dJ6soAezO7LneAA2h3qriG5lA9//1eNNsEjOqZ2LLczD+LtcU+fRafmJyD85IiUFTd6F/ruJgRbf152numCvN+YoNp/3ZlX2mM/dxhCnVmuJUqUzmE0ou3n4bNLnHWiA/Z9EV/A7hYMFCAQ3hIZX0z3lx1BP/bclI5ASmPwD0McM5U1GOZY0rv7RdmSb+esDjAYGbXFdThAOysaSrP4vjaUVVfwdonAa/a7r/ZcRo3vr0BJTVNyEmNwtjRY9gfCtt2NL7n4m64ckAabHYB93+6DafK67xfr9Jw/U1oXPvTi6VCq2JI/t5WIshrh9UHi/HTviIY9Tr83+V9WmY//PwshoYY8M8bByLEoMeKvWfx6SYfA4M2MjiNVhtm/XcHmm0CxvdJxjWDvJj55gsKTBV3ZVxOEqIsRhRUNmDDUYlPYHztoOJQBofwltKaRry4bD/+8uUuDH3hZ1w5/zd8sVnmswUvW8Q/3nACNruAvG7x6J3i55Red+h0zrS9Qq3irtxzcTfRgn7VQR+yOPzsLizBo7ledruA15YfwEOf70CT1Y5LcpLx5fQ8xGQNYhu0M5NKp9Phxev6o29aFMpqm3DPh1tR36Rx0bHS4wm0KobUgItxs82OZ75j76/bRmThvKSIlhvodM6SsY+fxb5p0Xh0Yi8AwLNL9uJwUY33O2lDtP/6z4ewv7AaceEheOHafvKUplxRuCvPbDTgCsc4ma+2Sig2rj4L1BYBOj2Q1Me3ffDXoraYDUINUijAkZCwECOuOz8dAzJiAAC7TlXisa9+x1urj8j3oF4EOA3NNnzmOAuTJXvDUdgLxxWmxckC4GNHVTvpdHfM/WEfXv/lMADg3ou74d9TBzODMt4qXnWq3blcoSEGvH3rEMSHh2BvQRX+8uVObYuOldLfcERxqMZ0ShqYQ/Xh+hM4UlyL+PAQPDiuh/uNIv23bbjzwmyM7JGAhmY7Hvp8u/edf25E+9vyy/HmKnZcfOGaXCREmH1en8eoYDvAy1Q/7C5EbaNVmp1yg7+47kyn5guhsawDC3B+hwQhFOBISEq0Ba/+cQC+uf9CbHpyHGaM7g4A+PsP+/EfR9eS5PAzWw8CnG93nEF5XTO6xITikhwZv6BUEhpzpo10ZnFWe5vF8aJF/Jsdp/HOGibu/Pu1/TB7co6zvdUS7WxzPru33f10iQnFm7cMhlGvw5JdBXhr9VHv1qwkSn+xa7FEZbepLjIurWkUtSt/mdAL0aEm9xtK4CzOWscHIDbMhD1nqvDa8oOe31kQWpWo6ptseOS/O2EXmA5wYq5CWTAVApzzM2OQnRCO+mYblu2WqGTvr/4GYNk9LftMSQQFODKRFGnBoxN7409jzwMAPP3tHvx3s8QHaUHwWIMjCALeX8u+jG8b0VV6nwlXxHlUyraKcxIjzWIHiNdZHA8DnD1nKvHYV6yT4f4x3XHjUDfbuxnZ0BZDs+Pw9JVs+5d+3C+NYaEcKJ3B0WKJqq5UdRfjV5YfQHWDFX3TovCHIe189v3opHIlOcqCF69jreP//vUo1h4u8eyO9eWszR8Qg9UXl+3H0ZJapERZMOeKvn6tyytilfXCAVgZ+lqHtugrqTxxRP2Njx1UHC2ePEgMBTgyM+vSnrjrItZR89jXu/CtlM6WDZVAk6Mm3kEGZ+OxMuwvrEaoyYAbhsjgM+GKyhkcALjn4u6wmPTY4W0WxwPH1fLaJtz70VY0NNtxcc9EzLq0l/sNXRyNPeGWYZm4aWgGBAF48LPtOFrsg95BbtTK4NSXAY0aeT1UdjHefboSnztOluZc2bf9kxUJSlSc8X1TMMXhUTPrvztQVO1BIwUvT0UkA6ZQrDtSInpwvXh9f0SHtZF5kgOFvXA4fDbV+qOlOC3FsF3RA6e/f/vR4smDxFCAIzM6nQ5PXZaDKcMyIQjAw1/swPI9EqUqee00LL7DWqzYGn5+F/kPKipqcDiJkWbcMsyHGVUV7beI2+wCHvx8O06V1yMzLgyv3ziw7S8YLzI4AHuv/O3KXAzuGovqBiumfbgF1Q3Nnq1bKZTO4Fii2Q+gnTNNlV2Mn/t+LwQBuHJAGi7Iimt/Y/FkQxovlqcuy0G3xHCcrWrE2FdW47UVB1HV3nvU5YShuqEZf/kfy3pOGZaJUT0TJVmTx7QwjlRuyGRGXBiGZcdBECCOx/GZ5nqgxFEi9NUDh0MZHEIKdDodnrsqF9cO6gKbXcADn273XhviDg8FxqfK67B8Lwuq7hiR5f/jdoREaXF/uWcU0+Jsz6/Ar4c8SKkLQoci45d/PIA1h0oQajLg31MHIyasnVZpfgAq2sumT3tAiFGPN285HylRFhwprsXDX+yAXWoPDX9QQ1zrOrJBC6jogXOmoh4bjpZBrwMen9S74ztES6uzCAsx4u2pg9E3LQo1jVa8/vMhjHxxJd5YeRh1TW5EtC6fp+eW7MPpinpkxIXiick5kqzHK0yhgNkRLPNAXSGuG+wc3eBXE0HRPuZcH5bg/2eQMjiEVOj1Orx0fX9M7peCJpsd9360BRv99UbwUH/z0YYTsAvARecloEdypH+P6Qn8g1dVoOoMoaRIi5jF8cjduL683ZLf97sKxI64F6/vj5zUDtrs47oBRgvQXAeUH/Nq3f+eOhghRj1+2leEL+WaZ+MtSroYuyKeaWpEDCkGecp74PzqODEamBGDtBgPTPH4QNTqAsnagc9LisSSP12EN29mc9Uq65vx8o8HcPFLK/Heb8fQ0OzSZeXI4By3JeCLLSeh0wGvXD8AEWaVBpTy/5nCAc6k3BRYTHocKa7FzlN+ZI9c9Tf+ttVznSFlcAgpMBr0mHfDIIztnYSGZjvuXLgZ2/PbbiHukMqOO6jqm2z4fBPb7nYlsjeA88zWWq/6DKF7RnWD2ciyOGs6yuKcoxdw5UBhNf7y5U62T4dBX4cYjECi4yzbwzIVZ0BGjNiF98Pv6mbCRBqrWbAGKJvB0Vq3R416HjjcoXtUTw/FzaGxzqxF+XHJ1qHT6TCpXyqWzbwY/7hhALrGh6GkpgnPLtmL0S+vwicbT6DZZhcD+w8PsC/juy7MxrBuEk8K9wYemFcrG+BEWkyY0Jd9ZvwawOmvwZ8r/MS46gwb2hyEUICjMCFGPRbcfD5GdI9HbZMNt72/CXvO+BjRe1CiWrzjNCrrm5EZF4YxUk4Nbw9TKDuwAqoKjQFHFme4h1mcNgTGlfXNuPejLahrsuHC8+Lx6IQ2RMXu4GUqLwMcAJjkaJ9de6TUffpfafhZb0ikRyaIkqG1VLpKHjjNNrvYvcTnHHWITgfEZbHrZZ5nET3FoNfhmkHp+GnWKMy9th9Soy0orGrAk4t2Y9yrq1FbwPQiv9cl4LykCDzizWdHDvj/rEYiHaQXXOfwxPl25xk0WT0rWbeCC4yTfQ9wTpbV4dLXViPvX7vRDCMg2PCPr1fh36uP4Jsdp7HpWBlOltV573ekQVTKE3ZuLCYD3rl1CG59fxO2nijHre9twn+n56F7YkTHd3algzlUgiCI4uJb82RuDT+XyDRW8qk+AyT76LYpEfeO6oaPN5zANkcW5+K2xI1uWsTtdgEzP9+O46V16BITin/ddL5309e97KRypWdyBNJjQ3GqvB5rDpWIZ4CqoVZpRmtiSK7BiVD2/7E9vwLVjVbEhYegX5doz+8Ymw0U7PSqTOotJoMeNw3NxDWDuuCzTfl4Y+URFJRVwWI+DeiAfF0q3vnjAFhMBtnW4BFiBkf5AOfC8xKQFGlGUXUjftlfhIm5Xr5/7Ha/PXAq65txx8LNoiP16ZB4ZOnPYv22HdgktJ5XFh8egvS4MPztyr4Y6DCwDSQog6MS4WYjPrjjAuR2iUJpbRNufW8TCiq9rJF3EOCsP1KKA2erERZiaN8rQw400CrOSYq04GZPOqrcTBGf99NBrDxQDLNRj39PHYw4b4eT+hHg6HQ60ZDx533KptTdIupvFA60tFaiUqmLapXDG2lkjwTovTlZ4TocCUtUbWExGXDHhdn49dHReGZkOAw6ATWCBTeOHoz+6TGyP36HRKijwQF4tou1jPtUpqo4wTrADCFAQhvO1e3QbLPj/k+24XBRDVKiLPhs2nBEprD3xtQcPa4emIZh2XHIig+D2TGRvrS2CTtPVuCF7/d5v14NQAGOikRZTPjPHUPRLSEcpyvqMfW9TSirbfLszrZm55lkGyWqDxx+E9edn96206lciK3iyp8puWO6Q4uz9UQ5fmvLpIx/gTo6qH7cUyiOYZh7bT/kenPWzOEBTvlxpmHxEh7g/LK/SP1uKrUyOLwTqOYs0KzQENu2aOFirKwGh3deelye4sQ6AhwZSlRtERZixE3d2bFMn9AdMy/tqdhjt4s4J0+d4xIf3bDyQJHnx3oO198k5QAG747ngiDgr9/sxm+HSxAWYsB7tw9BXvd4xKcxI9orutow78ZB+OLePKz6yxjsf3Yitv/fpfhyeh5MBh02HS/zTy+qEhTgqEx8hBkf3T0MqdEWHC6qwR0fbEKNJzNLqgtYu6AhhBmOncPJsjr85Djrv00pcbErYoCjjpvxuSRFObM4Ly07gM835ePD9cfx7pqjeGPlYfxjxUGUnDoEAFi4147HvtyFP/+XiYpvH5ElHpi8JjzBmfEo8v4saGh2HCLNRpTUNGHHqQrf1iAVXLegdAYnLA4wOXyeJPJz8ZkWLsbK+bgUVTdgz5kqAMDIHl4+rpjBUS7AAQCUsY7DsJSe8g/S9BQVMzgA0CslErldotBsE/Cdt6avfuhv3llzFJ9tOgm9DvjXTYPQN81xssbLv+fMetPpdIgND8GQrDhcNZBlnd5do/D7RwIowNEAXWJC8dFdQxEbZsLOU5W496MtHQu8uOAyqgugb/1v/HD9cQgCcHHPxNZThpVAQyUqDs/i/H66Eo9//Tv++s0ePPf9Prz84wH88+eDCKtjB5wP9gr4YstJ1DRaMTQ7Dk9e5qdnhx9lqhCjHhc7zthVL1OJpRmFMzg6nYvQWOUylai/SVLUxfjXgyzr2K9LtPeDKfmQy/ITLAOlFKWOIcPx5yn3mB0hZnDU+yxdO8jpieMVPnZQLdtdiLk/7AcAPHVZH4xznUMY3bG+bdrIbgCAH3YXIL+0zqvHVhsKcDTCeUmRWHjHUISHGLD2cClmfr4DtvZKEu10UNU2WkUrd0WM/dyh8jwqdyRFWfDCNf1wcc9EjOudhEm5KbhqYBr+MDgd95wfhTBdIwTocO3oYfjLhF54/ppcfHD7BTB5Iyp2R4rvnVQAcEkO6377aa/K86nUyuAA2tHh8NKGkj5A8KM8BThOgkyAvVnZDJgjg4O47so9Zkfw/1tjpWS+QN5y5cA0GPU67DxVicNFXpStRYGx5w7Gu05VYOYX2yEIrNHkjguzWm4Q03GHYq+USFzcMxF2AeI8w0CBuqg0xICMGLx96xDc8cFm/LC7EE8u+h1zr+3nPr3LI+5zhkIKgoBPN+ajusGKrPgw5e3QORrM4ADMUZS7irbg1BZgL6CLTMVDE/y0QD8XP1rFAWBMryQY9DocOFuNk2V1yIhrfyyHbKiVwQG000lVrbwHjs0uYM0h7n/jw+dZb2C6stLDTIfTwSBZySg9yi7jNRTgWKKZ+aa1gZWpeHZLQRIizBjdKxE/7SvC19tO49GJHjhS15c7jS49HNFwuqIed/1nCxqa7RjVMxF/vbxP6+8SMYNzinVpuakGAMA9I7vh14PF+O+Wk5h5SY/2Hdw1BGVwNMaF5yXg9ZsGQq8DPt98Ei8uO+B+w3MyOM02O77deQZXL1iH55cyrceteVnedVtICc/g1BYzQbTW6WBEg1+4zqTywdk5JiwEg7syX6Gf1CxTqZnB0YoXjgoeODtPVaCirhlRFqPvrbqxCutwmuuBKscxSksZHJ1ONbM/V7imb9H20+1n6jn85Cg6EwiN6XDz6oZm3LVwM4qrG9ErORLzpwxyb28R1QWADrA1smN1G1x4XjxyUqNQ12TDJxs10s3oARTgaJCJuamYey2rs761+gj+7RgP0AJHgFMXmop/rz6CUS+txIOfbcfOkxUIMeoxdXhX0eBOFcLiWVocgmqCPq9w44EjGfE92GvRWOVzBuJSsV1cpTJVc71zQKEqGRytlKj4HCrlApzVDvfikT0SvfNgciVO4U4q/jiWaCYS1xIqmv1xxvZOQpTFiILKBmzwZGSPF/obq82OP322HfsLq5EQYcZ7tw9BpKWNritjiDMb2c6xSafT4Z6L2Xto4brjAWMCSAGORrnhgkxxmN7cH/bji80tD+xNZez3Py0txtwf9uNMZQMSIkLw8CU9se7xsXj26lyEGFX89+r1LWdSaZ02XIwlwRgCJDocXH0sU41z6HA2HC1tf3qzXPAg1WAGLDHKP75W5ubUKO+Bs+qgH+UpTqxyXjgAWupvtNJBxYlwOLqrmMGxmAy4wjHu5StPxMZe6G+eXbIXqw4Uw2LS473bhiA9toOSdoxnAv7L+6chJcqC4upGfLNDO9rK9qAAR8NMH9Ud945iCvbZX/+OZbsLsPl4Ge79cDOaStkX8rHmWPRKjsRL1/fHb4+NxUOX9PC+y0IuNNYq3i5yZnAAZ5mq0PtOKgDolhiBbonhsNoFceCiorjqb9T4wtLK3ByFJ4mX1TZhl8MeYJQvAmOO0q3ipcw/SlP6G06E+hkcwFmmWra7ELUdWYMU7mKXHWRwFq49hv+sZ98N//jjQAzwpKTpQScVwNyquUj53TVH/ZuKrhAU4Gicxyf2xg1DMmAXgOkfb8Mf3lqP9XuPIkLHDM+eu3USls0ciT8OyVDfBv1cNCo0dotSAY4PreKcS9QsU6mpvwGYbsIQwjxo1AyYeaCnUBfVmkPFEASgd0okkqMsvu9INPs77pMOzGtKNdhBxYlUX4MDAOdnxiA7IRx1TTbc89EWVNa1kZm1NQPFrM27PYHxl1tP4ZklewEAj03sjUn9PAzCxfJvx9nRm4ZlIsJsxMGzNWJnn5ZRJMBZsGABsrOzYbFYMHjwYKxZs6bd7VevXo3BgwfDYrGgW7dueOutt1pt89VXX6FPnz4wm83o06cPFi1aJNfyVUWn0+H5a3Ix0TGHyGzU465+jnpqWAJG5KRrx0TrXDTYKu4Wu72Vi7HkuAqNfcTV1dhq83FYn6+o2UEFsJInt0RQS4ejgosx19/4lb0BnO/rxkrWkSM3ZRrsoOJoJIOj0+nw7FW5CHNYg1yzYC2OFte03rD8OGBrAkzhbkvojVYbnlr8Ox75307YBeCGIRmY7sj8e4QXHYpRFhNuvIBt/86ao54/hkrIHuB88cUXmDlzJp588kls374dI0eOxKRJk5Cf7/4gdezYMUyePBkjR47E9u3b8cQTT+DBBx/EV199JW6zfv163HDDDZg6dSp27tyJqVOn4o9//CM2btwo99NRBaNBj39NGYSFd1yA9bPH4aEhoewP7UwR1wSBksGpLWJdBDq9o6tABviZV9kRoMk3s6zzM2MQE2ZCZX0ztp5Q2DZd7QwOoH4nVW0JyyDp9Iq4GNvtAn51tIeP7pnk385Moc6gTAmhsWjyp8EARwNmf5yLeiTgq/tGoEtMKI6W1OKaBeuw7txRMq4ds+e0cRdU1uOGf2/AxxvY9+lD43rghbasRdoi2vMMDgDccVE2DHod1h4uxe7TlZ4/jgrIHuC89tpruOuuu3D33XcjJycH8+bNQ0ZGBt58802327/11lvIzMzEvHnzkJOTg7vvvht33nknXnnlFXGbefPm4dJLL8Xs2bPRu3dvzJ49G+PGjcO8efPkfjqqYTLoMbpXEhv22I7Jn6YQMzgaD3C4wDiqi9czXjwmIpl1lgl2Z7rZS4wGPcb0cpj+Kd0urnYGB1DfC4cHeeGJirgY7zlThZKaJoSHGESbAL9QqlW8scb5WmmxRKXyuIZzyUmNwuL7L8SgzBhU1jfj1vc34ZONLqMTuDljdMuTr3WHS3D5679hx8kKRFmMeP/2IXj40p4weGsN4uXnqktMKC5zlL/e1XgWR9YAp6mpCVu3bsX48eNb3D5+/HisW7fO7X3Wr1/favsJEyZgy5YtaG5ubnebtvapGI01wLFfgQM/yPs4/I3YxhRxzSCeKWk8wBH1NzK21et0QKJj5AMXYPqAajocLWRw+P/nnLk5iqGwB87qg+x/POK8BGk6IpVqFeflqbB4jzxbFIf//2qL1RWsu5AYacZn04bjqoFpsNoFPLloN/723R5Wiq50BDiO7LIgCHhr9RHc8t5GlNY2ISc1Ckv+NBJje/t48sFPlBurgPoKj+7Cxzd8t6sAZyrUcYT2BFkDnJKSEthsNiQnt3zhk5OTUVjovv5ZWFjodnur1YqSkpJ2t2lrn42NjaiqqmrxIwtlR4D/XAF8+yd59s/hqUStZ3CiHBmcqgJlhI2+wr8w5XZ45WdgVb5rki7umQCTQYejJbU44q5eLxfVyrdHt0LtEpU4h0qpAMeP8QzuUCqDo8URDa6ExQM6AwChXXM7pbGYDJh3w0A8Mp5NXv9g7XHc/eEWNJU7TsCi01Hd0IzpH2/F33/YD7sAXHd+Or6+bwQy4/1wNw8JZ68J4HEWp196NPK6xcNmF7Bw3XHfH1tmFBEZn1sPFASh3Rqhu+3Pvd2bfc6dOxfR0dHiT0aGTJkPfgCuLZZ3zgkvUcVoPYPjqPk317KzA60ip4uxK/z18CPAibSYMLwbOxgpOnxTzOB04hKVgkFeZX0ztuVXAAAu9nZ6eFsolcHRsv4GYKMruIZKZaHxueh0OjwwtgcW3Hw+LCY9Vh0oxo7drDOqEPG4av5a/LjnLEwG1nzyyh/6IzREgu5ZH04e7rmYZXE+3ZivjjeXB8ga4CQkJMBgMLTKrBQVFbXKwHBSUlLcbm80GhEfH9/uNm3tc/bs2aisrBR/Tp6U6QAZGsuU7oAzCJGDQNHghIQxJ1NA20JjuVvEOVHSdJWN6811OAqVqWxWJrAF1M3giGZ/jrk5SqOgB87awyWw2QV0TwyXbvaYUmZ/Wm4R52ikVbwtJvdLxX/vzUNylBnRzexz/uQv5ThaUovUaAv+e28ebh7WVboOWh9OHkb1TESPpAjUNFrxxSaVDTjbQNYAJyQkBIMHD8aKFSta3L5ixQqMGDHC7X3y8vJabb98+XIMGTIEJpOp3W3a2qfZbEZUVFSLH1nQ6Tx2hfQZW7PzQKt1DQ4QGELjcoVKVJHSdJWNc+hwthwvQ3ltk7+r6pjaIgACS+uHJcj/eG0RmcbWYGtSRyBao5zQmreHj+7lZ/eUKzyDU31G3gwzL1HFe9GqrDQaaRVvj/7pMfjm/ouQbigDABxvjsGI7vFY8qeLMChTAtG5K9Hej0LR63W4eyR7T72/9hialbau8ADZS1SzZs3Cu+++i/fffx/79u3Dww8/jPz8fEyfPh0Ay67ceuut4vbTp0/HiRMnMGvWLOzbtw/vv/8+3nvvPTzyyCPiNg899BCWL1+OF198Efv378eLL76In376CTNnzpT76XSMaJokkxCy6gwAgVnmq/ll4ylaFxrbbS4lP5lLVFHSBHsZcWHonRIJuwCsOqhAFoeLayOS2pw2rAgGo/M1VKNMpVAGRxAEUX/j13iGcwmNBcyOjGq5jEJtyuBIRoq5CeECs5W46ZI8fHjnUMTL4VTv44n5VQO7ICHCjILKBny/S3vHeNmPVjfccAPmzZuHZ555BgMHDsSvv/6KpUuXomtX9mVSUFDQwhMnOzsbS5cuxapVqzBw4EA8++yzeP3113HdddeJ24wYMQKff/45PvjgA/Tv3x8LFy7EF198gWHDhsn9dDpG7PSQKYMjlqe6qPtl4ylR/gtrZaW6ELA3A3qj/KUHMcApZIGVH/Buqp/2KhDg1Cjr3tsu0TJnSNtDoS6qA2erUVjVAItJj6HZEg6q1OmcOjO5hMYNlUCdo5ypVQ0OEBAZHADOFnFLNO4e18/3Yasd4eG4hnOxmAy4fQR7T72jwfEN8ps5AJgxYwZmzJjh9m8LFy5sdduoUaOwbdu2dvd5/fXX4/rrr5diedIiHkBkOkOqDJAOKo7YSaXRAKfC1QNH5o9DeBIziRNsQE2R0wjRB8blJGH+ysNYfbAYTVa7vINVFW6PbpeYTCB/nfIBjt3xPwNk76Ja5ShP5XWLl378Slw2m2skl9CYZ28ikgFzpDyPIQUBksFxtojLfLyP8b1D8eZhXfHGyiPYc6YK64+UYsR52qksBEAKIMCQ26tDDHBk1otIheYDHJlHNLhiMDqzIH4KjQekxyAhwoyaRis2HiuVYHHtoKUMjlqdVAq6GIvjGaQsT3HkbhXnHjhaLk8BLhkcjQc4VS4ZeznhGZy6Eq+d1mPDQ/CHISwAe1tjxn8U4EiN7BmcAOmg4oglqtPqrqMtlOqg4kgkNNbrdWI3leymf1rK4KjlhcP1NzK7GNc0WrHlBBOVSiow5sjdKl4aAAJjwPle1nyA4zgRkmuEDCc0FgiJYNd96AC+66Js6HQs+3i4qFrixfkOBThSwzM4dSXM2VhqAi7A8d/7RVbEDqosZR5PIqExAFzSh2VUVuw9K2/tW1MZHO+7PSShRhkPnHWHS9BsE9A1PgxZCeHSP4DsGZwAEBgDLcc1aEw30oJK92MaJEenc9HheP/Z6hofjrGOgHzp79rRNVGAIzWhMU7vFzkOwgEX4Dg+mHUlQHODumtxh1IuxhyxZOd/Ruui8xJgNupxuqIeB87KeNakpQyO6IVzUtkvJoU6qGTpnnKFZ3Aq8v0WuruFjyHRssAYYB2BALMcUGK6uq/wEpXcGhzALx0OAEzoy44Pis/JawcKcORArlZxQXAJcALAAwdgqU+jhV3XYqu40gGORCUqAAgNMeBCh6BP1jKVmMHRQIDDA+bmOqCuTLnHrZY/i+XaHi7ZeIZzieoC6E3si12OrGogtIgDgNHMjk2AM4DXIqLIOE3+x/Kxk4ozpncSdDpg16lKFFZq42SWAhw5iJFJh1NfDjQ5yl5ypyylQqeTtCwjKTar8wCihMgYkMzNmMPbxVfslemsyW5X1OCuQ0wWZ5DhQyrdZxTI4BwprsWp8nqEGPTiOA7J0RvkaxWvKwMaKtj1OI1rcADtt4oLgsskce1ncBIjzRiYEQMA+Hm/NrI4FODIQWwWu5S6RMWzN+GJgClU2n3LiVa9cKrPsM4YQ4hy2QkJMzgAaxcHgJ2nKlBULcNZU30ZYHdMXA6XQfTqC2rocBQo0/HszdDsOISFyGhZwI9PUguNefYmMo2NadE6Wm8Vry9nmUogIDI4gPOES/bGBw+hAEcO5GoVDzT9DUdC3Ymk8AxbdIZypomuwZ4EGpLkKAv6p0dDEICV+2U4qPAv9rB4wBgi/f59QY1OqhrlAhzZylMcuYTG4ogGjZenOFrP4PDjZVi8Mie04veW75+rSx2ND78dLkFdk1WKVfkFBThyIFereMAHOBrL4CjdIg44u8oknLA+rrfD1ViOsyZxirgG9DccNbxwZM7g1DfZsOEo8zOSTWDMkatVXOtTxM9F6xkcpVrEOfxzVX2GzTz0gR5JEciMC0OT1Y41h0okXJxvUIAjB64ZHCk7PUSTvwARGHMiNZrBUVpgDAAh4c55QBKVqS7pw0pHaw4Vo6FZ4s6Yag3pbzhKl6hcXYxl0uBsOFaKJqsdXWJCcV5ShCyPISJ3BkfrAmOO1s3+lD6hDU9i5XrB7vPJqE6ncxkjo/7rSgGOHPBIuLFK2hZEyuBIi5Iuxq7wLI5EQuM+qVFIi7agodmOdUckPmvi4lotZXDEyccKZXAUcDHm7sUX90yETqeT5TFExAzOcWlPwAI1g6PVAIefECqVwdHrnd8tfulw2AnXL/uLYLOr6zFEAY4chIQ7D4RS6nACbQ4VR+sBjtxTxM9FYqGxTqfDuByZylRa6qDixPhuSOYTootxEutCkgHZ/W9c4SLjxkrpTsAEIXBaxDni2BSNanCUbBHnSKBvuyA7DpEWI0prm7DjpLoeQxTgyIUcreKB5oHD4WcgNWdZa7ZWKFehRAU4Xw+JMjiAs5vq530SuxpXa1CDw9//DZXsR25kDvJOlNbiWEktjHodLjxPpvZwV0yhziBbqjJVbTHQVA1A5wygtI7WS1RKtohzJNC3mQx6jHG4GsuiC/QCCnDkgpc9pNIJWJucXzaBFuCEJwJ6I6vtauVgYm1yBhhKZ3BkGF+R1z0e4SEGnK1qxO7T0oiXAWgzg2OOAELj2HUlylQye+Dw7M3grrGItJhkeYxWxEosNObZm+gM5lUUCPD3dFONPGN1/IWf0CpVogJcyr/+fW/xMTJq63AowJELqVvFq88AEACDGQjXzjh6j9DrXYTGGilTVZ1iAZfR4rRtVwqJS1QAYDYaMLIHK2+s2Cthyl2LGRxA2U4qmTuoxOnhcreHuxInsdBYbBEPAIM/jjkSMDnmfWnlxIsjCM5jpZKmrqLZn38BzqieieiWGI6RPRLRbLNLsDDfoABHLqRuFXcVGMstQpQDrXnhuLaIK/16SuxmzOFnTculOmsSBG1mcABlvXBkDPIarTasO8Law0f3VDDQFs3+jkuzv0DT33AiNarDqSsFbI0AdM6TQyWQwOwPAKJDTfjlz6Px1yv6wGRQL8ygAEcupM7gBGoHFUdrU8XV8MDhiMGetKMrxvVOgl4H7C+sxsmyOv932FAJWB3uyJrL4MhkpukOGTM4m4+Vo77ZhsRIM3JSIyXff5tI3SouZnDOk2Z/SqFVsz9+vI9IUtZgU8yMnmJjWgIcCnDkwtWrQwphbfGBlvsNNEQHX41kcNQSGAPOM7LaIqYFkojY8BBckMW0KZLMpuLZG3OU9qz3lSxRiS7G0mtw+OTlUUq0h7sitdlf6VF2GSgt4hytmv0p3SLOierC7BBsTez4FOBQgCMXsVnM0M3aABTu8n9/h1ewy6yR/u9LDbTWKq5WizjArNf1DjGpxGeO3CpdkgBHLM1orDwFqFOikrhMZ7cL+GE3y+JN7KtwhoxncKrPAM31/u1LEALP5I+j1U4q3iKu9FBlg8kZyCs5CkUmKMCRC70B6JrHrp9Y69++qs4Ahb8D0AHnjfN7aaqg2QBHhQyOXi+L0BgAxvdhB+xNx8tQUedndkjU32isPAVIJobsELvN5XWQNoOzNb8cZ6saEWk2YmRPhRsHwuJYZg7w/zWsLmBDIXUG5U0z/UWrZn9VKnRQcaIV9pmSEQpw5KTrhezy+G/+7eeQI3vTZXDgdVBxZPB+8QtxTINKB2SJ3Yw5mfFh6JUcCZtdwMoDfqaYtZzB4YFpXQnQJIHeqC1qS1i3nQwuxt/vYsHtpX2TYTbKYyDYJjqddFPFucA4JpNlAAIJrZr9VapUogJcTh4og0O0R9ZF7PLEenYm6CuHlrPLnhP8X5NauApr1RavWRud3iZqnXHKJDQGJCxTaTmDY4kBQpgo98SxA9KaG7oik4uxzS5g6e9s35f3l8dfp0OkahUPtCnirkRoNYOjUokKkKyTSgtQgCMnKf1ZGrix0lFi8gFrE3B0Fbve41LJlqY4EcnsLNjezM661YSfmZjCmB5GDWQcQMoDnNUH/By+qaEMTmV9M7aeKMNnm/LxzHd7MfX9TTjcHAsA+L///IBXlx+U54Fl6qDacrwMRdWNiLQYcdF5CvrfuCKV2V+gtogDzv+r1jI4oshYha7ZIMrgGNVeQFBjMAKZw1kG5vhvQNpA7/eRv445bYYnASkDJF+iYhhM7DnUFLIPr9Lmeq64lqfU8hQSS1TSZ3D6dYlGcpQZZ6sasf5IKcb09vG1VimDU1HXhKW/F+JQUTUOna3BoaJqnK1qbLXdcVM8zjPkI11XgjdXH8HkfqnokxYl7WJq5Alwvndkbyb0TUGIUaXzTF6i8juDE6AdVIBTZFxfxk4mlWzJbgu73ZnZVSWD4yj/UgaH6BCxTOWj0Jjrb3qMZ+LUQEYrQmM1BcYcmUTGAKDX68Qsjl+mfypkcBqtNly7YB2eWPQ7Plh7HL8dLhGDm9RoCy7umYi7LsrGi9f1Q/++/QAAFyfVw2YXMPvrXdJPL5Yhg8PKU2y/l6lVngKkaxUPtCniroTFuXQ0aqRMVVvEMt06vTr+U64ZHLlKvwpBGRy56eoS4Nht3tfxuf4mkMtTnKg04Mw2DQQ4KnrgcGQWXV/aJwUfb8jHT/vO4nl7LvR6HzJVKmRwPt6Qj6MltYgLD8G1g7qgR3IEeiRHokdSROs5TU3nAfuBUckNiCwzYuepSny0/jhuvzBbugVVS++Bs+lYGUpqGhEdasKF3VVsGuAlqooTvh2bAJZt4BmgQCxR6XQsgK86xd7v/MtdTbjAODKVVQGUhpvJNlUDDRVAaKzya5CIAE8JBACpA4CQCOYKe3aPd/ctOwaUHGSDKruPkWd9SqIVsz+ewVGzpTXKJYMjw1nS8G5xiDAbUVzdiJ2nKrzfQVMd0OgY2qlQBqeyvhn/+uUQAODRCb3w1OV9cMMFmTg/s40hlA4xZGjtaTw2qTcA4OUfD+BMhZ++Lq7IkMX6/ncW1E7om6xeeQpgX2R6EzN18/Wko+o08/rSmwJvCDBHa+Ma1GwRB4CQcCDMEXgHuA6HAhy5MRiBTIcfjrft4rw8lZkHWKKlXZcayNg55BVquhhzeEbA1gjUlUm+e7PRIA5v9KmbimtPjBbF3ntvrjqCirpm9EiKwPWDPRBXiuMaTmLK0EwM7hqL2iYb/vrNHum6qiSeJG612bFsNy9PKThjyB16g/MzUH7ct32UHmaXsVnqZBukQGtmf2KLuIrvDyWdwmWEAhwlyPLRD+fQj+wyGMpTgPYyOGp54ACA0ezs4JKpTDXen3Zxbl0fkayIEPt0RT3eX8tKHY9P6g2jJwP6+EG4ugB6ezPmXtsPJoMOP+07ix/3SHQ2LnGZjpWnmhATZsKI7ip18Lnib6t4ILeIc7Rm9ie2iKs4d1BJp3AZoQBHCfh4hRNrPfeAaaoDjq1h13sEsP+NK1oQGTfXO2esqD3XK1LejNboXkkw6nU4VFSD4yW13t1Zpu6htnht+UE0We0Ylh2HsZ52fYUnsgwTBKDqFHomR+Lei9kX7V+/2YOqhmb/FtXCxVia12HJ787RDGpOWRbxt1Wcz6AKRP0NR2tmf2rNoXIlJjg6qTTwCesEpA4ATOFMsFXkoQ7n+BpWvojOBBJ7ybo8xXCdKK6WOp9nb0Ii1RfP8YBPpgxOdKgJw7r5OHzTNYMjM3vPVOHr7Ux3MHtyjudDJ3W6VmeaD4w9D9kJ4SiqbsTLyw74t7DaYkldjFuWp1TsnnJFsgxON2nWowZaM/tTaw6VK9EKjUKRGQpwlMBgYn44AHDcw3bxgy7lKbW8WqSGZyys9UB9uTprcBUYq/26ugZ8MnFpDm8X9/LsVMEMzt+X7YcgMEffgRkx3t35HK2AxWTA89fkAgA+3ngCW0/4oW/iZ/QSuRhvOFqGstomxIaZkNdNA+UpwP9xDYFs8sfRmtmfmiZ/HKVmvckMBThKwf1wjq/peFtBcAqMA3k8w7mYLE7diVplKi6mVLs8BbiUqGQMcBxTqreeKEdpTWuzvDZRKIOz5lAxfj1YDJNBh79M8CFT6eZMc0T3BFw/OB2CAMz++nc0WX0cDSKxBw7vnpqYm+qZxkgJYv3I4Niszs9TIGtwtJTBsVmdwnYtZHCoREV4hGj4t65jHU7xATbJ1WB26neCBbV1OFow+ePI6GbM6RITir5pUbALwM/7vRi+qUAGx24XMHfpfgDALcO7omt8uPc74eXbgl0tbn5ycg7iwkNw8GwN3llz1LcF1kjngdPsUp5SbfaUO3gGp6HS+26+ypPMkM5gVjfb4C/8PV5T5N/MQCmoKWRlUb2RZQ7Vgmdw6kqBJi/1exqCAhylSBvEZh/VlwHF+9rflndPZY8EQsLkX5uSqD1VXAsdVByF2uZ9Gr4pZnDkC3C+2XkaewuqEGk24k9je/i2k/QL2OWpzS10XbHhIfi/y3MAAP/8+RCOeSuyBlwyOP5nsdYfKUV5XTPiw0MwLDvO7/1JRkiY83/sbRaH62/iugW2y3p4EgAdINjYF7qaiCZ/aeq+pi7DbFF5Sr11+EkAvysDDIMJyBjGrnfULi6OZwii8hRH9QyOBjxwOJHyiow5PMBZc6gY9U0enqHWSPfl7o6GZhte+ZENyLxvTHfEhfs4Ayh1AGAIYQNcz/mCvnpgF4zskYAmqx1PLvrde28cCT1wvt/l6J7KTdFOeYrj68iGQB7R4IrBCIQ7jO3U1uGoOUXcFZ0uKIZuauyTFuSIOpx2ApyGSiB/PbseLP43rkTJN0XbI/hBnKfm1YSXqOrLWfu6TPRJjUKXmFA0NNvx22EPJrlbm5xnsjJlcD5afwKnK+qRGm3Bnf6MVjCagZT+7PrJzS3+pNPp8PzV/WAx6bHuSCm+2uble65amhbxZpsdy/ZorHvKFVGHc9y7+5W6ZHACnQiXMpWaaKFFnCPqcAJXaEwBjpK4+uG0dTZ5ZCVgtwLxPZxnVsGEAsLaNqkrY636gDYOypYYwBjKrsv4euh0OpcylQdnqNwnSG90isIlpKKuSRzJ8PClPWEx+dmhlDGUXZ7a1OpPmfFheGhcTwDAc9/v9U5oXeJoM/fTcG3t4RJU1jcjISIEw7I10j3liq+t4sFg8seJcOhdalTO4GihRZxDGRzCK9IGsS+0ulKgeL/7bYKxe8oVNUtU/IwzMk0b2iadThGhMeAsU/28r6jjids8cxGeJIsOYMGqI6hqsKJXciSuO18CcaqrDscNd4/MRu+USFTUNeP57zvQv3GqzgBlR5kHDt+/j/Dy1KTcVBh8GXoqN6LZ33Hv7hcMLeIcrbSKi3OoNCDaDoJOKgpwlMQYAmS2o8Ox24Nrerg7xHENKgQ4ZRpMqYuvh7wBztDsOERZjCitbcK2/A48iGTU35wsq8PCtccBAI9P7i3NFz7P4BTudtvxYTLo8ffr+kOnA77efhprDhV3vE/uV5XS369ZXE1Wuzg2QpPlKcC3DI6t2SnYD4oMjkZaxSmDIykU4ChN13b8cAp3svJASASQOULZdSkFz1g0VgENVco+dpmjXVhLrqtcwCqz0Nhk0IsjEDrspqqWrj36XF5bcRBNNjtGdI/H6J7+uwMDYEFiZCrrgjmz3e0mAzNicFteFgDgqcW70dDcgdj6hOMEhOvmfGTt4RJUNViRGGnGBVka6p5yhevRqs4AzQ2e3af8BHu9TWGyvE8URzMZHC1pcAJ/XAMFOEojCo3d6HB4earbaJbtCUbMkYDZcUYsc1mmFVpMqSvgZsy5tA87iK/Ye7b9jqIaeUz+dp+uxKLt7AA+e5IXIxk6QqdzlpFOttbhcP48vieSIs04UVqHd37twBvnuDQBzhJHeWpyboo2y1MA01mFRAIQnF2GHeGaDVXbEVwKtJDBsTY5Rc5qDtrkuAyzhc3PuW4qIWuAU15ejqlTpyI6OhrR0dGYOnUqKioq2r2PIAiYM2cO0tLSEBoaitGjR2PPHuf8prKyMvzpT39Cr169EBYWhszMTDz44IOorKyU86lIR5fzHTqcEmbo54o4nmG88utSErV0OFoURSoouh7VKxEhBj2OldTiSHFN2xtK7OALsM/13B+Y/uWqgWnol+572cctotB4S5ubRFpMePIy5o0zf+VhnCyrc79hdSFQehiADsjM83lJjVabOCLjsv5pPu9HdnQ6IC6LXfe0VTxYWsQ5WsjgVBcAEJhxogzifq8JT2IWDIJdva5XP5E1wJkyZQp27NiBZcuWYdmyZdixYwemTp3a7n1eeuklvPbaa5g/fz42b96MlJQUXHrppaiurgYAnDlzBmfOnMErr7yC33//HQsXLsSyZctw1113yflUpMNoBjIcZ5snXHQ4tSXA6a3serDqbzhqBDiCoM3JxwqJjAEgwmxEXnd24FzeXplKhgzOr4dKsPZwKUIMejwyXobhsekunVTtZKeuHJCGYdlxaLTa8eySve43OsH1N/2A0Bifl/TboRJUN1iRFGnGkK4qD3btCG9HNpQeZpda+iz5g2sGR61BwGJ5Kk0bWTG93plJClAdjmwBzr59+7Bs2TK8++67yMvLQ15eHt555x0sWbIEBw64n/IrCALmzZuHJ598Etdeey1yc3Pxn//8B3V1dfj0008BALm5ufjqq69wxRVXoHv37hg7diyef/55fPfdd7BarXI9HWnh7eKuQuPDPwMQ2EE1SsNne1KgYFlGpK4UaHRk+bTggcNRSGTM8cjVWOIMjs0uYO5Slr25Na8rMuJk6GBLHQDoTWwCeDt+LjqdDs9enQuDXofle89i5QE3vicSlad499TkfqnQa7U8xYnz0gtHi9lQf+DvdWsD8yJTA1FgrIHyFCfAO6lkC3DWr1+P6OhoDBs2TLxt+PDhiI6Oxrp169ze59ixYygsLMT48c4SjdlsxqhRo9q8DwBUVlYiKioKRqPR7d8bGxtRVVXV4kdVXA3/+NnCoU5SngJcvtQVTHtygXFUF220iHMiXTI4CszB4QHOjpMVKKpuQ1AqcQbn00352F9YjSiLEfePOU+SfbbCZAFSHYZ/bbSLc3omR+KOEVkAgDnf7mktOOYdVF0v9Hk5Dc02MYjU1Oyptoj10s1Yi9lQfzCFOrWBapn9iS3iGhAYcwK8k0q2AKewsBBJSa2HhSUlJaGw0H2dk9+enNzywJqcnNzmfUpLS/Hss8/i3nvvbXMtc+fOFXVA0dHRyMjI8PRpyEOXwYDRws42Sw6xCbKHf2Z/C8bxDOeiRolKq66rEcnMa0WwsfeDzCRHWTAgPRqCwDxxWmG3OQ/wEmRwSmoa8fIy5vn05/G9EOvrSAZPEMtU7Qc4APDQJT3cC45rihwGfzqgq++djGsOlaC60YqUKAvOz9R4eQrwrlW8ucF5Rh8sGRxAfbM/LbWIc/jMvgB1M/Y6wJkzZw50Ol27P1u2MKGfuy4JQRA67J449+9t3aeqqgqXXXYZ+vTpg6effrrN/c2ePRuVlZXiz8mTKkejRrOz6+P4GuD0FuawGxoLpA9RdWmKoIYXjlZT6gaXqcEKvR7tlqnqSlmwBZ0k04z//sN+VDVY0TctCrcMl3nAaUbHnVQcV8HxG6tcBMdcf5PcFwjzva37+13sfxkQ5SnARYNzgvlxtUf5cQAC67wKl6jVXwuIQmOVOqm01CLO4SWqisAMcNzXdNrhgQcewI033tjuNllZWdi1axfOnm39RikuLm6VoeGkpLA3WGFhIVJTnWndoqKiVveprq7GxIkTERERgUWLFsFkMrW5HrPZDLPZ3O6aFSfrIhbcnFjrnNbafRyg99O2PhBQYx6VFlvEOVFp7KxRobb5S/uk4JXlB/Hb4RLUNloRbnY5DHD9TXgCC778YPPxMny5lb23ue5FVvhJw9ndQFNdh6XIKwek4dON+dh4rAzPLtmLt28d4ixP+aG/cS1Padbc71yiurDRHLZGVi6PzgDMEcyTKyScZZz5SaZ4shAkLeIcUWisVgbH8T2gJQ0OH0ocoCUqr49gCQkJSEhI6HC7vLw8VFZWYtOmTRg6lKWON27ciMrKSowY4T71m52djZSUFKxYsQKDBg0CADQ1NWH16tV48cUXxe2qqqowYcIEmM1mfPvtt7BYLN4+DfVx1eGEO0TXwTqe4Vx4gFNfxtLdJgX+f1p0MeZEpQFntimWwemZHIGu8WE4UVqHXw8WY1I/ly9hUX/jX3nKarPj/xbvBgDceEGGMmWa6Ay27ppCZviX1b6GRqfT4ZmrcjH59TWi4HgMFxj7ob9ZfbAYtU02pEVbMCgjxuf9KIrByMoRZUeAz9ycwOoMLNgxRwC2JnabFk8W/EHtVnH++ddSkwnX4FSeYpk9GUa3yIlsq83JycHEiRMxbdo0bNiwARs2bMC0adNw+eWXo1cvZ5to7969sWjRIgDsgDNz5ky88MILWLRoEXbv3o3bb78dYWFhmDJlCgCWuRk/fjxqa2vx3nvvoaqqCoWFhSgsLITNJr9IUzK6DGF+BzVn2RkndCyD0xmwxDAHVEB2B18ATMjNxZNaK1EBTqGxQgGOTqfDpTltlKnEDir/BMYL1x3H/sJqxIaZ8NjE3n7ty2N0OmeZys3gTXf0SnEKjud9sw4odsyq8iPACajuKVdGPcq6OGOzWenJ5JIBE2ysC7HqtFMr5ueMLs2hptlfcwPzRgO0VaKKTGPBrb1Z/UGkPuBfDroDPvnkEzz44INiV9SVV16J+fPnt9jmwIEDLUz6Hn30UdTX12PGjBkoLy/HsGHDsHz5ckRGRgIAtm7dio0bNwIAzjuvZUfGsWPHkJWVJeMzkhCThR0guBdO+hAgXAPmTkqg07Ev9bIj7Etd7qxKbQkbDQGdU2ugJRT0wuFc2icZ7/52DL8cKILVZofR4DjX4QcxPzI4Z6saMO8nNi38sYm95RUWn0v6UGDfd+0a/p3LQ5f0wLc7zyC1YhMQAiCpj8+fxYZmG37aF2DlKc6AG9mPK3Ybm+/VVMMuG6vZpU4PZAxzv59ARc0MDi/Xm8KYFlMrGIws4KrMZ2UqLWWXPEDWACcuLg4ff/xxu9ucaxmv0+kwZ84czJkzx+32o0ePbt9mPpDIusgZ4HSG7ilXotKcAY7c8PJUdLoy5TBvUdDNmDO4ayxiw0wor2vG5uPlogGgKLD0I4Pz3Pf7UNNoxaDMGPxxiMIdi9zR+KTD8M8DjQgXHJd9+TYAoCZlGCJ8fPhVB4pQ12RDl5hQDAyU8lR76A2AJYr9BDtqZnBcBcZa0zXFZDgCnHznsOgAIbAKasGGq0Yg2N2Lz0VJLxyttohz+FmRghkco0GPsb3dlKn8zOCsPVyC73aegV4HPHtVrvIlmtQBTCxbW+T5XCUwwfFYy0EAwCdnfQ/KvhPLUynSzdoilIFncNQIcLTYIs7hQuMAbBWnAEdN0ocCSX2BjOFASn+1V6MsSnrhaFlgDLi8FsoOH+Xt4sv3FsJqc7QG+5HBabTa8H/fMGHx1OFdkdtF4nlTnmAKdX6WTnbsh8PR1Zejq5XptN4+kYpV7hyO26C+yYb/bTmJaxasFfU3mp49RbiHZ3AaKoHmemUfWzT501AHFSc6cM3+KMBRE5MFmLEOuOvHgFOn+42iAY7DyE2LAmPAKTJuqgYalHPZvrhnAsJCDDhVXo9b39+EkppGvzI47645hqPFtUiIMGOWHPOmPCXDc8M/kRPMKb3YkoVSRGPOt3vQaG2/aeFAYTWe/mY3hr7wE/7y5S5sz6+AUa/DHRdmYYDUw0QJ+bFEs8YPQPksjqYzOIHrhdPJvlUJzaBKiUqjAY45AjA7NA4KlqnCQoyYd8NAhIcYsO5IKa54fQ3sPnZRnSqvw79+YcLiJyb3RnRo275UspPuXScVAHH+VHTOGCRGmnH8XIdjB/VNNny59RSuXbAWE+b9iv+sP4HqBisy4kLx6MReWDd7LJ6+oi+VpwIRnc75vlfa7E9sEddigMNLVIGXwZFVZEwQbaJUWUYQtJ/BAdjrUVzFDnSJymU/xvdNwTcPXIh7PtqKkuKz0FuYx4kQkQxvvqKf+W4vGprtGJodh2sGqXyQ5gFO4e+s1GAK7fg+DrF/SPeReKprDh76fAfmrzyMqwd1QXpsGA4UVuOzTfn4etspVDWwob5GvQ6X9knGlGGZuLB7QmC1hBPuiUhhmQqlW6K16GLMcS1ReSjc1woU4BDqwAOcmrOArRkwyHTGX1PEWlyh09YU8XOJTAWK9yuaweGclxSJb+6/EK99+i2QD1QKYXh28UE8d3UuLKaOnbVX7i/C8r1nYdDr8OxVuepnL2IymZ6i5iwz/OtoplR9OVDItEPoehGujEgSHY4f+nwHAGDriXJx84y4UNx4QSb+MCQdSZEa7MojfEetDI7oYqzFACcdgA6w1jPLjYjAGc9BJSpCHcISAL0JgCCv74TYIp7BZoBpFTXGV7gQaTHhr6NYq3iREIsvt57CdW+uc85oaoOGZhue/nYPAODOC7PQKyVS9rV2iE7nUqbyQIdzYj0AAYjvAUQmiw7HBr0OW0+UY+uJchj1OkzKTcGHdw7F6kfG4P4x51FwE4xw7ZmSGZymWjaLENBmBsdodnaYBVgnFQU4hDro9U6DOzmFxmJ5SqMdVBzRzVj5DA5H5xBWJqZlIi48BHvOVOGK+b9h9cG2p5wvWHUE+WV1SImy4KFLeiq11I5x9cPpCD5g08W2oVdKJJ6YnIN+XaLxlwm9sO7xsXjzlsG4uGcilaKCGTUyOFxgbNaw31CADt2kAIdQDyWExloXGHNUcDNuheOsNSYxA0v+dBEGZMSgoq4Zt3+wCf/6+RDs9pYGm8dLavHWavb6/t/lfRBh1lDF2zWD05Ex6PE17DJrZIub77ooG9/96SKWrYmibE2nQI0MjtgirsHsDSdAh25SgEOohxKt4uLkY60HODzYU87NuBUuHjhpMaH4773DMWVYJgQBeHXFQUz7cAsq65sBMAfyp7/dgyarHSN7JGByP/+Gc0pO2iBm+Fdztv2zzoZKJkYG/Jo/RQQJapj9ablFnCMO3aQAhyA8Q4kAp9RRotJ6BidSOxkcfhZrNhrwwjX98NL1/RFi1OPn/UW4cv5v2FdQhR/3FGL1wWKEGPT425UabIs2hbLBkUD7Opz8DYBgZ++PqACbHUVIT0QSu1SyRKXlFnGOmMGhEhVBeAb/QMs1Udy1RVyrLsYcsausiHWVqYGYwWmZjfnjkAx8fd8IdIkJxYnSOlyzYC2eWsy6ju65uBu6Jfo6uUlm0j0w/BPLU5S9IeAsUdUWAzarMo8ZCCWqaCpREYR3RMosMq45CzQ7Jh9ruUUcUK6rrD3EDE5rk7/cLtFY8qeLcHHPRDQ021FS04QuMaG4f8x5Ci/SC7gOpz2h8XGHwLjrRfKvh9A+4QnseAGBBTlKEEglqor8jjVtGoICHEI95NadlLq2iIfI8xhSoderX6ZqI4PDiQ0PwQe3X4CHxvVAt4RwvPyH/ggN6dgnRzUyuOHfLvezhRqqgIKd7DplcAiATU8Pd5SplBIaa9nkj8O7qJqqnS3tAQAFOIR6uE7Rtrc/98cnAkVgzFGibb4tmmrZwQtwm8HhGPQ6PHxpT/zyyGiM6J6g0OJ8JKYr+7KyW52BjCsnNwKCjWX3ojU45JBQB6VbxcUMjobfgyFhLMsMBFSZigIcQj0iklk62G6VJx0cKC3iHDUzOLwsZgoDzBow65MCna59PxzH/ClkUXmKcEHJVvGGSueJhZYzOEBADt2kAIdQD4PReTCRwwsnUATGHDXdjHlbbERyQM2a6ZD2Bm/yAIf0N4QrSmZwePYmNJZlSbRMAA7dpACHUBc5W8UDYcimK2q6GYtTxDXmZ+MvotD4HMO/xho2pwog/Q3REiUzOGKLuIbLUxzXoZsBAgU4hLrINVW8RYt4gAQ4rpokpXHN4AQTouFfYcszT66/icl0npkSBODM4NQUyf9YVRoesnkuMV3ZZcUJddfhBRTgEOoiV1mmugBorgN0BiC2q7T7lgsljA/bIlgzOCFhQHIuu+7qh0PlKaIteJCvhF0DL1Hxz76WCUA3YwpwCHWR60udC4xjMgGDSdp9y4WrL5DSXhPBmsEBXITGLgGOOGCTAhziHCIUHNcQCC3inAAcuEkBDqEucnnhBJrAGHAGOLZGoL5c2ccO1gwO0Fpo3FQLnN7KrpP+hjgXsUR1Vv4TDR4saLlFnMMzOPXlTMMWAFCAQ6iLXCWqQPPAAQCTBQiNY9eVLlMFcwaHBzgFu4DmBtYybreyM9KYAClfEsrBPwO2JnlPNAQBKNrHrif0lO9xpMISzX6AgClTUYBDqItriUrKs6VA88DhiPO5FBYaB3MGJzYLCE8E7M3M8I+Xp7peGFwt8YQ0GM2sbRuQV4dTcxaoK2FeYEk58j2OlATY0E0KcAh1cS3L1JVJt99AaxHnqOFmbG0C6h2vfUQQBjg6ncvgzU0uBn9UniLaQIlW8UI2sBbxPQBTqHyPIyXRFOAQhOcYzezsGpCuTGW3B6YGB5B/AKk7eHlKbwLC4pR7XCVJH8Iuj/3qor8hgTHRBkqY/Z39nV2m5Mr3GFITYJ1UFOAQ6iP1iILqAsDawFrEA83jRPTCUSHACTYXY1d4J9WhFUxbEZkGxGaruyZCuyiZwUnuK99jSA2VqAjCS8ROKokyOFxgHNs1cFrEOXIZH7aHqL8JQoExJ20QC3jh0HllXRS8wRzhP0qY/Z3lAU4/+R5DagLMzZgCHEJ9pPbCCVSBMcAyC4CyImN+lhqM+htOSHjLUgDpb4j2kNvsr7kBKDnErgdUiYoyOAThHVIHOIHYIs5RQ2TMdQbBnMEBnEJjgByMifaJcPHCkYPi/WxUSGics0QfCPAAp7aIBWkahwIcQn2kLlGVBtgMKlf4wa6+DGiuV+YxO0MGB3D64UQkB2bwSygHt0uQK4PDy1MpuYFVKg2NBUzh7HrlKXXX4gEU4BDqI3kGJ0A7qAB2ADFa2HWlylSdJYPT50pgwBRg4tzA+lIhlEfucQ2FAai/AdjnRixTaX/oJgU4hPpIOa7BbgfKj7Hr8QEY4Oh0yguNO0sGxxQKXPMmkHud2ishtA4P9ptq5BlL4JrBCTQCqFWcAhxCfbjupKkGaKjyb19Vp1mLuN7oNKUKNJQWGneWDA5BeIo50lmKkTqLIwhAocMDJzkQA5zAERpTgEOoT0i4c8aJv1kcsUU8CzAY/duXWohCY4nnc7nDbmOCQSD4MzgE4Q2RMnVSVZ0GGirYSVhiL2n3rQQB1CpOAQ6hDaQSGgdyizhHdDNWIINTWwIIdgA6p6M0QRDymf1x/U1CL+bkHmhQiYogvEQqoXGgzqByRRy4qUCrOD94hycGbsaLIOQgIoldSm32F4gjGlyJ6couqURFEB4idYATiB1UnCgFMzikvyEI98jVKh6IIxpc4SWq6gLA1qzuWjqAAhxCG0heogrgAEdJkXFn6aAiCG+Ry+xPHNEQoBmc8ETAYGalbSV0gn5AAQ6hDaTI4NhtLi3igVyichk+arfL+1iUwSEI98iRwWmqdZ6EpQSYBw5Hr3fqcDRepqIAh9AGkRIEOJWn2KRoQ4gzjRqIRCQD0AF2K1BbLO9jUQaHINwjRwanaB8AAQhPcmp8ApEA6aSSNcApLy/H1KlTER0djejoaEydOhUVFRXt3kcQBMyZMwdpaWkIDQ3F6NGjsWfPnja3nTRpEnQ6HRYvXiz9EyCUg2dw/BHWcv1NbBagN/i9JNUwmFyG/cksNBYniVOAQxAtkCODUxjgAmNOgHjhyBrgTJkyBTt27MCyZcuwbNky7NixA1OnTm33Pi+99BJee+01zJ8/H5s3b0ZKSgouvfRSVFdXt9p23rx50JHlenDAA5z6cqCpzrd9lAWB/oajlNCYn51GUImKIFrAs5r1ZYC1SZp9nnWcrAeq/oYTIK3isgU4+/btw7Jly/Duu+8iLy8PeXl5eOedd7BkyRIcOHDA7X0EQcC8efPw5JNP4tprr0Vubi7+85//oK6uDp9++mmLbXfu3InXXnsN77//vlxPgVASS7TTOdRXcW0gD9k8l0gJMlqeIGpwKINDEC0IiwP0JnZdqjKVOKIhQPU3nOhOnsFZv349oqOjMWzYMPG24cOHIzo6GuvWrXN7n2PHjqGwsBDjx48XbzObzRg1alSL+9TV1eGmm27C/PnzkZLS8YG5sbERVVVVLX4IjdFiBpOPynyewQnEGVTnImZwZAxwbM3OYJICHIJoiU7nzGxK8TkUhCDK4HTyAKewsBBJSa1FVElJSSgsdF/T5LcnJ7dMlycnJ7e4z8MPP4wRI0bgqquu8mgtc+fOFXVA0dHRyMgIYAFqMONvJ1UwuBhzlBi4WXwAsDcD5iggKl2+xyGIQIVnWvLdn5R7RcUJoLGKNUEk9PB/f2rCS1RVp1n3qkbxOsCZM2cOdDpduz9btmwBALf6GEEQOtTNnPt31/t8++23+OWXXzBv3jyP1zx79mxUVlaKPydPartu2GnxxwvHbgPKj7PrgdwizlGiRFWwg12mDmCtnwRBtKT7GHZ5dJX/++IGf4m9WSNBIBOZymZp2a3SGyFKiNfe7A888ABuvPHGdrfJysrCrl27cPZs67plcXFxqwwNh5ebCgsLkZqaKt5eVFQk3ueXX37BkSNHEBMT0+K+1113HUaOHIlVq1a12q/ZbIbZHIAzPzob/pRlKk+ybIQhxBkoBTJKiIwLdrLL1AHyPQZBBDLdRrPLE+uB5nrAFOr7vgLd4M8VvYEdZytOsDJVtDaPuV4HOAkJCUhISOhwu7y8PFRWVmLTpk0YOnQoAGDjxo2orKzEiBEj3N4nOzsbKSkpWLFiBQYNGgQAaGpqwurVq/Hiiy8CAB5//HHcfffdLe7Xr18//OMf/8AVV1zh7dMhtIQ/ZRlenorNDuwWcY4UvkAdQQEOQbRPQk/2Waw+A+RvcGZ0fCFYWsQ5MZkswKk8CSBP7dW4Rba8dE5ODiZOnIhp06Zhw4YN2LBhA6ZNm4bLL78cvXo5R8T37t0bixYtAsBKUzNnzsQLL7yARYsWYffu3bj99tsRFhaGKVOmAGBZntzc3BY/AJCZmYns7Gy5ng6hBP6UqIJhyKYrPIPTVA00trZI8Bu7zXnATR0o/f4JIhjQ6ZxZnKMr/dtXMGVwABeh8Ql119EOso4P/uSTT/Dggw+KXVFXXnkl5s+f32KbAwcOoLKyUvz90UcfRX19PWbMmIHy8nIMGzYMy5cvR2RkpJxLJbSAPyLjYJhB5Yo5kol/G6tYRitR4vd/ySGguY615gdLUEgQctB9DLDzU/90OA1VTo1goLeIcwLAzVjWACcuLg4ff/xxu9sIgtDid51Ohzlz5mDOnDkeP865+yACFJ7BqS1ixlrGEM/vG2wZHIAJ+RqrWHo8sae0++blqZR+wVHSIwi5yB7FLgt2AbWlQHi89/so2ssuI9OYv04wwDM4Gjb7o9YJQjuExTORMOC92V8wuRhz5BQa8w6qtIHS75sggonIZCCpLwABOLbat30Em/4GCIiBmxTgENqhhdmfF2Uqm9WZ/g0GDxxOTFd2WXJQ+n2TwJggPMdfHU6w6W8AZ4mq8hQzMdQgFOAQ2iLWIRRf9y/AbvfsPpX5zI/BaAmOFnFOl/PZ5ekt0u7XbmfpdoACHILwBN49dWSVb1/m3ME4mDI4UV0AnR6wNgC1xWqvxi0U4BDaYvRsVqY68D3w09Oe3YfPoIrNDi7Dui5D2OXp7dK6hZYdZd1ZRguQ0Kvj7Qmis9N1BJtLVZnv1Pt5it0OnHVocJKDRGAMMI1kpKOMrtEyVRB9GxBBQeYw4KoF7Pq614Gt/+n4PsEoMAaApBzW5dRULW2ZiutvknMBg6x9BgQRHISEAxmOuYredlOVHwOaawFjaPAdozQ+k4oCHEJ79P8DMOpxdv37WR0fUESBcZD5IOkNzjLVqc3S7Zf0NwThPb7qcLjAOCkn+DoWo7UtNKYAh9Amox8Hcq9n2pr/3goUt5PBCKYhm+fSZTC7PCWhDocCHILwHh7gHPvVu5KxKDDuK/mSVId3Umm0VZwCHEKb6HTAVW+wtHBDJfDpH5gHhTt4BifY0r8AkM51OFul2Z8gOAMcahEnCM9JGwSYo9nx6MwOz+/Hh2wGi8GfK2KJigIcgvAOkwW48VPWLl1+HPjiZsDa2HIbWzNQ7rAKD8oMjiPAKdoLNNb4v7+KE0BDBRNMJub4vz+C6CwYjED2SHbdmzJVMLaIc6hERRB+EJ4ATPkvO3PKXw98+6eWbZoV+YBgYwK+yNS29xOoRKUCUemAYAfObPd/fzx7k9zHO6dogiBcdDirPNu+vtxZvgnKEpWLm7EGvXAowCG0T1Jv4I//AXQGYNcXwK+vOP/GO6jigqxF3JV0hw5HCj8cnlqnAZsE4T3dHH44JzcCTbUdb8/9b6IzgdAY2ZalGtHp7LKphgVzGiNIvxGIoKP7GOCyV9n1lc8Bu79i14NtyKY7eJlKCqExCYwJwnfiu7OyjK0JOLG+4+1F/U0QlqcAwBQKhCex6xosU1GAQwQOQ+4A8h5g1xfdB5zcFNwCY066S4DjTxrYVWBMGRyC8B6dDujmGL7piQ7nrKNFPBj1NxwND92kAIcILC59Bug1GbA1Ap/d5DyLCkaBMSd1ICvP1RQCVad930/VaaCuhO0rGPUABKEEvEzliQ4n2DM4gKaHblKAQwQWegNw7Tus5bKuxHmGFMwZnJAwZ0DiT5mKZ2+ScliHGkEQ3pPtyOCc3Q3UFLW9nc0KFO1j14M5gyN2UlEGhyD8xxwB3PRFy66pYNbgAC5+OBIEOKS/IQjfiUh0etocXd32dmVHWKbZFO4cIhyMUImKICQmugtw0+dASCQQmxWcLeKuiEJjPwz/qIOKIKTBk3ZxPqIhuU/wdngCLmZ/J9RdhxuC+FUngp60gcBDO4B7f2Xiv2Am/QJ2eWY7Mzf0BcrgEIQ0iDqclW0L/4PZ4M8VDbsZU4BDBDbhCYAlWu1VyE/8eczs0FrPXI29pbqQiZShC27BI0EoQWYeYAhhwv3Sw+636QwCY8CpwWmoABqqVF3KuVCAQxCBgF7vMlncBx0Oz94k9ARCwqVbF0F0RkLCgMzh7PqRNtrFxQxOEM6gcsUcAYTGsusa0+FQgEMQgYI/gzdpwCZBSEt7OpzaUqC6gF1P7qPUitRDo2UqCnAIIlDgOpxTm72/L+lvCEJauA7n+BrWEu4Kt6+IzQbMkcquSw00OnSTAhyCCBS6OGZSlRwE6iu8uy8FOAQhLakDAEsM0FgFnNnW8m+dRX/DienKLispwCEIwhfCE1hLPND6gNoetaXO2nhKf8mXRRCdEr3BObbhXB1OZ9HfcGK0afZHAQ5BBBK+DN4s2MEu47oDlijJl0QQnZa2dDidLYNDJSqCIPxG1OF4E+BQeYogZIHrcE5tAhqr2XVrE1C8n10Pdg8cjkbdjCnAIYhAwnVkg6eTxXkGhzqoCEJa4rKZ/sRuBU6sY7eVHATszYA5yvnFH+zwElVtMdBcr+5aXKAAhyACiZR+zGCsrhQoP+7ZfSiDQxDy0d2RxeE6HFF/0zf4HdY5lhgW0AGa0uFQgEMQgYTR7Bz050mZqr7cGQiRwJggpOdcHU5nGdHgik7n1OF4euKlABTgEESgwXU4nkwWL9jFLmO6AmFx8q2JIDor2aMA6IDifUBVQecTGHP4iZcnxyWFoACHIAINbzqpqDxFEPISFuf8fB1b3flaxDmZw9hl/gZ11+ECBTgEEWikOwz/CncB1sb2t6UAhyDkh+twdn3BhLY6PZCUo+6alCbDMZvr1JbWzs4qQQEOQQQasdlAWDxgawIKf29/W95BlTpQ7lURROeF63CO/MIu47qzgZydicTegCUaaK51jqpQGQpwCCLQ0Ok8K1M1VAGlh9l1yuAQhHxkDAeMFufvnU1/AwB6PZDBy1Qb1V2LAwpwCCIQcfXDaQuuBYjqAkQkyr8mguismCxAZp7z987UQeWKGOCsV3cdDijAIYhAhA/ebC+Dc2YHu6TsDUHID9fhAM6Oos4GD/JObvTciFRGKMAhiECEBzjlx4DaEvfbiALjgYosiSA6NVyHA3TeDE6X8wG9Cagu0MRcKgpwCCIQCY0BEnqy66e3ut+GOqgIQjmS+wEDbwEG3wFEpam9GnUwhTqPNxpoF6cAhyAClfaExk11QMkBdp0CHIKQH70euPoN4Ip5nWdEgzsyHe3iJynAIQjCV7gfjjuh8dndgGAHIpKBqFRl10UQROeFBzga6KSiAIcgAhU+suHUVsBub/k3Kk8RBKEGvJOqaC9QX6HqUmQNcMrLyzF16lRER0cjOjoaU6dORUVFRbv3EQQBc+bMQVpaGkJDQzF69Gjs2bOn1Xbr16/H2LFjER4ejpiYGIwePRr19doZ004QspPUFzCGAo2VTr8bjmjwRwEOQRAKEpHEjA4hAKc2q7oUWQOcKVOmYMeOHVi2bBmWLVuGHTt2YOrUqe3e56WXXsJrr72G+fPnY/PmzUhJScGll16K6upqcZv169dj4sSJGD9+PDZt2oTNmzfjgQcegF5PCSmiE2EwAmkD2fVzy1RnqIOKIAiVEMtU6upwjHLteN++fVi2bBk2bNiAYcNYyuqdd95BXl4eDhw4gF69erW6jyAImDdvHp588klce+21AID//Oc/SE5Oxqeffop7770XAPDwww/jwQcfxOOPPy7et0ePHnI9FYLQLl0GM1OtU1uAgVPYbc0NbLIxQBkcgiCUJ2MYsOMT1QMc2VIe69evR3R0tBjcAMDw4cMRHR2NdevWub3PsWPHUFhYiPHjx4u3mc1mjBo1SrxPUVERNm7ciKSkJIwYMQLJyckYNWoUfvvtN7meCkFoF1GH45IKLtoL2K1AaBwQna7OugiC6Lxww7/yY631gQoiW4BTWFiIpKSkVrcnJSWhsLCwzfsAQHJycovbk5OTxb8dPXoUADBnzhxMmzYNy5Ytw/nnn49x48bh0KFDbvfb2NiIqqqqFj8EERTwkQ1n97DWcMCpv0kb2LnbVQmCUIeEHsD9m4CZu1n7vEp4/chz5syBTqdr92fLFqYH0Lk5uAqC4PZ2V879u+t97I5o8N5778Udd9yBQYMG4R//+Ad69eqF999/3+3+5s6dKwqdo6OjkZGR4e3TJghtEtUFiEgBBJuzc4o6qAiCUBOdDkjspWpwA/igwXnggQdw4403trtNVlYWdu3ahbNnz7b6W3FxcasMDSclJQUAy+Skpjq9O4qKisT78Nv79OnT4r45OTnIz3dvDT179mzMmjVL/L2qqoqCHCI40OlYFmf/EiY07ppHAQ5BEAR8CHASEhKQkJDQ4XZ5eXmorKzEpk2bMHToUADAxo0bUVlZiREjRri9T3Z2NlJSUrBixQoMGjQIANDU1ITVq1fjxRdfBMCCp7S0NBw4cKDFfQ8ePIhJkya53a/ZbIbZbPb4ORJEQMEDnFObAWsTK1cBFOAQBNGpkS1/lJOTg4kTJ2LatGnYsGEDNmzYgGnTpuHyyy9v0UHVu3dvLFq0CAArTc2cORMvvPACFi1ahN27d+P2229HWFgYpkyZIm7zl7/8Ba+//jq+/PJLHD58GP/3f/+H/fv346677pLr6RCEdhFHNmwFivcDtibAHA3EZqu7LoIgCBWRrU0cAD755BM8+OCDYlfUlVdeifnz57fY5sCBA6isrBR/f/TRR1FfX48ZM2agvLwcw4YNw/LlyxEZGSluM3PmTDQ0NODhhx9GWVkZBgwYgBUrVqB79+5yPh2C0CZpgwCdHqg6BRz6kd2W2p8ExgRBdGp0giAIai9CaaqqqhAdHY3KykpERUWpvRyC8J8FI4CiPUBUOgt08h4AJjyv9qoIgiAkxZvvb7L+JYhggLeLV51il2mD1FsLQRCEBqAAhyCCAR7gcEhgTBBEJ4cCHIIIBrq4BDghEY5hdwRBEJ0XCnAIIhhI7MUCGwBI6a+6wRZBEITa0FGQIIIBvQHocj67TuUpgiAIedvECYJQkKH3AFVnnFPFCYIgOjEU4BBEsJBzBfshCIIgqERFEARBEETwQQEOQRAEQRBBBwU4BEEQBEEEHRTgEARBEAQRdFCAQxAEQRBE0EEBDkEQBEEQQQcFOARBEARBBB0U4BAEQRAEEXRQgEMQBEEQRNBBAQ5BEARBEEEHBTgEQRAEQQQdFOAQBEEQBBF0UIBDEARBEETQQQEOQRAEQRBBh1HtBaiBIAgAgKqqKpVXQhAEQRCEp/Dvbf493h6dMsCprq4GAGRkZKi8EoIgCIIgvKW6uhrR0dHtbqMTPAmDggy73Y4zZ84gMjISOp1O0n1XVVUhIyMDJ0+eRFRUlKT7JpzQ66wM9DorA73OykGvtTLI9ToLgoDq6mqkpaVBr29fZdMpMzh6vR7p6emyPkZUVBR9eBSAXmdloNdZGeh1Vg56rZVBjte5o8wNh0TGBEEQBEEEHRTgEARBEAQRdFCAIzFmsxlPP/00zGaz2ksJauh1VgZ6nZWBXmfloNdaGbTwOndKkTFBEARBEMENZXAIgiAIggg6KMAhCIIgCCLooACHIAiCIIiggwIcgiAIgiCCDgpwJGTBggXIzs6GxWLB4MGDsWbNGrWXFHTMnTsXF1xwASIjI5GUlISrr74aBw4cUHtZQc/cuXOh0+kwc+ZMtZcSdJw+fRq33HIL4uPjERYWhoEDB2Lr1q1qLyuosFqteOqpp5CdnY3Q0FB069YNzzzzDOx2u9pLC2h+/fVXXHHFFUhLS4NOp8PixYtb/F0QBMyZMwdpaWkIDQ3F6NGjsWfPHsXWRwGORHzxxReY+f/t3U9IVF0DBvBH59NR01edMWcMUQwGNbVShyC1JCqpLAyhv1bGrAQtTRBNoWzhVEYuakKZIjcluqjIFkFD1kwWpZhTUkFYplaIBGGlqajnXby8fsxn8C0a5+bx+cFd3COMz914Hs/ce09JCaqqqtDd3Y1169Zh69atGBgYUDqaVOx2OwoLC/H06VPYbDZMTU0hKysLo6OjSkeTVmdnJ6xWK1auXKl0FOl8/foV6enp8PHxwd27d/H69WucP38eISEhSkeTytmzZ9HQ0ACLxYI3b96gtrYW586dw8WLF5WOtqCNjo5i1apVsFgsv/x5bW0t6urqYLFY0NnZCb1ej82bN8/uBznvBLnFmjVrREFBgctYXFycqKioUCjR4jA8PCwACLvdrnQUKX3//l0YDAZhs9lEZmamKC4uVjqSVMrLy0VGRobSMaSXnZ0tTCaTy1hubq44cOCAQonkA0DcunVr9nxmZkbo9Xpx5syZ2bHx8XERHBwsGhoaPJKJKzhuMDk5ia6uLmRlZbmMZ2Vl4cmTJwqlWhxGRkYAABqNRuEkciosLER2djY2bdqkdBQptba2wmg0YteuXQgPD0dycjIuX76sdCzpZGRk4P79+3j79i0A4MWLF2hvb8e2bdsUTiavvr4+DA0NucyLarUamZmZHpsXF+Vmm+725csXTE9PQ6fTuYzrdDoMDQ0plEp+QgiUlpYiIyMDiYmJSseRTnNzM54/f47Ozk6lo0jr/fv3qK+vR2lpKSorK9HR0YGjR49CrVbj0KFDSseTRnl5OUZGRhAXFweVSoXp6WnU1NRg3759SkeT1r9z36/mxf7+fo9kYMFxIy8vL5dzIcScMXKfoqIivHz5Eu3t7UpHkc7g4CCKi4tx7949+Pn5KR1HWjMzMzAajTCbzQCA5ORkvHr1CvX19Sw4btTS0oJr166hqakJCQkJcDqdKCkpwbJly5Cfn690PKkpOS+y4LhBWFgYVCrVnNWa4eHhOe2V3OPIkSNobW2Fw+FAZGSk0nGk09XVheHhYaSmps6OTU9Pw+FwwGKxYGJiAiqVSsGEcoiIiMCKFStcxuLj43Hjxg2FEsmprKwMFRUV2Lt3LwAgKSkJ/f39OH36NAvOPNHr9QD+WcmJiIiYHffkvMh7cNzA19cXqampsNlsLuM2mw1paWkKpZKTEAJFRUW4efMm2traEBMTo3QkKW3cuBE9PT1wOp2zh9FoRF5eHpxOJ8uNm6Snp895zcHbt28RHR2tUCI5jY2NwdvbdbpTqVR8THwexcTEQK/Xu8yLk5OTsNvtHpsXuYLjJqWlpTh48CCMRiPWrl0Lq9WKgYEBFBQUKB1NKoWFhWhqasLt27cRFBQ0u2oWHBwMf39/hdPJIygoaM59TUuWLIFWq+X9Tm507NgxpKWlwWw2Y/fu3ejo6IDVaoXValU6mlR27NiBmpoaREVFISEhAd3d3airq4PJZFI62oL248cP9Pb2zp739fXB6XRCo9EgKioKJSUlMJvNMBgMMBgMMJvNCAgIwP79+z0T0CPPai0Sly5dEtHR0cLX11ekpKTw0eV5AOCXR2Njo9LRpMfHxOfHnTt3RGJiolCr1SIuLk5YrValI0nn27dvori4WERFRQk/Pz+xfPlyUVVVJSYmJpSOtqA9ePDgl3+P8/PzhRD/PCp+8uRJodfrhVqtFuvXrxc9PT0ey+clhBCeqVJEREREnsF7cIiIiEg6LDhEREQkHRYcIiIikg4LDhEREUmHBYeIiIikw4JDRERE0mHBISIiIumw4BDRglNdXY3Vq1crHYOI/mB80R8R/VH+307D+fn5sxt+arVaD6UiooWGBYeI/ij/7i8GAC0tLThx4oTLhpT+/v4IDg5WIhoRLSD8ioqI/ih6vX72CA4OhpeX15yx//2K6vDhw9i5cyfMZjN0Oh1CQkJw6tQpTE1NoaysDBqNBpGRkbh69arL7/r06RP27NmD0NBQaLVa5OTk4MOHD569YCKaFyw4RCSFtrY2fP78GQ6HA3V1daiursb27dsRGhqKZ8+eoaCgAAUFBRgcHAQAjI2NYcOGDQgMDITD4UB7ezsCAwOxZcsWTE5OKnw1RPS7WHCISAoajQYXLlxAbGwsTCYTYmNjMTY2hsrKShgMBhw/fhy+vr54/PgxAKC5uRne3t64cuUKkpKSEB8fj8bGRgwMDODhw4fKXgwR/bb/KB2AiMgdEhIS4O393//ZdDodEhMTZ89VKhW0Wi2Gh4cBAF1dXejt7UVQUJDL54yPj+Pdu3eeCU1E84YFh4ik4OPj43Lu5eX1y7GZmRkAwMzMDFJTU3H9+vU5n7V06dL5C0pEHsGCQ0SLUkpKClpaWhAeHo6//vpL6ThE5Ga8B4eIFqW8vDyEhYUhJycHjx49Ql9fH+x2O4qLi/Hx40el4xHRb2LBIaJFKSAgAA6HA1FRUcjNzUV8fDxMJhN+/vzJFR0iCfBFf0RERCQdruAQERGRdFhwiIiISDosOERERCQdFhwiIiKSDgsOERERSYcFh4iIiKTDgkNERETSYcEhIiIi6bDgEBERkXRYcIiIiEg6LDhEREQkHRYcIiIiks7f42/wXbfMhv4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -174,7 +174,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHFCAYAAAAzCLlHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyj0lEQVR4nOzdd3hUZfbA8e+dkkkPKZAQWkLvRUCa9CbYsKFiXde2qLvoqvtT3BVdBXtfe8OCYsGuNKUJ0nvvJJSQSnpmMjP398ede5OQNpPMJKDn8zw8CZOZvG8SyD33nPO+r6KqqooQQgghxBnK1NgTEEIIIYSoiQQrQgghhDijSbAihBBCiDOaBCtCCCGEOKNJsCKEEEKIM5oEK0IIIYQ4o0mwIoQQQogzmgQrQgghhDijSbAihBBCiDOaBCtCNKIPPvgARVFYv359Y0/lrHb48GEUReHZZ5+t1+e56aabCA8P99Os6k7/d3H48OHGnooQZwQJVoQQQghxRpNgRYg/sOLiYuT4r9oVFRU19hSEEDWQYEWIs8Bvv/3G6NGjiYiIIDQ0lMGDB/Pjjz9WeI5eOli4cCE333wzTZs2JTQ0FLvdDsDcuXMZNGgQYWFhhIeHM378eDZt2lThc+hlkP379zNx4kTCw8Np1aoV//znP43Poz9PUZQq/8yYMcNvX7e389G53W6eeOIJWrduTXBwMP369eOXX36p8JwZM2agKAobN27kiiuuIDo6mnbt2lU7h5UrVxIXF8eFF15IYWGh13P35mcGsHr1aoYMGUJwcDCJiYk8+OCDlJaWVvk5vfkZCvFHJMGKEGe4ZcuWMWrUKHJzc3n33Xf59NNPiYiI4KKLLmLu3LmVnn/zzTdjtVr56KOP+PLLL7FarcycOZNrrrmGrl278vnnn/PRRx+Rn5/P0KFD2blzZ4XXl5aWcvHFFzN69Gi+/fZbbr75Zl544QWeeuop4zn//ve/+f333yv8ue666wDo2rWrX79+b+aje/XVV5k/fz4vvvgiH3/8MSaTiQkTJvD7779Xeu5ll11G+/bt+eKLL3jjjTeqHPvzzz9n9OjRTJ48mW+//ZawsDCv5uztz2znzp2MHj2aU6dO8cEHH/DGG2+wadMmHn/88Uqf05efoRB/OKoQotG8//77KqCuW7eu2ucMHDhQbdasmZqfn2885nQ61e7du6stW7ZU3W53hc91ww03VHh9SkqKarFY1LvvvrvC4/n5+WpCQoI6efJk47Ebb7xRBdTPP/+8wnMnTpyodurUqdo5fv7556qiKOpDDz1U+xftA2/nc+jQIRVQExMT1eLiYuPxvLw8NSYmRh0zZozx2COPPKIC6n/+858qxwsLC1NVVVWffPJJ1Ww2q0899ZTP8/b2Z3bVVVepISEhalpaWoXnde7cWQXUQ4cOqarq289QiD8iyawIcQYrLCxkzZo1XHHFFRVWqZjNZq6//nqOHj3Knj17Krzm8ssvr/D3BQsW4HQ6ueGGG3A6ncaf4OBghg8fztKlSys8X1EULrroogqP9ezZkyNHjlQ5x2XLlnH99ddz3XXX8cQTT9T49bjd7gpzcLlctX0LfJrPZZddRnBwsPF3PZuxfPnySmOd/n3SqarK7bffziOPPMKcOXN44IEHap1jeb78zJYsWcLo0aOJj4+v8Lyrrrqqwuf09WcoxB+NpbEnIISoXk5ODqqq0rx580ofS0xMBCArK6vC46c/9+TJkwD079+/yjFMpor3LKGhoRUu+AA2m42SkpJKr92xYweTJk1i6NChvPvuu7V8NVqJavbs2cbfvbnQ+jKfhISEKh9zOBwUFBQQFRVlPF7V9xTA4XAwd+5cunXrxoQJE2qcW1V8+ZllZWVVO+fyfP0ZCvFHI8GKEGew6OhoTCYTJ06cqPSx48ePAxAXF1fhcUVRKvxd//iXX35JmzZt/Da3o0ePcv7559O6dWu++uorrFZrra+ZMWMGd911l/H3iIgIv80HIC0trcrHgoKCKu2fcvr3SWez2ViyZAnjx49nzJgxzJ8/n+joaK/n4MvPLDY2tto5lxeon6EQZwsJVoQ4g4WFhTFgwADmzZvHs88+S0hICKCVUz7++GNatmxJx44da/wc48ePx2KxcODAgWpLH77Kzc1lwoQJKIrCTz/9RGRkpFevS0pKIikpyS9zqMq8efN45plnjExMfn4+33//PUOHDsVsNnv9efr06cOyZcsYM2YMI0aMYNGiRTRr1syr1/ryMxs5ciTfffcdJ0+eNEpBLperUuN0IH6GQpxNJFgR4gzw66+/Vrlb6cSJE5k1axZjx45l5MiR3HfffQQFBfHaa6+xfft2Pv3002ozBLqkpCQee+wxpk+fzsGDBzn//POJjo7m5MmTrF27lrCwMB599FGf5jtlyhR27tzJW2+9RWpqKqmpqcbHWrZsScuWLX36fP5iNpsZO3Ys9957L263m6eeeoq8vDyfvz6ALl26sGLFCsaMGcOwYcNYvHix11+Xtz+zhx9+mO+++45Ro0bxn//8h9DQUP73v/9VWiIdiJ+hEGeVRm7wFeJPTV/BU90ffTXIihUr1FGjRqlhYWFqSEiIOnDgQPX777+v8nNVt7Lom2++UUeOHKlGRkaqNptNbdOmjXrFFVeoixcvNp5TfjVMefoKGl2bNm2qnfMjjzxS/2+Mj/PRVwM99dRT6qOPPqq2bNlSDQoKUvv06aMuWLCgytdmZGR4Nd7Ro0fVzp07q0lJSeqBAwe8nrs3PzNVVdWVK1eqAwcOVG02m5qQkKDef//96ltvvVXh56/z5mcoxB+RoqqyvaUQQgghzlzSQi6EEEKIM5r0rAghhJfcbjdut7vG51gs8mtVCH+TzIoQQnjpsccew2q11vinqkZpIUT9SM+KEEJ46fjx48ZeKdXp2bMnQUFBDTQjIf4cJFgRQgghxBlNykBCCCGEOKOd9Z1gbreb48ePExERUevmWEIIIYQ4M6iqSn5+PomJibWeb3XWByvHjx+nVatWjT0NIYQQQtRBampqrbtDn/XBin4QWmpqqtfnkwghhBCiceXl5dGqVSuvDjQ964MVvfQTGRkpwYoQQghxlvGmhSOgDbYzZsxAUZQKfxISEoyPq6rKjBkzSExMJCQkhBEjRrBjx45ATkkIIYQQZ5mArwbq1q0bJ06cMP5s27bN+NjTTz/N888/z6uvvsq6detISEhg7Nix5OfnB3paQgghhDhLBDxYsVgsJCQkGH+aNm0KaFmVF198kenTp3PZZZfRvXt3Zs+eTVFREXPmzAn0tIQQQghxlgh4z8q+fftITEzEZrMxYMAAZs6cSdu2bTl06BBpaWmMGzfOeK7NZmP48OGsWrWK22+/PdBTE0IIIQLO5XJRWlra2NNocFarFbPZ7JfPFdBgZcCAAXz44Yd07NiRkydP8vjjjzN48GB27NhBWloaAPHx8RVeEx8fz5EjR6r9nHa7Hbvdbvw9Ly8vMJMXQggh6kFVVdLS0jh16lRjT6XRNGnShISEhHrvgxbQYGXChAnG+z169GDQoEG0a9eO2bNnM3DgQKByF7CqqjV+UbNmzeLRRx8NzISFEEIIP9EDlWbNmhEaGvqn2rhUVVWKiopIT08HoHnz5vX6fA26dDksLIwePXqwb98+Jk2aBGg/zPJfRHp6eqVsS3kPPvgg9957r/F3fZ22EEIIcaZwuVxGoBIbG9vY02kUISEhgHZdb9asWb1KQg16NpDdbmfXrl00b96c5ORkEhISWLRokfFxh8PBsmXLGDx4cLWfw2azGXuqyN4qQgghzkR6j0poaGgjz6Rx6V9/fXt2AppZue+++7joooto3bo16enpPP744+Tl5XHjjTeiKArTpk1j5syZdOjQgQ4dOjBz5kxCQ0OZMmVKIKclhBBCNIg/U+mnKv76+gMarBw9epRrrrmGzMxMmjZtysCBA1m9ejVt2rQB4IEHHqC4uJipU6eSk5PDgAEDWLhwoVdb7wohhBDiz0FRVVVt7EnUR15eHlFRUeTm5kpJSAghxBmhpKSEQ4cOkZycTHBwcGNPp9HU9H3w5frdoD0rQgghhBC+kmClgZS6SznLk1hCCCFEo5BgpQHk2nOZ8NUE7lh8R2NPRQghhKhVy5Ytee211yo8tmrVKkJDQ2vcuDVQGnSflT+r7w98z8mik5wsOklRaRGh1j/3UjYhhPgzUlWV4lJXg48bYjX7vCpn4MCBrFu3zvi7qqpMmzaNadOmGYtkGpIEKw1gV/Yu4/2DuQfpHte9EWcjhBCiMRSXuuj6nwUNPu7Ox8YTGuTb5X7gwIF88MEHxt8/+ugjUlJSePDBBwH44Ycf+Oc//4nb7eZf//oXt9xyiz+nXImUgRpATkmO8f7B3IONOBMhhBCidgMHDmTXrl0UFBRQVFTEQw89xOOPP05ERAROp5N7772XX3/9lY0bN/LUU0+RnZ0d0PlIZqUB5DnKDlvMKs5qxJkIIYRoLCFWMzsfG98o4/qqX79+mM1mNm7cyOLFi4mNjeXmm28GYO3atXTr1o0WLVoAMHHiRBYsWMA111zj13mXJ8FKA8i15xrv59hzanimEEKIPypFUXwuxzSW4OBgevXqxbx583jrrbf4/vvvMZm0Yszx48eNQAW0Ztxjx44FdD5SBmoA5TMrp0pONd5EhBBCCC8NHDiQl19+mTFjxjB69Gjj8aq24Qj0sQISrASYqqrk2csFK/ZTjTcZIYQQwku9e/fGYrHwzDPPVHi8RYsWFTIpR48epXnz5gGdiwQrAVbkLMKpOo2/S7AihBDibPDJJ58wdepUOnXqVOHxc889l+3bt3Ps2DHy8/P56aefGD8+sL04Z0fx7CxWvl8FJFgRQghx5nK73WRkZPDuu++yZ88evv7660rPsVgsPPfcc4wcORK3280DDzxAbGxsQOclwUqAFZUWVfh7oaOwkWYihBBC1Gz58uWMGjWKzp07M2/ePKKioqp83sUXX8zFF1/cYPOSYCXASlwlFf5e6JRgRQghxJlpxIgRuN3uxp5GJdKzEmAlTi1YiQzSjr8uLC3ErZ55/xCEEEKIM5UEKwGmZ1biQuKMx4qdxY01HSGEEOKsI8FKgOmZlShbFGZF20WwwFHQmFMSQgghzioSrASYnlkJNgcTZg0DpG9FCCGE8IUEKwGmZ1ZsFpsRrJy+QkgIIYQQ1ZNgJcD0YCXEHGIEKwWlUgYSQgghvCXBSoAZZSBLuTJQqZSBhBBCCG9JsBJgRhnIbCPcGg5IsCKEEEL4QoKVADPKQJYQQq2hgAQrQgghhC8kWAkwvQxks0hmRQghhKgLCVYCTM+sVFi6LMGKEEII4TUJVgKsfIOtlIGEEEKcDVq2bMlrr71W4bFVq1YRGhrKkSNHGnw+cpBhgNmddkAabIUQ4k9PVaEx9tmyhoKi+PSSgQMHsm7dOuPvqqoybdo0pk2bRps2bfw9w1pJsBJgDrcD0IIVt1U7wFCCFSGE+BMqLYKZiQ0/7kPHISjMp5cMHDiQDz74wPj7Rx99REpKCg8++CAAl156KUuXLmX06NF8+eWX/pxtlaQMFGCl7lIArCarUQaSTeGEEEKcyQYOHMiuXbsoKCigqKiIhx56iMcff5yIiAgA/v73v/Phhx822HwksxJgDpeWWbGardiwAXLqshBC/ClZQ7UsR2OM66N+/fphNpvZuHEjixcvJjY2lptvvtn4+MiRI1m6dKkfJ1kzCVYCTA9WgkxBBJmDADkbSAgh/pQUxedyTGMJDg6mV69ezJs3j7feeovvv/8ek6nxijFSBgowowxkthJq0aJbyawIIYQ40w0cOJCXX36ZMWPGMHr06EadiwQrAaYHK0GmIKNnRTIrQgghznS9e/fGYrHwzDPPNPZUJFgJNKMMZA4yMitFTglWhBBCnNk++eQTpk6dSqdOnRp7KtKzEmhGg2251UB2lx2n24nFJN9+IYQQZw63201GRgbvvvsue/bs4euvv67yeePHj2fjxo0UFhbSsmVLvv76a/r37x+wecnVMsD0fVbK96yA1rcSERTRWNMSQgghKlm+fDmjRo2ic+fOzJs3j6ioqCqft2DBggadlwQrAeZ0OwGtZ8VqtmIxWXC6nRSVFkmwIoQQ4owyYsQI3G53Y0+jEulZCbDyPSuA9K0IIYQQPpJgJYBcbhcu1QVomRWgbEWQBCtCCCGEVyRYCSB92TJoPStQLrMiy5eFEEIIr0iwEkB6cy2Uy6zIxnBCCCGETyRYCSC9XwUwlinLxnBCCCGEbyRYCaBSV9nutYqiANJgK4QQQvhKgpUAKn8ukC7EGgJIZkUIIYTwlgQrAVT+xGWdZFaEEEII3zRYsDJr1iwURWHatGnGY6qqMmPGDBITEwkJCWHEiBHs2LGjoaYUcOV3r9VJz4oQQgjhmwYJVtatW8dbb71Fz549Kzz+9NNP8/zzz/Pqq6+ybt06EhISGDt2LPn5+Q0xrYArfy6QTjIrQgghhG8CHqwUFBRw7bXX8vbbbxMdHW08rqoqL774ItOnT+eyyy6je/fuzJ49m6KiIubMmRPoaTUIvWdF370WJLMihBBC+Crgwcqdd97JBRdcwJgxYyo8fujQIdLS0hg3bpzxmM1mY/jw4axataraz2e328nLy6vw50xlNNhKZkUIIcRZpGXLlrz22msVHlu1ahWhoaEcOXKkwecT0IMMP/vsMzZu3Mi6desqfSwtLQ2A+Pj4Co/Hx8fX+I2YNWsWjz76qH8nGiD6IYYVghXZbl8IIf6UVFVtlA1BQywhxvYZ3ho4cGCFa7eqqkybNo1p06bRpk0bf0+xVgELVlJTU/nHP/7BwoULCQ4OrvZ5p38DVVWt8Zv64IMPcu+99xp/z8vLo1WrVvWfcADomRV9Qzgot4NtqexgK4QQfybFzmIGzBnQ4OOumbLGuFH21sCBA/nggw+Mv3/00UekpKTw4IMPkpqayvXXX096ejoWi4V///vfXHnllX6edUUBKwNt2LCB9PR0+vbti8ViwWKxsGzZMl5++WUsFouRUdEzLLr09PRK2ZbybDYbkZGRFf6cqfTMSlXBimRWhBBCnKkGDhzIrl27KCgooKioiIceeojHH3+ciIgILBYLL774Ijt37mTx4sXcc889FBYWBnQ+AcusjB49mm3btlV47C9/+QudO3fmX//6F23btiUhIYFFixbRp08fABwOB8uWLeOpp54K1LQaVJU9K9JgK4QQf0ohlhDWTFnTKOP6ql+/fpjNZjZu3MjixYuJjY3l5ptvBqB58+Y0b94cgGbNmhETE0N2djZhYWF+nXd5AQtWIiIi6N69e4XHwsLCiI2NNR6fNm0aM2fOpEOHDnTo0IGZM2cSGhrKlClTAjWtBlVVZkX/RyOZFSGE+HNRFMXnckxjCQ4OplevXsybN4+33nqL77//HpOpcjFm/fr1uN3ugLdjBLTBtjYPPPAAxcXFTJ06lZycHAYMGMDChQuJiIhozGn5TZVlIMmsCCGEOAsMHDiQl19+mQsvvJDRo0dX+nhWVhY33HAD77zzTsDn0qDBytKlSyv8XVEUZsyYwYwZMxpyGg2mytVAeoOtsxi36sakyIkHQgghzjy9e/fGYrHwzDPPVPqY3W7n0ksv5cEHH2Tw4MEBn4tcKQOoqtVAYVatpqfSOEvYhBBCCG988sknTJ06lU6dOlV4XFVVbrrpJkaNGsX111/fIHNp1DLQH11VmRWb2YZFseBUnRSWFhrBixBCCNHY3G43GRkZvPvuu+zZs4evv/660nNWrlzJ3Llz6dmzJ9988w2gLW3u0aNHwOYlwUoAVdWzojdY5TnyKCgtoBnNGmt6QgghRAXLly9n1KhRdO7cmXnz5hEVFVXpOeeddx5ut7tB5yXBSgBVtXQZINwaTp4jj0JHYNelCyGEEL4YMWJEgwci3pCelQCqKrMCEBaklX4KSgsafE5CCCHE2UaClQAyghWlYrASbg0HoLBUMitCCCFEbSRYCSCjDGSuWAbSm2olWBFCCCFqJ8FKAFW1dBnKghUpAwkhxB+bqqqNPYVG5a+vX4KVAJIykBBC/DlZrVpGvajoz71buf7169+PupLVQAFUbYOtZFaEEOIPzWw206RJE9LT0wEIDQ1FUZRGnlXDUVWVoqIi0tPTadKkCWazuV6fT4KVAKpp6TIgS5eFEOIPLCEhAcAIWP6MmjRpYnwf6kOClQCSzIoQQvx5KYpC8+bNadasGaWlpY09nQZntVrrnVHRSbASQNUFK+FBWmZFTl4WQog/PrPZ7LeL9p+VNNgGUHVloFCrdvKyZFaEEEKI2kmwEkDVZlZkNZAQQgjhNQlWAsipVj51GcqClXxHfoPPSQghhDjbSLASQHpm5fRgJTIoEoD8UglWhBBCiNpIsBJApa6qd7CNCIoAtMyKWz3zTrcUQgghziQSrASQXgY6PViJtGmZFbfqlr4VIYQQohYSrARQdQ22NrMNm9kGQJ4jr8HnJYQQQpxNJFgJoOqWLkNZ30qeXYIVIYQQoiYSrARQdZkVqNi3IoQQQojqSbASQHpmpapgxcisSBlICCGEqJEEKwFU3dJlKGuylWBFCCGEqJkEKwHkVWZFelaEEEKIGkmwEkDe9KxIZkUIIYSomQQrAVRjGUh6VoQQQgivSLASIKqqSoOtEEII4QcSrASIS3UZ71eVWYmyRQGQa89tsDkJIYQQZyMJVgJELwFB1ZmV6OBoAHJKchpsTkIIIcTZSIKVANFLQFB1ZiUmOAaA7JLsBpuTEEIIcTaSYCVAvM2snLKfQlXVBpuXEEIIcbaRYCVA9GDFpJgwKZW/zdE2LVixu+wUO4sbdG5CCCHE2USClQCp6RBDgBBLiHHyspSChBBCiOpJsBIgNW0IB6AoSoVSkBBCCCGqJsFKgNQWrEBZKUgyK0IIIUT1JFgJEGNDOKWGYEWWLwshhBC1kmAlQIyt9s1V96yALF8WQgghvCHBSoB4k1lpGtIUgIzijAaZkxBCCHE2kmAlQLzpWWka6glWiiRYEUIIIaojwUqAGEuXaygD6ZmV9KL0BpmTEEIIUeIs4b3t7/HDwR8aeypeq/62X9SLkVmpqQzkyaxkFmc2yJyEEEL8ueU58rjx5xvZf2o/AEWlRUzuNLmRZ1U7yawEiNFgW82mcADNQpoBWs+KbLkvhBB/Pg6Xg/uW3cdN82/ik12fBPxa8PW+r9l/aj/B5mAAZq2ZxcnCkwEd0x8kWAkQp1p7z0pcaBwAxc5iCkoLGmReQggharbi6AqWH13eIDeR729/nwWHF7Dh5AaeXPskC48sDNhYqqryzf5vALi///30btobp+rkuwPfBWxMf5FgJUBKXTVvtw/alvsRQRGA9K0IIUR1ip3FDZZ9fn/7+0z9ZSp3/nIn/1z2T+N3eSAcKzjGW1vfAiAyKBKAFza8gN1lD8h4O7N3sv/UfmxmG+cnn8/lHS8H4Ov9X+NW3QEZ018CGqy8/vrr9OzZk8jISCIjIxk0aBA///yz8XFVVZkxYwaJiYmEhIQwYsQIduzYEcgpNRhvMisACWEJAJwoPBHwOQkhxNnm+wPfM+TTIVz1w1Vsz9we0LHWp63n+Q3PA9ohtIuOLOKbA98EbLyfD/2Mw+2gX3w/Fl2xiGYhzThWcIxFRxYFZLxfjvwCwMhWI4kMimRcm3GEWcNIzU8N+Pe2vgIarLRs2ZInn3yS9evXs379ekaNGsUll1xiBCRPP/00zz//PK+++irr1q0jISGBsWPHkp+fH8hpNQhvli4DJIYlAnC84HjA5ySEEPX1y5FfeGDZAzz6+6M4XI7AjpXyC9N/m06pu5Rd2bu4deGtAd1Ec96+eQBc1PYi7ut3HwDvbnvXWN3pb8uPLgdgQvIEQq2hTOowCYBFhwMTrGzJ2ALAgOYDAAi1hjI4cTAAq46vCsiY/hLQYOWiiy5i4sSJdOzYkY4dO/LEE08QHh7O6tWrUVWVF198kenTp3PZZZfRvXt3Zs+eTVFREXPmzAnktBqEN2UggMRwCVaEEHWjqiqLjizira1vsejIooCXShYeXsi0pdP4+fDPfLn3S6b/Nj2g5YM3t7yJisol7S6hU3QnCkoLeG/bewEZq6i0iMUpiwGY3GkyV3S8gpjgGI4VHDMyEv50quSUETwMbTEUgHFtxgHw27HfKCwt9Ot4TreTbZnbAOjVtJfx+MDmAwFYfWK1X8fztwbrWXG5XHz22WcUFhYyaNAgDh06RFpaGuPGjTOeY7PZGD58OKtWVR/h2e128vLyKvw5E3lbBmoR3gKQYEWIP4qNJzfy0c6PjLvmQJp/eD73Lr2XVza9wr1L7+WDHR8EbKxSVykvbnwRgGEth2ExWZh/eH7A9urYlbWLXdm7sJqs3NfvPv5xzj8A+GzPZ2QVZ/l9vEVHFlHsLKZNZBt6Ne1FiCWEyzpcBhCQpteVx1fiVt20b9Ke5uHNAegY3ZGkyCQcboff//3sP7WfYmcx4dZw2jVpZzw+qPkgQMu6FJUW+XVMfwp4sLJt2zbCw8Ox2WzccccdfP3113Tt2pW0tDQA4uPjKzw/Pj7e+FhVZs2aRVRUlPGnVatWAZ1/XXlbBmoepv0jPVZ4LOBzEuLPaHP6ZmatmcWOzMD3w32882NunH8jT697mjt/uZPvD3wfsLEyizN5Ys0TAHSP7Q7AixtfZFP6poCM99W+r0jNTyUuJI5nhj3DHT3vAODDHR8GJKOjr1oZ1XoUTYKbcF6L8+gS0wW7yx6Qng49OJiYPBFFUQAY02YMoGU6Spwlfh1Pz2ToWRUARVEY2Xok4P+yzJZ0LYvTI64HJqXs0t8qshUtwlvgdDtZf3K9X8f0p4AHK506dWLz5s2sXr2av/3tb9x4443s3LnT+Lj+j0Knqmqlx8p78MEHyc3NNf6kpqYGbO71YexgW0sZSDIr4s+k1FXKF3u/4OWNL7Pw8MKAly2eXPsk1/98PXN2z+Han67l450fB2ysI3lHjMxDp+hOAPxn5X/YmbWzhlfV3bvb3iXXnkvnmM58OPFDLmh7AW7VzZtb3wzIeHoG5a/d/0qoNZSrO19NiCWEPTl7/H6Rc6tufj6kLcaY1H4SoF0rLmh7AaBllPxJVVU2pm8E4NyEc43Hu8Z0pXlYc4qdxfx+/He/jrkjSwueezfrXeHxgQlaWWbNiTV+/f+xNXMrAD2b9qz0Mf1rDlSg6w8BD1aCgoJo3749/fr1Y9asWfTq1YuXXnqJhARtFczpWZT09PRK2ZbybDabsbpI/3MmMg4yrCWz0jKiJaDdJfm7RinOTqqqNtgyTYfLwROrn+C2hbcxe8dsip3FARtLVVWeWPMEj/3+GG9ve5t/Lvsnb297O2DjbTy5kU92fYKCQo+4HrhUF8+sf4a9OXsDMt7T657G7rIzoPkA5l44l5GtRuJUncbSVH9yup3GxfzuPndjNVm5s/edKCisPLaSg7kH/TpeZnEmWzO0i924JK10H2WL4uJ2FwPw5d4v/Trevpx95NhzCLGEGM2gAOOTxgPaz9afG5ml5qeSWZyJ1WSlR9MexuOKojC69WgAlh5d6rfxip3FHDh1AIBusd0qfKx3s95YTBZOFJ7gaMFRv425J3tPleNBWQ+L3kNzJmrwfVZUVcVut5OcnExCQgKLFpWl8xwOB8uWLWPw4MENPS2/87YMFGWLIiY4BoDDuYcDPS1RB0WlRRzJO+L3NHBV0ovS+cuCvzBwzkDuXXqv3y865RU4Crh14a18tuczfj/xO8+uf5b7lt0XsIbJuXvm8tW+rzApJsa2GQvAK5teYfGRxX4fS1VVXtjwAgCXd7ycORfMYWybsbhVN0+tfcrvwWB6UTorjq4A4OEBD2M2mZl2zjQUFH5J+cW4MPnLurR1ZJVk0cTWhEGJWs9Bq4hWjGg1AoA5u/y7SGFZ6jJUVLrHdqdZaDPj8QvbXghoJRR/rgzSMzV9mvWpkJ1OCEugT7M+qKj8kuK/plc9q9I9rjs2s63Cx4a0GAJomQ5/2ZO9B7fqJi4krsL3E7QVOj3jtOzH2hNr/TKey+3iUO4hANo3aV/p43p2Z3vmduPadaYJaLDy0EMPsWLFCg4fPsy2bduYPn06S5cu5dprr0VRFKZNm8bMmTP5+uuv2b59OzfddBOhoaFMmTIlkNNqEN6WgQCSo5IBAnph+qNQVZVtGdt4Z9s7/HTwp4BvZLTmxBpGfTGKC7++kKGfDTXq6IGQkpfCVT9cxYaTGyhyFrHoyCJuX3R7QJoJAV7f8job0zcSbg3njl53EGQKYvnR5by33f+rLewuO69tfg2AaedM4/kRz3N91+sBeGnjS7jcLr+Ot+r4KjZnbCbYHMzfev0NgH/2+ydBpiDWpq31e9ni50M/o6LSq2kvkqKSAGjbpC2jWo8C4KOdH/l9PNBWj5T/HXN156sBWHB4gV8vOktSlwAYwZCuZ9OeNAtpRkFpgV9Xk6xLWwdA/4T+lT42vOVwAL+WZTae1IKVPs36VPrYOc3OwaJYOFZwjKP5/sl06CWgbrHdqmx7OLe5VpZZm+afYOVYwTEcbgc2s81YgVpeclQyEUERFDuLA5Z5rK+ABisnT57k+uuvp1OnTowePZo1a9Ywf/58xo7V7qoeeOABpk2bxtSpU+nXrx/Hjh1j4cKFREREBHJaDcLbzApA26i2AEbkW18Ol4PVJ1b77T9WTewuO7PWzOLy7y7n7l/u9ntd93RPrHmCKT9N4aWNL/GvFf/itoW3BWzfhdUnVjN18VQKSwuxKBZKXCX8Z+V/mH/Iv/Vy3XPrnyOzOJP2Tdrz2ujXSIpMIq0wjX8t/5ffMwGZxZl8vudzAJ4a9hR39r6Thwc+DMDrm18noyjDr+MtOLyAHHsOCWEJRpByZ+87ibJFcTjvMD8f/rmWz+CbHw/+CMClHS417lxbhLfgkvaXAPDF3i8CMp7eU6Gb0lm78Vp4ZKHfMg8ut8vIKkxInlDhY+cmnEu0LZpT9lN+C8hKXaVGVuH0YMWkmIyAzF+ZDrfqNubeL75fpY/r+4KsTVvrt91l9V6Nc5qdU+ljodZQozTkr+BBb/buFle5JANlQZO/yjJ6Zi85KhmzyVzp4ybFZPSybE7f7Jcx/S2gwcq7777L4cOHsdvtpKens3jxYiNQAa0eOGPGDE6cOEFJSQnLli2je/fugZxSg/F2nxUoy6z4I1hZfnQ5k76dxK0Lb2XCvAn8Zf5fAnZnnl2SzV/m/4U5u+ewN2cvS48uZeriqQHbfXHevnnM3TMXBYXhLYcTYglhTdoaHv7tYb9fzEvdpTz2+2M43A5GthrJ6mtXM7njZFRUHln1iN9Pyt6cvplfU3/FpJh4bvhzDG05lJdGvmR8jcuOLvPreO9vf58SVwk943oaqxEmtZ9E76a9cbgdzN4x26/jfbrrUwCu6nSVEcCHWcO4seuNgNYs6q+fod1l59fUXwFtZUd5V3S8AoDFRxaTU5Ljl/EO5x5mV/YuzIrZ6KnQ9Y3vS7OQZuQ78vnt2G9+GW/fqX3kOfIIs4ZVygRYTBYjePDXxmJ7cvZQ4iohyhZFx+iOlT6ur5hZmrrUL5nOfTn7yLXnEmIJqfJi3immEzHBMRQ5i9icsbne4xWWFnIk7wiglYGqojeg+it7pDddV9U/AtAzricKCscKjvnld82BXC1Y0W+Mq3Km963I2UABou+z4k2wov8Dqm8ZaHP6Zu7+9W5S81OJCIrApJhYf3I9U3+ZGpDm3cdXP862zG1E2aL475D/Mj5pPE7Vyf3L7jfSnP6SkpfCE6u1ZZp39bmLV0e/ykcTPiLIFMSKYyv4at9Xfh3vu/3fkZqfSkxwDE8OfRKb2cb0gdPpHtudImcR/9v8P7+O98qmVwAtYGjbRPv30LZJW+PO/LXNr/ntYl7iLDEyC3f0usNIQyuKwq09bwXg872f++1ivitrF9uztmM1WY19K3RXd76aYHMw+0/tN1Yr1NfKYyspLC0kPjS+0sqHrrFd6RrblVJ3qd+WFetLTPvF9zP6z3Rmk5nzk88H4KdDP/llvA0nNwDa3XdVd8n6xmKLUxb7pbym32n3atqrypLFOc3OIcQSQnZJNvty9tV7PH3jsp5xPav8/WlSTEafjj8yufty9qGi0iykGbEhsVU+R2/yXZe2rt7/Dx0uB4fzDgNlq8ZOFx5UtheKvuS4Pg6e0q4t5fdXOZ3eJ+Pv393+IsFKgOiZFV/KQCl5KXVOaxaWFvLgigdxq27GthnL4isW8/UlXxNti2Zn1k4eWfVInT5vddaeWMuiI4swKSbeHvs2k9pP4qmhTzGq1ShcqovHf3/cr30I721/D4fbwYDmA7ilxy2Adof193P+DsDz658n3+GfYxocLgdvbH0DgFt73EqoNRTQfkne3/9+QMvy+KtpMjUvlbVpazEpJqO/QndjtxsJtYSyK3uX37Irq46vothZTPOw5pzX4rwKHxvaYiidYzpT7Cz220msepZjeMvhlS7mEUERxp25v/qBFhxeAGirVsrvJ6G7tP2l2vOOLPDLeHqJZGDiwCo/PrGtlt1ZlrrML6ut9GClb3zfKj/ev3l/IqwRZJdksz2r/ue96Hfa5Xc9Lc9qthrlGn9kHox+jmpKJFBWCvLHeLuydwHQObZztc/pEdcDi8lCZnEmqfn12y7jUO4hXKqLyKDISs215fkz06FnVtpFVR+s6FmlI3lHyLXn1ntMf5NgJUB8yawkhCUQGRSJU3Wy71Td7kxe3vgyRwuOkhiWyKODHyXUGkrbqLa8OvpVzIqZBYcX+K2fxOV28eS6JwG4suOVdIntAmh3kQ8PfJhwazjbs7b7LduRXpRuXDjv7H1nhQvQdV2uo11UO/JL8/22AuKXlF9IK0yjWUgzrux0ZYWPnRN/DiNbjcStuv3WNKnvGTEgYYBxsKUuOjiaqzpdBcBnuz/zy3j66pvRrUdXulNWFIUrO2pf89f7vvZLNmdZqhZkDW81vMqP6/tozD80v94Xc5fbxYpj2qocfcXR6Ua3Ho2CwtaMrfVe/upyu1h3UmsGLb8/R3n6Xh0lrpJ6r+5QVdUIVqrq5wDtd44eOPmj9KSXWno37V3tc/Qt238/Uf/fMUY/RzUlEij7Xu/I2lHvmxR9SW91WQ6AYEswPeK0vhX9+19XegNr+ybta9xTzF/Bilt1Gy0Geta2KlG2KFpHtAZokA0UfSXBSoD4kllRFMX4j1mXky+zirOMfQ4eGfwIEUFlDco9m/Y0VgjMWjvLLw1pS1OXsi9nH5FBkdzV+64KH2sa2pQ7e98JaOd6+KOp8OOdH1PqLuWcZudUqtGbTWZu63kbAB/u/JACR0G9x9MDo0s7XFppGSPATd1uArRNsvxRKtGbS09vltTpAdOq46vq3TRd6io19ouo7mI+IXkCweZgDuQeMFLydXWy8CS7snehoFTYqbO8/gn9aRHegoLSApamLq3XePrFK8IaYVxcTtc0tKlxIdCzPnW1O3s3+Y58wq3hdI3tWuVzFEUxVrDoq2rq6lDeIbJLsrGZbTVezPXv9W9H6xespBWmkVaYhkkxVdvPAWVZpY0nN9br/7zdZTdu2GrKrCSEJdA6ojVu1W2s5Kmr3dm7AegcU31mBcqab/VlznW1/9R+ADpEd6jxeb2aaf9Gd2TtqNfv7ROFJyh2FmMxWWgVUfOO7/rPuL7/7wNBgpUA0VcDWc21Z1ag7B9JXXa7/HT3pzjcDnrE9TDOeShvau+pxATHcCj3EN8frH+d/pPdnwDaYV9NgptU+vjkTpNpFtqM9OJ0vj3wbb3GsrvsfLlPC8T+2uOvVT5nfNJ4kiKTyHPk1XtzqsziTKMH4aJ2F1X5nD7N+tA1tqs2t3qOtz9nP/ty9mExWRjdZnSVz2kV0YrBiYNRUeudrVqbtpZ8Rz6xwbHVpvUjgiKMQEY/hbaulh/TtjDv0bRHtf0AJsVkNMLWd6WVnj0c0HxAjTcKeumpvgfUrUnTSkD94vvVOJ6+imb50eX1akLV7+p7Ne1V4+8WfW+QHVk76rVaTr+r7xTdySiHVqVDkw7EBsdS7CyuVyZgX84+nG4nTWxNjBPpq6Mva67PCh2n22n02dQarMR7gpV6BkdGsNKk5mAlKTKJyKBI7C47e3L21Hk8vVydFJlU682zHuDX5aY50CRYCZBST83PotSeWYGylKevzU3FzmI+26OVB27sdmOVacXIoEhu7n4zoK26qM/+C3uy97AubR1mxWyUJ04XZA4ysg/vbXuvXuMtSVlCviOfhLAEhiQOqfI5ZpPZGO/T3Z/Wq1dG37ulZ9OetIlsU+VzFEXhui7XAdpGZ/UZT8+qnNfiPCKDqt+NuXxppj7fT/1U2dGtR1fZnKnTSzP1XXKrl4BGtBxR4/P0JtQVx1bUK62vlyH0Bszq6Ctm1p9cX6/smN6vUn6X1ar0T+hPqCWUjOIMdmXtqvN4tfWr6JqFNqNTdCdU1HqdMaMHHlVt0V6eoihGdqU+5ebyq2RqKpFAWSlI35OlLg7lHsLhdhBmDTN2E69O72a9UVBIyU+p19J+PThqH115c7byyi8nrk8A6E1zra58ZqWhdtH2lgQrgVCQTmmK9h/WesS7XxR6ynNfzj6fShnf7P+GXHsuLcNbMqb1mGqfd2XHK2lia0JKfgoLD9f9BNE5u7W+kDFtxlTqryjv8g6XE22L5mjB0XotZdabLi9ud3GNF9cL2l5AlC2K44XH61VK0DNPF7WtOquiG580nia2JpwsOsnK4yvrNJaqqkYmYUJS1SUg3fBWWnNqVklWnS8+LreLX1O0skd1WRxd3/i+NAut35LbYmex0QA5rOWwGp/boUkH2ka1pdRdaszRV4WlhcbKidqClVYRregc0xmX6qrzv5dSV6lxl61v4lWdIHOQke2o67btqqqyPk3bf6S2YAUwmqfr07eifz9PP7+mKnrfSn12etVv1qorqZWnZ1Z2Z++uc0OoXgLqFN2pymbs8iKDIo2l2xvS69a3UuAo4EThCaDqnWRPZ/St1GNFkDfNtbrOMZ2xKBaySrJIK6z+QOHGIMFKIGTuxelJ9Vqyj3j1Er0G61JdXjdwudwuPtzxIQA3dLuhxot5qDXUyAa8ve3tOqWiCxwFxs6Z13S+psbnhlpDjed8tPOjOkXpaYVpxoV5UrtJNT432BLMFR20PTT0MpWv9ubsZXf2biwmC+cnnV/jc4PMQUaZ6Ku9dSvN7MzeSUp+CsHm4EqbbZ3OarIaG47VddXMpvRNZJdkExkUWeXOoOWZTWYjgNI3PPPV2hNrsbvsNA9rXuX+HOUpimJkV+p6SN36tPU4VSctw1vWWpsHjDNf6rqZ2ZaMLZS4SogJjqk1pQ9lO6/WNTg6Xnick0UnsSiWWjMdUFYKWnVsVZ3+v9tddnZma5mO6kqG5enByvas7XUOHmrbLK28pqFNSY5KRkWt8wZ4RnNtTPXNteXpQWJdS0F6CahZSDOibFG1Pt8fTbZ6ZqWm5lpdsCXY6KU50/pWJFgJhIKTlHpSmFYfsiT63Zm3y/F+SfmFowVHibJFcUm7S2p9/jVdriHcGs7+U/vr1Oj306GfKHYW0zaqbZU7PZ5ucqfJBJmC2Ja5rU7/2b4/8D0qKn3j+9IqsvaLz9Wdr8asmFmXts74JeSLHw5op8oObzm8yl6c0+nB0bKjy+qUFtazKsNbDa+xH0Cn/4yXpi7lVMkpn8fTS0AjWo3wapWaseT26LI6NS7rS62HtRxWa0ofMALE1cdX16k0420JSKdnIlcdX1WnfYj0XolzE8716usb2nIoCgq7s3fX6a5Vv4npFteNEEtIrc/v3aw34dZwcuw5dVrdsTNrJ063k9jgWFqG11wiAe2GKzkqWduBNs334KHEWWJczGtqHi6vvqWg3TlaZqVLTBevnl/fvhW9ebi25lpdj7geKCgcLzxep98xqqr6lFnRx4Qzr29FgpVAyD+J0/O7y5dgRa976017NVFVlQ92fADA1Z2u9upiFxkUaawMenvr2z5nO/Rm0ss7XO7VL+fYkFgj+/Dhzg99GktVVSOD4E0gBtovS/1uWS9XecvldhkZhNpKQLq2TdrSp1kfXKrL52yHW3UbGYTaSkC6TjGd6BzTmVJ3qc/b06uqaixZrm4V0Om6xHQhKTKpwo6wvoynByu1ZY10yVHJdI7pjFN1GoGVL/ReCX0Pjtq0a9KOpMgkSt2lLD+63OfxvO1X0cUExxjlFL2Xxxfe9qvorCarke347bjvpSC99FDdZnBVqc8S5j05e3CpLmKCY4gPjffqNXqwUpfSk6qqZWUgHzMre3P2kufI83nM/TlaMOZNCQi0zeH03pa63PCdLDppHBdSXQ/e6c7UFUESrARCwUlK0f5zW0q8bxYckDAAk2JiX86+Wjce2pi+kW2Z2wgyBRkBiDeu73o9weZgdmTt8KkRbmfWTnZl78Jqsla7SqYqeunpl5RffNpMaVP6JlLyUwixhFTawrzG8bpq4/148Eef7s7XpK0hvTidKFsUQ1tWvcS2Kpd3uByAr/Z95VOqfUvGFtIK0wizhnFey/Nqf4GHHrh9t9+3Ddu2Z27nZNFJQiwhXmceFEUxsis/HfRt99Xd2btJL0onxBJSa8mpPD27suCQbxu2pRWmcTD3ICbFVGv/iE5RlDqXgopKi4wddwckeBesQLlSUB36VnwNVqB+fSvG/ipe9Kvo9NWIddmsrfz+Kt4GR/q/rf2n9vu86ulk0Uly7blYFItXzacAcSFxtI5ojYpapzN09MxRbc215dWnFKSXgFpHtvZ6ZaqeWdmRtcPvB4zWhwQrgVCQjlMvA5V4H31HB0fTP177z1dbE+wH2z8A4OL2FxMXEuf1GDHBMcb5KG9te8vr1+kbko1pM4bo4GivX9c+uj1DEofgVt0+bdqmL3ke12acV1kjXe+mvekS0wW7y+7TMl996/Xzk84nyBzk9evGJY0jwhrBsYJjPt3d6b0/o1uPrnIvl+pMbDsRi2Jhe9Z24y7NG3qmYljLYb6N51lSvPrEap/OKNEvxoOaD/JpPL1vZW3aWp/S3nrg3T22e42rqk6nL2FefnQ5dpfd69dtSt+E0+0kMSyx1lUk5elZpjUn1lBUWuT16zKKMjiSdwQFpcqTgauj961sy9jmU+lQVdVad66tSr+EfpgVM0fyjnC84LjXrwPvdq49XXRwtFFS8bUUpGdVkpsk+/RvtK6lIFVVjZVA3paBoH7BilEC8jIYAy3DGWoJpdhZXO8jYPxJgpVAKEijVC8D2fPBh+h0XJJ2roe+ZXhVDp46yNKjS1FQuKHrDT5P78ZuN2I1WdlwcoNX/+FySnKMc030s2p8oc9x3r55Xi1LLSwtNPo59CW03lIUxciufLr7U0rdtW+mVFRaZNxZ+5I1AgixhBjZB2+DI6fbafx8a2vkPV1McIyR+fF2O/zyJSD94uytNpFt6B7bHZfq8mkV2fJUrazibQlI1yK8BT3jeqKisvCI9+P52q+i6xbbjfjQeIqdxT5lGvXA9Nzm3vWr6NpGtaVVRCtK3aU+jaevPukc07nCpo+1SQhLoEN0B5+XMOsH6FlMFq9W5ugigso24/N1CXNth/tVp659K3qw4m2/ik7v1/N1J9uskixy7DkoKDUeKHg6PVjZken75nD6Hiu+jGc2mY2A8UzqW5FgJRDKZ1ZUFUq874wf02YMVpOVXdm7qo2k9UPvRrYaaZzY7IuEsAQuaa+VE7zJrny17yvsLjtdYrr4dJelG5Q4iPZN2lPkLPJq5cw3+7+hyFlEUmSSTylv3flJ5xMTHEN6UbpX6f3FKYspdhbTJrKNcZiXL/RM1S8pv3iVfViXto7skmya2JpUe55MTfSf3fcHv/dqz5V9p/aRkp9CkCmo2l1ka6KvQvL2IL6MogzjTBpfSmo6PbtSU8BentPtZOUxbfm4t/0qurqWgvS+suq22K9pvLqUgjak+V4C0tWlFKT/7ukS04VgS7BP4xmHDPrQt1JUWmTcxfsarNR1czg9OKppm/2q6MccbM/aTomzxOvX6SWgVhGtvGqQ1iVFJhFli8LhdhgBlrf076kvmRU4M/tWJFgJhPI9K6hQlOX1S2OCY4xt16s6e2Zz+mYWpyzGpJi4u8/ddZ7izd1vxqyYWXlsJdsyqv8H6XA5mLtnLgBTukzx6S5SpyhlGaD3d7xf48oLt+rm092fAnBtl2vrNF6QOYjJnSYD8MnO2pcx6xmKC9teWKfxOsd0pmdcT5xupzH3mvxwUFt1NLbNWK9W5ZxuWIthRNuiySzO9KoxVM+IDG4xmDBrmM/jnZ98PibFxJaMLV6lhfWzeXrE9fCpRKkb12YcCgqb0jdxouBErc/fnL6ZPEceUbaoOgXTerZpSeoSr4K/XHuusbGbt8215ZXfzdbbngA9s1KnYCVRC1ZWHl/pdV9VXUpAOj1YWXNijdfjbcvchlt10zysOU1Dm/o0Xr/4figoHMo95FPpUC871XSMQFVaRrSkaUhTnG6nTxfzupSAQPv9qd9E+VIKUlW1TpkVODNXBEmwEggleWVlIFWFYt+WYeoX9oWHF1Zo4rK77MxcMxPQTo71pUnrdK0iWhl3zP9d/d9qf0l/uvtT0grTaBrStNqza7xxYbsLSYpMIrsk21jFVJWVx1ZyJO8I4dZwLm53cZ3Hm9xxMhaThc0Zm2tctnng1AEjpX9h2wvrPN5N3W8CtN6emnoRTpWcMjIGdf36rGYrkzpMAuDjXR/X+Fy36jaCMV9LTrq4kDhjU7cv9nxR6/P1ZfG1bQRXnfiweKMvwJvsih6wDW0xtMa9hqrTp1kfom3R5Npzvbo7X5+2HhWV5KjkGk/Nrc458ecYpyJ7c7HLtecaFzr9++KLPs36EGoJJbsk2zhhuDb67x39fBpfdI/rTpg1jFP2U15nAuoTHEXZooyt8r0tBWUUZZBelI5JMdW6zf7pFEWpU9+Kvp2Cr8EK1K1vJaskizxHHibFRFJUkk/j6cHK3py9PmWPAkmCFX9z2sFlN8pAFhXwoZEOtGV0F7e7GBWVf6/8N5nFmbjcLh5d9Si7sncRGRTJ1N5T6z3Ve/reQ0RQBLuyd/HJrsoZiFMlp3hz65sA3N3nbp+a0E5nNVn5+zl/B2D2jtlVlkvcqpu3tmplqUs7XOpTY+3pmoY2NVYRvbbltWqXab+77V1A23PDl0bJ041qNYrWEa3Jc+Tx9f6vq33etwe+xe6y0zmmc51+MeumdJ6CRbGwLm1djdu3rzmxhhOFJ4iwRhjljrqY3FHLVH174NsaT0bOKckxyg31GU9fzu3NEm29nFLdqc61sZgsRq+Y3mhdE7284csqoPKsJqtRmtGXd9dED6DaRrUlJjjG9/HM5ZYwe3GwYVFpkXEycE0nLVc7nslqLBTQy3O18XZb/+r4WgrSS0DJkcl1+j1Tl0MN9UDR1x4ZKAsafQlW9KxKq4hWPv/ujg+NJy4kDpfq8rn0FCgSrPibXWsg1ctAVlWFUt8j0/v73U9cSByH8w5zxXdXcMm3l/D9we8xK2aeG/Fcne7oThcXEsf9/e4H4NVNr1ZI8auqyvMbniffkU/H6I71ynLoxrQeQ8+4nhQ7i3l63dOVAohv9n/D5ozNhFpC69Q4fLrbe96OxWRh+dHlVe4TcjT/qNGHcUuPW+o1ltlk5sZuNwLw4Y4Pq2yEc6tuPt/zOQBXdbqqTiUnXUJYAmOTtP1SqioX6vT9Xya2nehz70F5Q1oMoUV4C/Id+TUeNvjToZ9wup10je1apztI3Zg2YzArZnZm7eRIXvW7QKfkpXAo9xAWxVLt2VHe0JeELz6yuMYN8NyqmyUpWuZIDzjqQi8FLTy8sNb9jvTMkb6ypy705fH6wZI12ZKxBZfqIj40vsYjNWoyrJWWVfNmt15VVdmaoS0Dr2sAr/cO+Rqs+LLyqDy9HLc5fbNXpcMSZ4kRPPjSsKzrEdcDk2LiROEJrzcU1HtkfC0BgZY9OtP6ViRY8Te7tlTZ2BQO1efMCkCT4Ca8P/59WkW0IqskiyN5R4gMiuTx8x437pL8YVL7SZybcC4lrhJu+PkG1p5Yi8vt4ul1TxsZgvv731+n9PrpFEXRPpdi5udDPxtZG9BOO35+w/OAdkp0XX9Jlpcclcxfuv0FgCfXPlmhPKOqKq9segWX6mJw4uA6/9Iq7+J2FxMbHMvxwuMVvjbdwiMLSclPIdwabiwJrg89oPv58M9V/gLLtecaTaO+rqo6nUkxGY3Ec/fMrfYC++1+bcm5txv5VSc2JNZoPq5pyfuPh7SN/Pom9PVplczpusd1JzkqmRJXSY2rkLZkbCG9OJ1wa7jPK4/KG9FqBKGWUFLyU4z9TKriVt2sOKr1ANW1rAbaQZIKClsztnI0/2iNz9WzIfX6+jwHV27N3Ep6UXqNzz2Sd4RT9lMEmYLqlHUALXgwK2ZS81O9upj7cgZRVdo3aU+ENYIiZ5FXJyLvy9nn84Z35YVZw+gao83V21KXLwcYVkUvBUmw8kdlz8cFuCuUgapPm9ckKSqJry7+ijfHvMmsobP4+fKf69VXURVFUXhq2FP0jOtJrj2Xvy78K70/6m30Qjwy6BG/Bke9m/XmoQEPAfC/zf/jufXP8f2B77nqh6vItefSMboj13a51m/j3drzVlqEtyCtMI2HVz5slDA+3vUxPx36CZNi4m+9/uaXsYItwTw44EEA3tn2jnH3Blrg8OSaJwFtY776lLh03eO60y++H063k/+u/m+lAOJ/m/9nlJx8XWFRlUvbX0qQKYgdWTuqPGxwT/YeY+NAfwRjN3bVMlXz9s2rcsMvp9tp7Kp8aftL6zWWoihGgKUHXFXRm5VHtBrh0348pwu1hhqlp5rG25W1i6ySLMKsYfRt5ntzra5paFNjs7zazl7SD+asTyanaWhTo6RTW3ZFL210je3q9cZlpwsPCjcCj9qyK6qqlu3pUsf/F2aTmT7x2n433vStlC8B1TWjqv/8vM0e6UcJeLtb7un0zMqZ0mQrwYq/leQZWRXwlIFqqPHXJsQSwuAWg7mw7YU+bXbli7iQON4d/67RcKuP+9jgx4y7aX+a3GkyN3W7CYAPdnzAQ789RHpROkmRSTwz7BksJovfxgqxhPCfgf/BrJhZdGQR1/10HfcuvZdn1z8LwD/7/tOnHTprMz5pPOPajMOlupj+23SO5h/F7rLzxJonyCrJom1U23qXnMp7eODDWE1Wlh9dbqwyAi1w0Fdx3dfvvnqVnHSxIbFGI/Ez65+ptInaa5tfA7QLuTdnK9VmYPOBdI3tSomrpMqequVHl5NelE60LdrrIwRqcmHbCzEpJjamb+RQ7qFKH3erbuMEcX+Mp5dW5x+eX20fkF4CGtR8UJ0v5LoLkrX/3zUdTJlWmMb+U/sxKSZjN9q6GtlqJECtRzXoF19fNrurir4yq7YVckcLjmp7yCgWr7fZr4peCvJmPxn9xqVLbN0yR1DxaIHaSodOt9No6K1rQKa/LjU/tU5ndfmbBCv+Zs83+lXAs3S5jpmVhhRsCebJoU+yZPISll21jJXXrOTSDvW7W63JPX3vYdbQWZyfdD5tIttwdaermXvhXK9OBvXV4BaDeXvc28QEx7A3Zy+LjizCrbq5rMNlXN/1er+P99CAh4gJjmH/qf1c8s0ljP9yPD8f+hkFhUcHP1qvO/LTtWvSzsgMPbn2SX479hspeSn8e+W/catuxrYZW6fltdX5a/e/0iy0GccKjhknfoN29/xr6q9YFIvfMlWKohiB3ae7P6205F3v/5nUYZJfvqfxYfEMa6GVWvTAq7wNJzdwsugkoZbQemUddH3j+9IivAWFpYXV7vFS35VV5Y1uMxqrycr+U/urPehT3ziuR1wPr04Frsmo1qMA7eJaXR+Qy+0yGrLr0wMEWpM7aMFKTStY1p7QgqOeTXv6tN/J6fQ9i9amra2x6RzKBSt1LHOBFsxZFAsnCk9wtKDmUt6BUwewu+yEWcNoHdm6TuNF2aKMfbzqcrSAv0mw4m/2fGMlENSvDNQY4kLiiAmOqdP+H74wKSYubHshzwx/hh8u/YHpA6f7pTRSnf4J/Zl74Vxu7XEr9/S9h/fGv8eMQTP8knE4XWxILO+Pf58BzQfgcDvIKskiISyBWUNn+TWLo7up+010i+1GniOPvy3+Gxd9cxG7sncRZg3jvn73+XWsUGso9/S9B9BWWc3eMZsNJzcYS+qv73Z9vRprTze69WiSIpPId+RXKHX9kvKLUa64suOVfhvvrj53oaAw//D8CulvVVV5ddOrgNasXJ+VcTqTYjJKT5/v+bzS3fLm9M1GWa2uK53KiwyKNIKe6jb40wOH+jQr69pGtSUpMgmn22nsvXO67VnbyS7JJtwabpRV6qp7XHcSwhIodhbXuFuvsaGfl2dIVad9k/YkhiVid9mNAKgqdpfdOG25PsFKqDXUKK3VNB6UBUddY7tiUup+mdc3wPN1w71AkGDF3+xle6yYADPUqcFW+F9CWAJ/P+fv3Nz9Zvon9A9IoKJr26Qtb499mzfGvMHM82by46U/Viiz+ZPVZOXNsW9yQ9cbsJqsuFU3QxKH8OkFn5IYnuj38S5IvoAJyRNwup08u/5Zbpp/EycKT5AYlsgdPe/w61gmxcTDAx/Golj48eCPvLDxBVYdX8X036YDWv9Pq4hWfhuvU0wn48iF5zc8bwQQy44uY2P6Rmxmm1+/xks7XIrNbGNT+qZK2RV9P6KL211cpyXLVdF7ib478F2lbEBmcaZxGrQ/MjlQVi7Te4tOp483pMWQet8gKYrCmNbaBn/68RKnU1XVuND7uvtwVePp36ealqDrK4aahjSt1/YIUBZg6QFXdYwG4pi6NRAb43m+R+tPrq/X5/EHCVb8zZ5Hqb7Vvv7trcPSZXH2UxSFIS2GcFG7i/xa+qlKlC2K+/vfz8+X/cwnEz/h9TGv1+koBm8oisJTQ5/i3wP/jc1sw2a2cXmHy3nv/PcCkh0b0HwADw98GID3t7/P7Ytup7C0kH7x/Ywsjz/d1fsugkxBrEtbx6O/P8qGkxt4Zt0zgLarcnyY76s5qpMQlmD0bz27/lmjD+hI3hGjidkfy/h1I1qNIDEskczizEq7LX++53Mcbgc94nrUeZXM6SZ3moxZMbM2bW2VpSe9v0Q/gqC+9N2Ilx5dWuX2AQdzD5JVkoXNbKvXPkc6PeO17OiyavtI9E0nBzQfUO8bJGOJ9om1Nfat6Hsv1XeVY78ELbOyJ3sPuXbvj40JBAlW/M2ej1Pfal/xLPeVzIpoIPFh8fRs2jOgWSPQApbJnSaz6IpFLJm8hBmDZ9AivEXAxru84+Xc3+9+WoS3oFloMwYnDubZ4c8GpFzZPLw59/a7FwWFr/Z9xU3zbyIlP4WY4Bhu7n6z38e7ufvNRh/Q02uf5ljBMf698t+oqAxrOcyvfVxB5iBjQ8l3tr1jXIBKnCVGQ/YNXW/w27+fhLAEY3PA04Oj1LxU9uTswaSY6t2vouvdtDexwbHkO/KrLAXpj/Vp1scvNxD9E/oTYgkhvSi92iXM5YOV+urVtBfB5mCySrKq3ayt1F1qfKy+QWdcSBzJUcmoqI2eXZFgxd/s+WVb7RvBytnTsyKEL6KDo+u1v4kvbuh2A/Mvn88vV/7Cm2PfJDYkNmBjXdvlWm2M4Fijt+SzCz6rd9NpVUKtoUZv0ed7P+f8r85nU/omwqxh3Nn7Tr+Pd2HbC2nfpD35jnxe3PgiTreT97e/T3ZJNs3Dmvt8Mndt9FPQfzj4Q4VVJa9t0ZqYBzUfRHRwtF/GMpvMxinos3fOrvAxVVWZt28e4Ptp4NWxmW3GqqmfDlbuA8p35BuHevpjC4ggc5AR2FV3FMXenL043A4irBF+KZEapaA0CVb+WMo12FpNklkR4mw1KHEQP132EwsvX8jj5z1O8/DmARtrQvIEnhn+DIlhWo9RUmQScy6Y47dyTHlmk5lp50wDtF6ScV+OMwKHm7rd5NetA0DLdnSJ6YLdZWfWmlm4VTe7snYZS+3vPqfuB7JW5YauN2AxaUdRlN+efl3aOvaf2k+IJcQvO3Lr9A0Xv97/daXl/OvT1uNW3bSJbOOXjS4Bxidrx4jMPzy/ylKQfqRC34S+9Wqu1fVL6EfbqLZ1OpTUnyRY8beSvLITl/XMyhlyEJQQwjeh1lC/9qjU5Pyk8/nu0u94Y8wb2jL+OmyT7q3hrYbz+JDHCbeGk1GcgcVk4b5+93FN52v8Ppa+c7VFsfDz4Z95cMWDTF+pNUhPSJ7glw0Ly0sISzA2z3xn2zvG43oZ6uJ2F/s1Gzis5TCahzXnlP1UpWyHHpD5c2PNYS2GEWIJ4VjBMaORtjy9D0jfRbi+xrcZz7eTvuWvPf7ql89XVxKs+Js9v2yrff0ORcpAQggv2Mw2hrQYEtBl/LpL2l/C15d8ze09b+fjiR9zY7cbA9br1D+hP48MfgTQlk3vy9lHiCWEu/v4N6uiu7n7zSgoLE1dytzdc1l5bKWxOd3Vna7261hmk9lYPj9391zj8SN5R4xNBCd3muy38UKtoUYg8vOhigd9ZhZnGtvj+2tFV6D737wlwYq/OfKN1UBGOlXKQEKIM1BCWAJ39bnL79mNqkxqP4mHBjzEeS3O487edzL3wrl+XXZeXnJUsnFsx+NrHueOxXfgVt0MazmM9tF1236+Jpd2uBSLycLWzK1GgPLBjg9QURnecjgdozv6dTy9FLTg8IIKByn+duw3VFS6xXajaWhTv47Z2PxbnBRgLyg7cVlfqSBLl4UQgms6XxOQUlNVHuj/ANHB0byy6RUApnSewj/O+UdAxooLiePaztcye+dsHlrxEPty9hlnPgWifHJei/OItkVzsugkX+z9gms6X4OqqkaTr7+Wgp9JJFjxN0ehUQYyMisuR+PNRwgh/oQUReG2nrcxoPkAbGYbnWM6B3S8aX2nsT93PyuPreT1La8DWq9Kfc88qorNbGNq76k8seYJ/rf5f0xMnshvx37j9xO/YzFZmJA8we9jNjYJVvzNUUip5bTMShWbEwkhhAg8f2z+5g2LycKzw57lvuX3UVxazPnJ5xvHKQTCFR2vYO6euew/tZ/bFt3GsYJjANzR8w6SopICNm5jkWDFn1QVHAWUWrXDsSxGsCKZFSGE+KMLDwrnjTFvNMhYFpOFhwY8xO2Lbq9wUOLNPfy/ceGZQIIVfyotBlT0PIpxpPtpa++FEEKI+uqf0J/vJn3H0tSl7Du1j1u63xLwQ2gbiwQr/uTQjrAv2xTOs52zlIGEEEIEQMuIlsYuwX9ksnTZnxwFAJRatOPjLfrZE1IGEkIIIepMghV/0jMrnmDFWj5YqeGETCGEEEJUT4IVf/IEK6UWLUixlK8dSilICCGEqBMJVvzJUwZymvXMiq3sY1IKEkIIIepEghV/0jMrnlVAFosEK0IIIUR9SbDiT6cFK1ZzEOhHdEsZSAghhKgTCVb8ySgDaSvCLSYLGE22steKEEIIURcBDVZmzZpF//79iYiIoFmzZkyaNIk9e/ZUeI6qqsyYMYPExERCQkIYMWIEO3bsCOS0AkdfuuwJVqwma7lgRTIrQgghRF0ENFhZtmwZd955J6tXr2bRokU4nU7GjRtHYWGh8Zynn36a559/nldffZV169aRkJDA2LFjyc/PD+TUAkNfumwqH6zIlvtCCCFEfQR0B9v58+dX+Pv7779Ps2bN2LBhA8OGDUNVVV588UWmT5/OZZddBsDs2bOJj49nzpw53H777YGcnv/pPSsmLQbUykCeJlsJVoQQQog6adCeldzcXABiYmIAOHToEGlpaYwbN854js1mY/jw4axataohp+Yfes+KyQyclllxSrAihBBC1EWDnQ2kqir33nsv5513Ht27dwcgLS0NgPj4+ArPjY+P58iRI1V+Hrvdjt1e1qyal5cXoBnXgZ5ZUcoyKy6TFTPgdtqlm1kIIYSogwa7ft51111s3bqVTz/9tNLHFM/BfzpVVSs9pps1axZRUVHGn1atWgVkvnVi1zMr2rfVarKSmusEYPnu4402LSGEEOJs1iDByt133813333HkiVLaNmypfF4QkICUJZh0aWnp1fKtugefPBBcnNzjT+pqamBm7iv9NVAnkDrxCkHuaXat3jZrmONNi0hhBDibBbQYEVVVe666y7mzZvHr7/+SnJycoWPJycnk5CQwKJFi4zHHA4Hy5YtY/DgwVV+TpvNRmRkZIU/Zwy7toKpFC1YychzUeqptKXn5KPKYYZCCCGEzwLas3LnnXcyZ84cvv32WyIiIowMSlRUFCEhISiKwrRp05g5cyYdOnSgQ4cOzJw5k9DQUKZMmRLIqQWGvnTZU8HKLHBSqmrfYsXlILPAQdMIW3WvFkIIIUQVAhqsvP766wCMGDGiwuPvv/8+N910EwAPPPAAxcXFTJ06lZycHAYMGMDChQuJiIgI5NQCQy8Def6ame+kFM/KIJwczSmSYEUIIYTwUUCDFW/KHoqiMGPGDGbMmBHIqTQMvcEW7evOyHNix3NOkOLkaE4xfVpHN9r0hBBCiLORrKb1F7cbSj1Llz3BSk6R2+hZCcLJ8VPFjTY9IYQQ4mwlwYq/lJYdIeBU3QDYS5UKwUpWoWwMJ4QQQvhKghV/8ZSAUEyUqi7tfdWE2+QpA+Ekq0CCFSGEEMJXEqz4i6e5lqAInG5tIzhVtWC2ag21VpxkF9qre7UQQgghqiHBir/owYotnFK3Zz2QasKiByuKk2wpAwkhhBA+k2DFX/QyUFBYuWDFTJAtGACb9KwIIYQQdSLBir8YZaBwowykBStlZaAcCVaEEEIIn0mw4i/2sjKQ3aX1pqiqBWtQCKAFK4UOFy63bLkvhBBC+EKCFX8p12Bb6tLLQJYKmRWAghJnY8xOCCGEOGtJsOIvnmDFZQ3FqeplIAs2T89KiEl7LK+ktMqXCyGEEKJqEqz4i6cM5LCFGg+pqsVosA01axvFSbAihBBC+EaCFX/xZFYc1pCyx9wWgoM9mRWztlFcvpSBhBBCCJ9IsOIv+onLVi2zoqoKYCI0WPt7sEkLVvKKJbMihBBC+EKCFX/Ry0CeTeBQzYBCSIiWadGDFcmsCCGEEL6RYMVfPJkVu0UPViwoCmXBiiINtkIIIURdWBp7An8YDu3UZYclCNCaa6NCrJg832GbIpkVIYQQoi4kWPEXez4ApeUyK01CrGDWklf6PivSsyKEEEL4RoIVf9HLQHoqxW2hSWgQmLUgJchTBpLMihBCCOEbCVb8RW+wtVgBrQzUJLRcZkXVMir5dsmsCCGEEL6QYMVfPD0rpXpmRbUQHRoEnv1VzKpeBpLMihBCCOELCVb8QVXLykBms+chM1EhVrBof7eoehlIMitCCCGELyRY8QdHIaCdpuxQPKvBVaunDKQ9bvKUgfKkZ0UIIYTwiQQr/qCfuKyYcCiK9r5q9pSBtDOBTG4HAAV2CVaEEEIIX0iw4g+efhWCwnG4tKBEdXsabE16sKIFKYUSrAghhBA+kR1s/cGzxwpB4Tg8GRRUfemytkkcniCmyOHC7VYbYZJCCCHE2UmCFX/Qy0BBYUZmpWxTOG0ps4KKCS3LUuiQ7IoQQgjhLQlW/EEvA9nKMitl+6xYjaeFeA4zlL4VIYQQwnsSrPhDuTJQcWmJ9v7pZSAgyvOu9K0IIYQQ3pNgxR/0MpAtgnx7WbASYbOAqSyz0sRzbFCB3dXAExRCCCHOXhKs+ENJnvbWFkmB3Q5AsCUIk0kBkwkUbWO4qCCtsVYyK0IIIYT3JFjxh5Jc7W1wJAWOYu1d/fRlMPpWIj3BivSsCCGEEN6TYMUf7J7MSnAURaVaZiWkQrCiNatEeCpCBbKLrRBCCOE1CVb8wcisRFHs1IKVsKDgso97DjeM0MtAsnRZCCGE8JoEK/6gByu2SIo9mZUwa+XMSqRFykBCCCGEryRY8YeSsjKQ3bMpXIQtpOzjnmAlzCoNtkIIIYSvJFjxh3INtnqwEm4rVwYya2WgcIserMjSZSGEEMJbEqz4Q7melVJPsBIZXD5Y8WRWLNp2+/nSYCuEEEJ4TYIVf9BXA9miKHVrPStNgsPKPu7ZGE4PVqQMJIQQQnhPgpX6crsqLF0uVbXMSnRIuWDFfFqwIquBhBBCCK9JsFJfeqACEByJGy2zEhtaOVgJMctqICGEEMJXEqzUl74SyBIMFhtutMxK07CIsud4elb0U5elDCSEEEJ4T4KV+irXXFtS6gKlFIC48PCy5+iZFZNWBpIdbIUQQgjvSbBSX+U2hMsuKkExaYFIXGi5YMXTYBts9gQrklkRQgghvCbBSn0ZzbWRnMzPNx4OsZbfFM4TrOhlIIcLVVUbbIpCCCHE2UyClfoqytbehkSTUVBgPGwzVz512eYJVlxuFbvT3WBTFEIIIc5mAQ1Wli9fzkUXXURiYiKKovDNN99U+LiqqsyYMYPExERCQkIYMWIEO3bsCOSU/K84R3sbEkNWYSEAimrFpJT71noabK2UlX9kYzghhBDCOwENVgoLC+nVqxevvvpqlR9/+umnef7553n11VdZt24dCQkJjB07lvxy5ZQzXrEnsxIaQ1aRNm8TQRWf4+lZMbmdhAWZAVkRJIQQQnjLEshPPmHCBCZMmFDlx1RV5cUXX2T69OlcdtllAMyePZv4+HjmzJnD7bffHsip+Y9RBoohu1jLrFhMtorP8ZSBcJUSHmyh0OGSJlshhBDCS43Ws3Lo0CHS0tIYN26c8ZjNZmP48OGsWrWq2tfZ7Xby8vIq/GlU5TIrOZ5gJUg5PVjxZFpcDsJsWnwomRUhhBDCO40WrKSlpQEQHx9f4fH4+HjjY1WZNWsWUVFRxp9WrVoFdJ61KtJ7VqLJKykCIMgcXPE5embFXUq4HqzIlvtCCCGEVxp9NZCiKBX+rqpqpcfKe/DBB8nNzTX+pKamBnqKNSuXWTlVomVWgqsLVlylhAVpwYo02AohhBDeCWjPSk0SEhIALcPSvHlz4/H09PRK2ZbybDYbNput2o83uHJLl/PsRWCDUOtpwYqpXLBilIFcDThJIYQQ4uzVaJmV5ORkEhISWLRokfGYw+Fg2bJlDB48uLGm5RtVLcushMSQb9fKQGFBoRWfV65nJSJYelaEEEIIXwQ0s1JQUMD+/fuNvx86dIjNmzcTExND69atmTZtGjNnzqRDhw506NCBmTNnEhoaypQpUwI5Lf9xFIJLO7iQ0BgKHcUARFQKVjzfZlcpYTZt6bKsBhJCCCG8E9BgZf369YwcOdL4+7333gvAjTfeyAcffMADDzxAcXExU6dOJScnhwEDBrBw4UIiIiKq+5RnFn1DOJOVEiUEu7sEGxAZXE1mxV1KWKhkVoQQQghfBDRYGTFiRI1n4CiKwowZM5gxY0YgpxE45Zprs4tKwaSduBxZQxko3NNgK5kVIYQQwjuNvhrorFZuQ7isAgeKogUrwZbTG2z1MpDTaLCVYEUIIYTwjgQr9VGYob0Nb0pmod3IrFQKVspnVqTBVgghhPCJBCv1UXBSexvWzJNZ0ZptK5y4DOX2WXGUbQonS5eFEEIIr0iwUh8F6drb8HiyCuxgsmt/tYZXfJ6xg62UgYQQQghfSbBSH0aw0pSMfDuKJ1gJCwqr+DxT+cyKLF0WQgghfCHBSn0UeoKVsGaczLejmEuAqjIres9KKeE2LXCRnhUhhBDCOxKs1Ee5MtDJvBKjDBRmPS2zUv5sIMmsCCGEED6RYKU+ypWB0vNKUEzVZVYqn7psd7opdbkbaqZCCCHEWUuClbpyu6AoEwA1rBkn8+wo5uoabMuWLusNtiClICGEEMIbEqzUVVEWqG5AId/ShOLSUhSTtnQ5POi0YMVUdjaQ1WwiyKJ926UUJIQQQtROgpW60ktAobGkFziNfhWoqmelrMEWIEL2WhFCCCG8JsFKXeWf0N5GJJCeV7ZsOcgURJAenOjKbQoHyF4rQgghhA8kWKmr3KPa28gWpOWVlC1bPr0EBBU2hYOyYEV6VoQQQojaSbBSV3qwEtWSE7k1LFuGCg22gGwMJ4QQQvhAgpW6yjumvY1qydGcouqXLUOFHWxRVSkDCSGEED6QYKWuymVWjuYUl221X2VmxVr2vttV7jBDCVaEEEKI2kiwUlenByvVbbUPFYOVCicvS7AihBBC1EaClbpwu40ykDuiBcdyist6Vk4/xBDKelYA3KXlykCydFkIIYSojQQrdVGY4WmWVchQYnC43JhryqyYymdWygcrpQ0wWSGEEOLsJsFKXegloIgEjuZpAUdoiBasRAdHV36+yQSKtgJIKwNp78umcEIIIUTtJFipi+wD2tuYtqRkFwEQHFwMQLStimAFKuxiG27TMi2yGkgIIYSonQQrdZHlCVZi23EwoxAAa5AWrMQEx1T9GmMX21LCjMyKBCtCCCFEbSRYqYus/drb2PYcyCjQ3jdpb6ssA0G5XWxLZTWQEEII4QMJVupCD1ZiyjIrDjUfqCFYKbcxnN5gmy/BihBCCFErCVZ8paqQfRAAV0w7DmYWAm4KnblATWUgvWfFSWSwFrjkFUuwIoQQQtRGghVfFWaAPQ9QOKYk4HC6CQoqQUUFIMoWVfXrzFo2BZeDqFBPsFIiS5eFEEKI2kiw4quM3drb6Dbsy9IOJmwZ6wYgMigSa/k9Vcord5hhZLAWuDicbkpKZfmyEEIIURMJVnyVtl17G9+dHcfzAGjdTAtWqi0BQaUGW5Oi/TWvWLIrQgghRE0kWPHVybJgZdsxrU8lvonWe1Jtcy2Ua7AtRVEUIkO0v+dKsCKEEELUSIIVX6Vt094m9GCHJ1hpEqGdC1RzZqVsUziAqBDpWxFCCCG8IcGKL1ylRs9KTkRHjudqW+xjyQageVjz6l9rLlu6DBgrgiSzIoQQQtRMghVfnNyhBRvBUWzKjwSgbVwYGSVpALSMaFn9a8vtYAvlMiuyfFkIIYSokQQrvkhdq71t2Z/fD2rZlHOTYzhWcAyAxLDE6l9rOi2zEqKtCJLMihBCCFEzCVZ8kbpGe9tqAKs9wcrAtrFGsNIiokX1r7WULV2G8pkVCVaEEEKImkiw4i1VNYKVgmbnsOO41lzbo5WNXLv2fo2ZFbNNeys9K0IIIYRPJFjxVtZ+yE0FcxDLi5Jwq9C2aRhOUxag7VwbHhRe/estwdpbp7ZySJYuCyGEEN6RYMVb+xZpb9sM5ofdWiZlfLcEjhYcBaBFeA0lICgrA0mwIoQQQvhEghVv7V8MQGnyaJbszgBgYvfm7MneA0D7Ju1rfr1RBtKClWjP+UCniiRYEUIIIWoiwYo3HEVw+DcAFpf2oLjUReuYULq3iGRH1g4AusV2q/lzWDzBilPrWYkJ1TItOUWOwMxZCCGE+IOQYMUbh5aDy44a2ZJXtpoBuHZAawB2ZHqClThvgxVtI7kmEqwIIYQQXpFgxRvbvwIgpdlIdqblE2w1cVX/VqQXpZNVkoVZMdMpulPNn8PYbt+zNX+YHqyUoqpqwKYuhBBCnO0kWKmBw+nWSkB7fgLgqaNa9uSv5yXTJDSI9SfXA1q/SrC+2qc6xmogLZPSxNOz4nKr5JXILrZCCCFEdSRYqUZqdhHjXljGll/ngqOATEs8P51qRWJUMHcMbwfAoiPaCqHhrYbX/glPKwMFW82EBmklpZxCKQUJIYQQ1ZFgpRrvrzzM4awiTqz8BIAvSs7FZjHz8jV9iAi2UlRaxG/HtKbbsW3G1v4JzRV3sAWIlr4VIYQQolaWxp7AmeqhiZ1xFZ9i5I7NAPweMoLZ15xLv6QYAL7Y+wV2l53WEa1r71eBSpvCAUSHWTl2qliCFSGEEKIGZ0Rm5bXXXiM5OZng4GD69u3LihUrGntKWMwmHu14BJtSSkmT9rz7r78wsG0sAJnFmby19S0AbulxC4qiePEJK24KB+UyK4Wy14oQQghRnUYPVubOncu0adOYPn06mzZtYujQoUyYMIGUlJTGnhrs+g6A4F5XYLVo/SVphWlMXTyVPEce7Zu05+J2F3v3uU7bFA7KgpVs6VkRQgghqtXoZaDnn3+ev/71r9xyyy0AvPjiiyxYsIDXX3+dWbNmNdq8igozyDyyjIIgK7nNkji8+1O2Zmxl8ZHFlLhKiAmO4aWRL2E2mb37hKdtCgcQF649lllor+oVQgghhKCRgxWHw8GGDRv4v//7vwqPjxs3jlWrVlX5Grvdjt1ednHPy8sLyNy+Wfs8s5prZR/Wz6zwsT7N+vDfIf+ldWRr7z/haauBAOIitMxKRr4EK0IIIUR1GjVYyczMxOVyER8fX+Hx+Ph40tLSqnzNrFmzePTRRwM+twhXKaFulXBLCOERibSOaE2H6A4MbTmU3k17e9enUl4VZaCmemalQMpAQgghRHUavQwEVLrwq6pabTDw4IMPcu+99xp/z8vLo1WrVn6f00VjnuUi1ywoLYLgqPp/wqrKQBGeYEUyK0IIIUS1GjVYiYuLw2w2V8qipKenV8q26Gw2GzabrSGmB2YrmP0QqECVZSA9s5JRIMGKEEIIUZ1GXQ0UFBRE3759WbRoUYXHFy1axODBgxtpVgFSxaZwTT2ZlexCB263nA8khBBCVKXRy0D33nsv119/Pf369WPQoEG89dZbpKSkcMcddzT21Pyrik3h9MMMXW6VnCIHseENlDESQgghziKNHqxcddVVZGVl8dhjj3HixAm6d+/OTz/9RJs2bRp7av6ll4FUF7icYLZgNZuICQsiu9BBer5dghUhhBCiCo0erABMnTqVqVOnNvY0AksvA4G2IsisfevjI4PJLnSQlldCl+aRjTQ5IYQQ4szV6DvY/mnoZSCoUApqHqU9npZbcvorhBBCCIEEKw3HbAHF8+0u12SrBysnThU3xqyEEEKIM54EKw3JXHn5shGsSGZFCCGEqJIEKw2pio3hEqJCAEjLk2BFCCGEqIoEKw3JUnnL/URPZuW4lIGEEEKIKkmw0pCMMlBZsJJQrgykqrIxnBBCCHE6CVYakqVysNIiOgSTAkUOlxxoKIQQQlRBgpWGZOxiW1bysVnMJDbR+laOZBU2xqyEEEKIM5oEKw3JqgUllFZspk2KDQPgcFZRQ89ICCGEOONJsNKQjGClYjNtm9hQQDIrQgghRFUkWGlIVi0oobRiBkUyK0IIIUT1JFhpSJJZEUIIIXwmwUpDqi6zEqdlVg5lFsryZSGEEOI0Eqw0pGoyK61jQjEpkF/iJD3fXsULhRBCiD8vCVYakh6sOCsGK8FWM22bhgOw80ReQ89KCCGEOKNJsNKQqsmsAHRpHgnAzuMSrAghhBDlSbDSkGoMViIA2CWZFSGEEKICCVYaUjUNtlCWWZFgRQghhKhIgpWGpGdWHJWDlW6JWrByMLOQvJLShpyVEEIIcUaTYKUhBWlLlHFU3k+lWUQwrWNCUVXYlHKqYeclhBBCOO3w2wvw8//Bti/B5WzsGRksjT2BP5UgrS8FR36VH+6XFE1KdhHrD2czvGPTBpyYEEKIM46qQvZBKM6BxD5gMgdurJJc+PQaOLJS+/saYO8CuOwtUJTAjeslyaw0JJsnWLFXHaycmxQDwNpD2Q01IyGEEL5wuxpmnMIseHMovHIOvDMaPrwE8tMCN97iR7VAxRYJ/W4GkwW2fQ6//jdwY/pAgpWGZNP2UsFeUOWH+ydrwcqm1FMU2s+c9JsQQvzp5Z+E2RfDf+Pg5XNg3buBG8vlhC//AmnbwBwElmA4vALeGglFAbiZPZUCGz/U3r/qY7jwBbjoJe3vK56Dwyv9P6aPJFhpSLVkVtrGhdEqJgSH083K/ZkNODEhhDjLZB+Ejy6FF3rAFzfBiS2BG6sgHd4aAYeWgeqG7APw472wYXZgxtv4gTaWNQxuWwa3r4DoZMg/Dkue8P94K18CdykkD4O2w7XH+lwH59yovf/rf7WSVCOSYKUh6T0rzuIqG5cURWF053gAftmV3pAzE0KI+tm7ED65El7qDT/cAyUB3Ibh+CZ4Yygc+BVyU2DH1zD7IkjfHZjxls7SAoWYdnDrrzD479rjP0yDfYv9O5bbDatf194f/W+I7wpNO8LFr2iPrX/Pv4GZywnbv9LeP++eCh9Sh/8Lt9kGKb+zY9lX/huzDiRYaUh6GQiqbbId3aUZAL/sPonT5W6IWQkh/og2zIZXz4WX+8C827UGykDZuxA+vRr2LYScQ9oF9Y0hkLnP/2O5XfD9P8BRAK0GwJQvoGV/7ev7+HLIO+Hf8TL2lGVQLnkVWvSFsY9pmQfVDT8/4N9VMwd+haz92s1tn+vKHk8eitr9clDdZH3+d/KLHf4Z78hvWgNvaCwkDTMedjjd3DzvGO/YxwBgXf2Sf8arIwlWGpLFptUfodq+lQHJscSEBZFZ4GCFlIKECBy3G3IOQ+o6cPrpF391nHYt2/BYHDwW62mWPBm48RbPgO//Dpl7tHLJ1s/gvfPhVKr/x8o5Al/cCKoLul0KV7wHTVprfRDzbvP/8teNs7XMgi0KrvoEOo6Da+ZCbHvIOwoLp/t3vNWva19bp4nQZrD2mKLA+U/iCo6B7AOs/eZV8v21P9YmT+9In2vLWgeADUey+euxiylUbcTmbOYfs17imQW7Uetbntn1vfa200QwawuEVVXlke92sGRPBu9yCb/GTqFo0vv1G6eeJFhpaLX0rQRZTFzcKxGAeRuPNdSshGh8Bela7XzdO5C5P7BjZR+C1wbAS73g3THaqosjvwdmLKdd661Y/57WF+B2wsGl8PYoOLnD/+MdXKrtlQEw/P/gms8gPB7Sd8KcyeDy86aTK57TduVuPQguexu6Xw43L9SCieMbYfVr/htLVWHVq9r7Ix+EcM8WD2Gx5F/4lvb+9q/4/MefyS32w9fpdGglJoABt5ebhsrji1KZmT8RgBZbX+aC539h6Z56lu+dDtj/q/Z+j8nGw/vT85ny9hp+PWHle7Tsx6XqYv635AD/W1KP/yuqCnt+1t7vcrHx8GfrUvl0bQqKAjOvHcGou1+nd+f2dR/HDyRYaWhBnlKQo+rMCsDl57QEYMGONDIL7A0xK3G2cBRqd8qBbnZzOWH9+zDnKnhnjBZAVHGmld+sf1/rdVj0H/jxn/BqX1j2dGDGyj4E70+EzL1apjMoHDJ2wwcTYd8i/4+36pWyJaHXfKY1TOpZgM+m+Pf76nJqG3oBnHu7dkHvNAFu+QVCYiB9J6W/v17/u3HdqRTY/In2/phHwWwFQI1I4OA5DwJgX/Rf3v12ERn5fvhdlvK71twaFA59rjcePpxZyMVf5fODayAA0aufYeJLK9hwpJ4rZ/YvgpJTEJ4ASUMBT6Dy4y7e+e0QH7vGkGWKpYWSxZDChdz0/jqW1CdgObJSaxEIj9f2VUErx0ybuxm7082gtrGMu0H7+U60rCeGPJ5duJdFO+uYpcs5DHnHwGSFpPMAKHa4eG7hXgDuH9+J0V3i6/71+JEEKw3Npm2rj7365rPuLSLp1aoJDqebj1cfaaCJ/YE0VNd61gFY85Z2gU1dF9hxT6VqafyZLbQehLdGwH4/N/bpXE6Yd6vWPLh3PhxdpwUQrw/Rsh/+tv8XrURSWqj9gvZcFFjyBCyZ5d+xVFX7uvKPQ9POMG07TNsGXS/R+g++vsO/e1nkHIHlz2rvX/CcFjgk9oa/LsIZngg5h9k1998czKj+5sUn27+CjF1aYDLyQePhY8TxfuhfAChZNJMpz3/LhiM59R9v7Vtapih5OLQeAGgX84e+3s6oJa1Y4eqODQdR61/mvKd+ZcGOen5vN36kve12qdEDuD+9gMteX8WhzEI+CbkWNybGmjcQm7udq99azaaUenydeuNpjyuMDdm+33qCd387BMAjl/YldvQ0AO6IWAXA/V9sqXtgtne+9rbDODBpl+c3lx1g+7E8moRaefHq3sS06weJ52BWncxquxWAh7/ZRklpHfZ/OaLNmRbnQJB2dt2na1PILLDTokkItw5tW7evIwAkWGloIU20t8Wnqn2Koijccl4yAB/9foQix1m650rxKdj9k3ZBP7QisBfzkjxY9gw81xmeStJ6Ag78Grjx1r8Hr/aDn+/XShfvjoH3J2gbOflb+m54d6x2V4kKihlObNaaCfW9Efzpp/tgxzztbmvkwzB+JkQ01+5oP73Gv5mAggz46hZA1e6Ub10CN/0AYz0bUS17kszVc/zXbL53vlYmMQdpWY6IeAiNIW30y2SGdYCiTDa9fBXv/3bAP3sdrXxRW/2XNBR6XAloF/NXV2cxNecqANrve487X/yEZxbsrtsFp7wNnr6CgVMhJBqAvSfzufy1VTx2rA+b3O2JUIq58tTbXPHGKl75pR4NsG43bJ+nvX/urcbDry09wKdrUzApCps73AXAJeZVRDqz+cdnm9h69FTdxnPaYdd32vuexlO3W+XBeVvJLnTQvUUkL909GVNP7ft8X8xKSl0q98zdXLefpdtV9juky0UAlJS6ePKnXQD8fXQHpgxoDb2uBpOFNiW7GN80m8wCBw98uaVu2av9v2hvO44HoNDu5B1PYDTjom7ERwZrH++nBZ5ji+fTIiqYk3l2Pvq9Dje2erDi6cWxO128sewAAHeObI/VfOaECGfOTP4swuK0t4UZNT5tQvcEWsWEkFXo4P2Vh+s/rtsFmz6G/w2A57poy/42fxq4AOLgUni1P3x2jXZBn30hvDceTmz1/1gledrnX/I45J/Q0rYHl2oX899f8//XuPoNLROguqH1YK1G71nexyeX+3fJptOuNS/mn4CmXeDujXDfXmP/A/X7e9i56kf/XcxT1pRd8CbPhuH3w6A7ybpyHiXWKDi2nrUvXsO8jUcp8NfFvDgb4rvDxGdBUXA43bzjvpC3uRQA588PMeSx7/h8XT2bQ1VVazwFGHQnxGg3BNuP5XLBa+u4Kvs2ilQbfUo3s+Wndxj69JK6X1hBW52yZa72/vAHQFFwu1Xu/3Irzy7cy0JXf1ZZzsWquJhums3/lhzgxvfWUlrXn2XGHu3foGI2LuYZ+XaueWs1aXkltGsWSfAkrZdlknkViWoGzy3ay/ztdVw9k/K7VkKwRUH7sQD8ti+TZxbsAWDGxd24+4ZroOW5WHEyvdlKSkrd3DJ7fd3K20dWauXz8HhoeS4An69PZd3hHEKDzLx5fT+aRQRDX+1CPtSxgnaRKoezinjCE2D45MRmbZWMLRJa9APg7eUHOZ5bQmJUMFNHtNOeF94MOp4PwKy2Wwkym1iyJ4PVB30sQRVkQNY+QDFKMp+uTSG3uJTkuDAu8vQyAtDtMrCGYco5yIz+Wm/Oa0v3+97kq2+t32YIAIt3ppOebyc+0sblfVv49rkCTIKVhhbmaQirJVixmE3cO7YjAG8sO0BOYT1WK5QWw0eT4Ns7tdp8/nFI2wrf3AEfX+b/HRF3fgsfToLCdG1VQIdx2sU8dQ3MvghX2k7/jeUq1e72T2yB0Di47B24bSn0vlYLJhY8yL6vHuVARoF/6vTpu2Dhw9r7Q++Dv/wEV7zHkckLKLI0geOb2PrcBby6eBdHsiofWOmzFc9rP7PQOC3jENsOuy2aGept/OAegqI6SVxwK5c9+QUv/7IPu7Med+ZulxZYgnax63wBAKv2ZzL83VRuKPg7DtXMuYVL+PbLDxn17FJ2nahHYJZ/smwX0DEzwBpMqcvNbR+t5/Efd/FsySWkkkCCksPNrs954KutPDhvW90v5oeWa9/LoHA4714Ath3N5Zq3V5NV6MDSrDO7O9wGwD22bzlVWMJN769jf3odSzRb5mqlraadjdLWh78f5ssNRzGbFB6f1J3Bd76DarJwnnkH/W0prDmUzcy6XFgBNnlKJB3Ph8jmAMz4bgdZhQ46J0Tw5R2D6HLOMGg7AhNunk1eB8D9X2zlcGYd/q1u/1J72/UisAbjdLl57AetYXjKgNbcMChJ+/igqQBcXDqfbk2tpOfbeX7RXt/H27tQe9thLJhMFNqdPDVf21fl3rEdadHEc6p964EQ2wGltJA3z9GyDXPWpLA7zcd/q3pWJXkYmC0UOZy8veIgAP+a0Jlga7lzejzBYcy+eUzpmwDAy75mrVI8Dd7NukJINKUuN+95siq3DWuL2VTufB5bOHTQlhSPVtfQNi6MnKJSPvKlbaAwU1tmDtBKC/6+2ngUgCv6tsRmCeA5RHUgwUpDM4KV2pclX9KrBZ0TIsgvcfLa0jp2fLtdWpr90HLtl/TY/8KtS3CN/DcuUxAc+JXD/5vEywu2czSnqG5jlJe5H765E1Ch59Vw51q49gvWXbKEvdbOUHKKjNcncuvL8/hifWr9096//0/bJ8AWCdfPg55Xcjy0M7fn/YUnndcAkLztJe5//m2ue3cNx07Vo4ThdsG3d2krOjpOgFEPg6Lw+fpUxn6UxuTC+8hXQ+hZupWsJf9j9HPL+HLD0bqPl3sMfntee3/i0xAWZ9wpf/D7Ef7puJVttKOJUshfSz7g+UV7ue3DDRQ76vg93f1j2ZLQ0TMAmL89jZveX0eB3Ule/Lnsaj0FgBm2OWTlF3HVm7/XvfdhzetaiaRFP2g/BlVVmf71NpbuySDYauLRy/qSePWLANxinU870zE+XZti3Ln7bN072tteV0NwJEUOJ3d/upH8Eif9k6L54m+DOOeKByC4CW3UY0xtuoXsQgc3vLumbjcL+hLUfn8FRWF/ej6zftYuro9c1JXrBraB6DYo3bQM0ktttLvc91ce5vstx30fb/dPnq9PKy8t3JHGj9tOYDYpPHtlL5qEerZNGHAHAANzfmBImxDy7U7+9dVW34J5VdUOuQOtfwSYuz6VvScLaBJq5V/jO5c9t/NFENUaU3EWr/TQLo6frU1hT1rVKyKrH0/v59BKJHPXpZJTVEpSbCg3DU4qe66iwDla82371HlM7KEFD6/86uPv0ANLtLftRwPwzabj5JU4aR0TyoU9Eys+t/1YLeNTlMldyalYzQq/H8xi3WEfbgT1YKW11iS8fG8Gx3NLiA0L4tI+VWQ5OmulKdOeH5k6Ulup8+naFNxuL3+O+sZyse0hOIr0/BKW7dVuoi/zLPI4k0iw0tBCY7W3XgQrJpPCv87X/tPP/v1I3S60K1+C3T9omY0pc2HI31lW2Irhq8/hguLHyFNDSCrcQuJvDzLq2aU8/sPOuqf33S746q9aN3ubIXDJ/yghiH9+voUr5xzmyvx72eNuSYKSw92Zj/F/X27i0tdWkZZbUrfxTqXAsqe0989/Epr3YteJPC57bRULdqbzhvMiltlGYlHcvBT0Glv2p3L+C8v5ZVcdO+d3fA3H1muB0QXPgaLwwqK9PPDlVhxON1Ht+rOn578AeCDoS2LdWdz3xRZeWLS3blmd318Fl0P7Xna7jJJSF7fMXsfGlFNEBlt49YbBdLv1PVQULjGvYpB1P8v2ZnDT+2vrFgTqS0zPvQXCm7I/PZ975m7G4XIzsUcC39w5hF5THoeQGJLVVP7VdDV5JU5uen+t74Gu2wVbPtPeH/J3I+j7fP1RTAq8es05XH1ua8ydJ0DH8zGrLj5o9xsAby0/yEJfGzXz07RgDLTgAXjy590cziqieVQw79zYn8hgKwRHwiCtz+KeoG9pFxvM8dwSZv3sY7Yj57B2rotigu6XG02ndqebYR2bcv3ANmXPHXQnAIlHf+aBQVrT6GM/7PStzyLrgNZTZLJCu1G43KqRdbhtWFu6t4gqe26HcdCkDUrJKV7tvp8gi4k1h7J9W8WSuU8rAZlt0GYIDqfbyCT8Y3QHokKtZc81W6DfTQC0Pf49E7on4Fbh8R99yLBmH9SyACYrtBtJqcttNLneOqwtltN7K3pdox3Ed2w9952jPfTTthPsO+llgFRaojWWAyQPR1VVZq86DMANg9pUzHLoX6OnryUuZSFX9NUu9j4tKz6tf0TPclzSu0XFLI6u4zjt+5G5h4sS84gMtpCaXcxv3u7PpQcrzXsB8N3m47jcKue0bkK7puE1vLBxSLDS0LwsA+lGdGrKgOQYHE43M3/08Rdm1gFY+qT2/oXPQ9J5fLz6CDd/sI6jOcWkh7bnx04zcWPiCvNyJrOQd347xLXvrOFUUR3uJDfP0eq8tki4/F3sqsIdH2/gq41HURSYNKgb7mu/wm2LoqfpEHeHLPQEFyvZ6+0vkfJ++a9nf4fB0HsK+9MLmPzm76TlldChWTgL7xnG8HtmQ1RrWinpPNfkK/LtTv72yUbf7nhAaybUl9IO/jtEteCbTcd4yfMLetqYDnx08wD6XfoPaHkuIWoxHyZqzYcv/bKPOWtTfBuvMFNbzgsw7D5UYPrX29lyNJcmoVa+vnMIY7vGY2rRG8WTgn47/ksibdqF5wlf/60c26jd2Zms0P9WSkpd3DVnE8WlLoa0j+WVa87RfmGGNIGRDwFwq/MzBrQMJr/EyT1zN+Py9o4OtExf/gkIbgIdzyc9r8SY8/3jOzOma7nlksMfAKDVsR/5R/8wAO77Ygsn83wIcnd8rW3s1bI/xHdl+7FcPvQ0JD5zRS+iQspdXAfcBsFRmLP28uYA7f/p5+uP8vsBH5qn9cCo9WAIi2XJnnTWHsrGZjHx5GU9UJRyF7vEPtDmPHA7uS14MW1iQ8nIt/P60gPej6dnOdoMBlsE3285zoGMQpqEWst6K3QmM5yrlbuid3zIXzxZiSd/3u39z1AvkbQZBNYQvttynJN5Wq/DtQPaVH6+p7mYw78xfWgkVrPCin2Z3i8tPqwFqrTsD7YIft6exrFTxcSFBxlbPVQQ3gzaaRmRtum/cH63BFTVh+zK8U3ajUJ4PMS0Zf2RHPaczCfEaubKfq2qfk3nC7W3e37m9vOSAFi2N4Pj3txklhZrwS1A64GcKnKweKcWPFbbOxIcZZzjY9v3k5EN+dTb3zWnBSsLd2g3cRf3SqzuFY1KgpWG5mOwoigK/7moK2aTwo/bTrBkt5d3P6qqHbTlskPbkdD7Wj5fl8rD32zH5Va5om9LVv3fKK6ZcjOmcdrKixkhn9MpJI8tqae4+q3VZPnSBGfPLztKfPgDqBEJTPtss5HS//ivA3j0ku506dQZ0/jHAfi7+QvOi83jeG4JN7y7lnRfLj7ZB8tq5ufPIrfEyW0frie/xEmf1k348o7BdIyP0P5DX6qdszHOvoAb2hXjcLr56wfrvL/LAtj1rbYbqC0KBtzGzuN5PPCV1iz8txHtmDamIyaToi03vPAFUMx0yv6VF87V6uQzvtvh2xLK9e9pJZLEPtB2JD9tS+OrjVqvw/+mnFPxzmfUvyEogvDMrXx2nvYL56PVR3xrnNRLJN0vg8jmvLb0ALvT8okLD+KFq3pXvJPsexNEJ6MUZ/F6112E2yysO5zj213k1rll41lsPPbDTvJKnPRoEcWtQ5MrPrdFX63nw+3k72GL6NUyirwSJ7N86e0wlqBqF83nFmqlpEt6J3Jeh7iKzw2OMpo02x/5nGsHtAZg+tfbcDi97JfZ9YP2tsuFuN0qT8/XxrtpcBKJem9FeZ6+DsuWT5h+vhZcvLXioPcZK71E0nE8LrfKy79qQfStQ9sSEWyt/PzeU7TANG0bd3UrJSrEyt6TBczb6GXZ8qCnRNJuFKqq8vZyrZfjL0OSCbJUcVlp0loL3FBpefQnLuujXVjfXn7Iu/H0YMXTePqZ54J87YA2VWcdALp6Njnb+S13jdLKJD9tO+Hd7xm9JNNqACiK8X25oGfzioFteUnnacF3USZJRdsYkByDqsJX3pSCT2zVgunweIhswY/bTuBwuenSPJJuiVHVv84IkH7i6nO1IGrRzpOk53vxNZYLVjIL7KzzBI7juiXU/tpGIMFKQ9NXAxV5f5fWLTGKm4ckAfDwN9u9W8p84NeyJZoXvsD6IzlM/0aL3O8Y3o5nruhZ9p984N+gZX8szkK+avM1TcOD2J2Wzx0fb/D+l/OaN6DgpHYy6Lm38faKg/y8PY0gs4n3buzPkPblLgh9rofkYZicJbzf9DPaNQ0jLa+EWz/a4H354rcXtQba9mNRm/fi/i+2cDCzkMSoYN6+oV/FNHTSedDlIhTVzSPBn3JO6ybklWgZFq/6O1QVVr7s+V7dgcMSwT+/2ILD6WZU52bcP65TxecndDeWFk46NZvxXZtR6lKZ+slG73bVdDlhwwee8aaSZ3cy43utcfHOEe0qfi9BW347WCtddN33FrcPTQLggS+3evdLy14AO77R3u93M6nZRcbyxUcv7q6tsCjPbDVKFzFb3+Lxi7Wv/5Vf93HAm/1CHIWw07MEtefVbDiSww9bT2BS4MnLe1RO6QMM+Yc29MYPmDmhNYoC32w+ztpDXtyZ5xzWUvqKCbpOYsORbJbsycBsUrhnTMeqX9PXc9rsgV/418Bg4sKDOJhZyNx1Xty1FmRA6mrt/U4TWbAjjd1p+UQEW/jb6VkOXYfx2sZjRVmMNW9iUNtYHE43r/ziRQBozy8rIXQYz+JdJzmYUUhUiJUby/dylBcao5WDgIh984zsy+tLD9SeXXE6tK0IANqOZNWBLPaczCcsyMw157au/nWeJcVs/YJbPAHpgp1ptTf3qioc9oyXdB5HsgpZdSALRYHJ/avJcoC2fbzJAie30z04k75tonG6VeZ6s6osxfPzaz2IklIXP2zVAv/Lquod0Zmt2j46ALt/4CrP3D7fkFp7H8nxjdrbxHNAUfjRM94lvWvJcnh+hhzbSOdI7UbN6Vb5dlMtPU/Fp8qaaxN68suuk6gq9GgRVXUwfQaQYKWh6ZkVe17l84GyDmgHjr1xHsy9Dg4uMz40bYzW7X7sVLFReqiWqsIvj2nv97+FY6YE7vh4A6UulYk9EnhgfKeKaWiTGS56GUwWwg8v4LvROUQEa3fL//5me+39FvZ8rdEVYORDrD9ayFOeO8n/XNSVwadfXBUFLnwRTFash5cyZ4TWlLcl9RQPf7O95rEA8o5rJSeAof/ki/VHWbjzJFazwpvX9yMu3Fb5NWMeBZMF84HFfDCsgKYRNvanFxirF2p0dJ32y8QcBP1v5X9L9rPrRB7RoVaeurynllE53dD7wBKMkvI7L/TLJik2lBO5JTzhTZ1+/yKtHyAkBrpewtPzd5ORb6dtXJjRSFfJgNu1g8/Sd3Bf0iG6t4gkr8TJf3/wIvuw81tt1Upse2g1gMd/3InDs1um3pxYSe9rtfmdOsIlto2M7NSUUpfKf7714t/Lrh+08aKTUVv2N74nV/ZtVf1dZPsx2ioJRwHdTn7H1f21i+Ij3+2o/eKqB2JJ50FEPM8u2OsZryVJcWFVvyamLbQbBUDkjk/4x+gOgFbSq7WXZO/PWiCd0BO1SWte85RzbhqcVNbkejqzBXprDeHKpk+4b7wWAH618Wjt2ZUDS7Sm75i2ENeed1doF6FrB7Qm3Gap/nU9Pdu5b/2Cawe0IirEysHMQuZvr6Uf6Og67ecXGgfx3Y39PS7v27L6rANA10laNufkNjooRxnVuRmqCu/8drDm8bIPaiVDcxC0OpfP12vBxrAOTctWAFUlNEZbyQOw81uuG6j9m/l0bUrNS/3dbm3lIkDrgfy6O538EifNo4IZ2Da25rnqmY5dPzChWwLhNq2PZPWhWm5Oj23Q3rboS0a+ndUHtedf0KN5za+LaqFtaYAKB341gqnvamvQTvNsIdGkNYTGGCWgceXLr2cYCVYaWkiTsoAlo9yqhiOrtCBl62da7XLX9/DhxbD4UVBVwmwWHrukGwDvrDhU8/4PO7/VekeCwikeMI3bPlxPZoGDLs0jefbKXlVfXOO7wpBpADT//VFem9wZk6J1+Ne6z8vat7X9CGLbk5V0IXfN2YTLrXJJ70QjhV5JbDvjrI341Y/z2tU9MSnw5YajfLG+ljufVa9qv5zbDCElvBePerIO/xzXiR4tq7nYxbaD/trGVZErn+DFyb1QFPh0bapxF1Mt/bj2HleyIy/IKHc8ekl3mkZUERiBtnTU08gZ+tssnr68J4qi9T7Uen6I3qvS51o2HCvikzXa3fzjl3avPuUdEm1szGX97RmevLQHJgW+33K89vH07dJ7T2HF/kwW7DiJ2aQw4+JuFYPa8oJCjfGUVa/w6EXdsFlMrNyfxfe1fT+3ehpre13N/B0n2ZhyihCrmXvHVZPlAC3A1c9mWfcO94/rQGSwhV0n8vhyQy3/XvSzXbpdysr9mfx+MIsgs4m7PQFItfrdrL3d9DFX902gTWwomQUOo7GzWnq/SpeLWLEvk23HcgmxmvnLkOSaX9fbc8Lu/kX0jS5hSPtYnG7VyHJVa5+nX6XDeLaknmLt4WysZqX6rIqu4/laf1neUcLT1hrPf23p/poDTqMENJK0fAeLPA3r15VvGq5KaIwWdALs+MbYHfWrDcdq7pHTsyot++M02fhivVZWubqmrIquS1kpaEL35kSHWjmeW8KvNZXTM/doezVZQyGhh3FG2yW9W1T9u7O8dqPAEgy5KYSc2mvsjaLPuVrHPJmVFn2YvyMNtwq9WkbRKia09q/Rs1qJA78ysUdzzCaFbcdya94VuVwJqNDuNA7NPVNLQCDBSuNo1lV7m+65qz+VAnOuLmsWvfIDY9Mvfnte284dGN0lngt6NsflVvnHZ9Xsyuhywq9aT4g6cCr3/XyMHcfziA0L4u0b+hIaVMOd1tB/QlRryDvK0BOzeWhiF0Dr2l++t5oeG3uBdvYJ4B56H9O+2KZtQNU0jJmX9qj+Ygcw7D6txpuxi8H58419Zf797fbqlzUWZhmblrmG3Mu9n2+m0OHi3KSY2reGHnaftnz7xBaGOFcbqe//m7eV1Oxq7l5zj2nBH1Da73b++fkWnG6VCd0TuKhnLXc9592j/cI7volzHWuM5ZUPzttGXnWbN51KgX3afhKlvW/koXnbUFVt34PB7eKqfo1u0J3aeCc20714vXFxfPib7dWXu7IPahtDKSZKu0/m0e+1LMf1A9vQKSGi6tfozr1N+8V8fCOtCzZxpyfr898fdlb/9eWd0MqTQGm3K40VK7cOTS7bnbM6Pa7UeoZyDhFz4jf+7gk2nl24t/psR/ZBLXBXzKidL+JZT6/KlAGta74rB+1iHp4AhRlY9/7EfZ5y35vLDlTfz2XPL1vy2vkCXvU0dF5zbmtiwqrJquji2muHAapu2PIpd4/Svr7P1x2tfsWc2112nlHHccY+IBf2TKz9+2kN1o4ZANg6l78MTiLEambH8TyW76thRYneXNt2JJ+tS8HlVjk3KUbrEatNt0na253fMrBtDF2aR1Jc6uKzmkozRr/KUJbuySA9305sWJB3Z9Z0vlAr/53YTHDhcSZ7mmM/XlNDOU8vAbXoS3aJagT7l53jxSZpQaFlx0XsW2iUgn7adqL6/xPFp7SVXACJ5/DjVi0rMrG2rIquXLASGxZklIlrzK6UC1aW783A4XTTJjaUjvFn3iognQQrjSFey5CQvksr2Xx7F9hztf0mrp+n7Vtw8ctw0Uva81a9bGye9cSk7jSPCuZQZiEPfb2t8h3Qlk+1XRBDYnizdCI/bj2BxaTw+nV9aRldS5QeFArne85iWfUKf+3i5sq+LXGrcNecjVVH6uvf1XYgjWnLqxm9WbEvk2Cridev60tYTSlo0LIBw7Wlvvz6BFMHJzCsY1NKSt1M/WRD1RegNW9oQV3z3rye2pr1R3IIt1l4bnKvyssJTxcWp/XnACyZybTR7TmndRPyS5z8/bNNVW82tv5drfGtzRBe2RXC7rR8YsKC+O+k7jUHYqCdCOvZ04IlT3D/uA608ZSDql3ZtWE2oELycN7eqbDnpDbedE/gWOvXp2cDlj/NvWM6kBgVzNGcGkqHmz/V3rYdyeztpexPLyAmLIh7xtaQ5Sg/Xm9t3xVWvsxtw9qSHBdGRr6dF6rb9GvbF9rFuNVA5uwzcziriLjwIG4bXk0vR3lBYWXjrXub6we1MVbOvLm8mlKCXgJKHsavqW42pZwi2Gpi6kgvxjNb4ZwbtPfXv8cFPZrTvUUkhQ4Xr1bXTLz/F62pPTqZ1QXxrD2cTZDZxG3DvDxjxbOyi00fMzA5hnOTYnC43Ly5vJrsStoWrVfMGkZqRB9+2qZltbw+06WnticLO74lOsht9Jy8Vt3XV5yjrZQBnEnD+WytFmRcN6iWrIqu4/laKShjF0rmXv7i6cX7cNXhqkszqlqhuVYPai7v27LqRt7ThTeFVtq+Jez5SdseH20Pk2o3bSxXAvph63GcbpVuiZHeBWNQ1keyT2sG7xgfjt3prn7vHM/3k+gkTjpDWePpw7qgtpshXevBYAnRSmXpO7nEk835bsvx6jNkRrDSm4U7y0pAtf5Oa0QSrDSGZp4Lz8kd2sXw0DLtH9tlb4G13N1e35tgtJZV4ecH4MgqmoRqqzMsJoVvNx+vuBOko8hYqryh9V94con2n+O/k7pzbnKMd3PrfIGWqnU5UOb/i8cndaNvm2jySpzcMnt9xQZRR6HReLq93W288Kt2wXh8Ug/v/2P3v0Vryi1Mx7TqZV6Y3IuEyGAOZFQRjJXkwdo3Adjd8TaeX6xdgGdc3M27dClo2QdbFKTvxLrza166ug8RwRY2pZyqfIEtLTZKMikdrjd+gT92Sbeq+2KqMvhuLdV+cjuh+37gmSu08tNn61Irr+xylRq7kGZ0msJLnq9v+sQuRNd2V15+PM9uwWEnfuexS7oD8PaKg5V3m3Vrd/AAeZ2vMsZ7YHynmnsPyht0F6DAvgUE5+zj0Yu1QHz2qsPsOJ5b+fmeVUDFXa8ot+y7Y829FeX1v0V7u3cBtvxU/s+zD9Fbyw9UnX3wlIDcXSfxrOck2RsHJ1VuGq7OOTdod+aHV2DK3s//na/93/149ZGqs3G7PauAOl/Ay56sylX9W5EQ5eV4XSeBNUy7005Zzd2jtWzVnDUpVR+Op+/q2m4k764+jluFoR3i6JoY6d14bYZAZAvtZmnfAm4dlozVrLDmUHbVm/0dWq4Fm007s/iYhbS8EuLCgzjf2/JBSBNoN1J7f+d3XNwrkdiwII7nlhgXzQqyDnj6VWycjOph7AUzubrlw1Xx7MTM7h9pExvG8I5aGX5OddkVPbPSaqBRAqpyU7bqdBjr+Ty/o9jzjLlWe1xEueban7adQFXhnNZNar+51FmDjVVS7P+Fcd3isVlMHMwoZMfxKnbttRdo++QApc16GPtOncklIJBgpXEkenYpOrRMO80WtO3GY6u42zvvXu0cCLcTPr8Bco8ysG0sT1yqXYRe+XU/j3y7XVu189vzkHeUPFs8127tAcDUEe1q7tA/naLAhKe1Zrb9i7Htn88b1/UlMSqYg5mF3PT+2rJzPda8CUWZlIS3YvLvLVFVuObcVsaGSF6xBMHYR7X3V71CrDuLV6b0wewJxmb+tKssYFn/LpTk4mjSnutWxOFWtSZJn8YLiYYhd2vv//oYrSJMPHV5TwBeX3agYrlr2xdQnI0roiU3rIzD6dYalCvtXlmT0BhjkzGWzOTc1pFGOeiezzdXbJ7c/QMUnEQNa8Yd6+KxO90MbhfrXfpZF5FQlg1Y9jRjusZzfrcEXG7tQLcKq60OLYPcVNTgKP6/vTuPj/laHzj++c4kmSyySCILSQhCEhEilpKgLUUtpQuq1ut2oRTV+mmrLXVruaXuvb26XFq991aVtqroSmkF1VIERVs0xJ4ikpDINt/fH2dmIgRJZDIj93m/XvNqMtF8TybLeb7nPM9zXvilPjn5RcSH+VZsIghoVDIZbPknnZrUoVd8KGZdbT+VqoI4tQdO/wxGNxacbcG5iwU0rONlWyovl8DGqhQfHX5aRI+4ENo0qM2lQvPVnW3PHlKJhJqRLwoT2X8ym1omF0Z1KseqipVfeMmd8vZ/kxwVSHLjQAqL9atbxhcV2IKHX2p35vtDZ3E1aoy6VgVQWUy1IE51hGXnYpIbB9Iy3I/8IjNvbyxj9chSspzboIst8bTcqzigSu2tPVB2f0ior4dtYn6zrK7Zl20B/XfLYUAFDuVa5bCybj3tW4m7q9G22vHu5jJygS7LV/l41xmKzTptGtSmcVAFtiuie1o+1ybIy7Tl1nxYVgftCxmWKhmNNI9YUo+ex6DBPTeqyrmcfyQERKkV2UPfcm9CPVyNGruOZZXd8t+Wr9LKVnVUob8xULIVdPAbvN1duTM6CKDs1ZzTPwM6eIey9Q8Xsi8VEeDlRquI2hW7ZjWza7AyY8YMOnTogKenJ35+fmX+m/T0dPr06YOXlxeBgYGMGzeOgoKbOAfnVhASp9q1W0V1szVpuoqmQd/5ENxc9WZZ+hAU5jGwTUSp7raDZi+mMOXvAEzKGcQl3Y0RHRowqXvTsj/v9QQ0UnfoAF89Sx1TEQuHt8bHsgLRd/5mVm7YSrGlSdqUzF7kFhnoFhvMXyx38hUSc49aqi3Kg6+fo00Df2bea10RSOPZT/aQlZ2Fbqk4ejmrB2dyi2hW18e2clAhtz2uThE+nw5b/0XP5qEMahuBrsNj721n04EzapVjo2p1/77encOZBUT4ezKjX/NKXG+0CpLOHoA9HzG5RzTN6/lyPreQ0Yt3kJVbWKo8+rtaPdl+PBdfD1fm9G9R8aXZpPFqqf3wRkj/gen9mhFoKUcv1TXU0lvlUMjdrNx7FhfLeTU3TCIs63oAuz+EnFO80CsWLzcjO9PPs+zyZGlLx9qsiC7M36JyIp7pEV3xk12tJ/zueA+tKJ8pvVQO2Cc7j7Hj8l42llWVogadmL5e3T2OuaNx+VeprKxba6nvQ2Ge7ffu09Tj7Lv8zvXwRrVC4RXE7D1qZfH+VmE3zo25UsJQ2/i1gguMs6yu/Pv7w6UbjF3IsN2VLzsfQ25BMTGhPiRfWX13I9atoN++htxzjOrcCE2Db/ZnXD25WvJxDvu15ftDZzEaNAbfKLH2SraS4j1w9hBDbquPi0Fj2+FM9hy7YjXOsgWk10+yBWMD21Tg5gtUlVRQrAoeflvDndFB1PV1JzO30LZtZmNdVQmKZcU+lTfXMapO+VfirCynJnNgLQG1THSJVvk1H24rI9HWEqyc8Y1j+5FMNK0CW0BWlgZ4pG+Bgou2xm6rdp24umz6snwVayforjHBN95GdzC7BisFBQX079+f0aNHl/nx4uJievXqxcWLF9m0aRNLly5l+fLlPPXUU/YclnPoNVclfyU/CQ8sUnc41+LmBQ++r1r1n9wFq8aB2czo2xvx9rDWhHoU80LB33ClkA3F8Xzv1p5/PNjy+tUcN9LxKfANh6x0WDmWZqE+rBiTRP0AT46fz8X1mykYi/LYam7K8uKO9GtZl9cGJZTdI+NGNA3unq1Oi927An5ezsA2EUztoyahpduO8vGrY9Au/sFRcx2W5LUlrp4Pi//cDg+3Shy25ealGqkBpMyFC38wtU8snZrUIa+wmBHvbuWjhbMgM41z+DL7TBLeJhfeGd664hMdqBbu1gl9w2zcDWbeGNwKP09X9hzPov+/vufXH7+AEzso0Nx4+kg7AOb2b1HxiQ7UaoClDJaUOQR5u/PqgJYALP4hnblf/4p+Ls1WtfLEwTYAPHlXE+LD/Cp+vfC2qnlWcQH8+BYhvu5MtCSjTl+9TzXDK8yzlZvPOZVAYbFOt9hg7qpMqWSTHupnM+8c7P2EluF+3NeqHroO45fuLDl51pKvsrqoHRk5+dQP8GSkpbNohTTuarleJuxbSfMwX3rHh6LrMOvLy1b+LFtAx4Nv57sD5zAaNB6//Rql5tcT3k6VkRdehL2fckfTINo28Ce/yMzcy1ePLIm1xcHxzN+m8ske7RRZ8d/54Fh16rW5EPZ9SsM6tegZpybLUl10z/0O54+AwZXX09T3rXd8aMV/Rj39IVJ1XmXfpwT7uNsm51KrK5flq+w0xnHkbC7eJpdrl9Nfj20r6DOMBs222rz4yoP/LPkq5vB2LLdsAVVoZdPKuhV0cC2YzbbVwxU7j5U+bDTnlDpYVjOwOkOthrRp4H/j5OgrBUapn9HiAji8mTuig/A2uXAy69LV3botwYoeEl+Sr9LMeUuWrewarLz00ks8+eSTNG9e9t3omjVr2LdvH4sXLyYhIYGuXbvy6quvsnDhQrKzb+I011uBb5gKQLpOA1M58jtq14f+/1ET+p4P4cOhcOEPuoaZ2dzw37Q0/E6eqx9u98xj0+Qu9G15k8d7u3nBvW+pO6C9n8C3M2gU4MnqsUksj95AT+NWijDwSehEFg5rw98fTLh2WW151E1Q1TqgtsbOp/OnpEg+eOQ2etY+zgjURPAXfQQPtW/E+w/fVrnAwarFIAiJV/1uVj6Ou1Fj4bBE7mlRFzdzHh1PLgLgtcK+hNYJ4KPR7Ykqbx5OWdo+qkrWMw/DzsWE+3vywSO3EeRt4rfTOZz+XCU2Ly3szHmDH6/cH1+5idwqeaL6WTn4DRzfQecmdWxJuvO/PcjKBS8BOinmePYXhXJXbDCjypPkei0dxqn/blsE+TkMb1+fzpbgb+S/t7Hj87ch7xyntTp8kBlDkLeJ2ffHVy6YNhhtTffYugB0nal9mlHPz4Oj5/IYvzSVvJO/wOk9mDUXXjqgqqKm942r3EmyBmNJdZ4lh+npbk1tLePf3pimtoAsVWNz01Vy8p+TI4kIKGfeweU0rVSiraZpTOmlvnef7DxeMvlYgqONWmvOXiygcVCtim8fWF3WcwWwNa9bvesEadambZYtoIvBiSzfcx6oQCLvlS7bCgJslWurd58oyQU6ewgunAKjiVf3q5YED7WLuH5F47VYg5WD66DwEgPbhuNi0NiRfr50bpVlZWWvMZrj5/Pw83SlW2wlgqOI9qry8MJpOLWLTk3qEOKjVnOsbfSBkv4qdaJZsVetCt6wyrAsmnZZVdA63F2NdI9T477qMFVLsHLIpREnsy7h5Wa8utGkE3JozsqWLVuIi4ujbt2SX7Du3buTn5/P9u3bHTgyJxXZUQUQRjf1h2puY/hbMwyH1oGLBx7DPqZ9mzblT468kQbJ6sA+gJQ58HYXfJbdR+LhBQC49JjJ7NEP3tykermOT6sAIi8T3ukGaRtpzy5eN87FqOmciezLzMmTmN437ua/RoMB+r6uklEPrIHNf8PkYuS1gfFsafIBIVomma7BRPV8gtVPJBMdUs6ExWtx81KrVQDfTIOzh4ixrFa9HLmXTsY9FOpGfgwZxL//1Ob6nTnLwz+yZAL6diboOo90asjL/eIIN56ja96XACwq6s59CfV4Y3Crm1sGbtoT/BupbZCf3sXFaOCNwa1oEe5HZm4BbjvUltOigq74e3uyaESbG5fyXk+r4ep7d2InHFyHr4crrw1KwM1oYP0vGax+ZwYAKUXNOI8347tE2RIrK3e9oSr4O/oDnN5Lg0AvXuitVv5mf/UL61a/B7lnydT8WHWhKQ0CPK/dHbc8Wgwqud6Zg7QI97OdgTN2yQ7O/JGhAlHgr0fVttS0Ps0qvqVmFfcAoEH695B5hLh6vtzetA5mHSZ/vFs13rOcP7T6QjRmHUt11HVawV9PdG/19Z3cBefSaBnuZ8sFmm05mZrDKQBkB7Zk8+ELuBq1G/equZbQliqRuPAipG0gyNvdNpm/tcGSC1SYZ5vIF6Wrv2kD24RXbvXWxQQNb1dvH1iL0aDZcuve2fR7yWqcJTg6Vzue3ceycDFo3F3ekuUrWbeCDq6zjR3gs90nS1YbCy+pKlRgxSn1+9A9LuTmbjSriUODlVOnThEcXHqiq127Nm5ubpw6VXYXxfz8fLKzs0s9/qfED4ARX6hJHdQ+bER7GLoCwttU/fUSR6gTjd1qqf1xa8JbtxklZcBVxcUNBn2gOjLmnIT/9Ib37kW7cBrqxBDY/+/lr8Ipj9B46DlHvb1uOnwwCN67F9/0tWA0UXvYYgYnNancnVxZWo9UB7FdOq9yj7JPUi/vAEPOzQdA7zyZ18feT8eom5hUL9fxKbUydnCtrbHdkHYRfBP9GbW0S5zyac7ksWOZN7Bl5Sc5K4MBkieot7+bDZlH8DK58MEj7ZjfOoM4w2Eu4caZqAGseLxD5Sc5K6/AktyVdS+B2Uxi/dp88Gg7Ir0K6FmoEl3/a+7BY50b2jrQVpp3SEmi5k9q1W3obfW5v1UYxWad4h2qsd6HhUnUruXB64NbVW6Su/x61q2E1MUAvNS3GY2DanE6O583/vUaFBdwQA9jf3EY97cKu/qMo4rwraduhkAllgPT74nDy83I1sPn+MdnP6Fb8lUWnlENAJ+5O7ry1/MKKKlg2a+OXpjSKwaDBp/vOanyxixbQCvOq9WbBxIrUFV1JU0rtRUEqvhAszRO3H3svModMRdS4BHEisMuGDQYUtahjOVl/f5Z+iYNa18fNxcDO9LPs+2wJbfKsu20JkcFYT2bh1b+b1zDzioAPHsAMo/Qun5tGtXxIq+wuKTnSsZe0IvRPQP44Be1HdXvZlfhq0mF/0JNmzYNTdOu+/jpp5/K/fnKWgbWdf2ay8OzZs3C19fX9ggPv8k70FtReBsYtRGePgjjd8PIr9Tpp/Zy22h4Yjt0mapWWh7/0XYWTZXzDVNfT2w/lZRqdFOdPR9Zp/a6q1qrYdBpkvol//ULVSGjGaDfGyoXoyq5mGDAe6rR2B+/wN/j4F+d1FZUWBvcOldxrlZgFHSfqd5e+4Jq3vfVM5gOfQUGV0KGLCSmrl/VXa/lEBU4F16EVU+AuRjP4hx6H1GJ2O4dHuPVEXeWvyTzRpInqiMGTu2GfSqZNrG+P593OEAt7RLnvBrzf2PH8OzdMRVPGi6LtWx6x3/h3O9omsacB+J5tUcwdxhTATgQ2oePRnW4/uFz5WXdCkr9AIqLqGVy4V9DE6nn50Fyvrpp+KyoHV1jgph9fyUSv69kTbTdvQx0nYgAT6b2UaXoR374BM1cyAFzPQ7p9Xihd2z52wVci3Ur6Gd1OnlMqA8PWnJJxizeRv6B7wD4IrsxgbVMTO5RiWKByzW1BJu/fgnmYprV9bVN1NNW7aXwsDq88MeiKEDjwbYRN/c1NrYEK8d+gotnCfJxt62u/HP9AfTCPFuPlXfSVb7KCEvfmUpx9y35m3VoHZqm2Y6l+O/3R1Si7YlUADK8mnIut5AgbxMdGt3gCAEnUeFgZezYsezfv/+6j7i48lVohISEXLWCkpmZSWFh4VUrLlbPPvssWVlZtsfRo+U4lKqmqlVH5bJUB+8Q6DhR/cEOuok7qvLw8IMB/4HJh+H5DOj3utpGsQdNgzufh9GbVV7Jnc/D6C3Q/AH7XM8nFIZ8rKqfzEWArpoADlyszoepam0fVaWp5iJY87xqqgdwx7Ml/X6qinVrzcVdBX1vd4FFd6tVsoDGcMeUqr2eV0BJ1dpnT6rS6GPb8dyiqrj873qa6NAqCBqsIjursuniAlijErQNBo37M9/BlWL08HbMHTOIyGudN1RRUd3V+TsXTtn67zSqU4v1I+pyu1Gd7dKy50jeGpJ48ytjADF91PfuzG9wdCugDgqc80A8vV23AbBGb8u0PrE3bq1fHrF9VdXayVTbpP1Cr1jaNvAnpvBnTPlnydI92aU1Yca9cdc+V6m8GiSrHksX/1ABBPBUN9XjZ0f6eQ5+/ykAa3Mb4+vhautYXGm+9VTiMjocUlszj3ZsiItB5TqtX78GigvINvhxoCiIdpH+JIT73dw1r9gK6t86DG+TC7+ezmH17hPqXCdgXbYKmkYkNahcUYQDVHiUgYGBREdHX/fh7l6+pbr27dvz888/c/JkSfnYmjVrMJlMJCYmlvn/mEwmfHx8Sj1EDVZdHRWDYtSWUKdJ9g/GQprDn7+Gsdth3E51vIK3nRoyaRr0exN6zVP9feq1hiHLS/JnqlpAI5VXZfJRE9Af+9Xqx71XNDysKknjVOB3KQve6a62Dovy1F2tNWenqmia2hLVjGorYetClcexS1U5adZVrKri4laSdL5uOuSqxFrTpjkYMEOTu7kjKbnqJht335Ig/dsZtqf7Rxno6qJyOUY8PI4Rlc0buZJXYEn7/a0qp8nDzcjbI1ozIUSdEP+DezLvP5ZM96poWGZ0LSkp3vcpAGG1PVkwLJFglws0yVeHqG42tOFvA1vcXE6VlXUraP9qABoEevGUJQjavkn1yNlS2Bg3o5EZ95ajK/aNNFaHb5KWAsWF+Hm62fr8zPn6V4oPq9O5v8qJxMvNyOCb2eaqZnYNqdLT00lNTSU9PZ3i4mJSU1NJTU3lwgVVZtetWzdiY2MZOnQoO3fuZN26dTz99NM88sgjEoSImi+wseoBYW9GV2jzZ3j0W7WdZj1Mzl6a3Qtjt6l+NndNhwm7Iazsm4+b5uoBDy2D0BZq+8lyFAP931VVPFUtKBraP67e/uJpWGIJiBKGQljrqr9em4ehTrQq0149Tm0J/bxcfeyO56r+ep0nq9WOtA0lp75vmodWXAD1k/CKSKja61kOF+Xnj23BmI8r3Jantrm6DxhNYv0q3P61BmOpS1THb6BDo0A+ujMHo6Zz3D2K10bfw53RVVQ00MzS4O+3r1VADTzWqSFdY4JIJhWAn/QYXuwTS+Ogm6g2tAptqU5Dz8+2rR79KakBIT7uFGYex5h1hGJdY4c5igldm1RdMUY1sGuw8uKLL5KQkMDUqVO5cOECCQkJJCQk2HJajEYjn3/+Oe7u7iQlJTFgwAD69evH3Llz7TksIYS9eYeoc6aSxtsn1+hyHn7w8Hr1eORbeHhd+doBVFbX6dDtZTWpG1xUbon1TK2qZnS1JIFr6u7801GADs0HqATxquYXUVIW/tmTsPN9y3lVqOCoqlc6w9uqlcaiS/DDG+q53ctUcOYZCA06Ve31GndVX+Ol86olg0VEhkoertfuvqrJN7IKiYfApuq8qP0qsddg0Fj4QEPau1gO1Rw+qmq21UAF6I0sqyuWajFPNxfe+3Nbunipqqdf9Ai6tmzMwx2raIWsmmj6dc8Cd37Z2dn4+vqSlZUlqzFCiOqTdUwFLN7V0FArLQW+mKTySZInqhUQlyrYpijLhQyV+J1zWXfXRl3UIav28PNy+HikSmy/Zz6smaLaF3R9qaTCrCpt+jt8M1Wtxj3ynWqv/3pbldf12MaqDwI3zIFvX1alzMNUXxlSl8Cno1VOy+jNVXs96+cOiVeFGBZ5KyfisfMdTscMJ2jAP5zi0MKKzN+3RmaNEEI4G9+w6glUACI7qcTv/0uDLi/YL1ABqBUEj25QCcWaEdqNVnlV9hJ3v6ok082w8nEVqATHqUNH7SFhqDo49uQuSHlF5QOZi1Sekz1Wq6xbT2kp6vBasOWwEN276q8X1U0F0ad2l7TWN5vx+F2VUAc37+IUgUpFSbAihBC3AoNBbXlVB+9gtQrw3HF1FIa7nVete81VwZGHvyp/v2+h2gKzB6+Akv5K382yJNtq0HWqfa7nH6nOP9PN8OVk1Qju1y/Ux2LvqfrreQWWfN5t76j/pm+BrKMq8d16MOctRoIVIYQQV9M0+1RwlcXVA4avgslpqs9ScKx9r9dqKLQbpd5294Vuf1G5M/bSfYYqCz+8Ed63nHKdMASCm9nnetaeQHs+Uom9u9UhosTeU33f0ypmh8YOQgghhJPrMVs1vPQJs0+Po8v5RajDU9dMUZU6noFw11/sd72I9qoT+B/7YcmDJWcQxT9ov2vamQQrQggh/vdoGtRuUH3X6zBW9V05e0itHNmzSk7ToMdMdYRIuuqtQtOeUD/Jfte0MwlWhBBCiOpQp6l6VIdGd8Lw1bByDIS3U40hDbdu5ocEK0IIIURNFN5WNWisAW7dMEsIIYQQ/xMkWBFCCCGEU5NgRQghhBBOTYIVIYQQQjg1CVaEEEII4dQkWBFCCCGEU5NgRQghhBBOTYIVIYQQQjg1CVaEEEII4dQkWBFCCCGEU5NgRQghhBBOTYIVIYQQQjg1CVaEEEII4dQkWBFCCCGEU3Nx9ABulq7rAGRnZzt4JEIIIYQoL+u8bZ3Hr+eWD1ZycnIACA8Pd/BIhBBCCFFROTk5+Pr6XvffaHp5QhonZjabOXHiBN7e3miaVqWfOzs7m/DwcI4ePYqPj0+Vfm5RQl7n6iGvc/WQ17l6yOtcfez1Wuu6Tk5ODnXr1sVguH5Wyi2/smIwGAgLC7PrNXx8fOSXoRrI61w95HWuHvI6Vw95nauPPV7rG62oWEmCrRBCCCGcmgQrQgghhHBqEqxch8lkYurUqZhMJkcPpUaT17l6yOtcPeR1rh7yOlcfZ3itb/kEWyGEEELUbLKyIoQQQginJsGKEEIIIZyaBCtCCCGEcGoSrAghhBDCqUmwcg1vvPEGkZGRuLu7k5iYyMaNGx09pBpl1qxZtGnTBm9vb4KCgujXrx+//vqro4dV482aNQtN05gwYYKjh1IjHT9+nCFDhhAQEICnpyctW7Zk+/btjh5WjVJUVMTzzz9PZGQkHh4eNGzYkOnTp2M2mx09tFtaSkoKffr0oW7dumiaxqefflrq47quM23aNOrWrYuHhwe33347e/furbbxSbBShmXLljFhwgSmTJnCzp076dixI3fffTfp6emOHlqNsWHDBsaMGcMPP/zA2rVrKSoqolu3bly8eNHRQ6uxtm3bxoIFC4iPj3f0UGqkzMxMkpKScHV15csvv2Tfvn28+uqr+Pn5OXpoNcpf//pX3nrrLebPn8/+/ft55ZVXmDNnDv/85z8dPbRb2sWLF2nRogXz588v8+OvvPIK8+bNY/78+Wzbto2QkBDuuusu2/l8dqeLq7Rt21YfNWpUqeeio6P1Z555xkEjqvkyMjJ0QN+wYYOjh1Ij5eTk6FFRUfratWv1zp076+PHj3f0kGqcyZMn68nJyY4eRo3Xq1cvfeTIkaWeu++++/QhQ4Y4aEQ1D6CvWLHC9r7ZbNZDQkL02bNn2567dOmS7uvrq7/11lvVMiZZWblCQUEB27dvp1u3bqWe79atG99//72DRlXzZWVlAeDv7+/gkdRMY8aMoVevXnTt2tXRQ6mxVq1aRevWrenfvz9BQUEkJCSwcOFCRw+rxklOTmbdunX89ttvAOzatYtNmzbRs2dPB4+s5kpLS+PUqVOl5kWTyUTnzp2rbV685Q8yrGpnzpyhuLiY4ODgUs8HBwdz6tQpB42qZtN1nYkTJ5KcnExcXJyjh1PjLF26lB07drBt2zZHD6VG+/3333nzzTeZOHEizz33HFu3bmXcuHGYTCaGDRvm6OHVGJMnTyYrK4vo6GiMRiPFxcXMmDGDQYMGOXpoNZZ17itrXjxy5Ei1jEGClWvQNK3U+7quX/WcqBpjx45l9+7dbNq0ydFDqXGOHj3K+PHjWbNmDe7u7o4eTo1mNptp3bo1M2fOBCAhIYG9e/fy5ptvSrBShZYtW8bixYtZsmQJzZo1IzU1lQkTJlC3bl2GDx/u6OHVaI6cFyVYuUJgYCBGo/GqVZSMjIyrokpx85544glWrVpFSkoKYWFhjh5OjbN9+3YyMjJITEy0PVdcXExKSgrz588nPz8fo9HowBHWHKGhocTGxpZ6LiYmhuXLlztoRDXTpEmTeOaZZ3jwwQcBaN68OUeOHGHWrFkSrNhJSEgIoFZYQkNDbc9X57woOStXcHNzIzExkbVr15Z6fu3atXTo0MFBo6p5dF1n7NixfPLJJ6xfv57IyEhHD6lG6tKlC3v27CE1NdX2aN26NYMHDyY1NVUClSqUlJR0Vfn9b7/9Rv369R00opopNzcXg6H01GU0GqV02Y4iIyMJCQkpNS8WFBSwYcOGapsXZWWlDBMnTmTo0KG0bt2a9u3bs2DBAtLT0xk1apSjh1ZjjBkzhiVLlrBy5Uq8vb1tK1m+vr54eHg4eHQ1h7e391V5QF5eXgQEBEh+UBV78skn6dChAzNnzmTAgAFs3bqVBQsWsGDBAkcPrUbp06cPM2bMICIigmbNmrFz507mzZvHyJEjHT20W9qFCxc4ePCg7f20tDRSU1Px9/cnIiKCCRMmMHPmTKKiooiKimLmzJl4enry0EMPVc8Aq6Xm6Bb0+uuv6/Xr19fd3Nz0Vq1aSUltFQPKfLz77ruOHlqNJ6XL9rN69Wo9Li5ON5lMenR0tL5gwQJHD6nGyc7O1sePH69HRETo7u7uesOGDfUpU6bo+fn5jh7aLe3bb78t82/y8OHDdV1X5ctTp07VQ0JCdJPJpHfq1Enfs2dPtY1P03Vdr56wSAghhBCi4iRnRQghhBBOTYIVIYQQQjg1CVaEEEII4dQkWBFCCCGEU5NgRQghhBBOTYIVIYQQQjg1CVaEEEII4dQkWBFCONS0adNo2bKlo4chhHBi0hROCGE3NzqRdfjw4bYDFQMCAqppVEKIW40EK0IIu7n89PJly5bx4osvljrsz8PDA19fX0cMTQhxC5FtICGE3YSEhNgevr6+aJp21XNXbgONGDGCfv36MXPmTIKDg/Hz8+Oll16iqKiISZMm4e/vT1hYGIsWLSp1rePHjzNw4EBq165NQEAAffv25fDhw9X7BQsh7EKCFSGE01m/fj0nTpwgJSWFefPmMW3aNHr37k3t2rX58ccfGTVqFKNGjeLo0aMA5Obmcscdd1CrVi1SUlLYtGkTtWrVokePHhQUFDj4qxFC3CwJVoQQTsff35/XXnuNpk2bMnLkSJo2bUpubi7PPfccUVFRPPvss7i5ubF582YAli5disFg4O2336Z58+bExMTw7rvvkp6eznfffefYL0YIcdNcHD0AIYS4UrNmzTAYSu6lgoODiYuLs71vNBoJCAggIyMDgO3bt3Pw4EG8vb1LfZ5Lly5x6NCh6hm0EMJuJFgRQjgdV1fXUu9rmlbmc2azGQCz2UxiYiLvv//+VZ+rTp069huoEKJaSLAihLjltWrVimXLlhEUFISPj4+jhyOEqGKSsyKEuOUNHjyYwMBA+vbty8aNG0lLS2PDhg2MHz+eY8eOOXp4QoibJMGKEOKW5+npSUpKChEREdx3333ExMQwcuRI8vLyZKVFiBpAmsIJIYQQwqnJyooQQgghnJoEK0IIIYRwahKsCCGEEMKpSbAihBBCCKcmwYoQQgghnJoEK0IIIYRwahKsCCGEEMKpSbAihBBCCKcmwYoQQgghnJoEK0IIIYRwahKsCCGEEMKpSbAihBBCCKf2/3CcEQeNHH4IAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHFCAYAAAAzCLlHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACs70lEQVR4nOzdd3hUZfbA8e+0THoChBQIvfcOAaUXBRUF24IFe3dlXZcVy4qVta66lhXBjopKV6RJld57bwFCSEJCejLt/v64c28S0maSmQR/ns/z5Ekyc5P7zhBmzj3vec9rUBRFQQghhBDiMmWs7QEIIYQQQlREghUhhBBCXNYkWBFCCCHEZU2CFSGEEEJc1iRYEUIIIcRlTYIVIYQQQlzWJFgRQgghxGVNghUhhBBCXNYkWBFCCCHEZU2CFSF87IsvvsBgMLB169baHsof2smTJzEYDLz11ls1et4pU6ZgMBhq9JyXWrVqFQaDgVWrVtXqOIS4XJhrewBCCCFK6t69Oxs2bKB9+/a1PRQhLgsSrAjxB5Ofn09gYGCtX/0L/wkPDychIaG2hyHEZUOmgYSoJb///jtDhw4lLCyM4OBg+vXrxy+//FLiGG1KaenSpdxzzz3Ur1+f4OBgCgsLAZg1axZ9+/YlJCSE0NBQrrrqKnbs2FHid9x1112EhoZy9OhRRo0aRWhoKI0aNeLvf/+7/nu04wwGQ5kfU6ZM8dnj9nQ8GpfLxauvvkrjxo0JDAykZ8+e/PbbbyWOSU1N5YEHHqBRo0ZYrVbq16/PFVdcwfLly0sc99lnn9GlSxcCAwOpW7cuY8aM4cCBAxWO94YbbqBJkya4XK5S9/Xp04fu3bvr3yuKwkcffUTXrl0JCgqiTp063HTTTRw/ftybp6jUNNC7776LwWDg6NGjpY795z//SUBAAGlpaQAMGjSIjh07snbtWhISEggKCqJhw4Y8//zzOJ1Or8YhxOVCghUhasHq1asZMmQImZmZzJgxg++++46wsDCuu+46Zs2aVer4e+65B4vFwtdff81PP/2ExWLhtddeY9y4cbRv354ffviBr7/+muzsbPr378/+/ftL/Lzdbmf06NEMHTqU+fPnc8899/Cf//yH119/XT/m+eefZ8OGDSU+br/9dgCfT0d4Mh7NBx98wOLFi3n33Xf55ptvMBqNjBw5kg0bNujH3HHHHcybN49//etfLF26lOnTpzNs2DAuXLigHzN16lTuvfdeOnTowJw5c3jvvffYvXs3ffv25ciRI+WO9Z577iExMZEVK1aUuP3gwYNs3ryZu+++W7/twQcfZOLEiQwbNox58+bx0UcfsW/fPvr168f58+er/HzdfvvtBAQE8MUXX5S43el08s0333DdddcRFRWl356cnMxf/vIXbrvtNubPn89NN93EK6+8whNPPFHlMQhRqxQhhE99/vnnCqBs2bKl3GMSEhKU6OhoJTs7W7/N4XAoHTt2VOLj4xWXy1Xid915550lfj4xMVExm83K448/XuL27OxsJTY2Vrnlllv02yZMmKAAyg8//FDi2FGjRilt2rQpd4w//PCDYjAYlGeeeabyB+0FT8dz4sQJBVAaNGig5Ofn67dnZWUpdevWVYYNG6bfFhoaqkycOLHcc2ZkZChBQUHKqFGjStyemJioWK1WZfz48fptL7zwglL8pdFutysxMTEljlEURZk0aZISEBCgpKWlKYqiKBs2bFAA5e233y5x3OnTp5WgoCBl0qRJ5Y7vUitXrlQAZeXKlfptY8eOVeLj4xWn06nftmjRIgVQFi5cqN82cOBABVDmz59f4nfef//9itFoVE6dOuXxOIS4XEhmRYgalpuby6ZNm7jpppsIDQ3VbzeZTNxxxx2cOXOGQ4cOlfiZG2+8scT3S5YsweFwcOedd+JwOPSPwMBABg4cWGoVicFg4LrrritxW+fOnTl16lSZY1y9ejV33HEHt99+O6+++mqFj8flcpUYgydTDd6MZ+zYsQQGBurfaxmoNWvW6Ofq3bs3X3zxBa+88gobN27EbreX+B0bNmwgPz+fu+66q8TtjRo1YsiQIaWmlYozm83cfvvtzJkzh8zMTEDNaHz99ddcf/311KtXD4Cff/4Zg8HA7bffXuL5iI2NpUuXLtVe2XP33Xdz5syZElNbn3/+ObGxsYwcObLEsWFhYYwePbrEbePHj8flcrFmzZpqjUOI2iDBihA1LCMjA0VRiIuLK3VfgwYNAEpMXwCljtWmFHr16oXFYinxMWvWLL1+QRMcHFziDR/AarVSUFBQagz79u3jhhtuoH///syYMaPSx6NNUWkfQ4cOrfRnvBlPbGxsmbfZbDZycnIAtXZnwoQJTJ8+nb59+1K3bl3uvPNOkpOTgaLns7zn/NLnu6zHWFBQwPfffw+oweK5c+dKTAGdP38eRVGIiYkp9W+ycePGUv8m3ho5ciRxcXF8/vnngPp3tGDBAu68805MJlOJY2NiYkr9vPY8VvZYhbgcyWogIWpYnTp1MBqNnDt3rtR9SUlJACXqD4BSK3+0+3/66SeaNGnis7GdOXOGq6++msaNGzN79mwsFkulPzNlyhQee+wx/fuwsDCfjQfQA45LbwsICNAzU1FRUbz77ru8++67JCYmsmDBAp5++mlSUlJYvHixnv0o7zm/9Pm+VPv27enduzeff/45Dz74IJ9//jkNGjRgxIgR+jFRUVEYDAbWrl2L1Wot9TvKus0bWubt/fff5+LFi3z77bcUFhaWCJg0ZdXHaM+j9lwI8UcimRUhalhISAh9+vRhzpw55Ofn67e7XC6++eYb4uPjad26dYW/46qrrsJsNnPs2DF69uxZ5oe3MjMzGTlyJAaDgUWLFhEeHu7RzzVt2rTEedu0aeP1uSsyZ86cEhmX7OxsFi5cSP/+/UtlFAAaN27MY489xvDhw9m+fTsAffv2JSgoiG+++abEsWfOnGHFihUeZYPuvvtuNm3axO+//87ChQuZMGFCifNfe+21KIrC2bNny/z36NSpU1WfghJjKCgo4LvvvuOLL76gb9++tG3bttRx2dnZLFiwoMRt3377LUajkQEDBlR7HELUNMmsCOEnK1as4OTJk6VuHzVqFFOnTmX48OEMHjyYp556ioCAAD766CP27t3Ld999V2kPlaZNm/LSSy/x7LPPcvz4ca6++mrq1KnD+fPn2bx5MyEhIbz44otejXf8+PHs37+fadOmcfr0aU6fPq3fFx8fT3x8vFe/z1dMJhPDhw/nySefxOVy8frrr5OVlaU/vszMTAYPHsz48eNp27YtYWFhbNmyhcWLFzN27FgAIiMjef7553nmmWe48847GTduHBcuXODFF18kMDCQF154odJxjBs3jieffJJx48ZRWFhYqv7liiuu4IEHHuDuu+9m69atDBgwgJCQEM6dO8fvv/9Op06dePjhh6v1XLRt25a+ffsydepUTp8+zbRp08o8rl69ejz88MMkJibSunVrFi1axKeffsrDDz9M48aNqzUGIWpFLRf4CvH/jraCp7yPEydOKIqiKGvXrlWGDBmihISEKEFBQUpCQkKJVR3Ff1d5K4vmzZunDB48WAkPD1esVqvSpEkT5aabblKWL1+uHzNhwgQlJCSk1M9euuqlSZMm5Y75hRdeqP4T4+V4tNVAr7/+uvLiiy8q8fHxSkBAgNKtWzdlyZIl+nEFBQXKQw89pHTu3FkJDw9XgoKClDZt2igvvPCCkpubW+Ic06dPVzp37qwEBAQoERERyvXXX6/s27evwnEUN378eAVQrrjiinIf32effab06dNH/3dt0aKFcueddypbt2716PlRlLJXA2mmTZumAEpQUJCSmZlZ6v6BAwcqHTp0UFatWqX07NlTsVqtSlxcnPLMM88odrvd4zEIcTkxKIqi1Gh0JIQQwm8GDRpEWloae/fure2hCOEzUrMihBBCiMua1KwIIUQNURSl0j40JpNJ9n0S4hKSWRFCiBry5ZdflurBcunH6tWrq3WOVatWyRSQ+H9HalaEEKKGXLhwgRMnTlR4TJs2bXzeq0aIPzoJVoQQQghxWZNpICGEEEJc1v7wBbYul4ukpCTCwsKkKE0IIYT4g1AUhezsbBo0aIDRWHHu5A8frCQlJdGoUaPaHoYQQgghquD06dOVdsj+wwcrWiHa6dOnPd7LRAghhBC1Kysri0aNGnlUUP6HD1a0qZ/w8HAJVoQQQog/GE9KOKTAVgghhBCXNQlWhBBCCHFZk2BFCCGEEJe1P3zNihBCCHE5czqd2O322h5GjbNYLJhMJp/8LglWhBBCCD9QFIXk5GQuXrxY20OpNZGRkcTGxla7D5oEK0IIIYQfaIFKdHQ0wcHBf6rGpYqikJeXR0pKCgBxcXHV+n0SrAghhBA+5nQ69UClXr16tT2cWhEUFARASkoK0dHR1ZoSkgJbIYQQwse0GpXg4OBaHknt0h5/dWt2JFgRQggh/OTPNPVTFl89fglWhBBCCHFZk2BFCCGEEJc1CVaEEEIIcVmTYKUG2Jw2HC5HbQ9DCCGE+EOSYMXPHC4HY+aP4eaFN+NSXLU9HCGEEKJS8fHxfPTRRyVuW79+PcHBwZw6darGxyN9Vvwsy5ZFYnYiAKeyTtEsolktj0gIIURtUBSFfLuzxs8bZDF5vSonISGBLVu26N8risLEiROZOHEiTZo08fUQKyXBip/ZnDb96wMXDkiwIoQQf1L5dift/7Wkxs+7/6WrCA7w7u0+ISGBL774Qv/+66+/JjExkcmTJwPw888/8/e//x2Xy8U///lP7rvvPl8OuRSZBvIzu6uoEc6B9AO1OBIhhBDCMwkJCRw4cICcnBzy8vJ45plneOWVVwgLC8PhcPDkk0+yYsUKtm/fzuuvv056erpfxyOZFT8rEaxckGBFCCH+rIIsJva/dFWtnNdbPXv2xGQysX37dpYvX069evW45557ANi8eTMdOnSgYcOGAIwaNYolS5Ywbtw4n467OAlW/MzuLApW9qfvR1GUP31HQyGE+DMyGAxeT8fUlsDAQLp06cKcOXOYNm0aCxcuxGhUJ2OSkpL0QAXUYtyzZ8/6dTwyDeRnxZcsZ9uyOZvj339QIYQQwhcSEhJ4//33GTZsGEOHDtVvVxSl1LH+vgiXYMXPbC5bie/3X9hfSyMRQgghPNe1a1fMZjNvvvlmidsbNmxYIpNy5swZ4uLi/DoWCVb8rPg0EEiRrRBCiD+GmTNn8sgjj9CmTZsSt/fu3Zu9e/dy9uxZsrOzWbRoEVdd5d9anD/G5NkfWPECW5AiWyGEEJcvl8tFamoqM2bM4NChQ8ydO7fUMWazmbfffpvBgwfjcrmYNGkS9erV8+u4JFjxMy1YCTAGYHPZOJB+QIpshRBCXJbWrFnDkCFDaNu2LXPmzCEiIqLM40aPHs3o0aNrbFwSrPiZFqy0rtOaA+kHSC9I53zeeWJDYmt5ZEIIIURJgwYNwuW6/LaGkZoVP9M62IYEhNAisgUgRbZCCCGENyRY8TMts2IxWmhTRy1SOp55vDaHJIQQQvyhSLDiZ8WDlQirOveXY8upzSEJIYQQfygSrPiZtnQ5wBRAsCUYgDxHXm0OSQghhPhDkWDFz4pnVoLN7mDFLsGKEEII4SkJVvysRLAimRUhhBDCaxKs+Jk2DSSZFSGEEKJqJFjxMz2zYrIQYgkBJLMihBBCeEOCFT8r3sFWMitCCCGE9yRY8TMtWDEbzVKzIoQQQlSBBCt+pnWwtZgsBJmDAMi159bmkIQQQog/FAlW/Kys1UD5jvzaHJIQQghRofj4eD766KMSt61fv57g4GBOnTpV4+ORjQz9rHiwohXY5jvycbqcmIym2hyaEEKImqQoUBs1i5ZgMBi8+pGEhAS2bNmif68oChMnTmTixIk0adLE1yOslAQrflbW0mWAAmcBIcaQ2hqWEEKImmbPg9ca1Px5n0mCAO/ebxISEvjiiy/077/++msSExOZPHkyAGPGjGHVqlUMHTqUn376yZejLZNMA/mZvhrIFIDVZMVoUJ9yWREkhBDicpWQkMCBAwfIyckhLy+PZ555hldeeYWwsDAA/vrXv/LVV1/V2Hgks+JnNpe7wNZowWAwEGwOJseeQ649l/rUr+XRCSGEqDGWYDXLURvn9VLPnj0xmUxs376d5cuXU69ePe655x79/sGDB7Nq1SofDrJiEqz4mcPpANRgBSDYogYrsnxZCCH+ZAwGr6djaktgYCBdunRhzpw5TJs2jYULF2I01t5kjEwD+VnxDraANIYTQgjxh5CQkMD777/PsGHDGDp0aK2ORYIVPyu+GgiQxnBCCCH+ELp27YrZbObNN9+s7aFIsOJvxdvtQ7HMigQrQgghLmMzZ87kkUceoU2bNrU9FKlZ8bfiHWyhWGZFpoGEEEJcZlwuF6mpqcyYMYNDhw4xd+7cMo+76qqr2L59O7m5ucTHxzN37lx69erlt3FJsOJnl04DhZjdOy9LsCKEEOIys2bNGoYMGULbtm2ZM2cOERERZR63ZMmSGh2XBCt+JjUrQggh/igGDRqEy+Wq7WGUIjUrfqZ1sDUb1bhQ28xQMitCCCGEZyRY8bPiHWxBMitCCCGEt2osWJk6dSoGg4GJEyfqtymKwpQpU2jQoAFBQUEMGjSIffv21dSQakSpaSD3aqBce26tjUkIIYT4I6mRYGXLli1MmzaNzp07l7j9jTfe4J133uGDDz5gy5YtxMbGMnz4cLKzs2tiWDWi+EaGQImdl4UQQghROb8HKzk5Odx22218+umn1KlTR79dURTeffddnn32WcaOHUvHjh358ssvycvL49tvv/X3sGqES3HhUNzt9mXpshBCCFElfg9WHn30Ua655hqGDRtW4vYTJ06QnJzMiBEj9NusVisDBw5k/fr15f6+wsJCsrKySnxcrhwuh/71pdNAUrMihBBCeMavS5e///57tm/fzpYtW0rdl5ycDEBMTEyJ22NiYjh16lS5v3Pq1Km8+OKLvh2on2j1KlCswFb2BhJCCCG84rfMyunTp3niiSf45ptvCAwMLPc4g8FQ4ntFUUrdVtzkyZPJzMzUP06fPu2zMfua1r0WwGxQ40JtGkgKbIUQQgjP+C2zsm3bNlJSUujRo4d+m9PpZM2aNXzwwQccOnQIUDMscXFx+jEpKSmlsi3FWa1WrFarv4btU1pmxWQwYTKaAFm6LIQQQnjLb5mVoUOHsmfPHnbu3Kl/9OzZk9tuu42dO3fSvHlzYmNjWbZsmf4zNpuN1atX069fP38Nq0ZdumwZiqaBZDWQEEII4Rm/ZVbCwsLo2LFjidtCQkKoV6+efvvEiRN57bXXaNWqFa1ateK1114jODiY8ePH+2tYNerSZctQlFnJd+TjdDn1jIsQQgghylarHWwnTZrExIkTeeSRR+jZsydnz55l6dKlhIWF1eawfEbPrJhKZ1YACpwFNT4mIYQQojLx8fF89NFHJW5bv349wcHBFS6C8Zca3chw1apVJb43GAxMmTKFKVOm1OQwaozNpRbYFs+sWE1WTAYTTsVJrj1XbxInhBDi/zdFUWqlBCDIHFThwpWyJCQklFjJqygKEydOZOLEiTRp0sTXQ6yU7LrsR2VNAxkMBoLNwWTbs2X5shBC/InkO/Lp822fGj/vpvGb9BIETyUkJPDFF1/o33/99dckJiYyefJkTp8+zR133EFKSgpms5nnn3+em2++2cejLkk2MvSjsqaBAIIs7p2XZUWQEEKIy1BCQgIHDhwgJyeHvLw8nnnmGV555RXCwsIwm828++677N+/n+XLl/O3v/2N3Fz/tuOQzIoflbUaCKQxnBBC/BkFmYPYNH5TrZzXWz179sRkMrF9+3aWL19OvXr1uOeeewCIi4vTW45ER0dTt25d0tPTCQnxX1mDBCt+pLXbLxWsSK8VIYT40zEYDF5Px9SWwMBAunTpwpw5c5g2bRoLFy7EaCw9GbN161ZcLheNGjXy63hkGsiPtA62Wqt9jVZUK5kVIYQQl6uEhATef/99hg0bxtChQ0vdf+HCBe68806mTZvm97FIsOJHlU4DSWZFCCHEZapr166YzWbefPPNUvcVFhYyZswYJk+eXCONXCVY8SOpWRFCCPFHNXPmTB555BHatGlT4nZFUbjrrrsYMmQId9xxR42MRWpW/KispcsgNStCCCEuTy6Xi9TUVGbMmMGhQ4eYO3duqWPWrVvHrFmz6Ny5M/PmzQPUpc2dOnXy27gkWPGj8pYu68GKZFaEEEJcRtasWcOQIUNo27Ytc+bMISIiotQxV155JS6Xq0bHJcGKH2kFtuVNA+Xa/bsuXQghhPDGoEGDajwQ8YTUrPhRuTUrMg0khBBCeEyCFT8qdxrIXLTzshBCCCEqJsGKH1WaWZGaFSGEEKJSEqz4UXnBSojZ3RROpoGEEOL/NUVRansItcpXj1+CFT8qb+lySIAarGQVZtX4mIQQQvifxaK+7ufl/bkvSrXHrz0fVSWrgfxIy6xc2m6/jrUOABcLL9b0kIQQQtQAk8lEZGQkKSkpAAQHB2MwGGp5VDVHURTy8vJISUkhMjISk8lUrd8nwYoflTcNFGmNBNRgRVGUP9UfsBBC/FnExsYC6AHLn1FkZKT+PFSHBCt+VN40UGRgJABOxUm2PZvwgPCaHpoQQgg/MxgMxMXFER0djd1ur+3h1DiLxVLtjIpGghU/Km/pstVkJdgcTJ4jj4sFFyVYEUKI/8dMJpPP3rT/rKTA1o/K62ALUCdQrVvJKMyo0TEJIYQQfzQSrPhReTUrUKxupeBiDY5ICCGE+OORYMWPypsGgqK6FVkRJIQQQlRMghU/qiizIsuXhRBCCM9IsOJHnkwDZRRIzYoQQghREQlW/Ki8pctQVGArmRUhhBCiYhKs+FF5HWxBMitCCCGEpyRY8SOPVgNJZkUIIYSokAQrfuTJNJD0WRFCCCEqJsGKH1W4dFn6rAghhBAekWDFj2yuyjvYZtoycbqcNTouIYQQ4o9EghU/qmgaKMIaAYBLcZFty67RcQkhhBB/JBKs+FFFq4EsRgthljBA6laEEEKIikiw4ieKoujBitlY9ubW0nJfCCGEqJwEK37iUBz612VNA0FRy33ptSKEEEKUT4IVP9HqVaD8YEUyK0IIIUTlJFjxE20KCMpeugzSxVYIIYTwhAQrfqIFKwYMmA1l16zIzstCCCFE5SRY8ZPiy5YNBkOZx2jTQJJZEUIIIconwYqfVNS9ViOZFSGEEKJyEqz4ic1ZfvdajZ5ZkT4rQgghRLkkWPGTinZc1uiZFdkfSAghhCiXBCt+UlH3Wo1kVoQQQtQ0h8vxh6uVlGDFT7zJrGTbskssdRZCCCH85a2tbzHkhyFsPLextofiMQlW/KSyVvsA4QHhGFBXCmUWZtbIuIQQQlx+jmQc4ZWNr9RIWcCyU8twKA6m7Z7m93P5igQrfuJJga3JaCLcGg5I3YoQQvyZvbrpVWYdmsVn+z7z63nO554nJS8FgC3JW9h/Yb9fz+crEqz4iSdLl0GWLwshxOVo9enV3Lf0PpJykvx+rqScJLad3wbA2jNr/XquPWl7Snz/9f6v/Xo+X/FrsPLxxx/TuXNnwsPDCQ8Pp2/fvvz666/6/YqiMGXKFBo0aEBQUBCDBg1i3759/hxSjdELbI3lF9gC1A2sC6BHukIIIUpyKS7e2/4eMw/MrJHz2Zw2XtrwEpvObeK7g9/5/XyLTizSvz568ahfA6TdabsB6BTVCYDFJxZzPve8387nK34NVuLj4/n3v//N1q1b2bp1K0OGDOH666/XA5I33niDd955hw8++IAtW7YQGxvL8OHDyc7O9uewakTxDrYVaRrRFIATWSf8PSQhhPhDWpm4kul7pvP65tdJy0/z+/l+Of4LKfnqBaS/Mx2KovDL8V+AohrHNWfW+O18u1PVYOXm1jfTI6YHDsVRIwFZdfk1WLnuuusYNWoUrVu3pnXr1rz66quEhoayceNGFEXh3Xff5dlnn2Xs2LF07NiRL7/8kry8PL799lt/DqtGOFwOoPJpoBYRLQA4dvGY38ckhBB/NIqi8OmeT9WvUVh1epVfz+dSXHy2t6hu5FjmMc7mnPXb+Q5nHOboxaNYjBYmtJ8A+C9Ycbgceo1K5/qdubP9nQD8cPgH8ux5fjmnr9RYzYrT6eT7778nNzeXvn37cuLECZKTkxkxYoR+jNVqZeDAgaxfv77c31NYWEhWVlaJj8uRJwW2AC0iJVgRQvzx7Erdxe2Lbmfukbl+Pc+GcxvYd6GoPGBF4gq/nm9l4kpOZp0kLCCMdnXbAfD7md/9dr6fj/8MwKBGgxjVfBQAm5M3k+/I9/m5jl08Rr4jn1BLKM0imjEwfiCNwxqTbctm/rH5Pj+fL/k9WNmzZw+hoaFYrVYeeugh5s6dS/v27UlOTgYgJiamxPExMTH6fWWZOnUqERER+kejRo38Ov6q8qTPChQFK4lZifrUkRBCXM4Wn1jMPYvvYVfqLj7e9TGKovjtXNP3TAfgioZXALDx3EZy7bl+OZeiKMzYOwOAv7T5CyOaqhfTa8/6ZyrI6XLq9SrXNLuGVpGtiA2JpdBZyJbkLT4/n1av0iGqA0aDEZPRxO3tbwfgm/3f4HQ5fX5OX/F7sNKmTRt27tzJxo0befjhh5kwYQL79xctlbp0R2JFUcrdpRhg8uTJZGZm6h+nT5/229irw9NgJSY4hhBLCA7FQWJ2Yk0MTYhaZ3fZ2X5+Oy7FVdtD+X9BURSybFkczThKYpb/XkcURWHa7mn8Y80/sLnU7PG53HN+ywzvTNnJluQtmI1mpvSdQtPwpthddn4/659Mx9bzW9mTtgerycr4duPp37A/AJvObaLQWeiX86XkpRAWEEb/+P4YDAYGNBwA+GcqaE+quhKoc1Rn/bbrW1xPeEA4idmJrD6z2ufn9BW/BysBAQG0bNmSnj17MnXqVLp06cJ7771HbGwsQKksSkpKSqlsS3FWq1VfXaR9XI48abcParCm1a0cvXjU7+MS4lK1ETC8sO4FJiyewBf7vqjxc/tLnj2PtPy0GulI7XA5eHPLm9y75F6um3sdfb7twxXfXcGYBWO4du61+puSL9mddp5b9xz/3fFfAO5ofwd94/oC/ss8aFmV0S1GExsSy+DGgwH/TQVpWZUbWt5AVFAUreu0Jjo4mgJnAVuTt/r8fFph7YgmI/T3igHxarCy9sxan2estOJabSUQQLAlmJtb3wzAV/u/8un5fKnG+6woikJhYSHNmjUjNjaWZcuW6ffZbDZWr15Nv379anpYPudJB1tN88jmABy/eNyvYxKiOJfiYsKvE7h27rV+vRq/1Lqz61h4fCEAMw/M1IvR/UVRFJJzk1l1ehX/2/U/Zh2c5fM3geTcZIb8OITBPwym33f96P51d7p91Y2EbxO4du61HM3w7YXI2jNr+Wr/V2xO3szJrJN6fYPZYEZBYcnJJT49X2ZhJg8se4AFxxZgMph4rs9zTOo1iYGNBgL+yQIcSj/E6jOrMRqM3NPxHgCGNBoCqI/f19PmB9MPsu7sOowGIxM6qIWuBoNBz674OiArdBay7JT6/ndN82v023vH9cZqspKUm+TTjFWOLYfjmep7TKf6nUrcN67tOMwGM9vOb+Ng+kGfndOX/BqsPPPMM6xdu5aTJ0+yZ88enn32WVatWsVtt92GwWBg4sSJvPbaa8ydO5e9e/dy1113ERwczPjx4/05rBrhaYEtQMvIloBadS4uL4fSDzFpzSQOpR+q8XPvv7Cf97a/R3pBul9+/46UHWxP2c7p7NPcu/Rev6540OQ78nl548v69yl5Kaw8vdLn50nNS+Wdbe9w39L7GDBrAMN/Gs7jKx7nw50f8sqmV9iest2n51uRuKJUHYVDcZBrz+VU1il+PPyjT8+35bxazzAwfiCfXfUZP4/5mc23bebfA/4NwJqzvg0eXtzwIlvPbyXEEsIHQz/g1ra3AkVZgB0pO8i2+bblxIw9apZjRJMRNAlvAqgrWOoF1iPbnu3zmg5tBdBVTa6iUVhRLWT/eHew4uMlzKtPrybHnkNsSCw9YnrotweZg+gV2wvw7b/j3gt7UVBoGNqQqKCoEvfFhMRwZfyVgDrldTnya7By/vx57rjjDtq0acPQoUPZtGkTixcvZvjw4QBMmjSJiRMn8sgjj9CzZ0/Onj3L0qVLCQsL8+ewaoSnNSsAzSPUzIqsCPKcw+VgyvopPL7icb/MJWve2PIGv574lQeWPcDJzJN+O09xiqIw6+Asbl90O9P3TOfNLW/65TwLjy3Uv07OTebeJfeSnFt+cbsv/G/X/zibc5aY4BjGt1UvSr4/+L3Pz/Pu9nf5fO/nbDq3iYuFFzEZTLSq04qm4U0B9CtaX9E2hHui+xNsu30bv//ld5bftJyX+r0EwKrTq3yazdGmJEY1G0Wv2F40CW9CkDmIvg36YjKYOJF5gtPZvqnnc7qcrDu7DoD/DvkvVza8Ur+vUVgjmoY3xak42ZC0wSfnAziVdYolp9Ts0H2d7tNvNxqMRVNBp303FXQ6+7Sejbq7490l7kuIS8BsNJOYnciprFM+O6e2CmhUs1EYDSXfirUg0JcZK21qsPgUUHFd6ncBYG/aXp+d05f8GqzMmDGDkydPUlhYSEpKCsuXL9cDFVBTbFOmTOHcuXMUFBSwevVqOnbs6M8h1Ri9KVwlfVagaEXQyayTPpnrfnPLm4z7eVyNvbnWNEVReHnjy8w+MptVp1cx58gcv5znUPohNidvBiC9IJ0Hlz3o907DefY8nl77NK9sekX/W1hycgkX8i/49DwFjgL9xfnf/f9N47DGnM05y71L7iU1L9Wn59IcSj/El/u+BODZPs9yV4e7MBqMbE7e7NNA3aW49ALMR7s+yvfXfs+m2zYxZ/Qc/t7z74AarPiqVsfhcuhX+X3j+hJgCiDCGkFMSAxXN7uaQFMgSblJHM447JPzZdmy9FR9z9ieJe4LDwinW3Q3AJ8VoR69eJQ8Rx6hllC6R3cvdb+eefDhNMnnez/Hpbjo37A/beq2KXGfNhW0MnGlz/4Nv9z3JS7FRb8G/WhXr12J+0IsIXrmw1fZlczCTP35urb5taXu14KVnSk7fbbJbVn1KsV1qNcBKN2O/3IhewP5iaft9gHiQuIINgfjcDmqfTW05swavtr/FXsv7OXBZQ/69Ur5UPoh1p1dx/GLx2u0odCHOz8sEaBM3zPdL9mVbw58A6hLJhuHNSYpN4kHlz3otx2yj108xrhfxrHoxCJMBhNP9XyKDvU6YHfZmXvUt70sVp1eRY49h7iQOEY2G8mMq2bQMLQhidmJ3Lf0Pp8HR06Xk5c2vIRTcTKs8TAGNx5MXGgcA+PVmodZh2b57FwHLhwgvSCdUEso93a6lw71OmA1WQHo26AvIZYQUvJS9Bfv6tqbtpccew4R1gja1m1b4r4gcxAJDRIAfNbMbMf5HSgoNAlvQnRwdKn7teDBV1flO1J2AOoUjMloKnV/8YJQXwQPybnJes+P+zvfX+r+PnF9CDYHk5Kfwr606m/Pkl6Qzryj8wC4t+O9ZR7j67qVJSeX4HA5aF2nNa3qtCp1f8PQhrSIaOGzjJWiKPqy5c71O5d5TIcoNVg5m3OWjIKMap/T1yRY8RNPNzIENcOkTQVVp8jW5rTx+ubXAbWwNyk3iYeWPeSXHZ1PZZ3iL7/8hYeWP8T186+nz7d96P99f25ZeAtPrHiC6Xum+2WVyayDs/hk9ycAPN37aWKCY0jJS/F5duVC/gW9Uv/hLg/zyfBPiAqK4ujFozy+4nGfN2z6+fjPjPtlHMczjxMdFM1nV33GhA4T+EvbvwDw46EffdoDYcGxBYB6VWc0GIkNiWX6iOnEhsRyPPM49y+736d/Nz8c/oHdabsJsYTwdO+n9du1x7fg2AKf9c7Q3lAS4hJKTcNaTVYGNRoE+G4qaMM59c2kd2zvMt/MBzdSpy18VZuz9bw6BdQzpmeZ92tvrFuSt/jk73Rn6k4AutbvWub93aO7E2wO5kLBBQ6kH6j2+b49+C0Ol4MeMT30LFFxAaYAPSDzxVTQ6tOrKXQW0q5uO71W5FLa+bYkb/HJhZn22lJWVkXjy6mgpNwk0gvSMRvNpTJHmvCAcH2atHgTvsuFBCt+ohXYepJZgaIVQdVZvvzV/q9IzE4kKiiKWdfOIjo4mmOZx3jkt0d8nvnQVnGEB4QTZlFrjC4WXuRA+gFWnF7Be9vf8/nywuWnlvPqplcBeKTLI9zW7jbu76Reefk6u/LD4R+wu+x0jupMl/pdiA+L53/D/keYJYwdKTv4x+p/+Gx56vcHv2fy2snkO/JJiEvgh+t+oHuMmm6/uunVRFgjSMpN8tmVclp+GuuT1C7R17W4Tr89PiyeGSNmUD+oPkcyjvDXlX/1SZ3F+dzzvLf9PUCt6YgJKWpNkBCXQNPwpuTac/n52M/VPhcUTX8Ur60obngTdSp62allPnl8G5PUepW+DfqWef+A+AEYMLDvwj6fbBinTTldOgWkaRnZkriQOJ81FtuZshOALtFdyrw/wBRAQpyaPfLFNIn2fN7a5tZyj9GmgnzxGqNlHBIaJJTb46tZeDMahjbE7rLrU8NVlZSTxPaU7RgwMLLZyHKP0wKk38/+Xu0LFa1epU2dNnqWsSxaduVynAqSYMVPPO2zotFWBFU1s5Kcm8y03dMAeLLHk7Su05ppw6cRYY1gT9oenlj5hB5AVVeWLUtPm7496G3Wj1/P+nHrmT16Nh8O/VD/D/j5vs99VlS47fw2/rnmnygo3NT6Jh7q8hAAY1qN8Xl2xea08cOhHwC4rd1t+u1t6rbhv0P/i9VkZfWZ1by4/sVqPz5FUfReI3e2v5P/Dfsf9YLq6fcHmgMZ03IM4LupkkXHF+FUnHSu35lmEc1K3Nc4vDHTr5qO1WRlR8oO9qfvL+e3eO7fm/9Nrj2XzlGduaX1LSXuMxqM+pvS94e+r/bzmVmYqb/Qah1PL3VFgysIMgdxLvdcta8gc+25+nSS9oZ9qaigKD31Xt2mWzm2HD17UV5mpfhy2+oGuKl5qZzNOYvRYCzRSOxS+lRQNadJ8ux5HMpQV96VlVXR9I/vj9lo5njmcU5kVm8T2F2puwDoElV2MAaXLGGuZkCmBdPdorsRGxJb7nFdo7sSZgkjozCj2n+n2mMsr15Fo93vi+k1X5NgxU+8WboMxfYIquLy5be3vk2+I5/u0d311GKLyBZ8PPRjgsxBbDy3kafXPu2TqYS5R+aS78inZWRL+sT2ASAsIIzWdVozIH4Ak3pNwmK0sDt1tz7fXR1HMo7w+IrHsblsDG40mGf7PKtfAQWYAnyeXVlycglp+WlEB0UzvOnwEvf1iOnBmwPexGQwMf/YfL7e/3W1zrUrdRdnc84SbA7msW6PlTmNcEvrWzBgYF3SOp+sRtB6nIxuPrrM+5tHNNenLqqb7ViZuJLlicsxG8z8q++/ynx8o1uOJsgcxNGLR/Upjqpan7Qel+KiZWTLct8IAs2Beq3M0lNLq3W+bee34VAcxIfGl1jueilt6qm6dSs7UnbgUlzEh8ZX+EanBQ+/n/29WgGgNgXUKrIVoQGh5R6nZbH2pO6p1lL7PWl7cCkuYkNiK3x8YQFh9I7tDVRvei3Xnqv3wLm098ilihcSV+c51YLp4suVy2IxWvRpqW3nt1X5fMXPWV69ikYrst2bttevWyhUhQQrfmJ3FABg8fDfW6tZOZl50usmWZvPbWbxycUYDUYm95lcIpXZqX4n3hv8HmajmWWnlvHyxper9UfocDn49oC6K/bt7W4vM20aFRTF6BbqG+Hn+z6v8rlAzRg9tPwhsm3ZdK3flTcGvFGq0Z4vsyuKougByLh248oMNgc3Hsw/ev0DgC/3f1mt6SBt+eKwJsMIMgeVeUyj8EZ6lkDL+FTVofRDHEw/iNlo5upmV5d7nDY9tOjEomo9Pq0D6R0d7ii1qkMTHhDOqGbqBm7VXcasXbVqV8Hl0aeCTlZvKkgrftSKaMujBX+bzm2q1pSsFsyVV1uh6RXbiwBjAGdzzuqNwKpCmwLqGt21wuNiQmJoU6cNCoq+zLkqtAxAefUxxfliKmhvmtp7JC4krsxi5eJ6xfbCarJyLvdctabrK1tCXJyWXarORZ/daefABTUbV1mw0rZuW8wGMxcKLvi9jYG3JFjxE9tF9QrYcsKzNGyD0AYEmYOwuWycyT7j8XnsLjtTN08F1CvwS1cjgDqX/nr/1zEajMw+MlsvrqyKVadXkZSbRKQ1skTXxUvd2eFO/fjqvFi+tOElUvJSaB7RnA+GfkCgObDUMQGmAL0XQ3WzK9tTtnMg/QBWk5WbWt1U7nE3t76ZuoF1SclLqfKLpd1pZ/HJxQAVPpegdpgEmHt0brWKJvUdXuMHEWGNKPe4fg36UTewLukF6VVejXAm+wy703ZjNBj1rejLoz2+FYkrqrw8vPiS5fLqVTRXNrySQFMgZ3LOVKtjp9ZfpbwpIE3ziOY0CmuEzWXT64WqQuuvUl69iibYEqwHNNWZttAyK1oPjor4YipIr4/x4Hxatmp36u4qr17RpvA8OV+QOUifeqtq3UpFXWTLogWJu1J3VTmoPpxxGJvLRoQ1gsZhjSs8NtAcqK9O2nvh8uq3IsGKnzgc6tVTQL5ny1yNBqNeP6DN2Xri+4Pfc/TiUepY6/BYt8fKPW5E0xE82vVRQF36W9U3dG05782tby4zcNA0j2iuv5h8ta9q+03sSt3F2rNrMRlMvDf4vQrfXMe2Gkt0cHS1syvf7Fcf37XNryUyMLLc4wJMAdzUWg1mvjv4XZXO9fvZ38kszCQqKEqfTivPFQ2uoGFoQ7Jt2fx64tcqnc/hcujBSvHC2rKYjWY921HV4FYLxHrH9i7VMfNSbeq2oVt0NxyKg9mHZ1fpfAfS1SXLwebgCusdQH0z19L6VV0VlJqXytGLRzFgqPTfz2AwVHtVUJ49T69dKK9epTh9CXMVu6AWOgvZf0GtWaoss1L8fOvOrqvSdLNLcenFrp6cLyYkhpaRLVFQqhw8aJmcyjIOGi1IrGrhckVdZMvSvl57AowBpBekV3mjW+0xdozqWOEmwZrLtchWghU/sWlN4bxIoWsNlzzd1yMtP42Pdn4EqKssKnozB7WAMzo4mnO556o0nbD/wn62nd+G2WDWl5xW5O4OaifIBccWkJaf5vX5tMc2usVomkY0rfBYX9SunM05qy+FvL3d7ZUef0vrW/T9NKrSjr94B8uyajmKMxlN3NJGLU79/mDVClE3ndtEWn4akdbISqdJoCigWZm4kixbltfnW3xCDVaublr+dFNxf2njXqZ9+McqTT39fkbNqiTEJXjUMkCbClp6ammVnk8tq9KuXrsKA1uNFryvObOmSm/mO1N24lScNAxtSIPQBpUer+3eu+N81Vrh70vbh8PlICooivjQ+EqP7xTVifCAcLJsWXrQ4Y2TWSfJLMzEarLSpk7ZU4aX0jJa2r+FNxRF0TMrngYrWrZq6/mtVWrN4M0UEKiva1rwUNWpIL1epYIC6eIu1yJbCVb8xK6odScBXrwojWmlrvpYmbjSo6Zc721/jxx7Dh3rddR/tiKB5kAe6fIIAJ/u/pQcW47HYwN1uTKoWZrK5ndBnW/tXL8zdpddr3Px1Pbz21mftB6zwcwDnR/w6Geqm1357sB3uBQXfeP60rJOy0qPjwmJYWiToerPepldybJl6cWWFfVaKG5MyzEEGAM4kH6gSm8GWoZkZLORHr2Zt6vbjpaRLbG5bCw76V324fjF4xzKOITZYGZYk2Ee/czwJsOpG1iX1PzUKk1d6FNA8RVPAWkGxA8gwBjAqaxTHLl4xOvzaW+Q2s7DlekW3Y3wgHAuFl7Ur3a9oe0HVFlhpqZRuNoK36E4qvRmXry/iidX5GajWa+tqsq/364U9TnpUK+DR3+fUBSsVGU/mzPZZ8gozMBitNCubtm9Ry7Vvl57gsxBZBZmVqlupbIusmXRskzaFJm/z6kV2e67sK9WdmQvjwQrfmJzBykWh+fLhVvXaU2nqE44FEeJfVvKsu/CPuYfVbs8Pt3n6VJ7S5Tn+pbX0zS8KRmFGV5tB56Wn6ZPP3iSdQA19a1lV2YdmuVVYaGWVbmh1Q3Eh1V+VQelsysF7iJnT+Tac/UA5/b2nj0+KKq1+OX4L151tl1+ajk2l42WkS3LrDMqS53AOnpR7KyD3i1jzrHl6LU1WvFzZQwGgx5IaSuIPKVNAfVr2K/SjJ/GYrJwfYvrAbwONjMLM/UAzpOsEaht1LU3V2+nghRF8bi4VmM2mvW6jqpMBen1Kh5MAWmq083W0+LaEudzP/dVWaKtF9d6cb6esT0xGUyczj7tVa0fwK409Xzt6rXzuMWExWjRpxi9nQrypItsWbrVV89XlWAlNS+VxOxEDBjK7ZNzqRaRLQgyB5Frz72stmyRYMVP7KgRaYDTu5U9Y1uNBWD2kdnlpqYVReGNzW+goHBN82s8Kg7TmI1mHu/2OKDuh+FpW/UfDqlN0rrU7+JRYZhmcKPBNA5rTJYty+M3oC3JW9iUvAmz0cwDnTzLqmjGthpLbEgsKXkpXi0rnnd0Htn2bJqGN620OLO47tHdaVOnDQXOAuYe8bwlvjYFdE3zazy6atVoUyWLTy72ampt2allFDgLaBbRTL9y8sQ1za/BgIFt57d5vCuzoih6YOvpFJBGyxCuPbvWqwZqG5I2VLpkuSwjmo4A8D5zlHmc1PxUrCZrpfUxxVV1CXOePU8veKxsJVBxWvDw+9nfvbpKVhSlqP+IF68v/Rv2x2gwcjjjMEk5SR7/HHhXXKsJsYTob/zeZle0TI6n0yOaqi4n1rvIGsweX6BAUTO+Y5nHvN7qY1uKOsY2ddsQHhDu0c+YjWY903Q5FdlKsOIPLic21EDD7GUjtpHNRhJkDuJk1sly5yiXJy5ne8p2Ak2BTOw+0evhDW8ynPb12pPnyNOXllbE5rTpDcm8yTqAWmsxocMEAL7e/3Wly7IVReHDnR8CcGOrG4kLjfPqfAGmAP05+XTPpx5tynci8wQf7PgAgPHtxnucpQI1+zC+nXv34EPfe1SLcC7nnH5Vdk2zilcBXapT/U50qd8Fu8uub2lfGUVR9EBxdIvRXgVHsSGx9I5T+1l42nPlUMYhTmadxGqy6kWlnmoW0Yzu0d1xKS6vCnu1FSjeBJoAA+MHYjFaOJZ5zKvNFLWsSvfo7hV2BL3UlQ2vxGK0cDLrpFfNzHal7sLhchAbEkvD0IYe/1yPmB4Em4NJy0/zqhV+YnYi6QXpBBgDaF+vvcc/FxkYqQdv3gRkWbYsvceUN8EKVL1uRctyeHs+LbO1Ndm7uhWtXqV13dYVLk64VN3AunobfG+nD7clq8GKp1OHGq1O5nLagVmCFX/Iv4gdd9Myp3eFgiGWEP1qtKxMRKGzkLe3vg3AXR3v8uoqUmMwGPQ39FmHZlV6xfzriV9JL0gnJjiGoY2Hen2+0S1GUzewLkm5SSw9WXETrk3Jm9h2fhsBxqIpHW+NajaKzlGdyXfk898d/63w2BxbDk+sfIIcew7do7tXuFy5PCObjSQ8IJyzOWc9Wra56MQiQH3R8zYYA3WvIlCzXZ4EYzMPzGRn6k4sRovH9THFadNGC48v9KgQVcuqDIgfUGEjsfJo2cU5R+Z49GbgUlx6b4/yutaWJywgjH4N+gFF+7V4Qq9XKafFfnlCLCF6MzNv3syL7wfkTbBZvBW+N0vstSxHh6gOHk+RaLQA1ZvHp9VVNAprVKKDsyf6xKkrsTYnb/Y4eMh35HM4Xd0F29tgpUO9DgSZg8gozPAqwNWCI2/qVTTa1Ji3RbbbU7YDlLlbdkW0MUqw8v9dfjp29+uJxe79qhTtxXrpqaWlqvhnHpjJ2ZyzRAdF6/UgVdG3QV/6xPXB7rLr9SFlURRFX648rm3ZTdIqE2gO1Gs7Pt/3ebnZB0VR+HCHmlW5pc0tJfaQ8YbBYGBS70mAOr2jLb+8lEtx8ezvz3Ii8wTRQdG8Pehtjwv7igsyB3FjqxsBKi0kVhRFnwKqSuAAag+UrvW7UugsZMbeGRUeuy9tH29vU4Pbf/T6R5WC22GN1YZ1p7JOVbqcUVEUr1cBXWp4k+GEWkI5k3PGo7qAg+kHuVBwgSBzkNcvylAUjP10+CePVpHZXXZ9XJX1VymLNhX08/GfPV6FpNWreDMFpNHqnH45/ovHb+aVbV5YEe3xbTm/xeMifm+awV2qc1RngsxBpBekcyTDs0Lp/Rf241Ac1A+q7/X/CYvJogc43nRc1jIr3tSraLRslTd1K5mFmfrzoe015qmO9ToC6v8tu5cX3P4iwYo/5F3ArrWDr8J+PF3qd6FFRAvyHfklemqk5afp+/880eMJgi3B1Rqmll1ZeGxhmf/JU/NSeX3L6xxMP0igKVDvK1IVf2nzF4LMQRxMP8jk3yeXuTR1fdJ6dqbuJNAUyL2dyt6q3VNd6ndhZLORKCi8ueXNMt8Upu+ZzorTK7AYLfxn8H886ntQnlvb3ooBAxvObaiwCd7hjMMcvXgUi9FSqpW/pwwGA490VVd1/Xjox3JrO7Jt2Ty1+ikcLgfDGg/T6128FWwJZkhjtVtoZVMzu9N2k5SbRLC5qI9JVc6n7S/lSZ2TtgqoT1wfr7MAAEMaDyEuJI6MwgwWHV9U6fF7UveQ58ijjrVOuV15KzKy2UisJiuHMw7rQUFFChwFepDoTXGtZnCjwYRYQjibc9bjK/PKNi+sSJPwJuoqJJeDdUmedbOtSr2KxmKy6M+Lp1NBxZcse5Op0mhBo6dFtnaXXZ+Gq1JmxR3E7U3b6/Gy/h0pO1BQaBre1OvXtviweCKsEdhddg5nHPZ2uH4hwYofOHPTcLr/A1gc3mdWDAaDXmj48a6P+ffmf7Pk5BLe2foOufZcOtTrUOWr8uI6RnVkeJPhKCi8v+N9/fZzOed4deOrXD37an258u3tb/d4VUdZIgMjee3K1zAbzPx64leeWvVUiY0VFUXR60ZubXNrtQIHzd+6/w2rycrW81v5LfG3EvetObNGP99zCc9V6WqnuIahDRnYSN1vpqKW8XoH2UaDPC54K0tCXALdo7tjc9nKrDtSFIUXN7zImZwzNAhpwItXvFilF2WNto/Q4pOLK7zS0rIqgxsPLnf7AE9omarlp5ZXWlToaYv98piNZj3z982BbyrNdmw4p9ar9Inr41V9kybCGqEHY55sL7A7dTd2l53ooOgK9x8qT6A5kBFN1ELiylYZgrt+xD29UZVMB3g3FeR0OfXgwZuVQMVpGS7t36Yy3nSuLUvxIltPsmOHMw5T6CwkPCCcJuFNvD5f04imRFgjKHAWcPCCZx2Xt59Xp4C8rVcB9T1Iy65cLlNBEqz4ga1YHUFAFaaBQE1NhwWEkZafxswDM3lq9VP68tFJvSZV6UWyLI93exyTwcSq06v4+fjP/Gvdvxg1ZxTfH/oem8tG1/pd+WjoR/y121+rfa5hTYbx3pD3CDAGsOL0Cv664q966/g1Z9aw98JegsxB3N2x6tNbxcWFxunFvW9vfVsPjk5lneLpNU+joHBL61v0abfqGt9WLbSdf3R+melvp8upX7lX1l6/MgaDQe9IPPvI7FL7ePx05CeWnFyC2WDmjYFvVCswAvWNuX5QfTILM8vtiOp0OfWGhiObjqzW+drXa0/rOq2xuWwV1pJkFmbqUwjeFtcWN7bVWILMQRzOOFxhaj/PnqcHZFWZAtJoTRWXnlpa6Yo8vV4l1rt6leK0Bn9LTy6tdEn/7tTdKCg0Dmvsdf2IpngDvMqK6o9ePEqeI49gc7C++7y3tOXj289vr3TaovhKp6pepHSs15FAUyDpBekebSdSvBlcVV67jQajHjh6mh3TVitVJViBYkW2l8mKIAlW/MCeW7Sk1OJFr4/i6gTW4ecxP/PmgDcZ13Ycbeu2xYCBG1vd6PX8Y0WaRTTjhpY3ADB57WTmHp2LQ3HQJ64Pn131GV+N/Ir+8f2rdVVe3ID4AXw47EOCzEGsS1rHw8sfJseWo68AGtd2XJVfIMtyb8d7qR9UnzM5Z5h5YCa59lyeWPEE2XZ1Y8Snez/ts3MlxCXQLKIZeY485h+br9/udDnJLMzkt8TfSMlPITwgvMpZgOJ6x/WmV2wv7C47n+7+VL/9cMZhXt/8OqB2Nq7q1WNxJqNJD7DKWxW0PWU7qfmpJYpWq8pgMFS6jP9g+kHu/PVOfcmyJ11dyxNhjeC65uoburblwqUUReGF9S9wMusk9QLrVanYXNOhXge1p5LLUeFUV2ZhJvOOzgOqVq+i6RHTg7iQOLLt2aw6s6rCY6vSX+VSXep3IdIaSZYtq9I3Vy1w6FS/U6WdnMvTKrIVdQPrku/Ir3TFTHJuMqn5qZgMJq9WOhVnMVn0KTJPpoL0xmxetH24lN4czoOpwzx7nl6rV9X3i8utyFaCFT+wFbtSstirFqyAumTt6mZX80yfZ/jxuh/Zfsd2pvSb4oMRlvRQl4cINqv1LwPjB/LNqG+YPmI6vWJ7+SxIKS4hLoFPhn9CqCWUbee3MXbBWA6kHyDYHMxdHe7y6bmCLcH8tbuaFZq2exqT1kziWOYx6gfV551B71SpoLY8BoNBn054f/v7DPtxGH1m9qHr11258vsr+fvqvwNwVdOrqlRbURatI/Gco3NIykkiz57HU6ufotBZSP+G/fUNJX1Bm3pcdWZVmW9AWsZhWONhPnler21+LQHGAA5nHC5RJO1SXHy+93PG/TKO45nHiQqK4oW+L1T7fLe1uw1QG7adzj5d6v6v9n/F4pOLMRvMvDPoHY9a7FdEy678cPiHMovOFUXhuXXPcS73HI3CGlW5YBnUK3Pt36+yJejVqR/RmIwmvQFeZVNB1Smu1RgMBn1VUGV1K1ozuNZ1WldrqlJfwuxBka1Wc1SVehVN8cxKZVNPu9N241DUpe4NQqoWxHeMUqeBjmcer9ZO4b4iwYofONzBillRMFQxs1IWs9Hss99VXGxILLNHz2bhDQv5YOgHPrkSr0y36G5MHzGdCGsE53LPAeqbRZ3AOj4/1+gWo2lXtx059hzWnFmD2ai+2dQPru+Xc9Wx1iHPkcf5vPPkOYr+kweaAmkS3sTjDsCe6Bnbkz5xfXC4HEzbPY3XNr2mr2569cpXfTZdCGpjKS0bcOevd3LPknvYkLQBRVGwu+x6F1ht9Ul1RVgj9O0MtOxDcm4y9y29j3e2vYPD5WBIoyHMGT2nWlkATfPI5lzR4AoUlFLbJ2w8t5F3tr0DqKuqfJHdvKrpVURaI0nOTS6z4+s3B75h1elVWIwW3hr4VpWWgRd3bQs1WPn97O/lTj05XA59ia03ze7KUrwBXkVvrr4IjqBo24PKgpXq1qtoihfZVvT4MgszOZl1EqhesNIxqiNmo5m0/LRK200UnwKq6gVnVFAUMcExuBSXvoFmbZJgxQ9s+ep25QGKAooTLpOlXxWJD4uvdLNAX+sQ1YHPrvqM6OBoGoY21OtLfM1oMPLP3v/Uv3+2z7M+eXMrS4glhB+u+4Fpw6fx/TXf88uYX1h962q2376dLbdv4ecxP9M8srlPz6nVrsw5Mof5x+ZjNBh5fcDrfgn83h38Lje2uhGz0cyW5C08sOwBblt0Gx/v/JiMwgzqBtbV+4j4glZou+jEIuYfnc/YBWPZkryFIHMQU/pO4d3B7/r0cWrZlblH5pJrzwUgKSeJf6z+By7FxegWo/XsWXVZTVa9kF5ruqjZk7pHD44m9ZpU5emK4ppHNKdjvY44Fae+HUJxWkPGfEc+YZYwWkS2qNb5+jXoh8VoITE7kRNZZTfAu5B/Qd9NuLpF7loN0d60vRVu3Ojt5oXl6RTVCavJSnpBermPTxsPqD1kqvO3GmgOpH1d9e+gsqk1rbi2Kkv5i9MCuqpuouhLEqz4gb1AXb1g0aJtH2ZX/r9pXac1S29cypzRc6q12qgyPWJ68FK/l3ih7wvVWoLtidiQWPo26EuHqA40Dm9M3cC6Pp1uulS36G70a9APxd01+eEuD+tb2ftadHA0U/pN4dexv3Jbu9uwmqzsSdvDp3vUmpnhTYb7NAPYK7YXDUMbkmPP4bl1z5Fty6ZTVCd+vO5Hbmx9o8+nKa9oeAVNw5uSY89h/tH5FDgKmLhyIhcLL9KubjueT3jep+e8pfUtGDCwPmk9p7JOAeqVuLbkfHiT4dza5lafnU/Lrly6BF1RFN7Y8oa+suzx7o9XOysXYgnRux+XNxWkBQ7NI5pX+/9/XGgcTcKb4FScel+aS9mcNn1KsbqZlQBTQFG/lXLOB9VrBncpTzY1tDvt+tRaVZa6F6cV53q7tYA/SLDiB7aCi4A7swJQjbqVPwOT0VTtnjGeGNNqjN8Dldry125/JcAYwJUNr6xy519vxIbE8nTvp1l842Lu6XgPweZgzAYzY1pWvvu3N4wGo15oazQYebDzg3w58ssqLf/09Hza9gkzD8zk5Y0vcyD9AHWsdXh38LtetUn3RHxYvN6PZtahWSiKwvPrnicpN4n40Hhe7Fe9JeeXGtlsJGaDmf0X9uvLk50uJy9ueFFv/vhsn2d9lj0aFD8IKD9Y0ZvP+SjTqe/CnFz2PkEH0w9id9mpY61TpWXgl9IuCioqsq1OM7hLeVJku+/CPgqdhdSx1qFZRLNqnU97fDtSdnjc38VfJFjxg6LMivsGyawIP+sQ1YHVt67mgyEfVHlFRVVEBUXxtx5/Y/nNy/ll7C/6ckdfuqvDXTzV8ym+GfkNj3V7rEpdlL1xfYvrCbOEkZidyIJjCzAajLw58M1qrTaqiJY5mXd0HjP2zmDl6ZVqncqgtwgLCPPpueoG1tWXeC88thCHy8Gz655l9pHZGA1GXr7iZb3w1xe0upVdqbtIL0gvdb8vimuL04ps155ZW2b7gOo2g7tU8SLbsupWFEXxSXGtRqsjOpJxpNytNrQsSPeY7tV+jC0jWxIeEE6+I9/j/i7+IsGKrykKNvd8aYBMA4kaFBoQWqOBSnFhAWF+ezMPMAUwocOEai379EawJbhE752/df+b/iboD1c2vJKGoQ3JtmXz3vb3ALWI15vdsb2h9Vz5+fjPTFoziV+O/4LZYOb1/q/rbQx8JTYklnZ12+FSXHx74FvWnFnD4pOLmXd0Ht8f/J59aWrhpq+K+nvH9ibIHERidiKj541mycklJYIIX9WraDrX70yAMYC0/DRm7J1RKmA5k32Gi4UXsRgtXu20XJ6ooCg6R3VGQeGtrW+VeUx1+6sUZzQY9WLy2p4KkmDF1wqzsSvqMkSzNucrwYoQfyh3tL+DpuFNuaX1LX4r/NYYDcYSdSnDmwyv8tYInhjYaCBhljDO551n2allWIwW3hn0js9WcV1Ky658svsTHv3tUf6x+h88v+55Xt30KgXOAiKsET4r7o+wRvDh0A9pHNaY1PxUnlr9FA//9rC+FL26zeAuZTVZebDLgwC8t/093t76don9l7R6lbZ12/qsXcEzfZ7BaDCy6MQi1ietL3Gf0+XUi2F9EaxAUfaotoMV/6yF/TPLTy/aF8jgvsqVmhUh/lBiQmJYOKby1vS+MqblGL7a/xURARE+r1O5lNVkZUTTEcw+MptAUyDvDX6Pfg2r18SvImNbjWXd2XXk2nMJNAcSZA4q+mwK5OpmV/t0iX2v2F7MuX4OM/bMYPqe6aw7u44x88cwvt14knKTMGDwyZSM5oHOD2A1WXlr61t8uf9LMgozmNJvChajRZ8C8lVwBOqU71/a/IVvD37LqxtfZc71c7CarAAcuXiEHHsOIZYQ2tTxft+qsoxoMoJWdVr5bKquqiRY8bW8omDFIpkVIYQHIgMj+XXsrxgNRp9dgVfkoS4P4VJcjG011m/L+DWxIbHMvGamX89xKavJyiNdH2Fks5G8uvFVNiVv4vO9nwPQsk5LQiwhPj3fhA4TqBNYh3+t+xcLji3gYuFF3hr4VlHnWh8GR6Buk7Ls1DISsxOZvme63r5Ay350je7qsynhuNA44kLjfPK7qkOmgXwtLx2bllnRnt4qbGYohPhzCTQH1kigAmoA8dIVL/k9UKltzSKa8emIT5nafyp1A+sC0CPaN9MjlxrdYjTvD3mfQFMga86s4YGlD3AwXS1K7Rzlu8wKqPVpWu+oGXtmcCJT7fOiBSvVXbJ8OZJgxdfyy8qs5NfigIQQ4s/LYDBwbfNrWXDDAl698lUe6/aY3841IH4A00ZMIywgjJ2pO/Vl0vFh8T4/14gmI7iy4ZXYXXZe3vgyLsVVtBKoms3gLkcSrPhaXjo293RzgJaGk8yKEELUqghrBKNbjPZr80lQlxd/cfUX1A9St/PoVL+TX2qQDAYDz/Z5lkBTIFuSt/DBjg9IL0gnwBig7+vz/4kEK76Wn44dLbPiLgmyS2ZFCCH+LFrXac3Xo75mfNvxPN7tcb+dJz4sXl+NpHWR7ly/c41NJ9YkCVZ8Le+CXrOiBytSYCuEEH8qDUMbMrnPZJ/0V6nIhPYTaBFRtI+TLzbZvBxJsOJrxVYDBRglWBFCCOE/FpOFf/X9l/69vwqIa5ssXfa1/HTs7ulJiwQrQggh/Kx7THee7v00xy4e0zeP/P9GghVfK55Z0eYNpSmcEEIIP7qt3W21PQS/kmkgX8vPKKpZ0TZck8yKEEIIUWUSrPha3oWi1UDuFsgSrAghhBBVJ8GKL9kLwJ6n91mxmCSzIoQQQlSXBCu+lJ8OgN3duTZAy6xIzYoQQghRZRKs+FKeGqzYzGqQItNAQgghRPVJsOJLeRcAcJjVVUABpkD1dmm3L4QQQlSZBCu+5J4GsrlrVSwWyawIIYQQ1SXBii+5p4Hs7mAlwBSk3i7BihBCCFFlEqz4UsFFAGzu3ZYtZvc0kBTYCiGEEFXm12Bl6tSp9OrVi7CwMKKjo7nhhhs4dOhQiWMURWHKlCk0aNCAoKAgBg0axL59+/w5LP8pyALQO9haLMHq7ZJZEUIIIarMr8HK6tWrefTRR9m4cSPLli3D4XAwYsQIcnNz9WPeeOMN3nnnHT744AO2bNlCbGwsw4cPJzs7259D849CNVjRO9haZBpICCGEqC6/7g20ePHiEt9//vnnREdHs23bNgYMGICiKLz77rs8++yzjB07FoAvv/ySmJgYvv32Wx588EF/Ds/3LsmsBEhmRQghhKi2Gq1ZyczMBKBu3boAnDhxguTkZEaMGKEfY7VaGThwIOvXry/zdxQWFpKVlVXi47LhzqzYUQCwmN3BitSsCCGEEFVWY8GKoig8+eSTXHnllXTs2BGA5ORkAGJiYkocGxMTo993qalTpxIREaF/NGrUyL8D90ahOnWlBSsBAaHq7ZJZEUIIIaqsxoKVxx57jN27d/Pdd9+Vus/gnjbRKIpS6jbN5MmTyczM1D9Onz7tl/FWiXsayKa4ALAEhKi3u+wUFNpqa1RCCCHEH1qNBCuPP/44CxYsYOXKlcTHx+u3x8bGApTKoqSkpJTKtmisVivh4eElPi4b2jSQ4gQgwBKi33XzBytRFKVWhiWEEEL8kfk1WFEUhccee4w5c+awYsUKmjVrVuL+Zs2aERsby7Jly/TbbDYbq1evpl+/fv4cmn/omRU1WLFo00DAmdR0sgsdtTIsIYQQ4o/Mr6uBHn30Ub799lvmz59PWFiYnkGJiIggKCgIg8HAxIkTee2112jVqhWtWrXitddeIzg4mPHjx/tzaL7nchVlVlxqUGIxB+I0mDEpDqzYycyzEx5oqc1RCiGEEH84fg1WPv74YwAGDRpU4vbPP/+cu+66C4BJkyaRn5/PI488QkZGBn369GHp0qWEhYX5c2i+Z88FFFyAQ3EHK0YLNgIIwoHVYCerwF6rQxRCCCH+iPwarHhSo2EwGJgyZQpTpkzx51D8T+ux4m61D2AyWMhzWQgyQCA2MvMlWBFCCCG8JXsD+Yo2BRRYVPB7MrWQfNRpHyt2siRYEUIIIbwmwYqvaMW11qLpq52nsyhU1GAlEBtZ+VJgK4QQQnhLghVf0TIr7mDFZDCx9WQmhQQAYDXYZRpICCGEqAIJVnylQN1KQMusWEwWtpxMp4CizIoEK0IIIYT3JFjxFa3VvlVtBGc2BHA+qxCblllBVgMJIYQQVSHBiq9o00CWIPV7RV0VZAlUNzMMNEhmRQghhKgKCVZ8RVu6bFGDE5dLDVaCg9VMixWpWRFCCCGqQoIVX3FnVmwBamZFcWdWzFZ3ZgWbLF0WQgghqkCCFV/RMivmQPV7l9pvz2RRv5fMihBCCFE1Eqz4irvA1maxAuByqU+tyZ1ZsRpsZEqfFSGEEMJrEqz4ilZga1aDFae7ZsViVaeFZDWQEEIIUTUSrPiK1mfFpC5VdjrVpzYgsChYsTlcFNidtTM+IYQQ4g9KghVf0TMrarDicKqZFWuguhoo2GADkLoVIYQQwksSrPiKVmBrUgtrFfc0UGCQWrMSYlLrVWRFkBBCCOEdCVZ8QVGKMitasKKYCDAb9aXLoe5gRTIrQgghhHckWPEFRwG41GDEZlAzKihmIoMsGNxLmUOMEqwIIYQQVSHBii+4p4DAgN3ofkoVE5HBFnC33w82qkGKrAgSQgghvCPBii+4p4CwhmFzqcGIopiJDAoA91LmQIN6e2aeBCtCCCGENyRY8QUts2INx+4OVlBMhAdZwKxmVgJxByvSGE4IIYTwigQrvlCo9lghMBy7syhYiQy26JkVK+rSZZkGEkIIIbwjwYovuFvtF8+sKO4CW61mJQDpsyKEEEJUhQQrvlBQrGbFqQYll2ZWLIoEK0IIIURVmGt7AP8vaAW2gcVrVsxEBAeA2QCA2VUISFM4IYQQwlsSrPhCsQJbm0vNoCiKiYggC5jduy871WBFMitCCCGEd2QayBeKZ1acRZmV4jUrRpcNAy7JrAghhBBekmDFFwpLZ1b0mhX3LswAFpxkFcjSZSGEEMIbEqz4Qhl9VvSmcMWClQDs5BQ6cDhdtTFKIYQQ4g9JghVfKDYNVOgoyqxEBFvAZNEPs+DeeVmyK0IIIYTHJFjxhWKZlQI9WDETZjWD0QTuzQ0j1VXMUrcihBBCeEGCFV8ollnJt6urfkICrBiN6rJlbSqojjtYkRVBQgghhOckWPGFYpmVQvdqoBCLteh+swQrQgghRFVJsOILWrv9wHC9g22oNbDo/ksyK7I/kBBCCOE5CVaqy2kHR776tTUcmzuzEl5GsBJpVQDJrAghhBDekGClurQpIABrGHZ3n5WwEsGKuiIoIkCCFSGEEMJbEqxUV2Gm+tkSDCYLDkVdlhwRVDqzEmpWg5XcQlm6LIQQQnhKgpXqKlZcC+B0N4WLDAwqOkYPVtRmcLmFzpobnxBCCPEHJ8FKdRUrrgVwomVWgouOcU8DBbuDlRzJrAghhBAek2CluvR9gcJQFAUFNbNSN7h4ZkVdBhRsUjMqMg0khBBCeE6CleoqNg3kcBUFISWDFXdmxSiZFSGEEMJbEqxUV7HutdomhgB1g4tPA6k1K0HuzEqeTWpWhBBCCE9JsFJdxTIrWkM4gKiQ0gW2QUaZBhJCCCG8JcFKdemZlQh9x2VFMVA3pHSBbaA7WJFpICGEEMJzEqxUV2FRZiUj393JVjEREWQpOsadWQk0SGZFCCGE8JYEK9VVULQaKD0vT/1aMRNgLvbUmtXVQAFGNUiRPitCCCGE5yRYqa5iBbZasGLEXPIY9zSQFTVIsTld2ByuGhuiEEII8Ufm12BlzZo1XHfddTRo0ACDwcC8efNK3K8oClOmTKFBgwYEBQUxaNAg9u3b588h+V5B8WmgAgCMhkuDFXUaKMBQNP0jU0FCCCGEZ/warOTm5tKlSxc++OCDMu9/4403eOedd/jggw/YsmULsbGxDB8+nOzsbH8Oy7eKZVYu5rszKwZLyWPcwYrRZcPqnh7KtUmwIoQQQnjCXPkhVTdy5EhGjhxZ5n2KovDuu+/y7LPPMnbsWAC+/PJLYmJi+Pbbb3nwwQf9OTTf0drtW8PJKjgLgLlUsOL+3mkn1Gqm0GGTuhUhhBDCQ7VWs3LixAmSk5MZMWKEfpvVamXgwIGsX7++toblvWLTQBfcNSsWY9mZFZw2QqxqfCjLl4UQQgjP+DWzUpHk5GQAYmJiStweExPDqVOnyv25wsJCCgsL9e+zsrL8M0BPuJxgK9rIMDVHDVYCzQElj9MzK0XBitSsCCGEEJ6p9dVABoOhxPeKopS6rbipU6cSERGhfzRq1MjfQyxfYbHaGms46bnlBSvq0mWcdkICTIAEK0IIIYSnai1YiY2NBYoyLJqUlJRS2ZbiJk+eTGZmpv5x+vRpv46zQlpxrSkALIGku5vCBVusJY+TaSAhhBCiymotWGnWrBmxsbEsW7ZMv81ms7F69Wr69etX7s9ZrVbCw8NLfNSaYsW1iqLoq4FCAi4NVoqmgULdwYpsZiiEEEJ4xq81Kzk5ORw9elT//sSJE+zcuZO6devSuHFjJk6cyGuvvUarVq1o1aoVr732GsHBwYwfP96fw/KdgqJlyxl5dhwuB2YgzBpY8jgts+KwEWJVp4EksyKEEEJ4xq/BytatWxk8eLD+/ZNPPgnAhAkT+OKLL5g0aRL5+fk88sgjZGRk0KdPH5YuXUpYWJg/h+U7hUWt9s9l5oO76Zu1VM1K6WkgqVkRQgghPOPXYGXQoEEoilLu/QaDgSlTpjBlyhR/DsN/ii1bPnexAINR3XU50HRpZqVknxWQYEUIIYTwVK2vBvpDK8xUPwdGcC4zH4NZrWGpF1Sv5HHFMivBAVqBrdSsCCGEEJ6QYKU6imVWkjILMJhzAKgfVL/kcWZt6bKNUKssXRZCCCG8IcFKdRQWNYQ7dzEfg1kNXqKCokoeV2waSK9Zkb2BhBBCCI9IsFIdxQpskzILMLqngUoHK9o0UKEU2AohhBBekmClOooX2GbmYzBVFqzYihXYSs2KEEII4QkJVqrDnVlxWcNJzsrEYFJXA9UPvqRmpYxpIOmzIoQQQnhGgpXqcGdWcgjGYVC/DjIHEWIJKXlcicyKu8BWalaEEEIIj0iwUh3uzEqaw1p+vQoUC1bs+tJlqVkRQgghPCPBSnVkngEgyRmp91gptWwZyuxga3cqFDqkbkUIIYSojAQrVVWQCQUXATjhiCq/IRyUDFYCTPrNeVJkK4QQQlRKgpWqyjilfg6ux+lcYyWZFXeBreLCjItAi/q0S5GtEEIIUTkJVqrqojtYiWxC0sV8z2pWoOTyZSmyFUIIISolwUpVaZmVOk04l1mgZ1Y8CVakMZwQQgjhOQlWqqpYZkVttV9RsGIp+rrYiiDZzFAIIYSonAQrVeXOrLgim3A+u7CoZuXShnAABkPZvVYksyKEEEJUSoKVqnJnVi5aG+B0OTCYcoFyMitQ5vJlKbAVQgghKifBSlUoClxMBOCcIRqDOReDQcFoMFLHWqfsnymj5X6eBCtCCCFEpSRYqYrcVLDnAQYSHfWKeqwE1sNkNJX9M8V2Xg7VutjapGZFCCGEqIwEK1WhrQQKb8DZHGfFxbUamQYSQgghqkSClaoo0WOlAKNZ3SOo4mCl+DSQFNgKIYQQnpJgpSoyTqqf6zThXGY+BpNkVoQQQgh/kWClKopnViprCKcpI1iRzIoQQghROQlWqqJY99rkzEoawmn0YMVerM+KFNgKIYQQlZFgpSrcmRVHeCNSsgv1fYHKbAin0YIVRyEhATINJIQQQnhKghVvuZyQeQaAVHMsigJGcw5Qzo7LmmIFtuFB6tdZBXa/DlUIIYT4/0CCFW9lJYHLAUYLZxyRgILB4u6zElSv/J8rVrNSJ1j9+mKeBCtCCCFEZSRY8ZZeXNuIpCwbGAvAoAYdnhbY1glWMysX82y4XIo/RyuEEEL84Umw4q2MYrstZxbo9SqhllCCzEHl/1yxaaBId2bFpUB2gdStCCGEEBWRYMVbF4tWAp276OFKIACzVf3stBFgNhISoK4Iysiz+WukQgghxP8LEqx4K6MKPVagWGZFDU607IoEK0IIIUTFJFjxVrHMypmMosxKhSuBoETNCkCkXrciRbZCCCFERSRY8YbLBamHALgYGM/B5Cy9ZiUquLLMSslgpY5kVoQQQgiPSLDijbRDkJ8OlmBWZ8agKBARmg9UZRpI/T5DMitCCCFEhSRY8capdernRr1ZeSQDgIjQAsCbaSA1OCnqtSKZFSGEEKIiEqx449R6AFyN+7HmSBoARk8awgGYilYDAXqvFZkGEkIIISomwYqnFEUPVo4HdyE910ao1UyuQ82wVJ5ZKW81kEwDCSGEEBWRYMVTGScg+xyYAlic0RCAvi3CybRlAp7UrFwyDRRS1MVWCCGEEOWTYMVT7qwKDXvw27EsAHq0UAMOs9FMhDWi4p8vtusyFMus5EpmRQghhKiIBCuecgcr+Q36sPP0RQDaqAkW6gXWw2io5Kks1m4fpMBWCCGE8JQEK546+TsAOwztURRoExOGYlQzLJXWq0AZfVZk6bIQQgjhCQlWPJFxSu1cazCy8EIjAAa1qU9avroiqNKGcFBGB1v1+3y7kwK70/djFkIIIf6fkGDFEwcWAFAQ15t5B9RsyqA20UXBSmXFtQDmkgW24YFmTEYDIC33hRBCiIpIsOKJffMA+CG/J/l2J72b1qVPs7qk5qcCVZsGMhgMRAZJrxUhhBCiMhKsVGDn6YvY0k7C2a0oGPjvufYEmIy8NrYTRqPBu8yKXmBbqN8UKY3hhBBCiEpJsFKOmZtOcePH65n/7UcAbKUdqUTy2JCWtIwORVEUTmedBjwNVkpOA0HxFUEyDSSEEEKUR4KVcsRFBKIoCq3SlgEw396HLvERPDSwBQA/Hv6RY5nHCDQF0jGqY+W/8JJpICjexVYyK0IIIUR5Lotg5aOPPqJZs2YEBgbSo0cP1q5dW9tDYkjbGBbe0YSuxuO4MNB75AR+fKgfAWYjSTlJvL31bQCe6P4E0cHRlf/CS/qsQNHyZcmsCCGEEOWr9WBl1qxZTJw4kWeffZYdO3bQv39/Ro4cSWJiYm0PjQ6ZqwEwNunH6Cu7EWA2oigKU9ZPIc+RR7foboxvN96zX1ZGZqVOiNbFVjIrQgghRHlqPVh55513uPfee7nvvvto164d7777Lo0aNeLjjz+u7aHB/vnq5/bXA2Bz2vhs72dsOLcBq8nKS/1eqrxzreaSXZeheIGtZFaEEEKI8phr8+Q2m41t27bx9NNPl7h9xIgRrF+/vpZGpTqVtJXd6XuwhYaQZsjm1NpnWH1mNVk2tc/K490ep2lEU89/YRnTQJFB0nJfCCGEqEytBitpaWk4nU5iYmJK3B4TE0NycnKZP1NYWEhhYdHy36ysLL+MbfO+b3kp2r3K58CX+u3RwdHc0voWbm93u3e/8JKNDKFYzUq+ZFaEEEKI8tRqsKIxGAwlvlcUpdRtmqlTp/Liiy/6fUwxYY3oSxDW4CgiG/QgPjSezvU70zu2NyajyftfqAUrLjsoChgMshpICCGE8ECtBitRUVGYTKZSWZSUlJRS2RbN5MmTefLJJ/Xvs7KyaNSokc/HNiDhbwxI+JvvfqE2DQTqVJA5gDohshpICCGEqEytFtgGBATQo0cPli1bVuL2ZcuW0a9fvzJ/xmq1Eh4eXuLjD0HLrECxnZeLalZcLqU2RiWEEEJc9mp9GujJJ5/kjjvuoGfPnvTt25dp06aRmJjIQw89VNtD860yghVtNZBLgewCBxHBlrJ+UgghhPhTq/Vg5dZbb+XChQu89NJLnDt3jo4dO7Jo0SKaNGlS20PzLZMZDEZQXPqKIKvZRHCAiTybk4w8mwQrQgghRBlqPVgBeOSRR3jkkUdqexj+ZwoAR0GJzQzrBAeQZ8snI89GU0JqcXBCCCHE5anWm8L9qZSxmaHsvCyEEEJUTIKVmqQ3hisKTOIiAgE4m5FfGyMSQgghLnsSrNSkMvYHahalTv0cT8utjREJIYQQlz0JVmpSGS33m0WFAnBSghUhhBCiTBKs1KQyNjNsGhUMwAkJVoQQQogySbBSk8qYBmruzqyczsjH5nDVxqiEEEKIy5oEKzVJmwZyFAUrMeFWgiwmnC6F0xl5tTQwIYQQ4vIlwUpNKiOzYjAY9CJbqVsRQgghSpNgpSaVEaxA0YogqVsRQgghSpNgpSaVsRoIZPmyEEIIUREJVmpSJZkVmQYSQgghSpNgpSaZywlW6ss0kBBCCFEeCVZqUhl7AwE0q6cGK+cyC8i3OWt6VEIIIcRlTYKVmqQHK4Ulbq4TEqBvaHjygmRXhBBCiOIkWKlJZncHW3vpTQtlRZAQQghRNglWalJQHfVzfkapu7SpIAlWhBBCiJIkWKlJQXXVz3nppe7Sly+nSrAihBBCFCfBSk0Krqd+zi8jWHGvCJKaFSGEEKIkCVZqUrCWWblQ6i6pWRFCCCHKJsFKTapgGqipu2YlPddGZp691P1CCCHEn5UEKzVJnwYqXWAbYjUTE66uFjohU0FCCCGEToKVmqRNAxVmgcNW6m5tKmh/UlZNjkoIIYS4rEmwUpMCIwCD+nUZ2ZUrWkQBsGRfcg0OSgghxGWpMBtSD9X2KC4L5toewJ+K0QRBkWqgkp8OYTEl7h7VOY63lx1m3dE0MvPsRLi72gohhLgMZCdD6kFoNhAMBv+fb9btcHwVJDwCw18Gkx/fsnd8A+veA0VR36sMRvUjNAbGfAKh9f13bg9IZqWmaXUrZRTZtqgfStvYMBwuhaX7JbsihBAVSjsKGadq5lyKAt/eAl9dD0ufU7/3p/TjaqACsPEj+GYM5JZeSeozq1+HtMNw4YgakKXsh/N74dhvsPJV/53XQxKs1LSg8pcvA4zqFAfAoj3nampEQgjhG4oCx1eXeTHmc5ln4H9XwkcJcGq9/893ci2c26V+veEDWPYv/wYsu39QP9drCZYQOLEGpg0qGoMvXTwNFxPBYII758OEn9XP170HgLL9K5TUw74/rxckWKlpWpFtGY3hoChY+f1oGpn5soRZCPEHsv6/8NVo9cNRWPnx1bHxY3Dkgz0PZt4MiZv8fz6A6A7q5/Xvw28v+idgURTY9b369YBJcP9vULc5ZCbCjKtgz0++PZ8W7MV1geaDoFl/aD4IZ7cJnI8dhEFxkjLvWd+e00sSrNS0CnqtALSMDqVNTBh2p8Ky/edrcGBCiP93XE5Y9gL8p6N6Ze5PSTvht5fUr5P3wIpX/HeugkzY9qX6db2WYMuBb26EM9v8c74Lx+DQr+rXt3wJo95Sv/79P+rj9HXAcmYLZJxQMyrtroXodnD/Cmg5HBz5uGY/gPPCCd+d79Tv6uemV5S4+Z+zd3P7qVHsdTXls7z+vjtfFUiwUtMq6GKrGdkpFoBfZSpICP9TlDJX5/ntXHtnw/Rhvr86vlRBFnw3Dta9C5mnYeET/st22PJg9n3gskNMR/W29f/1X4C09XOwZUP9dvDgGmjaX/3+6zFq0ORrm6cBCrQaAVGtoPf9MPIN9b61b7H4w4nkFjp8dz4tq9LuOghQW1oQVIfFXd5li6s1RpysnDvdd+c7uU793ORK/abD57P5adsZjhLPsit/4OH7H/Ld+apAgpWapk8Dlf/ieI17KmjtkTSyCmQqSPxJuFzw6z9h9v1QmFMz58w6p77Bvd4Utszw87mS4Pvx8NM96pXzwomQk+qfc2Wcgs+ugiNLwByo7viefhw2feKf8y15Ri3MDIuDCQuh+wRAgbkP+T4QdNhg0//Ur/s9rr6Zj/seGveFwkxyPr2G5z/5jkKH0zfnK8hUV8oAJDys36z0foBfG/4VgKvTvmDG7IW+OZ/DBvvmqF93uVW/+XR6HpNm72OBsx8AdRKX8MOW09U/X3YypB8DDNA4Qb/541XHALi6Qyx/G9GGyOCA6p+rGiRYqWmVTAMBtIoJo1V0KDani+UyFSQuVZitvsD4k6L4f7XDpTZ/or4J7fnBfZXuozeb8hxYCB/3heMr1e+XveCf59XlUjMBH/aBQ4vAaIGwBmomYNVU358vcSN8OkRdzREaC3cvghHu1Ryr34CcFN+e7+AvsO1z9esx/1MvyK56Ta2xyDpL4tcPc8v/1jNn+xnfnG/Pj5B9Tg2MOt2s3mYN5cyor9hrbEOoksOjSZN5d8k+35xv+9fqNFP9dtB8sH7zO8sO8/CxBJY6ewCg7F/AioM+eL0+slQN8MLi1CXSgN3p4q/f7yCrwMGZmKEA9DAe4f15q9lysprFzKfcWZXYjmprDSDxQh4LdiUB8MigltX7/T4iwUpNq6TAViOrgqrB5QKnnzNSigKph/1/nkslboR3O8N7XeCsn+bn89LVc7zVGn57WV0p4G+ph2D5FPc3Bjj8Kyye7J9zFebAgsfVHhb5GRDbGWI7qcHD0ud9e66sJLXY9OeJaufqhj3hobVwozuFv+0L3zb9OvAzfHkd5KWpj+v+FdCwB0qXv+CM7Qq2bNIXPs+6o2msOHieAns1A8LsZJj/mPp1v8fV4kyg0BTE4jYv48BI46RfiUtcyOQ5e0i8kFe98ymKOr0E0OchMKtX+8dTc7j58z2My/sHaUQSa8jg4PoF1X8jdzqKslEJD+u9VaatOcZ/VxwFILjrWACuMm5h0k97uJBTzam23e4poE43qf1OgLeWHmJH4kXCAs28dPswlPjeAAxmCw99vY3T6dV4XsuYAvrfmmM4XQoDWtenU3xE1X+3D0mwUtP0PisVr5e/prMarKw6lMrx1BpKif9/cOEYfNgL3u/u3/4L6/+rnuejvnBkuf/OU9yen9Q3ovx0cBSo0wkFftiaYetn6qqD3BRY+xa81xm+/Yv6OF0unC4fZ1ycdpj7oPqYWg6Dm91X6Zs/0VdgKL7K8iTthE/6w/avAANcMRHu+w3luvfV7/f8ACd/9825AH55Sl3yagmGq6bCvUtJDWrOk5tC2B16JShOTn3/JLO3nWH14VQycktvw+ExRVGnY5w2aHst3LMYIhoya0si7V5Yys2nbgAg8uAsXpsxi3u+2Mozc/dU/Xwul3uaJ10N9oY8j6IozNx0ikFvruKhlQbes6tv5K8FfEGU4zwvLNhbvX/LI8sg9QAEhEHPuwE4lJzNLZ9s5FxmATHR0XrwMNKwmb//sKt6tSSHFqn/F4LqQudbAPhucyKvLToIwKSr23DlqNtRjGbaGk8TlnuSyXP2VP0x5mfA4SXq153/AsDKQyl8svo4AG/e1JlGdYMxtB8NwE1B27mQa+P+r7ZW/XFqmRV3ce35rAJ+2qpmwR4bfHlkVUCClZrnwTQQQOuYMIa0jcbhUnhjsY+uvLZ/BZ9dDYeX+ub3ecqWCykH1Rcaf/QI0Jzbrc7TXziqvsB8N06dMvG13DQ1nQ7qPP3MG+HbW9VAyR8UBda8CbPvVd+I2lwDEY0h4yT88qRvp2sche5iQqD3A2rhouJSMx0zbyTltfa88fKTrD3sw6mEtW9D0g4IjITRH0CHMTDsRQCUxZP54KN3afXsr0z99UD1zuO0q/9O6cchvKFaWzH8Rb7bnkzrj5L53qWm149/+TDXvbuSWz7ZwOxt1Zi6KMiCo8vUr+/6Gfo+AkYTL/28nzk7zvLEhTHYFRNNLvzO7NkzmfDZZq55fy15tiq+6aQcgIun1BqVsZ9CQAiZ+XZeW3SQAruL7UprFriuwGhQmBr8DaAwZ/tZ9p7NrNr5Di1Sp9DMgXDjDDBbmb39LM/O3asGDuFW6l39NK743oSQx78CZrLyUCpLqzO1vf599XOPCRAYwZ4zmdw6bQNpOYW0jwtn1gMJBHe9EYCrzdtISs/itUXV+LvRliv3vAcsQSzac04P8B4e1EKdIgmKxNBsAACjzFtZuv88P1b172bfXPX/eExHiO3I+awC/v6D+pp5Z98mXN1RvYil3XUAdHbupUVIIQeTs/nbrJ24vL2QyE1TG8ABNFZrYT5dcxyb00WvpnXo3axu1R6HH0iwUtO0aaCCi5XOyU8e2RajARbvS65+OvPMNrWgL3EDfHuzekXkr8ZN++fD97fBJwPg9WbwWgP4qA/MvAll2mA4s9X35zy1Ab64FnJTIaaT2iI6ZR/MeUC9AvSlNW+qUwaxnaHvY2A0w+HF8GEfLsx7mvumrWT8pxu5mFeNq2SNwwbzHy1aBtr3MdKvncHuhLdRDCbY8yP7Fv2PxXuT+XXPueqnoPfOhpzz6nz5iFfVN9lHt5DX7X5yDCFEO84xWfmMuV+/z9ojPigOPbutKPC79h0Ij2NfUiYvpg9jtmE4BhTuOf8a7ZRjfLL6OGsOV+Ocx1dDTrKa3Xx4HTTrz/msAl75eT92p8K/bTeToYTSXEmkV+psNp9IZ/KcPZyq6i7oh5eobzxRraFBdwC2nkxn4a4kDAa4bsgAdsSob6xTQ74nMtBIUmYBn66p4pLUw+6ltc0GQEAwADPWHicz307L6FD2vngV1z35CZiD6OzczwvN1SZfU389ULVMwOHF6uced0H9NiiKwier1YD97iuasvofg7mrfyuM1/4HgKGmHYSTy4sL9lUtIDu7Xc1SGc2Q8DCZ+Xbu+GwTF/PsdG0UyXf3J1Av1KoW2oZEE04OVxj3MXNTIqsOVSG4TtoBievV8/W6D6dL4aWF+1EUuD2hMZOualN0rDt4uDNSDWReXLCvalMzu2apnzurhbXPz9tLeq6N9nHhPDOqXdFxdZpCbGcMiovP+qYQYDaydP953lnmZeM2rb9K/XYQUo+MXBszNyUC8MhllFUBCVZqnpZZUVxqlXkFWsWEcWuvRgC8tqiKLyigZjbm3A+KU33hxAC7vlM7Px78hQK7k192n2Pd0bSq/f7iLiaqxZEHf1azKO7aHJc1gguGuhgUJ6nfPsiFTB9mPA4vVVd0FGZC475cvGUuW/t+gNMYAIcWcWDmU3y98RQzfj/B+uo+xvQTRatGhr8EV70KD2/A1WIouOzU2/kxr529i8gTv3DX51uql4IuyFSzNjtnqnt0XPM2F/u/wDUfrGf0fDtv2tQ3umabX+DNmQt4eOZ2bp22sep1CIoC6z9Qv+79QFE9AA0YcXAUvfL/yw+GqwG4z7CA+77cwu9HqvF82vNhzoPq32XHG3G1H8v9X23lmvd/5/P1p5iUfycbDF0JNhQyM/gdGpLKpJ92V71Z4l73UuEOY9TVMcCrvxwg1+akW+NIFk4aTcFAtWblmaA5XNVYweZ08fLPVbwy3z9P/dxuNBgMuFwKLy7cD8CtPRvx5PDW9L7rdQiMoIn9OF90V9/oP1lzjJTsAu/Pd8gdPLRW/40u5BQy43c18HlyeGtCrWYMkY3gyr8BcEf2dMJMDtYdvcBqb4NARYFjK9SvWw0HYPXhVI6k5BBqNfO34a0JtKj1FsR2hPptMSt2bgnbQ1JmAe/9dsT7x6dlVTreCBHxzN95lot5dppHhfDNfX2K9lIzmsA9TfJEnFpk+8/Zu8nM8/LvRvt/3mEshMex7mgayVkFRARZeP7a9hiK7w3U5hrAQEz2XkY2cpJrc/K3WTu9mzJNPwGnN6r/1zvdTFpOIb8dVIOsd27tUvR8atqpj7HJ+d/499hOAHyw8igHznkxNXzJFNDn60+Sb3fSoUE4g1rX7l5Al5JgpaaZA9T5VvAos/G3Ya0JDjCxI/Eii/ZUcaXC0ufUpWlhDeCeJXDvUjVoyTkP349n5avX8dy3q7ht+qbqL4VbOVW9mmzYU11O+NA6zjx4iEGmLxmaP5U0JZz6eUf5+u2/88rP+zmfVYUX5eL2/ATfj1M7WbYawelR3zDowx3ctNDO3wvuA6DdsRlsW/A/Xv55P7fN2FS9jMDKV9VeEs0HQwt1ZcC2vChGpPyVe2xPccIVQ7ThIh8E/JfCM7t44OutVV9CufQ5tU9FQCiM/wF63cfz8/dxLlN9wVxd/zZ2mbsQbChkesjHRAW6OJqSw+uLD1btfMdXqdkoS4heD7Dz9EVu+t8GzmTkE1OvLv3uewfFEkJ74ykSXDu5tzoBy/IX1Wm00FgY9RY/bT/Dsv3nsZgMXNMpjul3JdDrH/MhpiPhznTeCfmS5KwCXlxQhVUe9ny1+BSg400ArD+WxgJ3luPl6zvSqG4wcYMegAbdMTtyeTNyNmajgeUHznt/ZW7LhaO/qV+73zhnbz/DnrOZhFrN/H2E+6o8uC4M+AcAXQ7/l97xgeTZnLy73Ms385xUdTk06MHK/1YfI9emvvFc3SG26Nh+j0N4PObss7zXdAMA//71oHdvrKmHIOusOgXURH2jm75WDYxu7dWI8MBLNmHtMAaAh6J2AzBj7QkOn/figiX7vJqxdY9fURS+dWcA7uzbhFDrJRv8tb8BgG5562gVZeV8ViH/WrDX8/MVD8a6jgPgJ/fUzvVdG2A1XxI4hMXoy35fa3+KUKuZracy+GSNF1PDe35UPzcbCOFx/LrnHE6XQuf4CNrGhpc+3v13xbGVjG0fxlUd1I1xvZq61ItrryC7wM4X69R/w0cHtywZjF0GJFipDcHqVV1lK4IAosMDeWBAcwBeX3zQ+ze+Q4vVgkmAMR9TYIlgXlpDbjO/xceO63AqBkayjt8CJzHcuJV/ztld9SWG5/epGRtQGya1GckJczNu+WIfiel5hNeN4Wj35wB42DCblet+p//rK3lu3h7OXsz3/nxbP3cvcXVAp5spuPFrHvrhABfz7MSEWznT6DoWhKnp1Detn3JrXDKKAn/9bkfVznduV9ELyrAp5BQ6eGH+Xm763waOpuayOziBg2OWobQZiRGFpwJms+7oBZ74bicOp5dTUTmpRSnhv3wLrYazYFcSC3clYTIa+PKe3vwycRBd/joLguvRzHGcea3VwrzP152sWpZsgzur0u12CKrDqkMpjJu2kfRcG50aRvDTw/2Ib9gQQ4+7AJgcvphCh6tqAcuJNbDJXQ9w/YfkmMJ5c4lamzXpqrZ8eFt3BreNxhwcCbd8BQYjfZzbaWM8w5wdZ1m818vA/chSdeouPB4a9cHudPHCfDXoub1PEzo2dK94MBrhmrcAA+GH5/B8J7VHyEs/78fm8OLf8MgyNYB2p+tzCh284X58jw9pSf0wa9GxvR+AOk0x5CTzTkO1idqsLac5muLFm/mRpYCiTk1GNOR8VgFfbVALzJ8a0QajsdgbT0AwDH4GgIG5vxIeaOJgcrZ3/++PuovKm/QDSxD7k7L4/WgaJqOBu69oWvp4d7ASdX4d17cJxuFSeG6eF8W2x35Ts9FxXSG2EztPX+RgcjZWs5Ex3eJLH9+kH4REY8jP4H9X5GIyGpi/M4lfdnu4ujL9uBqMmQKgUQJZBXaW7FP/5m7qUcb5QJ8KqnNqCVNGqy35/7PssOc1QUfctYQd1YyptnT4us4Nyj6+fhv1otNlh8NLubmHmoWftzPJs9eb/Ax1o0KAJlcwc1MiWQUOmtcP4ariwe1lQoKV2uBhka3m/v7NqR9mJTE9j683eLHCJScVFriXFSY8yk8ZLUmY+hsTZ+1k3ckc3nSO498NPyAnohV1yeJ/Ae/RjpM89eMu/T+KV5a/CCjQ/nqI78Hh89nc8skGkjILaFE/hB8e7EvC6AdQWo3AanDwQegX2J0OvtmYyNX/WePdldaFY7DoKfV8ve6HMdOY8sth9iVlUTckgLmPXMFPD/dj9N/+B22uwaLY+bft3wyKLSQjz84j32zzPvDTltZ2upkDhuaMeGc1X244haLAzT3iWf7kQEZ2a4Jh2EtgMDLUsJXu5hMs3pfs/QqBrTPAWQgNe0CzASRnFvD8PPWF5dHBLenaKFI9LjwOblAbZMUf/pqX26pXm0/9uMu76ZKUA+43IAMkPMTcHWe478ut5Nud9G8VxXcPJBAV6n6D7fsIGM20LdjF/c3T9YDFqwBppbu/SI+7oNUwPl51lNTsQprWC2ZCv6Ylj63XAtpeA8Ab8eqV4LNz95DmTX2O1i2241gwGvli3UmOpORQNySAp0a0KXlswx5qASdwe+Y0okIsHE/N5Yv1XtSSaFkA9xTQRyvVx9ekXjB3XfpmbrbCsCkAxB+YzrVtw3C6FP79qxcZMq1epc1IAP674giFDhc9mtRhUJsy0vkdbgBLCKaLJ3mphxq4v730sOdTiMfcWaOWwwCY/ru6WmVkx1ji6wSXPr5+G3VPHZedF1qdIMhiYvOJdOZsP+vZ+bQsVUu1CPq7zerf+TWd44qmf4ozmvTgoUXKMh4Z1AKA5+bt8WyK7cRq9XN8bwgI5pfd5yh0uGgVHUonLbC9VNtr1c+n1nFjGytXd4jF7lQ8y3QW5qg1OQDNB3L2Yj5bTmZgMMC1XeLK/zn3VBAHFjCwTX3qhgSQllPIWk/+LyZuBBSo1wolNFrPVD00sAUm4+WVVQEJVmqHh8uXNSFWM38f3hpQ19sf8eRNXVFg4V/VgtPo9qxo+BCTftrFxTw7DSICeXJ4a9Y/PZRnH7id0MfXQZtRmHDySeRXoLj426yd3rX7P7lO7ZZpMMGQf7H3bCa3frKB1OxC2saGMevBvsRGBILBgOGad8ASQjv7Pn4beIJODSPILnRw75dbSPd06ebyF9SMSsvhMOpNftx+lu+3nMZggPf+0pUGkUHqcUYjjP0EojtgyE1hmuUdooJg15lMvX7AI8dWqmlho4W8K57mkZnbScosoFHdIL65tw9v3tylqMNj/dbQSV3m+En8YowG+HHbGV79xcO6I3sBbHH34Uh4BAWYNFut1egcH8HjQy4pfGs9AhIeBeC2tHdpU9fEucwCXpjvRdp7w4fq53bXsi27Dk/+sAuHS+H6rg2YMaFXyTR7RLz++J4OX8ywdtEUOlzc88UW9id5MF9+fp9auGgwwcB/cjo9j0/dUwjPjGpHgLmMlyX34+t8YTF9ol1cyLXx7FwPA8CCrKLloJ1uJjmzgHeXq4WIT1/dtuw3uyHPg8mKKXkn/05Q/ybfW36EFE+mLe0FRVfJ7a8n8UKePkXy7Kh2pacQQJ22qNcKbDn8q+kBTEYDyw+ksPG4B68RjkL17xOg9dWcTs/j+83qdO5TI9qUnc4PcO85A1zL7zSMDCI5q0Cvcan48eUXFWa2GMr5rAIWui9u7uvfvPyfc2dX6p78hb8ObQWotXiV1pK4XEWN+1oMJavAzsJd6mvT+N6NKzjfDerngz/z+MCmdGgQTkae3bPVldo2Ae5VPtoU0E094sufHqnTRN0IUHFhOPwrz17TDoNB7UR+Iq2SIu3EjWrtVmQTiGzML7vV57NX07rERQSV/3PugIyjy7E4CxjdRc3CzPUkCNSW6Dfpx96zWSSm5xFoMXJt5wqCo1okwUptKK8xXMoBWPW6mv4/t1t90XO7pWcjrmwZRYHdxWPf7qj8Cmj7l+rSQlMAR674D4/+sB+Xohb2rf3nEP46tJUaPIB6ZXftf8AaQaP8g7zTdDNOl8Lj3+1g6T4P0u2KogYPAD0msD2vHuM+3UhGnvrm+n3xq3KAyEYwTD2++Y43+PrmRjSpF8zp9Hwe+mZb5en2UxvU7qMGI4x4mf3nsnnOnXX427DW9G91yZWkNQzGfw9BdQlI3cOPHTdhMMC3mxL5casHNTouV9Hj63UvU37P5URaLnERgSx87EqubBVV+mcG/RMMJuonr2X6YPXfavrvJ/hw5dHKz7d3thpkhjeE9tfzzaZE1hxOxWo28s4tXbCYyvhvO/RfENkYY04yn7fdhNGgpoN/3u1BhiwnBXarU0623g/z9OzdKAqM7tKA/9zStezg4Qq1zbjp4C98dHU4A1rXp9DhYtLsXZWnoDd/qn5udy2EN+Dfvx7E5nBxRct6DG8fU/bPNE6ABt0xOAv5b6vtmI0Gluw7z7ydHrwoH/xZzVJFtYbYTry6qKiottyUfkiU2pQLGJo5jy7xEeTanLzuyRvdsRVqx9PwhtCgO68tOoDN6eLKllHlPz6DQc/mRB/+nnG9iwrrK12OevJ39XyhsRDXlXeXH8HhUriyZRR9W9Qr/+fcfUPM++fwj+FNAbXFeqUryk6uU3vihDeE+m34cv1J7E6FXk3rFGX8yuIOVji+inu7R9AqOpQLuTbeXFpJ5uHcTvXCLiAMGvVm/s4k8u1OWseE0qNJnfJ/rskVEBwF+RkEnP6dl29Q9yyav/MsyZkVBJ0uF5xYq37dbAAn0nLZdioDowHGdGtY8VjbuoOHAz/TqG6wXqT67aZKMuInteBI3SxQy2xrwUe54rpAZGN15+ljvzG2uzq+JfuSya5sqxa9uPZKft6jnm9o2xiCA8wV/FDtkWClNpQ1DZSTAl/dAKteg7kPqI2rXouDH+8Chw2j0cA7t3YhKjSAQ+ezK84KXDimd//M7DeZ8T/n6On8V8Z0LDvFFxYLw6cAcP2FGdzVwYTDpfDot9tZebCS4sKDP6vFfZZgdjV/kDumbyK7wEHPJnX45r4+Ze8p0es+iO8FtmwiVz7NjDt7EGY1s/lEOs/Nq+CKWVFgqXur8u53khXekkdmbqPQ4WJQm/rlNzGKbAyj3gSg2f6PebGvejX93Ly9lc8p75uj1qsEhLE06g5+2HoGgwH+c2vX8vfLqNscut0GwJBzn/L8te0BeGvpYb53p7DLfXwbP1K/7n0/JzJsvPaLuhrln1e3pWV0WNk/ZwmEoWpA1WDPJ/zjikgAnp27t/Ii5i3T9aLoD45EcSQlh6jQAF66vkPJWofiotu5CzkVAjZ9yFs3dyYiyMLes1lMW3u8/HMVZMLuH9Sve93H5hPp/LLnHEYDPHdN+/KvWg0G6KtmV6IPfsPfBjcB4F/z93Eus5L6I30K6CbWH7/Awl1JGN1FteU+PlBrSQDD/nm8Mkx905m9/QzbEyvZ6+bAAvVzu9FsOJHB4n3JGA2UXkFyqS7j1Fb8Sdt5slMhIQEmdp/JZGFlAae2hLj1VRxNy2XuDjUL8NRVbSr4IaDZIHWJf346o4MP0qFBODmFDr0za7mOFU3J5Nmd+lLXCrMqAFEt1eZxLgcBR37Rg4fvNp+ueHm4dr5mA1CMZn26YlzvxhU/n8Wmgtg/j+6N69C7aV3sToXPK5rSSz2gdgC2BEPDHnrB6oDW9YkOD6z4MWrnO74SCrK4PUH9O/1x25mKLzC14Khpf46n5rD3bBZmo0HvZF4ug6FoKmj/Ajo1jKBldCiFDhe/VrQgozBb73mlNOmn1/Jcc5lmVUCCldpx6c7LLqfa8CsnWW321bif2iBLcalNghY9BYpCdFgg/7m1KwaDOmdb5lWzvUD9XfY8HI2v5NZd3UnNLqRNTBgf3ta97KtyTfe7oFECBnsu/zJ+xjUd1TnXB7/ZVn6Gxelw16rA2bb3MO77k+TanPRtXo+v7u1delWAxmiC0f9VX5wPLaJl2m/8d3w3jAb4YeuZ8tPR++aovTksISiDJvPUD7s4eSGPhpFB/OeWrhW/+XS8Ud011WnjjtS3GdK6HoUOFw/P3FZ+KtphgxUvA5DZ42H+/ot6Jf/Y4JYkNK/gqhXUVR5GC5xYw70NT+vTN8/O21t+QeqJNWrRmyUYR9cJ/G3WTvLtTq5oWY+7Lq3lKOvxNewJ9lwedM6iY8NwMvPt/OOn3eUHf/Z8fcrpbPv7+NjdJ+PF0R0r37jsionq513fEc1FXrhODcjeXX6EoynldF3e9T3Yc6F+W1yNr+Sln9Ui17/0bky7uDJWPBTX/nr1aj43hYfq7aBLfATZBQ4mVfT4ctPUVU5Aftsb9AzcbcWLasvToKtas+Cy0yl5Hje7szBTFuwrP9vhsMHBRQAUtr6W5+bt0c/XJracQFMTEqVPzdQ9+B0PDVTrLN5ccqj8+ipFKVqy3GYkby05jEuBYe1iKs5yAJjM+soo494f9D4e32w8xcmKpi20+pEWQ/lx6xky8+00rRfMsHblZI2K07Ir++aS0LweA1vXx+lSKs44HnWvymk5hF1nMjlwLstdWFtJlgOKpoIO/AxOu75Y4duNieVnHrQpoMZ9cRkteuFxuVm44uq3UafznDY4spRBbaJpGBnExTx7+cW9BZlq9gigaX89q3JlqyjqhniweaAWIB1ejMFp17MrsysqmE7cpL6/1GnKnuxQzmTkE2QxMbhNdOXnqyUSrNQGrWZFmwZaNVX9D2IJgdt/gnt+hX+eVFeBYFCndNydFPu3qs/D7hexybMv2WtDUeDnv0HSDpSgOvzd/hAHU3KpH2bls7t7lR84aIxGuO49MFowHlnCe10SGdE+BpvDxQNfb+P5eXvJt13yornzG7hwBLu1Dtfv7EGezcmVLaP47K5elacTo9tB/yfVr3/5O4PCk3nuGvUN77VFB0pndByFepGrs98T/GdDJkv3nyfAZOSj27pTp7L/2AYDXPMOBIRiOL2RD1vvpFHdIE6n5zNx1o6y34A2fAAZJ1FConnkWF+yCxx0axypz7lXKLKxWkAKsOJVnhzWihu6NsDpUnh45raya4/cWRVnl3E8t+QMO0+r+4G8eVOXigMx7fFdpW5YZ9z5NR8ODcRqNrLmcCrfbConm7PrO8i7gBLRiMd3NMTuVBjePoZRnTxYDdCkLzTqo74wb/yYMd0aMqhNfWwOF5N+2lV6KayiFNXi9LqP2TvOsvdsFmFWM0+6a7IqZLJA7/vVLzd+xNs3d8FqNrL2SBpfbywnzb5vrloL0KAbz68t4HhqLtFh1tJFteVxZ1fY+hmThrcgzGpm95lMftxWzvThiTVqv5+QaD44UpdjqblEhVr5+wgPHh8U/b3s/oH7+sSoq9oy8vlqfTmPL2W/2q3ZHMgqezsW70vGZDTw1FUens89FcShX7ki3sLA1vVxuCooCr14GtIOgcGIs+lA/aLiniubeVaUqQUrJ9ZAbpr+/2jO9rNlN1EryIIzm9WvWwzlO/ff8TWd4jzbBbjJlerrbX46nFzLkLbRtKgfQnahg1nltWk47i6ubTaADccvkJRZQHig2bNgzGAoCh4OLMRkNDC+j1pX8015U0GJG9XAoW5zlPAGev1PuauALhXfW82QFWbBidXc0LUhBgNsOpFefmO6U1q9yhV6EDWkXTRBAWXUU10mJFipDe6GVJxcBz/cqXZEBTVQqO9+ETUY1BUQI9ydS5c+q7fJf3J4a3o0qUN2oYPHvtvO3rOZpGYX4tr4P9j1LYrBxPTYfzH/hJEgi4nPJvSiYWQFRVrFRbfVm0aZl/yTD8a24J4rmgHw9cZTXPvftUXTJrY8fVXHm/nXkWa30r9VFNMn9PT8j77/39V517wL8Pko7o47ybjejXAp8Ph3O0quENo8DS4mkmetz4iNnXjfna5+/rr2dKnsKlIT2UhfeRG05mWmXx+H1Wxk5aHU0unvo8v1rMryuAdYl5hPqNXMe7d2qzhDdenjMwfC6Y0Yjq/g9Zs606tpHbILHNz9xRZSs4vVB6Qd1VP6TyX21QuGXx3TqahguDKNE9S0sOKiyfZ/88+r2wLw6i/7S+8xZcvTN4XbFHMr289kE2Y18/L1HT3vsaBlV7Z+hqEwi9fGdCLUamZ74kW+XH+y5LEnVkPaYQgIJaftjUVLeYe2LFnTVJEed6np+ZR9tMzdxiT343tx4f6yd7zdOxuA3ZHD+GnbGYwGeH9ct7KLasvS/noIiYacZOqfWcITw9Q31zcWHyp7NdIBdRVQepOr+GjNSQBevr6DZ2+sAE0HqMudC7MIOrKQvw9XXw/+u+JI2fsGHVJXATmbDuTZn9Xpt3uvbFZ2X46yxHWBqDZqDcr+BTzt7pr9697ksrOp2pRMfC9+2p9NYnoeEUEWz7IOoE6PxnVVA8gDC+jRpA79W0XhcCl8tKqM7MqJNWohfd0WZAfH61mHcX0qKKwtzmQuCh72zcNoNHC/e7rqs99PYL+0vsrpKKrlaD5QL6y9rkuD0k3ZyqOd78gysOdzS89GWEwGdiReZF9SGVPOWianaX/2n8viWGouVrORER08CI5AvcjUViIdWECDyCD6uWuV5pdX0+UOyJQm/fjZHaxcW9mUUy2TYKU2RLvbJuenFy1x7HkvdL659LF9H4Vud6iR90/3wPn9mE1G9QU3yMLuM5lc+9/f+evU93AtVnsnTAu8h1cPxGA0wH/HdfN+18z+f4d6LSHnPAGrXuJf17Xnq3t6Ex1m5VhqLmM+Wsf/Vh9Tg6OcZM4oUXxhG8qgNvX59M6env+nBrW4984F6h40tmwMM2/i5Wb76NOsLjnFVghlZ5yncMXrALyQM4ZjmQpRoVZeuK49t3v6wqXpea+aEbDl0GbrC7xyvbsnwvLDjPloHe8tP8KBPdtQfrwbFBeprW7hwX3qv9mrYzrSuF4ZSzPLEx6nng9gxStYTUY+uaMnTeoFcyYjn/u/2lo0l71JXYK8ztiTuYnBhFrNTL+zZ+VFdpcaNkWdfjq6nLtijnNFy3oU2F08/t0Odp6+WDRlsugfkH4cZ3B9Hj2g1g9MHtWuqPDaE62vhvpt1au6bV/QIDKIyaPUAOLNJYdKZv7cWZW0FmOYMPOgvlT5rn7NPD9fUB3oqtYCseEj7u7XlLHdGqrZqm+2s/lEsTqwi6chcQMKBv66V32DemJo68qn74ozB+gN8tj8KRP6NaWluzD0jhmbS26p4HTojefeOt0Gp0thZMdYRnrzJmA0Qne10JbtX3Jjj3jaxoaRVeDg4ZllLLd3B7dL7F05ezGfhpFBTBzmQdZPYzAUZVd2z6JdXDj3u6dKnpu3t/T0qHsKKCOuv14398igFt4VZRabCgJ4wp1d+XHrGc5kXJIJKFYfoxXWtowOpWdFhbWXcjeIUwutHdzQrSFRoVaSMgtKT6Wf26X+LQdGkB3Zjl/3qm/kN3oajAE06Kb287HnwrGV1A+z6n1LZpaV4TxZVMyrBWND2kYTVlkmvMRjdNetHPwFnA7GunvPzNl+tvQUaU4KJKnLpPcF9+LsxXyCA0wMuoyngMDPwcqrr75Kv379CA4OJjIyssxjEhMTue666wgJCSEqKoq//vWv2Gw+2FPlchbTAR7drG7+NexFtW371VPLPlabumhypdrU6rOrYM9PNIwMYtodPejeOJLOoZl8aHkPs8HFbOeVTM0YBMC/rm3PsPJWH1TEEqhmeUBtKHdqAwNa12fxxAGMal+XK5Tt1P+/9u49LMoyfeD4d2aAYUAYDip4QsE8g4LgCc1DqR3cfiGl5tls+62m5aFcU3c3bRMrV7dfmRa2uW5mWlkeOmzaaiKpqSRqah7SxDxEpgKKnGbe3x/PMIiSgs4ww+z9uS6uZPDieXiTee/3fu7nfr6cQPFGNee/FQ/kzpYNeHN4fNUClVKmIBi2StVcWEvwWjOGJc3SiQhWSzQD39zG6v+biLEkj4PWCLbX6stfH2xD+tRePNo1suqdFvV6VS9j8IEjXzDAd4d9LXt31kX+8eW3GD8Ygq4wlx9M0QzIehirpiM5rgEPxlZinfxa3SapbMDp3XDoc0L8fVgyqgNmkzeZJy/y9Pt7sF6+gOXbZQAsKLiHiBA/Pnoikbsrk3q+VmhT+3KJfsOfmZscTaCvF/tP55L0+tf0ezWdbR++ApnL0HR6XvSbwq/FPnSKDOER2/EOlabXQ6LaGcS2hVB8hcEdIugcFcKVYgvPfmSrJ8k5hWar5RicGUPGiQv4eut5ISmm4t1GN9J5LKCDI1+gP3+Ulx5uy90t69r7vdi3T9uyKvsMbfixyExi01DGX7vtuzLiH1Xnw2Rtwzv7O94cHk/tWkYOnsllxNs7yC2tfTjxNVw5zxUvMyt/aYzZ5M0sWyBcJbFD1Xgnv8Fw7nv+PiiWWkYvth87z9Sr63Mu/WI/Z+uvR1TA/kJSdNV3c5QGKz+mQ85PTOrdnKg6/mTnFfL8J1cV8ltK7E/kKYfqkV9koVNkyM0La69VWkfyYzpcyiahSQhd7wilxKqx6KurOr5qmj04skbdVfnC2ms1uVMtBeX/CifS8fU2MCpRFb6mph0vfzMv7a/S5E4+259NQbGVqDr+xFU2cwvXLQUB9kLb1btPla+VuXJB7fwErBFd+cS2JbvKDyiNu6qNG/m/wrGvuDc6HJO3gWPnLpN58mL5v3vEdrhmvXasOaqC37tbhbn1EhA4OVgpKipiwIABjB07tsKvWywW+vXrx+XLl0lPT2fFihWsWrWKp59+2pnTcg91Wqitkd0mQtcJKsPwW7x8YNA7KhtQmKsKaFc/QacGPnz0+zjWhi4kRHeJorptiRz1FguHxrN0dEdGda3CE+u1mnRTGR2AdRPg6JeEfDmZ108/wj995vKQYQtGithiiSa/RX8WDmtfcf+IyvIyQvJbqhU44Jf2AmubrsZs1FP8y1EGaapPxrnEv7Dxj3czvEuTWwuMStVpYW9zzudTmd4zjK3P3sVLSa1YEfwmUXqVMRp4YRw/5pQQEeJ3azcegFp1oNMf1J83pYDVSlSdWrw5PB5vg45P951hZepfMViucNAagTWiG6vHdaV52E0KMm+k+xTwNUP2fur/+DEfjk2kf1wDFRic3UvcPrW8+GHgSBb/1BCjl54XH2p787qYisQMUIWvl87CsofRF+bw0kNt8fXWs/WHX9WZTO/PRadZ2G5txRGtIcntG7DpmZ4Vb/u+mdCm9uZnbF+It0HP60Pb07FJCHkFJYx4e4faXWI7C+i9gk7UruXDK4Nib63ZVWC9sh0XO1JpWqcWyx/vRIi/D3t/ymHU2zu4VFhi3wX0SVF7LBj48+9aUzegClmqUgFh9pb5ZCylVb1AFg5tj0GvY3Xmaeattx1Wd+QLQOOI1x2csQbTr209erW8hafjoAhby3wN9n2Ir7eBuQ+3RadTRZqbSo8aOLULCnO44hXIqp/DCPT14u+3ck2Dm6jGe5rVnll+6i6VXXl/10lOl3aXPn8MLp5A03szbbeZA2dy8fHSk1yZwtqrGbzKlkn2rwZU8ODnY+DgGdV51862JHM6uAOzbbvwbthb5bfYCqU59BlYiukUGcIddWuRX2Rh9e6rlmZObKO0Mdvui0ZOXVRLzVX+/2jwVr+HALv/hb/Ri3ujVTbnusZ7R9R7qdasr/0Il35uvgQETg5WZs2axaRJk4iJianw6+vXr+fAgQMsW7aMuLg4evfuzbx581i8eDG5uVU4jOm/gV8IjPoMuv9R9RfJfFedavz+CPh5H/jXwWfoe7RvWo/7Y+rRwxGHUPV5HvzrqIK6ZQ/B7nfQFVwE/7rkxDzKnPC/80XcQhYMTbi9QKWUXq9qdO59EdAR9N1SNkW8zWuhq/DRWdDu6MOd9w6ofL3IzXSdCHVbq22K/55G/SATgy6k0vpKBpq3Hxf/ZymDe8XTp3UYbw6Pr1pa9lqJT6k+ET/vg3nN4f2RdD73EQt7m/CmhB4XVUr8u4hhvPP7zpXbBXAjfiHq3wrAxhdoHqTj74Ni+WZyB94LWoSvrpiNllj++LPqCDqxd3Mia/vf2lhePpCcqn6+E+mw5H4ae+fYi1hf+nQfzX76CIBtof355MluzB8Ye+NmVzfT+Qn138z3IP88vt4GFo9MoFW9QM5dKmT64lVwdh/FmoF/Wzvy90GxN992eiOlhbb7PoD88zQPC+CdxzoS6Kvqc36/5BusB9RT9KclHejRvA4Ptb+FLFypeNvS0573oLiA7s3rMKd/2WF1K3Zk2etVPi1oS4CvF8/ZtsffkquWgtA04huH2GvVpq3ap7JHtizHl4WtsaJnTnLbytdSXcu+FLQagE5RoXSOUtuK7dkV23gHvduwcs8FvPQ65j7c9uaF9BWOl6T+e3AdWEoI8vNhYILKIqam2bbalxTaurrCk9vV0ltC4+Cb78KrSEQX1eOl4CL8mI5Op2NoaaHt9qyybI5tCaigYSJzPlNFzX3bhN3ag1j7Eeq/338Gl36x7wpat/d0We8qS7G9geDhwEROXbyCv4+h4i7HbsalNSvbtm0jOjqa+vXLUl733HMPhYWFZGRkuHBmbsrgBXfNgJGfqDXR88fg6AaVMh74L9VZ1JH8QqDfPBUc+YWqN9CR6+Dp7zE/9ArTxozmheR2VU/j30znsTDgn2AwEnJyPW0vfQ06Pbo+zzt2HC8ftRyEDvaugDXj7efV6Pq/SXR8N565pwWLRyTcfFvtzfiFqD4vXr6q4duB1fDZM/TZnMR+/zHU153nik8oD4+c4Ljr2fFx9RR76aza1aRpBK+fgPnKSTRzIwKGvE3/9o0Y0imCx++8jSwcqEzco5+pXQnZ++GtPjzavIj2EUHcp99BHV0OBb51mThu0s23DFd2vPAYdf5OxhIAzCZvlj6awEPmQ0zJfwWANGtbhvSMvb5RYFVFdLaNVwC73wGgTX0z7zzWiTrGEh459QL6yz+Tq/mR6dWO2f2rUKRckaa9wNxI3exsGZuBHRrZt7/PWv0txUdswYOlPVPvbXl7wVjrB9WyaPYB+3kxz/RtQZNQP87mFpDy6UFKbMsHada2PBzf8PZ6cpTWkZz4GvLU0/2Eu9UOppU7T3Im5wpFh9R4ay+1xGQLRm9pGRbUUpApWD2Y2ApoH+sWid7WYfbA6Vy1pFZyhV8xk3FFbf1e8mgldjVWRG+AlverP9vOS0tu3xCTt4FDP+ex64StV4+tv8rsA3XYdeIC/j4Ge5BYZeHRKmNlLYY975HYtDZhgUYu5heXZceytqnsvF9tPjijsje9W99icFTNXBqsnD17lrCw8mvywcHB+Pj4cPZsxX09CgsLyc3NLffxX6dJVxibrn7h9d4qoGic6JyxWj8IzxyBpw/BA6+o9tP6aviH3SYJRqxWSxmglqTCbuPJ8bc0TLDVQGC/CdFzelnBmiPFDoZns+DRz6HXnyCqJ3j74WNRRYWmrmPRed/GDedaV505w9f/p7rwfv8J6L3RDVxKh1ZNmT8wlpT+MXg5IltVry08tkH1mcj9CcOSe1h2j46/NlBPq76dH0PndZsZo1I6HXSxnXu1Y7F6Kj64jror7mNe4Sxi9T9QqHnxVe3BTOpdyW28NxuvNLuy8y3VGwloZzpHWvBskgxbKdH0/LVkGJPvi674fJyq0BvKlmEzltpfntynOSOjjSz1SsHbcoUzWgg+DeNu3Ha+MkzBZUtPtm7GJh8DLz3UFoAvdu5Hb+sF8kNgZ/tBfbcsqJHacotmXwrqHBVCxyYhFFmsvLhuD5Zjaklmt097lj/e6fZ6gBi8y5aCvpoDxQU0CvGzN11bvOUY5/erwxm/trQmpkEQS0d3vL1sapwt07F3JZzYitnkba9FWbb9hGoK+rPqw/N5XlMia/uzelzX2wvmS7Mr3/4Lgw6SbEtm9kMqbcdOaHf05rPv1O65mrAEBLcQrMycOROdTnfDj127dlX6+1X09KFp2m8+lcyZMwez2Wz/aNSoigWBnsIUDAOXwvTTZb0ZnMW/tvplr26NE+HxTeoE598qQHaEXjNUMz5QAWCPPzpvLC+j+rl6TIERa2DqCXWDf/ht+5Zxh2qdpG4KxfkqYAF1LRvEO34sUOejjP5CdScuuIjf8iTMv+xS2b/SXS6O0iZZtZjPOwOvxMDKYaqI2ctETrvHWd55DRMfG+WYQAxUTYApGC5mqTf9g5/A4l6YLh6iyFSHMYaZXGwxiGGdGjtmvLhhKqt5Ih3OHQFAd3wzM8+MoaP+ELmaiRkljzPnoUr04KmMtuqEcvZ9aA/GOkWFMrJLY7rpv0OPxvfWRvx58F3lz4q6VaVLQbuWQP55dDqdfWt49oE0TBTwK0GkjB1MXEQVdv/8lsSnwBiosgsf/y9Yrfyhu+pZtW7PabJ2qWW14wHxvPNYR8ym23zPa9ShLHhYNxFKCu2Ftp/vO8uylcsBOGxtQLuWzVg9rivNbqdODdQmBW9/+PUIZG237wra+H02z3ywh4t7PwXgYEAXTucUUMvoRXdHlAxUgyr/Fo8fP56DBw/e8CM6OrpS3ys8PPy6DMqFCxcoLi6+LuNSatq0aeTk5Ng/Tp6sxNkunsxRT6ruKrSpKk71ucV6isow1lLN+O5JgaRF6im6unj5QKOO6k3G4IQzOa5qFAeojqUdfu/4ca7mH6q2oze/V53JA+qpNtDBT3BePtDR9rNc+lndiO58GiZ9h7n/33j0vm6EVrZ/S2V4m8qyHZ9MhJVDVUo9ogs+T6SzaMaTpA6Pd0zgAGBuoDouA2T8U/Vjeqc/usu/YKnThn+0fpvkQaNu3hm3spr1UZ2z886oWorCPPhhEzP81/K0UdVU5Uf0dEzgAOrfvNGs2tsvvgt+OUxi01ASGgfTQ692yPi16kPTure5BFuqTnMYtExlow+sgS+mEdMgkC5RoXhbr9DGqgqXRw4ZUfm+ODdzdd3f168S09BMu4ZmiixWin9QmaP8+oksHpFw+8ERqHPQom1B4Lf/okV4APGNgym2aHzzbQZBl49Toul55D8q89enhiwBAVT53bF27drUrn0LFfwV6NKlC7Nnz+bMmTPUq6feyNavX4/RaCQ+vuInP6PRiNHowDcgIUDtDiptyOdpGnVUy06/HFRb0qsjGPPxg0HvwhfT4LuPyjoVO1qnsZB7Rt3YEx5T2+CdqcPvVSO9S7YGdJ3HQZ9ZYPDGKbnH9iNVL5VtC8peixuO4f65TPK+jQLlingZVbYjY4k6k6wgBzQrPkAT21+J7TvCceMFhMFjX8DyQXDhOLzVG92AJbwxvBv6Nw9DHpha9XXceABRPaD/G2pH5TdvQGADxvUaQuqPG/HWWbAENCSogQOWDUuZgtWGgVWPqWCzTX9GJjZh8vt76GpQ28Jjuz8AjgpwQf2b2b1M9bG570WWju7I1qPn8N61GI7DXn0rclEPf6VFxjWBTqvUGeu3Jisri/Pnz7N27Vrmzp3Lli2qmOiOO+6gVq1aWCwWYmNjCQsLY+7cuZw/f55Ro0aRlJTEa6+9VqkxcnNzMZvN5OTkEBjooAhcCCF+y+fPqhvBvXMgOtm5Y1lK4JVole3w8lX1aXHDnDfeyR3wjz5ln5sjIKKTapsQ2UNlJxzt8jm1hJe1TS17df8jbH5Rfe2Zo2rrv6NtXVB2IGryW5w/lkFI5iKIHQZJrzt2LE2DZcnqNO7I7mjD17BlzyG6r+msvj7lmMpGOnK8hV3Uw0m/eWWZ1HeSVZO9Ps9zIXYs+cWWync2d5Kq3L+dGqyMGjWKpUuXXvf6pk2b6NmzJ6ACmieeeIKNGzdiMpkYMmQIf/vb3yqdPZFgRQhRrUrfMqtrufDIl6pVwZ1Pqx0fznb4Cyi6rHZABVaxOdmtKilU55plvlv2Wr128Ic054357+mw/XW1LOQXqnbN9U+FdoMcP9b547Cws9pNlvSGarz5wSio2wae2Or48bYtVFnN0mtYdBleilTLsk98o45VcQNuE6xUBwlWhBDCA2gabH0VNjwHaNBtMvR+znnjWa2warS97T8Akw86L0DbMh/+M0t1mo3qocbtNAbue8nxY13+Fea3VIeM/u9myD0NKwarBoAT9lZvXd4NVOX+LWcDCSGEcD2dTnXzHvoBtH2krOuzs+j10P9N1YMF1JZ7Z2aSEp9UTSivnC8LkErHdjT/0LKt2rvfsXetpdk9bhOoVJUEK0IIIdxHsz6Q/CYEhDt/LC+j2iHUZTz8br5zxzJ4285cKw0WdM7rjwVl26b3fmDvr0Lze5w3npNJsCKEEOK/lylIbe+P7O78sRp1hITR6s/hMaqztbNE9oCgxlCYYyvQNqnOzzWUExo7CCGEEKJCfZ4v3zHYWfR6aD8cNqpDS4nqoXoF1VCSWRFCCCGqi7EW3P1n1eHW2WKHqu3gUNZgsIaSYEUIIYTwRIH1VWFvvdiy4w1qKFkGEkIIITyVo0+rdxHJrAghhBDCrUmwIoQQQgi3JsGKEEIIIdyaBCtCCCGEcGsSrAghhBDCrUmwIoQQQgi3JsGKEEIIIdyaBCtCCCGEcGsSrAghhBDCrUmwIoQQQgi3JsGKEEIIIdyaBCtCCCGEcGsSrAghhBDCrUmwIoQQQgi35uXqCdwuTdMAyM3NdfFMhBBCCFFZpfft0vv4jdT4YCUvLw+ARo0auXgmQgghhKiqvLw8zGbzDf+OTqtMSOPGrFYrp0+fJiAgAJ1O59DvnZubS6NGjTh58iSBgYEO/d6ijFzn6iHXuXrIda4ecp2rj7OutaZp5OXlUb9+ffT6G1el1PjMil6vp2HDhk4dIzAwUH4ZqoFc5+oh17l6yHWuHnKdq48zrvXNMiqlpMBWCCGEEG5NghUhhBBCuDUJVm7AaDTy3HPPYTQaXT0VjybXuXrIda4ecp2rh1zn6uMO17rGF9gKIYQQwrNJZkUIIYQQbk2CFSGEEEK4NQlWhBBCCOHWJFgRQgghhFuTYOU3LFy4kMjISHx9fYmPj2fLli2unpJHmTNnDh06dCAgIIC6deuSlJTEoUOHXD0tjzdnzhx0Oh0TJ0509VQ80qlTpxg2bBihoaH4+fkRGxtLRkaGq6flUUpKSvjTn/5EZGQkJpOJqKgonn/+eaxWq6unVqOlpaXxwAMPUL9+fXQ6HatXry73dU3TmDlzJvXr18dkMtGzZ0/2799fbfOTYKUCK1euZOLEicyYMYPdu3dz5513ct9995GVleXqqXmMzZs3M27cOLZv386GDRsoKSmhb9++XL582dVT81g7d+4kNTWVtm3bunoqHunChQt07doVb29vPv/8cw4cOMC8efMICgpy9dQ8yksvvcQbb7zBggULOHjwIC+//DJz587ltddec/XUarTLly/Trl07FixYUOHXX375ZebPn8+CBQvYuXMn4eHh9OnTx34+n9Np4jodO3bUxowZU+61li1bas8++6yLZuT5srOzNUDbvHmzq6fikfLy8rRmzZppGzZs0Hr06KFNmDDB1VPyOFOnTtW6devm6ml4vH79+mmjR48u91pycrI2bNgwF83I8wDaxx9/bP/carVq4eHh2osvvmh/raCgQDObzdobb7xRLXOSzMo1ioqKyMjIoG/fvuVe79u3L1u3bnXRrDxfTk4OACEhIS6eiWcaN24c/fr1o3fv3q6eisdau3YtCQkJDBgwgLp16xIXF8fixYtdPS2P061bN/7zn/9w+PBhAPbs2UN6ejr333+/i2fmuY4fP87Zs2fL3ReNRiM9evSotvtijT/I0NHOnTuHxWIhLCys3OthYWGcPXvWRbPybJqmMXnyZLp160Z0dLSrp+NxVqxYwbfffsvOnTtdPRWPduzYMRYtWsTkyZOZPn06O3bs4KmnnsJoNDJixAhXT89jTJ06lZycHFq2bInBYMBisTB79mwGDx7s6ql5rNJ7X0X3xRMnTlTLHCRY+Q06na7c55qmXfeacIzx48ezd+9e0tPTXT0Vj3Py5EkmTJjA+vXr8fX1dfV0PJrVaiUhIYGUlBQA4uLi2L9/P4sWLZJgxYFWrlzJsmXLWL58OW3atCEzM5OJEydSv359Ro4c6erpeTRX3hclWLlG7dq1MRgM12VRsrOzr4sqxe178sknWbt2LWlpaTRs2NDV0/E4GRkZZGdnEx8fb3/NYrGQlpbGggULKCwsxGAwuHCGnqNevXq0bt263GutWrVi1apVLpqRZ5oyZQrPPvssjzzyCAAxMTGcOHGCOXPmSLDiJOHh4YDKsNSrV8/+enXeF6Vm5Ro+Pj7Ex8ezYcOGcq9v2LCBxMREF83K82iaxvjx4/noo4/YuHEjkZGRrp6SR7r77rvZt28fmZmZ9o+EhASGDh1KZmamBCoO1LVr1+u23x8+fJjGjRu7aEaeKT8/H72+/K3LYDDI1mUnioyMJDw8vNx9saioiM2bN1fbfVEyKxWYPHkyw4cPJyEhgS5dupCamkpWVhZjxoxx9dQ8xrhx41i+fDlr1qwhICDAnskym82YTCYXz85zBAQEXFcH5O/vT2hoqNQHOdikSZNITEwkJSWFgQMHsmPHDlJTU0lNTXX11DzKAw88wOzZs4mIiKBNmzbs3r2b+fPnM3r0aFdPrUa7dOkSR48etX9+/PhxMjMzCQkJISIigokTJ5KSkkKzZs1o1qwZKSkp+Pn5MWTIkOqZYLXsOaqBXn/9da1x48aaj4+P1r59e9lS62BAhR9Llixx9dQ8nmxddp5169Zp0dHRmtFo1Fq2bKmlpqa6ekoeJzc3V5swYYIWERGh+fr6alFRUdqMGTO0wsJCV0+tRtu0aVOF78kjR47UNE1tX37uuee08PBwzWg0at27d9f27dtXbfPTaZqmVU9YJIQQQghRdVKzIoQQQgi3JsGKEEIIIdyaBCtCCCGEcGsSrAghhBDCrUmwIoQQQgi3JsGKEEIIIdyaBCtCCCGEcGsSrAghXGrmzJnExsa6ehpCCDcmTeGEEE5zsxNZR44caT9QMTQ0tJpmJYSoaSRYEUI4zdWnl69cuZK//OUv5Q77M5lMmM1mV0xNCFGDyDKQEMJpwsPD7R9msxmdTnfda9cuA40aNYqkpCRSUlIICwsjKCiIWbNmUVJSwpQpUwgJCaFhw4a8/fbb5cY6deoUgwYNIjg4mNDQUB588EF+/PHH6v2BhRBOIcGKEMLtbNy4kdOnT5OWlsb8+fOZOXMmv/vd7wgODuabb75hzJgxjBkzhpMnTwKQn59Pr169qFWrFmlpaaSnp1OrVi3uvfdeioqKXPzTCCFulwQrQgi3ExISwquvvkqLFi0YPXo0LVq0ID8/n+nTp9OsWTOmTZuGj48PX3/9NQArVqxAr9fz1ltvERMTQ6tWrViyZAlZWVl89dVXrv1hhBC3zcvVExBCiGu1adMGvb7sWSosLIzo6Gj75waDgdDQULKzswHIyMjg6NGjBAQElPs+BQUF/PDDD9UzaSGE00iwIoRwO97e3uU+1+l0Fb5mtVoBsFqtxMfH8+677173verUqeO8iQohqoUEK0KIGq99+/asXLmSunXrEhgY6OrpCCEcTGpWhBA13tChQ6lduzYPPvggW7Zs4fjx42zevJkJEybw008/uXp6QojbJMGKEKLG8/PzIy0tjYiICJKTk2nVqhWjR4/mypUrkmkRwgNIUzghhBBCuDXJrAghhBDCrUmwIoQQQgi3JsGKEEIIIdyaBCtCCCGEcGsSrAghhBDCrUmwIoQQQgi3JsGKEEIIIdyaBCtCCCGEcGsSrAghhBDCrUmwIoQQQgi3JsGKEEIIIdyaBCtCCCGEcGv/D1n4CKywGUi8AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -184,15 +184,15 @@ } ], "source": [ - "for diffeq_name, (cy_diffeq, nb_diffeq, args_, y0, timespans, CySolverClass) in diffeqs.items():\n", + "for diffeq_name, (cy_diffeq, nb_diffeq, args_, y0, timespans, CySolverDiffeqInt) in diffeqs.items():\n", " \n", " time_span = timespans[0]\n", - " time_domain, y_results, success, message = nbsolve_ivp(nb_diffeq, time_span, y0, args_, rk_method=1)\n", - " y_len = y_results.shape[0]\n", + " result = nbsolve_ivp(nb_diffeq, time_span, y0, args_, rk_method=1)\n", + " y_len = result.num_y\n", " \n", " fig, ax = plt.subplots()\n", " for i in range(y_len):\n", - " ax.plot(time_domain, np.real(y_results[i, :]), label=f'$y_{i}$')\n", + " ax.plot(result.t, result.y[i, :], label=f'$y_{i}$')\n", " ax.set(title=f'{diffeq_name} - nbsolve_ivp', xlabel='Time')\n", " ax.legend(loc='best')" ] @@ -214,7 +214,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.12.7" } }, "nbformat": 4, diff --git a/pyproject.toml b/pyproject.toml index f183817..33237f9 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name='CyRK' -version = '0.11.0a0.dev3' +version = '0.11.0a0.dev4' description='Runge-Kutta ODE Integrator Implemented in Cython and Numba.' authors= [ {name = 'Joe P. Renaud', email = 'joe.p.renaud@gmail.com'} @@ -8,7 +8,7 @@ authors= [ requires-python = ">=3.8,<3.13" dependencies = [ 'numba >= 0.54.1', - 'numpy >= 1.22', + 'numpy >= 1.22, <2', 'scipy >= 1.9.3' ] license = {file = "LICENSE.md"} @@ -60,7 +60,7 @@ dev = [ [build-system] requires = [ 'setuptools>=64.0.0', - 'numpy >= 1.22', + 'numpy >= 1.22, <2', 'cython>=3.0.0', 'wheel>=0.38' ] From 74edb57402199cdac8728341d2704089db618730 Mon Sep 17 00:00:00 2001 From: Jrenaud-Desk Date: Fri, 8 Nov 2024 13:41:05 -0500 Subject: [PATCH 6/7] updated documentation --- Benchmarks/CyRK - SciPy Comparison.ipynb | 72 +++++++++--------- Benchmarks/CyRK_CySolver.pdf | Bin 13874 -> 13874 bytes Benchmarks/CyRK_PySolver (njit).pdf | Bin 13874 -> 13874 bytes Benchmarks/CyRK_PySolver.pdf | Bin 13874 -> 13874 bytes .../CyRK_SciPy_Compare_predprey_v0-11-0.png | Bin 0 -> 46342 bytes Benchmarks/CyRK_numba.pdf | Bin 13873 -> 13873 bytes Benchmarks/SciPy.pdf | Bin 13874 -> 13874 bytes .../CyRK_SciPy_Compare_predprey_v0-10-0.png | Bin .../CyRK_SciPy_Compare_predprey_v0-10-1.png | Bin Documentation/Deprecations.md | 5 +- Performance/cyrk_performance-DOP853.csv | 1 + Performance/cyrk_performance-RK23.csv | 1 + Performance/cyrk_performance-RK45.csv | 1 + README.md | 8 +- pyproject.toml | 2 +- 15 files changed, 47 insertions(+), 43 deletions(-) create mode 100644 Benchmarks/CyRK_SciPy_Compare_predprey_v0-11-0.png rename Benchmarks/{ => archive}/CyRK_SciPy_Compare_predprey_v0-10-0.png (100%) rename Benchmarks/{ => archive}/CyRK_SciPy_Compare_predprey_v0-10-1.png (100%) diff --git a/Benchmarks/CyRK - SciPy Comparison.ipynb b/Benchmarks/CyRK - SciPy Comparison.ipynb index 9a9e68e..1b49b64 100644 --- a/Benchmarks/CyRK - SciPy Comparison.ipynb +++ b/Benchmarks/CyRK - SciPy Comparison.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "id": "971e366b", "metadata": {}, "outputs": [ @@ -18,7 +18,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.11.0a0.dev4\n" + "0.11.0\n" ] } ], @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "id": "eff22823", "metadata": {}, "outputs": [], @@ -152,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "id": "bdae6603", "metadata": {}, "outputs": [ @@ -183,7 +183,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "86846611", "metadata": {}, "outputs": [ @@ -216,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "id": "3e9ff9df", "metadata": {}, "outputs": [ @@ -248,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "id": "bb098d93", "metadata": {}, "outputs": [ @@ -280,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "id": "24a29b41", "metadata": {}, "outputs": [ @@ -320,7 +320,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 8, "id": "5c43792b", "metadata": {}, "outputs": [ @@ -539,13 +539,13 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 9, "id": "b8ad4501", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4fElEQVR4nOzdd1wURxsH8N/dIQpIEAQVEbD3giWiRkCxYOxEY1fE2MAYNFGjplhSjNFYI2oiEk1MbBGVREFNULE37PBa6IgIAlIPDnjeP/A2HHfAHe0An28+8wk7Ozs7e0N53NmZFQEgMMYYY4yxak2s7QYwxhhjjLGy46COMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMcYYY6wG4KCOMVasTp06Yffu3QgNDUVmZiZSU1Nx8+ZNLF68GMbGxhrXFxYWBiISUlpaGm7evIl58+YplXVwcAARYcyYMQr5enp6OHHiBLKzszF16tRSX1tBOjo6+PLLLxEWFgapVIrg4GB8+OGHah1bt25drF27Fv7+/njx4gWICCtWrFBZ9p133sHPP/+MGzduQCqVgohgbW2tUVsHDBiAS5cuIT09HfHx8fD29oaZmZlGdRQ2fvx4BAUFITMzEzExMdi4cSMMDAxKXZ+87xwcHMrULk189dVXICLcu3ev0s7JWFVDnDhx4qQqzZw5k7Kzs+nevXvk5uZGDg4ONHDgQFq6dCk9ffqUjhw5onGdYWFhFBgYSLa2tmRra0vOzs4UGBhIRETLli1TKOvg4EBERGPGjBHy3nrrLQoMDKTMzEwaOXJkuV3rTz/9RJmZmbRo0SJycHCgb7/9lnJzc5XapCpZW1tTUlISnT17ln766SciIlqxYoXKsl9++SWFhYXRkSNH6N9//yUiImtra7XbaW9vT9nZ2eTj40MDBw6kSZMmUVRUFN29e5d0dXVLde2TJk0iIqKffvqJ+vXrR7Nnz6akpCTy9/cv9ecp7zsHB4dK+V7t0qULZWZmUmxsLN27d69SzsmJUxVMWm8AJ06cqmDq1asXyWQyOnHihMpgoVatWjRixAiN6w0LCyNfX1+FPENDQ0pKSqLw8HCF/MJBnZmZGd26dYtevXpF/fr1K7drbd++PeXm5tLSpUsV8nfu3Enp6elkbGysdl3169cvNqgTiUTC15988onGQd3Vq1fp/v37JJFIhLzevXsTEdHcuXM1vnaxWEwxMTHk5+enkD9x4kQiIhoyZEipPtPKDOokEgndunWLNm3aRAEBARzUcXpjEw+/MsZUWr58OYgIs2fPRnZ2ttJ+mUwGX19fAMCuXbvw8uVL6OnpKZX7559/cP/+/WLPlZqaikePHqFhw4ZFlrGyssKFCxfQpEkTODo64uzZs8XWaWpqiqysLKxevVppX5s2bUBEmD9/PgBg9OjREIvF8Pb2Vijn7e0NfX19DBkypNhzaYKISn1s48aN0bNnT/z666/Izc0V8i9fvoz//e9/cHZ2FvJMTU2xbds2PHjwAKmpqYiLi8M///yDvn37KtTZq1cvNG7cWOnaDx06hNTUVIU6i9KmTRucPHlSGA7evn07DA0NVZYdMGAAzpw5g1evXiE9PR0XLlyAo6OjsH/UqFEgIoU8ublz54KI0KlTJ4X8pUuXwsTEBJ999lmJbWWsJuOgjjGmRCwWw9HRETdv3kR0dHSJ5Tdv3gwTExNMmjRJIb9du3ZwdHTEtm3bij1eIpHA0tISjx49Urm/Xbt2uHDhAvT09GBvb4+bN2+W2KaEhAT89ddfcHFxgUgkUtjn6uqKrKws7Nu3DwDQsWNHvHjxAnFxcQrl7t69K+yvCuTtkLeroLt37yq008TEBACwatUqDBs2DK6urggNDcXZs2cVnnMrqs6cnByEhISUeO0NGjTAuXPn0LFjR7i7u2Pq1KmoW7cufvzxR6WykydPxqlTp5CSkgIXFxeMGzcOiYmJ8Pf3F4K4v/76C3FxcXB1dVU6fvr06bh586bCM3Pt2rXD559/Djc3N6SnpxfbVsbeBFq/XciJE6eqlRo0aEBERL///rvaxwQEBNCtW7cU8rZt20bJyclkYGAg5IWFhdFff/1FEomEJBIJWVpa0s6dOykrK4uGDh2qcLx8CI+ISCaTUdu2bTW6juHDhxMR0cCBA4U8sVhM0dHRdOjQISHP39+fgoODVdYhlUppx44dap+zpOHXgknT4Vf5kKitra3Svh07dpBUKi3yWLFYTBKJhE6fPk1//vmnkL9s2TIiImrYsKHSMX5+fhQSElJsm9asWUO5ubnUuXNnhXx/f3+F4Vc9PT1KSEigY8eOKZQTiUQUFBREV65cEfLWr19P6enp9NZbbwl5bdu2JSKiefPmKRx7+fJl2rdvn8L3IQ+/cnpTE9+pY4yVi82bN6Nr167o06cPAMDQ0BBTp07Fnj17lO6gDBs2DDk5OcjJyUFkZCRmz56N+fPn48SJEyrr9vX1hVgsxrZt21QO8Rbl5MmTiI2NVbjr4+TkBAsLC+zevVuhbHHDomUZMq0IRbWncP6cOXNw8+ZNZGZmIjc3Fzk5ORg4cCDatWtX6joL69+/Px48eKB0p+/3339X2O7Tpw/q16+PPXv2QCKRCEksFsPPzw9vv/029PX1AQC7d++Gvr4+xo8fLxzv6uoKqVSqUO/HH3+MVq1aYcGCBcW2kbE3BQd1jDElCQkJSE9PR7NmzdQ+5tixYwgLCxOWJpk+fToMDAxUDr0GBgaiR48esLW1xZQpUxAWFoYff/wR77zzjsq69+zZg1mzZqFfv374+++/hT/+JcnNzcWvv/4KZ2dnGBkZCe169uwZ/P39hXIvX75E/fr1lY7X19dH7dq1kZiYqNb5KtrLly8BQGVbTUxMFNq5cOFC7NixA1evXsWYMWNga2uLHj164OTJkwqBsSZ1qlK/fn08f/5cKb9wnvx5yT///FMI6OVp6dKlEIvFwpDxw4cPce3aNSEYF4vFmDJlCo4dO4akpCQAgKWlJVavXo1Vq1YhOzsbRkZGMDIygo6ODsRiMYyMjFCnTp1i285YTaT124WcOHGqeunYsWOUnZ1NFhYWah/zySefUFZWFjVq1IiCg4Pp1KlTSmVUzX5t2bIlpaen0507dxRmhxae/Tp9+nTKycmhs2fPkr6+vlptkg/bzZkzh+rVq0eZmZm0Zs0ahTJFDUHa2toSEdHEiRPV/gwqcvi1cePGRES0ZMkSpX3BwcEKS5DcvHmT/v33X6VygYGBFBYWJmzLZ86OGzdOoZxEIqGUlBTauXNnsW26cuUK3b17VynfxcVFYfh18ODBwvBp9+7dVaZatWoJx8+dO5eIiNq2bUtDhw4lIiInJyel743ibNy4Ues/R5w4VXLSegM4ceJUBVPBJU0K/rGVJx0dHRo+fLhCnpGREaWmptI///xDRKRyHTlVQR0AWrFiBRERTZgwQchTtU6di4sL5eTk0Llz5xSe1SsuXb58ma5cuULu7u5ERNS6dWuF/fIlTQoHS9u3by/3JU0KptIsaSIPosRisZAnDz7nzJkj5N24cYNOnjypcGynTp0oJydHIaiTL2ly4sQJhbLjx49XCqRUJXWfqTMwMKDExETatm2bWtdpZGREGRkZ9N1339HBgwcpKipKIeA3MjIiBwcHpRQUFEShoaHk4OBALVq00PrPESdOlZy03gBOnDhV0SRffPju3bvk5uZG9vb2NGDAAFq0aBE9evRI5eLD27ZtIyKisLAwhT/C8lRUUGdgYECxsbEUHBwsBCyqgjoANHXqVMrJyaHz58+rFdjNmjWLiIgiIyPpwoULKsvIFx/+5JNPyN7enr7++muViw9/8cUXJJPJyN7eXiF/yJAhNGbMGJo+fToRER04cIDGjBlDY8aMIT09PaGcqampkP/LL78QUf76cmPGjFGqUyaT0ZkzZxTyHBwcKDs7m/78808aMGAATZw4kSIiIpQWH165ciXl5ubSypUrqX///jR37lx69uwZPX78WCGoA0CTJ08mIqIdO3aQg4MDzZw5kxITE5UWH7a3tyeZTEZffPGFkNewYUOKi4ujqKgocnFxoSFDhtCvv/5KERERCkGd/Dw5OTn0xx9/0JgxY8jOzo7ee+89WrVqFXl6eir1yb59++j58+cklUrp66+/Vut7lidKcHrDk9YbwIkTpyqcOnfuTN7e3hQeHk5SqZRSU1Pp5s2btHLlSjI1NVUqb29vX+QQIVB0UAeA3NzciIho6tSpBBQd1AH5AYJMJqMLFy5Q3bp1i70GQ0NDSk9PJyKiDz74QGUZHR0dWrFihXCdISEh9OGHHyqVk99RLLyoblhYWJHDgAXvxBU3bBgQEKBQp6o8ADRw4EC6dOkSZWRkUEJCAv3yyy9kZmamUKZWrVr0/fffU1RUFGVkZNCNGzdo5MiR5O3trRTUAaAJEybQ7du3SSqV0rNnz2jTpk1KAbO87YXvQrZt25b8/f2F9vz88880YsQIlZ+TnZ0d+fr6UkJCAmVlZVFUVBT5+vqq7OOBAwcKn03Lli3V+n7loI7Tm5xEr79gjLFysX79eri5ucHS0rLKTDBgjLE3gY62G8AYqxlsbW3RunVruLu7Y+fOnRzQMcZYJeM7dYyxckFESE9Px4kTJ+Dq6sqr+zPGWCXjoI4xxhhjrAbgxYcZY4wxxmoADuoYY0X64osv8ODBA4hEIiGPiBRScnIyAgICMHTo0Epp04oVK0r92q6JEyfCw8OjnFtUPG1/XupwcHBQaGNWVhZevHiBCxcu4Ouvv4aVlZXSMS4uLiAiWFtbK+R/9dVXiIiIgEwmE97+UKtWLWzfvh3Pnj1DTk4OgoKCAABhYWFKn488BQQEaHwdOjo6ePLkSaX3MWNVidan4HLixKnqJXNzc0pNTVVaaoKI6ODBg2Rra0u9e/emyZMnU3BwMOXm5tLQoUMrvF3yJUVKc6yvr6/K5TwqMmn781InyZcqWbp0Kdna2lKfPn1oxIgR9PXXX9OzZ88oPT2dJk2apHCMqakp2draKqyNN3LkSCIi+uqrr6hPnz7UvXt3AkAfffQREeW/TaJXr17UsWNHAvKXgQkMDCRbW1ul1K5du1Jdy7Rp0+jly5dkYmKi9c+VEyctJK03gBMnTlUwfffdd0qr+AP5QcrWrVsV8po3b05EpPK1YPKko6NDEomkzO2qikFdnTp1ityn7c9LnVTceoDGxsZ08+ZNys7OFoKxotLy5cuJiJTWzPvpp58oPT1dqXxxaxaWNtWqVYsSEhKUFo3mxOlNSDz8yhhTUqtWLXzwwQf4/fff1RrqDA0NxYsXL4ShOPlw3pQpU7B+/XpER0cjKysLLVu2BAAMGDAAZ86cwatXr5Ceno4LFy7A0dFRqd6hQ4ciKCgIUqkUoaGh+OSTT1Se393dHefOnUNcXBzS0tJw9+5dLF68GDo6/63aFBAQgOHDh6Np06YKw3xyxsbG2LZtm9DWp0+f4uuvv4aurq7CuYgIW7duxZw5c/Dw4UNkZWXBxcWl5A+1Aj+vvn37gogwYcIEpXNNnToVRIQePXpo1Ea5pKQkzJkzB7Vq1cLChQuF/MLDr2FhYfjmm28AAC9evAARCUPls2bNgr6+vvCZa/p5Aaq/F1QNxctkMhw4cACzZ88u1fUyVt1pPbLkxIlT1Up9+/YlIqIhQ4Yo7VN156levXqUk5MjvIJLfucnKiqKDh48SMOHD6ehQ4eSsbExTZ48mXJzc+nIkSM0evRoGjZsGB0/fpxkMhk5OjoKdTo6OpJMJqPz58/T6NGjacyYMXT16lUKDw9XulP3ww8/0Jw5c2jw4MHUr18/8vDwoBcvXpCXl5dQpl27dhQYGEjPnj1TGOYDQLVr16bbt29TamoqffzxxzRw4EBatWoVZWdn019//aV0/VFRUXT79m2aMGEC9evXj9q3b1/kZ1lZn9fNmzcpMDBQ6fxXr16lq1evFtvfxd2pk6eYmBh6/PixsO3i4kJE/70tw8bGhn7++WciIho8eDDZ2tqShYUF2dra0l9//UXp6enCZy5/E0lYWBj99ddfJJFIlFLBc2vyvQCA3n//fSKiEu8scuJUA5PWG8CJE6cqlhYvXkxERA0aNFDaR0T0448/kkQiIR0dHWrTpg39/fffRETk5uZGwH9BwtmzZxWO1dPTo4SEBDp27JhCvkgkoqCgILpy5YqQd/nyZYqOjqbatWsLeXXr1qWEhIRih19FIhFJJBKaMmUKyWQyqlevnrCvqOHX2bNnExHR2LFjVX4OAwcOVLj+pKQkhXqLS5X1ecmDrC5dugh5PXr0IKL/XrtWVFInqLt8+bLCEGrhoA74b2i8fv36Csd6e3tTamqqUp3FvVrts88+K/X3QosWLYiIaM6cOVr/WeLEqTITD78yxpQ0btwYeXl5SEhIULl/3rx5yMnJgUwmQ0hICPr06YMvvvgC27dvVyj3559/Kmz36dMH9evXx549eyCRSIQkFovh5+eHt99+G/r6+tDX18fbb7+NI0eOICsrSzg+LS0Nvr6+Su2xsbHBsWPHkJCQgLy8POTk5ODXX3+Fjo4OWrduXeL1Ojo6Ii0tDYcPH1bI/+WXXwDkD38W9O+//yI5OVnYFovFCtdTcLZwZXxeAPDHH38gLi4O8+bNE46fP38+Xrx4gQMHDpT4GZSk8DWVl8DAQPTo0UMpeXl5AYDG3wtA/vAvAFhYWFRImxmrqvg1YYwxJXp6epDJZMjLy1O5/8CBA1i3bh2ICKmpqXj69KnKsrGxsQrbDRs2BKAcvBRkYmICIoJEIsHz58+V9hfOs7S0RGBgIP73v//Bw8MD4eHhkEql6NmzJzw9PaGnp1fi9davX1/lueLj4yGTyVC/fv1ir+vp06do2rSpsL1y5UqsWrVK2K7ozysjIwPZ2dnYuXMnPvnkEyxevBi1atXCuHHjsGHDBmRnZxd98WqysrLCs2fPylxPYa9evcLNmzeL3G9sbKz294KcVCoFALX6nrGahIM6xpiShIQE1K5dG/r6+sjIyFDaHx8fX+wfYrnCD7HL7/x9+OGHuHLlispj4uLiUKtWLeTl5aFRo0ZK+wvnjR49GnXr1sV7772HyMhIId/GxqbE9sm9fPkStra2SvlmZmaoVauW0h3Lwtc1YsQI1K5dW9guHPxU9Oclt337dixduhQzZsxAnTp1oKOjgx07dpR43pK8/fbbMDc3x65du8pcl6aSkpLU/l6QMzExAYAi7zQzVlNxUMcYUxISEgIAaNGiBe7du1du9V68eBFJSUlo3749tm3bVmQ5mUyGa9eu4b333sPixYuFYbe6detixIgRCmXlgVDBoTkAmDVrllK9WVlZKu/e/PPPPxg/fjxGjx6No0ePCvnTpk0T9hfn/v37xe4vLXU/L7nnz5/j0KFDcHd3h66uLnx9fREVFVWmNhgbG2PHjh3Izs7Gxo0by1RXaWRkZKj9vSDXvHlzAMDDhw8rrZ2MVQUc1DHGlJw9exYA0KtXr3IN6tLT0zF//nzs2bMHJiYmOHz4MF68eAEzMzN06dIFZmZmcHd3B5D/Ngs/Pz+cPn0aP/zwAyQSCT799FOkp6crDIeePn0aWVlZ+OOPP/D999+jTp06cHNzg7GxsdL57927hzFjxmDu3Lm4efMm8vLycPPmTezduxfz5s3Dnj17sGLFCty7dw99+/bF8uXL8ffff5cY1FUUTT4vuc2bN+PatWsAAFdXV43O16pVK9ja2kIsFqN+/fqwtbXFBx98gLfeegvTpk2rkCCpXr16Ku+SZmVl4fbt2wDU/16Q69WrF3JycnD+/Plyby9jVZ3WZ2tw4sSp6qVz584pLecBqF6io3AqaTalnZ0d+fr6UkJCAmVlZVFUVBT5+voqlR8+fDjdvn2bpFIphYeH05IlS1QuPjxs2DAKCgqijIwMioqKorVr15KTkxMRETk4OAjl6tWrRwcPHqTExETKzc1VqMfY2Jg8PT0pJiaGsrOzKSwsjL755huFNyaoe/3a+rzkKTQ0lB48eKB2G+Xnl8vOzqb4+Hi6ePEiff3112RlZaV0TEXPfo2KiirV94L8e7fwjGFOnN6QpPUGcOLEqQqm9957j2QyGTVu3FjrbeGkfurUqRMR/bdcSk1OqoK65s2bU25ursIyNJw4vSmJlzRhjKl05MgRXL9+HcuWLdN2U5gamjdvjv79++Onn37Cs2fPhOVY3jSff/45/vnnH5w5c0bbTWGs0nFQxxgr0qxZs/Ds2bMKW6OMlZ8vvvgCp0+fRt26dfH+++8jMzNT202qdBKJBE+fPlVYq4+xN4kI+bfsGGOMMcZYNcZ36hhjjDHGagAO6hhjjDHGagAO6hhjjDHGagAO6hhjjDHGagB+o0QlaNy4MVJTU7XdDMYYY4xVA4aGhkrvkFYHB3UVxN3dHfPmzYOOjg5at26t7eYwxhhjrBqxsLDQOLDjJU0qmKGhIVJSUmBhYcF367REIpFg0KBBOH36NHJzc7XdHKYC91H1wP1U9XEfVX0l9ZGhoSFiYmLw1ltvaRw38J26SpKamspBnZZIJBJkZmYiNTWVf8lVUdxH1QP3U9XHfVT1VWQf8UQJxhhjjLEagIM6xhhjjLEagIM6xhhjjLEagJ+pqwL09PRgZmbGL02vIBKJBKamprC2tuZnTKoo7qPqoSz9RESIj49HZmZmBbWOMcZBnZZ17NgRCxcuRK1atbTdlBpNT08Pjo6O2m4GKwb3UfVQln6SyWTYuHEj7t+/X86tYowBHNRplZ6eHhYuXIjg4GD4+PggJydH202qsQwNDXn2cRXHfVQ9lLafdHR04OzsjIULF+LDDz/kO3aMVQAO6rTIzMwMtWrVgo+PD54+fart5tRoRkZGePXqlbabwYrBfVQ9lKWffHx80LlzZ5iZmSEyMrKcW8YY44kSatLT00N4eDjWrVtXbnXKn6HjO3SMsTeB/HcdPz/MWMXgO3Vq+uyzz3D16lVtN6MI+gDSX39tACBDi21hjDHGaioxADsA5gBiAQQCyNNqiwriO3VqaNmyJdq2bYsTJ05ouyk1gouLC5KSkrTdDMYYY0wDzgDCAZwF8Mfr/4e/zq8aanxQZ2dnh+PHjyMmJgZEhFGjRimVcXNzQ2hoKDIzM3Hjxg307dtXYf/69euxbNmyympyKRTsRjtURreamZlhx44diIiIgFQqRWxsLPz8/NCrV68Sjz1w4ABat24tbLu4uICIhPTs2TMcOHAATZs2rcArYIwxxtTlDOAwAItC+Rav86tGYFfjgzoDAwPcuXMHH374ocr948aNw6ZNm/DNN9+ga9euCAwMxMmTJ2FpaQkAGDlyJB49eoTHjx9XZrM14AwguMC2HyrjXw5//vknunTpAhcXF7Ru3RojR47E2bNnYWJiUuKxUqkU8fHxCnmvXr1Co0aNYG5ujkmTJsHGxgbHjx+HWFzjv0UZY4xVaWIAmwt8XXgfAGxSsa/y1fhn6vz8/ODn51fk/o8//hheXl7w8vICACxcuBBOTk5wc3PD8uXL0atXL0yYMAHvv/8+6tati1q1aiElJQVfffWVyvp0dXVRu3ZtYdvQ0BBA/qKdEolEoWzhbc3J/+VQmPxfDmMB+JTxHMqMjIxgZ2cHBwcHnD9/HgAQGRmJ69evK5T5/vvvMWrUKBgZGeHJkydYunQp/v77b7i4uGDTpk0wNjYWyhMR4uLiAADPnz/HqlWrsG/fPrRs2RKffvopGjRogBEjRgjlJRIJoqOjsXz5cnh7exfbXvlD2SKRCERUbp8DKz/cR9VDefWTqt+HrHxIJBKIxWL+fMsRkQPy8iyLKSEGYAWxuB9EonMl1ldSH5Wl72p8UFecWrVqoXv37vjuu+8U8k+dOoU+ffoAAJYvX47ly5cDyB8m7NixY5EBHQAsW7YMK1euVMofNGiQ0rpMpqam0NPTg6GhIYyMjDRqO5EYqalbkf97VdW/HPIgEm2BoeFZiETl+xCnRCJBamoqxo8fj+DgYGRnZyvsF4lE8Pf3R926dTFnzhyEhYWhbdu2qFOnDoyMjKCvrw+RSCRcc+FtAMIdOhMTE+zfvx8nTpxA69athcDv3XffRd26deHv76/WZ2dgYFBel88qCPdR9VCWfjI0NISenh7s7e2RkJBQjq1ichKJBN26dYNIJOK3s5STmBh7BAWVXK5LlyGwsNAvsVxJfaSnp1eaZgJ4w4M6U1NT6OjoCIGCXFxcHBo1alSqOtesWYMNGzYI24aGhoiJicHp06eVFuy0traGo6MjUlNTS7HukwOUx/YLEoOoCVJSOgMo+V8Ompo+fTp+/vlnuLq64tatWzh37hz279+Pe/fuYdCgQejevTvatWsnDFvfvXtXODYjIwNEJFxz4W0LCwu4u7sjKioKN2/ehEwmw//+9z+MGjVKWFJm3LhxOHToEJ49e1ZiW+V3F1JSUvguUBXFfVQ9lLWf6tWrh8zMTJw/fx4RERHl3TyG/ICBiODn58dBXTkhygCwuMRyd+744e5d9e7UFddH8hG+0nijgzq5wr+cihpa2LNnT4l1ZWdnIzs7G+7u7pg3b55wxyk3N1ep88r2A2dezuU0c+TIEfz999+ws7ND7969MWTIECxZsgQzZ85EgwYNEB0drdFziPXq1UNqaipEIhEMDAxw8+ZNvPfee5DJZACAXbt2Yfbs2Vi3bh3MzMwwbNgwDBgwQK265X3JwULVxX1UPZRXP6n6fcjKT15eHn/G5eosgCjk30hR9dxcHoBo5OWdhbrLmxTXR2XpN+0/1adFCQkJyMnJUbor16BBA6W7d5ry9PREhw4d0LNnzzLVU7TYci6nuaysLJw5cwZfffUV3nnnHfzyyy9YtWpVqV7/k5KSAhsbG3Tq1AkGBgbo0aMHbty4Iezfu3cvmjdvjl69emHKlCkIDw/HhQsXyvNyGGOMMRXyAHgU+LrwPgBYoGJf5XujgzqZTIabN29i0KBBCvmDBg3CpUuXtNQqdQUi/18ORX0T5QGIfF2ucjx8+BAGBga4e/cumjRpglatWql9bF5eHp4+fYqwsDBkZCgvnpyYmIijR4/C1dUVrq6uJU6OYIwxxsqPD/InH8YUyo9GRU1KLI0aP/xqYGCAli1bCtvNmjVDly5dkJiYiKioKGzYsAG//vorbty4gcuXL2P27NmwsrLCjh07ynTewsOv5U/+L4fDr78WF9oHVNS/HExMTHDo0CHs3r0bd+/eRWpqKnr06IElS5bg2LFjOH/+PM6fP48///wTH3/8MZ48eYK2bduCiODv71/q8+7atQt//fUXJBKJWkPhjDHGWPnxAXAMVfmNEgBANTk5ODiQKt7e3kIZNzc3CgsLI6lUSjdu3CA7O7tyO7+hoSERERkaGirts7a2pr1795K1tXUZzuFMQBQBVCBFvM6vmM9UV1eXvv32W7px4wYlJSVRWloaBQcH0+rVq6lOnToEgIyNjcnLy4vi4+MpIyOD7t69S0OHDiUA5OLiQklJSUJ9hbeLS2FhYfTXX39p3GYjIyOtfy9y4j6qCaks/VQ+v/M4FZckEgkNHz6cJBKJ1tvCqXR9VFzcoEbS/gXW5FTxQR0IqEsQAjonAsRav+6KSHp6epSUlETOzpoHrBwwVP3EfVQ9Egd1VTtxUFf1U0UGdW/0M3UVyd3dHQ8ePMC1a9cq4WwFb/1WvVvBZSUSiWBubo6vvvoKr169wvHjx7XdJMYYY6zKqfHP1GmLp6cnPD09YWhoiJSUlAo+WwYAUQWfQ3usrKwQHh6OqKgoTJ8+nafpM8YYYypwUMeqvIiICGHRU8YYY4ypxsOvFaRyh18ZY4wx9qbjoK6CVPziw4wxxhhj/+GgjjHGGGOsBuCgjjHGGGOsBuCgroLwM3WMMcYYq0wc1FWQynymTh//rTyoX+FnY4wxxlhVxEEdY1pGRBg1alSlnMvFxQVJSUmVcq7+/fsjODi40pajqYzPUVdXFxEREejWrVuFnocxxkqDg7oaoGAn2qFyOrVhw4bYsmULnj59CqlUisjISBw/fhyOjo5q1+Ht7Q0iAhFBJpMhIiICnp6eqFevnkK5sLAweHh4KOStX78eKSkp6N+/PwAgICAALi4uZb6umu7AgQNo3bp1pZzr+++/xzfffAMiEvJq1aqFxYsX4/bt20hPT0d8fDwuXLiA6dOnQ0dHvWUzV6xYgaCgoIpqdrGys7Oxfv16rF27VivnZ4yx4vDiw9WcM4AtBbb9AEQB8ADgU0HntLa2xsWLF5GcnIwlS5bg7t27qFWrFpycnLBt2za0a9dO7bpOnjwJV1dX6OjooH379ti9ezfq1auHSZMmqSwvFovx888/Y8SIEXB0dMSNGzfK67LeCFKpFFKptMLP07t3b7Rq1QqHDh0S8mrVqgV/f3906dIFX3zxBS5evIiUlBT06tULixYtwpMnT3DhwoUKb1tZ7du3D+vWrUPbtm0REhKi7eYwxpiA79RVY84ADgNoXCjf4nW+cwWd19PTE0SEnj174s8//8Tjx4/x8OFDbNy4Eb169QIAeHl5wdfXV+E4iUSC2NhYuLq6CnlZWVmIi4tDTEwMTp8+jQMHDmDw4MEqz6urq4tDhw5h0KBBsLe3LzagW7FiBSIiIiCVShETE1PinZURI0bg+vXryMzMRHx8PP78808AwBdffIG7d+8qlb9x4wZWrVoFAHBwcMDVq1eRlpaGpKQkXLhwAVZWVkLZuXPn4smTJ8jKykJISAimTJlSZDsuXbqENWvWKOSZmpoiOzsb/fr1A5AfHK1duxbR0dFIS0vDlStX4ODgUOz1yRUcfm3dujWICG3atFEos3DhQoSFhQnXRkQYOnQobt++jczMTFy5cgUdO3Ys9jwTJkzAqVOnkJWVJeQtWLAA9vb2GDBgADw9PXHnzh2EhYXhjz/+gK2tLZ4+fYqpU6ciISEBurq6CvUdPnwYe/bsgYuLC1auXAkbGxvhLm/BO7SmpqY4cuQI0tPT8ejRI4wYMUKhHnt7e1y9ehVSqRTPnj3DmjVrIJFIhP0BAQHYvHkz1q5di5cvXyI2NhYrVqxQqCMxMRGXLl3CxIkTS/q4GWOs0hGn8k/u7u704MEDCg4OJiIiQ0NDpTLW1ta0d+9esra21rh+MUCRAOUCRCpSLkARr8uV53UZGxtTbm4uLV26tNhyvXv3JplMRo0aNRLyRowYQampqWRgYEAAyNvbm3x8fIT9zZo1o/v371NsbKxCXWFhYfTZZ5/R6dOnKSQkhCwtLZXOFxAQQC4uLgSAxowZQ8nJyTRkyBCytLSkt99+m+bPn19kW4cOHUoymYxWrlxJbdu2pc6dO9OyZcsIAFlYWFBOTg716NFDKN+pUyfKzc2lZs2akUQioaSkJPr++++pefPm1LZtW5o2bZrQxtGjR1NWVha5ublRq1ataOHChSSTyahfv35CfUREo0aNIgA0b948Cg8PV2jfvHnzKCoqikQiEQGg3377jS5cuEB9+/al5s2b0yeffEKZmZnUsmXLEvvPxcWFkpKShO3r16/T6tWrFcpcv36dvvnmGwJADg4ORET04MEDGjhwIHXs2JGOHz9OoaGhpKOjU+R5goKCaMmSJQp5t2/fJj8/vyKPMTIyojp16lBSUhKNHTtWyK9fvz5JpVLq168f1alTh9atW0f37t2jhg0bUsOGDalOnTrC5xgZGUkTJkygFi1a0KZNmyglJYWMjY0JADVu3JjS0tLoxx9/pDZt2tCoUaPoxYsXtGLFCoXvo+TkZPryyy+pZcuWNHXqVMrNzaWBAwcqtPW7776jf//9t1x/tqpLMjIyKvWxZfmdx0m9JJFIaPjw4SSRSLTeFk6l6yNDQ8Mi4wY1kvYvsCan4jqnLL/gHKA6mCucHMr5et5++20iIho9enSJZe/fv0+LFy8Wto8cOUK7d+8Wtr29vUkmk1FqaiplZGSQ3IIFCxTqCQsLI6lUSvHx8WRmZlbieRcuXEghISEKQUdxf4guXrxIv/76a5H7//77b9q2bZuwvWHDBuEPurGxMRER2dvbqzz2woULtHPnToW8AwcO0F9//SVsFwzqTE1NKTs7m/r27avQvrVr1xIAat68OeXm5pK5ublCnadPnxYCseJS4aBuwYIF9OTJE2G7VatWRETUrl27/O+z10HduHHjhDLGxsaUnp5O77//fpHnSUpKoilTpijkpaen06ZNm4o8Rt5H27Zto7///lvI/+ijjxTauGLFCgoKClI6nogUAlR9fX3Kzc0lJycnAkBff/01BQcHKxzj5uZGKSkpQsAcEBBA58+fVyhz9epVWrNmjULe/PnzKTQ0tFx/tqpL4qCuaicO6qp+qsigjodfqynzci6nLvlMxoIPvxdl165dwlCrmZkZhg0bht27dyuUCQgIgI2NDWxtbbFlyxb4+flh69atSnWdOnUKBgYGWL58eYnnPXToEPT09BAaGoqffvoJo0ePVhhiK8zGxgb//PNPkft//vlnTJw4EbVr14aOjg4mT54sXEdSUhK8vb3h7++P48eP46OPPkKjRo2EY9u1a4eLFy8q1Hfx4sUinztMSEjA6dOnMXnyZABA06ZN0adPH+zbtw8A0K1bN4jFYjx69AipqalCcnBwQIsWLUr8bArbv38/rK2tYWtrCwCYPHkygoKCEBwcrFDu8uXLwtdJSUn43//+V+yzk3p6ekrP7olEIrW+b37++WcMHjwYjRvnP1jg6uqKX375Ra3rKThUnpGRgdTUVDRo0ABAfl8UvA4gvy8MDQ3RpEkTlXUAQGxsrFCHXGZmJvT1eQEhxljVwkFdNRVbzuXU9fjxY+Tl5ak1GWLv3r1o3rw5evXqhSlTpiA8PFzpQfj09HQ8ffoU9+7dg4eHB2rXrq30DBMA/PPPPxg5ciRmz56NLVu2KO0vKDo6Gm3atMG8efOQmZkJT09PnDhxosjZlZmZmcXW5+vri6ysLDg7O2PEiBGoXbu28MwdAMyYMQO9e/fGpUuXMH78eDx69EgIkgDlALik4Gbfvn0YO3YsdHR0MGnSJNy/f18INMRiMXJyctC9e3fY2NgIqV27dkozhNXx/PlzBAQECBNTJk6ciN9++02tY4u7hoSEBBgbGyvkPXr0SK3vm9u3b+POnTuYNm0aunbtik6dOqkd1MlkMqU2isX5v+ZUfe6q/pFSXB1yJiYmiI+PV6tNjDFWWTioq6YCkT/LNa+I/XkAIl+XK09JSUnw9/fHvHnzVN6pMDIyEr5OTEzE0aNH4erqCldXV3h7e5dY/6pVq7Bo0SKYmyvfYzxz5gyGDx+OGTNm4Mcffyy2HqlUCl9fX3h4eKBfv36wtbVFp06dVJa9e/cuBgwYUGRdubm52LNnj3Ad+/fvVwoEb9++je+++w7vvPMO7t+/LwRJwcHB6Nu3r0LZPn36KN0JK+jo0aOoU6cOhgwZgkmTJikEWUFBQdDR0UGDBg3w9OlThRQXF1fsZ1KUffv2Yfz48ejVqxdatGiB/fv3K5WRT4ABgHr16qF169bFzvwMCgpC+/btFfJ+//13DBw4EDY2NkrlJRKJwveT/C7vjBkzcObMGURHRwv7srOzi73zWpSHDx+iT58+Cnl9+vRBSkoKYmJiNKqrY8eOWltWhTHGiqP18eWanCrqmToA5Iz8CRGFJ0vI85wr6JqaNm1Kz549o/v379N7771HLVu2pLZt29L8+fPp4cOHCmUHDhxIUqmUZDKZ0nNghSdKyNP169dp69atwnZYWBh5eHgI2w4ODpSamqrwnFvB5OLiQjNmzKAOHTpQs2bN6KuvvqL09HQyMTFRWd7BwYFycnKEiRIdO3ZUeBYQALVs2ZJkMhnJZDLq2bOnwmfx7bffUq9evcjKyooGDRpECQkJNHfuXAJAo0aNoqysLJozZw61bNlSmCjh4OAg1FHwmTp5+u233ygoKIhyc3OVJob8+uuvFBoaSs7OztS0aVPq0aMHLVmyhN59990S+67wM3Xy79GMjAwKCgqi06dPK302RET37t0jR0dH6tChAx09epTCw8OpVq1aRZ7nww8/pOvXryvk6erq0rlz5+jly5fk7u5OnTt3pmbNmtH7779PN27cUHiO0NDQkNLS0kgqlSo8zweAJk6cSKmpqdSlSxeqX78+6erqFvk5JiUlCRNo5BMltm7dSm3atKGRI0eqnCixceNGhTp8fHzI29tbIS8sLEzpmcE3JfEzdVU78TN1VT/xRIlqmCp69qs8OQMUBcWgLgIVF9DJU6NGjWjr1q3CJIaoqCg6evSoQrAiT2FhYQoTA+SpqKBu4sSJJJVKqUmTJsLxBYM6AGRnZ0cpKSm0fft2peNHjRpFly9fpuTkZEpNTaVLly7RiBEjiv8cnZ3p1q1bJJVK6cWLF3T48GGlMufOnaP79+8r5DVo0ICOHDlCMTExJJVKKSwsjFauXCk8eA+A5s6dS0+ePKGsrCwKCQlRCgZUBSPvvvsuERGdPXtWqR06Ojq0cuVKCg0NpaysLHr27Bn9+eef1LFjxxL7TVVQB+RP3iAimj59ukK+PKgbNmwY3bt3j6RSKV29epU6d+5c7Hnq1atH6enp1Lp1a4V8XV1d+vTTT+nOnTuUkZFBCQkJFBgYSNOmTVMKuvfs2UMJCQlC0FawjkOHDlFiYiIRkRC0lRTUASB7e3u6evUqSaVSevbsGa1Zs0bhF6s6QV2vXr0oMTFRmHX7piUO6qp24qCu6icO6qpxqsg7dfJUF/8FdE4o/2VMypL09PQoKSmJnJ2dtdqOsvwhkqeQkBBauHCh1j/TykzyoK40n9/atWtpx44dpe6jU6dO0ebNm7X+GRROBw8eFJa8eRMTB3VVO3FQV/UTz35lxSr4XF0gin7OrjKJRCKYm5vjq6++wqtXr3D8+HFtN6nUzMzM8PHHH8PCwkKt5wJZvm+++QYRERFKkwxKYmxsjPHjx8PR0RHbtm2roNaVjq6uLu7cuYONGzdquymMMaaEXxNWA2QAqJxXpqvPysoK4eHhiIqKwvTp05Gbm6vtJpXaixcvEB8fj9mzZyM5OVnbzSnWiRMnYGdnp3Lft99+q/S2ioqUkpJSqvPdunULxsbG+PTTT/Ho0aMKaFnpZWdn45tvvtF2MxhjTCUO6liFiIiIEJaLqO6q03XMnDkTenp6KvclJiZqXN+5c+cq/fqbNWtWqedjjLGagoM6xmqQZ8+eabsJjDHGtISfqWOMMcYYqwE4qGOMMcYYqwE4qGOMMcYYqwE4qKsg7u7uePDgAa5du6btpjDGGGPsDcBBXQXx9PREhw4d0LNnz4o/mb4+hOWHVbyPlTHGGGM1Hwd1jFUBAQEBlbagrbW1NYgIXbp0qfBzmZiYIC4uDtbW1hV+LiLCqFGjKvQcurq6iIiIQLdu3Sr0PIwxVhoc1NUEBVfst7NT3K4gDRs2xJYtW/D06VNIpVJERkbi+PHjcHR0VLsOb29vEBGICDKZDBEREfD09ES9evUUyoWFhcHDw0Mhb/369UhJSUH//v0B5AdFLi4uZb6uN0FUVBQaNWqE+/fvV/i5li1bBl9fX0RERAD4L6CUp8TERJw7dw729vZq17lixQoEBQVVVJOLlZ2djfXr12Pt2rVaOT9jjBWHg7rqztkZCA7+b9vPDwgPz8+vINbW1rh58yYcHR2xZMkSdOrUCUOGDEFAQIDGr3U6efIkGjVqhKZNm2LmzJkYMWIEPD09iywvFovh5eWFadOmwdHREQEBAWW9nDdOXl4e4uLiKvwtH3Xq1MEHH3yAXbt2Ke0bMGAAGjVqBAcHB6SkpODEiROVcjevPOzbtw92dnZo27attpvCGGMKOKirzpydgcOHgcaNFfMtLPLzKyiw8/T0BBGhZ8+e+PPPP/H48WM8fPgQGzduRK9evQAAXl5e8PX1VThOIpEgNjYWrq6uQl5WVhbi4uIQExOD06dP48CBAxg8eLDK8+rq6uLQoUMYNGgQ7O3tcePGjSLbuGLFCkREREAqlSImJqbYOyvyOz+zZ89GZGQk0tPTcfDgQRgZGQEA7OzskJ2djYYNGyoct379epw7dw5A/mvRjh8/jsTERKSlpeH+/ft49913hbL29va4evUqpFIpnj17hjVr1kAikahsz7fffovLly8r5d+5cwcrV64UtqdPn46HDx8iMzMTwcHBcHNzK/IaCyo4/CoSiRAVFYU5c+YolOnatSuISHi7AxFh7ty5OHHiBDIyMhAaGoqxY8cWe553330XOTk5uHLlitK+ly9fIi4uDvfu3cOcOXNgYGCA/v37Y+rUqUhISICurq5C+cOHD2PPnj1wcXHBypUrYWNjI9ztK3iH1tTUFEeOHEF6ejoePXqEESNGKNRTUj8EBARg8+bNWLt2LV6+fInY2FisWLFCoY7ExERcunQJEydOLPb6GWNMG4hTxSVDQ0MiIjI0NFTaZ21tTXv37iVra2vN6xaLCZGRhNxcUhjPkqfcXEJERH65crweY2Njys3NpaVLlxZbrnfv3iSTyahRo0ZC3ogRIyg1NZUMDAwIAHl7e5OPj4+wv1mzZnT//n2KjY1VqCssLIw+++wzOn36NIWEhJClpaXS+QICAsjFxYUA0JgxYyg5OZmGDBlClpaW9Pbbb9P8+fOLbOuKFSsoNTWVzpw5Q126dCE7Ozt69OgR/fbbb0KZkJAQWrRokbAtkUjo+fPnNH36dAJAvr6+5O/vTx07dqRmzZrRsGHDyM7OjgBQ48aNKS0tjX788Udq06YNjRo1il68eEErVqxQaP/GjRsJAHXo0IGIiJo3by7sb9++PRERtWrVigDQzJkzKSYmhpydnalp06bk7OxMCQkJNG3atBL70NramoiIunTpQgBo3bp1dP78eYUy69ato4sXLwrbRETx8fH0wQcfUKtWrWj16tUkk8mobdu2RZ5n48aNdOLEiWLPDYDq1atHRESLFi2iOnXqUFJSEo0dO1bYX79+fZJKpdSvXz+qU6cOrVu3ju7du0cNGzakhg0bUp06dYQ2RkZG0oQJE6hFixa0adMmSklJIWNjY436ITk5mb788ktq2bIlTZ06lXJzc2ngwIEK1/Hdd9/Rv//+WyG/M6p6MjIyKvWxZfqdx0mtJJFIaPjw4SSRSLTeFk6l66Pi4gY1kvYvsCanCgvqHBxUB3OFk4NDuV7P22+/TUREo0ePLrHs/fv3afHixcL2kSNHaPfu3cK2t7c3yWQySk1NpYyMDJJbsGCBQj1hYWEklUopPj6ezMzMSjzvwoULKSQkhHR0dIS84v4QrVixgmQyGVlYWAh5Tk5OlJOTQw0bNiQAtHjxYnrw4IGwf+TIkZSSkkL6+voEgO7cuUNffvmlyvq//vprCg4OVshzc3OjlJQUEolEBCgGdQDo9u3b9Pnnnwvb33zzDV29elXYjoiIoAkTJijU+dlnnykEYkWlwoGVjY0N5ebmkpWVFQEgkUhEUVFR5ObmJhxDROTp6alQz+XLl2nbtm1FnsfHx4d27dpV7Ln19fVp+/btJJPJqHfv3gSAtm3bRn///bdwzEcffURPnjxR6K+goCCl8xERrV69WtjW19en3NxccnJy0qgfCge4V69epTVr1ijkzZ8/n0JDQ8v1Z6u6JA7qqnbioK7qp4oM6nj4tboyNy/fcmqSv9ydiEosu2vXLmGo1czMDMOGDcPu3bsVygQEBMDGxga2trbYsmUL/Pz8sHXrVqW6Tp06BQMDAyxfvrzE8x46dAh6enoIDQ3FTz/9hNGjRxc51CkXGRmJmJgYYfvy5cuQSCRo06YNAOCXX35By5YtYWtrCwCYMWMGDh48iIyMDADAli1b8Pnnn+PChQtYuXIlOnXqJNTVrl07peHUixcvwtDQEE2aNFHZnn379mHy5MnC9sSJE7Fv3z4A+UOMVlZW8PLyQmpqqpA+//xztGjRosTPp7Dbt28jJCREGE50cHBAgwYNcPDgQYVyha/h8uXLaNeuXZH16unpQSqVqtx36dIlod0jRowQhpIB4Oeff8bgwYPR+PVjBa6urvjll1/Uupa7d+8KX2dkZCA1NRUNGjQAoH4/FKwDAGJjY4U65DIzM6HPywcxxqoYDuqqq9jY8i2npsePHyMvL6/YP+Zye/fuRfPmzdGrVy9MmTIF4eHhuHDhgkKZ9PR0PH36FPfu3YOHhwdq166t9AwTAPzzzz8YOXIkZs+ejS1bthR73ujoaLRp0wbz5s1DZmYmPD09ceLECejo6Kh9nfKgVf7/+Ph4+Pr6wtXVFWZmZhg6dKhCgOrl5YXmzZvj119/RadOnXDjxg18+OGHAPID4cJBcEnB8e+//47WrVuja9eu6NOnDywtLbF//34A+ZNFAGDWrFmwsbERUseOHYVnGjW1b98+TJo0CQAwadIk+Pv74+XLlyUeV1xwn5CQAGNjY5X7xo8fjy5dusDMzAxNmjQRAlYgP8i8c+cOpk2bhq5du6JTp05qB3UymUypffLPS91+KK4OORMTE8THx6vVJsYYqywc1JWgbt26uHbtGoKCgnD37l3MnDlT203KFxgIREUBeXmq9+flAZGR+eXKUVJSEvz9/TFv3jyVdyrkkwuA/AfKjx49CldXV7i6usLb27vE+letWoVFixbBXMUdxjNnzmD48OGYMWMGfvzxx2LrkUql8PX1hYeHB/r16wdbW1uFu2eFWVlZKZyzd+/eyM3NxaNHj4S8Xbt2YcKECZgzZw6ePn2KS5cuKdQRHR2NnTt3YsyYMfjhhx8wa9YsAMDDhw/Rp08fhbJ9+vRBSkqKwt3BgmJiYnD+/HlMnjwZkydPxpkzZ/DixQsAwIsXLxAdHY3mzZvj6dOnCik8PLzYz6Uov//+Ozp37oxu3bph7NixCkGWXOGAsVevXggJCSmyzqCgILRv317lvqioKISGhiIxMVHlfvld3hkzZuDMmTOIjo4W9mVnZ5d451WV0vRDUTp27Ki1ZVUYY6w4Wh9frspJLBaTnp4eASA9PT16+vQpmZiYqH18hT1TBxCcnfMnRBSeLCHPc3aukM+kadOm9OzZM7p//z6999571LJlS2rbti3Nnz+fHj58qFB24MCBJJVKSSaTkbm5ucK+whMl5On69eu0detWYTssLIw8PDyEbQcHB0pNTS3yeS4XFxeaMWMGdejQgZo1a0ZfffUVpaenF9lv8okSp06dos6dO1Pfvn0pJCSEfv/9d4VyIpGIIiIiSCqV0pIlSxT2bdy4kQYPHkxNmzalrl270pUrV2j//v0E/PeA/tatW6lNmzY0cuTIYidKyNPMmTMpOjqaXrx4QZMnT1bY98EHH1B6ejp99NFH1KpVK+rYsSNNnz6dFi5cWGL/qZqsAIAuXLhAQUFBlJKSIkw+kCciohcvXpCrqyu1atWKVq5cSTk5OdSuXbsiz9OxY0fKzs6mevXqlXhuQPFZLUNDQ0pLSyOpVErjxo1TKDdx4kRKTU2lLl26UP369UlXV1do46hRoxTKJiUlCRNoStsPPj4+5O3trZAXFhZGU6ZMqZCfr6qe+Jm6qp34mbqqn3iiRBVJxsbGFB4eTvXr11f7mAoN6oD8wC0qSjGoi4iosIBOnho1akRbt24VJjFERUXR0aNHyUHFxIywsDD666+/lPKLCuomTpxIUqmUmjRpIhxfMKgDQHZ2dpSSkkLbt29XOn7UqFF0+fJlSk5OptTUVLp06RKNGDGiyGuRP3g/d+5cio6OpoyMDDp8+LBCMCJPq1atUprVC4C2bNlCjx8/pszMTIqLi6M9e/YoBJH29vZ09epVkkql9OzZM1qzZo3CD7SqYMLIyIgyMzMpLS1NmDFc+HO6desWSaVSevnyJZ09e1atCSxFBVZubm5ERPTLL78oHUNE5ObmRv7+/pSZmUlhYWE0fvz4Es916dIlmj17donnll9vwe09e/ZQQkKCELTJk66uLh06dIgSExOJiISgraSgrrT9UDio69WrFyUmJioFvm9K4qCuIpOYAAcCJrz+v+arF3BQV/UTB3VlSHZ2dnT8+HGKiYlR+UsfyP9jFhoaSpmZmXTjxg3q27evwn4jIyO6ffs2paenk7u7u0bnr/CgDiDUrftfQOfkVO7LmJQl6enpUVJSEjlXcJBZUipp9quq2ZSq0k8//UTHjh3T+uda2amon52S0rvvvksPHjwQZpdq0kenTp2izZs3a/3aC6eDBw/SsmXLtN4ObSUO6ioqORMQSRBe5E2vtzX73clBXdVPPPu1DAwMDHDnzh3hofXCxo0bh02bNuGbb75B165dERgYiJMnT8LS0lIo8+rVK9jY2KBZs2aYNGmS0kw4rSv4XF1gYNHP2VUikUgEc3NzfPXVV3j16hWOHz+u7SaVyVtvvYUBAwZg8uTJKmfnMtVOnjyJnTt3wsLCQu1jjI2NMX78eDg6Omr8hpKKpqurizt37lTae3rZm8IZwGEAhX9OLF7nV9wbgljNov50wGrKz88Pfn5+Re7/+OOP4eXlBS8vLwDAwoUL4eTkBDc3N6XlM168eIG7d+/C3t4ehw8fVlmfrq4uateuLWwbGhoCyH+bQuGHu0vzsLdKGRnA61l8VYWVlRXCw8MRFRWF6dOnV/grqYojn+Goavajuo4dO4aePXti586dOHPmTHk2r9wtW7asyKVfAgMDMXTo0EptT0mzlQHFPrp16xaMjY3x6aefKkxUqQqys7PxzTffaLsZWlMeP0uA6t+HbyoiMfLyNr/eKnyfRQwgD8AmiMV/QSQq+R/sEokEYrGYP98qrKQ+Kkvf1figrji1atVC9+7d8d133ynknzp1Spgl16BBA2RmZiI1NRWGhoawt7fH9u3bi6xz2bJlCq9ykhs0aBAyMzMV8kxNTaGnpwdDQ0OFWaM1QXJyMurVqydsa/v6DAwMity3adMmbNq0qdg2jh49Wvha29dSkt9//x0nT55UuU8qlZaq/fK+rMhrl/eRjY2NkFfVP+s3UXE/SyUxNDSEnp4e7O3tkZCQUI6tqr4SEjriyhXLYkqIAVihZ89PYGp6v8T6JBIJunXrBpFIpNV/TLOildRHenp6pa77jQ7qTE1NoaOjg7i4OIX8uLg4NGrUCADQpEkTeHl5QSQSQSQS4ccff8S9e/eKrHPNmjXYsGGDsG1oaCi81zQ1NVWhrLW1NRwdHZGamopXr16V45WxguR3F1JSUsp0d6G6ePXqFSIiIrTdDI28aX1UXZW1n+rVq4fMzEycP3++2n2PVpS8vLfUKnf1aiTEYtX/WCtIIpGAiODn58dBXRVVUh/JR/hK440O6uRULUgqz7t16xa6du2qdl3Z2dnIzs5Wys/NzVXqPP6BqxyFFxJmVQ/3UfVQXv2k6vfhm0u9NRKJYtT+zPLy8vgzruKK66Oy9FuNnyhRnISEBOTk5Ah35eQaNGigdPdOU+7u7njw4AGuXbtWpnoYY4zVZIEAopD/7JwqeQAiX5djrHhvdFAnk8lw8+ZNDBo0SCF/0KBBSm8L0JSnpyc6dOiAnj17lqkexhhjNVkeAI8CXxfeBwALVOxjTFmNH341MDBAy5Ythe1mzZqhS5cuSExMRFRUFDZs2IBff/0VN27cwOXLlzF79mxYWVlhx44dZTqvu7s75s2bp/TOSMYYY0yRD4CxADYDKDhpIhr5AZ2PFtrEVBKLATs7wNw8/93qVWQZsYK0vhBfRSYHBwdSpeAK8W5ubsKbEW7cuEF2dnbldv5KWXyYU4mpLAumcuI+4lQ+/cS/80pK/EaJKp2cnQmRkYpvcIqM1PgNTrz4cBmcO3dOmLlaMLm6ugpltm/fjmbNmqFOnTro0aMHAgOr17ML+tAHvf5PH/rabg4rhYCAgEpb0Nba2hpEhC5dulT4uUxMTBAXFwdra+sKPxcRYdSoURV+npooLCwMHh4eZapj2LBhuHXrljBDlpVGHoBzAPa//n/VugP0RnN2Bg4fBgovpG5hkZ/vXDUWiK7xQZ22VOZECXGBbrSDncJ2RWnYsCG2bNmCp0+fQiqVIjIyEsePH4ejo6PadXh7ewv/2JHJZIiIiICnp6fC+naA6j8469evR0pKCvr37w8gPyhycXEp83W9CaKiotCoUSPcv1/ymldltWzZMvj6+grLV8gDSnlKTEzEuXPnYG9vr3adK1asQFBQUEU1udK5uLiAiJTWFjQyMgIRwcHBQUst08zff/8NIsKkSZO03RTGypdYDGze/N/XhfcBwKZNyvu0QPstqKEqa6KEM5wRjGBh2w9+CEc4nCvwtTLW1ta4efMmHB0dsWTJEnTq1AlDhgxBQECAxq91OnnyJBo1aoSmTZti5syZGDFiBDw9PYssLxaL4eXlhWnTpsHR0REBAQFlvZw3Tl5eHuLi4ip8uYM6derggw8+wK5du5T2DRgwAI0aNYKDgwNSUlJw4sSJSrmbVxm8vb2xYsUKjY6RyWQYMGAA+vXrVzGNqiTe3t6YP3++tpvBWPmyswMsLYsO2sRiwMoqv5yWcVBXjTnDGYdxGI3RWCHfAhY4jMMVFth5enqCiNCzZ0/8+eefePz4MR4+fIiNGzeiV69eAAAvLy/4+voqHCeRSBAbG6sw9J2VlYW4uDhhgeYDBw5g8ODBKs+rq6uLQ4cOYdCgQbC3t8eNGzeKbOOKFSsQEREBqVSKmJgYrF27ttiyQUFBmD17NiIjI5Geno6DBw8KbzOws7NDdnY2GjZsqHDc+vXrce7cOQD5r0U7fvw4EhMTkZaWhvv37+Pdd98Vytrb2+Pq1auQSqV49uwZ1qxZU+SrYL799ltcvnxZKf/OnTsKbyuZPn06Hj58iMzMTAQHB8PNza3Iayyo4PCrSCRCVFQU5syZo1Cma9euICI0a9YMQP7Q5ty5c3HixAlkZGQgNDQUY8eOLfY87777LnJycnDlyhWlfS9fvkRcXBzu3buHOXPmwMDAAP3798fUqVORkJAAXV1dhfKHDx/Gnj174OLigpUrV8LGxka421fwDq2pqSmOHDmC9PR0PHr0CCNGjFCop6R+CAgIwObNm7F27Vq8fPkSsbGxGgdopZGeng5vb2+lt9sU5ODgACJSeMtGly5dQERCQOzi4oKkpCQMGzYMISEhSE9Px6FDh6Cvr49p06YhLCwMiYmJ2LJli9IkLkNDQ+zbtw+pqamIiYlRel/2woULcffuXcTExCAyMhLbtm1TervE8ePHYWtrK3zfMFYjmJuXb7kKpv2HD2twqqiJEmKIKRKRlItcUnxqMz/lIpciEEHiUjxoW1wyNjam3NxcWrp0abHlevfuTTKZjBo1aiTkjRgxglJTU8nAwIAAkLe3N/n4+Aj7mzVrRvfv36fY2FiFusLCwuizzz6j06dPU0hICFlaWiqdLyAggFxcXAgAjRkzhpKTk2nIkCFkaWlJb7/9Ns2fP7/Itq5YsYJSU1PpzJkz1KVLF7Kzs6NHjx7Rb7/9JpQJCQmhRYsWCdsSiYSeP39O06dPJwDk6+tL/v7+1LFjR2rWrBkNGzZMmHDTuHFjSktLox9//JHatGlDo0aNohcvXtCKFSsU2r9x40YCQB06dCAioubNmwv727dvT0RErVq1IgA0c+ZMiomJIWdnZ2ratCk5OztTQkICTZs2rcQ+tLa2JiKiLl26EABat24dnT9/XqHMunXr6OLFi8I2EVF8fDx98MEH1KpVK1q9ejXJZDJq27ZtkefZuHEjnThxothzA6B69eoREdGiRYuoTp06lJSURGPHjhX2169fn6RSKfXr14/q1KlD69ato3v37lHDhg2pYcOGVKdOHaGNkZGRNGHCBGrRogVt2rSJUlJSyNjYWKN+SE5Opi+//JJatmxJU6dOpdzcXBo4cKDaPyPe3t4KdZaUXFxcKCkpiczNzSk9PZ3GjBlDQP6EBCIiBwcHAv6b9FVwokKXLl2IiITfIS4uLpSVlUX+/v5kY2NDdnZ2FB8fT35+frR//35q164dDRs2jKRSKY0bN07hZ+zVq1f06aefUqtWrejDDz8kmUymcN0eHh7Ur18/6ty5M/Xv35+Cg4Np27ZtStfz/PnzIr8PeaJExSeeKFEBycFB1Z9Z5fT6Z7WsfVSWiRLQ+odVQ5O7uzs9ePCAgoODKySoc4CDGt9hRA5Q75tM3fT2228TEdHo0aNLLHv//n1avHixsH3kyBHavXu3sO3t7U0ymYxSU1MpIyNDmJm8YMEChXrkM5Pj4+PJzMysxPMuXLiQQkJCSEdHR8grbsbeihUrSCaTkYWFhZDn5OREOTk51LBhQwJAixcvpgcPHgj7R44cSSkpKaSvr08A6M6dO/Tll1+qrP/rr7+m4OBghTw3NzdKSUkhkUhEgGJQB4Bu375Nn3/+ubD9zTff0NWrV4XtiIgImjBhgkKdn332mUIgVlQqHFjZ2NhQbm4uWVlZEQASiUQUFRVFbm5uwjFERJ6engr1XL58WeUfdXny8fGhXbt2FXtufX192r59O8lkMurduzcBoG3bttHff/8tHPPRRx/RkydPFPorKChI6XxERKtXrxa29fX1KTc3l5ycnDTqh8IB7tWrV2nNmjVq/4yUNqgDQN9++y2FhISQRCIpdVBX+B8E27dvp7S0NOEfUwDo5MmTtH37doWfscIB+B9//KHQD4V/lsaOHUvx8fFK+2/evFnkzwIHdRWfOKirgCQW589yzc1V/ac2N5cQEZFfrhz6iGe/VkEV/UydOdS7zatuOXXJZ7aRGq8J2rVrlzDUamZmhmHDhmH37t0KZQICAmBjYwNbW1ts2bIFfn5+2Lp1q1Jdp06dgoGBAZYvX17ieQ8dOgQ9PT2Ehobip59+wujRo4sc6pSLjIxETMx/r+u5fPkyJBIJ2rRpAwD45Zdf0LJlS9ja2gIAZsyYgYMHDyIjIwMAsGXLFnz++ee4cOECVq5ciU6dOgl1tWvXTmk49eLFizA0NESTJk1Utmffvn2YPHmysD1x4kTs27cPQP4Qo5WVFby8vJCamiqkzz//HC1atCjx8yns9u3bCAkJwcSJEwHkD/M1aNAABw8eVChX+BouX76Mdu3aFVmvnp4epFKpyn2XLl0S2j1ixAhhKBkAfv75ZwwePBiNG+c/VuDq6opffvlFrWu5e/eu8HVGRgZSU1PRoEEDAOr3Q8E6ACA2NlaoQ5VJkyYp9MPkyZOxfPlyhTx1Jw+sXbsWZmZmmDFjhlrlVUlPT0doaKiwHRcXh/DwcKSnpyvkFb6mkvq3X79+OHXqFB4+fIiUlBTs3bsXpqam0NdXnHGfmZmplMdYtZaXB8gn6xVek06+vWBBlVivjoO6aioWseVaTl2PHz9GXl5esX/M5fbu3YvmzZujV69emDJlCsLDw3HhwgWFMunp6Xj69Cnu3bsHDw8P1K5dW+UzTP/88w9GjhyJ2bNnY8uWLcWeNzo6Gm3atMG8efOQmZkJT09PnDhxAjo66q+1LQ9a5f+Pj4+Hr68vXF1dYWZmhqFDhyoEqF5eXmjevDl+/fVXdOrUCTdu3BCeSSr4LmG5koLj33//Ha1bt0bXrl3Rp08fWFpaYv/+/QAgPAs1a9Ys2NjYCKljx47CM42a2rdvnxB4TJo0Cf7+/nj58mWJxxUX3CckJMDY2FjlvvHjx6NLly4wMzNDkyZNhIAVyA8y79y5g2nTpqFr167o1KmT2kGdTCZTap/881K3H4qrQ5Xjx48r9MPx48exY8cOpTx1vHr1CmvWrMGKFSuUAqO8138wCi4ZUqtWLaU6VLVf02sqWA7If2b0xIkTuH//PqZNm4bu3btj3rx5KttgYmKC+Pj4EutmrFrx8QHGjgViCr2rNzo6P9/HRzvtKoSDumoqEIGIQhTyiljHKA95iEQkAsv5fYFJSUnw9/fHvHnzVP5rvOBD3ImJiTh69ChcXV3h6uoKb2/vEutftWoVFi1aBHMVD5yeOXMGw4cPx4wZM/Djjz8WW49UKoWvry88PDzQr18/2NraKtw9K8zKykrhnL1790Zubi4ePXok5O3atQsTJkzAnDlz8PTpU6VXyUVHR2Pnzp0YM2YMfvjhB8yaNQsA8PDhQ/Tp00ehbJ8+fZCSkqJwd7CgmJgYnD9/HpMnT8bkyZNx5swZvHjxAgDw4sULREdHo3nz5nj69KlCCg8PL/ZzKcrvv/+Ozp07o1u3bhg7dqxCkCVXOGDs1asXQkJCiqwzKCgI7du3V7kvKioKoaGhSExMVLlffpd3xowZOHPmDKKjo4V92dnZJd55VaU0/aCOtLQ0hT5ITU1FYmKiQl5aWpra9W3duhV5eXlKy/jIA6WC36c2NjalbndhxfVvjx49oKOjg08++QQ3btzA48ePhTupBdWuXRstWrSoUUvOMCbw8QGaNgX69QMmTsz/f7NmVSagAzioqzAVvU5dHvLg8fp9gYUDO/n2AiwoMugrC3d3d0gkEly7dg3vvfceWrZsibZt22L+/PlKQzi7du2Ci4sL2rVrhz179pRY97lz5/DgwYMih1kDAgIwbNgwuLi4FLl8iouLC2bMmIEOHTqgWbNmmDp1KjIyMoS10lSRSqXYs2cPOnfujL59+2LLli04ePAg4uLihDL+/v549eoVPv/8c6UAdePGjRg8eDCaNm2Krl27wtHREcHB+UvNeHp6wtLSElu3bkWbNm0wcuRIrFq1Chs2bCj2Tte+ffswYcIEvP/++/jtt98U9q1cuRLLli3DRx99hFatWqFjx46YPn06Fi5cWGR9xQkPD8fFixfh5eUFHR0dHDt2TKnM+++/D1dXV7Rq1QorV65Ez549iw2u/f390aFDB6V1B9Wxb98+WFhYYNasWUpD9uHh4cLr/urXr680U7Yope2HypaVlYUVK1bgo48+Ush/8uQJIiMjsXLlSrRq1QpDhw7FJ598Um7nfeedd7B48WK0atUK7u7ueP/997H59dpcT58+Ra1atTB//nxYW1tjypQpmDt3rlIdvXr1QlZWlsrZ24zVCHl5wLlzwP79+f+vAkOuhWn/IcQanCr6NWHOcKYoRCk8tRmBCHKGZq8t0TQ1atSItm7dKkxiiIqKoqNHjwoPdRdMYWFh9NdffynlF579Kk8TJ04kqVRKTZo0EY738PBQKGNnZ0cpKSkKD3vL06hRo+jy5cuUnJxMqampdOnSJRoxYkSR1yJ/8H7u3LkUHR1NGRkZdPjwYapXr55S2VWrVinN6gVAW7ZsocePH1NmZibFxcXRnj17yMTERNhvb29PV69eJalUSs+ePaM1a9YoPCRbeKIEkP9AemZmptJD7gU/p1u3bpFUKqWXL1/S2bNn1ZrAomoGKpA/aYCI6JdfflE6hojIzc2N/P39KTMzk8LCwmj8+PElnuvSpUs0e/bsEs8tv96C23v27KGEhATS1dVVyNfV1aVDhw5RYmIiEZEw65mIaNSoUQplk5KShP2l7QcfHx+F1wqWlMoyUUKexGIx3b9/X2GiBADq06cP3blzhzIyMujcuXM0ZswYpYkShetSNbGk8M9eWFgYffHFF7R//35KS0uj2NhY+uijjxSOWbBgAcXExFB6ejqdPHmSpkyZojRxY8eOHSp/Jgv2P0+UqNjEEyWqfuLZr9U4Vca7X+uirhDQOcGp3JcxKUvS09OjpKQkctbw3XjlnUqa/apqNqWq9NNPP9GxY8e0/rlWdlIVMKmT3n33XXrw4IEwu1STPjp16hRt3rxZ69fOqfh+kidTU1NKSEigpk2bFnksB3UVnzioq/qpIoM69Z8cZ1VWwSHWQARWyJCrpkQiERo1aoRPPvkEr169UvtB8arqrbfewttvv43Jkyfz+0U1cPLkSbRq1QoWFhYKz8UVx9jYGIMHD4ajo6PSAris6mrWrBnc3d1L/VwnY6zsOKirATKQARGq1ku0raysEB4ejqioKEyfPr3CX0lV0Y4dO4aePXti586dOHPmjLabU6xly5YV+UxiYGAghg4dWqntKWm2cmG3bt2CsbExPv30U4WJKqxqu379Oq5fv67tZjD2RuOgroK4u7tj3rx5ai0bUBNFREQoLL1Qla1atQqrVq0qtkz//v0rqTVlt2PHDqU15uQyMzNLVWdl9iW/YooxxkqHg7oK4unpCU9PTxgaGiIlJUXbzWFvkKSkJCQlJWm7GYwxxirZm3kbiTHGGGOshuGgjjHGGGOsBuCgjjHGGGOsBuCgjjHGGGOsBuCJEowxxhhjahBDDDvYwRzmiEVslVkbVo7v1FWQin73q4JaAFa+TrUq/nSMMcbYm8YZzghHOM7iLP7AHziLswhHOJzhrO2mCTioqyCenp7o0KEDevbsqe2msHIQEBCAjRs3Vlj9Dg4OICIYGRlV2DkK8vb2ho+PT6Wca/Xq1di5c2elnEsd1tbWICJ06dKlTPWsW7dOeOE9Y6xmc4YzDuMwLGChkG8BCxzG4SoT2HFQVxMUXBfWqtB2BWnYsCG2bNmCp0+fQiqVIjIyEsePH4ejo6PadXh7e79+Yy1BJpMhIiICnp6eqFevnkK5sLAweHh4KOStX78eKSkpwqLAAQEBcHFxKfN1vSk8PDwwffr0Cj9PgwYN4OHhgW+//VbIk/f7p59+qlB22LBhIKIKb1N5+f777+Hq6oqmTZtquymMsQokhhibsVn4uvA+ANiETUr7tEH7LWBl0w5AwddjTgWw4HV+BbG2tsbNmzfh6OiIJUuWoFOnThgyZAgCAgKwbds2jeo6efIkGjVqhKZNm2LmzJkYMWIEPD09iywvFovh5eWFadOmwdHREQEBAWW9nDdSSkoKXr16VeHn+eCDD3D58mVEREQo5GdmZuLTTz9VCuCrk/j4eJw6dQpz587VdlMYYxXIDnawhGWRQZsYYljBCnawq+SWqWoLq77aARgHwLBQ/luv8ysosPP09AQRoWfPnvjzzz/x+PFjPHz4EBs3bkSvXr0AAF5eXvD19VU4TiKRIDY2Fq6urkJeVlYW4uLiEBMTg9OnT+PAgQMYPHiwyvPq6uri0KFDGDRoEOzt7XHjxo0i27hixQpERERAKpUiJiYGa9euLbZsUFAQpkyZgrCwMCQnJ+OPP/5A3bp1Fcrp6Ohg69atSEpKQkJCAr766iuF/W5ubnj06BEyMzPx/PlzHDp0SKHtmzdvRlxcHDIzMxEYGIgePXqobM9bb72FjIwMODk5KeQ7OzsjLS0NBgYGAIDGjRtj//79SExMREJCAo4ePQpra+sir7OggsOvs2fPRnR0tNKrwI4dO4ZffvlF4TOaPXs2IiMjkZ6ejoMHD5Y4XDxhwgQcP35cKf/MmTN4/vw5li1bVuSx8nMW5OHhgbCwMKXrWLZsGZ4/f46kpCR8+eWXkEgk+P777/Hy5UtERUUpfM/JtW3bFhcvXkRmZibu378PBwcHYZ9YLMauXbsQGhqKjIwMhISE4KOPPlKq4/jx45g4cWKxnwFjrHozh3m5lqtIHNRVVyIAQwp8XXgfXu8v56FYY2NjDBkyBNu2bUNGRobSfvndn127dmHIkCFo1KiRsG/o0KGoW7duke8lbdasGYYMGQKZTKa0r27duvj777/RoUMHvPPOOwgJCSmyjWPGjMHChQsxZ84ctGrVCqNHj8aDBw+Kva4WLVpg9OjRGD58OIYPHw4HBwcsXbpUoYyLiwtycnJga2uLjz76CAsXLsTMmTMBAN27d8eWLVvw5Zdfok2bNhgyZAjOnz8vHPv9999jzJgxcHFxQbdu3fDkyRP4+/vD2NhYqS0pKSn4+++/MXnyZIX8SZMm4dixY0hPT4eenh4CAgKQlpYGe3t79O3bF2lpafDz80OtWprNljl06BBMTU0V3m9br149ODk5Yd++fUJey5YtMW7cOIwYMQJDhgyBjY1NsXdm69Wrh44dO6oMvnNzc7F8+XLMnz8fFhYWKo5Wn6OjIxo3bgx7e3t8/PHHWLVqFf766y8kJSXB1tYWO3bswI4dO9CkSROF49atW4cffvgBXbt2xaVLl3D8+HGYmJgAyA/qoqOjMW7cOLRv3x6rV6/Gt99+i/fff1+hjmvXrsHKygpWVlZlugbGWNUVi9hyLVfRiFPFJUNDQyIiMjQ0VNpnbW1Ne/fuJWtra83rbgrCSjVS0/K9nrfffpuIiEaPHl1i2fv379PixYuF7SNHjtDu3buFbW9vb5LJZJSamkoZGRkkt2DBAoV6wsLCSCqVUnx8PJmZmZV43oULF1JISAjp6OgIeUZGRkWWX7FiBaWlpVHdunWFvLVr19Lly5eF7YCAAHrw4IHCcWvWrBHynJ2dKTk5WaEOedLX16esrCyaOHGikKejo0PR0dG0aNEiAkAODg5EREI7R48eTSkpKaSnpyd8H2VkZNC7775LAMjV1ZWCg4MVzlOrVi1KT0+nQYMGlfgZeXt7k4+Pj7B99OhR2rVrl7A9a9YsevbsGYnFYuEzkslkZGFhIZRxcnKinJwcatiwocpzdOnShYiImjRpUuS5L126JJx30qRJRPkP1QnnDAoKUjjWw8ODwsLCFOoKCwsjkUgk5AUHB9O5c+eEbbFYTKmpqTR+/Hjh546IaMmSJUIZiURCkZGRCt+vhdOPP/5Ihw4dUsiT/3zb29uX689ZVU7F/SyVlMr0O4+TWkkikdDw4cNJIpFovS01JYkhpkhEUi5yXz8FrphykUsRiCAxxOXSR8XFDSW3lVVPdUsuolE5NcmH6NR5oH3Xrl3CsJeZmRmGDRuG3bt3K5QJCAiAjY0NbG1tsWXLFvj5+WHr1q1KdZ06dQoGBgZYvnx5iec9dOgQ9PT0EBoaip9++gmjR4+GRCIp9pjw8HCkpaUJ27GxsWjQoIFCmStXrihsX758Ga1atYJYLMbp06cRERGB0NBQ7N27F5MmTYKenh6A/LuAurq6uHjxonBsTk4Orl27hnbtVI+R//3338jJycHIkSMB5N99TE1NxalTpwDk3xls2bIlUlNThZSYmIg6deqgRYsWJX5Ghe3btw9jxoyBrq4uAGDy5MnYv38/8vL+W38pMjISMTExCtcvkUjQpk0blXXKr18qlRZ53k8//RQuLi5Ffg7qePDggcL3Y1xcHO7duyds5+Xl4eXLl0r9efnyZeHr3Nxc3LhxQ6Edc+bMwfXr1/HixQukpqZi1qxZSnfkMjMzAQD6+vqlbj9jrGrLQx484CF8XXgfACzAgiqxXh0HddVVWslFNCqnpsePHyMvL0+tP8J79+5F8+bN0atXL0yZMgXh4eG4cOGCQpn09HQ8ffoU9+7dg4eHB2rXro0VK1Yo1fXPP/9g5MiRmD17NrZs2VLseaOjo9GmTRvMmzcPmZmZ8PT0xIkTJ6CjU/Ra24WHfIkIYrH6Px5paWno1q0bJk6ciNjYWKxevRp37tyBkZFRkYGwSCQqMjiWyWQ4fPgwJk2aBCB/6PXAgQPIzc0FkD88ePPmTdjY2Cik1q1b4/fff1e73XK+vr4Qi8UYNmwYmjRpAjs7O/z222/FHiNve1HXkJCQAAAqh5jlAgMD4e/vrzA7Vi4vL0/pOT9VQ8uq+q60/Sm/lvfffx8bN27E7t27MXjwYNjY2MDb21sIeuXkw7Xx8fEl1s0Yq7584IOxGIsYxCjkRyMaYzEWPvDRUssUcVBXQSp88eEIAK+Qf8NVFXq9P6KI/aWUlJQEf39/zJs3T+XdiYIPzicmJuLo0aNwdXWFq6srvL29S6x/1apVWLRoEczNlR84PXPmDIYPH44ZM2bgxx9/LLYeqVQKX19feHh4oF+/frC1tUWnTp3UuMKiySeBFNyWB7lA/t2ef/75B59++ik6d+6Mpk2bwtHREU+ePEFWVhb69u0rHKujo4MePXogODi4yPPt27cPQ4YMQfv27dG/f3+F59tu3bqFVq1a4cWLF3j69KlCSklJ0fjapFIpjhw5gsmTJ2PixIl49OgRbt26pVDGyspKoV969+6N3NxcPHr0SGWdT58+xatXr9C+fftiz7106VKMGDFCaU3H+Ph4hWcyAcDGxkaDqypewf6USCTo3r278KymnZ0dLl26hO3bt+P27dt4+vSpyjugHTt2RHZ2donPbDLGqj8f+KApmqIf+mEiJqIf+qEZmlWZgA7goK7CVPjiwwTAr8DXhffh9f6SR0k15u7uDolEgmvXruG9995Dy5Yt0bZtW8yfP19hSAvIH4KVD6/t2bOnxLrPnTuHBw8eFDnMGhAQgGHDhsHFxaXIh/RdXFwwY8YMdOjQAc2aNcPUqVORkZGhtKyGpiwtLfHDDz+gdevWmDBhAubPny8sPjts2DDMnz8fXbp0gZWVFaZNmwaxWIz//e9/yMjIwPbt27Fu3To4OTmhXbt2+Pnnn6Gvrw8vL69iP4u4uDjs27cP4eHhuHr1qrBv3759SEhIwLFjx9C3b180bdoU9vb22LRpU6knHuzbtw/Dhg3DjBkzVN6lk0ql2LNnDzp37oy+fftiy5YtOHjwIOLi4lTWR0Q4c+aMQjCryv3797Fv3z7Mnj1bIf/s2bMwMzPDkiVL0Lx5c7i7u+Pdd98t1bWpMm/ePIwePRpt2rTBtm3bYGxsLDwe8OTJE/To0QODBw9Gq1atsHr1arz99ttKddjZ2SEwMLDYIWbGWM2Rhzycwznsx36cw7kqMeRaEAd11VkwgIMAUgvlp7zOL/omUJmEh4ejW7duCAgIwA8//ID79+/j9OnTGDBgANzc3BTKnjlzBrGxsfD390dsrHozgzZs2IBZs2YpzVaUO3fuHIYOHYqpU6di+/btSvuTk5Mxa9YsXLx4EXfv3sWAAQMwYcIEJCYman6xBezduxd6enq4du0atm3bhq1bt+Knn34Szvnee+/h33//RXBwMObOnYuJEyfi4cOHAPLvRv3555/49ddfcevWLbRs2RJOTk5ITk4u9px//PEHbGxsFO7SAfnPctnb2yMyMhJHjhxBcHAwdu/eDT09vVLdqQOAf//9F4mJiWjbtq3KIdwnT57gyJEjOHHiBE6dOoX79+/D3d292Dp/+uknTJgwQWkYtbAvvvhCqUxISAjc3d0xb9483LlzBz179sT69es1v7AiLF26FJ9++inu3LkDOzs7jBo1Ci9fvgQA7NixA0eOHMGBAwdw9epV1K9fX+X6iRMnTsTPP/9cbm1ijLGy0vrMkpqcKmz2a8Gki/9mu7YAQaT965YnPT09SkpKImdnZ622oywz9jipnomqbrpy5QpNmDChxvXR0KFD6cGDB2/cLEOe/Vq1E89+rfqJZ7+y4lGBryMLbWuJSCSCubk5vvrqK7x69UrlArTszTB79uxiJ6lUVwYGBnB1dRUmrzDGmLbVvN+0byIZgJXaboQiKysrhIeHIyoqCtOnT+c/fJUsNbXwmPx/3n33XaVZyBXp7t27uHv3bqWdr7IUfGMIY4xVBRzUsQoRERFR4nNUrOIUN0u04Fpz6lq1ahVWrVpVhhYxxhiraBzUMVYDPX36VNtNYIwxVsn4mTotki90WtLbDhhjrCaQ/65T5400jDHNcVBXgiZNmiAgIAAPHjzAnTt3MHbs2HKrW/7cU+HXFzHGWE0k/11X2mV3GGPF4+HXEuTk5GDBggW4c+cOzMzMcOvWLZw4cQIZGRllrjs5ORkhISEYN24cEhMTkZWVVQ4tZqoYGhqiXr162m4GKwb3UfVQ2n6qXbs2xo0bh5CQELx69ar8G8YY46CuJM+fP8fz588B5L+2KDExESYmJuUS1BERfv75Z3zzzTf4/PPPy1wfK5qenp7w8nVWNXEfVQ9l6SepVIo1a9bw8CtjFaTGB3V2dnZYvHgxunfvjsaNG2P06NE4duyYQhk3NzcsXrwY5ubmePDgARYsWKByyYfu3btDLBYjOjq63NoXHx8Pd3d3NGrUiJ+tqyASiQT29vY4f/48L61SRXEfVQYxgB4AzADEA7gBaPiKo7L0U25uLp4/f46cnByNjmOMqU+toG7+/PkaV+zt7Y20tDSNjytvBgYGuHPnDry9vXHkyBGl/ePGjcOmTZvg7u6OixcvYs6cOTh58iTat2+PqKgooZyJiQn27t2LmTNnlnsbc3JyyjVQZIokEgkSEhIQERHBAUMVxX1U0ZwBbAZgWSAvCoAHoMHLyLmfGKva1ArqNm3ahOjoaLV/iC0tLfHXX39ViaDOz88Pfn5+Re7/+OOP4eXlJbxYfeHChXBycoKbm5vwUnldXV34+PhgzZo1Si+sZ4yxqs0ZwGEV+Rav88dCk8COMVZ1qT382qNHD8THx6tVtrrMbKpVqxa6d++O7777TiH/1KlT6NOnj7D9yy+/4N9//8Vvv/1WYp26urqoXbu2sG1oaAgg/1+4PLyqHRKJBGKxmD//Koz7qGIQiZGXt/n1VuHFDsTIH37dBLH4L4hEJQ/Fcj9VfdxHFYtEBFgBVJcgShMBkYCINFtov6Q+KkvfqRXUrVq1SqO7bt9++y0SExNL3ajKYmpqCh0dHcTFxSnkx8XFoVGjRgCAd955B+PHj8fdu3cxevRoAMDUqVNx//59lXUuW7YMK1euVMofNGgQPwSuJRKJBN26dYNIJOIhoyqK+6hiJCR0xJUrlsWUEAOwQs+en8DUVPXvtIK4n6o+7qOKE1svFg+sHkCqKwUAEAh1suugQ2QHmCebq11PSX2kp6dX6jaqFdStXr1ao0oL3/mq6grPxBKJRELexYsXNYqa16xZgw0bNgjbhoaGiImJwenTp4t9HyerOBKJBEQEPz8//iVXRXEfVYy8vLfUKnf1aiTE4pMlluN+qvq4jyoGtSXkjVW+my2tJcXNFjchPiyGKES9O3Yl9ZF8hK80NJ79WqdOHYhEIuGuk5WVFZydnfHw4UOcPn261A3RhoSEBOTk5Ah35eQaNGigdPdOXdnZ2cjOzoa7uzvmzZsHsTh/yCM3N5d/wLQoLy+P+6CK4z6qCOq955coRu3Pnfup6uM+KmciAIMLfF14HwF5g/OAh/lfq6O4PipLv2n8Roljx45h2rRpAAAjIyNcvXoVn3zyCY4dO4a5c+eWuiHaIJPJcPPmTQwaNEghf9CgQbh06VKZ6vb09ESHDh3Qs2fPMtXDGGOlF4j8Wa5FPS+XByDydTmmdWIx4OAATJiQ/38xv/SpSrAGYATlgE5O9Hq/daW1qEgaf8d069YNgYH5vwDGjh2LuLg4WFtbY9q0afjoo4/KvYFlZWBggC5duqBLly4AgGbNmqFLly6wtMx/zmTDhg2YOXMmXF1d0bZtW2zYsAFWVlbYsWOHNpvNGGPlIA/5y5bIvy68DwAWqNjHKp2zMxAeDpw9C/zxR/7/w8Pz85l21S3nchVI4+FXfX194dmwwYMH48iRIyAiXLlyBdbW6oWpurq66NmzJ5o2bQp9fX3Ex8cjKCgI4eHhmjanRD169MDZs2eF7Y0bNwLIn9Hq6uqKgwcPon79+vjyyy9hbm6O+/fvY+jQoYiMjCzTeQsPvzLGmHb4IH/ZksLr1EUjP6Dj5Uy0ztkZOKxi2RkLi/z8sWMBH+4nrVF3nqj2V3HTPKh78uQJRo8eDR8fHzg5OQlBUoMGDUpcyqR3796YP38+Ro8eDV1dXSQnJyMzMxMmJiaoXbs2QkND8dNPP2HHjh3ltsbduXPnIBIV//Di9u3bsX379nI5n5ynpyc8PT1haGhYbZZ4YYzVVD4AjgGwA2AOIBb5Q658h07rxGJg8+b/vi68Ly8P2LQJOHYs/2tW+SIAvALwFlQPwRKAlNfltEzj20irV6/G+vXrER4ejqtXr+LKlSsA8u/aBQUFFXnc0aNHcfjwYcTExMDJyQmGhoYwNTWFpaUlDAwM0KpVK3z99dcYMGAAHj16hIEDB5b+qhhjjBWSB+AcgP2v/88BQpVgZwdYWhb9/JxYDFhZ5Zdj2kEA/Ap8XXgfXu+vAq801vhO3Z9//gkrKyuYm5vjzp07Qv4///wDn2JuD586dQrvv/8+ZDKZyv1hYWEICwvD3r170b59ezRu3FjTplUpPPzKGGOsROZqrm+mbjlWMYIBHAQwBPmTIuRSkB/QBWujUco0DuqA/MV5Cy/5cf369WKP8fT0BACIxWL07dsXd+/eRXJyssqyDx8+xMOHD0vTtCqDh18ZY4yVKDa2fMuxihMMIAT5s1zrIv8ZughUiTt0choHdbVr18b8+fPRv39/NGjQQOlOVPfu3Ys9Pi8vD/7+/mjXrl2RQR1jjDH2RggMBKKi8idFqBrZycsDoqPzyzHtIwDh2m5E0TQO6nbv3o1Bgwbh8OHDuHbtmtLbGNRx7949NG/evEJmu1YVPPzKGGOsRHl5gIdH/izXvDzFwE4+MWLBAp4kwdRGmqTk5GTq06ePRscUToMGDaJbt27RsGHDqFGjRmRoaKiQylJ3VUuGhoZERDXuuqpTkkgkNHz4cJJIJFpvCyfuo+qcuJ8qMDk7EyIjCUT/pYiI/HzuoxqVSuqjssQNGt+pi4mJKfM7TP388qeRHD9+XOFOn/ydqzo6pXrUjzHGGKuefHzyly2xs8ufFBEbmz/kynfomAY0jp4++eQTrF27FnPnzi31Ar39+/cv1XGMMcZYjZWXB5w7p+1WsGpM46Duxo0bqFOnDkJDQ5GRkaG0REn9+vVLrOP8+fOanrba4WfqGGOMMVaZNA7q/vjjD1hYWGD58uWIi4sr1UQJAOjbty/mzJmD5s2b4/3338ezZ88wZcoUhIWF4eLFi6WqsyrhJU0YY4wxVpk0Dur69OmD3r174+7du6U+6XvvvYdff/0V+/btQ7du3VC7dm0AgKGhIZYvX45hw4aVum7GGGOMsTeRxmODISEh0NPTK9NJP//8c8ydOxezZ89WGL69dOkSunXrVqa6GWOMMcbeRBoHdUuXLsUPP/wABwcHmJiYwNDQUCGpo02bNiqfq0tJSUG9evU0bRJjjDHG2BtP4+FX+XIk//zzj0K+JsuRxMbGomXLloiIiFDI79u3L0JDQzVtUpXEEyUYY4wxVpk0DurKYzmSnTt3YvPmzZgxYwaICI0bN0bv3r2xfv16rF69usz1VwU8UYIxxhhjlUnjoK48liNZt24djIyMEBAQgDp16uD8+fPIysrC+vXrsW3btjLXzxhjjDH2plFrbLBTp04QiURqV9q+fXtIJJJiy3z++ecwNTVFz5490atXL5iZmeHLL79U+xyMMcYYY+w/agV1QUFBai0qLHf58mVYWVkVud/Lywt169ZFZmYmbt68ievXryM9PR36+vrw8vJS+zyMMcYYYyyfWsOvIpEIX331FTIyMtSqVFdXt9j9Li4uWLp0KdLS0hTy9fT0MG3aNHzwwQdqnYcxxhhjjOVTK6g7f/482rRpo3ally9fRmZmplK+oaEhRCIRRCIRDA0NIZVKhX0SiQRDhw7Fixcv1D4PY4wxVlOIIYYd7GAOc8QiFoEIRB7ytN0sVo2oFdSVx4xXAEhOTgYRgYjw6NEjpf1EhBUrVpTLubSNlzRhjDGmLmc4YzM2wxKWQl4UouABD/jAR4stY9WJxrNfy6J///4QiUT4999/MWbMGCQmJgr7srOzERERgdjY2MpsUoXhJU0YY4ypwxnOOIzDSvkWsMBhHMZYjOXAjqmlUoM6+XIozZo1Q2RkpMoylpaWiIqKqsxmMcYYY1ohhhibsVn4uvC+PORhEzbhGI7xUCwrkVbGBkNDQ2FmZqaUb2JigrCwMC20iDHGGKt8drCDJSyVAjo5McSwghXsYFfJLWOqiAE4AJjw+v9V7QGrSr1TJ1fUmnd169ZVmDzBGGOM1WTmMC/XcqziOAPYDBR46hGIAuABVJnB8UoN6n744QcA+RMiVq9erbBEikQiga2tLW7fvl2ZTWKMMca0JhbqPUeubjlWMZwBFU89Ahav88eiagR2pQrqpkyZgrlz56JZs2bo3bs3IiMj4eHhgbCwMBw/frzI47p27Qog/05dp06dkJ2dLezLzs7GnTt3sH79+tI0iTHGGKt2AhGIKETBAhYqh2DzkIdoRCMQgVpoHQPyh1g3F/i68L48AJsAHHv9tTZpHNTNnTsXq1evxqZNm/DZZ58JrwNLTk7GggULig3qHB0dAQC7d++Gh4cHUlNTS9lsxhhjrPrLQx484IHDOIw85CkEdvKJEQuwgCdJaJEdFIdcCxMDsHpd7lyltKj4tmhk/vz5mDVrFr799lvk5uYK+Tdu3ECnTp3UqmPGjBlITU1FixYtMHjwYNSpU0fTZjDGGGM1gg98MBZjEYMYhfxoRPNyJlWAuk8zVoWnHjW+U9esWTMEBQUp5WdlZcHAwECtOoyNjXHo0CH0798fRIRWrVohLCwMu3btQnJyMhYtWqRps6ocXnyYMcaYunzgg2M4xm+UqILUfZqxKjz1qHHEERYWBhsbG6X8d999Fw8fPlSrjk2bNkEmk8HKykphssSBAwcwZMgQTZtUJXl6eqJDhw7o2bOntpvCGGOsGshDHs7hHPZjP87hHAd0VUQg8me5FtUbeQAiX5fTNo3v1K1btw7btm1DnTp1IBKJ0LNnT0ycOBHLli3DzJkz1apj8ODBcHJyQkyM4q3mx48fw9raWtMmMcYYY4xViDzkL1ty+PXX4kL7AGABtD9JAihFUPfLL79AR0cH33//PfT19fH7778jJiYGHh4eOHDggFp1GBgYKNyhkzM1NUVWVpamTWKMMcYYqzA+yF+2pPA6ddHID+iqylOPpXrga9euXWjatCkaNGiARo0awcrKCrt371b7+PPnz2PatGnCNhFBJBJh8eLFCAgIKE2TGGOMMcYqjA+ApgD6AZj4+v/NUHUCOqCMiw+/fPmyVMctXrwYZ8+eRY8ePaCrq4vvv/8eHTp0gImJCd55552yNIkxxhhjrELkQfvLlhRH4zt1JiYm+PHHH/HgwQPEx8fj5cuXCkkdwcHB6Ny5M65du4bTp0/DwMAAR44cQdeuXREaGqrxRTDGGGOMvek0vlP322+/oUWLFvDy8kJcXByIqFQnjouLw8qVK0t1LGOMMcYYU6RxUNe3b1/07dsXd+/eLZcG6OvrY/z48dDT08OpU6fw5MmTcqmXMcYYY+xNovHwa0hICPT09Ep1MktLS5w9exYpKSk4deoULC0tcevWLezatQtbt27F7du3YWdnV6q6GWOMMcbeZBoHde7u7vjmm29gb28PExMTGBoaKqTirF+/Hrq6unBzc0NGRgb8/f3x+PFjmJubo2HDhjhx4kSVHJI9cuQIEhMTcejQIW03hTHGGGNMJY2HX5OTk2FkZIR///1XIV8kEoGIoKNTdJX29vYYOXIkrl+/jhMnTiAhIQEzZszAixcvAABff/01/vnnH02bVOG2bNmC3bt3w8XFRdtNYYwxxhhTSeOgbt++fcjOzsakSZM0nihhZmaGiIgIAEBSUhIyMjIQFxcn7H/+/DmMjY01bVKFO3v2LBwcHLTdDMaqKDEAO+S/zjoW+S/LqQprqzPG2JtF46CuY8eO6Nq1Kx49eqTxyeR38+RKO3NWE3Z2dli8eDG6d++Oxo0bY/To0Th27JhCGTc3NyxevBjm5uZ48OABFixYgAsXLlR42xir/pyhvMZ6FPJfqlOVluRkjLGaT+Og7saNG7C0tCxVUAcAq1evFl4Rpquri88++wyvXr0CkD8TtrwZGBjgzp078Pb2xpEjR5T2jxs3Dps2bYK7uzsuXryIOXPm4OTJk2jfvj2ioqLKvT2M1RzOyH8bYmEWr/PHggM7xhirPBoHdVu3bsXmzZuxbt063Lt3DzKZTGH/vXv3ijz2/PnzaNOmjbB96dIlNG/eXKlMefLz84Ofn1+R+z/++GN4eXnBy8sLALBw4UI4OTnBzc0Ny5cv1/h8urq6qF27trAtnzwikUggkUg0ro+VnUQigVgs5s+/HBGJkZe3+fVW4flWYuQPv26CWPwXRKKSh2K5j6oH7qeqj/uo6iupj8rSdxoHdQcOHAAAhXe9yt/dWtJEif79+5eiiRWnVq1a6N69O7777juF/FOnTqFPnz6lqnPZsmUqZ/AOGjQImZmZpaqTlY1EIkG3bt0gEomQm5ur7ebUCAkJHXHlimUxJcQArNCz5ycwNb1fYn3cR9UD91PVx31U9ZXUR6VdNg4oRVDXrFmzUp+sqjE1NYWOjo7CZA0g/20XjRo1Erb9/PzQrVs3GBgYICoqCs7Ozrhx44bKOtesWYMNGzYI24aGhoiJicHp06eRmppaMRfCiiWRSEBE8PPz419y5SQv7y21yl29Ggmx+GSJ5biPqgfup6qP+6jqK6mPSloerjgaB3WRkZGlPllVVXjCRuEJHUOGDFG7ruzsbGRnZ8Pd3R3z5s2DWJw/NJWbm8s/YFqUl5fHfVCuYtQqRRSj9mfOfVQ9cD9VfdxHVV9xfVSWflMrqBsxYgROnjyJnJwcjBgxotiyvr6+pW5MZUtISEBOTo7CXTkAaNCggdLdO015enrC09MThoaGSElJKVNdjFU9gcif5WoB1WuY5wGIfl2OMaYWEQBrAHUBpAGIAFDxi0SwGkStoO7o0aNo1KgR4uPjcfTo0SLLlfRMXVUjk8lw8+ZNDBo0SOG6Bg0apLTsCWOsoDzkL1ty+PXX4kL7AGABeL26KkQsBuzsAHNzIDYWCAwE8rh/qox2AIYAMCqQ9wqAH4BgrbSIVUNqRWASiQSWlpbC19WJgYEBWrZsKWw3a9YMXbp0QWJiIqKiorBhwwb8+uuvuHHjBi5fvozZs2fDysoKO3bsKNN5Cw+/Mlbz+CB/2ZLC69RFIz+g4+VMqgxnZ2DzZsCyQD9FRQEeHoAP95PWtQMwTkX+W6/zD4IDO6YWtSOOsLAwmJmZlctJnZyc8M477wjb7u7uCAoKwr59+1CvXr1yOYdcjx49cPv2bdy+fRsAsHHjRty+fRurV68GABw8eBALFizAl19+idu3b8Pe3h5Dhw4t87ODnp6e6NChA3r27FnWS2CsCvMB0BRAPwATX/+/GTigq0KcnYHDhwELC8V8C4v8fGdn7bSL5RMh/w6d/OvC+/B6f+F9jKmgdlAnEpXfd9S6devw1lv5s+c6duyIH374ASdOnEDz5s0VZo6Wh3PnzkEkEiklV1dXocz27dvRrFkz1KlTBz169EBgID8HxJj68gCcA7D/9f95SK/KEIvz79DJvy68DwA2bVLexyqPNfKHXIv6Eyt6vd+60lrEqjGtPADXrFkzPHz4EAAwZswY/PXXX/jss8/QtWtXnDhxQhtNKnc8/MoY0zo7O8Uh18LEYsDKKr/cuXOV1y72n7rlXI690TQK6mbOnIm0tLRiy2zdurXEerKzs4VXgg0cOBB79+4FACQmJgp38Ko7nv3KGNM6c/PyLcfKX/F/UjUvx95oGgV1c+fOLXb9FCJSK6i7cOECNmzYgIsXL6Jnz54YP348AKB169aIjo7WpEmMMcaKEhtbvuVY+YtA/izXt6B6CJYApLwux1gJNArqevTogfj4+DKf9MMPP4SnpyfGjh0LNzc3PHv2DADw7rvvFvueVsYYYxoIDMyf5Wphofq5ubw8IDo6vxzTDkL+siXjXn8tKrQPr/fzenVMDWoHdYXfulAWUVFRKhcx/vjjj8vtHNrGz9QxxrQuLy9/2ZLDh/O/Lvj7SL5G3YIFvF6dtgUjf9mSwuvUpYDXqWMaUTuoK+vsV0NDQ+HdpyW916wmvCOVn6ljjFUJPj7A2LHK69RFR+cHdLxOXdUQDCAE/EYJViZqB3WrVq0qcZJEcZKSkmBubo74+HgkJyervPMnf+dqdXorBWOMVXk+PsCxY/xGiaqOAIRruxGsOlM7epIv1ltajo6OSExMBAD079+/THUxxhjTUF4eL1vCWA1XabfEzp8/r/LrmoqfqWOMMcZYZeKIo4Lwa8IYY4wxVpk4qGOMMcYYqwFKFdRJJBIMGDAAs2fPRt26+e8uMTc3h4GBQbk2jjHGGGOMqUfjZ+qsrKzg5+cHKysr1K5dG6dPn0ZaWhqWLFmCOnXqwM3NTa06Xrx4AalUWqpGM8YYY4wxRRrfqdu8eTNu3LgBY2NjZGZmCvk+Pj4YMGBAiceLRCI8fvwYTZo00fTU1Yq7uzsePHiAa9euabspjDHGGHsDaBzU9e3bF19//TVkMplCfkREBCwsLEo8nojw+PFj1K9fX9NTVys8UYIxxhhjlUnjoE4sFkMikSjlN2nSRO03QSxZsgTr1q1Dhw4dND09Y4wxxhhTQeOg7vTp01iwYIGwTUQwMDDAqlWrcOLECbXq+O2339CzZ0/cuXMHGRkZePnypUJijDHGGGOa0XiixMKFCxEQEIAHDx6gTp06+P3339GqVSskJCRg4sSJatVRMChkjDHGGGNlp3FQFxsbCxsbG0ycOBHdunWDWCyGl5cX9u3bp/Zs1r1792rcUMYYY4wxVrRSvSZMKpXC29sb3t7epT5x8+bN4erqihYtWsDDwwPx8fFwcnJCVFQUHj58WOp6qwp+TRhjrCoRQww72MEc5ohFLAIRiDzkabtZjLFypHFQN2LECJX5RASpVIonT54gPDy82Drs7e1x8uRJXLx4Efb29vjss88QHx+Pzp07Y+bMmXj//fc1bVaV4+npCU9PTxgaGiIlJUXbzWGMvcGc4YzN2AxLWAp5UYiCBzzgAx8ttowxVp40DuqOHj0KIoJIJFLIl+cRES5cuIDRo0cjOTlZZR3fffcdPv/8c2zcuFEh4AkICICHh4emTWKMMVYEZzjjMA4r5VvAAodxGGMxlgM7xmoIjccGBw0ahOvXr2PQoEEwMjKCkZERBg0ahGvXrmH48OGwt7dH/fr1sX79+iLr6NSpE3x8lH+JxMfH1/j16xhjrLKIIcZmbBa+LrwPADZhk9I+xlj1VKo3Snz88cf4999/kZaWhrS0NPz7779YtGgR1q1bh0uXLmHBggUYNGhQkXUkJyfD3NxcKb9r166IiYnRtEmMMcZUsIMdLGFZZNAmhhhWsIId7Cq5ZYyxiqBxUNeiRQuVz4ilpKSgefPmAIDHjx/D1NS0yDp+//13rF27Fg0bNgQRQSwWo0+fPli/fj3PjGWMsXJiDuV/PJelHKtYYgAOACa8/j/fP2Wa0vh75ubNm1i3bp1C0GZqaorvv/8e169fBwC0atUK0dHRRdbx2WefITIyEjExMahbty4ePnyI8+fP49KlS/j6669LcRmMMcYKi0VsuZZjFccZQDiAswD+eP3/8Nf5jKlL44kSH3zwAY4dO4bo6GhERUWBiGBlZYXQ0FCMGjUKAFC3bl189dVXRdaRk5ODKVOm4Msvv0TXrl0hFosRFBSEJ0+elP5KGGOMKQhEIKIQBQtYqByCzUMeohGNQARqoXVMzhlQMZUFsHidPxbgqSxMLRoHdY8ePUK7du3g5OSE1q1bQyQSISQkBKdPnwYRAQCOHTtWbB0tW7bEkydPEBoaitDQ0NK1nDHGWLHykAcPeOAwDiMPeQqBnXyNugVYwOvVaZEYeD2VRXnoTAwgD8AmAMdef81YcUq1+DAA+Pv7w9/fv1TH/u9//0NsbCzOnTuHc+fO4ezZs3j06FFpm8IYY6wIPvDBWIxVWqcuGtFYgAW8nImW2QEFekWZGIDV63LnKqVFrDorVVCnr68PBwcHWFlZQVdXV2Hf1q1bSzze3Nwcjo6OcHBwwMKFC7F9+3bExcUJAd7OnTtL06wqhd8owRirKnzgg2M4xm+UqILUnaLCU1mYukiTZGNjQ8+ePaPk5GSSyWQUFxdHubm5lJqaSk+fPtWoLnlq0aIFeXt7U3Z2NuXk5JSqjqqaDA0NiYjI0NBQ6215U5NEIqHhw4eTRCLRels4cR9V58T9VP7JASBSIzlwH9WYVFIflSVu0Pg20saNG+Hr6wsTExNkZmaiV69esLa2xs2bN7Fo0SK16jAwMICTkxPWrFmDS5cu4d69e+jcuTO2bt2K9957T9MmMcYYY9VSIIAoFP28XB6AyNflGCuJxsOvNjY2mDNnDvLy8pCbm4vatWsjLCwMS5YswZ49e1S+KaKwpKQkJCYm4tdff8XXX3+NCxcu8PtRGWOMvXHyAHggf5ZrHhQnS8gDvQXgSRJMPRrfqZPJZMIs17i4OFhZWQEAXr16JXxdkr///hsSiQRTp07FtGnTMGnSJLRt21bTpjDGGGPVng/yly0p/D6laPByJkwzGt+pCwoKQo8ePfD48WMEBARg9erVMDU1xdSpU3Hv3j216nB2zl9OsVOnTnBwcMCAAQOwcuVKEBHOnj2LiRMnatosxhhjrNryQf6yJXbInxQRi/whV75DxzShcVC3fPlyGBoaAgC++OIL7NmzB9u3b8eTJ0/g6uqqUV337t2DRCJBrVq1ULt2bQwZMoSfqWOMMfZGygMvW8LKRuOgLj4+Hg8ePAAAJCQkYNiwYRqfdMGCBejXrx/s7OxgaGiI27dv49y5c9i5cyfOnz+vcX2MMcYYY286jYI6kUiEx48fo0OHDmV6pdfkyZNx9uxZ/Pzzzzh//jxSU1NLXRdjjDHGGNMwqCMiPH78GPXr1y9TUPf222+X+lhtGDZsGH744QeIxWKsXbsWXl5e2m4SY4wxxpgCjYdflyxZgnXr1sHNzU0Yhi0NIyMjfPDBB2jXrh2ICMHBwfDy8qpyS5tIJBJs2LAB/fv3R0pKCm7duoUjR44gKSlJ201jjDHGGBNovKTJb7/9hp49e+LOnTvIyMjAy5cvFZI6unfvjqdPn2LhwoUwMTGBqakpFi5ciKdPn6Jr164aX0RF6tmzJx48eIBnz54hLS0NJ06cgJOTk7abxRhjjDGmQOM7dQsWLCjzSTdu3Ijjx49j1qxZyM3NBZB/R2zXrl3YtGkTHBwcynwOOTs7OyxevBjdu3dH48aNMXr0aBw7dkyhjJubGxYvXgxzc3M8ePAACxYswIULFwAAjRs3RkzMf6sHRUdHw8LCotzaxxhjjDFWHjQO6vbu3Vvmk/bo0UMhoAOA3NxcfP/997hx40aZ6y/IwMAAd+7cgbe3N44cOaK0f9y4cdi0aRPc3d1x8eJFzJkzBydPnkT79u0RFRUFkUikdIx88WVWGcTglZsYY4yxkmkc1AFA8+bN4erqihYtWsDDwwPx8fFwcnJCVFQUHj58WOLxKSkpsLKywv/+9z+FfEtLy3KfCevn5wc/P78i93/88cfw8vISJj8sXLgQTk5OcHNzw/LlyxETE6NwZ65Jkya4evVqkfXp6uqidu3awrZ8TT+JRAKJRFLWy3mjEI1GXt5GAJYFcqMgFi+ESHRU7XokEgnEYjF//lUY91H1wP1U9XEfVX0l9VFZ+k7joM7e3h4nT57ExYsXYW9vj88++wzx8fHo3LkzZs6ciffff7/EOg4cOAAvLy8sWrQIly5dAhGhb9++WLduHf74449SXUhp1KpVC927d8d3332nkH/q1Cn06dMHAHDt2jV07NgRjRs3RkpKCoYOHYrVq1cXWeeyZcuwcuVKpfxBgwYhMzOzXNtfk8XG9sbNm8tU7LFAXt4hdO++Bubml9WqSyKRoFu3bhCJRAp3h1nVwX1UPXA/VX3cR1VfSX2kp6dX6ro1Duq+++47fP7559i4caPCTNWAgAB4eHioVceiRYtARNi7dy90dPKbIJPJsH37dixdulTTJpWaqakpdHR0EBcXp5AfFxeHRo0aAcgfFv7kk08QEBAAsViM77//HomJiUXWuWbNGmzYsEHYNjQ0RExMDE6fPs3r8amJSIy8PE8ABOW5PGIAebh5cwrE4pUQiUoeipVIJCAi+Pn58S+5Kor7qHrgfqr6uI+qvpL6SD7CVxoaB3WdOnXCpEmTlPLj4+NRv359teqQyWRYsGABli1bhhYtWkAkEuHJkyeQyWQwNzdHVFSUps0qk8LPyIlEIoU8X19f+Pr6qlVXdnY2srOzlfJzc3P5B0xtfaE45FqYGIAV8vL6QN2X6uTl/b+9+w+Lssz3B/6eGbAQR10zARGUMhUwUVE6x5yw3TCPp2t1jExbt6zjuotWYFttuv2wayvtZCqWo9UxzExLPZJdu0nWNyGOWjpqqEg/FfkRoggKKigyn+8fAxMzDDDAzDzz4/26rvuCuZ97nvnMfAb48DzPfY+JOfBwzJF3YJ48H3Pk+drKUVfy1uElTc6fP4+wsLAW/aNGjbKaJeqI2tpaHDt2DEePHkVtbS1iYmJw8uTJjobUaRUVFbh27ZrlqFyTfv36tTh611Hz5s1Dfn4+9u/f36X9+KeW76+ujSMiIvJ9HS7qNm3ahFdffRUhISEQEajVaowbNw7Lli1zysxYd6qvr8fBgweRlJRk1Z+UlIS9e/d2ad8GgwGxsbFISEjo0n78U5mTxxERVAAGARje+LXlxH4i8nIdPv3697//HevXr0dpaSlUKhWOHz8OjUaDTZs24aWXXnJFjF0SHByMwYMHW25HRUUhLi4OlZWVKC4uxvLly/H+++/DaDRi3759mDt3LiIjI7F27douPe68efMwf/58qNUdrpsJuQCKAYTD/v8dJgAljeNIcWo1oNMBYWFAWRmQmwuYuOyMR4kGMAlAr2Z9FwBkAShQJCIichHpTLvpppvk3nvvlfvuu08GDx7cqX3YthEjRsi1a9ecsq+mlpiYKPZkZGRYxqSkpMjJkyelrq5OjEaj6HQ6pz2+VqsVERGtVuvU5+X7TS9AQ2OTZq2pT+/wvjQajdxzzz2i0Wg84Hn5WNPrBUVFApFfW1GRub8D+2GOXNiiIXihsS1u1pr6opknX2rMkee39nLUlbqhU0uafPXVVzhx4gROnDjRofveeuutbW4fOnRoR8NpV05Ojt0FhJtbs2YN1qxZ4/THpq7IBJAMIB3WkyZKAKQ1bidF6fXAtm0t+8PDzf3JyUAm86QoFcxH6Jq+t90mjdu/a/yeiLxah4u6zz//HKdPn8amTZuwceNG5OfnO3zfb7/9FiLS6qc02M46JX+XCWAH+IkSHkitBtLTf/3edpvJBKxcCezYwVOxShoI61OutlSN2wcCKHRHQETkSh0u6vr3748ZM2Zg5syZePrpp3Hs2DFs3LgRmzZtanf2a1RUVKcD9Ta8ps5ZTHB02RJyI50OiGhj2Rm1GoiMNI/LYf4U08PJ44jIo3W4qDt37hxWr16N1atXY9CgQXjggQfw4IMP4pVXXsFXX32F3/3ud63et6ioqEvBehODwQCDwQCtVmu1SDORT7CzrFGXxpFrXHTyOCLyaF06jFRYWIilS5fimWeewdGjR5GYmNjq2Ii2/qu3o3///l0JjYhcqczB5WQcHUeucQrmWa6tXdUijdtPuS0iInKhThd148aNw+rVq1FWVoZNmzYhPz8f99xzT6vjDxw4gLfffhtjx45tdUzPnj0xZ84cHD16FNOmTetsaB6Biw+TT8vNBYqLW79ezmQCiorM40g5AvOyJU3f225D43ZeykzkEzp8+vXll1/GzJkz0b9/f3zxxRdIS0vDxx9/3O6H1UdHR2PRokXIyspCfX09jEYjfvnlF9TV1eE3v/kNYmJiEBsbC6PRiKeeegpZWVlt7s/T8fQr+TSTCUhNNc9yNZmsJ0s0FXppaZwk4QkKAGxBy3XqqsF16oh8TIeLugkTJmDZsmX46KOPcO7cOattcXFxyMvLs3u/qqoqPPXUU3j22WcxefJk6HQ6DBo0CEFBQaioqMAHH3yAzz77rEOzaYlIQZmZ5mVL0tOtJ02UlJgLOi5n4jkKYF62ZCDMkyIuwnzKlUfoiHxKh4u622+/3ep2z5498Yc//AFz5sxBXFwcAgLa3uWVK1eQmZmJTP7CJ/J+mZnmZUv4iRKeT8BlS4h8XIeLuiZ33nknHnnkEUybNg2nTp3C//7v/+K//uu/nBmbV+OSJuQ3TCYuW0JE5AE6VNSFh4dj9uzZeOSRRxAcHIwtW7YgMDAQ9957LwoKeGFGc7ymjoiIiNzJ4cNI//rXv3D8+HHExMTgscceQ//+/fH444+7MjZyGzWARAAzGr/y6CIREZG3cfhI3cSJE7Fq1SqsWbMGP/30kytjIrfSo+XnqxYDSAU/X5WIiMh7OHxIRqfTQavVwmg04uuvv8b8+fPRt29fV8ZGLqcHsA1AuE1/eGO/3u0RERERUec4XNR9/fXXmDt3LsLCwvDWW29hxowZKC0thVqtRlJSEnr04IcHNuf5iw+rYT5C1/S97TYAWGlnGxEREXmiDv/Frq2tRUZGBnQ6HW699Va8/vrreOaZZ3DmzBns2LHDFTF6JYPBgNjYWCQkJCgdSit0MJ9ybe0toAYQ2TiOiIiIPF2XDsP88MMP+Nvf/oYBAwZg5syZzoqJ3MLRD1rnB7ITERF5A6ecWzOZTNixYwemTJnijN2RWzj6Qev8QHYiIiJvwAum/FYuzLNcW1v53wSgqHEcEREReToWdX7LBPOyJU3f224DgDQ724iIiMgTsajzal1dNDgTQDKAUpv+ksZ+rlNH7VNDjUQkYgZmIBGJUPPXChGRIjr92a/UNtd/9quzFg3OBLAD5lmuYTBfQ5cLHqEjR+ihRzrSEdHsfViMYqQiFZn8p4CIyK34L7WLuHZJE2cvGmwCkAPgw8avLOiofXrosQ3bEG7zPgxHOLZhG/RcvJqIyK1Y1HkdLhpMylNDjfTG96Ht6dam2yuxkqdiiYjciL9xvQ4XDSbl6aBDBCJaLdrUUCMSkdDxfegxunoFLhF5Pl5T53W4aDApL8zB95ej48i1nHUFLhF5Nv6z5nW4aDApr8zB95ej48h1nH0FLhF5LhZ1XoeLBpPycpGLYhTD1Mr70AQTilCEXL4PFcUrcIn8C3+WvQ4XDSblmWBCauP70Lawa7qdhrRWiz5yD16BS+RfWNR5JS4aTMrLRCaSkYxSm/dhCUqQjGSuU+cBeAUukX/hRAkXcf3iw1w0mJSXiUzswA7ooEMYwlCGMuQil0foPASvwCXyLyzqXMRgMMBgMECr1aK6utpFj9K0aDCRckwwIYfvQ4/UdAVuOOyfljHBfHyfVz4S+QaefiUi8lG8ApfIv7CoIyLyYbwCl8h/8PQrEZGP4xW4RP6BRR0RkR/gFbhEvo+nX4mIiIh8AIs6IiIiIh/Aoo6IiIjIB7CoIyIiIvIBLOocsH37dlRWVmLr1q1Kh0JERERkF4s6B6xatQoPPvig0mEQERERtYpFnQOys7NRU1OjdBhEnkkFYBCA4Y1fVUoGQ0Tkv7y+qNPpdPjkk09QWloKEcGUKVNajElJScGJEydQW1sLo9GI8ePHKxApkQ+KhvlzpmbD/PEEsxtvRysVEBGR//L6oi44OBh5eXl49NFH7W6fPn06Vq5ciZdffhmjRo1Cbm4udu7ciYiICMsYo9GIo0ePtmhhYWHuehpE3icawHQAPW36ezb2s7AjInIrr/9EiaysLGRlZbW6/YknnsC6deuwbt06AMCCBQtw9913IyUlBYsWLQIAjBkzxmnxdOvWDdddd53ltlarBQBoNBpoNBqnPQ45TqPRQK1W8/V3IlEJTJMaP2TK9nSrCoAAmASof1RDJe2fj2WOvAPz5PmYI8/XXo66kjuvL+raEhgYiPj4eCxdutSqf9euXRg3bpxLHnPhwoVYvHhxi/6kpCTU1ta65DGpbRqNBqNHj4ZKpUJDQ4PS4fiECm0Fvu71desDVAB6AQn3JaBvTd9298cceQfmyfMxR56vvRwFBQV1et8+XdT17dsXAQEBKC8vt+ovLy9HaGiow/vJysrC6NGjERwcjOLiYuj1ehiNRrtjlyxZguXLl1tua7ValJaW4vPPP+dkC4VoNBqICLKysvhLzklMsSZgaPvjvsn/Bur89q/yYI68A/Pk+Zgjz9dejprO8HWGTxd1TUTE6rZKpWrR15ZJkyY5PPbq1au4evUq5s2bh/nz50OtNv9Ba2ho4A+YgkwmE3PgTNWODZNqcfg1Z468A/Pk+Zgjz9dWjrqSN6+fKNGWiooKXLt2rcVRuX79+rU4eudsBoMBsbGxSEhIcOnjECniFIALMF87Z480bj/ltoiIiPyeTxd19fX1OHjwIJKSkqz6k5KSsHfvXoWiog5Rq4HERGDGDPNXtU+/Zb2HAMhq9r3tNjRud/yAOBERdZHXn34NDg7G4MGDLbejoqIQFxeHyspKFBcXY/ny5Xj//fdhNBqxb98+zJ07F5GRkVi7dq1L47I9/UqdoNcD6elAs+VnUFwMpKYCmZnKxUVmBQC2AJgEoFez/mqYC7oCJYIiIvJv4s0tMTFR7MnIyLCMSUlJkZMnT0pdXZ0YjUbR6XRui0+r1YqIiFarVfy18qqm1wsaGsxN5NfW1KfXO7wvjUYj99xzj2g0GuWfly82FQSDIBje+FXV8X0wR97RmCfPb8yR57f2ctSVusHrj9Tl5ORApWp7Haw1a9ZgzZo1boqIukytNh+ha/redpvJBKxcCezYYf6elCUACpUOgoiIeG7QRebNm4f8/Hzs379f6VC8j05nPuXa2qlrtRqIjDSPIyIiIgAs6lyGs1+7wNGPZ+PHuBEREVmwqCPPU1bm3HFERER+gEWdi/D0axfk5ppnubZ2vZzJBBQVmccRERERABZ1LsPTr11gMpmXLWn63nYbAKSlcZIEERFRMyzqyDNlZgLJyUBpqXV/SYm5n+vUERERWfH6JU3Ih2Vmmpct0enMkyLKysynXHmEjoiIqAUWdeTZTCYgJ0fpKIiIiDweT7+6CCdKEBERkTuxqHMRTpQgIiIid2JRR0REROQDWNQRERER+QBOlCDzZ6lyhikREZFXY1HnIvPmzcP8+fOhbu1D6T2FXg+kpwMREb/2FRebF//1gLXg1FBDBx3CEIYylCEXuTCBBScREZEtD684vJdXTJTQ64Ft24DwcOv+8HBzv16vTFyN9NCjEIXIRjY2YzOykY1CFEIPZeMiIiLyRCzq/JVabT5C1/S97TYAWLmy5TY30UOPbdiGUFUosgdlY/PwzcgelI1QVSi2YRsLOyIiIhs8/eqvdDrrU6621GogMtI8zs2L/6qhRjrSsT16OxZMWoCSXiWWbQMuDMCKrBVYWbASO7CDp2KJiIga8UidvwoLc+44J9JBhwPRBzB9+nSU9Cyx2lbasxTTp0+HMdoIHXRuj42IiMhTsajzV2Vlzh3nRCGqEKROSoVAAJX1NlEJACBtUhpCVCFuj42IiMhT8fSri3j87NfcXPMs1/BwAAIU5QI1ZYA2DIjUAVABJSXmcW72/cDvrU652hKVoLhXMfoM7AMUui8uIiIiT8aizkUMBgMMBgO0Wi2qq6td8yAaFXDPCKBfd+DMZeCfR4AGcey+JpN52ZJ/PAB8tgCoaVZEaQcAd68AntukyHp1R3occeo4ci01AB2AMABlAHIBXulIRKQAFnXeanYCEFMMXM4z3w4HcHsYcDwCWL/fsX18lwlszWxxihM1pcDW+4DvnBmw4+SiY4Wpo+PIdfQA0gE0n3JTDCAVgPKrHBIR+RcPPTdIbZqdAAw6AFy2ud7t8mlz/2wH1sZTAZjU2sbGYmkSWhZ87nAKwIVfw2hBGrefcltEZIcewDaY/59oLryxn4vOEBG5F4s6b6NRmY/Q2a14Gvtii83j2jIQQC+0XrSpGrcP7GScXSEAspp9b7sNjdt5oE4xapiP0DV9b7sNAFba2UZERK7D37ne5p4RLY/QWRHgUpl5XFt6OPh4jo5ztgIAWwDYXo5Y3dhf4PaIqBkdzKdcW/sFogYQ2TiOiIjcg9fUeZt+3Z0z7qKDj+foOFcogPm6voEwF5cXYT7lyiN0inN09UL3r3JIROS/WNR5mzOXW17E1Nq4tjRdt9YT9k/BCsxHxZS+bk3AZUs8kKOrF7p/lUMiIv/F06/e5p9HgO5haPNiuOAw87i2CJCQlQAVVFCJ9b5UooIKKiRkJfCoGNmVC/Ms19aWLjEBKGocR0RE7sGizkXmzZuH/Px87N/v4PIijmoQ87IlAFoWdo238yPaXa9ODTW2FWzDli1bEF5tfehvQPUAbNmyBVsLtkLNtwjZYYJ52ZKm7223AUCanW1EROQ6PP3qIi5dfHj9/mbr1DU7wRUcai7oHFinTgcdIhCBiIII6L/TI3dgLsp6lCHsYhh0p3TQiMYyLgc5zo2ffEImgGS0XKeuBOaCjuvUERG5F4s6b7V+P1RqDUbceS+69+yBy9UXcWT3xxCTY1cxhTW7hF0jGkwonNDuOCJbmQB2gJ8oQUTkCVjUeSk99Eg3pSPi//16jKQYxUhFKjIdOEZS5uAl7I6OI/9lAngsl4jIA/CCKS+khx7bsA3hNtNgwxGObdgGvQNr+eciF8UohqmVYyommFCEIuTyUnciIiKvwKLOy6ihRnrjWv62kxiabq/EynYnOJhgQmrjpe62hV3T7TSktVr0ERERkWdhUedlmiY4tFa0qaFGJCKhc2At/0xkIhnJKEWpVX8JSpCMZIdO4xIREZFn4DV1XsbRiQuOjstEJnZgB3TQIQxhKEMZcpHLI3RERERehkWdl3HFBAcTTFy2hIiIyMvx9KuX4QQHIiIisodFXTsGDBiA3bt3Iz8/H3l5eUhOTlY0Hk5wICIiIntY1LXj2rVrSEtLQ2xsLO666y6sWLEC3bt3VzQmTnAgIiIiW7ymrh2nT5/G6dOnAQBnz55FZWUl+vTpg8uXLysaFyc4EBERUXNef6ROp9Phk08+QWlpKUQEU6ZMaTEmJSUFJ06cQG1tLYxGI8aPH9+px4qPj4darUZJSUlXw3aKpgkOH+JD5CCHBR0REZEf8/ojdcHBwcjLy0NGRga2b9/eYvv06dOxcuVKzJs3D3v27MGf//xn7Ny5EzExMSguLgYAGI1GXHfddS3uO3HiRJSVmWeR9unTBxs2bMCcOXNc+4SIiIiIOsHri7qsrCxkZWW1uv2JJ57AunXrsG7dOgDAggULcPfddyMlJQWLFi0CAIwZM6bNx+jWrRsyMzOxZMkS7Nu3r92xzQtErVYLANBoNNBoNA49J3IujUYDtVrN19+DMUfegXnyfMyR52svR13JndcXdW0JDAxEfHw8li5datW/a9cujBs3zuH9rF+/Hl9++SU2btzY7tiFCxdi8eLFLfqTkpJQW1vr8GOS82g0GowePRoqlQoNDQ1Kh0N2MEfegXnyfMyR52svR0FBQZ3et08XdX379kVAQADKy8ut+svLyxEaGurQPm6//Xbcf//9OHLkCKZOnQoA+OMf/4hjx47ZHb9kyRIsX77cclur1aK0tBSff/45ampqOvdEqEs0Gg1EBFlZWfwl56GYI+/APHk+5sjztZejpjN8neHTRV0TEbG6rVKpWvS1Zs+ePR06FHr16lVcvXq1RX9DQwN/wBRkMpmYAw/HHHkH5snzMUeer60cdSVvXj/7tS0VFRW4du1ai6Ny/fr1a3H0ztnmzZuH/Px87N+/36WPQ0RERAT4eFFXX1+PgwcPIikpyao/KSkJe/fudeljGwwGxMbGIiEhwaWPQ0RERAT4wOnX4OBgDB482HI7KioKcXFxqKysRHFxMZYvX473338fRqMR+/btw9y5cxEZGYm1a9e6NK558+Zh/vz5UKt9um4mIiIiD+H1Rd2YMWOQnZ1tub1ixQoA5hmrDz/8MLZs2YIbbrgBzz//PMLCwnDs2DFMnjwZRUVFLo3LYDDAYDBAq9WiurrapY9FRERE5PVFXU5ODlQqVZtj1qxZgzVr1rgpInImNQAdgDAAZQByAX5uBhERkR08N+ginCjRdXoAhQCyAWxu/FrY2E9ERETWWNS5CCdKdI0ewDYA4Tb94Y39LOyIiIissagjj6MGkN7se9ttALDSzjYiIiJ/xr+LBDWARAAzGr8q/abQAYhoIw41gMjGcURERGTm9RMlPJU7ljRxxiQCPcxHxSKa9RUDSAWQ6YQYOyPMyeOIiIj8gdIHZXyWq6+pc8YkAk+9bq3MyeOIiIj8AYs6L+SMYsyTr1vLhfloYWtHHU0AihrHERERkRmLOi/jrGLMk69bM8F8+rfpe9ttAJBmZxsREZE/Y1HnIq5ap85ZxZinX7eWCSAZQKlNf0ljv1LX+xEREXkqTpRwEVd9TJizijFvuG4tE8AO8BMliIiIHMGizss4qxhrum4tHPaP+plgPiqm9HVrJgA5CsdARETkDXj61cs4axIBr1sjIiLyLSzqvIwzizFet0ZEROQ7WNS5iKsmSgDOLcYyAQwCMAHAzMavUR3cBxERESmP19S5iKsmSjRx5iQCXrdGRETk/VjUeTEWY0RERNSEp1+JiIiIfACLOiIiIiIfwKKOiIiIyAewqCMiIiLyASzqXMSVS5oQERER2WJR5yIGgwGxsbFISEhQOhQiIiLyAyzqiIiIiHwAizoiIiIiH8CijoiIiMgH8BMl3ESr1Sodgt/SaDQICgqCVqtFQ0OD0uGQHcyRd2CePB9z5Pnay1FX6gUWdS7WlJzS0lKFIyEiIiJvodVqUVNT06H7qACIa8KhJv379+9wYjpi//79Tpll25n9OHofR8a1Naa1bfb6bfu0Wi1KS0sRHh7u0jy0xRty5MhYZ+XItt+XctTZfTnrZ8lVOQKUz5M/56i1bcxR5+7j6X+TtFotfvnll/aeRgs8UucGnUlMR5hMJqf88HZmP47ex5FxbY1pbZu9/tbG1tTUKFYweEOOHBnrrBy11u8LOersvpz1s+TqHAHK5cmfc9TaNuaoc/fx9L9JnX0NOVHCB6xevVqx/Th6H0fGtTWmtW32+p31ejiTN+TIkbHOylFH43IHZ8aj5M8Sc+S6fSmZo9a2MUedu4+v/k3i6VfyeVqtFtXV1ejZs6diR4GobcyRd2CePB9z5PlcmSMeqSOfd+XKFSxevBhXrlxROhRqBXPkHZgnz8cceT5X5ohH6oiIiIh8AI/UEREREfkAFnVEREREPoBFHREREZEPYFFHRERE5ANY1JHf2759OyorK7F161alQyE7BgwYgN27dyM/Px95eXlITk5WOiSy0aNHD+zfvx+HDx/GkSNHMGfOHKVDolYEBQWhsLAQr732mtKhkB319fU4fPgwDh8+jHfeeafD9+fsV/J7EyZMQI8ePfDQQw/hvvvuUzocshEaGoqQkBDk5eXhxhtvxKFDhzB06FBcvnxZ6dCokVqtxnXXXYfa2loEBQXh2LFjGDt2LCorK5UOjWy89NJLuOWWW1BUVISnnnpK6XDIxtmzZ3HjjTd2+v48Ukd+Lzs7m4t0erDTp08jLy8PgPkXXmVlJfr06aNwVNScyWRCbW0tAOD666+HRqOBSqVSOCqyNXjwYAwbNgyffvqp0qGQi7CoI6+m0+nwySefoLS0FCKCKVOmtBiTkpKCEydOoLa2FkajEePHj1cgUv/lzBzFx8dDrVajpKTE1WH7FWfkqFevXvj2229RUlKC//7v/8a5c+fcFb5fcEaOli1bhoULF7orZL/jjBz17NkTRqMRubm5uOOOOzocA4s68mrBwcHIy8vDo48+anf79OnTsXLlSrz88ssYNWoUcnNzsXPnTkRERLg5Uv/lrBz16dMHGzZswNy5c90Rtl9xRo4uXLiAkSNHIioqCg888AD69evnrvD9Qldz9Pvf/x4//PADfvzxR3eG7Vec8XM0aNAgjBkzBn/5y1+wYcMGaLXaDschbGy+0EREpkyZYtX39ddfi8FgsOo7fvy4vPLKK1Z9iYmJsnXrVsWfg6+3zuaoW7dukpOTI7NmzVL8Ofh668rPUVMzGAySnJys+HPx1daZHL3yyitSVFQkJ0+elLNnz8r58+flueeeU/y5+Gpzxs/Rp59+KvHx8R16XB6pI58VGBiI+Ph47Nq1y6p/165dGDdunEJRUXOO5mj9+vX48ssvsXHjRneH6PccyVG/fv0sRxS0Wi3uuOMOfP/9926P1V85kqNFixYhMjISUVFRePLJJ/HOO+/gH//4hxLh+iVHctS7d29069YNABAeHo6YmBicOHGiQ48T4JxwiTxP3759ERAQgPLycqv+8vJyhIaGWm5nZWVh9OjRCA4ORnFxMfR6PYxGo7vD9UuO5Oj222/H/fffjyNHjmDq1KkAgD/+8Y84duyYu8P1S47kaMCAAVi3bh1UKhVUKhXefPNNHD16VIlw/ZKjv+tIOY7kKDo6Gm+99RZMJhNEBKmpqaiqqurQ47CoI58nIla3VSqVVd+kSZPcHRLZaCtHe/bsgUajUSIsaqatHB06dAijRo1SIixqpr3fdU3ee+89d4VENtrK0b59+zBixIgu7Z+nX8lnVVRU4Nq1ay3+U+3Xr1+L/5ZIGcyR52OOPB9z5PnclSMWdeSz6uvrcfDgQSQlJVn1JyUlYe/evQpFRc0xR56POfJ8zJHnc2eOFJ8lwsbW2RYcHCxxcXESFxcnIiJpaWkSFxcnERERAkCmT58uV65ckYcffliGDRsmy5cvl5qaGomMjFQ8dn9pzJHnN+bI8xtz5PnNQ3Kk/AvBxtbZlpiYKPZkZGRYxqSkpMjJkyelrq5OjEaj6HQ6xeP2p8YceX5jjjy/MUee3zwhR/zsVyIiIiIfwGvqiIiIiHwAizoiIiIiH8CijoiIiMgHsKgjIiIi8gEs6oiIiIh8AIs6IiIiIh/Aoo6IiIjIB7CoIyIiIvIBLOqIiIiIfACLOiJy2NChQ7Fv3z7U1tbi8OHDSofTrhdeeMFlcWZkZCAzM9Ml+/YGJ0+eRGpqqtJhEFEzLOqIfFDfvn1x9epVBAUFQaPR4OLFi4iIiOjyfl988UVcunQJQ4cOxe9+9zu7YzIyMiAiEBHU19fj1KlTMBgM6N27d5cfv6OWLVvWapyulpiYCBFBr169HL6PJxaKDz30EKqqqlr0jx07Fm+//bbLH3/u3Ln49ttvcfHiRVRVVeHQoUN4+umnLds98TUjUkqA0gEQkfP9+7//O7799lvU1tYiISEBlZWVKC4u7vJ+b775ZvzrX/9CUVFRm+N27tyJhx9+GAEBAYiJicG7776L3r1744EHHuhyDB1x6dIlXLp0qdXtgYGBqK+vd2NEnqOrz72iosKJ0dj3yCOPYPny5Xj88ceRk5OD6667DiNGjEBMTIzLH5vIWwkbG5tvtSVLlsiKFSsEgDzxxBOyefPmdu+jUqnkueeek+LiYqmrq5PDhw/L3Xffbdlu64UXXrC7n4yMDMnMzLTqW7ZsmVRUVFj1zZ49W44fPy61tbVSUFAgKSkpVtvHjh0rhw4dktraWjlw4IBMnTpVRETi4uIEgDz00ENSVVVldZ8pU6aIiFhuv/DCC3L48OEWsT3zzDNSWloqJ0+eFADSv39/+fDDD6WyslIqKirk448/loEDB1rup1ar5fXXX5eqqiqpqKiQV199VdavX9/ieTZviYmJIiLSq1cvq3gnTpwox48fl5qaGtm5c6eEhoZaYrWVmJjoUHwajUbS09Mt8S1durRFfLt375Y33nhDXn/9dTl79qxkZ2cLAFmwYIEcOXJELl68KEVFRbJ69WoJDg62eg728n7y5ElJTU217D8iIkI+/vhjqampkQsXLshHH30k/fr1a5GLWbNmycmTJ+X8+fOyefNm6dGjR6uvYWZmprz77rutbu/Ka9b0Xnj++eelvLxcLly4IGvXrpXAwEDLmHvvvVeOHDkily9floqKCvn888+le/fuiv98s7G10RQPgI2NzQktIiJCqqqqpKqqSq5cuSKXL1+Wqqoqqaurk9raWqmqqpLVq1e3ev+0tDQ5f/683H///TJkyBBZunSpXLlyRQYPHiwAJCQkRI4ePSqvvfaahISEWP7w2zbboi4qKkqOHTsmZWVllr45c+ZIaWmp6PV6GTRokOj1eqmoqJAHH3xQAEj37t2lvLxcNm/eLDExMfKf//mf8tNPPzmlqKuurpb33ntPYmJiJDY2VoKCguT777+X//mf/5Hhw4fLsGHDZOPGjVJQUGD5A//UU09JVVWVTJs2TYYNGybvvPOOXLhwocNF3ZUrV2TXrl0SHx8vo0aNkvz8fNm4caMAkODgYPnwww/l008/lZCQEAkJCZHAwECH4lu0aJFUVFTI1KlTZejQoWIwGOT8+fMtirrq6mp59dVXZciQITJ06FABIKmpqTJhwgQZNGiQ3HnnnVJQUGB5nwQGBsrjjz8u58+ft8TUlHfbou7gwYPy1VdfyejRoyUhIUGMRqPs3r3bKhfV1dWybds2iY2NlfHjx8svv/wiL730Uquv4Zo1a+T48eMSGRlpd3tXXrOm90LTe2zy5MlSXl5uiSc0NFSuXr0qaWlpMnDgQBk+fLikpKS0+r5nY/OQpngAbGxsTmgajUYGDhwot956q1y5ckVGjBghN910k1RXV4tOp5OBAwfKDTfc0Or9S0pKZOHChVZ933zzjbz55puW24cPH271CF1Ty8jIkPr6eqmpqZHLly9bjqCkpaVZxpw6dUpmzJhhdb+///3vsmfPHgEgf/rTn6SiokKCgoIs2//85z87pagrKyuzOhrz8MMPS0FBgdV+AgMD5dKlS5KUlCQApLS0VJ5++mmr17qoqKjDRZ2IyE033WQZk5KSYlXs2jvK6Uh8ZWVl8te//tWyXa1WS2FhYYui7tChQ+2+j5KTk+Xs2bOW2/ZeZ8C6qLvrrrukvr5eBgwYYNkeHR0tIiJjxoyx5OLixYtWR+ZeffVV2bdvX6uxhIaGyt69e0VE5LvvvpOMjAy57777RKVSdfk1y8jIsPseq66uFpVKJaNGjRIRabWgZGPzxMaJEkQ+oqGhAadOncKwYcNw4MABHDlyBKGhoSgvL0dubi5OnTqFc+fO2b2vVqtFeHg49uzZY9W/Z88eREdHdziW3bt3Y+TIkbjtttuwatUqZGVl4Y033gBgnsQRGRmJdevWoaamxtKeffZZ3HzzzQCA6Oho5OXloba21rLPffv2dTgOe44ePWp1LVl8fDwGDx5sFUtlZSWuv/563HzzzejZsyf69+9v9fgNDQ0wGo0dfuxLly7hxIkTlttlZWXo169fm/dxJL7Q0FDs37/fch+TyYSDBw+22Je9mCdMmIBdu3ahpKQE1dXV2LBhA/r27Yvu3bs7/Lyio6NRXFyMkpISS19BQQGqqqqs3j+FhYW4ePGiw8//9OnTGDduHIYPH45Vq1YhMDAQ7733HrKysqBSqVq9X3uvWRN77zGtVouIiAjk5eXhiy++wNGjR7FlyxbMmTNHkck+RB3BiRJEPuLYsWMYOHAgAgMDoVarUVNTg4CAAAQEBKCmpganTp3C8OHD29yH+SDXr1QqVYs+R1y6dAk///wzACA1NRVffvklXnjhBTz//PNQq83/S/7pT3/CN998Y3W/hoYGy+O2x2QytRgXGBjoUGzNqdVqHDx4EH/4wx9ajD179my7++sI24kJImJ5PVrjaHz2cmfL9rlHRkbi008/xdq1a/Hcc8+hsrIS48ePx7vvvuvQa9n8sey9T2z7O/P8ASA/Px/5+fkwGAy4/fbb8X//939ITExEdna23fFdzamIwGQyISkpCePGjcPEiRPx2GOP4eWXX8Ztt92GwsLCdvdBpAQeqSPyEZMnT8bIkSNx+vRpzJo1CyNHjsSxY8eQlpaGkSNHYvLkya3et6amBqWlpRg/frxV/7hx41BQUNDl2F588UU8+eSTCAsLw5kzZ1BSUoKbbroJP//8s1Vr+mN5/PhxxMXF4frrr7fs49/+7d+s9nn27FlotVqrI0ojR47scGyHDh3CLbfcgjNnzrSIp7q6GtXV1fjll1+sHl+j0SA+Pr7Dj9Weq1evQqPRdDi+06dPIyEhwXIftVqNUaNGtft4Y8aMQUBAAP7617/im2++wY8//oj+/fu3G5Ot48ePIzIyEgMGDLD0RUdHo3fv3k55/9g+FgAEBwe3Gl97r1kTe++xmpoaqyOOe/fuxeLFizFq1ChcvXoVer3eqc+HyJlY1BH5iKKiIly8eBEhISHYsWMHioqKEBMTg+3bt+Pnn39udxmS1157DX/7298wffp0DBkyBEuWLMHIkSORnp7e5dhycnKQn5+PRYsWAQAWL16MhQsX4vHHH8ctt9yC4cOHY/bs2ViwYAEAYNOmTTCZTFi3bh2io6PxH//xH3jyySet9vnNN9/g8uXLeOWVV3DzzTdj5syZmD17dodj++CDD1BRUYEdO3Zg/PjxGDRoEO644w6sXLkS4eHhAID09HQ888wzmDp1KoYOHeqydfcKCwsxYsQIDBkyBDfccAMCAgIciu+NN97AwoUL8fvf/x5DhgxBeno6fvOb37R7lPXnn39GYGAgHnvsMURFRWHWrFn4y1/+0iImrVaL3/72t7jhhhsQFBTUYj9ffPEFjhw5gg8++ACjRo3C2LFjsWHDBmRnZ9s9Dewog8GAZ599FuPGjUNkZCRuu+02bNiwAWfOnLGcDu/sawYA3bp1s7zHJk2ahBdffBFvvvkmRAQJCQlYuHAh4uPjERERgWnTpuHGG290epFK5GyKX9jHxsbmnHb//ffLV199JQBk/Pjx8sMPPzh83+ZLmly5cqXFkiaA4xMl7E0gmDlzptTV1Vkupp85c6YcOnRI6urq5Ny5c5KdnS1Tp061jL/tttvk8OHDUldXJ4cOHRK9Xm81UQIwT4z44Ycf5PLly/LJJ5/InDlzHFrSxDa2kJAQWb9+vZw5c0Zqa2vlp59+krfeeku0Wq0A5okRK1askPPnz0tlZaUsW7as00uaNB9jO7Gjb9++8tlnn0l1dbXV8hyOxLdq1So5f/68nDt3TpYsWSIfffSRbNq0ybLv3bt3W5a5ad7S0tKktLRULl26JDt37pRZs2ZZxQ1ADAaDnD171ilLmjR/7NTUVMuyMvbatGnT5J///KeUlpZKXV2dlJSUyNatW2X48OFdfs2a3guLFy+Ws2fPSnV1tbz99tvSrVs3ASDDhg2TnTt3Snl5udTW1sp3330n8+fPV/xnnI2traZq/IaIyKMNHDgQhYWFGDlyJPLy8pQOx6OpVCoUFBRgy5YteP7555UOxyNlZGSgd+/ePJ1KPoUTJYiIvFxkZCQmTpxo+dSFRx99FFFRUdi0aZPSoRGRG/GaOiIiL2cymTB79mwcOHAAe/bswa233oq77roL3333ndKhEZEb8fQrERERkQ/gkToiIiIiH8CijoiIiMgHsKgjIiIi8gEs6oiIiIh8AIs6IiIiIh/Aoo6IiIjIB7CoIyIiIvIBLOqIiIiIfACLOiIiIiIf8P8Be4hvqkePam0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACz1ElEQVR4nOzdd1wUx/sH8M/dIYpIFAUVERB7F0tEjYBiLLETe0WMDYxBk2iiKbaoMRprxBIRSzCxRFQSFEtQsYsVEX4WOiKCoCBwcHDP7w+8+3LcAXe0O/B5v17z8nZ2dnZ254DH3Z1ZAQACY4wxxhir1ITabgBjjDHGGCs9DuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY5VChw4dsGfPHoSHhyMzMxNpaWm4ffs2Fi5cCGNjY43ri4iIABHJ09u3b3H79m3MnTtXqayDgwOICKNGjVLINzAwgJ+fH7KzszFlypQSH1t+enp6+PHHHxEREQGxWIzQ0FB8/vnnam1bq1YtrF27Fv7+/nj58iWICEuXLlVZ9qOPPsLvv/+OoKAgiMViEBGsrKw0amu/fv1w9epVpKenIzExEV5eXjA1NdWoDsZY2SJOnDhx0uU0Y8YMys7OpuDgYHJ1dSUHBwf6+OOP6dtvv6Vnz57RsWPHNK4zIiKCAgMDydbWlmxtbcnJyYkCAwOJiGjx4sUKZR0cHIiIaNSoUfK8Dz74gAIDAykzM5OGDx9eZse6a9cuyszMpK+//pocHBxo9erVlJubq9QmVcnKyopSUlLowoULtGvXLiIiWrp0qcqyP/74I0VERNCxY8fov//+IyIiKysrtdtpb29P2dnZ5OPjQx9//DFNnDiRYmJi6MGDB6Svr6/17wwnTu9p0noDOHHixKnQ1KNHD5JIJOTn56cyWKhWrRoNGzZM43ojIiLI19dXIc/IyIhSUlIoMjJSIb9gUGdqakp37tyhN2/eUJ8+fcrsWNu2bUu5ubn07bffKuTv3LmT0tPTydjYWO266tWrV2RQJxAI5J+/+uorjYO6Gzdu0MOHD0kkEsnzevbsSUREc+bM0fr3hhOn9zHx7VfGmE5bsmQJiAizZs1Cdna20nqJRAJfX18AwO7du/Hq1SsYGBgolTt//jwePnxY5L7S0tLw+PFjNGjQoNAylpaWuHz5Mho3bgxHR0dcuHChyDpNTEyQlZWFFStWKK1r1aoViAjz5s0DAIwcORJCoRBeXl4K5by8vFCzZk0MGjSoyH1pgohKvG2jRo3QvXt3HDhwALm5ufL8a9eu4f/+7//g5ORUFk1kjGmIgzrGmM4SCoVwdHTE7du3ERsbW2z5zZs3o27dupg4caJCfps2beDo6Iht27YVub1IJIKFhQUeP36scn2bNm1w+fJlGBgYwN7eHrdv3y62TUlJSfjnn3/g7OwMgUCgsM7FxQVZWVnw9vYGALRv3x4vX75EQkKCQrkHDx7I1+sCWTtk7crvwYMHOtNOxt43HNQxxnSWiYkJDA0NERERoVb54OBgXLhwQWmww+eff443b95g//79CvkCgQAikUgezHl4eKBevXpYvHixyvpXrlwJMzMzDBgwAGFhYWofh5eXFywtLdGvXz95nlAoxOTJk+Hr64vk5GQAQL169eSf88vIyEBWVhbq1aun9j7Lk6wdqtqanJysM+1k7H3DQR1jrErZvHkzOnfujF69egEAjIyMMGXKFOzbtw/p6ekKZYcMGYKcnBzk5OQgOjoas2bNwrx58+Dn56eybl9fXwiFQmzbtk3lLd7CnDp1CvHx8XBxcZHnDRw4EObm5tizZ49C2aJui5bmlml5KKw9utZOxt4XHNQxxnRWUlIS0tPTYW1trfY2J06cQEREhPxq3bRp02BoaKjy1mtgYCC6desGW1tbTJ48GREREfjtt9/w0Ucfqax73759mDlzJvr06YN///0XNWvWVKtNubm5OHDgAJycnFC7dm15u54/fw5/f395uVevXqm8ylWzZk1Ur15d5ZUxbXj16hUAqGxr3bp1daadjL1vOKhjjOksqVSK8+fPo2vXrjA3N1drGyLCtm3bMHr0aDRs2BBubm44f/68yufk3rx5g9u3b+PmzZvw9vbGgAEDIJFI4OHhofT8m8yePXvw2Wefwd7eHn5+fmoHdl5eXjAwMMD48eNRp04dDB8+HPv374dUKpWXCQ4ORv369ZUGanTo0AEAih3oUVFk7ZC1K78OHTroTDsZex9pfQguJ06cOBWW8k9pUq1aNaX1enp6NHToUIW82rVrU1paGp0/f56ISOU8cqqmNAFAS5cuJSKi8ePHy/NUzVPn7OxMOTk5dPHiRTI0NFTrWK5du0bXr18nNzc3IiJq2bKlwnrZlCaLFi1SyN++fXuZT2mSP5VkSpPr16/TgwcPSCgUyvNsbW2JiGj27Nla/95w4vSeJq03gBMnTpyKTLLJhx88eECurq5kb29P/fr1o6+//poeP36scvLhbdu2ERFRRESEwpxsslRYUGdoaEjx8fEUGhoqD1hUBXUAaMqUKZSTk0OXLl1SK7CbOXMmERFFR0fT5cuXVZaRTT781Vdfkb29Pf30008qJx/+4YcfSCKRkL29vUL+oEGDaNSoUTRt2jQiIjp06BCNGjWKRo0aRQYGBvJyJiYm8vy9e/fK55cbNWqUUp0SiYTOnTunkOfg4EDZ2dn0999/U79+/WjChAkUFRXFkw9z4qTdpPUGcOLEiVOxqWPHjuTl5UWRkZEkFospLS2Nbt++TcuWLSMTExOl8vb29kRESle9ZKmwoA4Aubq6EhHRlClTCCg8qANAkyZNIolEQpcvX6ZatWoVeQxGRkaUnp5ORESfffaZyjJ6enq0dOlS+XGGhYXR559/rlROdkXRwcFB6bgKk/9KnOyYVAkICFCoU1UeAPr444/p6tWrlJGRQUlJSbR3714yNTXV+neFE6f3NQnefWCMsSpl/fr1cHV1hYWFBT+4zxh7L+hpuwGMMVaWbG1t0bJlS7i5uWHnzp0c0DHG3ht8pY4xVqUQEdLT0+Hn5wcXFxeluekYY6yq4qCOMcYYY6wK4HnqGGOMMcaqAA7qGGOF+uGHHxASEqIwES8RKaTXr18jICAAgwcPrpA2LV26tMSvoZowYQLc3d3LuEVF0/b5UoeDg4NCG7OysvDy5UtcvnwZP/30EywtLZW2cXZ2BhHByspKIX/lypWIioqCRCJBSkoKAKBatWrYvn07nj9/jpycHNy9excAEBERoXR+ZCkgIEDj49DT08PTp08rvI8Z0yVaH4LLiRMn3UtmZmaUlpamNI0HEdHhw4fJ1taWevbsSZMmTaLQ0FDKzc2lwYMHl3u7ZFN5lGRbX19fioiIqNDzqO3zpU6STW/y7bffkq2tLfXq1YuGDRtGP/30Ez1//pzS09Np4sSJCtuYmJiQra2twpx0w4cPJyKilStXUq9evahr164EgL744gsiIpo7dy716NGD2rdvT0De9CuBgYFka2urlNq0aVOiY5k6dSq9evWK6tatq/XzyomTFpLWG8CJEycdTD///DPFxMQoTdxLRLR161aFvKZNmxIR0ZkzZwqtT09Pj0QiUanbpYtBXY0aNQpdp+3zpU4qah4+Y2Njun37NmVnZ8uDscLSkiVLiIiU5qrbtWsXpaenK5Uvaq7AkqZq1apRUlKS0mTNnDi9D4lvvzLGlFSrVg2fffYZDh48qNatzvDwcLx8+VJ+K052O2/y5MlYv349YmNjkZWVhebNmwMA+vXrh3PnzuHNmzdIT0/H5cuX4ejoqFTv4MGDcffuXYjFYoSHh+Orr75SuX83NzdcvHgRCQkJePv2LR48eICFCxdCT+9/szYFBARg6NChaNKkicJtPhljY2Ns27ZN3tZnz57hp59+gr6+vsK+iAhbt27F7Nmz8ejRI2RlZcHZ2bn4k1qO56t3794gIowfP15pX1OmTAERoVu3bhq1USYlJQWzZ89GtWrVsGDBAnl+wduvERERWLVqFQDg5cuXICL5rfKZM2eiZs2a8nOu6fkCVH8XVN2Kl0gkOHToEGbNmlWi42WsstN6ZMmJEyfdSr179yYiokGDBimtU3XlqU6dOpSTkyN/9ZXsyk9MTAwdPnyYhg4dSoMHDyZjY2OaNGkS5ebm0rFjx2jkyJE0ZMgQOnnyJEkkEnJ0dJTX6ejoSBKJhC5dukQjR46kUaNG0Y0bNygyMlLpSt2vv/5Ks2fPpgEDBlCfPn3I3d2dXr58SZ6envIybdq0ocDAQHr+/LnCbT4AVL16dbp37x6lpaXRl19+SR9//DEtX76csrOz6Z9//lE6/piYGLp37x6NHz+e+vTpQ23bti30XFbU+bp9+zYFBgYq7f/GjRt048aNIvu7qCt1shQXF0dPnjyRLzs7OxPR/95SYWNjQ7///jsREQ0YMIBsbW3J3NycbG1t6Z9//qH09HT5OZe9ASQiIoL++ecfEolESin/vjX5LgCgMWPGEBEVe2WRE6cqmLTeAE6cOOlYWrhwIRER1a9fX2kdEdFvv/1GIpGI9PT0qFWrVvTvv/8SEZGrqysB/wsSLly4oLCtgYEBJSUl0YkTJxTyBQIB3b17l65fvy7Pu3btGsXGxlL16tXlebVq1aKkpKQib78KBAISiUQ0efJkkkgkVKdOHfm6wm6/zpo1i4iIRo8erfI8fPzxxwrHn5KSolBvUamizpcsyOrUqZM8r1u3bkT0v9edFZbUCequXbumcAu1YFAH/O/WeL169RS29fLyorS0NKU6i3ql2XfffVfi70KzZs2IiGj27Nla/1nixKkiE99+ZYwpadSoEaRSKZKSklSunzt3LnJyciCRSBAWFoZevXrhhx9+wPbt2xXK/f333wrLvXr1Qr169bBv3z6IRCJ5EgqFOH36ND788EPUrFkTNWvWxIcffohjx44hKytLvv3bt2/h6+ur1B4bGxucOHECSUlJkEqlyMnJwYEDB6Cnp4eWLVsWe7yOjo54+/Ytjh49qpC/d+9eAHm3P/P777//8Pr1a/myUChUOJ78o4Ur4nwBwJ9//omEhATMnTtXvv28efPw8uVLHDp0qNhzUJyCx1RWAgMD0a1bN6Xk6ekJABp/F4C8278AYG5uXi5tZkxX8WvCGGNKDAwMIJFIIJVKVa4/dOgQ1q1bByJCWloanj17prJsfHy8wnKDBg0AKAcv+dWtWxdEBJFIhBcvXiitL5hnYWGBwMBA/N///R/c3d0RGRkJsViM7t27w8PDAwYGBsUeb7169VTuKzExERKJBPXq1SvyuJ49e4YmTZrIl5ctW4bly5fLl8v7fGVkZCA7Oxs7d+7EV199hYULF6JatWoYO3YsNmzYgOzs7MIPXk2WlpZ4/vx5qesp6M2bN7h9+3ah642NjdX+LsiIxWIAUKvvGatKOKhjjClJSkpC9erVUbNmTWRkZCitT0xMLPIPsUzBh9hlV/4+//xzXL9+XeU2CQkJqFatGqRSKRo2bKi0vmDeyJEjUatWLXz66aeIjo6W59vY2BTbPplXr17B1tZWKd/U1BTVqlVTumJZ8LiGDRuG6tWry5cLBj/lfb5ktm/fjm+//RbTp09HjRo1oKenhx07dhS73+J8+OGHMDMzw+7du0tdl6ZSUlLU/i7I1K1bFwAKvdLMWFXFQR1jTElYWBgAoFmzZggODi6zeq9cuYKUlBS0bdsW27ZtK7ScRCLBzZs38emnn2LhwoXy2261atXCsGHDFMrKAqH8t+YAYObMmUr1ZmVlqbx6c/78eYwbNw4jR47E8ePH5flTp06Vry/Kw4cPi1xfUuqeL5kXL17gyJEjcHNzg76+Pnx9fRETE1OqNhgbG2PHjh3Izs7Gxo0bS1VXSWRkZKj9XZBp2rQpAODRo0cV1k7GdAEHdYwxJRcuXAAA9OjRo0yDuvT0dMybNw/79u1D3bp1cfToUbx8+RKmpqbo1KkTTE1N4ebmBiDvbRanT5/G2bNn8euvv0IkEuGbb75Benq6wu3Qs2fPIisrC3/++Sd++eUX1KhRA66urjA2Nlbaf3BwMEaNGoU5c+bg9u3bkEqluH37Nvbv34+5c+di3759WLp0KYKDg9G7d28sWbIE//77b7FBXXnR5HzJbN68GTdv3gQAuLi4aLS/Fi1awNbWFkKhEPXq1YOtrS0+++wzfPDBB5g6dWq5BEl16tRReZU0KysL9+7dA6D+d0GmR48eyMnJwaVLl8q8vYzpOq2P1uDEiZPupYsXLypN5wGonqKjYCpuNKWdnR35+vpSUlISZWVlUUxMDPn6+iqVHzp0KN27d4/EYjFFRkbSokWLVE4+PGTIELp79y5lZGRQTEwMrV27lgYOHEhERA4ODvJyderUocOHD1NycjLl5uYq1GNsbEweHh4UFxdH2dnZFBERQatWrVJ4Y4K6x6+t8yVL4eHhFBISonYbZfuXyc7OpsTERLpy5Qr99NNPZGlpqbRNeY9+jYmJKdF3QfbdLThimBOn9yRpvQGcOHHSwfTpp5+SRCKhRo0aab0tnNRPHTp0IKL/TZdSlZOqoK5p06aUm5urMA0NJ07vS+IpTRhjKh07dgy3bt3C4sWLtd0UpoamTZuib9++2LVrF54/fy6fjuV98/333+P8+fM4d+6ctpvCWIXjoI4xVqiZM2fi+fPn5TZHGSs7P/zwA86ePYtatWphzJgxyMzM1HaTKpxIJMKzZ88U5upj7H0iQN4lO8YYY4wxVonxlTrGGGOMsSqAgzrGGGOMsSqAgzrGGGOMsSqAgzrGGGOMsSqA3yhRARo1aoS0tDRtN4MxxhhjlYCRkZHSO6TVwUFdOXFzc8PcuXOhp6eHli1bars5jDHGGKtEzM3NNQ7seEqTcmZkZITU1FSYm5vz1TotEYlE6N+/P86ePYvc3FxtN4epwH1UOXA/6T7uI91XXB8ZGRkhLi4OH3zwgcZxA1+pqyBpaWkc1GmJSCRCZmYm0tLS+JecjuI+qhy4n3Qf95HuK88+4oESjDHGGGNVAAd1jDHGGGNVAAd1jDHGGGNVAD9TpwMMDAxgamrKL00vJyKRCCYmJrCysuJnTHQU91HlUJp+IiIkJiYiMzOznFrHGOOgTsvat2+PBQsWoFq1atpuSpVmYGAAR0dHbTeDFYH7qHIoTT9JJBJs3LgRDx8+LONWMcYADuq0ysDAAAsWLEBoaCh8fHyQk5Oj7SZVWUZGRjz6WMdxH1UOJe0nPT09ODk5YcGCBfj888/5ih1j5YCDOi0yNTVFtWrV4OPjg2fPnmm7OVVa7dq18ebNG203gxWB+6hyKE0/+fj4oGPHjjA1NUV0dHQZt4wxxgMl1GRgYIDIyEisW7euzOqUPUPHV+gYY+8D2e86fn6YsfLBQZ2avvvuO9y4cUPbzShETeS9GITefWaMMcbY+4aDOjU0b94crVu3hp+fn7abUiU4OzsjJSVF281gjDHGNCQE4ABg/Lt/dSuM0q3WlAM7OzucPHkScXFxICKMGDFCqYyrqyvCw8ORmZmJoKAg9O7dW2H9+vXrsXjx4opqcgnk70Y7VES3mpqaYseOHYiKioJYLEZ8fDxOnz6NHj16FLvtoUOH0LJlS/mys7MziEienj9/jkOHDqFJkybleASMMcaYJpwARAK4AODPd/9GvsvXDVU+qDM0NMT9+/fx+eefq1w/duxYbNq0CatWrULnzp0RGBiIU6dOwcLCAgAwfPhwPH78GE+ePKnIZmvACUBovuXTqIgv2d9//41OnTrB2dkZLVu2xPDhw3HhwgXUrVu32G3FYjESExMV8t68eYOGDRvCzMwMEydOhI2NDU6ePAmhsMp/RRljjOk8JwBHAZgXyDd/l687gR29L4mIaMSIEQp5169fJw8PD4W8R48e0erVqwkArV69mqKjoykiIoISExPp9evX9MMPPxS6D319fTIyMpKnRo0aERFRnTp1SCQSKaSmTZvS/v37ycrKqoTH5ERA7rtE+ZIsz6lczmPt2rWJiMje3r7IMjt37qQXL15QZmYmBQcH05AhQwgAOTs7U0pKirxswWUANHHiRCIiatmyJXl6epKvr6/CepFIRPHx8eTi4lJsewUCAdWuXZsEAoHWv4OcuI8qcyptP1lZWdH+/fupadOmSr8POZVN0tfXp+HDh5O+vr7W21JVklBYjYBoUv5bm/9vbhQJhdXKpI/q1KlDRERGRkYa/4y911OaVKtWDV27dsXPP/+skH/mzBn06tULALBkyRIsWbIEQN5twvbt22PlypWF1rl48WIsW7ZMKb9///5K8zKZmJjAwMAARkZGqF27tkZtJxIiLW0riADlC65CAFIIBFtgZHQBAoFUo7qLIxKJkJaWhnHjxiE0NBTZ2dkK6wUCAfz9/VGrVi3Mnj0bERERaN26NWrUqIHatWujZs2aEAgE8mMuuAxAfoWubt26+Ouvv+Dn54eWLVsiISEBAPDJJ5+gVq1a8Pf3V+vcGRoaltXhs3LCfVQ5lKafjIyMYGBgAHt7eyQlJZVhq5iMSCRCly5dIBAI+O0sZSQpqT2uX7coooQQgCW6d/8KJibFT6xdXB8ZGBiUuK3vdVBnYmICPT09eaAgk5CQgIYNG5aozjVr1mDDhg3yZSMjI8TFxeHs2bNKE3ZaWVnB0dERaWlpJZj3yQHKl4HzE4KoMVJTOwK4qGHdxZs2bRp+//13uLi44M6dO7h48SL++usvBAcHo3///ujatSvatGkjv2394MED+bYZGRkgIvkxF1w2NzeHm5sbYmJicPv2bUgkEvzf//0fRowYIZ9SZuzYsThy5AieP39ebFtl0yekpqaC8qJgpmO4jyqH0vZTnTp1kJmZiUuXLiEqKqqsm8eQFzAQEU6fPs1BXRmRSj9Qq9yNG9EQCk8VW664PjIyMtK4jTLvdVAnU/CXk0AgUPkLa9++fcXWlZ2djezsbLi5uWHu3LnyK065ublKnVe6HzizMi6nmWPHjuHff/+FnZ0devbsiUGDBmHRokWYMWMG6tevj9jYWI2eQ6xTpw7S0tIgEAhgaGiI27dv49NPP4VEIgEA7N69G7NmzcK6detgamqKIUOGoF+/fmrVLetLDhZ0F/dR5VBW/aTq9yErO1KplM9xmYpTqxRRnNrnvKg+Kk2/vddPoSclJSEnJ0fpqlz9+vWVrt5pysPDA+3atUP37t1LVU/h4su4nOaysrJw7tw5rFy5Eh999BH27t2L5cuXl+j1P6mpqbCxsUGHDh1gaGiIbt26ISgoSL5+//79aNq0KXr06IHJkycjMjISly9fLsvDYYwxxlQIBBADoLBHmaQAot+V0673OqiTSCS4ffs2+vfvr5Dfv39/XL16VUutUpfufckePXoEQ0NDPHjwAI0bN0aLFi3U3lYqleLZs2eIiIhARkaG0vrk5GQcP34cLi4ucHFxgZeXV1k2nTHGGCuEFIB7vs8F1wHAfBXrKl6Vv/1qaGiI5s2by5etra3RqVMnJCcnIyYmBhs2bMCBAwcQFBSEa9euYdasWbC0tMSOHTtKtd+Ct1/LnuxLdvTdZ2GBdUB5fcnq1q2LI0eOYM+ePXjw4AHS0tLQrVs3LFq0CCdOnMClS5dw6dIl/P333/jyyy/x9OlTtG7dGkQEf3//Eu939+7d+OeffyASidS6Fc4YY4yVDR8AowFsBpB/0EQs8v7W+mihTappfZh8eSYHBwdSxcvLS17G1dWVIiIiSCwWU1BQENnZ2ZXZ/o2MjAodmiwb3l/yKU1AedOWxJDi8OooKq/pTIC8aVtWr15NQUFBlJKSQm/fvqXQ0FBasWIF1ahRgwCQsbExeXp6UmJiImVkZNCDBw9o8ODBBKg3pUlhKSIigv755x+N21y7dm2tfxc5cR9VhVSafiqb33mcikoikYiGDh1KIpFI622pmklIgAMB49/9KyzzPioqblAjafsEVe1U/kEdCKhFkAd0A6kkX7LKkAwMDCglJYWcnDQPWDlg0P3EfVQ5Egd1up04qNP9VJ5B3Xv9TF15cnNzQ0hICG7evFkBe8t/izUQunBfvywJBAKYmZlh5cqVePPmDU6ePKntJjHGGGM6p8o/U6ctHh4e8PDwgJGREVJTU8t5bxkABOW8D+2xtLREZGQkYmJiMG3aNB6mzxhjjKnAQR3TeVFRUfJJTxljjDGmGt9+ZYwxxhirAjioKycV+0wdY4wxxt53HNSVk/J/owRjjDHG2P9wUMcYY4wxVgVwUMcYY4wxVgVwUFdOKvKZupr438yDNct9b4wxxhjTRRzUlRN+po6pi4gwYsSICtmXs7MzUlJSKmRfffv2RWhoaIVNR1MR51FfXx9RUVHo0qVLue6HMcZKgoO6KiB/J9qhYjq1QYMG2LJlC549ewaxWIzo6GicPHkSjo6Oatfh5eUFIgIRQSKRICoqCh4eHqhTp45CuYiICLi7uyvkrV+/Hqmpqejbty8AICAgAM7OzqU+rqru0KFDaNmyZYXs65dffsGqVatARPK8atWqYeHChbh37x7S09ORmJiIy5cvY9q0adDTU2/azKVLl+Lu3bvl1ewiZWdnY/369Vi7dq1W9s8YY0XhyYcrOScAW/ItnwYQA8AdgE857dPKygpXrlzB69evsWjRIjx48ADVqlXDwIEDsW3bNrRp00btuk6dOgUXFxfo6emhbdu22LNnD+rUqYOJEyeqLC8UCvH7779j2LBhcHR0RFBQUFkd1ntBLBZDLBaX+3569uyJFi1a4MiRI/K8atWqwd/fH506dcIPP/yAK1euIDU1FT169MDXX3+Np0+f4vLly+XettLy9vbGunXr0Lp1a4SFhWm7OYwxJsdX6ioxJwBHATQqkG/+Lt+pnPbr4eEBIkL37t3x999/48mTJ3j06BE2btyIHj16AAA8PT3h6+ursJ1IJEJ8fDxcXFzkeVlZWUhISEBcXBzOnj2LQ4cOYcCAASr3q6+vjyNHjqB///6wt7cvMqBbunQpoqKiIBaLERcXV+yVlWHDhuHWrVvIzMxEYmIi/v77bwDADz/8gAcPHiiVDwoKwvLlywEADg4OuHHjBt6+fYuUlBRcvnwZlpaW8rJz5szB06dPkZWVhbCwMEyePLnQdly9ehVr1qxRyDMxMUF2djb69OkDIC84Wrt2LWJjY/H27Vtcv34dDg4ORR6fTP7bry1btgQRoVWrVgplFixYgIiICPmxEREGDx6Me/fuITMzE9evX0f79u2L3M/48eNx5swZZGVlyfPmz58Pe3t79OvXDx4eHrh//z4iIiLw559/wtbWFs+ePcOUKVOQlJQEfX19hfqOHj2Kffv2wdnZGcuWLYONjY38Km/+K7QmJiY4duwY0tPT8fjxYwwbNkyhHnt7e9y4cQNisRjPnz/HmjVrIBKJ5OsDAgKwefNmrF27Fq9evUJ8fDyWLl2qUEdycjKuXr2KCRMmFHe6GWOswhGnsk9ubm4UEhJCoaGhRERkZGSkVMbKyor2799PVlZWGtcvBCgaoFyASEXKBSjqXbmyPC5jY2PKzc2lb7/9tshyPXv2JIlEQg0bNpTnDRs2jNLS0sjQ0JAAkJeXF/n4+MjXW1tb08OHDyk+Pl6hroiICPruu+/o7NmzFBYWRhYWFkr7CwgIIGdnZwJAo0aNotevX9OgQYPIwsKCPvzwQ5o3b16hbR08eDBJJBJatmwZtW7dmjp27EiLFy8mAGRubk45OTnUrVs3efkOHTpQbm4uWVtbk0gkopSUFPrll1+oadOm1Lp1a5o6daq8jSNHjqSsrCxydXWlFi1a0IIFC0gikVCfPn3k9RERjRgxggDQ3LlzKTIyUqF9c+fOpZiYGBIIBASA/vjjD7p8+TL17t2bmjZtSl999RVlZmZS8+bNi+0/Z2dnSklJkS/funWLVqxYoVDm1q1btGrVKgJADg4OREQUEhJCH3/8MbVv355OnjxJ4eHhpKenV+h+7t69S4sWLVLIu3fvHp0+fbrQbWrXrk01atSglJQUGj16tDy/Xr16JBaLqU+fPlSjRg1at24dBQcHU4MGDahBgwZUo0YN+XmMjo6m8ePHU7NmzWjTpk2UmppKxsbGBIAaNWpEb9++pd9++41atWpFI0aMoJcvX9LSpUsVvkevX7+mH3/8kZo3b05Tpkyh3Nxc+vjjjxXa+vPPP9N///1Xpj9blSXVrl27xNuW5nceJ/WSSCSioUOHkkgk0npbOJWsj4yMjAqNG9RI2j/AqpyK6pzS/IJzgOpgrmByKOPj+fDDD4mIaOTIkcWWffjwIS1cuFC+fOzYMdqzZ4982cvLiyQSCaWlpVFGRgbJzJ8/X6GeiIgIEovFlJiYSKampsXud8GCBRQWFqYQdBT1h+jKlSt04MCBQtf/+++/tG3bNvnyhg0b5H/QjY2NiYjI3t5e5baXL1+mnTt3KuQdOnSI/vnnH/ly/qDOxMSEsrOzqXfv3grtW7t2LQGgpk2bUm5uLpmZmSnUefbsWXkgVlQqGNTNnz+fnj59Kl9u0aIFERG1adMm73v2LqgbO3asvIyxsTGlp6fTmDFjCt1PSkoKTZ48WSEvPT2dNm3aVOg2sj7atm0b/fvvv/L8L774QqGNS5cupbt37yptT0QKAWrNmjUpNzeXBg4cSADop59+otDQUIVtXF1dKTU1VR4wBwQE0KVLlxTK3Lhxg9asWaOQN2/ePAoPDy/Tn63Kkjio0+3EQZ3up/IM6vj2ayVlVsbl1CUbyZj/4ffC7N69W36r1dTUFEOGDMGePXsUygQEBMDGxga2trbYsmULTp8+ja1btyrVdebMGRgaGmLJkiXF7vfIkSMwMDBAeHg4du3ahZEjRyrcYivIxsYG58+fL3T977//jgkTJqB69erQ09PDpEmT5MeRkpICLy8v+Pv74+TJk/jiiy/QsGFD+bZt2rTBlStXFOq7cuVKoc8dJiUl4ezZs5g0aRIAoEmTJujVqxe8vb0BAF26dIFQKMTjx4+RlpYmTw4ODmjWrFmx56agv/76C1ZWVrC1tQUATJo0CXfv3kVoaKhCuWvXrsk/p6Sk4P/+7/+KfHbSwMBA6dk9gUCg1vfm999/x4ABA9CoUd6DBS4uLti7d69ax5P/VnlGRgbS0tJQv359AHl9kf84gLy+MDIyQuPGjVXWAQDx8fHyOmQyMzNRsyZPIMQY0y0c1FVS8WVcTl1PnjyBVCpVazDE/v370bRpU/To0QOTJ09GZGSk0oPw6enpePbsGYKDg+Hu7o7q1asrPcMEAOfPn8fw4cMxa9YsbNmyRWl9frGxsWjVqhXmzp2LzMxMeHh4wM/Pr9DRlZmZmUXW5+vri6ysLDg5OWHYsGGoXr26/Jk7AJg+fTp69uyJq1evYty4cXj8+LE8SAKUA+Dightvb2+MHj0aenp6mDhxIh4+fCgPNIRCIXJyctC1a1fY2NjIU5s2bZRGCKvjxYsXCAgIkA9MmTBhAv744w+1ti3qGJKSkmBsbKyQ9/jxY7W+N/fu3cP9+/cxdepUdO7cGR06dFA7qJNIJEptFArzfs2pOu+q/pNSVB0ydevWRWJiolptYoyxisJBXSUViLxRrtJC1ksBRL8rV5ZSUlLg7++PuXPnqrxSUbt2bfnn5ORkHD9+HC4uLnBxcYGXl1ex9S9fvhxff/01zMyUrzGeO3cOQ4cOxfTp0/Hbb78VWY9YLIavry/c3d3Rp08f2NraokOHDirLPnjwAP369Su0rtzcXOzbt09+HH/99ZdSIHjv3j38/PPP+Oijj/Dw4UN5kBQaGorevXsrlO3Vq5fSlbD8jh8/jho1amDQoEGYOHGiQpB19+5d6OnpoX79+nj27JlCSkhIKPKcFMbb2xvjxo1Djx490KxZM/z1119KZWQDYACgTp06aNmyZZEjP+/evYu2bdsq5B08eBAff/wxbGxslMqLRCKF75PsKu/06dNx7tw5xMbGytdlZ2cXeeW1MI8ePUKvXr0U8nr16oXU1FTExcVpVFf79u21Nq0KY4wVRev3l6tyKq9n6gCQE/IGRBQcLCHLcyqnY2rSpAk9f/6cHj58SJ9++ik1b96cWrduTfPmzaNHjx4plP34449JLBaTRCJReg6s4EAJWbp16xZt3bpVvhwREUHu7u7yZQcHB0pLS1N4zi1/cnZ2punTp1O7du3I2tqaVq5cSenp6VS3bl2V5R0cHCgnJ0c+UKJ9+/YKzwICoObNm5NEIiGJRELdu3dXOBerV6+mHj16kKWlJfXv35+SkpJozpw5BIBGjBhBWVlZNHv2bGrevLl8oISDg4O8jvzP1MnSH3/8QXfv3qXc3FylgSEHDhyg8PBwcnJyoiZNmlC3bt1o0aJF9MknnxTbdwWfqZN9RzMyMuju3bt09uxZpXNDRBQcHEyOjo7Url07On78OEVGRlK1atUK3c/nn39Ot27dUsjT19enixcv0qtXr8jNzY06duxI1tbWNGbMGAoKClJ4jtDIyIjevn1LYrFY4Xk+ADRhwgRKS0ujTp06Ub169UhfX7/Q85iSkiIfQCMbKLF161Zq1aoVDR8+XOVAiY0bNyrU4ePjQ15eXgp5ERERSs8Mvi+Jn6nT7cTP1Ol+4oESlTiVZ1AH5AVuMVAM6qJQfgGdLDVs2JC2bt0qH8QQExNDx48fVwhWZCkiIkJhYIAsFRbUTZgwgcRiMTVu3Fi+ff6gDgDZ2dlRamoqbd++XWn7ESNG0LVr1+j169eUlpZGV69epWHDhhV9Hp2c6M6dOyQWi+nly5d09OhRpTIXL16khw8fKuTVr1+fjh07RnFxcSQWiykiIoKWLVsmf/AeAM2ZM4eePn1KWVlZFBYWphQMqApGPvnkEyIiunDhglI79PT0aNmyZRQeHk5ZWVn0/Plz+vvvv6l9+/bF9puqoA7IG7xBRDRt2jSFfFlQN2TIEAoODiaxWEw3btygjh07FrmfOnXqUHp6OrVs2VIhX19fn7755hu6f/8+ZWRkUFJSEgUGBtLUqVOVgu59+/ZRUlKSPGjLX8eRI0coOTmZiEgetBUX1AEge3t7unHjBonFYnr+/DmtWbNG4RerOkFdjx49KDk5WT7q9n1LHNTpduKgTvcTB3WVMJX3lCb5Uy38L6AbiLKfxqQ0ycDAgFJSUsjJyUmr7SjNHyJZCgsLowULFmj9nFZkkgV1JTl/a9eupR07dpS4j86cOUObN2/W+jkomA4fPiyf8uZ9TBzU6XbioE73E49+rYQq8t2v+Z+rC0Thz9lVJIFAADMzM6xcuRJv3rzByZMntd2kEjM1NcWXX34Jc3NztZ4LZHlWrVqFqKgopUEGxTE2Nsa4cePg6OiIbdu2lVPrSkZfXx/379/Hxo0btd0UxhhTwq8JqwIyAFTMK9PVZ2lpicjISMTExGDatGnIzc3VdpNK7OXLl0hMTMSsWbPw+vVrbTenSH5+frCzs1O5bvXq1UpvqyhPqampJdrfnTt3YGxsjG+++QaPHz8uh5aVXHZ2NlatWqXtZjDGmEoc1LFyERUVJZ8uorKrTMcxY8YMGBgYqFyXnJyscX0XL16s8OO3trau0P0xxlhVwUEdY1XI8+fPtd0ExhhjWsLP1DHGGGOMVQEc1DHGGGOMVQEc1DHGGGOMVQEc1DHGGGOMVQEc1JUTNzc3hISE4ObNm+W/s5o1IZ9+WMX7WBljjDFW9XFQV04qcvJhVvkFBARU2IS2VlZWICJ06tSp3PdVt25dJCQkwMrKqtz3RUQYMWJEue5DX18fUVFR6NKlS7nuhzHGSoKDuqog/4z9dnaKy+WkQYMG2LJlC549ewaxWIzo6GicPHkSjo6Oatfh5eUFIgIRQSKRICoqCh4eHqhTp45CuYiICLi7uyvkrV+/Hqmpqejbty+AvKDI2dm51Mf1PoiJiUHDhg3x8OHDct/X4sWL4evri6ioKAD/CyhlKTk5GRcvXoS9vb3adS5duhR3794tryYXKTs7G+vXr8fatWu1sn/GGCsKB3WVnZMTEBr6v+XTp4HIyLz8cmJlZYXbt2/D0dERixYtQocOHTBo0CAEBARo/FqnU6dOoWHDhmjSpAlmzJiBYcOGwcPDo9DyQqEQnp6emDp1KhwdHREQEFDaw3nvSKVSJCQklPtbPmrUqIHPPvsMu3fvVlrXr18/NGzYEA4ODkhNTYWfn1+FXM0rC97e3rCzs0Pr1q213RTGGFPAQV1l5uQEHD0KNGqkmG9unpdfToGdh4cHiAjdu3fH33//jSdPnuDRo0fYuHEjevToAQDw9PSEr6+vwnYikQjx8fFwcXGR52VlZSEhIQFxcXE4e/YsDh06hAEDBqjcr76+Po4cOYL+/fvD3t4eQUFBhbZx6dKliIqKglgsRlxcXJFXVmRXfmbNmoXo6Gikp6fj8OHDqF27NgDAzs4O2dnZaNCggcJ269evx8WLFwHkvRbt5MmTSE5Oxtu3b/Hw4UN88skn8rL29va4ceMGxGIxnj9/jjVr1kAkEqlsz+rVq3Ht2jWl/Pv372PZsmXy5WnTpuHRo0fIzMxEaGgoXF1dCz3G/PLffhUIBIiJicHs2bMVynTu3BlEJH+7AxFhzpw58PPzQ0ZGBsLDwzF69Ogi9/PJJ58gJycH169fV1r36tUrJCQkIDg4GLNnz4ahoSH69u2LKVOmICkpCfr6+grljx49in379sHZ2RnLli2DjY2N/Gpf/iu0JiYmOHbsGNLT0/H48WMMGzZMoZ7i+iEgIACbN2/G2rVr8erVK8THx2Pp0qUKdSQnJ+Pq1auYMGFCkcfPGGPaQJzKLxkZGRERkZGRkdI6Kysr2r9/P1lZWWlet1BIiI4m5OaSwv0sWcrNJURF5ZUrw+MxNjam3Nxc+vbbb4ss17NnT5JIJNSwYUN53rBhwygtLY0MDQ0JAHl5eZGPj498vbW1NT18+JDi4+MV6oqIiKDvvvuOzp49S2FhYWRhYaG0v4CAAHJ2diYANGrUKHr9+jUNGjSILCws6MMPP6R58+YV2talS5dSWloanTt3jjp16kR2dnb0+PFj+uOPP+RlwsLC6Ouvv5Yvi0QievHiBU2bNo0AkK+vL/n7+1P79u3J2tqahgwZQnZ2dgSAGjVqRG/fvqXffvuNWrVqRSNGjKCXL1/S0qVLFdq/ceNGAkDt2rUjIqKmTZvK17dt25aIiFq0aEEAaMaMGRQXF0dOTk7UpEkTcnJyoqSkJJo6dWqxfWhlZUVERJ06dSIAtG7dOrp06ZJCmXXr1tGVK1fky0REiYmJ9Nlnn1GLFi1oxYoVJJFIqHXr1oXuZ+PGjeTn51fkvgFQnTp1iIjo66+/pho1alBKSgqNHj1avr5evXokFoupT58+VKNGDVq3bh0FBwdTgwYNqEGDBlSjRg15G6Ojo2n8+PHUrFkz2rRpE6WmppKxsbFG/fD69Wv68ccfqXnz5jRlyhTKzc2ljz/+WOE4fv75Z/rvv//K5XeGrqfatWuXeNtS/c7jpFYSiUQ0dOhQEolEWm8Lp5L1UVFxgxpJ+wdYlVO5BXUODqqDuYLJwaFMj+fDDz8kIqKRI0cWW/bhw4e0cOFC+fKxY8doz5498mUvLy+SSCSUlpZGGRkZJDN//nyFeiIiIkgsFlNiYiKZmpoWu98FCxZQWFgY6enpyfOK+kO0dOlSkkgkZG5uLs8bOHAg5eTkUIMGDQgALVy4kEJCQuTrhw8fTqmpqVSzZk0CQPfv36cff/xRZf0//fQThYaGKuS5urpSamoqCQQCAhSDOgB07949+v777+XLq1atohs3bsiXo6KiaPz48Qp1fvfddwqBWGGpYGBlY2NDubm5ZGlpSQBIIBBQTEwMubq6yrchIvLw8FCo59q1a7Rt27ZC9+Pj40O7d+8uct81a9ak7du3k0QioZ49exIA2rZtG/3777/ybb744gt6+vSpQn/dvXtXaX9ERCtWrJAv16xZk3Jzc2ngwIEa9UPBAPfGjRu0Zs0ahbx58+ZReHh4mf5sVZbEQZ1uJw7qdD+VZ1DHt18rKzOzsi2nJtnL3Ymo2LK7d++W32o1NTXFkCFDsGfPHoUyAQEBsLGxga2tLbZs2YLTp09j69atSnWdOXMGhoaGWLJkSbH7PXLkCAwMDBAeHo5du3Zh5MiRhd7qlImOjkZcXJx8+dq1axCJRGjVqhUAYO/evWjevDlsbW0BANOnT8fhw4eRkZEBANiyZQu+//57XL58GcuWLUOHDh3kdbVp00bpduqVK1dgZGSExo0bq2yPt7c3Jk2aJF+eMGECvL29AeTdYrS0tISnpyfS0tLk6fvvv0ezZs2KPT8F3bt3D2FhYfLbiQ4ODqhfvz4OHz6sUK7gMVy7dg1t2rQptF4DAwOIxWKV665evSpv97Bhw+S3kgHg999/x4ABA9Do3WMFLi4u2Lt3r1rH8uDBA/nnjIwMpKWloX79+gDU74f8dQBAfHy8vA6ZzMxM1OTpgxhjOoaDusoqPr5sy6npyZMnkEqlRf4xl9m/fz+aNm2KHj16YPLkyYiMjMTly5cVyqSnp+PZs2cIDg6Gu7s7qlevrvQMEwCcP38ew4cPx6xZs7Bly5Yi9xsbG4tWrVph7ty5yMzMhIeHB/z8/KCnp6f2ccqCVtm/iYmJ8PX1hYuLC0xNTTF48GCFANXT0xNNmzbFgQMH0KFDBwQFBeHzzz8HkBcIFwyCiwuODx48iJYtW6Jz587o1asXLCws8NdffwHIGywCADNnzoSNjY08tW/fXv5Mo6a8vb0xceJEAMDEiRPh7++PV69eFbtdUcF9UlISjI2NVa4bN24cOnXqBFNTUzRu3FgesAJ5Qeb9+/cxdepUdO7cGR06dFA7qJNIJErtk50vdfuhqDpk6tati8TERLXaxBhjFYWDusoqMBCIiQGkUtXrpVIgOjqvXBlKSUmBv78/5s6dq/JKhWxwAZD3QPnx48fh4uICFxcXeHl5FVv/8uXL8fXXX8NMxRXGc+fOYejQoZg+fTp+++23IusRi8Xw9fWFu7s7+vTpA1tbW4WrZwVZWloq7LNnz57Izc3F48eP5Xm7d+/G+PHjMXv2bDx79gxXr15VqCM2NhY7d+7EqFGj8Ouvv2LmzJkAgEePHqFXr14KZXv16oXU1FSFq4P5xcXF4dKlS5g0aRImTZqEc+fO4eXLlwCAly9fIjY2Fk2bNsWzZ88UUmRkZJHnpTAHDx5Ex44d0aVLF4wePVohyJIpGDD26NEDYWFhhdZ59+5dtG3bVuW6mJgYhIeHIzk5WeV62VXe6dOn49y5c4iNjZWvy87OLvbKqyol6YfCtG/fXmvTqjDGWGE4qCtGrVq1cPPmTdy9excPHjzAjBkztN2kPFIpIJu7rWBgJ1ueP7/woK8U3NzcIBKJcPPmTXz66ado3rw5WrdujXnz5ind3tq9ezecnZ3Rpk0b7Nu3r9i6L168iJCQkEJvswYEBGDIkCFwdnYudPoUZ2dnTJ8+He3atYO1tTWmTJmCjIwM+VxpqojFYuzbtw8dO3ZE7969sWXLFhw+fBgJCQnyMv7+/njz5g2+//57pQB148aNGDBgAJo0aYLOnTvD0dERoe+mmvHw8ICFhQW2bt2KVq1aYfjw4Vi+fDk2bNhQ5JUub29vjB8/HmPGjMEff/yhsG7ZsmVYvHgxvvjiC7Ro0QLt27fHtGnTsGDBgkLrK0pkZCSuXLkCT09P6Onp4cSJE0plxowZAxcXF7Ro0QLLli1D9+7diwyu/f390a5dO6V5B9Xh7e0Nc3NzzJw5U+mWfWRkJKytrdGpUyfUq1dPaaRsYUraD6rY2dnhzJkzGm3DGGMVQesPDepyEgqFZGBgQADIwMCAnj17RnXr1lV7+3IbKCFLTk6EmBjFwRFRUXn55XheGjZsSFu3bpUPYoiJiaHjx4+Tg4qBGREREfTPP/8o5Rcc/SpLEyZMILFYTI0bN5Zv7+7urlDGzs6OUlNTafv27Urbjxgxgq5du0avX7+mtLQ0unr1Kg0bNqzQY5E9eD9nzhyKjY2ljIwMOnr0KNWpU0ep7PLly5VG9QKgLVu20JMnTygzM5MSEhJo3759Ct8Te3t7unHjBonFYnr+/DmtWbNG4SHZggMlgLwH0jMzM+nt27fyEcMFz9OdO3dILBbTq1ev6MKFC2oNYFE1AhXIGzRARLR3716lbYiIXF1dyd/fnzIzMykiIoLGjRtX7L6uXr1Ks2bNKnbfsuPNv7xv3z5KSkoifX19hXx9fX06cuQIJScnExHJRz0TEY0YMUKhbEpKinx9SfvBx8eHvLy85Ms9evSg5ORk+ajb9y3xQAndTjxQQvcTj37VkWRsbEyRkZFUr149tbcp96AOINSq9b+AbuDAMp/GpDTJwMCAUlJSyKmcg8ziUnGjX1WNplSVdu3aRSdOnND6ea3opCpgUid98sknFBISIh9dqkkfnTlzhjZv3qz1Yy+YDh8+TIsXL9Z6O7SVOKgrzyQkwIGA8e/+1fx3OQd1up949Gsp2NnZ4eTJk4iLiyv03ZCurq4IDw9HZmYmgoKC0Lt3b4X1tWvXxr179xAbG4tffvlFrQfIK1T+W6yBgeVyy1VTAoEAZmZmWLlyJd68eYOTJ09qu0ml8sEHH6Bfv36YNGmSytG5TLVTp05h586dMDc3V3sbY2NjjBs3Do6Ojhq/oaS86evr4/79+xX2nl72PnECEAngAoA/3/0b+S6fMfVU+aDO0NAQ9+/fl49ELGjs2LHYtGkTVq1ahc6dOyMwMBCnTp2ChYWFvMybN29gY2MDa2trTJw4UWl6A63LyAAEgrz0booNbbO0tMTz588xduxYTJ8+vdxfSVXeTpw4gZMnT2Lnzp04d+6ctptTpMWLFytMdZI/+fn5VXh7tmzZojDQoTh37tzBzp078c033ygMVNEF2dnZWLVqVaFTtTBWMk4AjgIo+J8f83f5HNgx9ag/x0Mldfr0aZw+fbrQ9V9++SU8PT3h6ekJAFiwYAEGDhwIV1dXpYf1X758iQcPHsDe3h5Hjx5VWZ++vj6qV68uXzYyMgKQ94qsgiP2SjKCr7KIioqSTxehbbJ2qJrSAsgbcbt8+fIi6+jbt2+5tK087NixQ2mOOZnMzMwS1VnefZm/j2SvJmO6p7ifJXWp+n34viISQird/G6p4HUWIQApgE0QCv+BQFD8XRiRSAShUMjnV4cV10el6bsqH9QVpVq1aujatSt+/vlnhfwzZ87Ipz6oX78+MjMzkZaWBiMjI9jb22P79u2F1rl48WKF93PK9O/fX+kPqomJCQwMDGBkZKQwFQgre4aGhtpuQoWRSqVISkoqdL2uftfepz6qzErTT0ZGRjAwMIC9vX2R39H3SVJSe1y/blFECSEAS3Tv/hVMTB4WW59IJEKXLl0gEAgq/R2Sqqq4PjIwMChx3e91UGdiYgI9PT2FaSsAICEhAQ0bNgQANG7cGJ6enhAIBBAIBPjtt98QHBxcaJ1r1qzBhg0b5MtGRkbyl9WnpaUplLWysoKjoyPS0tLw5s2bMjwylp/s6kJqamqpri6w8sN9VDmUtp/q1KmDzMxMXLp0qcgpht4nUukHapW7cSMaQuGpYsuJRCIQEU6fPs1BnY4qro9kd/hK4r0O6mRUzTIvy7tz5w46d+6sdl3Z2dnIzs6Gm5sb5s6dK5+JPjc3V6nz+AeuYhR8OwTTPdxHlUNZ9ZOq34fvL/UmviaKU/ucSaVSPsc6rqg+Kk2/VfmBEkVJSkpCTk6O/KqcTP369ZWu3mnKw8MD7dq1Q/fu3UtVD2OMsaosEEAM8p6dU0UKIPpdOcaK9l4HdRKJBLdv30b//v0V8vv376/0CijGGGOs7EkBuOf7XHAdAMxXsY4xZVX+9quhoSGaN28uX5a9Xig5ORkxMTHYsGEDDhw4gKCgIFy7dg2zZs2CpaUlduzYUar9Frz9yhhjjKnmA2A0gM0A8g+aiEVeQOejhTYxlYRCwM4OMDMD4uN1Zm7Y/LQ+u3J5JgcHB1Il/2t/XF1d5a+7CgoKIjs7uzLbf0W8UaImasrfEVYTNbV+znUxlWYW/IpIql5PVV6pqFd1lXWqW7cuJSQkqPUdL20flfStF5xUv4pP034aMmQI3blzp8i3h/AbJYpL/EYJnU5OToToaMXXckZHa/xaTn6jRClcvHhRPnI1f3JxcZGX2b59O6ytrVGjRg1069YNgYGV69kFYb676HawU1guLw0aNMCWLVvw7NkziMViREdH4+TJk3B0dFS7Di8vL/nPhUQiQVRUFDw8PJReAB8REQF3d3eFvPXr1yM1NVU+f1xAQACcnZ1LfVzvg5iYGDRs2BAPHxY/PUJpLV68GL6+vvKRjlZWVgq/D5OTk3Hx4kXY29urXefSpUtx9+7d8mpyhXN2dgYR4dQpxZGNtWvXBhHBwcFBSy3TzL///gsiwsSJE7XdlEpMCuAigL/e/atbV4Dea05OwNGjQMG345ib5+U76cYE0VU+qNMWNzc3hISE4ObNm+W6Hyc4IRSh8uXTOI1IRMKpHGcgt7Kywu3bt+Ho6IhFixahQ4cOGDRoEAICAjR+rdOpU6fQsGFDNGnSBDNmzMCwYcPg4eFRaHmhUAhPT09MnToVjo6OCAgIKO3hvHekUikSEhLKfWRcjRo18Nlnn2H37t1K6/r164eGDRvCwcEBqamp8PPzg5WVVbm2p6J4eXlh6dKlGm0jkUjQr18/9OnTp3waVUG8vLwwb948bTeDsbIlFAKbN//vc8F1ALBpk/I6LdB+C6qoihj96gQnHMVRNEIjhXxzmOMojpZbYOfh4QEiQvfu3fH333/jyZMnePToETZu3IgePXoAADw9PeHr66uwnUgkQnx8vMJV0qysLCQkJMjn8jt06BAGDBigcr/6+vo4cuQI+vfvD3t7ewQFBRXaxqVLlyIqKgpisRhxcXFYu3ZtkWXv3r2LWbNmITo6Gunp6Th8+LB8kl47OztkZ2ejQYMGCtutX78eFy9eBJD3WrSTJ08iOTkZb9++xcOHD/HJJ5/Iy9rb2+PGjRsQi8V4/vw51qxZU+is4atXr8a1a9eU8u/fv68wsfW0adPw6NEjZGZmIjQ0FK6uroUeY36yq2WdOnWCQCBATEwMZs+erVCmc+fOICL52x2ICHPmzIGfnx8yMjIQHh6O0aNHF7mfTz75BDk5Obh+/brSulevXiEhIQHBwcGYPXs2DA0N0bdvX0yZMgVJSUnQ19dXKH/06FHs27cPzs7OWLZsGWxsbORX+/JfoTUxMcGxY8eQnp6Ox48fY9iwYQr1FNcPAQEB2Lx5M9auXYtXr14hPj5e4wCtJNLT0+Hl5aU0EXp+Dg4OICKFyaM7deoEIpIHxM7OzkhJScGQIUMQFhaG9PR0HDlyBDVr1sTUqVMRERGB5ORkbNmyRel5XyMjI3h7eyMtLQ1xcXFKr1ZcsGABHjx4gLi4OERHR2Pbtm1KExGfPHkStra2/FYQVrXY2QEWFoUHbUIhYGmZV04HaP8+dRVO5fVMnRBCikY05SKXFG/w56Vc5FIUokhYgmcyikrGxsaUm5tL3377bZHlevbsSRKJhBo2bCjPGzZsGKWlpZGhoSEBIC8vL/Lx8ZGvt7a2pocPH1J8fLxCXREREfTdd9/R2bNnKSwsjCwsLJT2FxAQQM7OzgSARo0aRa9fv6ZBgwaRhYUFffjhhzRv3rxC27p06VJKS0ujc+fOUadOncjOzo4eP35Mf/zxh7xMWFgYff311/JlkUhEL168oGnTphEA8vX1JX9/f2rfvj1ZW1vTkCFD5M9mNmrUiN6+fUu//fYbtWrVikaMGEEvX76kpUuXKrRf9kxdu3btiIioadOm8vVt27YlIqIWLVoQAJoxYwbFxcWRk5MTNWnShJycnCgpKYmmTp1abB8WfKZu3bp1dOnSJYUy69atoytXrsiXiYgSExPps88+oxYtWtCKFStIIpFQ69atC93Pxo0byc/Pr8h9A6A6deoQEdHXX39NNWrUoJSUFBo9erR8fb169UgsFlOfPn2oRo0atG7dOgoODqYGDRpQgwYNqEaNGvI2RkdH0/jx46lZs2a0adMmSk1NJWNjY4364fXr1/Tjjz9S8+bNacqUKZSbm0sff/yx2j8jXl5eCnUWl5ydnSklJYXMzMwoPT2dRo0aRUDes2tERA4ODgT87/ng/M+0derUiYhI/jvE2dmZsrKyyN/fn2xsbMjOzo4SExPp9OnT9Ndff1GbNm1oyJAhJBaLaezYsQo/Y2/evKFvvvmGWrRoQZ9//jlJJBKF43Z3d6c+ffpQx44dqW/fvhQaGkrbtm1TOp4XL14U+j3kZ+rKP/EzdeWQxo9X9WdWOY0fXyZ9VJpn6qD1k1XFU3kFdQ5wUOMbRuQAhzI9ng8//JCIiEaOHFls2YcPH9LChQvly8eOHaM9e/bIl728vEgikVBaWhplZGTIB7HMnz9foR7ZIJbExEQyNTUtdr8LFiygsLAw0tPTk+cV9RD+0qVLSSKRkLm5uTxv4MCBlJOTQw0aNCAAtHDhQgoJCZGvHz58OKWmplLNmnkDU+7fv08//vijyvp/+uknCg0NVchzdXWl1NRU+UPlBQdK3Lt3j77//nv58qpVq+jGjRvy5aioKBpf4BfId999pxCIFZYKBlY2NjaUm5tLlpaWBIAEAgHFxMSQq6urfBsiIg8PD4V6rl27pvKPuiz5+PjQ7t27i9x3zZo1afv27SSRSKhnz54EgLZt20b//vuvfJsvvviCnj59qtBfd+/eVdofEdGKFSvkyzVr1qTc3FwaOHCgRv1QMMC9ceMGrVmzRu2fkZIGdQBo9erVFBYWRiKRqMRBXcH/EGzfvp3evn0r/88UADp16hRt375d4WesYAD+559/KvRDwZ+l0aNHU2JiotL627dvF/qzwEFd+ScO6sohOTioF9Q5qPf3lgdKVELl/UydGczKtJy6ZK8JIjVmlN+9e7f8VqupqSmGDBmCPXv2KJQJCAiAjY0NbG1tsWXLFpw+fRpbt25VquvMmTMwNDTEkiVLit3vkSNHYGBggPDwcOzatQsjR44s9gXJ0dHRiIv738zu165dg0gkQqtWrQAAe/fuRfPmzWFrawsAmD59Og4fPoyMjAwAwJYtW/D999/j8uXLWLZsGTp06CCvq02bNkq3U69cuQIjIyM0btxYZXu8vb0xadIk+fKECRPg7e0NIO8Wo6WlJTw9PZGWliZP33//PZo1a1bs+Sno3r17CAsLw4QJEwDk3earX78+Dh8+rFCu4DFcu3YNbdq0KbReAwMDiMVileuuXr0qb/ewYcPkt5IB4Pfff8eAAQPQqFHeYwUuLi7Yu3evWsfy4MED+eeMjAykpaWhfv36ANTvh/x1AEB8fLy8DlUmTpyo0A+TJk3CkiVLFPLUHTywdu1amJqaYvr06WqVVyU9PR3h4eHy5YSEBERGRiI9PV0hr+AxFde/ffr0wZkzZ/Do0SOkpqZi//79MDExQc2aNRW2y8zMVMpjrFILDARiYgqfukQqBaKj88ppGQd15aS8n6mLR3yZllPXkydPIJVKi/xjLrN//340bdoUPXr0wOTJkxEZGYnLly8rlElPT8ezZ88QHBwMd3d3VK9eXeUzTOfPn8fw4cMxa9YsbNmypcj9xsbGolWrVpg7dy4yMzPh4eEBPz8/6OmpPy2jLGiV/ZuYmAhfX1+4uLjA1NQUgwcPVghQPT090bRpUxw4cAAdOnRAUFCQ/Jmk/K+dkykuOD548CBatmyJzp07o1evXrCwsMBff/0FAPJnoWbOnAkbGxt5at++vfyZRk15e3vLA4+JEyfC398fr169Kna7ooL7pKQkGBsbq1w3btw4dOrUCaampmjcuLE8YAXygsz79+9j6tSp6Ny5Mzp06KB2UCeRSJTaJztf6vZDUXWocvLkSYV+OHnyJHbs2KGUp443b95gzZo1WLp0qVJgJH33B0XWZgCoVq2aUh2q2q/pMeUvB+Q9M+rn54eHDx9i6tSp6Nq1K+bOnauyDXXr1kViYmKxdTNWaUilgGwGhoKBnWx5/nydmK+Og7pKKhCBiEEMpIUMeZdCimhEI7CMXy2TkpICf39/zJ07V+X/xvM/xJ2cnIzjx4/DxcUFLi4u8PLyKrb+5cuX4+uvv4aZmfIVxnPnzmHo0KGYPn06fvvttyLrEYvF8PX1hbu7O/r06QNbW1uFq2cFWVpaKuyzZ8+eyM3NxePHj+V5u3fvxvjx4zF79mw8e/ZM6a0jsbGx2LlzJ0aNGoVff/0VM2fOBAA8evQIvXr1Uijbq1cvpKamKlwdzC8uLg6XLl3CpEmTMGnSJJw7dw4vX74EALx8+RKxsbFo2rQpnj17ppAiIyOLPC+FOXjwIDp27IguXbpg9OjRCkGWTMGAsUePHggLCyu0zrt376Jt27Yq18XExCA8PBzJyckq18uu8k6fPh3nzp1DbGysfF12dnaxV15VKUk/qOPt27cKfZCWlobk5GSFvLdv36pd39atWyGVSpWm8ZEFSvm/pzY2NiVud0FF9W+3bt2gp6eHr776CkFBQXjy5In8Smp+1atXR7NmzarUlDOMAQB8fIDRo4GCvytiY/PyfXy0064COKirpKSQwv3dq2UKBnay5fmYX2jQVxpubm4QiUS4efMmPv30UzRv3hytW7fGvHnzlG7h7N69G87OzmjTpg327dtXbN0XL15ESEhIobdZAwICMGTIEDg7Oxc6fYqzszOmT5+Odu3awdraGlOmTEFGRoZ8rjRVxGIx9u3bh44dO6J3797YsmULDh8+rPAOYH9/f7x58wbff/+9UoC6ceNGDBgwAE2aNEHnzp3h6OiI0NC8qWY8PDxgYWGBrVu3olWrVhg+fDiWL1+ODRs2FHmly9vbG+PHj8eYMWPwxx9/KKxbtmwZFi9ejC+++AItWrRA+/btMW3aNCxYsKDQ+ooSGRmJK1euwNPTE3p6ejhx4oRSmTFjxsDFxQUtWrTAsmXL0L179yKDa39/f7Rr105p3kF1eHt7w9zcHDNnzlS6ZR8ZGSl/M0y9evWURsoWpqT9UNGysrKwdOlSfPHFFwr5T58+RXR0NJYtW4YWLVpg8ODB+Oqrr8psvx999BEWLlyIFi1awM3NDWPGjMHmd9M4PHv2DNWqVcO8efNgZWWFyZMnY86cOUp19OjRA1lZWSpHbzNW6fn4AE2aAH36ABMm5P1rba0zAZ2M9h9CrILJzc2NQkJCKDQ0tFwGSsiSE5woBjEKT2tGIYqcoNkM15qmhg0b0tatW+WDGGJiYuj48ePyh7rzp4iICPrnn3+U8guOfpWlCRMmkFgspsaNG8u3LzjbvZ2dHaWmpio87C1LI0aMoGvXrtHr168pLS2Nrl69SsOGDSv0WGQP3s+ZM4diY2MpIyODjh49SnXq1FEqu3z5cqVRvQBoy5Yt9OTJE8rMzKSEhATat28f1a1bV77e3t6ebty4QWKxmJ4/f05r1qxReEhW1RslateuTZmZmUoPuec/T3fu3CGxWEyvXr2iCxcuqDWApbA3Sri6uhIR0d69e5W2ISJydXUlf39/yszMpIiICBo3blyx+7p69SrNmjWr2H3Ljjf/8r59+ygpKYn09fUV8vX19enIkSOUnJxMRCQf9Uyk/EaJlJQU+fqS9oOPj4/CG2iKS6UZKCFLQqGQHj58qDBQAgD16tWL7t+/TxkZGXTx4kUaNWqU0kCJgnWpGlhS8GcvIiKCfvjhB/rrr7/o7du3FB8fT1988YXCNvPnz6e4uDhKT0+nU6dO0eTJk5UGbuzYsUPlz2T+/ueBEuWbeKCE7ice/VqJU0W8JqwWaskDuoEYWObTmJQmGRgYUEpKCjlp+BqVsk7FjX5VNZpSVdq1axedOHFC6+e1opOqgEmd9Mknn1BISEiRr44qrI/OnDlDmzdv1vqxcyq6n2TJxMSEkpKSqEmTJoVuy0Fd+ScO6nQ/lWdQp/6T40xn5b/FGojAcrnlqimBQICGDRviq6++wps3b9R+UFxXffDBB/jwww8xadIkjBgxQtvNqTROnTqFFi1awNzcXOG5uKIYGxtjwIABcHR0VJoAl+kua2truLm5lfi5TsZY6XFQVwVkIAMCCIovWIEsLS0RGRmJmJgYTJs2rdxfSVXeTpw4ge7du2Pnzp04d+6ctptTpMWLFxf6TGJgYCAGDx5coe0pbrRyQXfu3IGxsTG++eYbhYEqTLfdunULt27d0nYzGHuvcVDHykVUVJTC1Au6bPny5Vi+fHmRZfr27VtBrSm9HTt2KM0xJ5OZmVmiOiuyL/kVU4wxVjIc1JUTNzc3zJ07V625oBgrSykpKUhJSdF2MxhjjFUwjjjKSXlPPswYY4wxlh8HdYwxxhhjVQAHdYwxxhhjVQAHdYwxxhhjVQAHdYwxxhhjVQAHdeXEzc0NISEhuHnzZvnvrBqAZe9StfLfHWOMMcZ0Dwd15YRHv1YtAQEB2LhxY7nV7+DgACJC7dq1y20f+Xl5ecGngl5CvWLFCuzcubNC9qUOKysrEBE6depUqnrWrVsnf+E9Y+z9IIQQDnDAeIyHAxwg1LEwSrdaw0om/7ywlgWWy0mDBg2wZcsWPHv2DGKxGNHR0Th58iQcHR3VrsPLy+vdG2sJEokEUVFR8PDwQJ06dRTKRUREwN3dXSFv/fr1SE1NlU8KHBAQAGdn51If1/vC3d0d06ZNK/f91K9fH+7u7li9erU8T9bv33zzjULZIUOGgIjKvU1l5ZdffoGLiwuaNGmi7aYwxiqAE5wQiUhcwAX8iT9xARcQiUg4wUnbTZPjoK6yawMg/+sxpwCY/y6/nFhZWeH27dtwdHTEokWL0KFDBwwaNAgBAQHYtm2bRnWdOnUKDRs2RJMmTTBjxgwMGzYMHh4ehZYXCoXw9PTE1KlT4ejoiICAgNIeznspNTUVb968Kff9fPbZZ7h27RqioqIU8jMzM/HNN98oBfCVSWJiIs6cOYM5c+ZouymMsXLmBCccxVGYw1wh3xzmOIqjOhPYcVBXmbUBMBaAUYH8D97ll1Ng5+HhASJC9+7d8ffff+PJkyd49OgRNm7ciB49egAAPD094evrq7CdSCRCfHw8XFxc5HlZWVlISEhAXFwczp49i0OHDmHAgAEq96uvr48jR46gf//+sLe3R1BQUKFtXLp0KaKioiAWixEXF4e1a9cWWfbu3buYPHkyIiIi8Pr1a/z555+oVauWQjk9PT1s3boVKSkpSEpKwsqVKxXWu7q64vHjx8jMzMSLFy9w5MgRhbZv3rwZCQkJyMzMRGBgILp166ayPR988AEyMjIwcOBAhXwnJye8ffsWhoaGAIBGjRrhr7/+QnJyMpKSknD8+HFYWVkVepz55b/9OmvWLMTGxiq9CuzEiRPYu3evwjmaNWsWoqOjkZ6ejsOHDxd7u3j8+PE4efKkUv65c+fw4sULLF68uNBtZfvMz93dHREREUrHsXjxYrx48QIpKSn48ccfIRKJ8Msvv+DVq1eIiYlR+M7JtG7dGleuXEFmZiYePnwIBwcH+TqhUIjdu3cjPDwcGRkZCAsLwxdffKFUx8mTJzFhwoQizwFjrHITQojN2Cz/XHAdAGzCJp24Fav9FrCSEQAYlO9zwXV4t76Mb8UaGxtj0KBB2LZtGzIyMpTWy67+7N69G4MGDULDhg3l6wYPHoxatWoV+l5Sa2trDBo0CBKJRGldrVq18O+//6Jdu3b46KOPEBYWVmgbR40ahQULFmD27Nlo0aIFRo4ciZCQkCKPq1mzZhg5ciSGDh2KoUOHwsHBAd9++61CGWdnZ+Tk5MDW1hZffPEFFixYgBkzZgAAunbtii1btuDHH39Eq1atMGjQIFy6dEm+7S+//IJRo0bB2dkZXbp0wdOnT+Hv7w9jY2OltqSmpuLff//FpEmTFPInTpyIEydOID09HQYGBggICMDbt29hb2+P3r174+3btzh9+jSqVdNstMyRI0dgYmKi8H7bOnXqYODAgfD29pbnNW/eHGPHjsWwYcMwaNAg2NjYFHlltk6dOmjfvr3K4Ds3NxdLlizBvHnzYG5urmJr9Tk6OqJRo0awt7fHl19+ieXLl+Off/5BSkoKbG1tsWPHDuzYsQONGzdW2G7dunX49ddf0blzZ1y9ehUnT55E3bp1AeQFdbGxsRg7dizatm2LFStWYPXq1RgzZoxCHTdv3oSlpSUsLS1LdQyMMd1lBztYwKLQoE0IISxhCTvYVXDLVCNO5ZeMjIyIiMjIyEhpnZWVFe3fv5+srKw0r7sJCMvUSE3K9ng+/PBDIiIaOXJksWUfPnxICxculC8fO3aM9uzZI1/28vIiiURCaWlplJGRQTLz589XqCciIoLEYjElJiaSqalpsftdsGABhYWFkZ6enjyvdu3ahZZfunQpvX37lmrVqiXPW7t2LV27dk2+HBAQQCEhIQrbrVmzRp7n5OREr1+/VqhDlmrWrElZWVk0YcIEeZ6enh7FxsbS119/TQDIwcGBiEjezpEjR1JqaioZGBjIv0cZGRn0ySefEABycXGh0NBQhf1Uq1aN0tPTqX///sWeIy8vL/Lx8ZEvHz9+nHbv3i1fnjlzJj1//pyEQqH8HEkkEjI3N5eXGThwIOXk5FCDBg1U7qNTp05ERNS4ceNC93316lX5fidOnEiU91CdfJ93795V2Nbd3Z0iIiIU6oqIiCCBQCDPCw0NpYsXL8qXhUIhpaWl0bhx4+Q/d0REixYtkpcRiUQUHR2t8H0tmH777Tc6cuSIQp7s59ve3r5Mf850ORX1s1RcKtXvPE5qJZFIREOHDiWRSKT1tlSVNB7j3z39XXQaj/Fl0kdFxQ3FJb5SV1nVKr6IRuXUJLtFp84D7bt375bf9jI1NcWQIUOwZ88ehTIBAQGwsbGBra0ttmzZgtOnT2Pr1q1KdZ05cwaGhoZYsmRJsfs9cuQIDAwMEB4ejl27dmHkyJEQiURFbhMZGYm3b9/Kl+Pj41G/fn2FMtevX1dYvnbtGlq0aAGhUIizZ88iKioK4eHh2L9/PyZOnAgDAwMAeVcB9fX1ceXKFfm2OTk5uHnzJtq0UX2P/N9//0VOTg6GDx8OIO/qY1paGs6cOQMg78pg8+bNkZaWJk/JycmoUaMGmjVrVuw5Ksjb2xujRo2Cvr4+AGDSpEn466+/IJVK5WWio6MRFxencPwikQitWrVSWafs+MVicaH7/eabb+Ds7FzoeVBHSEiIwvcxISEBwcHB8mWpVIpXr14p9ee1a9fkn3NzcxEUFKTQjtmzZ+PWrVt4+fIl0tLSMHPmTKUrcpmZmQCAmjVrlrj9jDHdFo/4Mi1Xnjioq6zeFl9Eo3JqevLkCaRSqVp/hPfv34+mTZuiR48emDx5MiIjI3H58mWFMunp6Xj27BmCg4Ph7u6O6tWrY+nSpUp1nT9/HsOHD8esWbOwZcuWIvcbGxuLVq1aYe7cucjMzISHhwf8/Pygp6dX6DYFb/kSEYRC9X883r59iy5dumDChAmIj4/HihUrcP/+fdSuXbvQQFggEBQaHEskEhw9ehQTJ04EkHfr9dChQ8jNzQWQd3vw9u3bsLGxUUgtW7bEwYMH1W63jK+vL4RCIYYMGYLGjRvDzs4Of/zxR5HbyNpe2DEkJSUBgMpbzDKBgYHw9/dXGB0rI5VKlZ7zU3VrWVXflbQ/ZccyZswYbNy4EXv27MGAAQNgY2MDLy8vedArI7tdm5iYWGzdjLHKKRCBiEEMpJCqXC+FFNGIRiACK7hlyjioq6yiALxB3gVXVejd+qhC1pdQSkoK/P39MXfuXJVXJ/I/OJ+cnIzjx4/DxcUFLi4u8PLyKrb+5cuX4+uvv4aZmZnSunPnzmHo0KGYPn06fvvttyLrEYvF8PX1hbu7O/r06QNbW1t06NBBjSMsnGwQSP5lWZAL5F3tOX/+PL755ht07NgRTZo0gaOjI54+fYqsrCz07t1bvq2enh66deuG0NDQQvfn7e2NQYMGoW3btujbt6/C82137txBixYt8PLlSzx79kwhpaamanxsYrEYx44dw6RJkzBhwgQ8fvwYd+7cUShjaWmp0C89e/ZEbm4uHj9+rLLOZ8+e4c2bN2jbtm2R+/72228xbNgwpTkdExMTFZ7JBAAbGxsNjqpo+ftTJBKha9eu8mc17ezscPXqVWzfvh337t3Ds2fPVF4Bbd++PbKzs4t9ZpMxVnlJIYU73OWfC64DgPmYX2jQV5E4qCsn5f5GCQJwOt/nguvwbn3xd0k15ubmBpFIhJs3b+LTTz9F8+bN0bp1a8ybN0/hlhaQdwtWdntt3759xdZ98eJFhISEFHqbNSAgAEOGDIGzs3OhD+k7Oztj+vTpaNeuHaytrTFlyhRkZGQoTauhKQsLC/z6669o2bIlxo8fj3nz5sknnx0yZAjmzZuHTp06wdLSElOnToVQKMT//d//ISMjA9u3b8e6deswcOBAtGnTBr///jtq1qwJT0/PIs9FQkICvL29ERkZiRs3bsjXeXt7IykpCSdOnEDv3r3RpEkT2NvbY9OmTSUeeODt7Y0hQ4Zg+vTpKq/SicVi7Nu3Dx07dkTv3r2xZcsWHD58GAkJCSrrIyKcO3dOIZhV5eHDh/D29sasWbMU8i9cuABTU1MsWrQITZs2hZubGz755JMSHZsqc+fOxciRI9GqVSts27YNxsbG8scDnj59im7dumHAgAFo0aIFVqxYgQ8//FCpDjs7OwQGBhZ5i5kxVvn5wAejMRpxiFPIj0UsRmM0fOCjpZYp4qCunFTIGyVCARwGkFYgP/VdfuEXgUolMjISXbp0QUBAAH799Vc8fPgQZ8+eRb9+/eDq6qpQ9ty5c4iPj4e/vz/i49V73mDDhg2YOXOm0mhFmYsXL2Lw4MGYMmUKtm/frrT+9evXmDlzJq5cuYIHDx6gX79+GD9+PJKTkzU/2Hz2798PAwMD3Lx5E9u2bcPWrVuxa9cu+T4//fRT/PfffwgNDcWcOXMwYcIEPHr0CEDe1ai///4bBw4cwJ07d9C8eXMMHDgQr1+/LnKff/75J2xsbBSu0gF5z3LZ29sjOjoax44dQ2hoKPbs2QMDA4MSXakDgP/++w/Jyclo3bq1ylu4T58+xbFjx+Dn54czZ87g4cOHcHNzK7LOXbt2Yfz48Uq3UQv64YcflMqEhYXBzc0Nc+fOxf3799G9e3esX79e8wMrxLfffotvvvkG9+/fh52dHUaMGIFXr14BAHbs2IFjx47h0KFDuHHjBurVq6dy/sQJEybg999/L7M2McZ0lw980ARN0Ad9MAET0Ad9YA1rnQnoZLQ+sqQqp3Ib/Zo/6eN/o12bgSDQ/nHLkoGBAaWkpJCTk5NW21GaEXucVI9EVTddv36dxo8vflRYZeujwYMHU0hIyHs3ypBHv+p24tGvup949CsrGuX7HF1gWUsEAgHMzMywcuVKvHnzRuUEtOz9MGvWrCIHqVRWhoaGcHFxkQ9eYYwxbat6v2nfRxIAy7TdCEWWlpaIjIxETEwMpk2bxn/4KlhaWsF78v/zySefKI1CLk8PHjzAgwcPKmx/FSX/G0MYY0wXcFDHykVUVFSxz1Gx8lPUKNH8c82pa/ny5Vi+fHkpWsQYY6y8cVDHWBX07NkzbTeBMcZYBeNn6rRINtFpcW87YIyxqkD2u06dN9IwxjTHQZ0WyZ57Kvj6IsYYq4pkv+tKOu0OY6xofPtVi16/fo2wsDCMHTsWycnJyMrK0naTqiwjIyPUqVNH281gReA+qhxK2k/Vq1fH2LFjERYWhjdv3pR9wxhjHNQVp3Hjxjhw4ADq16+PnJwcrFy5EkePHi2TuokIv//+O1atWoXvv/++TOpkqhkYGMhfvs50E/dR5VCafhKLxVizZg3ffmWsnHBQV4ycnBzMnz8f9+/fh6mpKe7cuQM/Pz9kZGSUSf2JiYlwc3NDw4YN+dm6ciISiWBvb49Lly7x1Co6ivuocihNP+Xm5uLFixfIyckpp9YxxtQK6ubNm6dxxV5eXnj79q3G2+maFy9e4MWLFwDyArDk5GTUrVu3zII6IC9wjI2NLbP6mCKRSISkpCRERUVxwKCjuI8qghCAHQAzAPEAAgENX0DO/cSYblMrqNu0aRNiY2PV/iG2sLDAP//8oxNBnZ2dHRYuXIiuXbuiUaNGGDlyJE6cOKFQxtXVFQsXLoSZmRlCQkIwf/58lZOzdu3aFUKhkAMwxlgl4wRgMwCLfHkxANwBHXtvJWOs5NS+/dqtWzckJiaqVVaXRjYZGhri/v378PLywrFjx5TWjx07Fps2bYKbmxuuXLmC2bNn49SpU2jbti1iYmLk5erWrYv9+/djxowZFdl8xhgrJScAqp4DNn+XPxoc2DFWNagV1C1fvlyjq26rV69GcnJyiRtVlk6fPo3Tp08Xuv7LL7+Ep6cnPD09AQALFizAwIED4erqiiVLlgAA9PX14ePjgzVr1uDatWtF7k9fXx/Vq1eXLxsZGQHIu23Bz8xph0gkglAo5POvw7iPygeREFLp5ndLBWewEiLv9usmCIX/QCAo/lYs95Pu4z7SfcX1UWn6Tq2gbsWKFRpV+vPPP5eoMRWtWrVq6Nq1q1J7z5w5g169esmX9+7di//++w9//PFHsXUuXrwYy5YtU8rv378/j+zTEpFIhC5dukAgEPBzQDqK+6h8JCW1x/XrFkWUEAKwRPfuX8HE5GGx9XE/6T7uI91XXB8ZGBiUuG6NR7/WqFEDAoFAHqBYWlrCyckJjx49wtmzZ0vcEG0wMTGBnp4eEhISFPITEhLQsGFDAMBHH32EcePG4cGDBxg5ciQAYMqUKXj4UPUvwDVr1mDDhg3yZSMjI8TFxeHs2bNFvmSdlR+RSAQiwunTp/mXnI7iPiofUukHapW7cSMaQuGpYstxP+k+7qPyRQICLAGqRRC8FQDRgIA0e895cX0ku8NXEhoHdSdOnMCxY8ewc+dO1K5dGzdu3IBEIoGJiQm+/PJL7Nixo8SN0ZaCcyYJBAJ53pUrVzS6FJqdnY3s7Gy4ublh7ty5EArzbnnk5ubyD5gWSaVS7gMdx31UHuLUKkUUp/Z5537SfdxH5aQNgEEAauctEgh4A+A0gFDNqiqqj0rTbxq/JqxLly4IDAwEAIwePRoJCQmwsrLC1KlT8cUXX5S4IdqQlJSEnJwc+VU5mfr16ytdvdOUh4cH2rVrh+7du5eqHsYYK7lA5I1yLex5OSmA6HflGGOFagNgLICCF78/eJffpsJbpJLGV+pq1qwpv404YMAAHDt2DESE69evw8rKSq069PX10b17dzRp0gQ1a9ZEYmIi7t69i8jISE2bUyoSiQS3b99G//79cfz4cXl+//79laY9YYyxykeKvGlLjr77LCywDgDmQ9P56hh7rwiQd4VO9rngOnq3PuzdZy3SOKh7+vQpRo4cCR8fHwwcOBAbN24EkHd1q7ipTHr27Il58+Zh5MiR0NfXx+vXr5GZmYm6deuievXqCA8Px65du7Bjx44ym+PO0NAQzZs3ly9bW1ujU6dOSE5ORkxMDDZs2IADBw4gKCgI165dw6xZs2BpaVnq28gFb78yxph2+CBv2pKC89TFIi+g4+lMdIZQCNjZAWZmQHw8EBgISDng1joryG+5qiR4t94KQGRFNKhopEkaNWoUZWVlUU5ODvn7+8vzv/32W/Lz8yt0u+PHj1NcXBytW7eO7OzsyMDAQGG9tbU1TZ06lU6dOkXPnz+njz/+WKN2FZYcHBxIFS8vL3kZV1dXioiIILFYTEFBQWRnZ1cm+wZARkZGRERkZGRUZnVy0iyJRCIaOnQoiUQirbeFE/eR9pKQAAcCxr/7V8j9pEvJyYkQHU0g+l+Kjs7L5z7SbmoPwjI1Uvuy6aPSxA0aX6n7+++/YWlpCTMzM9y/f1+ef/78efj4+BS63ZkzZzBmzBhIJBKV6yMiIhAREYH9+/ejbdu2aNSokaZNU+nixYsQCIoembJ9+3Zs3769TPbHGGO6SQrgorYbwVRxcgKOqpgg2tw8L3/0aKCIv6+snKl741D7L9HSfKAEkDflx7179xRGjd66dQv/93//V+g2Hh4ekEgkEAqFsLe3R506dQot++jRI5w7d64kTdMZbm5uCAkJwc2bN7XdFMYYY7pKKAQ2b/7f54LrAGDTJuV1rOJEIW+UKxWynt6tj6qwFhVK4yt11atXx7x589C3b1/Ur19f6Zmxrl27Frm9VCqFv78/2rRpg9evX2u6+0rDw8MDHh4eMDIy0qnXpjHGGNMhdnaARRETRAuFgKVlXrmLfKVVKwh505aMffdZUGAd3q0vLOirQBoHdXv27EH//v1x9OhR3Lx5U2mON3UEBwejadOmFT7alTHGGNMpZmZlW46Vj1AAh6EwTx0AIBUlmqeuvGgc1A0ZMgSDBw/G1atXS7zT7777DuvXr8cPP/yA27dvIz09XWF9VXjzAo9+ZYwxVqz4+LItx8pPKPKmLbECUAt5z9BFQSeu0MloHNTFxcWVOug6ffo0AODkyZMKV/pkb3LQ09O4WTqHb78yxhgrVmAgEBOTNyhC1UUAqRSIjc0rx7SPoBPTlhRG4+jpq6++wtq1azFnzhxER0eXaKd9+/Yt0XaMMcZYlSKVAu7ueaNcpVLFwE42R938+TxfHVOLxkFdUFAQatSogfDwcGRkZChNUVKvXr1i67h06ZKmu2WMMcaqJh+fvGlLNm9WHDQRG5sX0PF0JkxNGgd1f/75J8zNzbFkyRIkJCSUaKAEAPTu3RuzZ89G06ZNMWbMGDx//hyTJ09GREQErly5UqI6GWOMsUrJxwc4cYLfKMFKReOgrlevXujZsycePHhQ4p1++umnOHDgALy9vdGlSxdUr14dAGBkZIQlS5ZgyJAhJa5bV/BACcYYYxqRSnnaElYqGkccYWFhMDAwKNVOv//+e8yZMwezZs1SuH179epVdOnSpVR16woPDw+0a9cO3bt313ZTGGOMMfYe0Dio+/bbb/Hrr7/CwcEBdevWhZGRkUJSR6tWrVQ+V5eamlrkmyYYY4wxxphqGt9+lU1Hcv78eYV8TaYjiY+PR/PmzREVpfhOjd69eyM8PFzTJjHGGGOMvfc0DurKYjqSnTt3YvPmzZg+fTqICI0aNULPnj2xfv16rFixotT1M8YYY4y9bzQO6spiOpJ169ahdu3aCAgIQI0aNXDp0iVkZWVh/fr12LZtW6nr1wU8UIIxxhhjFUmtiKNDhw4QCATFF3ynbdu2EIlERZb5/vvvYWJigu7du6NHjx4wNTXFjz/+qPY+dB0PlGCMMcZYRVIrqLt7965akwrLXLt2DZaWloWu9/T0RK1atZCZmYnbt2/j1q1bSE9PR82aNeHp6an2fhhjjDHGWB61br8KBAKsXLkSGRkZalWqr69f5HpnZ2d8++23ePv2rUK+gYEBpk6dis8++0yt/TDGGGOMsTxqBXWXLl1Cq1at1K702rVryMzMVMo3MjKCQCCAQCCAkZERxGKxfJ1IJMLgwYPx8uVLtffDGGOMMcbyqBXUlcWIVwB4/fo1iAhEhMePHyutJyIsXbq0TPbFGGOMMfY+0Xj0a2n07dsXAoEA//33H0aNGoXk5GT5uuzsbERFRSE+Pr4im1RuePQrY4wxTQghhB3sYAYzxCMegQiEFPzuV6a+Cg3qZNOhWFtbIzo6WmUZCwsLxMTEVGSzyoWHhwc8PDxgZGSE1NRUbTeHMcaYDnOCEzZjMyxgIc+LQQzc4Q4f+GixZawy0cplpPDwcJiamirl161bFxEREVpoEWOMMaYdTnDCURyFOcwV8s1hjqM4Cic4aallrLLRSlBX2Jx3tWrVUhg8wRhjjFVlQgixGZvlnwuuA4BN2KS0jjFVKvT266+//gogb0DEihUrFKZIEYlEsLW1xb179yqySYwxxpjW2MFO4ZZrQUIIYQlL2MEOF3GxAlvGKqMSBXWTJ0/GnDlzYG1tjZ49eyI6Ohru7u6IiIjAyZMnC92uc+fOAPKu1HXo0AHZ2dnyddnZ2bh//z7Wr19fkiYxxhhjlY4ZzMq0HCtfQgB2AMwAxAMIBHRqKIvGQd2cOXOwYsUKbNq0Cd999538dWCvX7/G/PnziwzqHB0dAQB79uyBu7s70tLSSthsxhhjrPKLh3ozPqhbjpUfJwCbAYXrqjEA3AGdGcqi8U36efPmYebMmVi9ejVyc3Pl+UFBQejQoYNadUyfPh1paWlo1qwZBgwYgBo1amjaDMYYY6zSC0QgYhBT6NQlUkgRjWgEIrCCW8bycwJwFCgwlCVv+ei79bpA46DO2toad+/eVcrPysqCoaGhWnUYGxvj3LlzePz4Mfz8/GBmlndZeffu3Xz7lTHG2HtDCinc4S7/XHAdAMzHfJ6vTouEwLuhLMpBk2x5k4p12qBxGyIiImBjY6OU/8knn+DRo0dq1bFp0yZIJBJYWloqDJY4dOgQBg0apGmTGGOMsUrLBz4YjdGIQ5xCfixiMRqjeZ46LbND3i3XwgImIQDLd+W0TeNn6tatW4dt27ahRo0aEAgE6N69OyZMmIDFixdjxowZatUxYMAADBw4EHFxil/gJ0+ewMrKStMm6SR+owRjjDF1+cAHJ3CC3yihg9QdoqILQ1k0Dur27t0LPT09/PLLL6hZsyYOHjyIuLg4uLu749ChQ2rVYWhoqHCFTsbExARZWVmaNkkn8RslGGOMaUIKKU9booPUHaKiC0NZSnQZaffu3WjSpAnq16+Phg0bwtLSEnv27FF7+0uXLmHq1KnyZSKCQCDAwoULERAQUJImMcYYY4yVuUDkjXIt7JqpFED0u3LaVqrJh1+9elWi7RYuXIgLFy6gW7du0NfXxy+//IJ27dqhbt26+Oijj0rTJMYYY4yxMiNF3rQlR999FhZYBwDzoRvz1Wl8pa5u3br47bffEBISgsTERLx69UohqSM0NBQdO3bEzZs3cfbsWRgaGuLYsWPo3LkzwsPDNT4IxhhjjLHy4gNgNFBgKAsQ+y5fV4ayaHyl7o8//kCzZs3g6emJhIQEEFGJdpyQkIBly5aVaFvGGGOMsYrkA+AEqtgbJXr37o3evXvjwYMHZdKAmjVrYty4cTAwMMCZM2fw9OnTMqmXMcYYY6wsSQGdHsqi8e3XsLAwGBgYlGhnFhYWuHDhAlJTU3HmzBlYWFjgzp072L17N7Zu3Yp79+7Bzk4XZnphjDHGGKtcNA7q3NzcsGrVKtjb26Nu3bowMjJSSEVZv3499PX14erqioyMDPj7++PJkycwMzNDgwYN4Ofnx7dkGWOMMcZKQOPbr69fv0bt2rXx33//KeQLBAIQEfT0Cq/S3t4ew4cPx61bt+Dn54ekpCRMnz4dL1++BAD89NNPOH/+vKZNKnfHjh1Dnz59cP78eYwZM0bbzWGMMcYYU6JxUOft7Y3s7GxMnDhR44ESpqamiIqKAgCkpKQgIyMDCQkJ8vUvXryAsbGxpk0qd1u2bMGePXvg7Oys7aYwxhhjjKmkcVDXvn17dO7cGY8fP9Z4Z7KreTIlHTlb0S5cuAAHBwdtN4MxxhhjrFAaB3VBQUGwsLAoUVAHACtWrJC/IkxfXx/fffcd3rx5AyBvJGxZs7Ozw8KFC9G1a1c0atQII0eOxIkTJxTKuLq6YuHChTAzM0NISAjmz5+Py5cvl3lbGKuahNDtQf6MMfZ+0Dio27p1KzZv3ox169YhODgYEolEYX1wcHCh2166dAmtWrWSL1+9ehVNmzZVKlOWDA0Ncf/+fXh5eeHYsWNK68eOHYtNmzbBzc0NV65cwezZs3Hq1Cm0bdsWMTExZdoWxqoeJwCbAVjky4tB3vzrujIdJ2OMvR80DuoOHToEAArvepW9u7W4gRJ9+/YtQRNL5/Tp0zh9+nSh67/88kt4enrC09MTALBgwQIMHDgQrq6uWLJkSUU1k7FKyAl5L84pyPxdvi7Ns84YY1WfxkGdtbV1ebRDK6pVq4auXbvi559/Vsg/c+YMevXqVaI69fX1Ub16dfmybJoXkUgEkUhU8sayEhOJRBAKhXz+yxCREFLp5ndLBWdGEiLv9usmCIX/QCAo/lYs91HlwP2k+7iPdF9xfVSavtM4qIuOji7xznSNiYkJ9PT0FEbgAnmvMGvYsKF8+fTp0+jSpQsMDQ0RExMDJycnBAUFqaxz8eLFKufa69+/PzIzM8u0/Uw9IpEIXbp0gUAgQG5urrabUyUkJbXH9esWRZQQArBE9+5fwcTkYbH1cR9VDtxPuo/7SPcV10clfcEDoGZQN2zYMJw6dQo5OTkYNmxYkWV9fX1L3BhtKTgKt+Ao3UGDBqld15o1a7Bhwwb5spGREeLi4nD27FmkpaWVvrFMYyKRCESE06dP8y+5MiKVfqBWuRs3oiEUniq2HPdR5cD9pPu4j3RfcX1U3IsciqJWUHf8+HE0bNgQiYmJOH78eKHlinumTtckJSUhJydH4aocANSvX1/p6p26srOzkZ2dDTc3N8ydOxdCYd6tqdzcXP4B0yKpVMp9UKbi1CpFFKf2Oec+qhy4n3Qf95HuK6qPStNvar0mTCQSoUaNGvLPhaXKFNABgEQiwe3bt9G/f3+F/P79++Pq1aulqtvDwwPt2rVD9+7dS1UPY7opEHmjXAt7Xk4KIPpdOcYYYxVB7Xe/RkREwNTUtEx2OnDgQHz00UfyZTc3N9y9exfe3t6oU6dOmexDxtDQEJ06dUKnTp0A5A306NSpEyws8p4H2rBhA2bMmAEXFxe0bt0aGzZsgKWlJXbs2FGm7WCsapEib9oS2eeC6wBgvop1jLFCCQA0AdD+3b8CbTaGVUZqB3UCQdl9u9atW4cPPsh7Jqd9+/b49ddf4efnh6ZNmyo8j1YWunXrhnv37uHevXsAgI0bN+LevXtYsWIFAODw4cOYP38+fvzxR9y7dw/29vYYPHhwqQeEuLm5ISQkBDdv3iztITCmo3yQN21JwVuxseDpTHSQUAg4OADjx+f9K1T71z+rCG2Q9/+gacj78Zn2brmNthrEKiOt3C+1trbGo0ePAACjRo3CP//8g++++w6dO3eGn59fme7r4sWLxQak27dvx/bt28t0vx4eHvDw8ICRkRFSU1PLtG7GdIcPgBPgN0roOCcnYPNmwCLfiOWYGMDdHfDh4Fvr2gAYqyL/g3f5hwGEVmiLWCWlUVA3Y8YMvH37tsgyW7duLbae7Oxs+SvBPv74Y+zfvx8AkJycLL+CxxirLKQALmq7EawwTk7AURWTRJub5+WPHs2BnTYJAAzK97ngOnq3PuzdZ8aKoFFQN2fOnCJHZRCRWkHd5cuXsWHDBly5cgXdu3fHuHHjAAAtW7ZEbGysJk3SWQVHvzLGWIUTCvOu0Mk+F1wnlQKbNgEnTuR9ZhXPCkDtItYL3q23AhBZEQ1ilZlGQV23bt2QmJhY6p1+/vnn8PDwwOjRo+Hq6ornz58DAD755JMiX+lVmfDtV8aY1tnZKd5yLUgoBCwt88pd5KutWlGrjMux95raQV3BCXpLIyYmRuUkxl9++WWZ7YMxxt57ZmZlW46VvaKfaNK8HHuvqR3UlXb0q5GRkfyNCsXNllwV3rzAt18ZY1oXH1+25VjZiwLwBnmDIlT9mSUAqe/KMVYMtYO65cuXFztIoigpKSkwMzNDYmIiXr9+rfLKn+z1XJVtEmNV+PYrY0zrAgPzRrmam6uewkQqBWJj88ox7SAAp5E3ypWgGNjJ/kyeBg+SYGpRO3qSzetWUo6OjkhOTgYA9O3bt1R1McYYU4NUmjdtydGjeZ/zB3aygRHz5/MgCW0LRd60JYOgOGgiFXkBHU9nwtRUYZfELl26pPIzY4yxcuTjkzdtScF56mJj8wI6ns5EN4Qib9oSK+QNiniLvFuufIWOaaDy3+dkjDFWNB+fvGlL7OzyBkXEx+fdcuUrdLqFwNOWsFLhoK6c8EAJxphOkUp52hLGqrgSRRwikQj9+vXDrFmzUKtW3uQ5ZmZmMDQ0LNPGVWYeHh5o164dunfvru2mMMYYY+w9oPGVOktLS5w+fRqWlpaoXr06zp49i7dv32LRokWoUaMGXF1d1arj5cuXEIvFJWo0Y4wxxhhTpPGVus2bNyMoKAjGxsbIzMyU5/v4+KBfv37Fbi8QCPDkyRM0btxY010zxhhjjLFCaHylrnfv3vjoo48gkUgU8qOiomBubl7s9kSEJ0+eoF69enj69Kmmu2eMMcYYYypofKVOKBRCJBIp5Tdu3FjtN0EsWrQI69atQ7t27TTdfaXh5uaGkJAQ3Lx5U9tNYYwxxth7QOOg7uzZs5g/f758mYhgaGiI5cuXw8/PT606/vjjD3Tv3h33799HRkYGXr16pZCqAh4owRhjjLGKpPHt1wULFiAgIAAhISGoUaMGDh48iBYtWiApKQkTJkxQq478QSFjjDHGGCs9jYO6+Ph42NjYYMKECejSpQuEQiE8PT3h7e2t9mjW/fv3a9xQxhhjjDFWuBJNPiwWi+Hl5QUvL68S77hp06ZwcXFBs2bN4O7ujsTERAwcOBAxMTF49OhRietljDHGGHsfaRzUDRs2TGU+EUEsFuPp06eIjIwssg57e3ucOnUKV65cgb29Pb777jskJiaiY8eOmDFjBsaMGaNpsxhjjDHG3msaB3XHjx8HEUEgECjky/KICJcvX8bIkSPx+vVrlXX8/PPP+P7777Fx40akpqbK8wMCAuDu7q5pk3QSvyaMMcYYYxVJ44ijf//+uHXrFvr374/atWujdu3a6N+/P27evImhQ4fC3t4e9erVw/r16wuto0OHDvDx8VHKT0xMRL169TRtkk7i0a+MMV0ihBAOcMB4jIcDHCAs2VsiGWM6TOMrdZs3b8asWbNw7do1ed5///2Hr7/+Grt27UL79u0xf/587Nmzp9A6Xr9+DTMzM6XbtJ07d0ZcXJymTWKMMVYEJzhhMzbDAhbyvBjEwB3u8IHyf7AZY5WTxv9Va9asmcItU5nU1FQ0bdoUAPDkyROYmJgUWsfBgwexdu1aNGjQAEQEoVCIXr16Yf369TwyljHGypATnHAUR2EOxTf+mMMcR3EUTnDSUssYY2VN46Du9u3bWLdunULQZmJigl9++QW3bt0CALRo0QKxsbGF1vHdd98hOjoacXFxqFWrFh49eoRLly7h6tWr+Omnn0pwGIwxxgoSQojN2Cz/XHAdAGzCJr4Vy1gVofHt188++wwnTpxAbGwsYmJiQESwtLREeHg4RowYAQCoVasWVq5cWWgdOTk5mDx5Mn788Ud07twZQqEQd+/e5XfBMsZYGbKDncIt14KEEMISlrCDHS7iYgW2jDFWHjQO6h4/fow2bdpg4MCBaNmyJQQCAcLCwnD27FkQEQDgxIkTRdbRvHlzPH36FOHh4QgPDy9ZyxljjBXJDGZlWo6VLyEAOwBmAOIBBAKQarVFrLIp0eTDAODv7w9/f/8Sbft///d/iI+Px8WLF3Hx4kVcuHABjx8/LmlTGGOMqRCP+DItx8qPE4DNgMJ11RgA7gAPZWFqK1FQV7NmTTg4OMDS0hL6+voK67Zu3Vrs9mZmZnB0dISDgwMWLFiA7du3IyEhQR7g7dy5syTNYowxlk8gAhGDGJjDXOVzc1JIEYtYBCJQC61jMk4AjqrIN3+XPxoc2DH1kSbJxsaGnj9/Tq9fvyaJREIJCQmUm5tLaWlp9OzZM43qkqVmzZqRl5cXZWdnU05OTonq0NVkZGRERERGRkZab8v7mkQiEQ0dOpREIpHW28KJ+6iikxOcKBe5lItcIpA8yfKc4MT9pMUkBCgaoFyASEXKBSjqXTnuo6qRiuuj0sQNGg952rhxI3x9fVG3bl1kZmaiR48esLKywu3bt/H111+rVYehoSEGDhyINWvW4OrVqwgODkbHjh2xdetWfPrpp5o2SSe5ubkhJCQEN2/e1HZTGGPvMR/4YDRGIw6Kc4DGIhajMZrnqdMyO+Tdci3sj7EQgOW7cowVR+PbrzY2Npg9ezakUilyc3NRvXp1REREYNGiRdi3b5/KN0UUlJKSguTkZBw4cAA//fQTLl++rHLuu8rMw8MDHh4eMDIyqnLHxhirXHzggxM4ATvYwQxmiEc8AhEIKT+Gr3XqDlHhoSxMHRoHdRKJRD7KNSEhAZaWlggLC8ObN29gaWmpVh3//vsvevfujSlTpsDCwgKWlpa4cOECwsLCNG0OY4wxNUgh5WlLdJC6Q1R4KAtTh8a3X+/evYtu3boBAAICArBixQpMnDgRmzZtQnBwsFp1ODk5wdTUFP3798fly5fRr18/XLhwAfHx8fjzzz81bRJjjDFWKQUib5RrYddMpQCi35VjrDgaX6lbsmQJjIyMAAA//PAD9u3bh+3bt+Pp06dwcXHRqK7g4GCIRCJUq1YN1atXx6BBg6rMM3WMMcZYcaTIm7bk6LvPwgLrAGA+eL46ph6Ng7rExESEhIQAAJKSkjBkyBCNdzp//nz06dMHdnZ2MDIywr1793Dx4kXs3LkTly5d0rg+xhhjrLLyQd60JQXnqYtFXkDHQ1mYujQK6gQCAZ48eYJ27dqV6pVekyZNwoULF/D777/j0qVLSEtLK3FdjDHGWGXnA+AE+I0SrHQ0CuqICE+ePEG9evVKFdR9+OGHJd6WMcYYq4qkAA9lYaWi8e3XRYsWYd26dXB1dZXfhi2J2rVr47PPPkObNm1ARAgNDYWnpydP/8EYY4wxVgIaj379448/0L17d9y/fx8ZGRl49eqVQlJH165d8ezZMyxYsAB169aFiYkJFixYgGfPnqFz584aH0R5GzJkCMLCwvD48WN89tln2m4OY4wxxpgSja/UzZ8/v9Q73bhxI06ePImZM2ciNzcXACASibB7925s2rQJDg4Opd5HWRGJRNiwYQP69u2L1NRU3LlzB8eOHUNKSoq2m8YYY4wxJqdxULd///5S77Rbt24KAR0A5Obm4pdffkFQUFCp6y9L3bt3R0hICJ4/fw4A8PPzw8CBA/HXX39puWWMMcYYY/+j8e1XAGjatClWrlyJgwcPwtTUFAAwcOBAtG3bVq3tU1NTVb59wsLCosxHwtrZ2eHkyZOIi4sDEWHEiBFKZVxdXREeHo7MzEwEBQWhd+/e8nWNGjVCXNz/3pkYGxsLc3PzMm0jY4wxxlhpaRzU2dvbIzg4GLa2tvj0009Rq1YtAEDHjh2xfPlyteo4dOgQPD09MXbsWDRu3Bjm5uYYN24cdu/eXeZvlDA0NMT9+/fx+eefq1w/duxYbNq0CatWrULnzp0RGBiIU6dOwcIib7YggUCgtI3sNWmsIggBOAAY/+7fEv0/hDHGGHsvkCbp6tWrtGDBAgJAqampZG1tTQCoW7duFBsbq1Yd1apVo02bNpFYLKacnBzKycmhzMxM2rBhA+nr62vUHk0SEdGIESMU8q5fv04eHh4KeY8ePaLVq1cTAOrZsycdO3ZMvm7Tpk00YcIEtfdpZGRERERGRkbldlxVNzkREE0A5UvR7/LVr0ckEtHQoUNJJBLpwDFx4j6qvIn7SfcT95Hup+L6qDRxg8bP1HXo0AETJ05Uyk9MTES9evXUqkMikWD+/PlYvHgxmjVrBoFAgKdPn0IikcDMzAwxMTGaNqtEqlWrhq5du+Lnn39WyD9z5gx69eoFALh58ybat2+PRo0aITU1FYMHD8aKFSsKrVNfXx/Vq1eXL8teqSYSiSASicrhKKomopGQSg+rWGMO4CiEwrEQCI6rVZdIJIJQKOTzr8O4jyoH7ifdx32k+4rro9L0ncZB3evXr2FmZobIyEiF/M6dOys8e6aOzMxMPHz4UL7csWNH3LlzB3p6GjerRExMTKCnp4eEhASF/ISEBDRs2BBA3gCOr776CgEBARAKhfjll1+QnJxcaJ2LFy/GsmXLlPL79++PzMzMMm1/VUUkxPnz2yEWCwAUvP0tBCCFvv529OsngUBQ/HzrIpEIXbp0gUAgUBicw3QH91HlwP2k+7iPdF9xfWRgYFDiujWOng4ePIi1a9dizJgxICIIhUL06tUL69evL5ORsdpQ8Bk5gUCgkOfr6wtfX1+16lqzZg02bNggXzYyMkJcXBzOnj3Lr0NTE5EDpFLTIkoIIRab4tSptxAIip9/XSQSgYhw+vRp/iWno7iPKgfuJ93HfaT7iusj2R2+ktA4qPvuu++wd+9exMXFQSAQ4NGjRxCJRDh48CB++umnEjdEG5KSkpCTkyO/KidTv359pat36srOzkZ2djbc3Nwwd+5cCIV5D/bn5ubyD5ja6qtVSiqtD0C9cyqVSrkPdBz3UeXA/aT7uI90X1F9VJp+03goYU5ODiZPnoyWLVti7NixmDx5Mlq3bo2pU6dCKq1crx6WSCS4ffs2+vfvr5Dfv39/XL16tVR1e3h4oF27dujevXup6nk/xZdxOcYYBACaAGj/7l/lgf2MsUpO4yt19vb2uHTpEsLDwxEeHq7Rth06dChyfatWrTRtTrEMDQ3RvHlz+bK1tTU6deqE5ORkxMTEYMOGDThw4ACCgoJw7do1zJo1C5aWltixY0eZt4WpKxBADPIGRaj6f4cUQOy7ckzrhELAzg4wMwPi44HAQKCS/QevymsDYBCA2vny3gA4DSBUKy1ijJUDjYO6s2fP4sWLFzh48CD++OMPhISEqL3tvXv3QESFzv1W8Fm2stCtWzdcuHBBvrxx40YAwN69e+Hi4oLDhw+jXr16+PHHH2FmZoaHDx9i8ODBiI6OLtV+C95+ZZqQAnAHcPTdZ2GBdQAwP99npjVOTsDmzcC7eR0BADExgLs74OOjvXax/2kDYKyK/A/e5R8GB3aMVREaB3WNGjXC+PHjMWHCBCxatAgPHz7EH3/8gYMHDxY7+tXa2rrEDS2pixcvqgwi89u+fTu2b99epvv18PCAh4cHjIyMkJqaWqZ1vx98AIwGsBlAvoABscgL6Dhg0DonJ+DoUeV8c/O8/NGjObDTNgHyrtDJPhdcR+/Wh737zBir1DQO6l69eoVt27Zh27ZtaNKkCSZOnIipU6di9erVuHTpEvr161fotqW9+sXeNz4ATgCwA2CGvGfoAsFX6HSAUJh3hU72ueA6qRTYtAk4cYJvxWqTFRRvuRYkeLfeCkBkRTSIMVaeSnVvMDIyEj///DO+/fZbBAcHw8HBodCyFvlvz6ihUaNGpWma1rm5uSEkJAQ3b97UdlMqOSmAiwD+evcvBwg6wc4u75ZrYY8XCIWApWVeOaY9tcq4HGNMp5U4qOvVqxe2bduG+Ph4HDx4ECEhIRg6dGih5W/duoVdu3bhww8/LLTMBx98gBkzZiA4OBiffvppSZumE3j0K6vSzMzKthwrH2/LuBxjTKdpfPt11apVmDBhAho1aoRz585h/vz5OH78eLFvS2jTpg2WLFmC06dPQyKRICgoCM+fP4dYLIaxsTHatm2Ldu3aISgoCAsXLsTp06dLfFCMsXIWr+Z0MuqWY+UjCnmjXD+A6ilMCEDqu3KMsUpP4yt1ffr0wfr162Fubo6hQ4fizz//lAd0nTp1KnS7lJQULFy4EI0aNYKrqyseP34MExMTtGjRAgDg7e2Nrl27onfv3lUioOPbr6xKCwzMG+Va2PNyUikQHZ1XjmkPIW/aEtnnguvwbj0PkmCsStD4St1HH32ksPzBBx9g0qRJmDFjBjp16lTse1uzsrLg4+MDnyo+Kq5yjX4VggcjMI1IpXnTlhw9mvc5/7N1skBv/nweJKELQpE3bUnBeepSwfPUMVbFaBzUyfTt2xfTp0/Hp59+iqioKPz999/47LPPyrJtrEI4QXnakBjkzRNXtQNvVko+PnnTlhScpy42Ni+gq+L/catUQpE3bYkV8gZFvEXeLVe+QsdYlaJRUGdubo5p06Zh+vTpMDQ0xOHDh1GtWjWMGjUKoaH8373Kxwl5E/wWZP4ufzT+v727D4uqTP8A/p0Z0BBHXd8AEZAyFTTfUNs1J93dMNf9Xem0pNla6V5moRXYu/7K7NpK20zRauxlDbMXS7kkuzZlrV9CrFqGGARib4rAhAiBDgqoMffvj4FZZpiBAead7+e6zgXznGfOuWfuAW6ec85zWNhRm9LTTdOW8I4S3k/AaUuI/JzD59R98sknOH78OGJjY/HAAw9gyJAhePDBB10ZG7mUEqYRuubvrdcBQIqNdURWjEYgKwv44APTVxZ0REQe4fBI3cyZM7F582Zs2bIFP/74oytj8gvef5swDSwPuVpTAohs6pflloiIiIio8xyuODQaDdRqNXJycvDll19i+fLlGDhwoCtj82neP0+do/OHcZ4xIiIiX+BwUffll19i6dKlCAsLw+uvv47bb78der0eSqUS8fHx6N2bU5L7FkfnD+M8Y0RERL6gw8cG6+vrkZqaCo1Gg+uuuw4vvfQSnnjiCZw9exZ79uxxRYzkEtkwXeVq7/wnI4CSpn5ERETk7bp0wtf333+Pxx9/HEOHDsWCBQucFRO5hRGmaUuav7deBwDJNtYRERGRN3LKWfxGoxF79uzBnDlznLE5v+Abd5RIh2naEr1Vexk4nQkREZFv6fTkw9Q237mjRDqAPeAdJYiIiHwbizqCqYDjtCVERES+zFsnUSMiIiKiDuBInU9TgodNiYiICGBR58O0MN3mq+VdIUphuqKVFzgQERF1Nzz86iKuvfpVCyANQLhVe3hTu9YF+ySyTQklpmM6bsftmI7pUPLXChGRR/C3r4u47jZhSphG6Jq/t14HACk21hE5nxZaFKMYmcjEDuxAJjJRjGJo+Y8FEZHb8S+/z9HAdMjVXuqUACKb+hG5jhZapCEN4VYjxuEIRxrSWNgREbkZizqfE+bkfkQdp4QSm5pGjK0PtzY/TkEKD8USEbkRf+P6nHIn9yPqOA00iECE3aJNCSUiEQkNR4yJiNyGV7/6nGyYrnINh+2a3AjTbb6y3RkUdTNhDo4EO9qPXI8TIBH5P47U+RwjTNOWNH9vvQ4Akm2sI3KecgdHgh3tR66lBVAMIBPAjqavxeB18kT+hkWdT0oHkABAb9Ve1tTOeerItbKRjVKUwmjnnwcjjChBCbI5YuxxnACJqPtgUeez0gEMAzADwIKmr9FgQUfuYIQRSU0jxtaFXfPjZCTbLfrIPTgBElH3wp9ln2YEkAXgg6av/ANK7pOOdCQgAXqrEeMylCEBCUjnPxgexwmQiLoXXijhIsuWLcPy5cuhVLJuJv+VjnTswR5ooEEYwlCOcmQjmyN0XoITIBF1LyzqXESn00Gn00GtVsNgMHg6HCKXMcKILGR5OgyygRMgEXUvHEYiIvJTzRMg2Rs3NQIoASdAIvIXLOqIiPwUJ0Ai6l5Y1BER+TFOgETUffCcOiIiP5cOYA94Rwkif8eijoioG2ieAImI/BcPvxIRERH5ARZ1RERERH6ARZ0Ddu/ejerqauzatcvToRARERHZxKLOAZs3b8Zdd93l6TCIiIiI7GJR54DMzEzU1tZ6OgwiIiIiu3y+qNNoNPj444+h1+shIpgzZ06rPomJiTh58iTq6+uRk5ODadOmeSBSIiIiItfx+SlNgoODkZeXh9TUVOzevbvV+nnz5iElJQXLli3DwYMHce+992Lfvn2IjY1FaWkpACAnJwc9e/Zs9dyZM2eivJx3RSRqkwJAFIDeAC4AOA1APBoREVG35PNFXUZGBjIyMuyuf+ihh7B161Zs3boVALBixQrcfPPNSExMxKpVqwAAkyZNckusRH4nBsAsAH1btJ0HkAGgyCMRERF1Wz5f1LUlMDAQcXFxWLdunUX7/v37MXXqVJfss0ePHhajfmq1GgCgUqmgUqlcsk9qm0qlglKp5PvvZDJKYEywcU+CPgDmAco0JRQnFA5tiznyDcyT92OOvF97OepK7vy6qBs4cCACAgJQUVFh0V5RUYHQ0FCHt5ORkYGJEyciODgYpaWl0Gq1yMnJsdl35cqVWLNmTav2+Ph41NfXdyh+cg6VSoWJEydCoVCgsbHR0+H4BYHg/8b+HxrQYDr82pICgAA9bumBP0b/EYpWHVpjjnwD8+T9mCPv116OgoKCOr1tvy7qmolYnuCjUChatbVl1qxZDvddu3YtNmzYYH6sVquh1+vx6aef8gpaD1GpVBARZGRk8Jeck0iUwDipjTuHKoCGng3Yd3wfFKcdK+qYI+/HPHk/5sj7tZej5iN8neHXRV1VVRV+/fXXVqNygwcPbjV65yyXL1/G5cuXsWzZMixfvhxKpekC48bGRv6AdYZSCWg0QFgYUF4OZGcDxo7fhtxoNDIHztTLsW7GXkbAwbecOfINzJP3Y468X1s56krefH5Kk7ZcuXIFR48eRXx8vEV7fHw8Dh065NJ963Q6jB49GlOmTHHpfvyaVgsUFwOZmcCOHaavxcWmdvKsC07uR0REXebzI3XBwcEYPny4+XF0dDTGjRuH6upqlJaWYsOGDXjnnXeQk5ODw4cPY+nSpYiMjMRrr73mwaipXVotkJbWuj083NSekACkp7s/LjI5DdNVrn3Q+pw6wDSliaGpHxERuYXPF3WTJk1CZmam+fHGjRsBANu2bcPixYuxc+dODBgwAKtXr0ZYWBgKCgowe/ZslJSUuDQu68Ov1AFKJbBp03+/t15nNAIpKcCePZ06FEtOIDBNWzKv6XuF1To0red8dUREbuPzRV1WVhYUirZPxN6yZQu2bNnipohMdDoddDod1Go1DAaDW/ft8zQaICLC/nqlEoiMNPXLynJfXGSpCMBOtJ6nzgDOU0dE5AE+X9SRHwoLc24/cp0iACfAO0oQEXkBFnUuwsOvXeDordl4CzfvIACKPR0EERGx4nARXv3aBdnZQGmp/fPljEagpMTUj4iIiACwqCNvZDQCSUn//d56HQAkJ/MiCSIiohZY1LnIsmXLUFhYiCNHjng6FN+Unm6atkSvt2wvK+N0JkRERDbwnDoX4dWvTpCebpq2xAl3lCAiIvJ3LOrIuxmNnLaEiIjIATz8SkREROQHWNS5CM+pIyIiIndiUecinNKEiIiI3IlFHREREZEfYFFHRERE5AdY1BERERH5AU5pQoBSybngiIiIfByLOhdZtmwZli9fDqXSywdDtVpg0yYgIuK/baWlptt0ecFdG5RQQgMNwhCGcpQjG9kwggUnERGRNS+vOHyXT1z9qtUCaWlAeLhle3i4qV2r9UxcTbTQohjFyEQmdmAHMpGJYhRDC8/GRURE5I1Y1HVXSqVphK75e+t1AJCS0nqdm2ihRRrSEKoIReawTOwYswOZwzIRqghFGtJY2BEREVnh4dfuSqOxPORqTakEIiNN/dx8my4llNiETdgdsxsrZq1AWd8y87qh54diY8ZGpBSlYA/28FAsERFRE47UdVdhYc7t50QaaPB1zNeYN28eyvqUWazT99Fj3rx5yInJgQYat8dGRETkrVjUdVfl5c7t50QhihAkzUqCQACF5TpRCAAgeVYyQhQhbo+NiIjIW/Hwq4u45epXlQL4n7HA4F7A2TrgX/lAozj23Oxs01Wu4eEABCjJBmrLAXUYEKkBoADKykz93Oy7qO8sDrlaE4WgtG8p+kf1B4rdFxfZpgSgARAGoBxANsCD4kREHsCizkV0Oh10Oh3UajUMBoPzd7BoChBbCtTlmR6HA7ghDDgeAWw70v7zjUbTtCV/vwP49wqgtkURpR4K3LwReOp9j8xXl98736n9yHW0ADYBaHl2ZimAJACenxCHiKh74eFXX7RoCjDsa6DO6tBo3RlT+yIHp1E5kQ7sus2yoAOAWr2p/YRn/izLBcdGGx3tR66hBZAG0/8TLYU3tfP6ZCIi92JR52tUCtMIHWwVNE1to0tN/dqiADDL3sqm7cxCq3Pa3OI0gPOw/RLR1H6+qR95hBKmEbrm763XAUCKjXVEROQ6/J3ra/5nbOsROgsCXCw39WtLFIC+sF+0KZrWR3UmyC4SABktvrdeh6b1HKjzGA1Mh1zt/QJRAohs6kdERO7Bos7XDO7lnH69Hdyfo/2crQjATgDWpyMamtqL3B4RteDoRDfunxCHiKj74oUSvuZsXeuTmOz1a8sFB/fnaD9XKAJwAqbRwt5NsZwGR+i8gKMT3bh/Qhwiou6LI3W+5l/5QK8wtHncNDjM1K8tp4Grzl8FhdjejkIUCDof5Pnz1gSmaUsKmr6yoPMK2TBd5Wrv2mgjgJKmfkRE5B4s6nxNo5imLQHQurBrelwY0e58dUpRYlOG6VR368Ku+fHGjI1QCj8i1JoRpmlLmr+3XgcAyTbWERGR6/Avti/adgQongz0CrVs7xVqandgnjoNNFhatBRpO9MQbrA8njvUMBRpO9Nwb9G9vBUX2ZUOIAGA3qq9rKmd89QREbkXz6lzEVffUUK7LRwbFB+iOKoY5b3LEXYhDMNOD8ND8pBDf0zDmk5hv7XoVsw5MQfZUdnm7WhOa6ASlUU/IlvSAewB7yhBROQNWNS5iCvvKKGFFmlIAwQYVjzM3G6EEWlIQwISkN5OaVfe4hR2lagwo3hGu/2IbDECyPJ0EERExMOvvkYJJTY1TfuqtEpf8+MUpLRaZy0b2ShFKYx2xlSMMKIEJcjmqe5EREQ+gUWdj9FAgwhE2C3alFAiEpHtngtnhBFJTae6Wxd2zY+TkWy36CMiIiLvwqLOxzh6jpsj/dKRjgQkQG91qnsZyhw6hEtERETeg+fU+RhHz3FztF860rEHe6CBBmEIQznKkY1sjtARERH5GBZ1Pqb5XLhwhNs8BGuEEWUo69C5cEYYkcVT3YmIiHwaD7/6GJ4LR0RERLawqPNBPBeOiIiIrLGoa8fQoUNx4MABFBYWIi8vDwkJCZ4OCYCpsBuGYZiBGViABZiBGYhGNAs6IiKiborn1LXj119/RXJyMvLy8jBo0CDk5uZi7969qKur83RoPBeOiIiIzFjUtePMmTM4c+YMAKCyshLV1dXo37+/VxR1RERERM18/vCrRqPBxx9/DL1eDxHBnDlzWvVJTEzEyZMnUV9fj5ycHEybNq1T+4qLi4NSqURZWVlXwyYiIiJyKp8fqQsODkZeXh5SU1Oxe/fuVuvnzZuHlJQULFu2DAcPHsS9996Lffv2ITY2FqWlpQCAnJwc9OzZs9VzZ86cifJy03xv/fv3x/bt27FkyRLXviAiIiKiTvD5oi4jIwMZGRl21z/00EPYunUrtm7dCgBYsWIFbr75ZiQmJmLVqlUAgEmTJrW5jx49eiA9PR1r167F4cOH2+3bskBUq9UAAJVKBZVK5dBrIudSqVRQKpV8/70Yc+QbmCfvxxx5v/Zy1JXc+XxR15bAwEDExcVh3bp1Fu379+/H1KlTHd7Otm3b8Pnnn+Pdd99tt+/KlSuxZs2aVu3x8fGor693eJ/kPCqVChMnToRCoUBjY6OnwyEbmCPfwDx5P+bI+7WXo6CgoE5v26+LuoEDByIgIAAVFRUW7RUVFQgNDXVoGzfccAPmz5+P/Px8zJ07FwBw5513oqCgwGb/tWvXYsOGDebHarUaer0en376KWprazv3QqhLVCoVRAQZGRn8JeelmCPfwDx5P+bI+7WXo+YjfJ3h10VdMxGxeKxQKFq12XPw4MEODYVevnwZly9fbtXe2NjIHzAPMhqNzIGXY458A/Pk/Zgj79dWjrqSN5+/+rUtVVVV+PXXX1uNyg0ePLjV6J2zLVu2DIWFhThy5IhL90NEREQE+HlRd+XKFRw9ehTx8fEW7fHx8Th06JBL963T6TB69GhMmTLFpfvxd0oA0wHc3vTVrz+wREREXeDzh1+Dg4MxfPhw8+Po6GiMGzcO1dXVKC0txYYNG/DOO+8gJycHhw8fxtKlSxEZGYnXXnvNg1GTI7QANgGIaNFWCiAJ4M3QiIiIrPh8UTdp0iRkZmaaH2/cuBGA6YrVxYsXY+fOnRgwYABWr16NsLAwFBQUYPbs2SgpKXFpXMuWLcPy5cuhVHJsqTO0ANJstIc3tSeAhR0REVFLPl/UZWVlQaFQtNlny5Yt2LJli5siMtHpdNDpdFCr1TAYDG7dd0cpAWgAhAEoB5ANwOjheDa1+N56nRFACoA98GycRERE3oTDSN2cFkAxgEwAO5q+Fje1e4oGpkOu9j6cSgCRTf2IiIjIhEWdi7jj6teuXkTQfIgz3Kq9+RCnpwq7MCf3IyIi6g5Y1LmIq69+7eoIW3uHOAHTIU5PfEDKndyPiIioO2BR54OcMcLmzYc4s2G6ytXe+XJGACVN/YiIiMiERZ2LuOrwq7NG2Lz5EKcRpmlLmr+3XgcAyTbWERERdWcs6lzEVYdfnTXC5u2HONNhmrZEb9VeBk5nQkREZIvPT2nS3ThrhK35EGc4bBeIRpgKKE8e4kyHadoSb5puhYiIyFuxqPMxzhphaz7Emdb0vdJqHeAdhziNALI8HAMREZEv4OFXF3HVOXXOvIiAhziJiIj8B4s6F3HVOXXOvoggHcAwADMALGj6Gg0WdERERL6Gh199UPMIm/XN7stgKug6WpDxECcREZHvY1Hno3gRAREREbXEos6HcYSNiIiImvGcOiIiIiI/wKLORVx19SsRERGRLSzqXMRVV78SERER2cKijoiIiMgPsKgjIiIi8gMs6oiIiIj8AIs6IiIiIj/Aos5FePUrERERuROLOhfh1a9ERETkTryjhJuo1WpPh9BtqVQqBAUFQa1Wo7Gx0dPhkA3MkW9gnrwfc+T92stRV+oFFnUu1pwcvV7v4UiIiIjIV6jVatTW1nboOQoA4ppwqNmQIUM6nJiOOHLkiFMO83ZmO44+x5F+bfWxt85Wu3WbWq2GXq9HeHi4S/PQFl/IkSN9nZUj63Z/ylFnt+WsnyVX5QjwfJ66c47srWOOOvccb/+bpFar8fPPP7f3MlrhSJ0bdCYxHWE0Gp3yw9uZ7Tj6HEf6tdXH3jpb7fb61tbWeqxg8IUcOdLXWTmy1+4POerstpz1s+TqHAGey1N3zpG9dcxR557j7X+TOvse8kIJP/Dqq696bDuOPseRfm31sbfOVruz3g9n8oUcOdLXWTnqaFzu4Mx4PPmzxBy5bluezJG9dcxR557jr3+TePiV/J5arYbBYECfPn08NgpEbWOOfAPz5P2YI+/nyhxxpI783qVLl7BmzRpcunTJ06GQHcyRb2CevB9z5P1cmSOO1BERERH5AY7UEREREfkBFnVEREREfoBFHREREZEfYFFHRERE5AdY1FG3t3v3blRXV2PXrl2eDoVsGDp0KA4cOIDCwkLk5eUhISHB0yGRld69e+PIkSM4duwY8vPzsWTJEk+HRHYEBQWhuLgYL774oqdDIRuuXLmCY8eO4dixY3jzzTc7/Hxe/Urd3owZM9C7d2/cfffduO222zwdDlkJDQ1FSEgI8vLyMGjQIOTm5mLkyJGoq6vzdGjURKlUomfPnqivr0dQUBAKCgowefJkVFdXezo0svLss8/i2muvRUlJCR599FFPh0NWKisrMWjQoE4/nyN11O1lZmZykk4vdubMGeTl5QEw/cKrrq5G//79PRwVtWQ0GlFfXw8AuOqqq6BSqaBQKDwcFVkbPnw4Ro0ahb1793o6FHIRFnXk0zQaDT7++GPo9XqICObMmdOqT2JiIk6ePIn6+nrk5ORg2rRpHoi0+3JmjuLi4qBUKlFWVubqsLsVZ+Sob9+++Oabb1BWVoZ//OMf+OWXX9wVfrfgjBytX78eK1eudFfI3Y4zctSnTx/k5OQgOzsbN954Y4djYFFHPi04OBh5eXm4//77ba6fN28eUlJS8Nxzz2HChAnIzs7Gvn37EBER4eZIuy9n5ah///7Yvn07li5d6o6wuxVn5Oj8+fMYP348oqOjcccdd2Dw4MHuCr9b6GqObrnlFnz//ff44Ycf3Bl2t+KMn6Nhw4Zh0qRJuO+++7B9+3ao1eoOxyFcuPjDIiIyZ84ci7Yvv/xSdDqdRdvx48fl+eeft2ibPn267Nq1y+Ovwd+XzuaoR48ekpWVJQsXLvT4a/D3pSs/R82LTqeThIQEj78Wf106k6Pnn39eSkpK5NSpU1JZWSnnzp2Tp556yuOvxV8XZ/wc7d27V+Li4jq0X47Ukd8KDAxEXFwc9u/fb9G+f/9+TJ061UNRUUuO5mjbtm34/PPP8e6777o7xG7PkRwNHjzYPKKgVqtx44034rvvvnN7rN2VIzlatWoVIiMjER0djUceeQRvvvkm/v73v3si3G7JkRz169cPPXr0AACEh4cjNjYWJ0+e7NB+ApwTLpH3GThwIAICAlBRUWHRXlFRgdDQUPPjjIwMTJw4EcHBwSgtLYVWq0VOTo67w+2WHMnRDTfcgPnz5yM/Px9z584FANx5550oKChwd7jdkiM5Gjp0KLZu3QqFQgGFQoFXXnkF3377rSfC7ZYc/V1HnuNIjmJiYvD666/DaDRCRJCUlISampoO7YdFHfk9EbF4rFAoLNpmzZrl7pDISls5OnjwIFQqlSfCohbaylFubi4mTJjgibCohfZ+1zV7++233RUSWWkrR4cPH8bYsWO7tH0efiW/VVVVhV9//bXVf6qDBw9u9d8SeQZz5P2YI+/HHHk/d+WIRR35rStXruDo0aOIj4+3aI+Pj8ehQ4c8FBW1xBx5P+bI+zFH3s+dOfL4VSJcuHR2CQ4OlnHjxsm4ceNERCQ5OVnGjRsnERERAkDmzZsnly5dksWLF8uoUaNkw4YNUltbK5GRkR6PvbsszJH3L8yR9y/MkfcvXpIjz78RXLh0dpk+fbrYkpqaau6TmJgop06dkoaGBsnJyRGNRuPxuLvTwhx5/8Icef/CHHn/4g054r1fiYiIiPwAz6kjIiIi8gMs6oiIiIj8AIs6IiIiIj/Aoo6IiIjID7CoIyIiIvIDLOqIiIiI/ACLOiIiIiI/wKKOiIiIyA+wqCMiIiLyAyzqiMhhI0eOxOHDh1FfX49jx455Opx2Pf300y6LMzU1Fenp6S7Zti84deoUkpKSPB0GEbXAoo7IDw0cOBCXL19GUFAQVCoVLly4gIiIiC5v95lnnsHFixcxcuRI/PGPf7TZJzU1FSICEcGVK1dw+vRp6HQ69OvXr8v776j169fbjdPVpk+fDhFB3759HX6ONxaKd999N2pqalq1T548GW+88YbL97906VJ88803uHDhAmpqapCbm4vHHnvMvN4b3zMiTwnwdABE5Hy/+93v8M0336C+vh5TpkxBdXU1SktLu7zda665Bp988glKSkra7Ldv3z4sXrwYAQEBiI2NxVtvvYV+/frhjjvu6HIMHXHx4kVcvHjR7vrAwEBcuXLFjRF5j66+9qqqKidGY9vf/vY3bNiwAQ8++CCysrLQs2dPjB07FrGxsS7fN5GvEi5cuPjXsnbtWtm4caMAkIceekh27NjR7nMUCoU89dRTUlpaKg0NDXLs2DG5+eabzeutPf300za3k5qaKunp6RZt69evl6qqKou2RYsWyfHjx6W+vl6KiookMTHRYv3kyZMlNzdX6uvr5euvv5a5c+eKiMi4ceMEgNx9991SU1Nj8Zw5c+aIiJgfP/3003Ls2LFWsT3xxBOi1+vl1KlTAkCGDBkiH3zwgVRXV0tVVZV89NFHEhUVZX6eUqmUl156SWpqaqSqqkpeeOEF2bZtW6vX2XKZPn26iIj07dvXIt6ZM2fK8ePHpba2Vvbt2yehoaHmWK1Nnz7dofhUKpVs2rTJHN+6detaxXfgwAF5+eWX5aWXXpLKykrJzMwUALJixQrJz8+XCxcuSElJibz66qsSHBxs8Rps5f3UqVOSlJRk3n5ERIR89NFHUltbK+fPn5cPP/xQBg8e3CoXCxculFOnTsm5c+dkx44d0rt3b7vvYXp6urz11lt213flPWv+LKxevVoqKirk/Pnz8tprr0lgYKC5z1/+8hfJz8+Xuro6qaqqkk8//VR69erl8Z9vLlzaWDweABcuXJywRERESE1NjdTU1MilS5ekrq5OampqpKGhQerr66WmpkZeffVVu89PTk6Wc+fOyfz582XEiBGybt06uXTpkgwfPlwASEhIiHz77bfy4osvSkhIiPkPv/ViXdRFR0dLQUGBlJeXm9uWLFkier1etFqtDBs2TLRarVRVVcldd90lAKRXr15SUVEhO3bskNjYWPnzn/8sP/74o1OKOoPBIG+//bbExsbK6NGjJSgoSL777jv55z//KWPGjJFRo0bJu+++K0VFReY/8I8++qjU1NTIrbfeKqNGjZI333xTzp8/3+Gi7tKlS7J//36Ji4uTCRMmSGFhobz77rsCQIKDg+WDDz6QvXv3SkhIiISEhEhgYKBD8a1atUqqqqpk7ty5MnLkSNHpdHLu3LlWRZ3BYJAXXnhBRowYISNHjhQAkpSUJDNmzJBhw4bJ73//eykqKjJ/TgIDA+XBBx+Uc+fOmWNqzrt1UXf06FH54osvZOLEiTJlyhTJycmRAwcOWOTCYDBIWlqajB49WqZNmyY///yzPPvss3bfwy1btsjx48clMjLS5vquvGfNn4Xmz9js2bOloqLCHE9oaKhcvnxZkpOTJSoqSsaMGSOJiYl2P/dcuHjJ4vEAuHDh4oRFpVJJVFSUXHfddXLp0iUZO3asXH311WIwGESj0UhUVJQMGDDA7vPLyspk5cqVFm1fffWVvPLKK+bHx44dsztC17ykpqbKlStXpLa2Vurq6swjKMnJyeY+p0+flttvv93ief/7v/8rBw8eFAByzz33SFVVlQQFBZnX33vvvU4p6srLyy1GYxYvXixFRUUW2wkMDJSLFy9KfHy8ABC9Xi+PPfaYxXtdUlLS4aJOROTqq68290lMTLQodm2NcjoSX3l5uTz88MPm9UqlUoqLi1sVdbm5ue1+jhISEqSystL82Nb7DFgWdTfddJNcuXJFhg4dal4fExMjIiKTJk0y5+LChQsWI3MvvPCCHD582G4soaGhcujQIREROXHihKSmpsptt90mCoWiy+9Zamqqzc+YwWAQhUIhEyZMEBGxW1By4eKNCy+UIPITjY2NOH36NEaNGoWvv/4a+fn5CA0NRUVFBbKzs3H69Gn88ssvNp+rVqsRHh6OgwcPWrQfPHgQMTExHY7lwIEDGD9+PK6//nps3rwZGRkZePnllwGYLuKIjIzE1q1bUVtba16efPJJXHPNNQCAmJgY5OXlob6+3rzNw4cPdzgOW7799luLc8ni4uIwfPhwi1iqq6tx1VVX4ZprrkGfPn0wZMgQi/03NjYiJyenw/u+ePEiTp48aX5cXl6OwYMHt/kcR+ILDQ3FkSNHzM8xGo04evRoq23ZinnGjBnYv38/ysrKYDAYsH37dgwcOBC9evVy+HXFxMSgtLQUZWVl5raioiLU1NRYfH6Ki4tx4cIFh1//mTNnMHXqVIwZMwabN29GYGAg3n77bWRkZEChUNh9XnvvWTNbnzG1Wo2IiAjk5eXhs88+w7fffoudO3diyZIlHrnYh6gjeKEEkZ8oKChAVFQUAgMDoVQqUVtbi4CAAAQEBKC2thanT5/GmDFj2tyGaZDrvxQKRas2R1y8eBE//fQTACApKQmff/45nn76aaxevRpKpel/yXvuuQdfffWVxfMaGxvN+22P0Whs1S8wMNCh2FpSKpU4evQo/vrXv7bqW1lZ2e72OsL6wgQRMb8f9jgan63cWbN+7ZGRkdi7dy9ee+01PPXUU6iursa0adPw1ltvOfRettyXrc+JdXtnXj8AFBYWorCwEDqdDjfccAP+85//YPr06cjMzLTZv6s5FREYjUbEx8dj6tSpmDlzJh544AE899xzuP7661FcXNzuNog8gSN1RH5i9uzZGD9+PM6cOYOFCxdi/PjxKCgoQHJyMsaPH4/Zs2fbfW5tbS30ej2mTZtm0T516lQUFRV1ObZnnnkGjzzyCMLCwnD27FmUlZXh6quvxk8//WSxNP+xPH78OMaNG4errrrKvI3f/va3FtusrKyEWq22GFEaP358h2PLzc3Ftddei7Nnz7aKx2AwwGAw4Oeff7bYv0qlQlxcXIf31Z7Lly9DpVJ1OL4zZ85gypQp5ucolUpMmDCh3f1NmjQJAQEBePjhh/HVV1/hhx9+wJAhQ9qNydrx48cRGRmJoUOHmttiYmLQr18/p3x+rPcFAMHBwXbja+89a2brM1ZbW2sx4njo0CGsWbMGEyZMwOXLl6HVap36eoiciUUdkZ8oKSnBhQsXEBISgj179qCkpASxsbHYvXs3fvrpp3anIXnxxRfx+OOPY968eRgxYgTWrl2L8ePHY9OmTV2OLSsrC4WFhVi1ahUAYM2aNVi5ciUefPBBXHvttRgzZgwWLVqEFStWAADef/99GI1GbN26FTExMfjTn/6ERx55xGKbX331Ferq6vD888/jmmuuwYIFC7Bo0aIOx/bee++hqqoKe/bswbRp0zBs2DDceOONSElJQXh4OABg06ZNeOKJJzB37lyMHDnSZfPuFRcXY+zYsRgxYgQGDBiAgIAAh+J7+eWXsXLlStxyyy0YMWIENm3ahN/85jftjrL+9NNPCAwMxAMPPIDo6GgsXLgQ9913X6uY1Go1/vCHP2DAgAEICgpqtZ3PPvsM+fn5eO+99zBhwgRMnjwZ27dvR2Zmps3DwI7S6XR48sknMXXqVERGRuL666/H9u3bcfbsWfPh8M6+ZwDQo0cP82ds1qxZeOaZZ/DKK69ARDBlyhSsXLkScXFxiIiIwK233opBgwY5vUglcjaPn9jHhQsX5yzz58+XL774QgDItGnT5Pvvv3f4uS2nNLl06VKrKU0Axy+UsHUBwYIFC6ShocF8Mv2CBQskNzdXGhoa5JdffpHMzEyZO3euuf/1118vx44dk4aGBsnNzRWtVmtxoQRgujDi+++/l7q6Ovn4449lyZIlDk1pYh1bSEiIbNu2Tc6ePSv19fXy448/yuuvvy5qtVoA04URGzdulHPnzkl1dbWsX7++01OatOxjfWHHwIED5d///rcYDAaL6TkciW/z5s1y7tw5+eWXX2Tt2rXy4Ycfyvvvv2/e9oEDB8zT3LRckpOTRa/Xy8WLF2Xfvn2ycOFCi7gBiE6nk8rKSqdMadJy30lJSeZpZWwtt956q/zrX/8SvV4vDQ0NUlZWJrt27ZIxY8Z0+T1r/iysWbNGKisrxWAwyBtvvCE9evQQADJq1CjZt2+fVFRUSH19vZw4cUKWL1/u8Z9xLlzaWhRN3xARebWoqCgUFxdj/PjxyMvL83Q4Xk2hUKCoqAg7d+7E6tWrPR2OV0pNTUW/fv14OJX8Ci+UICLycZGRkZg5c6b5rgv3338/oqOj8f7773s6NCJyI55TR0Tk44xGIxYtWoSvv/4aBw8exHXXXYebbroJJ06c8HRoRORGPPxKRERE5Ac4UkdERETkB1jUEREREfkBFnVEREREfoBFHREREZEfYFFHRERE5AdY1BERERH5ARZ1RERERH6ARR0RERGRH2BRR0REROQH/h/cT1eaByJ05gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -619,7 +619,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 10, "id": "697a88bd", "metadata": {}, "outputs": [ @@ -629,37 +629,37 @@ "text": [ "How much faster X is vs. Y\n", "End Time: 1.0e-03\n", - "\t nbsolve_ivp = 10.47x SciPy\t nbsolve_ivp = 0.19x cysolve_ivp\n", - "\t pysolve_ivp = 16.47x SciPy\t pysolve_ivp = 0.31x cysolve_ivp\n", - "\t cysolve_ivp = 53.95x SciPy\t cysolve_ivp = 3.28x pysolve_ivp\n", + "\t nbsolve_ivp = 11.38x SciPy\t nbsolve_ivp = 0.24x cysolve_ivp\n", + "\t pysolve_ivp = 15.97x SciPy\t pysolve_ivp = 0.34x cysolve_ivp\n", + "\t cysolve_ivp = 47.31x SciPy\t cysolve_ivp = 2.96x pysolve_ivp\n", "End Time: 1.0e-02\n", - "\t nbsolve_ivp = 10.73x SciPy\t nbsolve_ivp = 0.20x cysolve_ivp\n", - "\t pysolve_ivp = 16.52x SciPy\t pysolve_ivp = 0.31x cysolve_ivp\n", - "\t cysolve_ivp = 53.17x SciPy\t cysolve_ivp = 3.22x pysolve_ivp\n", + "\t nbsolve_ivp = 11.06x SciPy\t nbsolve_ivp = 0.23x cysolve_ivp\n", + "\t pysolve_ivp = 16.24x SciPy\t pysolve_ivp = 0.34x cysolve_ivp\n", + "\t cysolve_ivp = 48.14x SciPy\t cysolve_ivp = 2.96x pysolve_ivp\n", "End Time: 1.0e-01\n", - "\t nbsolve_ivp = 15.32x SciPy\t nbsolve_ivp = 0.20x cysolve_ivp\n", - "\t pysolve_ivp = 20.02x SciPy\t pysolve_ivp = 0.27x cysolve_ivp\n", - "\t cysolve_ivp = 75.01x SciPy\t cysolve_ivp = 3.75x pysolve_ivp\n", + "\t nbsolve_ivp = 19.01x SciPy\t nbsolve_ivp = 0.25x cysolve_ivp\n", + "\t pysolve_ivp = 23.34x SciPy\t pysolve_ivp = 0.30x cysolve_ivp\n", + "\t cysolve_ivp = 77.13x SciPy\t cysolve_ivp = 3.30x pysolve_ivp\n", "End Time: 1.0e+00\n", - "\t nbsolve_ivp = 30.98x SciPy\t nbsolve_ivp = 0.21x cysolve_ivp\n", - "\t pysolve_ivp = 27.98x SciPy\t pysolve_ivp = 0.19x cysolve_ivp\n", - "\t cysolve_ivp = 146.63x SciPy\t cysolve_ivp = 5.24x pysolve_ivp\n", + "\t nbsolve_ivp = 29.94x SciPy\t nbsolve_ivp = 0.24x cysolve_ivp\n", + "\t pysolve_ivp = 27.85x SciPy\t pysolve_ivp = 0.22x cysolve_ivp\n", + "\t cysolve_ivp = 125.57x SciPy\t cysolve_ivp = 4.51x pysolve_ivp\n", "End Time: 1.0e+01\n", - "\t nbsolve_ivp = 100.16x SciPy\t nbsolve_ivp = 0.25x cysolve_ivp\n", - "\t pysolve_ivp = 38.21x SciPy\t pysolve_ivp = 0.10x cysolve_ivp\n", - "\t cysolve_ivp = 399.41x SciPy\t cysolve_ivp = 10.45x pysolve_ivp\n", + "\t nbsolve_ivp = 108.80x SciPy\t nbsolve_ivp = 0.28x cysolve_ivp\n", + "\t pysolve_ivp = 39.06x SciPy\t pysolve_ivp = 0.10x cysolve_ivp\n", + "\t cysolve_ivp = 391.80x SciPy\t cysolve_ivp = 10.03x pysolve_ivp\n", "End Time: 1.0e+02\n", - "\t nbsolve_ivp = 138.31x SciPy\t nbsolve_ivp = 0.30x cysolve_ivp\n", - "\t pysolve_ivp = 38.94x SciPy\t pysolve_ivp = 0.09x cysolve_ivp\n", - "\t cysolve_ivp = 453.69x SciPy\t cysolve_ivp = 11.65x pysolve_ivp\n", + "\t nbsolve_ivp = 137.15x SciPy\t nbsolve_ivp = 0.28x cysolve_ivp\n", + "\t pysolve_ivp = 39.95x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", + "\t cysolve_ivp = 487.52x SciPy\t cysolve_ivp = 12.20x pysolve_ivp\n", "End Time: 1.0e+03\n", - "\t nbsolve_ivp = 134.20x SciPy\t nbsolve_ivp = 0.28x cysolve_ivp\n", - "\t pysolve_ivp = 38.52x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", - "\t cysolve_ivp = 486.82x SciPy\t cysolve_ivp = 12.64x pysolve_ivp\n", + "\t nbsolve_ivp = 143.84x SciPy\t nbsolve_ivp = 0.29x cysolve_ivp\n", + "\t pysolve_ivp = 39.44x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", + "\t cysolve_ivp = 495.53x SciPy\t cysolve_ivp = 12.56x pysolve_ivp\n", "End Time: 1.0e+04\n", - "\t nbsolve_ivp = 115.93x SciPy\t nbsolve_ivp = 0.25x cysolve_ivp\n", - "\t pysolve_ivp = 39.61x SciPy\t pysolve_ivp = 0.09x cysolve_ivp\n", - "\t cysolve_ivp = 463.79x SciPy\t cysolve_ivp = 11.71x pysolve_ivp\n" + "\t nbsolve_ivp = 124.73x SciPy\t nbsolve_ivp = 0.25x cysolve_ivp\n", + "\t pysolve_ivp = 40.60x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", + "\t cysolve_ivp = 490.09x SciPy\t cysolve_ivp = 12.07x pysolve_ivp\n" ] } ], diff --git a/Benchmarks/CyRK_CySolver.pdf b/Benchmarks/CyRK_CySolver.pdf index 33c5bd0cd67579d05ba1dc1eae48b33509647341..758b835ed4b9c1f7cfa8ae75c35ffb3cdb6844e5 100644 GIT binary patch delta 55 zcmdm#vngkTpfRK6WFccm6-zxMO)h=sqSVBa%=|o;#FA764HqjT10xedLjwy#V~i!O)h=sqSVBa%=|o;#FA764HqjT10xdyb0bqj0~0e- Ki_PW6yO{vgLl6J} diff --git a/Benchmarks/CyRK_PySolver (njit).pdf b/Benchmarks/CyRK_PySolver (njit).pdf index 33c5bd0cd67579d05ba1dc1eae48b33509647341..758b835ed4b9c1f7cfa8ae75c35ffb3cdb6844e5 100644 GIT binary patch delta 55 zcmdm#vngkTpfRK6WFccm6-zxMO)h=sqSVBa%=|o;#FA764HqjT10xedLjwy#V~i!O)h=sqSVBa%=|o;#FA764HqjT10xdyb0bqj0~0e- Ki_PW6yO{vgLl6J} diff --git a/Benchmarks/CyRK_PySolver.pdf b/Benchmarks/CyRK_PySolver.pdf index 33c5bd0cd67579d05ba1dc1eae48b33509647341..758b835ed4b9c1f7cfa8ae75c35ffb3cdb6844e5 100644 GIT binary patch delta 55 zcmdm#vngkTpfRK6WFccm6-zxMO)h=sqSVBa%=|o;#FA764HqjT10xedLjwy#V~i!O)h=sqSVBa%=|o;#FA764HqjT10xdyb0bqj0~0e- Ki_PW6yO{vgLl6J} diff --git a/Benchmarks/CyRK_SciPy_Compare_predprey_v0-11-0.png b/Benchmarks/CyRK_SciPy_Compare_predprey_v0-11-0.png new file mode 100644 index 0000000000000000000000000000000000000000..1e29bc74713a30cf56c35f10ac4e9634150fa20e GIT binary patch literal 46342 zcmdSB2{e}N-Zy-jMaGDva3yo0R7j>wNoJ7>k)o8Lk&K0iGDIX9GZ!fl$yDYBQxX{x zMJik=Gw<(g?`OaJ{hsH2*Y~dVtZ%Jv?{(jI8LsO(&+|C`|KIdKLX8b|*;oWv2!deS zqo-v`5VZaTK{LS2h_7sG{WygGD4o@|I&0>7?Cgaj9*)GmBWK-QT+g~V+Y6s}^f=?} zdV1?-rOjJpgq_ZwbvvUhD|_l+Kd{-=9YO$O<>T17`?=;|Tc=O}1K=GeH!c z*`uXlelhWT?}bA=_47;G3e|a&cbb+pBfm-(IG0)g|q4ws4J`PHB?G+42G> zUvhKpl`GUT=jPdKTo}e{;w!aIi(W%xU|=ArU+CiW@KZW=#izTIrpLC)x*o^>F0fzx z*n69o5SFXscL*<(+MWG_@gIM@R!bx75H4S5#rxv_<3HSQ`___5_vibED-#oLM~@w& zY}&+D;@V$V6U2JN#pTf89ECzr*P>4S`El@Lh0oeEU*A|rjSUPCl$valbRH_(%9R6O zzh3?R-NoScmW+=2TggdD>wOm{b+xp#)MZwGp8Q-tv+(QfyYAxs53H@8o!_*uxHw52 z-pk2#YxCjUN8fdYd;|&OdmL6_yDG_Q*@fC}I4zjSaraRQ%h<*Ad zB!rn|u#KTpMN;!_U%2kev8|b6ct;(y~~r_vBNTFUv6}4EN{lWdo4k%d`|cwEv=%nqo%Qr zez@LiAt5Pv+g88jMO^#-{rgXpwDe7ruf}%U6_T|f#D@+`Ewzjro z{c8*p6(vOYJlwoNmY+ySNNBse^TNpMJ3BhEjD)VQJK0lw3Li6$yaz!G_?D@cm-3pmYx53U zKKJ^4Z6(1#8?f-p($>dfkeH~uzIJNj({AoiEoynvu1nlpt%*u!ik6;#dKucj%-v6W zEZjnQ?=2Y`t|OiI4>Y`av)@`aN^f9njFsqmerbozb1w!uI=T#xuWysh|p-Stl+BO$DOn|Tgog@&$p^ytw;`&yQaa}TVa&~hE= zEB7S)qc-SjO7PS)H}6eNjEmzt(Rn{q;|e2hX+gAbnyG6~w#kOG<9+Lx*ag*3pUziV z?tXG|rgC{+O;Jh7IW06?p6wG6DZf95IY?7cS$Xi!kDie0*Eba}e0hDxq~!ErgG5CW zk;;8{w!57@`?B~{&$W*>qTJOrHMB-aDkh~B_{LN3*)1zquC#M?jp!+H)&gO~5$m$`W95*^W9;u?X=qKJrSq<+Lh92z?paDUyS^TX2v)pU2A z#T{fgnEb;F_3@19gM))ZLPCu5yxrX7HXnMLq7eBRuUda+hwDSXW#1t00CgftPn2Up zMMcH9z-E_>O}UlhqO@gx;O*OM7+3Q9x3m~PiFnc6%zEqAt&#Ty$tp$?JoeO~#);p* zwLLtx5Gi;B)VH&aM~@0iOSAs|_Rj25^6;Kcc8gQ{3=KPPpWjkPbt4-1FO8q-D_?`P zpi^M;oFH^`bmF%-vfwsdotiou^k{eRN)1Cpb`K8^&UNdqA9#F>d?pjWewiI8DJYN) z)D*!z%cO2UbHwnja?s4o#ivi7HvD2_7i2zj=FImGk9AXBOiGS5d-N2m@N}*}d{W%O zV%^_6uu)QS#pvkh!{Xxom+oM33sWeXzPxVTMb2^x3g({kJLKdzd&|yUdGKJ9m{C$V zR`|l79@m+X^a%6L=dS&#uM(A3`OHmKS1vDwC2TvH`!4h2$3udOZiJzsVfNu?#pQ?J zCaYbotgI~mm}gmFZnG=zz+i#?b_=*Hsw z^lquxre=C3rgY!MIsGff%4bIiqL$r0N8-`>hVEF~tL*E}X5I}iTyC8+K8gz9F14pg zjm_Z6iFYxbW22+3EvdVCsVCm&?{ju`KD)HwNuk94n#xIFWF$5nE{h2Xsf!SjeQUOj zBjxeqt;0h@EhuM=SS}A7O3(igI9%y__v6QpAtBk0&9_*_9NVj8tc&zS{O14s5J+Ye z^OJh5Aosq&Hj9a4eWbBO%-0Xy-PrqhmQVif{hOL?UUZ5mu{kgIZ0DN7B5!#2F82G6 zA33&_zEi*7+qT~nH!?S*e}1ZGJB5OhXB_{_@D>Xz!N$fWsj8Z^Ud>mAjK)0jEqzdF)=af!t+bhO<%{?ZaWcU zdKWeG&E1_@kzWS})IWUqFg4xpXIAOE=u{K9f`^y4c9q7N!FzZ1jIj;83|*CFnsH;@ z&S+E`Z5^FxE1ArqB84)a`R$ty7Ka-c7{oO7^z^Lal03ZcW=0LIIx+O^o4%HoS*C$V z$^^kl>`PDx73E%WxWfDP2^8oddHywPOi*RHxP1P6I4;#Zg2&gEv3IzBjevlDvfomv zsnUm7eI_QRjL%XAOVZwt985O~3#+FZT6hv8pCi;Vv3gB)bQm{o+}PUp{8D2_hxu4P zFWD8us-JO$%m3*+Sn0d#(BZ>JjvT4J!p-ksk&slpwu;|j_;qLJYJBFvJ9pNe|M{`8 zTFBvk(`RW^pXv2nBD;32^Y!(0b9XmMn2(UJ%M~DZ0Ki2qe-cxqJfO$@Yk$ioMQve% zPE%8pM@(Cc5;QgU`y@R*z1_q>HE&yH#@@JFa~2M(#0>nOJ$n{>&|KkEvg|oUMMa4s zc~l%(+lrTXl#}g7YSnFRrp{}DZaBH_-@ng8wah;hnw>47C(3>A-aUfIwa5#`hWd=n z*U;El-TUkU4Z+35rT-B{m_|#E_8v z`G@wPO{V1^e#TAA4Ti~vggE{DSlW@U%WD+@Q`JHd2#SN8XiuwpVJB#QklzKA*gYY)dCM~UlC8sSKPIebba&g^NI+NKl zH#IeddlOrFxQw6Z1cquk*R5*%?Oxg!C57$VGtq_2&Yv$9FD zW0jSe&Zd2_mpPTY|A7D&jO4z=*P&(>hTg34@|m}=96vpNtNNn)3e&r?UV-)NZ=h2( zxiU4KmNZOKSu^&&K-a}Z1`W8S-17{fj_u+0^P^I^=PyRoX|f3lu3H!TZJo+Rxu1Q{ zSqrVg0S3K)zq6E@9{=(sIE+sgU601KzoHf;;i20n&5_YX*FSmw{=~|4$~@Q>CQsi< zIJmfkpXw=Y>=9VKIyl*PZpGZ(9Lqd~;?i5j`}p|Vx^&%$$kh^@4B>|TsRD@s~di?_R-!538}*02?Fbmo~zOI z{abX1Z6`Zpl7B@f$*TXppz-cA!5vDE+FEn}z+?S$<>Ai@iq;2t48GhmZ8qNbJT%0q zB}GGj%=~a`E-E$ZW`nJ(*t0aARjYPixfp!!NnYzf3I+=D8Edo+AbSy?$+i;}uGZgXox)COnNsk5K!*ho}XMmsZBP}zoJ>WsEQ zf-;W_7qajiqO-EH$_?&pKP4e27n!8ym+zLxMOYNr-2K`6OczytYBbVDbmB+_O}D=8Vy*45S3GG4iCsHH{6xKbD}c*~9*;`k5w`VzZ#9rk_W z=z2O7xYciI_No>o%CxC+JldO&Xo;712no6N+`ci?j91^j`I(y)H&Cc?$_uE5sT zc^y})YvrO2B`O4qIol#{{}kSan=2|WPnu?#Re}UO4<7^s(2#WvyN!p+Kugp6{8C)L zZRO^-&(Nl7>*`DaT82H*_0mu#D6TZD^t3>u3ZB%X(R!lhS%&Lo%W6*3yiM2^780Tp zvHk&7#d~40o~1rHIy%kR)g&kFO`MGISVzuHl>%%rT(4y}@2!p%M8V-_nQm)K>PfT{mo2NtTfyl{l@n8RfPV+VS;*EgU-LS)U&kc zc41SnEkixOSs0!ZdfGkHoTlI8_9;6zrmm&8ckga1tN5lzlarGy&1?b+M2g_ZkR>2B zCzlq5%clHdYEgwb2Wl)X$$k|B0zUZ13K^Dt=4luYU7PeR;hWWb|3f@4C9W6MlS0@wPy= zT}O0GOdv>G`mxsu4Gj&(*2(elRzpIkZeQjYY0j7MU7G#+)OWG0=@jmrG2TZn!&Jeg z%h=hcx*T*Q4McSY?SgCFx=n9O3JWEReYOBSUnWa`MNW<+>QLs{jYR|QY-_i#1WApP z7{<%Dhyw$;MYcq}auT~hY+{H|6J^sc#cZam}-eHT>Utixke0=K8j}mr6 zNNw}mWaV?Y-aaPlRlTi-=GsiBy&KCfPSWb$5DWl@nEL(u)7V&8e0=)W@V{%Dn1roUmshTT8LFB_om(GU^qcjZ1jza_I-kvJNjGmJ+?_^;pP<)lCu7#Y>0 zqdWwF?|5*KPd8$HE!N|a6DO{LK7hdUoIZV;p!R8c%uP8b?z*(Pa%oN)i>YGv%i4Qc zS<)Y)(csAzHG%Rp7-#FN0oXV2?Hh}OgG0t5K$HV&ZT!~b?5KZiIp)`}6CIY97UOqb z*h~@{02Yd(B0qp(UG&Di6WB4U*Alnlq7!9rgCc(hBP0kuzBuk51=?Y&A3k{!WGtbD z>R@;BWY}BP`ISQ66EvBIcda+mSlm@UXKv&3x~ZuKFGgf9AC4StO=kj0avN>ic)cX9 zut|Sxg9%Wwxl$XzcWkCQjk(cDQ#sxpxgBrb-0%h#k(3O@g-D=+<8QG|9P5;0$Wm@! z7*E--!MQa}8<2PXmZQvMQN-FOf3P$E@LoD5c2Noim+D!neC}Jzrx#Zxm6UFKoH@h$ zO@8}!G3=^qVPWa$5Tw|EvMX6Ws@ePbedla+2KqJ2iWMf$u0L9AK6?DPnY}&baH&U- z@7$>PqoN}7?#yysn);V7W4=8Tp8vU8Pzl(9*XW<6ea{@0`yNV^ak|d+qQ2FJ-?G@( zDRZ_iXU2Ob-^?W*I=5%WfHTRR;}AEr*fpsjhqbzH=lPW-r+aG#Yr~%O@?-{Q?z@wQ z3fJ}IBp*85=H!~p+}Wl1ad!}y#GMxmd-feMI8HKB>8RUVj}HP24sT}?Y)>Rh>hZTp z+E4`Kj=kcC{&eEm9$rIHZV?$7gCm=@>iC7#`!du?xlDe)_5|hN|(a;5n6QO#dn#YcbwY9a)@TJ`tRLvE9ntWDhI_hV;j?knq z=Rfqn|Kc)|X*x_mbL6&d3sM(uId9gtmlDMc%JcBiqrv0$XL+VghK+CeQYfNgVwA00 zA17MZ^GmN}@>kCGng3(;(2j+HbkScDM8V9+WZAZt}HN zmlw`da5q>n3=+om@d*iO)=y4MOipT`QxxC%Ws`UK*>>m$>HqegLPA2oQCyjsnISiB zbhN{Yq4kRN?e(PvHp5}nESVzfz3bg#caOPJ#6 zwX~pw4HF3981tEn)N?m}q8H|_LVvE9-$6ZGaXK%WCM7jh6o=f<1j7f~d&w?Cs#Bvjs%cnk1O1})5wSGMMu ziQ{V1LGJlgy%hnp{L!yhKYL&$qhoKMrr8I9spa93-SM|?AAwH#u&}TiuO-5>zp-Ew zcF^5H`T+^z7wznqaq2lW=6ksyK04w2sgV~J=gv_fax`3;8sU0i^E`q0D|#v`CqVs` zke83Lsr20kwzxZWzUBRUaWn+a6CK&0aqn`>NaUz_0tDwre`PWlpuVSpA^lLr-Wb_N zYGTu{3JTkukPv7HVKR@;d^Pl%9At1jcFYvQ7zwS3NXQtFR2!OCA7WI8Rs?|-`x1~@ ze0FY5>ONnn7LSmS(dNyYYl|&~IgNjGKiMP9>9n}BA#^@_OV*=5HzCQA@0_sxRPNM# z+NPEIx}^^ z&=x2|3y}U;W{)2rFCm6{bJ5#(fg&Dox(hB;_sFq1hB`kzUZ5}@3tf{G z5K%OsO~z&a(9*n@af*Q}#oOJIS)C=ojx{`dv$}BPt?ZwJAzGAs85u{=l`k&L$U_zZgxxAxs&K~bWcvc*Lj_=O@xzqsQ!@K8vlhRTPS9e?`{36-@fGl z_1DtWq$LJ!8mVfab`Fe>7j%|xRZ!^Y`1IJL1{EqMBRM=g92SDawgN=}nMWlV9FG&|4r0n`jUe>>^rB;i=etN>K?3EKOnY zw{LtxwQcG)I`^$Z1ABb);j%#J5&L#Th{!$_rX;HRB+#j|Md_;<=Y71sww05`i1%Rr zQ&p@6DfhKuFKFyUSe7WOnCYebO7WfrU1fMsQFrgMK_h&1cc-QAMrqOuNN@i0!a4Jk z$Hp_@iR9LN`1tW|=!5c3Ey9r8nBh;T!^PlQyY^t(S26IED_|hZ^tAi}0;Eh$0!&;E zK|H%KUI)hd@N};-Dyn@$qzEbZTAyp4i>71kt;Lgc%1t(3R6UxoAy$7@@T7U7bw32#d8jW|&LdDDGi#vS@{Rc$SUjg3u$ zi!#~qnI(y7?_}0|I{#Uz&e0oEo~&IhEu6q}akAjC>1J7mdWMEN1_mp)yL9;jJqb%l zFvFL5fjesF>>P^v9phZd;7W5c={u|ERPXU40q4{`eMH7OAB1htyV2CKFO z*G)b)Fx@I3NfPNTV7bmvn`I}zf7n`dx>rDp-p_B@bo|2f&)yjzR8YQ-vUP9KlAMD% z{9B3bbPa04qN_dqPWlwJWJb5nDbVuX6%-WIwYC0JN;a#kFhJ z@G2)B+`dtBG%J8+c;9dC-NyXU>$QisF|3T-@$NNgJ4r}{n3|f7U?EP;OgdN>+B3Y% zHn~DX78c5TdU=@w<-r0V9VI8ocJ$dh*bI(92)hi1lgwQLLAcv`d9%l$s+W-Ifw?_f zD}O2S#sYG)0gs|;clJ>BIe|3yeSen45nz4!-wemE~{KStftsl+_yR7ufE# zd5cKz-XbTL0`tkkL(0>wxjN{l_|NpFC`F><$4i=&pW>(J{TEjLg;u-u^q4_X4$xd` z_Peu#vur_7(;2It>_@{*u@`@RVS|>E^FxeOA!Bu7y%~)U!U7ri^oa&N78}KVXEHFJIcBcBnj|A=d+~An{0FQc6l+m4@tRb^5`sG=E`%g}flKKjoSa z<6nK#U>iFjZ9H4KBJi);d66WAcu?dI{p%0-X>Z1dVoN)E9A10$uO(kiY88HsQ;n{n zLt6_qMl0xh^M?;>0Oolg6@cUq!pr2{9%Q7Qs0+POOIw>Pro&}Ib^Pt3>_orW?9NVh z-u70o|S}qMr6p1Rm$e0VQgxo{b?TcO<&{s0o-V7$ev zLbXC7BCdvog{jCwz+SOp#Xq|j1QU^!{Br8UzQ2F}b{}fsni}sH`t#?HHlrWzqPDp? z57dRh!9nO@TV1;3K9-$hy?y((o`JzjTrnFl1Lp#Jk1m6XjcrxotwdB+SJUh`{jmxJ zH7Yv#GC1%HNaQx>-y|wQ=w1V2$SELj4Y-W2`v%ISJ=#2rCm=p-R-I&3A7Y5X6#Y;e zdTn2YPZ*Hti|XpshR-(}{aBv@_z6>rPQ24keRY|Em6MB0L~T2z2FfM55Wt=W@uZ#l zD}18n*Qoib;2p0(d-CjCnEiDG7AFj;>K8BQrpNnXQPVFi{4(n5?xx7dtc1g%fi?oj z#QSZh*OUZ06cZGEnS;eE(Hp3F^|J*F3Gwj*U4;&MVEHhC1D$yrJs$DwP8AG3#~m6Yg1 z-HkOhn$CVSG&DoszZ(#w<3w5@0t!x?2du1Gt_u0;K~j@0dVuOG7OF)e{&bKIv-%tB zoF@ls>HR?&CB?3*e{0W*C|9MVac$7yBod%yz?YILa)tItO4GCf{zQwA-+~4< zcP4ta8A!t@6tXmA6;6O_6)t|oXGevi4nyZ_y~Zoe(}V>Y20W=vG*njygoMD~`D-=d zk+x&aNvfzMLbPS+eT(uyDiJK6XlUusjrq#<0bJ+6XCps8n)a=)@AE7pu=szEwqFI@ z*Ff7$hctDfC52|2Q;R>oB%&74+S;lB4Ijq+np53Hp{8bLq=-(CTEgG9)#F-elDGeX z)5{R9Ddaw^u@Y*gM?koyV1Sw84m*=h;hj5sahZjh2O()5pM!X#F!$KvfGIxE-sh(d z_SGz<(Z;1euM_LD|c0d78R%&peaOJ5!T&2X5I0vm39Q;Wc0vP)*`c zTZja?xgmJKZ{k;!f2dRwGOfhfMJTa*A;sU6b?thnu~grWi~Y-PEKXmVr8;(( zp2^beL&Y9}{TC(sm4n!4U?8z`=N+%P^<1Tqf`fs1?V@X{&&9o0|F8t~Gq;{dO7d6;Jn5BvZ;RP3O1$(YnX^3Mr18P(GXossiZ!Nm0maVWzNV zJJw=MLV^@WJ{>LX2%Jk6M{sTp>|>J#Fv;~nSFfI&I-d6k?d{x7cOrX!&srMcep=s% zc;}~yWk)wC|5EF+jVJqz>ooExBzo<7d^|$)HjE*d4^=QJ4;H&rkG5wOo*UbrQHFX% zw|n<)nFEjRbuF$}@_;_g2qs<+(@oA}NH3_zo8d!O7kMLs@|OX>d*>+zM)1`YE)n8KOcFfNM_a4!~#!{@Q2Iz33?q^TA^ksYH_1l z*1dZJ%S+?S*StI1!PZ9)><&;*>74!oBcR@&hOQ;sr0)eANNU%!3kBBoH?j)Xd)A1(Mdy~CQ_A;ZrQrkEh~gYnmpR^67Dd<^a?^OErt zNGcud#76E=)3rf0<+eV#Z=U5YxA0h8H2~|4ijU9Ue+RsyhrCJj6xX7HqR8K-MC*8y zv#Gv53nFFmus~uh)e)Q6w49ij7!K3y1(*b$$OM%tRlEd9@fmzG`1Wn;lV)Vtj)3pP ztNJMW&i^Q(jB$n4B3Kjj?Agw_sZlyGi?bsw8jc@G#)8~KP-pC&J7Lh*8Y4afqL{J> zjQ2jfiv7Jt$Y+WRg1Q7pHi8e~sL#?dKi=iVwec1&KyxQe06Vyj@rv$gn(F7Le;!6Y zAQe5BnU&Q{4**0v>1GWXGJzmKK4Vh(hbF!^C)~x2gXqXHV*<^W@u2^X4b}<=AgCOj zXb@F1`1L;eZSS8XjtKSWfu!Oeblg0Y`gq6=e9ryxP}};s`ubD zkW!oBgM%fRp1;V~jNobVg$pOTIt+5L#IBP4Zk!=9ctT;tr+cMr;nE6UxNu?i(UmK7 z85tRpDsgdYN;`M9!xhT`A3b{N)ILOaTGbg6tHSj$f=bwH+0kJ+K*?K-x5s~>0qE| z@oCu+Jek($BAO^|SE%l0&0oW9<!Z#LL-Je(xArj<{(BgKOWEtMgMr`X|L4oavr@@{* zQ5@{iY_uQB&PhXlx`yyjz6WOma4YXOh^iuBjX~w01{uc%^YjOgqX18C^)E}l$f?J> zXLt=k>#1S0l83HJBF1(?d@rP#dw5DsOitiSEhJB&U3-9x=kQMn?+s$`M~s8)ZP0&j zxhAU-^rWSR!mm%dncco<&Dg}-ycXxS;d8d)vYfjf9??$L6&Ei%^OZfc*4}HDx^dku zFY}yN4@e(OYXTG$+@0XC44g<=HrDd`RXckZQ z*3{DC+kD9Q#8uP~GHz4z;)NuBgj{UMOzwC>x(B{yytpztvyc$@37L_yti;uoYc#8? ztFhunacerz3n|lpQ|rhe2UwQW&=?-Zj(+dm0JT}+;Vbp^_0v$G6X154`d7e;!WW{M zF3yfAdJHim1G36CMEqQ{u8`#uklWMZ z=zVJL#7t5aH3TP`H@$*w-$N+I`$y>%H>fcTBy#KbL}Cdm#ktUA1lwqrF=?1L*lYh zl{(MTAv9S=M7uNX*(bHl%*@Ptb~sKB64aQI&aLC1fg#tfnF^?z z2*M@{U%P`HOp~+=m7e6E1)O(Bjdl6>)CB$uOqCGj?o$fz5-dTTxUj8|&P~-qJHn@Lp%W z+;N=%67g_4FzR^xxC1^;_i09l@K|Oh|NAwd$cq2de;N-8i|qF9WRH zT7Gk)GtgVgiFf>~BVNPmT`k<6+=kGU1H*iroW@6PvK~BeARweA$1KaE-;!)Ak&%S7 zbe=~)AJ-9Vf#EWa|BBXI&h{7C9nX4t$PmoH9}8C)ddkCVW z0}G*&SY}mqgzvY8Pu3<7dARO#P%wEejQ4FS5aW~FxpOV)RX}Tg^2o1_Uz!cdgRY@r z)#v)pr@WyMJ{k5C&vTOo=aniz?-}jEpC`gX@fwNR^H73FCepz4=+uh&Nv5Ub2mQwr-1=~ zSYA!rT2eiay?&oK^z8gTNl2daR>dy2y*;5*k=FuLHwm%sX<6B7ukhL7 zN(LEDX3kZst^nIh$Bcd~-5R2|w4a?)gHR+Hok!6Myn5APYNS>B=T}nCMPHXXzftujpuXHHiTND&TiJ{?PZBhI3ZPBMLdEh54)TN-j@#r)5mXumQ+!NJi%K|yUx zSbhy3KHMgNtJ6uYr~p;{(Zh!+B&&n6VCi%axl(;HAd3_mf_STt`)q|OF@okF8MlIs zEdxN!xw1YxW+&{_Pa&Fi3IY<|SGYipY#i~I(F9uE>D11ZWA((!_V3SKH?*olkl zx}egdu16$##Ee8!T*SJaI+y-@kCMIQ=^2Hq#8PN#Xb`>)z9QYR3VIA85!|a*A^BR= zwYb^pp+67<9A~2>%MPIjP%#m;6G7PAv#%eYW6Psi$s@P{ES~@1xB8@vQj7d9fOJH~@)C$TZ1NF2Tk0?hu7H|v zx#nF6Lw7Y>_FGBu2ZDo=x8{JgH8+7aObRi0A?m4+5R`VFZ)DCIWcxwO;>^rU3xI0a z#|x+m&e(~h76nF6?~mX-ypZ_n*;GnYZCGFxm>!Y#UmxJZ>|s2Otp`vmqUF~4(MsV()P&)Nqqi$wmcJ;*k%U1@EhdV?$nF&J6 z+~vc67xQk=bS-Jp($(Ftd9z`KH=rP#N{Eas#KQ~YHVUqNf`3^tO7&+nE9fo+;qu`T z1LV(Ln{6w?f%~vR*r{cxf9YrUP6M+12h%OC2X6%Kj+Qlwm!s+H>q7$VjJ35j*=ewQ zsZ${N>8Q`ONy(RSBd-EK&2HMq#KhE5U@HWYxnII^f*-3fc>Aet9_s=`)n3{cHl4F9 zu!$|X1dK}U`9Ms-d?R!EPE$Wy8Tt75K$k2ZICxGB1T38SHxmABdiRntA*`xuV{_F2 zw%`eB%w9x8F4I*_@9{1_)|@kn>qGWWd+Af$he|&+Z1-#ENOl;y08S#q&b&>e(vI#A zJW9shkZp@iDy8)&lU6empW?TjTwUz)!F0$MNUSy2LK3IzhSV|;yjz+ZlO;Uqju3WVUfqV#AC(1#uQ|C|M$*;Q6{0*BA?H4*1#|f`YJ2Tz z%ML$!lqWkEm-`;bjD7|T5+@@ZkZ-92s~cGLVE9D<8l{08gBxGzrb*GFn4C!d?w!-a zq5V#T46BKXiRHc%gWa(mphG+$K;2-aaBQxPY%FbStLLx+urR~Y(h>q$`AyQoj{;Vy z_r0LjM+iZ4XGI@}aAV=J2sOMOQVZKwUdzpI!CJ9$>_NI`Am?7YuPd|q#ryYsKY#ul zY0u(tIdzIRzlry#vvbZvw3JJf9Xt3ixD)mDN8j_cAo%r2+LBTTG<2yB7_DIt66~Sk z&R|YK{>&Exq6&ny1p)A&N4RI2Cr;$nSkx~-$tT@Cg9L>YSeP}?M@zM%8fo$g{wYeNjQ$PWXU1I+|> zu*i@5&z#)8U?kTx!B@fnHR8#3UN#_P9wz?`r*FFT^{uRmx(pqxXY5GwClRZb{Ac>b0hL0(r0e{69~-24I6sVdap~fpWLR5N z^j^!s=a9Df(dH8G-etY(Q3opvDz7f$w|1vaT}SyBMyyYj@2(WUEPiu0#L-q{VaT10 zou{LzdAU3sJ`LXG3iMbT$#^WA4diSRaxN)YCFD%i=L_w>fF7$bQUzwL4V_mGC0WL{ zLJ+x42`WnhL^sTRV6K;#dTh33-qPi@9QEHljC-EAws@r?wXrKL*8-X!Ksb*UqQ zdjG)#GA4txsgd(bw~VZb9aS}9j&5agN?67uI~Z(b4G-@Nwh z{Ja@{OIu5;1y$i%?|W1WXQ;)sKM$TSpN*UT(W4911)4=cB>pi%UNm)R=qQCUJL3A+ zw2+9|2PLCG_LLf$VPsrfoOda%BPKCXM#$&TJ8llz)*mmgsGn7vlo-&D55In0a?6%z z=!;o@whyl-XalXEEb%R{31(0JJD+Y+65h0#cL$5ryKGYnXZZPNu@W96zrSXfds+Hi z8>uCTh=@>4iZ_m?Bl6k;MEJz_J3~8k3DTLdcD-86&E!9PJCI(HQ*NoZa^v#hH>6Fy zp5c(j|4f7N&gC1!l?V3T0D%EdA2j|H;cY`aU-B zY=8g09>T8l_vf$gOS#i>t{9;8SLP0EXHF`U+MQ8di-o};}*qTR>fos(SUdsiVuPOs9+ z^Y_c|D!S8(8zsGjROk-Sd}>FQ9?8Pv*Ngd4fBnjv_=AnFeS}jN-z>dC2C?tBR+#Vy zrn4gcQV3wInN@P+{@FxAkimFDO&xg=H2oF^;eYM*j+C#V);Rp3g-ZNlvb1Mpfxw5iAxnA3_~9fE-pNoIXC4 z2Tw*eOqi2-0-Q@kQSoVu^85P-u0RNEh`Syh&dJAj6&f6dx%Z{s2N{7B5OwQTFjkGz zM1z&@qrBBf8aS4nsBYpQ6Q!NLr|I` z$@RYYSDNX5S;w8gL{soOfZ~1dce>S{CT&#?8FTTM&z6 z@qmmm%iOonSX--Ya|}%#6S&ZAwvp*3ddB_v$2SGe{`}cfZFr=#9F&@XRfO;^KP=v~ z^mKQGWHCgYd-y7<_`-4cqyMLr3UziCBz@rf_d{Pk=dz$PlCe`2Z>xnEZpSAVC+%nE z=9+Z9tq&ZKT=;1KfdMoe350_4cmI`4Y2EJZNvMXJDy#*YHtAwtr8F_*gzlX7SU~QV~&6 zdMt05_lt_vD&W4We*~S~-Q96Y!>K4oY__ofMLB!uU2_!c z7}>RSOz5-pkZ~nQl=P9)-=3inQlMC(NY}o&$}!m}p4`yf-O~d+v=*m2Afc%QNMSbO zG7hX>2RS8%3c67s*Ej>%Ix*6^flRJ|u)Cc*w`q$1*UiI02u!Y`r=`KVlDqWBC1?w3 z3?o-#f0Kq5IRSzr5+b9b0x~$arN02;3 zcFP_i159;Y2Jh0G1ud{gMg}wfWRlm;!C^z?wfNdP0hW+yd$zaOh_i}K6_SyoW56(oPvaRsu?LTqf<}?ki@>x^zwj>|knp2UPI^Q`b90!txA)K(rkqHB2bt>v zV@rTspXuHUXEC13!p61{z$0Ukfu5d>Y}2G*RE|Wn&Tu%79yy{x%0JMR3R;RGSI6Lz zMlfXo6H^@cAsxVjjIoHwuEJn6j@5YLeL$4E75Kvm;Gf-5)jd}kl4%Z=oL&bqw(C9t8K_&BWV7PVJIjdt!t7)S9N*Wv#Y{qCrR;^gk*`cuyRO-S@YJa+HMh#(R}3U zWwpI1Z<$!p8Nac6HcuT7psS)93F4`FxEbSjjK{|}anO3cjh)`=e@w33N$Fgp4TJWH z@)dTlWT-vQF{?w02AGUZHx@$*6{`u;a>&D(b_`!L(S65^=^1*XgirLUTiB@!YH!H zf9CZ&x4aki{$~FhMt?HLig{`EbREx#?Z{2op%b21*9?7TC>dw)L;^;`F`_fB6r#TW zXOPGIHW~3yBQ+)56O#tB3wAHTBgxT6h>Cd@HnHd_Aezl_tGKy2*Q^P}UxUgo*P9<& z{xjOngn^T4JTx+=0cQ9DLl;no&AT>l-D)NoQK-L3jx!`w(z}c=hbQF58|kccMdH5t z@Zw54mBDS+hKG%kRfEi>Hc>e$Ujg>E7CD>2N}@wY)`1uTefGYw7kU&QaM#Sas zIVrdE{@<#W9my9X{E)I zC2JE8pPrD)MNV=|1w6PF8l07t)d0KF*apU`6Wuv$UlRkufp!;LfpQ01;RJIYCMW7??`bZPdN~%k0qn(XV@ZeI;_)Ey$F4 z3kS(}(a~e59i)ejp#VnG)nQ4yH@-B}(7lp?U2T@T+hTsNm%(f^jpy5^bF;Ib(EZ|- z&qMw;E+cYy* zL~34h(%NABqJRSNi5Q0MRwQz3TuP1JIXiEJ`oSY}&;82S%b1f+vFj2GnwR z01h~Rh8!QNsi}$STfOT44@#(UJ)$SPbHX@m45?riPasE&XBB9lno_Y+`+P)MbE$qt zr(9h0dw*WO_N^Z$Luep&ZtL@#7uoWOsZq08-tGmgYQ@wQ ziN{B`x50+^1OSKXV+V{_+vx*N6&M)EgHG8ADbEgAp7-YzGP#opa zzhRj+d`&acmRaq9-yG>G+C49)oVS5e6d&TkhOJ!8%Z811na>8#Yx*n;}_~51W0*I%EGo2Vi`kK4hFOO z941?#9=3W@3vyIAXM&A&wTwhjMH)G@1B8R}7>LXbjwVSp2Rf36@t}bpeh4X+q|^=S zAF=I_v^7h3Z?X;^4P>i&sHL&%*TVRSscg+cXi0xVFsoU&Z?+RK2EyEu6*GgZK?|_D zNM{|%=-qfhxr-Ba%r5Zt(xo0I1wBZ;SIJ9?tf5@SzBiQw7lLn53np4RA2Y znJ=$Qa#8!%H#9YwDqXulbS*PIsDu!7O%K}q_BaJ7dPapy@P|~h7DJ4 ztly;%bJj%anfI(mM(bCu{3wDD66#(W#`?3jDP}#~5dhT;=Q07K#1@NCJkFilh{!AX z^0*d(9j6Z!&X*xb57RNP%cuFqj%6w+js%9z$pAkNi~Bu_xj1OB23n#*i~H_D8UP=e zoooAZB_blC=FXLCdmY!%Q}#j*LwYe=j+vf-mlZ}rCNc|$1&`!nOq+1z<#Ra#3T6|> zW#Q5L&U|7bu_PJlCMPnX;0M)gM;FO@`c#ojV}bp&A_^4Cm;u>w_wd`JOG{rhgop23 z()IMZW)GT zT2BI&M#K9nyq&t}mZ?AyCl|YvczcZ=9mPRDP^deA3p7iHiH8e+^HfD#MD8-ZN}f5j z{|lRzUFpX^ne9x#Dz*x}1;W9c(d%|ss9A@AHK8qP1T+4DL_0j(wo3G6E1 zzE4UOX$Y;7?jqa{^MvsD(ap#XKy8SfQ!=l!n*D_G9~-ceSy-aNjsYl93oV!AtVqIp z`2Dc*-040@kMl5Yka{ZUQ1@xWsMWGIheo!>05b8bTyzU6&O$hg;oss^JdB^@de4t_ zZbFWKFFDejQ$-`3Cud?}!qRRr@`x-3v(#bjTcaqT3{Nt@pa0&Ks&F+KmgcdXZ}%H2 zhTezB*To;h3^f^!B89joU%KrLZX!AziKA0~9D{(?&LtRXoB$6p84NTCw(g`fotgLwaXy+gm+*D*Ri zJ_PW}4oUm&(<~166P2o0=(_WKk+W>raaHNYVD=lP0DMH(Zi1h+DqDStX`I?D$vibN zL2!}Q+6=t(NmMcwuPJ6UC@mPB1Ob$XbhJemc`Add>U!J;YWY8OC1IR=fF4i_6Iafz ziin+m2Xg~rM+-#QuAZI^5)#=h+sX7ARxflQa^MQEI7|lbbeOFE5JN5^bV?2)b>v#$ z1W2?gB#Ez~T47|FoET&oJAC-?Z`x}{?Zj9FORw0^82d|9=U1Q&)(U4t1x;M!5=ezruy8) z5}Ow#R{*8SsbiO(Vm90W{V_+&SeU}su~AZwU@qz$m7V$bQM9`w@-`zj371WL!IgeT#P)G*< zpv&w}4Tltj;bZa?6$D*q0X(V@DkKQRy-CVAfwX!WCKmZIRE2dQ+W!aVx>O_71>rax zUl;(CotU1!3J28mAR>~JaGLGg?(Jcj#Yq4-u1`ENDTy72RN!2?0rVX*<_E+=#`7@7 zE$}Wk)&*^lA52tyh8AK6WdM%wt*?lM3qr@JeR$-B9BvM#QFuISOR(E89rwIR zeHXF>l{Blv0{iQqdsI3W*|` zXQ@PJ(DWTw)>?b-_kI7rZ||SImeue)_jBLZbzbLroX2sTgkw;PrpJK-H$GGu>i80^ ziBiMqz7cNL0&pGl+!1XS6RDtKz{(GGJlHj#@ z`0(Lc^t`*EL3ZO^vScT5%B6_{mJ%0t-3&lr2f9m#(5{>jCh}y`u%#-?%6y@cNJ)=E z(~X!W{sIKtaQbgfU^fUI@30-Zs}a8Lqj`A^_LNZ)(B1X)^bE^`#(y7L6G+dzt2}^v zK&(abpwES*Tx=b}Qt=-aX1G4|124he_!K~vy7~n*GXxmGHeIgB8RLOAR^9Mb6C)IN zw7R=gT-4Q(wO+jeix*xYq1104Do5M6Qvx8%1651x##8LMFIi`UtC>Q_H`5~92$qJV3k0|?Tb~ewsbz< zlikQL5ZYucf`Ws!K*Qy$I`GWX%xWA@63TjJc(xLbERF@jDFtg2-C=R?)Tu5rvpNK4 z=>NMKd%C*F8E*4V^OwhOu>SZ#VI+1U^!(&o0E9Q5?wL!^mkC0WrA1&BP__{k1pXi^ z38J7E1qiHTM;qafPzqK3c|+;28~#B-ng_)Gr`bM1o3e*;Hby3K=uX(+G^-4omH$-hS*sg(~leA+G!icPd)FNp= zL4shQpfcR|Wn^u+lj$t>u>=I;sQi_M+x@Hlrf=CzJ#YDM*;^Tq$U&4Ar4o!lZ;hA6 z)7Tk0fp|L0WI^hL69%{zBN{qy-o2A?iaeil#~)qf-zxGbST(>wm4ia9w4%bg>@r_2 z_=iaB&1~L)@5?^#{<8UVP$^tS5M!v!n>q)TF=}@FRl{{+#2)cT>OKNw2jG6Y9Mf{J zp49Gf6F*+`OstL`y+p9fO8Z0hs|OZ=wneFS+n=}zT?6=BG6D0$L$%|yYnCNFEl5oo z(r%2(v<4S-F5yr^-Drty6?`ynbn%o_!$X_pb$0EN%|20X(#<;yROoL9MQIkO;P&Qg zlK%y5gR(!vHx^fZ7o&SF{ju!(EVRKkMOd!Dd1qw)t5QWu6o=>klgYJqZJaYuo)Vl3 zYdn5C5i4Jf_Yw;UpPd78ATR@1vC;{sC!l4r@gsF(vO1H#s50*|aknLj3n`UvDcCXq zG*mh_G8ZK#p<=k3ZrQTMssH^vQt&x>p_n442nnqycBGYpU3y;&kuwUGkm_(CQbTgI z@_PofD1xx2BGfJfC}gvS^RH4YDK7p7R45A&ccq6HbYO%h z{r2`v0MP6;Aq@1uz}<6#l5EB&4A7kiNnrTs&OulS{rX}=jNSm2&N}4DB;#Dtf}AF! zCPKbkdi9F?4wv#KaW+$OB0o6haXZsk>3j)ItxRf^PVdA42ceeK)zdom{M*Z8)4nTJMHh}bsLbNx&)f%8SM zB7|!noa*trZk|UL5tq1Ky9#71Vyy-{L4P1lgeErZPlt}?Jo*eI-A>QSDn)86#>+nI z+y_2q5olN$a3Gm0xRD#B%X6HW7~A+CW!l#o)<>+!)kJIUjV)bk$V#3DIMiqOMw;y7RW0Hxy=5#d5LURsen>RyU`T@F;k zIK4=D^g>Iqn+Xzx1!879h2|KcAs%?*$jl|IL_AlC+38XUU?wepd_<5!Ty}uZG)dg> zG0Kq7cTG%UHGBsI-Ht~`TAf5g33!B7nOF6T=q12|&V?q6Z~(m-Sv%12)c6V>+6)0y zi|bWHhd!=FR~KB~PLPL)%@BZmBv3y3W;7-`7|C3K+dvwBT-8`ftQL^i5Dfy(+&08O zU^OzCuaUc10a4V>apd?7bA#(u$W4o1y_yHkUm5V}+JbW~DHhKPyI76=kOMAkb^kFB z&;b{K6qL{mIFNz#BUb{SumpvH1BlIpi`PAQ9bkMBmR4HEdWZ~eaJj!>+Wm&rLyoop z|FoR<2kBA16`vI6xPm-u#KG5$K_8a;NkaJx?E^L#xIEC$xiCZF6 z10*p8yPhE7uQothCB;eYya)O(;T(f$6O8mK<-n8qSZwv%o7HEBGJwxnj79e_RPm-A z)LWoM)ty;u!jl^;eJS(jH51u#1c|YQa@KqSj79pS0T1OiQJjHT+<_t=isNmXnin;{ z>_P7UE|VZHRn{Ym&CQC#KKQel^pNEv?UJzfy{JO^AIxSAmew0I6z&8DtB|x21A$8bC!Zm;%d~#mlKknn_pn6jI?SnP1+EWR^q4@H*$B=X%8xVz)CUXIct`hBc+VR@${1k~CS4_2QdZjiCV8Vn4wv?LAg zd_Jm{PS+l3ndtbv{Yy~fkj9hrbug@P($f%=x5W)mJ}d7v=JG zd2@w_p$=djrsy**;@`00J8_?iX$`Xu z;7giE&!E`N4QJZSJR{jp>iOGrv0DN@>CTa71y3C1x3`}IoCRU%l4x`ZwtNH%CG2rD zZHRvkT30-a7bp5lChZmvZ9@)1oHl38YEc?KduzA`QEGg9=!W|0T9+ta=J&KB_v=o| zs^v+%wBfYL7s~txw1(baDx661!5vmc<_Ngr0(>lqYY{4SYyG*aZ&6$)*NZJuVFO~OjD<~+aBkFWlgNE`M6eL6$9w_&~s>CK@WMgM9 z26;&ixe88!@Nwfa&rOR0*2D`bS4Mt`Yg3|URB}w8WnXkhjF;ie8T!q|+#*~|EDZXb zuOGi=A8ss^p3{<=!@#|dXP&f>^f6%Uyr`q~Aol|ayZQ&|`Vq2;QyxlT1FSyOghAjE zRU+-TDnO36`;KB501OQxR|Zcc_oY3vDlpdjmyzk`2Y}oF5;tjWKs*A@&AZA%8c0&8 zfB_2Grs(J_gOjM=MNT1YgvoyU_EL}g1xuF}dDFiSP4hXb^yxb~imPia@SDC76Z>QM zNpM!=C!h3Pfpz9i$zNCnh zMo{{^e%eI)J$smPJMr8${fX5oGS|z$YDg|!+J;sLd+gDZ%};%2CZ5g6I4uFb3r-yd zzW`{AB`9jR2if-+1d-Td=Zj4P-73kh>^J!0yiJ?W?)@rqX7ov$BGr(!!&NAGqh95b z!JWP-4^Z+*r)VsT50#;V`%WB;-yrdZ0Lh|naSn2_g-;3$rG3%N1y#uht)XKvI}~4_ zD8%*vd*N;3-cCX@6~hD9;JN0^;Y*J@Z2shmJM&%{Hdlj!0FTjqx|SsCmsPE!3Cy8J zF=+`mrxR+DT-P7*Zw1}HpfRtBd{@T3ZZ)LN@dhtnDwqa^1y@j<+pL6DDOG9hbzGJj z@3vDL!Qq)Jth5OFrte2S4+j!r|qyp_JUJRcSA2pAgY#6yPhv-1AcB7$MBpyp?1`1`6P}85q4IBJyb> zNvjrZk5fH<+O}Zl@OU@?OBI7gbUcBtYf6r^FGwK@m9MeSheM;RqKM zyr;!*b>s#aPB#C*SF@YRSQ9sG1_&_>d98trAjOla7v-i?Rs;X;u-Dw$eGC3)p1%@ha!w;ST(z1DRr6S|?h+Wk{jh;4+3Qh(?A)Q9#~c zPQ!#cyjI=d@nu$TT$Kz@;`Ik^R^4h6q1#~ukEFfIu!68v;B#OJ(11NB1Uc_zyvFs% z{))t33n%L~)Q9jzo^_qG!dsKgO$rJJ2M1L|9;-u#?uXP7kyuy_4Y1t8@r&H#XV)0Z z3p`<#jV$g)CdEF!>}K&YAnpW+F}&V!&VcljL3-S+aE_oF^z+edO zhE*HDtW*`H;}1e0G=uKYlM|aXq9%B|{?F~>)BQr}E|Bn|wc$t*73b!G;Z01|UB7g| zLV*K>JPvP18(xQfM0O3~2T5L#YWPC`LX1|9BhN%X#Qe(2IzeIPmpCAoqH)D}M$Tt( z2T!mnlN!4xznskGR91TCibJ3XpjVZe8Gwuv4MOS6ecc3D`V&KlG%Y(4wk*3YpT<%#7@*~P`Ztm1;Z*PYyv{4nt9jpRKob^T=7r1Nl?Y0ZC8`)1s z$aF=P2%^=a!vfa%f4Zyh(jGKKd=_a0dgw9%@ zo0`=b!^@Z~S&QbXD$!M=_2<4rpxB64O+g5P1y(WUH7xh)ZY0ID*Yu<~qbg7$stDV- z4b2zGiFYgb<4Gl7@3`0UlK)G%b$7*_q9dy9ZuWC27uDWNeKuV*0(@9OXk}91whoen z?r|da0UWj8nII@YJOORaPTj(mu!*t7rJ2Odl6vCb^qJoe5f`XsQ@3Q!3Fz*H@u03{ zgigzFtxLc2O-%+>bc34;&h1^H0yibh{IaXZ%)9^;%I)Chp#1TZR4mZ|-UySt;u`pCR3S zug+fEuEj;LP$c87(0E}%8BBIBXb_grN}=a?albR{4=Et*>IZIj+?YZbL2md~eeL6* zRwhLBU1mT~=G<=E;Qd+D`BLlWVL72dCOTSpzUbC@j(78ueT)iN9VrVMt;A08@fSJF z`N|z$jww52eA;dWgZ{DIqPVfzYV0fa{EG3Z6Y`9$E^$&gv%(IM5^dEvqyz<;Qj8oP zf^ofb6UbMs(EbEJ7dyEK{%r_a(TPW9`_f@MM29se7M@vYJnKMf7Wdsh+M>YCC~0uv zssm);Tr>a`I8|2=$4tQI_YiW(crk^h*>ITgHdOp%(v8?5We$!Mc+0*S9H-VfGQ))T zDG{QQN)N>wybHC(63GNZ0#K6C3sBS)gZGF;ejDH`bnepp|6Gsl1z5nUdRr-~4&=F; ziNwbunedwYPAr{R5c@#Er~7Fe?SX)Y)I9#P_NM`1G9uJ+UEfxwx4_YUer;X?l<1AR za{~G+0NPlA+Q1=#1t`tC?FA%2THjjAEZvQ}-^9QATS)F z!vvk=Ihr8EaIGoNh3m|jr%Km2Nq{x!jtQmS0LMX9e;%F|U*4y3;JouSypA2Y&B8(i zr7o~QIx-z%L52ZLL?Qy{+uali0oH+!f+NQmel`I<@38h)nVn)Me*Ug`dtL^*W*|A8 z0&M|iAY!N`pb4u0os&kXO#NH{i2b4e5j*1E^9D?5j9L?hth1Ildg8+B;&ENjiKE^@ zx8k5bt2giiB1fP=SRkk-Q80XXhG`XWF}P(DuW1j7D%J>k3Xe!L96E#0#A&48KY?bpF!cPfX~B4}YxNh_gdHG~s99;W)|p{-V6>z=qT>Dq^`Dvk z6zwYl)LDkj4L(3uGd_%;uZU9vu|5&a5KMcl$CK4Rm{(&x}zs3o~ z>3yNTfy`&qkS+!X4A@_PSF7e5og1CDLt9%-M<=MbUYSY&&idA9t24ZnB;fo51{@i8 za-lfC(Haee$&v&O{lx1Ns<9n)(i*%EMmF{S+s8_R%CS{@N_rzuF&u1_D*WNn2H#l8 zn5_Tl)E%C90_9ZJu@9U$s#Y6p3FwPg?Ft-OIWVrgg8td1nRq=EfP zIvvo5)6o$p?4{Z>awDE3AoG9hJ>O4R7G8D^$WWU@DbU_Pyvty}{$jzNDqf16>DGi~ znrRMZZG?=@)k7uu9dxu}xZ#t1bknm|T3UJB+t?K5u-U(YC_UDMXiT<3_5pqIXJ0_FWWHysdr6 zs8_sg<;3@!BPX5&W($bG;>=bDJfZF%UJagRg zAash3IXxp*jIe}2UJAm)y8RohpO&x|&4H}X>Grh+>8@)nLr->{*)_NAE9aO)begk0 z6<`!P^E_{|gc9CsbEV;2{7YIJI2PZ4mxxz`kN>#A4ds6KLyrjnYXmr?R2>~NC#yuQ zQ!+ysauWtM(~F4-lhLjQ`xAF>sJJPxdVg9<$w{^1Zhvn6{l+C~v5c=gD;>q$3P&e) zo+sI*wx?KC-8`kr^Uz46p=8oq&?y57H>uEI~qU zpS+7;$-DXo26#_SEL_UV5FYN@y=vI#Kx#r?{;D)F?inL=rdySe(~ z`wNu(uUDNc(sFliv9~B3eqhR`RL>#950i9JVI+0$R_G%QD>mVa%h;}t_9hXpg9>F= zUln;9_0wD&Nw+>}#Pznfdz0)5n~Jc>a8@VD1s;TZO1ZR@O znIiPbQWdd)=D_~&uS_RH4agv&9Pse+5>7vYb=40KclS3inLC)n&&GslCo90`NbyGl z2EisnoFIvW=~JsEg49>43)-CLO-=a?gZ^yLJ7@q<{svqAKe<1UNHvMQ6sR3!hMgxG z==GjH72qC|p$Z6UItzBcCFEhYIdh()l>Ya!9Ld!cVEWZJ{Mqo4p&8u-X<=OwSWDBY z$V*8t1FY^g;6m(u9z{N?B-e=NKpu1!EE)&{RpDF>cP4L8tO(bc^hMEiu1k{eqF#`n zEw2hjx-m9(7X5xpd<#ZU9H3~BGk9mVZ~{n<5Z)&SrRjlWez-oQA{b}2cwBC6cQVYgn63>Es4eTRe);z-s2 zD47Ah7I&!lu>aJNxx$KLF2aZAAB1F4@-VPd@Nxvznc!#}vbtJA`~WsTkknF?Tt@GS zGgK$4{tBd|7_cE-19NXO5mfS4qVuHmM)I`!7y{MB@j)s8SQ6$RD4$DE`IA`?WQ;DE z5Q(cv*!xfzXqAPH5DG#%c*y#mm|lSO^8lHlP%tFcee=aGfbv;xtt8k+-Ro)LtXlN$ zl)w`Pz+^{=BOxJ)^a6wQ8Uv7$0j*Ki$yQ+mkO~xo?5PCTg<+z>QzP_>k7C-7Z44(vSQ46DoFU8l(@B97~ zY+nezMJC_zpcxVa#LWaQe!<*Og3oh2zaXeX>gBz$c*$8^Zt)zQ{dSA3Q(}<$^dAy_Xc|bug$-T*dPqf|9yCRt&HxKA!ggpphBt?-IL$qGFA7+4@1PFuN zk_WWoi(nbzP#jOm-EE6fj^kZUXp|qF@fp z@m3`>sBgnWS)GZ(tTXjcXJQ0}4YLi5Bw!coYGv{8nIoR>itRQTN3F?d$s#JODoQ09 zo0hilV=W6%Fy?I^8nQ^TpBb8&=7Q&O?%D6+tIYFBh1P~N{nl||APlbG{XW=iGWNVp z9cST9`%q3fu%3c=&;%O<7b+}`_bgsz=pa4^&;9M7AqZ4(U%6AD`g zqpvquKz&#`aPE>46Y~Z_o z!`c^fbgo}HP^GboXZzhlt~w4Ko^KD%XW*TuyGr%GcsB#@uQb8Y+KJH1{jtM-OBCc^ z9z(1m6TN{5hTgpCPY^X&P$N|+2VphUSO_tRJP&}3K0r#zcsqE_mSTB*hr^j&%+3A1 zs1ZU!xZwihtsx~$WlDFXanL@3&uT+19Q~#frGA$xzOBgvvQQ&Wrw2l~2 zW5uGtGD%g02`ka15o8?|8D{8+kl|Q}yp!vt&j)IoE`p=UwQ3f(UNi4)rBoZ>T}H$YVp#*T6K}-96-%8-mmFFiQbH0G0reW0 zB8RVhZhGdxpn4v|6?Zkhg8M9TpGb6(fCW5z=?qU=9-_`e=Ljp1g92l^ zq2SyGsIEW^yd*!g%>ZL+$WR|FNO6Q`f@%Ogm{l;$e(nIiof5P*JnrfPT38gk=T)f6 zSFea=&-v)+X!#Ehci^hEa6ChK!$|>(E5TYO#}#1D=jG^UnGDt4)9`t z*%WcC0VB*fbr5xqQQ^8$%!ufeI8TUQ|35S2#-9Qk7K7$>=nZU+d{LfhHvX}$HOC1H zGXx22UqGvb?xhFcFG>}MF$f`!kH2h$Hv{hb8c4GhPBbk7;gz(f!QoE*zQG$MZwEf+ z7)FyBrHO#UfqQfTly6KHE>;sh-k5{S&~Y)PsPo**-_6_OYP!m-* zl@~*ZVU|_tJONjhbnwf80mb~28yE|r zTqS2bD*ak;&@oGhPz3Qs=w0BTi#E*_BWzEyB2{K4AE`}ayd?2_ql%E~)fRf3LkE%# zY-H4Xa>gkpdNy}JftYn3+Bfn^34Q(0?S`CM-#q~!CH_pmysn1|Qj-$o@NUc9?~G9s z=r1bICJqqnQPGKcKWMrgICQ3dMpc@Wk zcONR*tn8)6c12<7RQ`YgKF-+v&Z&^eqV@|}jrmk$v?ZYZ?!7IE{*^TSL|dL^7r3wN zKJ}%}l#QvZCUW(Be^qrd7;#3eju3em@kBe7-+Gk&3LSWTPZGK5C4v-{;SeCob5s{;ir%S>#ST1%a&keO~;nur% zx}VQ|Y==^$qNGAvxS1W}hW0PmEfoqbe$w2HKN^v{WuI(KtDSO#i6Hu6I3l<2 z-d%6gY~=ITOf~)kq6=N0i?CvEbTJ8TNxFUV9}GiM^)K|{FA&3eXc^ugz1U*3E7Q@> zB-~V@BLU4NgSa&Vdj(@&#;GyW+{oG}5C*bml%rRe-5J+({wWBH`5E$q+<^!gy2$x~m&hR#nvqQEoCBzm4S+RvzNc##G z5Cf!_e348TgX_a?g&S*(g*)nRpVw-3OmSBiJDD}as=H+n!N_B8(3+8!x0QTF$Z{-k zdx?4&Oz`ixJykx>fTr?2H3OtV`ZBl-uxR<<;pvSYGAO$=3R)da)O9eP92ylL>ohGI zC|I~C;xC$!zNn(&L&0~#YDl#*Q4O^>y9rap4d-^F+E@AgS;DuQh`tEb8wD-#bwAkJ z85tJFjKNQ1`Mt4>G9RQY#m+`Eql2$N+C5r7lzY7v>MrDcJu@@%RYf*Qv6XS`+!57n zg1?gH_|dN?MvrqmHaq>cATQ!W!5+m``_44)&P!YQlsS9wgxiKkM;lX2SC|AoPPG~- z(N9a+l2`Sq3eM!viEbXYf_lDNl*KaA@MuErDUq*>#s~H(T$A4J8EiXUi9zPwz~Oc8A~{a z@~RTYh8q%I>a=?`%os|#lq5IgWs!T6?T>`^`?aV^rntDt4Vg2wCGsCL3o5fmmZr1a zUv>EKzIeCxJF4zcbb|tJ<^<(CjAI|3P4j_Ss0k}}VYkm>ggXWg?)1Ea5)TbZW+ttG`RCsK>sw3F1^1)AACWpVuGl0C_NX*`vtr=h0`i$>3XZ9tJ z!9<#R&adiU+He_H@AC9WQg>1m%G$pY3@8HnkQ^1G%kSqM{IR)Eg)2Jw$D>oi8^pz9 zrc?GXw-I?cN<&c;Ee{KSOMfjGHD45{nNV-HR8sQbH%pymtDh$Lh9>3gHs8h8)_8Xf6Zi^ToNslRfU-d3cybxAuK77)-xq za-sr8z>aInc{a7OJYca8F`*?^y^Jb#H^ zQ2A&tt)F&?!7uAr@bP0G&RIsO2PNJsS9)1ekjwu=j>~R3Nlbir#boM$#@#%=+XCUC z&qjs@KhRWf`8cb8eQ-(mu+%nA$8^?nAwGiF@6C0aUZAGl1%~e!vykj1k2`S&^F*Jf ziiGxlzNaNA&ttn`zL5X+L*myoM0rAkEoqUNyN^h!K zSrfTckM8eq>cYo*&o0;73YVoEPBFb%9f5TnH+62pnF{%0DHJ+kn76Tbz)odYb_-pe z+C+_Hd8}mYX6>^3Wz1k8V3c zJ)v6cC#qDkySD7BRGWX*GHZ!{ni}8LkPEWYYhyO*2xzENs~Ns0kpv5?RyTQ{%e9#* zwS}B*l+znA2A%}Xb;Edb6_MvVV*S`~*Nj+vX!x@~b)n?79eoadO67CcI))}YE$X6{ z2a1c+FVX$|7_=wu>%A_wenm+a;nyaGI8?=BsNz4buw9+kfn48rLGs1xe-=}WY8gX_ zpOot3J-8t6OXNlT{21oq_ppYj5{C2}BSWphzkj=-$lcSYOO~121!l|D_7JnEOnj`l z&gp|MB~+MDBl;)<1ePob`|B%{nN(e$(^=48tP}*q#G!RP^*|Xi0@C@q6&V>C6%`Cw zgf#aGQ2#W$&aiY1gIafqgefWJPOh zl&s%*A{RmpS|KqZC}&B3WfNnZ%uLxR2;fifz_q9GwKmbl$>Y;`H+S(yToY{Cd612M zn679ruYPgZ&c=g5zgc@;jIPlte3&QbD(*ttO9eqA3wB9DVq%8v!^A{*Lg!XDzQ6=d zoKR%yV^x**=U;9Zs z(XrMQGq5Ey;iS3TXAmu-=drY1%22tGWN_(qMC`P;>#)bm(4qcSTFCxRv>q+uqYtVd z-?Lpm(eTcvr_;3X3^7K6A{Z>D+I?2zdF`=cD=d7kVd5>Czl}WX|&Bc39Icp zn#|4Jzz}j_i4P0ME9iG`P0c>w-u&rPl}LGuZZho-r=K5{lk2Tcc}n62-6*#cXxrPpds$+)QT-b zj(Q}$Tb_zMi~qoQ_^_%DXZq3L?qmCI#@)H@{PEQk!lL!0BNNysynxmoDF?yD7ulbl zg+(y#Jep;ECkw|VamJ8o!^95=N$=V2u)Vwix1Pp*V7z(rPNRgx%E28wRE@(&JH@X! znxu^goqyd+F@)P%?y|@0Z`bqOM?qb`0A9!(| zwl9ODXCswcMX9Rmoag=gZd)zufI~+v*YGgCO1rmr^yVv74c|Bsd=_VaX3<|8C{3A&bF@^@PqG&7TUKeA%*Pz=$urz4vp^zJ1||<^h_GBT3Rav~B9@b&N`^ zZ>}KVFF8c=i&G_cR7qgs<52zL_40_$FN}q%V^w0>g>#hG(u8v3slla-i(3>iyt%S* z-dw!QNbpHAC?pI0fv&;PRoN4|USEfC(mhczaq z@K|z6R@3EItY5S5T@+CK%9bf?2O;u6cW0QNS06vl(O;@ZB)J#cHVQAc zwf)c^=ARrW?1n>eQ{{8vfvud5x)sil94sCtiAV~hpf7e29{LZQlG0WdUI!Dhne7O7PiMfs&AGb>g4RRU? zZVdj#@gdgECd|1xVyAWb%5zKJYQJ-!SkG?6Y{`Trg0%ZX>gu^UQA_%wOO~ICvV=!k zf`I{2D2OYg;%&?snJ-HOih3Ol2`i#k@C5tBJygB4@HoGrB z&Li%MLCx(K3?t3v6Wt7ks9k_1MC$U+c2&f8@G; ze)+-Au1r0Dwx>^N_~HGB?bcqLQbS?(r5aHqjJg%_-C844NFL{_V#l=+kYhHHxCy zoLmRiD-^$dDAQdu@5Twbw%|#vWzrW8uwuBH_Ez3qc{#yq{lrMuGZ{!vq%&YaZ@jUp$jTUZ`{v)*>+=6|GS zJUp%`~Ax}0e2$gKKuCm@`P5#amu3Xue z8ft(5MJ*cql>F(_CN3nEC)+mB&Aa+Gdw+J(IGFrp%k{GB_uL%TiLcVKJU(usBp#gm z^U{Wx!Jm_HaXT}{ULNc!>)MwSEAwHigg~UHde9--Myh4b1;5H08CZaOTIQ&8ZIKV1 z!zPz~Jmqoo+_mzd{!5pNB}dAqKP~AS7pS%L{5W}Hf@jk~mXKs8Zqy;XT(k+=y1MNr zBhT-(zwvgY!ghOq)@yU&VO@Xih&uuGe`S*I#t=DvuUkm>RAm*4;qJ~VGT0VqqwaF< z>)pji?q}U8KWV{~t)iom^o}8vY&KT>WKsR;;RAg)d}Wu4&C$$zH%r6j!jBRdT51NKs>I#7C{txUNN{*RBMFR_23sV7lRoW z3GMI+>wwjMDL^-Zkl;k8RPkb9u{HEPf%S;0^W($H1w_k_-aW{^kB`De8aHAIIZ*$A ziVyllT)TJ%nw~7!?DCa~f{s<#rNwnQbUqpIdZmhx3+6SEiLN1GVZOw=4Nz9|$e_tC zyT|(}x@N4mX6&iHb)n~M6$DUj7S1RKZ2BVdPmSp&SKlmqjxiGF{4Nh z8ENP68Disr;+gwo!7t++j}2&U04;Q}gE&(C^yx>{6H7;HZ4`(JkfAi+epAyh&P#%p z|DIvOjU(41>iKq$7H+~@f}(pd6QA3Lhu*Y%WFf{LGBiNHw~+|Ob$!8rPbBfx5J%& zP~p=Cpkg|)=f7rS93qw?m_iGLo4N38^!6gB%=es9gkd9@JQz8Ge?Y+hGInD9qPZBT zFdrI^!P=>@&Fko{)K~in0SA$TCtG5-Q%s`{$_ODZzbqjp=GKw2RW8;Hp5}$>u z0I5r$q#^^`&~Pu8d6*w#S=YtBh3-V@34M~L-KX-~g|IrVpt1nbRuVeOl;9luMwTMS z?yvAdA*eMGG@~^}4xP(au4G`Co}r=PS%tKJYQ0TI>X*1tH#t8^G=92PB#sSG$%m{9 zEgZEtedmuy(c>Y~vK!)=a*O8T&l{xRH+PvgyX;A%eWui@1eOriq7(N6a1%Kyl zTEUcDvc87pg~$nfn^_)-URPf-eL~UkL$j4}kz<6BKiBTZ|9sQ4SV+R9&^=<^ALyg? z=-<%C({kieO3rKzX0zX~pNr#Q5P2&j-H^4PZ1J_^l@qrWeHD1}<5x+_f8rcp<{*ie ze3N^uD{V^d*iu3MYe!5juUy6jOMReLt9R>>q_CBQH2nH8m6x|Zjud=4A=I|y(!N)e zBOf$_`1GA(maB*BHqpQ4tDe8K57Bl~ghTbuR|-|dIf_iEA2ivM69OCyy^vf@0}Gi_ zpQtobl;yvWm3%&Ktl#!~c}WWS77jF#cINr`YZp6W<3$PBzNps;-DUifLn7l0eUQc= z`B&`3$4Z{9oZZgMtu&Iw4MYn%e(F(sH&b;hc5rZypYarv*&)Tjp4@mT{X*5< zoVk*ZI#nH>pap~J!R)1qj?f|J2-@Iakj&K6FP+El#GaX0k3t}})(=CWgM04D zOo?fw{dC?NG|)J;LaU%TJkK*+DNI6jT#4B+=ys}gklU!B#Y`lwj2Mo(jLIJ<=TY^| zUF#nd@#;v+?H<@D3f8A6#z2QaklTHm$&o9s&8z29V*U4+)a{0ow$uaI>o@3p+-2CTvzDtci zDiw4+VXECz`BAYa!KG$S*0UW*|7kmt>x&P`Tfsfza^Nbx5C5ud4aBvO0Mkha6Xo(^ zbfAqCc^%LH6L*!DIhOMLg>wA;@7a?`swkZzr3Aa2EcFi+QG(dHqlTMz~Faf}n2l6@u!)fAZo?i(8u^zz7B;0iQqLz4p|s(qOB z6zhc+K=Nnn9bUbh%o`UPU!iEhJDk>sq zZyJfdE$V(P_|K7D_0Ecw*QLt_I-1#zwvmx9nU7u$Q}NE!Z;afSr87mQ)rh{H6v3fNZ z2<>WyhSzUM%scS4sunEX42&Pe4JuzU`|f0}BJBGFVBvNOYDg;}5-sd1qCeMZximZT z6OYo#A5k+uk2KKAgjBQ$uO8?7_bV2Y4CpspG){Ilbuae4@(gk+G^Da^C%|YfwUlef zx})r||E}k6+sJGvhhBh!!0R<{y71?EE%-u*z!!2Kv{D@ppSRv9oD_V#n#E@;)(x-M z%IT*+CABa#I}3+IB_Of;+1bWmdq@$nZpXti3x1bLK_R8Hx}YmH&F9jhRz#zPBLP`D z=51yFohZcW8rFp-Zvv>ouRQr}TR!mW7S1(oPp-zooot_$G@``U+)hq19?m>?oi4r( zrn5L)SmB9s7RvVTSc~nW&t?kdx3etW>!^VFu0-BL5!-3dVZi8mzjA`hvD(=0w?EYH z;!;v<>(;GXKZt*@adG7+!*l+BfmP==H_^MagHAk~I@5HzW{Z@xbn&d4fXYNeCrq0;OxyQ{x!WAL6yBV@46hHNjt5?lS<&Vmzl;!b{Mg_}`R2`= zw(zM()P4F=@%6z*(qX$B(Qqmdn*Xs+S_{lLU(HxOaoI1?$%1^myu>hE`+|m$(`a5= zGj>3GYDlHd-c5?|^MiiBBXnw*TaNkq)2E8=u=2Sx%_zLi&hWuZ@%F`l$B>qguzUSA z4~Htd)c*l5t>EQzE)^VC?x`ebUJbwF{jsn$2Xb>yW0YtZHh2|4Bn|bYkl!KCkcOKf zgDQkPl88lNpklm0I&&CV$6J^>0Z_VJAuPp#xBL75SAu)Dk8c3y&1Ds|*EdH9I_Da&;R%TEnf2sG5>)@&T{@I@bSOSqW}8a9`fkR3WDzW z>eVaoL$AMWck1_Fe)pTnZ6w@~f(}<^PxxTFi!EEG(I@9uiL=e0p_I5`AnhZ^S!`_^ z_*IxW{pH6Q!rLb9HpJJ3%WG`gB@cWwBBUgtvAeq)`3^jlOrl0x4WJsyf46aqJ zdB6y*>+T&psOJhyITl%*!36g7w+fZ%+Rh0JcrYkW{WKsf)OqvfNl8f+o%H;%q~FcL zy~fXdcgR~Bcc_c|%tUL&gDB6-Jv~QW-rceUmbVEhDFZ*w0Ny(?`Rk#V2L5+r3IbL_ zl@Y@l2l?>q)UOX~upOEpDf9@sw;bHq^AOlZ)c{(bb8l6j*35Ni@0dYxVtNQ5AcLwf$_nDkol~QiXgCZe z{?5aP<3NgfU&rJ+9r$Ru+wGa>xIDQw+|ARa{{hiD2o>fDi zwSGl*h48su0h+P5H@oOil|b6Nn_XJNkQFB;Ctp*U8LxrP#MMyEh^Y*w zo#%RP9#t%JL3!y48;NdTe)ACY_kqLnP??@nZY!jvuR;R0Q$xcye{#5bzJP$;4*|jM zDJ*-$%Y)6Hi0qT&HD2N6<(f~N`mW}Www#kEg~Ah}MI|4C1Wz(O7J}`~9$b$yGrLIk z^0aXE(7uVIR^S{#K_LP9%hkQ+t{P}{#v z#G$V&<}7s}*Wvq{`FwoKu(sa5c_T`;aD2R^t&I&j6bo%noCv>ok;N4w*6%2*V7rqm zzU+j)G zf>v2(qj1^$;SKOm$iEPr#y{40N>Ya~Glg6_`D}>E|=MNKb-(QP>Bzg4Cu3zoso?ES$ubY~yKvZ4~l;9(r;!wCH^Ku>Wy zK*3heh*Lya7DgZP@MMFZTWC&;+fE7!_JsV2uX&CjIM3nWxR#zSH;0q+%!)!BBHFlN zkb|k!yvFTfZ3>jXnJy79%Qv~^sGh6mDKETa7ZT` zg$$rNwrkKeXElW`|B9Kh3Y9}RP2^#5^P;Ba23X|{UC8ow961t?VF^0`1IUnRFiOAb z40KvcfOC^2w@gv-Q~U42{G)?Wz9Tga0MYNq$CnH2K`(_2+{TT=_+(9RoMo}pbW}zU zCydcH35_4KKnUxC9-hSV-Me?c54{P(+_9+PVaF#}p7wV~EoOdMIR5;sM-wGG zDh@jcMiVLhBJSU|=J3+%>+9FYDxn*26>8ncLE>@O4>=<^ z1#_tKghrlt`r^~_O`AT(%bihh`=afRUms4kn5ueeo@%@kK6nop(!pkItkKigzY3&f zzsP2{C|V=KH!YRlp~UwQ_tx4>gr9%8xH#mWSv?(y&FdvR!MRL9kZ-b;#kO^XsE~&T zW(5JnpdJxnrF2+Q&Cou?p^}=27l-DDX)l9jji2Y#es{3;)mO7_i~c zXrE&Rl@>f~%3%)6R^;fdjiE-QZ-))vKb+S(#ffZjEk#^}k-P#L%0BS}>ugI6S)Q^7~mm%Ix>Tq2$eN8L*EM@B9eo%yI%xiMr$O2 zW~gPxaJ|IBssA+6V4w>hZB2s?f()vRZ4r=^BptC!60^IO5TOHfeFr?vpyk6EqHbgq z_Bb^wix=@>eN+_keH=s|yFWmC?uz7*6`Qae$}1im85>&8GNON`n`o#L^`ZIP``5Kc zcO};o;VM4O*hK405I)6RXlKe03HY9b_*V*@oy7Z#1UQz3ZU`1i|if8P?CY`n?u33Onx`{Mb5hUKfF{8EtGj%|C_s z8H7dL(Bq1`@qX$|#qsqnU-$(D2lS5%CDz-)w|M@{cafRe#FO^+_BoCHb0)5=QZN1O zxv|sEJ;?EB&GchX={wz}`R zb^fBcEKTr99eXx2p@NwSTqr>}Cq~yj5NCMwF#zZdxl6azQgrub6-5Z)OfC5r=#CE0xqf%|jh%J;mKF&*8Ct602XYVsL zY{*zx08i(e?68Cdj}V@D?v{Wtx;PIzolZz*C3sSGwU zG$a`o8wW=T>O!;+y>UVev_2EDK<1odkVDGPvB8sGSJ3z&HhsiF7OMeM%YG_XgoDkG zM?~1wR61lcWUL_|N4XPEx)&0|ZKOM;2yQfLDE|j1_66CDujSXXDHL*Kf(MA<6di^hN+S){CYguk z-~egMaGh6ORV9av2}h?eCg5VUV#v<#1!Emopq^#?`m}!)`9@z~-`EYW@f#%RI6YHs2UpbhOaWaJX>ZnuMEwR@)Q@xic!iT#m{iC*W@;;5=l%qqMF0_6QKv* zIBM)3*jiE_Rx_M(I#r6thf}f4?OqZ2TXeK4CZ2cUX2PORa9`#j|Hm`-In9#54z42Q zSRp0FU0{ClG!L8Qlh0(3M+njpk{BNbF?H2$Mr#pMq!;Kh?}VU16lwb~aF!}?ho$$Y z8dKF8B1k{4p?uZ$@F-A1N?CB1CEi+O;)=0mkl+fhiN@B_L-HSY*>-5VL)mbHm>?tQ zN&pfL#d)@;#kE(cKRZ}()4@9e37uCV@IuXn#8@1a_f=@)8%pP?&Smkz+4JHMnN)^A1lA-*~2u)k8j4+%^eu zk)qSUekMac9xul#CW8svi1893fyIhUv0;{ko}z;IFzxRK^hSoiVZr}__Wjot)}J=^ efAiZBGpx@TIe90&s;wyeZ-<7CdYYQ$`Tq|e&}v}- literal 0 HcmV?d00001 diff --git a/Benchmarks/CyRK_numba.pdf b/Benchmarks/CyRK_numba.pdf index 43cdff4d9dc5ce04990c6781c78514bec53f1072..aff06a09b046c204f3ec20cf215ca03792a17f5d 100644 GIT binary patch delta 55 zcmdm(voU9bfH9-xWI~i!O)h=sqSVBa%=|o;#FA764HqjT10xdyb0bqj0~0e- K^UY<(yO{vfZV&nZ diff --git a/Benchmarks/SciPy.pdf b/Benchmarks/SciPy.pdf index eb8d7c947e1594da6091c369831a768c6a7c4a8d..71449f15cfc53ce9229d18553f753c5ac7d535f8 100644 GIT binary patch delta 55 zcmdm#vngkTpfRK6WFccm6-zxMO)h=sqSVBa%=|o;#FA764HqjT10xedLjwy#V~i!O)h=sqSVBa%=|o;#FA764HqjT10xdyb0bqj0~0e7 K^UdYPyO{vgHV^&) diff --git a/Benchmarks/CyRK_SciPy_Compare_predprey_v0-10-0.png b/Benchmarks/archive/CyRK_SciPy_Compare_predprey_v0-10-0.png similarity index 100% rename from Benchmarks/CyRK_SciPy_Compare_predprey_v0-10-0.png rename to Benchmarks/archive/CyRK_SciPy_Compare_predprey_v0-10-0.png diff --git a/Benchmarks/CyRK_SciPy_Compare_predprey_v0-10-1.png b/Benchmarks/archive/CyRK_SciPy_Compare_predprey_v0-10-1.png similarity index 100% rename from Benchmarks/CyRK_SciPy_Compare_predprey_v0-10-1.png rename to Benchmarks/archive/CyRK_SciPy_Compare_predprey_v0-10-1.png diff --git a/Documentation/Deprecations.md b/Documentation/Deprecations.md index ae1d11e..4da28d5 100644 --- a/Documentation/Deprecations.md +++ b/Documentation/Deprecations.md @@ -1,6 +1,7 @@ # CyRK's Deprecated Methods -The functions discussed in this document are still packaged with CyRK but are not currently receiving any new updates as they have been replaced with the new (as of CyRK v0.10.0) C++ backend. -Users are strongly encouraged to use CyRK's new functions. The below information is for reference. +The functions discussed in this document were packaged in previous version of CyRK (pre v0.11.0) but are no longer available (as of CyRK v0.11.0). + +Documentation is retained for comparison purposes to the new methods. This documentation will be removed in a future version of CyRK. ### Cython-based `cyrk_ode` **Deprecation Warning:** cyrk_ode was a previous version of CyRK's cython solver that could take in python functions. It is no longer supported and will be removed in a future version of CyRK. diff --git a/Performance/cyrk_performance-DOP853.csv b/Performance/cyrk_performance-DOP853.csv index bd8a823..17a29eb 100644 --- a/Performance/cyrk_performance-DOP853.csv +++ b/Performance/cyrk_performance-DOP853.csv @@ -22,3 +22,4 @@ CyRK Version, Run-on Date, cython (avg), cython (std),CySolver (avg),CySolver (s 0.9.0, 22/05/2024 22:15:26,0.9568,0.0401,0.0505,0.0005,0.1598,0.0029,9.3965,0.0572,0.4906,0.0023,1.4464,0.0674,0.458,0.0164,0.0339,0.0003,0.0993,0.0012,4.4166,0.0646,0.3087,0.0043,0.7972,0.0071,1.6945,0.2623,0.089,0.0012,0.2536,0.0004,19.7165,0.1345,1.1869,0.0065,3.173,0.0257,1.658,0.0074,0.0912,0.0001,0.4899,0.0083,22.9837,0.2493,1.2295,0.0061,6.4824,0.0413 0.10.2, 08/11/2024 11:02:10,0.9853,0.0169,0.0553,0.0007,0.1699,0.0033,9.9766,0.09,0.5358,0.0034,1.552,0.0278,0.4402,0.0089,0.0348,0.0008,0.1026,0.0024,4.3588,0.0575,0.3116,0.0045,0.7952,0.0149,1.4109,0.0202,0.0941,0.0009,0.2507,0.0039,19.2016,0.1355,1.2542,0.0158,3.1896,0.0388,1.6382,0.0208,0.0963,0.0011,0.4927,0.0082,22.613,0.3102,1.2996,0.0167,6.5094,0.1422 "After 0.11.0 Changes were made to functions: ""cython"" was `cyrk_ode` now is `pysolve_ivp`. ""CySolver"" was `CySolver` class method now is `cysolve_ivp`. Numba did not change.",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +0.11.0, 08/11/2024 13:34:31, 1.0405, 0.0220, 0.0440, 0.0004, 0.1653, 0.0037, 10.6848, 0.0518, 0.4168, 0.0055, 1.5772, 0.0952, 0.4697, 0.0056, 0.0350, 0.0010, 0.1027, 0.0017, 4.5382, 0.0695, 0.2962, 0.0080, 0.8286, 0.0180, 1.5190, 0.0184, 0.0886, 0.0108, 0.3325, 0.1084, 21.0697, 0.8173, 1.0653, 0.0440, 3.3296, 0.0833, 1.7694, 0.0377, 0.0796, 0.0011, 0.5066, 0.0051, 24.3005, 0.1841, 1.0867, 0.0503, 6.9565, 0.2617 diff --git a/Performance/cyrk_performance-RK23.csv b/Performance/cyrk_performance-RK23.csv index 29e4fd3..95c637d 100644 --- a/Performance/cyrk_performance-RK23.csv +++ b/Performance/cyrk_performance-RK23.csv @@ -22,3 +22,4 @@ CyRK Version, Run-on Date, cython (avg), cython (std),CySolver (avg),CySolver (s 0.9.0, 22/05/2024 22:13:06,4.4185,0.0173,0.2704,0.001,0.8239,0.0039,44.085,0.4116,2.668,0.0093,9.1672,0.2094,2.768,0.0083,0.2131,0.0008,0.6048,0.0029,27.4433,0.1003,2.0956,0.0145,6.7046,0.1153,4.6866,0.0309,0.337,0.0008,0.9558,0.0036,80.4914,0.3251,5.7944,0.0229,20.3825,0.1789,5.5414,0.0329,0.3445,0.0016,1365.9393,2362.3685,98.7604,2.1827,6.222,0.0443,38.7668,0.8054 0.10.2, 08/11/2024 10:59:41,69.5788,112.0606,0.2889,0.0047,0.8876,0.019,46.7394,1.616,2.8167,0.0156,10.889,0.7678,55.4932,91.253,0.2294,0.0037,0.6269,0.0189,29.2544,0.9478,2.2476,0.0679,6.5125,0.2182,56.9203,90.3589,0.3629,0.0033,1.0035,0.0335,82.3765,0.9914,6.1898,0.1192,21.0103,0.4202,62.2463,97.7605,0.3806,0.0013,1647.3621,2850.1921,99.4554,2.4595,6.9598,0.3918,40.5718,2.4595 "After 0.11.0 Changes were made to functions: ""cython"" was `cyrk_ode` now is `pysolve_ivp`. ""CySolver"" was `CySolver` class method now is `cysolve_ivp`. Numba did not change.",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +0.11.0, 08/11/2024 13:32:05, 5.2024, 0.4024, 0.2878, 0.0104, 0.8329, 0.0146, 48.9279, 1.0915, 2.8651, 0.0911, 9.6346, 0.4435, 3.0034, 0.0548, 0.2512, 0.0073, 0.6391, 0.0091, 30.1886, 1.3712, 2.5126, 0.0594, 6.1286, 0.1974, 5.0243, 0.0111, 0.3568, 0.0029, 0.9418, 0.0134, 81.3716, 0.9542, 6.0864, 0.2366, 21.4152, 0.6340, 5.8757, 0.0795, 0.3821, 0.0257, 1511.3296, 2614.5716, 103.0198, 4.8289, 6.7153, 0.1536, 40.7782, 2.6646 diff --git a/Performance/cyrk_performance-RK45.csv b/Performance/cyrk_performance-RK45.csv index bb3bc99..bf40773 100644 --- a/Performance/cyrk_performance-RK45.csv +++ b/Performance/cyrk_performance-RK45.csv @@ -22,3 +22,4 @@ CyRK Version, Run-on Date, cython (avg), cython (std),CySolver (avg),CySolver (s 0.9.0, 22/05/2024 22:14:31,1.196,0.013,0.0572,0.0002,0.2087,0.002,11.987,0.1021,0.5485,0.0132,2.0033,0.0304,0.8442,0.017,0.0573,0.0014,0.1752,0.0058,8.3417,0.2007,0.5387,0.0105,1.5645,0.052,1.7154,0.1224,0.0902,0.0011,0.2965,0.0014,23.8292,0.3713,1.2821,0.0044,4.1381,0.0798,1.9019,0.022,0.0982,0.0035,0.6217,0.0603,28.4668,0.4076,1.2589,0.0169,8.2552,0.328 0.10.2, 08/11/2024 11:01:14,1.282,0.0152,0.0677,0.0051,0.2105,0.0027,12.0276,0.239,0.6024,0.0323,2.1004,0.1252,0.8241,0.0072,0.0588,0.0008,0.1763,0.0045,8.0075,0.2124,0.5632,0.0183,1.4761,0.0137,1.5839,0.0111,0.0953,0.0011,0.2975,0.0098,23.2598,0.4245,1.3887,0.0382,4.1253,0.1807,1.9,0.0226,0.1015,0.0015,0.5913,0.0336,27.3948,0.5865,1.4385,0.0357,8.1818,0.0734 "After 0.11.0 Changes were made to functions: ""cython"" was `cyrk_ode` now is `pysolve_ivp`. ""CySolver"" was `CySolver` class method now is `cysolve_ivp`. Numba did not change.",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +0.11.0, 08/11/2024 13:33:35, 1.4157, 0.1032, 0.0647, 0.0010, 0.2163, 0.0069, 13.2409, 0.2058, 0.5789, 0.0121, 1.9120, 0.1314, 0.8558, 0.0112, 0.0684, 0.0049, 0.1836, 0.0083, 8.6953, 0.4141, 0.5989, 0.0051, 1.5423, 0.0157, 1.6548, 0.0253, 0.0998, 0.0011, 0.3134, 0.0323, 24.1535, 0.2564, 1.4176, 0.0167, 4.1044, 0.1653, 2.0023, 0.0453, 0.1063, 0.0046, 0.5995, 0.0094, 29.3136, 0.4531, 1.4513, 0.0394, 8.1298, 0.0426 diff --git a/README.md b/README.md index a507ab4..87e8635 100644 --- a/README.md +++ b/README.md @@ -11,7 +11,7 @@ --- -CyRK Version 0.10.2 Alpha +CyRK Version 0.11.0 Alpha **Runge-Kutta ODE Integrator Implemented in Cython and Numba** @@ -28,7 +28,7 @@ The [cython-based](https://cython.org/) `cysolver_ivp` function that works with An additional benefit of the two cython implementations is that they are pre-compiled. This avoids most of the start-up performance hit experienced by just-in-time compilers like numba. -CyRK Performance Graphic +CyRK Performance Graphic ## Installation @@ -74,7 +74,7 @@ If you intend to work on CyRK's code base you will want to install the following **The following code can be found in a Jupyter Notebook called "Getting Started.ipynb" in the "Demos" folder.** -*Note: some older CyRK functions like `cyrk_ode` and `CySolver` class-based method have been deprecated. Read more in "Documentation/Deprecations.md".* +*Note: some older CyRK functions like `cyrk_ode` and `CySolver` class-based method have been deprecated and removed. Read more in "Documentation/Deprecations.md".* CyRK's API is similar to SciPy's solve_ivp function. A differential equation can be defined in python such as: ```python @@ -199,7 +199,7 @@ def pysolve_ivp( atol = 1.0e-6, # Absolute tolerance (near 0) used to control integration error. This can be provided as a numpy array if you'd like a different atol for each y. size_t max_num_steps = 0, # Maximum number of steps allowed. If exceeded then integration will fail. 0 (the default) turns this off. size_t max_ram_MB = 2000, # Maximum amount of system memory the integrator is allowed to use. If this is exceeded then integration will fail. - bint pass_dy_as_arg = False # Flag if differential equation returns dy (False) or is passed dy as the first argument (True). + bint pass_dy_as_arg = False # Flag if differential equation returns dy (False) or is passed dy as the _first_ argument (True). ): ``` diff --git a/pyproject.toml b/pyproject.toml index 33237f9..b4c64a2 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name='CyRK' -version = '0.11.0a0.dev4' +version = '0.11.0' description='Runge-Kutta ODE Integrator Implemented in Cython and Numba.' authors= [ {name = 'Joe P. Renaud', email = 'joe.p.renaud@gmail.com'} From 1fdc2f51f09bd9ce4b1f73137e0ba31eea738f99 Mon Sep 17 00:00:00 2001 From: Jrenaud-Desk Date: Fri, 8 Nov 2024 13:48:28 -0500 Subject: [PATCH 7/7] Adding back the macos test skip, see issue #67 --- Tests/E_CySolver_Tests/test_a_cysolve_ivp.py | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py b/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py index aff9f87..91500e7 100644 --- a/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py +++ b/Tests/E_CySolver_Tests/test_a_cysolve_ivp.py @@ -186,6 +186,15 @@ def test_cysolve_ivp_all_diffeqs(cysolve_test_func): """ Check all of the currently implemented test diffeqs for cysolve_ivp""" result = cytester(cysolve_test_func) + + # There is a weird fail state that occasionally happens on MacOS for Python 3.10 where diffeq 5 (lotkavolterra) fails. + # See GitHub Issue [#67](https://github.com/jrenaud90/CyRK/issues/67) + import platform + on_macos = False + if platform.system().lower() == 'darwin': + on_macos = True + if not result.success and on_macos and cysolve_test_func==5: + pytest.skip("Weird macos bug on diffeq5") assert result.success assert result.t.size > 0