-
Notifications
You must be signed in to change notification settings - Fork 152
/
utils.py
212 lines (154 loc) · 5.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''Utility functions for GAIN.
(1) normalization: MinMax Normalizer
(2) renormalization: Recover the data from normalzied data
(3) rounding: Handlecategorical variables after imputation
(4) rmse_loss: Evaluate imputed data in terms of RMSE
(5) xavier_init: Xavier initialization
(6) binary_sampler: sample binary random variables
(7) uniform_sampler: sample uniform random variables
(8) sample_batch_index: sample random batch index
'''
# Necessary packages
import numpy as np
#import tensorflow as tf
##IF USING TF 2 use following import to still use TF < 2.0 Functionalities
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
def normalization (data, parameters=None):
'''Normalize data in [0, 1] range.
Args:
- data: original data
Returns:
- norm_data: normalized data
- norm_parameters: min_val, max_val for each feature for renormalization
'''
# Parameters
_, dim = data.shape
norm_data = data.copy()
if parameters is None:
# MixMax normalization
min_val = np.zeros(dim)
max_val = np.zeros(dim)
# For each dimension
for i in range(dim):
min_val[i] = np.nanmin(norm_data[:,i])
norm_data[:,i] = norm_data[:,i] - np.nanmin(norm_data[:,i])
max_val[i] = np.nanmax(norm_data[:,i])
norm_data[:,i] = norm_data[:,i] / (np.nanmax(norm_data[:,i]) + 1e-6)
# Return norm_parameters for renormalization
norm_parameters = {'min_val': min_val,
'max_val': max_val}
else:
min_val = parameters['min_val']
max_val = parameters['max_val']
# For each dimension
for i in range(dim):
norm_data[:,i] = norm_data[:,i] - min_val[i]
norm_data[:,i] = norm_data[:,i] / (max_val[i] + 1e-6)
norm_parameters = parameters
return norm_data, norm_parameters
def renormalization (norm_data, norm_parameters):
'''Renormalize data from [0, 1] range to the original range.
Args:
- norm_data: normalized data
- norm_parameters: min_val, max_val for each feature for renormalization
Returns:
- renorm_data: renormalized original data
'''
min_val = norm_parameters['min_val']
max_val = norm_parameters['max_val']
_, dim = norm_data.shape
renorm_data = norm_data.copy()
for i in range(dim):
renorm_data[:,i] = renorm_data[:,i] * (max_val[i] + 1e-6)
renorm_data[:,i] = renorm_data[:,i] + min_val[i]
return renorm_data
def rounding (imputed_data, data_x):
'''Round imputed data for categorical variables.
Args:
- imputed_data: imputed data
- data_x: original data with missing values
Returns:
- rounded_data: rounded imputed data
'''
_, dim = data_x.shape
rounded_data = imputed_data.copy()
for i in range(dim):
temp = data_x[~np.isnan(data_x[:, i]), i]
# Only for the categorical variable
if len(np.unique(temp)) < 20:
rounded_data[:, i] = np.round(rounded_data[:, i])
return rounded_data
def rmse_loss (ori_data, imputed_data, data_m):
'''Compute RMSE loss between ori_data and imputed_data
Args:
- ori_data: original data without missing values
- imputed_data: imputed data
- data_m: indicator matrix for missingness
Returns:
- rmse: Root Mean Squared Error
'''
ori_data, norm_parameters = normalization(ori_data)
imputed_data, _ = normalization(imputed_data, norm_parameters)
# Only for missing values
nominator = np.sum(((1-data_m) * ori_data - (1-data_m) * imputed_data)**2)
denominator = np.sum(1-data_m)
rmse = np.sqrt(nominator/float(denominator))
return rmse
def xavier_init(size):
'''Xavier initialization.
Args:
- size: vector size
Returns:
- initialized random vector.
'''
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape = size, stddev = xavier_stddev)
def binary_sampler(p, rows, cols):
'''Sample binary random variables.
Args:
- p: probability of 1
- rows: the number of rows
- cols: the number of columns
Returns:
- binary_random_matrix: generated binary random matrix.
'''
unif_random_matrix = np.random.uniform(0., 1., size = [rows, cols])
binary_random_matrix = 1*(unif_random_matrix < p)
return binary_random_matrix
def uniform_sampler(low, high, rows, cols):
'''Sample uniform random variables.
Args:
- low: low limit
- high: high limit
- rows: the number of rows
- cols: the number of columns
Returns:
- uniform_random_matrix: generated uniform random matrix.
'''
return np.random.uniform(low, high, size = [rows, cols])
def sample_batch_index(total, batch_size):
'''Sample index of the mini-batch.
Args:
- total: total number of samples
- batch_size: batch size
Returns:
- batch_idx: batch index
'''
total_idx = np.random.permutation(total)
batch_idx = total_idx[:batch_size]
return batch_idx