-
Notifications
You must be signed in to change notification settings - Fork 45
/
ComBat.R
306 lines (274 loc) · 11.9 KB
/
ComBat.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#' Adjust for batch effects using an empirical Bayes framework
#'
#' ComBat allows users to adjust for batch effects in datasets where the batch covariate is known, using methodology
#' described in Johnson et al. 2007. It uses either parametric or non-parametric empirical Bayes frameworks for adjusting data for
#' batch effects. Users are returned an expression matrix that has been corrected for batch effects. The input
#' data are assumed to be cleaned and normalized before batch effect removal.
#'
#' @param dat Genomic measure matrix (dimensions probe x sample) - for example, expression matrix
#' @param batch {Batch covariate (only one batch allowed)}
#' @param mod Model matrix for outcome of interest and other covariates besides batch
#' @param par.prior (Optional) TRUE indicates parametric adjustments will be used, FALSE indicates non-parametric adjustments will be used
#' @param prior.plots (Optional) TRUE give prior plots with black as a kernel estimate of the empirical batch effect density and red as the parametric
#' @param mean.only (Optional) FALSE If TRUE ComBat only corrects the mean of the batch effect (no scale adjustment)
#' @param ref.batch (Optional) NULL If given, will use the selected batch as a reference for batch adjustment.
#' @param BPPARAM (Optional) BiocParallelParam for parallel operation
#'
#' @return data A probe x sample genomic measure matrix, adjusted for batch effects.
#'
#' @importFrom graphics lines par
#' @importFrom stats cor density dnorm model.matrix pf ppoints prcomp predict
#' qgamma qnorm qqline qqnorm qqplot smooth.spline var
#' @importFrom utils read.delim
#'
#' @examples
#' library(bladderbatch)
#' data(bladderdata)
#' dat <- bladderEset[1:50,]
#'
#' pheno = pData(dat)
#' edata = exprs(dat)
#' batch = pheno$batch
#' mod = model.matrix(~as.factor(cancer), data=pheno)
#'
#' # parametric adjustment
#' combat_edata1 = ComBat(dat=edata, batch=batch, mod=NULL, par.prior=TRUE, prior.plots=FALSE)
#'
#' # non-parametric adjustment, mean-only version
#' combat_edata2 = ComBat(dat=edata, batch=batch, mod=NULL, par.prior=FALSE, mean.only=TRUE)
#'
#' # reference-batch version, with covariates
#' combat_edata3 = ComBat(dat=edata, batch=batch, mod=mod, par.prior=TRUE, ref.batch=3)
#'
#' @export
#'
ComBat <- function(dat, batch, mod = NULL, par.prior = TRUE, prior.plots = FALSE,
mean.only = FALSE, ref.batch = NULL, BPPARAM = bpparam("SerialParam")) {
if(length(dim(batch))>1){
stop("This version of ComBat only allows one batch variable")
} ## to be updated soon!
## coerce dat into a matrix
dat <- as.matrix(dat)
## find genes with zero variance in any of the batches
batch <- as.factor(batch)
zero.rows.lst <- lapply(levels(batch), function(batch_level){
if(sum(batch==batch_level)>1){
return(which(apply(dat[, batch==batch_level], 1, function(x){var(x)==0})))
}else{
return(which(rep(1,3)==2))
}
})
zero.rows <- Reduce(union, zero.rows.lst)
keep.rows <- setdiff(1:nrow(dat), zero.rows)
if (length(zero.rows) > 0) {
cat(sprintf("Found %d genes with uniform expression within a single batch (all zeros); these will not be adjusted for batch.\n", length(zero.rows)))
# keep a copy of the original data matrix and remove zero var rows
dat.orig <- dat
dat <- dat[keep.rows, ]
}
## make batch a factor and make a set of indicators for batch
if(any(table(batch)==1)){mean.only=TRUE}
if(mean.only==TRUE){
message("Using the 'mean only' version of ComBat")
}
batchmod <- model.matrix(~-1+batch)
if (!is.null(ref.batch)){
## check for reference batch, check value, and make appropriate changes
if (!(ref.batch%in%levels(batch))) {
stop("reference level ref.batch is not one of the levels of the batch variable")
}
message("Using batch =",ref.batch, "as a reference batch (this batch won't change)")
ref <- which(levels(as.factor(batch))==ref.batch) # find the reference
batchmod[,ref] <- 1
} else {
ref <- NULL
}
message("Found", nlevels(batch), "batches")
## A few other characteristics on the batches
n.batch <- nlevels(batch)
batches <- list()
for (i in 1:n.batch) {
batches[[i]] <- which(batch == levels(batch)[i])
} # list of samples in each batch
n.batches <- sapply(batches, length)
if(any(n.batches==1)){
mean.only=TRUE
message("Note: one batch has only one sample, setting mean.only=TRUE")
}
n.array <- sum(n.batches)
## combine batch variable and covariates
design <- cbind(batchmod,mod)
## check for intercept in covariates, and drop if present
check <- apply(design, 2, function(x) all(x == 1))
if(!is.null(ref)){
check[ref] <- FALSE
} ## except don't throw away the reference batch indicator
design <- as.matrix(design[,!check])
## Number of covariates or covariate levels
message("Adjusting for", ncol(design)-ncol(batchmod), 'covariate(s) or covariate level(s)')
## Check if the design is confounded
if(qr(design)$rank < ncol(design)) {
## if(ncol(design)<=(n.batch)){stop("Batch variables are redundant! Remove one or more of the batch variables so they are no longer confounded")}
if(ncol(design)==(n.batch+1)) {
stop("The covariate is confounded with batch! Remove the covariate and rerun ComBat")
}
if(ncol(design)>(n.batch+1)) {
if((qr(design[,-c(1:n.batch)])$rank<ncol(design[,-c(1:n.batch)]))){
stop('The covariates are confounded! Please remove one or more of the covariates so the design is not confounded')
} else {
stop("At least one covariate is confounded with batch! Please remove confounded covariates and rerun ComBat")
}
}
}
## Check for missing values
NAs <- any(is.na(dat))
if(NAs){
message(c('Found',sum(is.na(dat)),'Missing Data Values'), sep=' ')}
## print(dat[1:2,])
##Standardize Data across genes
message('Standardizing Data across genes')
if (!NAs){
B.hat <- solve(crossprod(design), tcrossprod(t(design), as.matrix(dat)))
} else {
B.hat <- apply(dat, 1, Beta.NA, design) # FIXME
}
## change grand.mean for ref batch
if(!is.null(ref.batch)){
grand.mean <- t(B.hat[ref, ])
} else {
grand.mean <- crossprod(n.batches/n.array, B.hat[1:n.batch,])
}
## change var.pooled for ref batch
if (!NAs){
if(!is.null(ref.batch)) {
ref.dat <- dat[, batches[[ref]]]
var.pooled <- ((ref.dat-t(design[batches[[ref]], ] %*% B.hat))^2) %*% rep(1/n.batches[ref],n.batches[ref]) # FIXME
} else {
var.pooled <- ((dat-t(design %*% B.hat))^2) %*% rep(1/n.array,n.array) # FIXME
}
} else {
if(!is.null(ref.batch)) {
ref.dat <- dat[, batches[[ref]]]
var.pooled <- rowVars(ref.dat-t(design[batches[[ref]], ]%*%B.hat), na.rm=TRUE)
} else {
var.pooled <- rowVars(dat-t(design %*% B.hat), na.rm=TRUE)
}
}
stand.mean <- t(grand.mean) %*% t(rep(1,n.array)) # FIXME
if(!is.null(design)){
tmp <- design
tmp[,c(1:n.batch)] <- 0
stand.mean <- stand.mean+t(tmp %*% B.hat) #FIXME
}
s.data <- (dat-stand.mean)/(sqrt(var.pooled) %*% t(rep(1,n.array))) # FIXME
##Get regression batch effect parameters
message("Fitting L/S model and finding priors")
batch.design <- design[, 1:n.batch]
if (!NAs){
gamma.hat <- solve(crossprod(batch.design), tcrossprod(t(batch.design),
as.matrix(s.data)))
} else{
gamma.hat <- apply(s.data, 1, Beta.NA, batch.design) # FIXME
}
delta.hat <- NULL
for (i in batches){
if(mean.only==TRUE) {
delta.hat <- rbind(delta.hat,rep(1,nrow(s.data)))
} else {
delta.hat <- rbind(delta.hat, rowVars(s.data[,i], na.rm=TRUE))
}
}
##Find Priors
gamma.bar <- rowMeans(gamma.hat)
t2 <- rowVars(gamma.hat)
a.prior <- apply(delta.hat, 1, aprior) # FIXME
b.prior <- apply(delta.hat, 1, bprior) # FIXME
## Plot empirical and parametric priors
if (prior.plots && par.prior) {
old_pars <- par(no.readonly = TRUE)
on.exit(par(old_pars))
par(mfrow=c(2,2))
## Top left
tmp <- density(gamma.hat[1,])
plot(tmp, type='l', main=expression(paste("Density Plot of First Batch ", hat(gamma))))
xx <- seq(min(tmp$x), max(tmp$x), length=100)
lines(xx,dnorm(xx,gamma.bar[1],sqrt(t2[1])), col=2)
## Top Right
qqnorm(gamma.hat[1,], main=expression(paste("Normal Q-Q Plot of First Batch ", hat(gamma))))
qqline(gamma.hat[1,], col=2)
## Bottom Left
tmp <- density(delta.hat[1,])
xx <- seq(min(tmp$x), max(tmp$x), length=100)
tmp1 <- list(x=xx, y=dinvgamma(xx, a.prior[1], b.prior[1]))
plot(tmp, typ="l", ylim=c(0, max(tmp$y, tmp1$y)),
main=expression(paste("Density Plot of First Batch ", hat(delta))))
lines(tmp1, col=2)
## Bottom Right
invgam <- 1/qgamma(1-ppoints(ncol(delta.hat)), a.prior[1], b.prior[1])
qqplot(invgam, delta.hat[1,],
main=expression(paste("Inverse Gamma Q-Q Plot of First Batch ", hat(delta))),
ylab="Sample Quantiles", xlab="Theoretical Quantiles")
lines(c(0, max(invgam)), c(0, max(invgam)), col=2)
}
## Find EB batch adjustments
gamma.star <- delta.star <- matrix(NA, nrow=n.batch, ncol=nrow(s.data))
if (par.prior) {
message("Finding parametric adjustments")
results <- bplapply(1:n.batch, function(i) {
if (mean.only) {
gamma.star <- postmean(gamma.hat[i,], gamma.bar[i], 1, 1, t2[i])
delta.star <- rep(1, nrow(s.data))
}
else {
temp <- it.sol(s.data[, batches[[i]]], gamma.hat[i, ],
delta.hat[i, ], gamma.bar[i], t2[i], a.prior[i],
b.prior[i])
gamma.star <- temp[1, ]
delta.star <- temp[2, ]
}
list(gamma.star=gamma.star, delta.star=delta.star)
}, BPPARAM = BPPARAM)
for (i in 1:n.batch) {
gamma.star[i,] <- results[[i]]$gamma.star
delta.star[i,] <- results[[i]]$delta.star
}
}
else {
message("Finding nonparametric adjustments")
results <- bplapply(1:n.batch, function(i) {
if (mean.only) {
delta.hat[i, ] = 1
}
temp <- int.eprior(as.matrix(s.data[, batches[[i]]]),
gamma.hat[i, ], delta.hat[i, ])
list(gamma.star=temp[1,], delta.star=temp[2,])
}, BPPARAM = BPPARAM)
for (i in 1:n.batch) {
gamma.star[i,] <- results[[i]]$gamma.star
delta.star[i,] <- results[[i]]$delta.star
}
}
if(!is.null(ref.batch)){
gamma.star[ref,] <- 0 ## set reference batch mean equal to 0
delta.star[ref,] <- 1 ## set reference batch variance equal to 1
}
## Normalize the Data ###
message("Adjusting the Data\n")
bayesdata <- s.data
j <- 1
for (i in batches){
bayesdata[,i] <- (bayesdata[,i]-t(batch.design[i,]%*%gamma.star))/(sqrt(delta.star[j,])%*%t(rep(1,n.batches[j]))) # FIXME
j <- j+1
}
bayesdata <- (bayesdata*(sqrt(var.pooled)%*%t(rep(1,n.array))))+stand.mean # FIXME
## Do not change ref batch at all in reference version
if(!is.null(ref.batch)){
bayesdata[, batches[[ref]]] <- dat[, batches[[ref]]]
}
## put genes with 0 variance in any batch back in data
if (length(zero.rows) > 0) {
dat.orig[keep.rows, ] <- bayesdata
bayesdata <- dat.orig
}
return(bayesdata)
}