diff --git a/docs/environment.yml b/docs/environment.yml new file mode 100644 index 000000000..14b9d1d37 --- /dev/null +++ b/docs/environment.yml @@ -0,0 +1,11 @@ +name: nbconvert_docs +channels: +- asmeurer +dependencies: +- pandoc +- nbformat +- jupyter_client +- sphinx +- pip: + - nbsphinx + - entrypoints diff --git a/docs/requirements.txt b/docs/requirements.txt deleted file mode 100644 index 6c8ee5e38..000000000 --- a/docs/requirements.txt +++ /dev/null @@ -1,8 +0,0 @@ -traitlets -jupyter_core -jupyter_client -nbformat -nbsphinx -sphinx_rtd_theme -ipykernel -mistune diff --git a/docs/source/customizing.ipynb b/docs/source/customizing.ipynb index 281488f3b..412860e47 100644 --- a/docs/source/customizing.ipynb +++ b/docs/source/customizing.ipynb @@ -18,15 +18,64 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "# coding: utf-8\n", + "\n", + "# # Example notebook\n", + "\n", + "# ### Markdown cells\n", + "# \n", + "# This is an example notebook that can be converted with `nbconvert` to different formats. This is an example of a markdown cell.\n", + "\n", + "# ### LaTeX Equations\n", + "# \n", + "# Here is an equation:\n", + "# \n", + "# $$\n", + "# y = \\sin(x)\n", + "# $$\n", + "\n", + "# ### Code cells\n", + "\n", + "# In[1]:\n", + "\n", + "print(\"This is a code cell that produces some output\")\n", + "\n", + "\n", + "# ### Inline figures\n", + "\n", + "# In[2]:\n", + "\n", + "get_ipython().magic('matplotlib inline')\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "x = np.linspace(0, 2 * np.pi, 100)\n", + "y = np.sin(x)\n", + "plt.plot(x, y)\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[NbConvertApp] Converting notebook example.ipynb to python\n" + ] + } + ], "source": [ - "%%bash\n", - "\n", - "jupyter nbconvert --to python 'example.ipynb' --stdout" + "!jupyter nbconvert --to python 'example.ipynb' --stdout" ] }, { @@ -40,11 +89,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting simplepython.tpl\n" + ] + } + ], "source": [ "%%writefile simplepython.tpl\n", "\n", @@ -69,15 +126,45 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "# coding: utf-8\n", + "\n", + "# This was input cell with execution count: 1\n", + "print(\"This is a code cell that produces some output\")\n", + "\n", + "\n", + "# This was input cell with execution count: 2\n", + "get_ipython().magic('matplotlib inline')\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "x = np.linspace(0, 2 * np.pi, 100)\n", + "y = np.sin(x)\n", + "plt.plot(x, y)\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[NbConvertApp] Converting notebook example.ipynb to python\n" + ] + } + ], "source": [ - "%%bash\n", - "\n", - "jupyter nbconvert --to python 'example.ipynb' --stdout --template=simplepython.tpl" + "!jupyter nbconvert --to python 'example.ipynb' --stdout --template=simplepython.tpl" ] }, { @@ -95,11 +182,145 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "
\n", + "

Main page

\n", + "
header
\n", + "\n", + "
body\n", + "
any_cell\n", + "
codecell\n", + "
input_group\n", + "
in_prompt
\n", + "
input
\n", + "
\n", + "
output_group\n", + "
output_prompt
\n", + "
outputs (see below)
\n", + "
\n", + "
\n", + "
\n", + "
any_cell\n", + "
markdowncell
\n", + "
\n", + "
any_cell\n", + "
rawcell
\n", + "
\n", + "
any_cell\n", + "
unknowncell
\n", + "
\n", + "
\n", + "
\n", + "\n", + "
footer
\n", + "\n", + "

Outputs

\n", + "\n", + "
outputs\n", + "
output\n", + "
execute_result
\n", + "
\n", + "
output\n", + "
stream_stdout
\n", + "
\n", + "
output\n", + "
stream_stderr
\n", + "
\n", + "
output\n", + "
display_data\n", + "
data_priority\n", + "
data_pdf / data_svg / data_png /\n", + " data_html / data_markdown / data_jpg / data_text /\n", + " data_latex / data_javascript / data_other\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
output\n", + "
error\n", + "
traceback_line
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "\n", + "

Extra HTML blocks (full.tpl)

\n", + "
header\n", + "
<head>
\n", + "
html_head
\n", + "
</head>
\n", + "
\n", + "\n", + "

Extra Latex blocks

\n", + "
header\n", + "
docclass
\n", + "
packages
\n", + "
definitions\n", + "
title
\n", + "
date
\n", + "
author
\n", + "
\n", + "
commands\n", + "
margins
\n", + "
\n", + "
\n", + "
body\n", + "
predoc\n", + "
maketitle
\n", + "
abstract
\n", + "
\n", + " ... other fields as above ...\n", + "
postdoc\n", + "
bibliography
\n", + "
\n", + "
\n", + "
\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "from IPython.display import HTML, display\n", "with open('template_structure.html') as f:\n", @@ -142,11 +363,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Overwriting mytemplate.tpl\n" + ] + } + ], "source": [ "%%writefile mytemplate.tpl\n", "\n", @@ -160,22 +389,15 @@ }, { "cell_type": "markdown", - "metadata": {}, - "source": [ - "Once you have tagged the cells appropriately and written your template using the cell above, try converting your notebook using the following command:" - ] - }, - { - "cell_type": "code", - "execution_count": null, "metadata": { "collapsed": false }, - "outputs": [], "source": [ - "%%bash\n", + "Once you have tagged the cells appropriately and written your template using the cell above, try converting your notebook using the following command:\n", "\n", - "jupyter nbconvert --to html --template=mytemplate.tpl" + "```bash\n", + "jupyter nbconvert --to html --template=mytemplate.tpl\n", + "```" ] } ], @@ -195,7 +417,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.3" + "version": "3.5.1" } }, "nbformat": 4, diff --git a/docs/source/nbconvert_library.ipynb b/docs/source/nbconvert_library.ipynb index 95cb27c3a..6ee18faa2 100644 --- a/docs/source/nbconvert_library.ipynb +++ b/docs/source/nbconvert_library.ipynb @@ -36,11 +36,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "'{\\n \"metadata\": {\\n \"name\": \"XKCD_plots\"\\n },\\n \"nbformat\": 3,\\n ...'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from urllib.request import urlopen\n", "\n", @@ -60,11 +71,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'cell_type': 'markdown',\n", + " 'metadata': {},\n", + " 'source': '# XKCD plots in Matplotlib'}" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "import nbformat\n", "jake_notebook = nbformat.reads(response, as_version=4)\n", @@ -82,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "collapsed": false }, @@ -111,11 +135,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "

XKCD plots in Matplotlib

\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
`__\n", + "by Jake Vanderplas.\n", + "\n", + ".. raw:: html\n", + "\n", + " \n", + "\n", + "*Update: the matplotlib pull request has been merged! See* `*This\n", + "post* `__\n", + "*for a description of the XKCD functionality now built-in to\n", + "matplotlib!*\n", + "\n", + "One of the problems I've had with typical matplotlib figures is that\n", + "everything in them is so precise, so perfect. For an example of what I\n", + "mean, take a look at this figure:\n", + "\n", + ".. code:: python\n", + "\n", + " from IPython.display import Image\n", + " Image('http://jakevdp.github.com/figures/xkcd_version.png')\n", + "\n", + "\n", + "\n", + "\n", + ".. image:: output_3_0.png\n", + "\n", + "\n", + "\n", + "Sometimes when showing schematic plots, this is the type of figure I\n", + "want to display. But drawing it by hand is a pain: I'd rather just use\n", + "matp...\n", + "[.....]\n", + "image:: output_3_0.png\n", + "\n", + "\n", + "\n", + "Sometimes when showing schematic plots, this is the type of figure I\n", + "want to display. But drawing it by hand is a pain: I'd rather just use\n", + "matplotlib. The problem is, matplotlib is a bit too precise. Attempting\n", + "to duplicate this figure in matplotlib leads to something like this:\n", + "\n", + ".. code:: python\n", + "\n", + " Image('http://jakevdp.github.com/figures/mpl_version.png')\n", + "\n", + "\n", + "\n", + "\n", + ".. imag...\n" + ] + } + ], "source": [ "# Import the RST exproter\n", "from nbconvert import RSTExporter\n", @@ -197,11 +312,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['output_13_1.png',\n", + " 'output_16_0.png',\n", + " 'output_18_1.png',\n", + " 'output_3_0.png',\n", + " 'output_5_0.png']" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "sorted(resources['outputs'].keys())" ] @@ -215,11 +345,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FGXXxu/ZTYP0RkvoJKH3IvAivQsiINIEgUAsgPIJ\nCq8IAgroqxRRUJpSpCO9ifQSpEgNvYYSCJDek93z/XEyuwkkIWV3Zjd5fte11yxbZu5ZsnvPc57z\nnAMSCCyApUuXUqlSpUiSJKpfvz4dPnzY8Fy1atUoLCwsy/edPXuWiIjS0tLo008/JVtbW5Ik6aVb\nmTJlKDEx0fA++fX29vak1Wqpe/fu9ODBAyIiWrFiBbm5udHx48fzfT6ffPIJOTo60u3bt/O9j5zY\nvn07VaxY0XB+JUuWpBs3brzyfSdOnCAfHx+Kjo7O8zHv379PDg4O5OTkRFFRUfmRLRCYFBsIBCoz\ne/ZsfPrppyhZsiSmTp2K5ORkrFmzBi1atAAAJCYmIiUlJcv3NmnSBMnJydi4cSNmzZoFLy8vTJky\nBfb29ple16hRIzg4OAAAUlNT0b9/f2zcuBG1atVCUFAQjhw5giNHjqBv3764efMmoqOjsWnTJjRt\n2hSjR4/G77//jlu3bsHb2ztX57R//34kJibi/v378PT0REJCQo6v9/DwgJ2dXa72/ejRI/Tq1Qup\nqamYNWsWrl69it9++w0dO3bE8ePHUbJkScNrY2Nj4ezsbPi3JEl49OgRlixZgjFjxgAAYmJicqXP\n19cX77zzDpYvX47z58/j9ddfz5VegcBsqO2ggqLNypUrSZIk8vPzo9DQ0Jeef/78Obm6umb5HBGR\nJElERBQeHk6SJNHSpUtfeczAwECSJIm6d+9OKSkpLz0/efJkkiSJ/vrrL7py5QppNBoqX758lq/N\njs8++4wkSaKDBw9Sv379SJIk0mg0ZG9vn+UI8fvvv8/1vtu2bUtubm40d+5cw2ObNm0iOzs7atGi\nheGxzZs3k1arpdOnT2d6f5MmTahcuXKG8+nbt2+u9cmfzaFDh3KtVyAwF8LABKrx6NEjcnNzI3d3\nd3r8+HGWrzlw4ABVq1aN9Hp9ls/LBpaYmEiSJNHYsWMpLCzMcHsxVLZjxw6SJIlatGhBaWlpWe5T\n/pGeMWMG1alTh3x8fOjWrVt5Ojd/f/9MP/SnTp2iq1ev0v3790mSJOrRowft2bOH9uzZQydOnMj1\nfo8dO0aSJNG2bdteek6+GDh//jwREU2ZMiXL1x46dIgkSaL58+cbHsutvh9++IE0Go0hdCsQqIkw\nMIFqTJ8+nSRJom+//Tbb1xw4cCDTqCI2NpbCwsLozp07NGbMGJIkiR48eEDR0dEkSRLZ29uTg4MD\nSZJEtra21Llz50zm16FDB9JoNPTPP/9ke0zZwOTb4MGD83xu5cuXz/aHXpIkWrZsWZ73SUTUvn17\nGjhwYJbP6fV6qly5Mk2ePJmIiJo2bUqurq4UHx+f6XUpKSnk5eVFNjY2dPfu3TzpS0lJoa1bt+ZL\nu0BgasQcmEA1kpOTodFoMHjw4Bxfd+7cOVy+fBlubm5o06YNrl+/bnhOkiT4+Phg5cqVAIC///4b\ntWrVwsmTJ1GzZk2ULl36pWNWrVoVjRs3zrXOVatWoWzZspg2bVoezg4oW7Ys6tatm6f35MSDBw+w\nf/9+XLlyJcvnJUmCk5MTQkJCEB0djQsXLqBXr14oXrx4ptfZ2tqiTZs2WL9+PaKjo/OkwdbWFt26\ndcv3OQgEpkSjtgBB0aVChQrQ6/XYu3dvjq+Li4tDzZo14evri+vXr6Nt27bYvXs3Bg4caHhNWloa\nAOA///kPXF1d0b59+5fMSz7mtWvXcO/evVfqGz9+PHbs2AF7e3t88803GDduXK7OKyUlBbGxsdBo\nTPv1WrduHd544w34+fll+fyWLVtw5coVjBo1CpGRkUhISIBWq83ytRcvXkSJEiVQuXJlk2oUCJRE\nGJhANfr374/y5ctj1KhRePLkSabnTp06halTp0KSJGi1Wnz88cfYvXs3du/ejRUrVqBDhw5o3bo1\niAgAcOPGDQBAREQEEhMT8fjxY8MtJibGsN/x48eDiDBw4EDodLpMx1y6dCk2bdqEevXqAeDRWufO\nnbF79244Ozvjhx9+wKZNm155XpcvX0ZkZGSBPpus2LFjB9zd3V96PCkpCd9//z369OmDb7755pXZ\ngRcuXMC1a9cwd+5cODo65kkDEeH69esvfXYCgRoIAxOohp2dHdavXw+NRoMGDRpgxowZCAkJwcyZ\nM9G8eXNDWnmzZs0we/ZsdOjQAR06dECpUqUAcMhMJiQkBABQpUoVlC1bFmXKlDHc3n//fcPrqlat\nil9//RXHjx9H48aNsWjRIly9ehWDBw9GYGAgSpcuje7du2PkyJEoX748AKB58+ZYtGgRAGDjxo2v\nPK/jx48D4HCbKfH398fmzZsxbtw4LF68GIsXL8b06dNRqVIlzJw5E7Nnz8bYsWMBwDDy0uv1L+0n\nKCgI9erVwzvvvJNnDXPmzEHVqlXh7++PO3fuFOyEBIICIubABKrSsGFDnDp1CtOnT8eXX36JL774\nAra2thg5ciQ+++wzHD58ONtQXKNGjVCnTh0AgJ+fHypUqIBWrVoB4B/wLl26wNnZ+aURSWBgIKpW\nrYovv/wSQUFBAAAvLy8sWrQIr732GgDgxx9/zPSePn36IDk5GQEBAa88p/DwcAC8Ru1F7t+//8r3\nZ8fMmTPh7e2NX3/9FU+fPoWtrS2CgoIwf/589OjRI9Nry5Yti5o1a2Lbtm1ITExEsWLFALABnTp1\nCpcuXcryGK/S5+7uDkmSYGdnBycnp3yfi0BgElROIilSJCcnZ5sOLsiaI0eO0Mcff6y2jDwhZzEO\nHTr0peeOHTtGTk5OdOfOHbPrWL58OUmSREFBQbRo0SKaNGkS2djY0PLly7N9j5L6BIKCIhGlTyII\nzMr9+/fRsGFDhIeHY968eRg5cqTakgRmYubMmZg5cyZ27tyJZs2aqarlrbfewpYtWwBwKHb69Omi\ngoag0CAMzMzo9XosWLAA48ePR1xcHAAOw5w+fRqVKlVSWZ1AIBBYLyKJw0Q8ffoUqampmR67fPky\nWrRogZEjRyIuLg5ubm4AgMjISHTq1AnPnj1TQ6pAIBAUCoSBmYCIiAh8/PHHOHfuHABeBzR16lTU\nq1cPx48fR+nSpbFx40aULVsWABAQEIAbN26ge/fuSExMVFO6QCAQWC3CwEzA/v37sWbNGsTGxiIt\nLQ1NmjTB5MmTkZKSguHDh+Py5cvo2bOnoaL6okWLUK5cOQQHB6N///5ZpjoLBAKBIGeEgb2ClJSU\nTAthdToddDodiOtIAuBFt9WqVUPNmjVhY2ODbt26wc/PDwcOHMDChQsNoUPZwHx9fbFr1y54eHig\nVatWJq/YIBAIBEUBkcTxClavXo2tW7fivffeQ9u2bWFjY1w6p9frodFo0Lp1azx//hybNm1C5cqV\nkZycDL1eb1h7I+Pr64uHDx/i/v378PX1RWRkZJaVFQQCgUDwasSlfw7o9Xrcvn0ba9euxVtvvYXX\nX38ds2fPxvHjxxEdHW0YOV27dg16vd5gRvb29i+ZF2CsHCGX4RHmJRAIBPlHVOLIAY1Gg+HDh+Pu\n3bv4448/cOLECZw4cQIAULNmTQQGBuKff/4x1Nzz8PDIcX9y5YL4+HizaxcIBILCjggh5pLIyEic\nPXsW27Ztw/79+3H16lUQkaEKepcuXbB9+3bodLpsK4A3bNgQZ86cwcmTJ9GoUSMl5QsEAkGhQ4zA\nskGe31qzZg2aN2+OsmXLok2bNmjTpg0ePXqEQ4cOYdOmTXjy5AkaNmyIYcOGAUCOCRnyCCw2NlaR\ncxAIBILCjDCwbJCNqH///pg/fz6CgoKg1+uh1WpRpkwZ9OvXz7AYuUqVKob5rYwV0l9E7k/16NEj\n85+AQCAQFHKEgeVAWFgYAMDT09PQlwrgnkiSJMHd3T1PiRjyQuaCVCQXCAQCASOyELNAnhY8evQo\nihcvbugLdfbsWaxZs8YwygoJCclTm3lhYAKBQGA6hIFlgWxg+/fvR5UqVVCiRAkAwMKFC7FmzRrD\n67Zv346lS5cit3kwsoGFhoaaWLFAIBAUPYSB5cDx48dRq1YtQ5jw1KlTKFmypMGw/vnnH1SuXBnR\n0dG52p8YgQkEAoHpEAaWBXICx9WrV2FrawsXFxcAwN27d9G1a1dDCPHff/81tL3PDcLABAKBwHSI\nJI5siIiIgK+vL37//Xc4OTkhOjoaKSkpaNeuHQBOs9fpdChevHiuW6t7eXnBxsYGkZGRSEpKgoOD\ngzlPQSAQCAo1YgSWDW5ubhgzZgy8vLxw4MAB/PXXX0hJSUFgYCD++usv/P7774iIiECjRo0y1UfM\nCY1Gg1KlSgEAHj9+bE75AoFAUOgRI7Bs0Gg0GDlypKEZ5ZUrV7BlyxasXLkS69atA8CjsOTkZADG\n1PpXUapUKTx48ABhYWGoUKGCOU9BIBAICjViBJYFcpLGhQsXMGPGDKSlpaFRo0b4+uuvcffuXZw7\ndw6ff/453njjDTRo0CBP+/b29gYAPH/+3OS6BQKBoCghRmDZsG7dOowaNQpPnz5Fq1at0LRpU9y+\nfRvR0dGoW7cuvvrqK8TExBh6feVm9AXAkPSRmppqNu0CgUBQFBAGlgVnzpxBYGAgunbtioCAACxc\nuBAxMTGYMGEC7t69Cy8vL+zevRuVKlXK875tbW0BGJtbCgQCgSB/iBBiBvR6PQBgx44d8Pb2xs8/\n/4y33noLmzdvxldffYXmzZvj9u3baN26NYKCggAg14uYZWQDEyMwgUAgKBjCwLJg3759aNiwIezt\n7VGnTh1UrFgRvr6++N///gc3Nzf4+flh37592LVrV65DhzKJiYkAIFLoBQKBoIAIA8uAvIC5ePHi\nuHLlisFsEhISUL16dYNZyYkYcgWOvIzCIiMjAYhuzAKBQFBQhIFlwYgRI2BrawsvLy8QEVasWIHB\ngwcb1nvJC5ebNm0KIPcJHIDRwF7VvVkgEAgEOSOSODIgN7GsUqUK/P39ER0dDVdX15e6J1+9ejVT\nlfq8IEZgAoFAYBqEgWVAHkmFhYUhODgYHh4esLW1hZ+fH1q2bIlu3bohICAAly5dQq1atQAAOp3O\n0CcsN4gRmEAgEJgGifKaRlcECA8PR1JSEsqVK4cHDx5g9+7dOHDgAE6cOIFHjx4hOTkZn3zyCWbN\nmmUYteWG1NRU2NnZQavVIjU1Nc8JIAKBQCAwIgwsAxnLQSUlJUGSJNjb27/0utDQUJQsWTLL53Ii\nPDwcJUuWhKenJ549e2YSzQKBQFBUESHEDEiShAMHDuDo0aO4du0aQkNDkZqaiqpVq8Le3h4pKSlw\nc3NDjRo1ULZsWbRt2zZP4cO4uDgAgLOzs7lOQSAQCIoMwsDSOXDgACZMmIDr168jKioK5cuXR8WK\nFSFJEpYtWwZnZ2fY29sjOjoaNWvWxLBhw9ChQ4c8HSMtLQ2AcTGzQCAQCPKPMLB01q1bh5MnT2LU\nqFEYNGgQ/Pz84OLigpEjR+LBgwdYunQp6tati+TkZMTFxeW6B1hG5OobwsAEAoGg4AgDS0euKu/v\n75+pwny7du1w5MgRlCpVCq6urgCAEiVK5OsY8ggst/3DBAKBQJA9YiFzOoGBgXj//fcxfvx4fPbZ\nZzh79iwAoEePHrh48aKhAaVer89z/UMZMQITCAQC0yGGAhmYOHEibG1tsWLFCnz//fdo3bo17O3t\n4eDggPv37xtS5vV6fb5S4IWBCQQCgekQBpaBMmXKYO7cuRgwYAB+++03rF+/HhEREQCAmTNnQqfT\nYcCAAfkOAYoQokAgEJgOEULMgBwabNy4MRYsWIBr165h+/btGDduHJycnPDhhx/Czs4O3377bb72\nL0ZgAoFAYDrEUCADclhQDhF6enqiS5cu6NKlCwAgJiYGixcvRv369fO1f5FGLxAIBKZDGFgWyKWh\niAg6nQ4Az4/17NkTH3/8ca5LR72IPAITIUSBQCAoOCKEmE5WmYWSJMHGxgaXLl3Cd999h5s3b0Kr\n1ea7hqEIIQoEAoHpKPJDAb1eD8A46pLDh5IkGWojnj59Gt7e3mjWrFmBjiWSOF6BXg8cPgxs3Aic\nPg08fMiPV6gANG4M9O0LNGgAiCLIAoEAYgSG4OBgTJgwAYcOHQLARiaPsOTw4YkTJ6DVag2tUPKL\nGIFlAxGwaRNQqxbQujXw00/AiRPA/ft8O3IE+OEHoFEjoGVLNjeBQFDkKfIGdvToUcyZMwcDBw7E\nwIEDsWXLFjxMv/KXR0oXL16Eg4MD3NzcCnSslJQUAMLAMhERAfTsybfLlwFfX+C//wX+/hu4cwe4\ndQvYtQv4+GPA3Z3N7LXXgGnT2PgEAkGRpcjHsoYOHYozZ85gw4YNWLVqFVatWgVbW1s0adIEo0aN\nws2bN3H58mXEx8cX2MDi4+MBAI6OjqaQbv1cuQJ07w7cvAk4OwPTpwMjRgB2dplfV6kS0KkTMGUK\n3+bMASZNYnNbtAgQFwQCQZGkyBuYt7c3Vq9ejYkTJ+LQoUPYu3cvgoODcfToUVy4cAExMTEAgPLl\ny8Pd3b1AxxIGloFjx4AuXYCYGKBuXWDzZqB8+Zzf4+oKzJoFtGsHvP02sGwZ8OwZ8OefL5ueQCAo\n9BT5ECIAaLVa1K5dG6NGjcLWrVtx6NAh/Pzzz6hXrx4CAgLQvn17/PzzzwCMSR/5QRhYOidPAp07\ns3n17AkcPfpq88pIly7A/v2ApyewYwcQGCjCiQJBEaTIj8Bk9Ho99Ho9bGxsUL16dfj7+6NDhw54\n+vQpqlataggf5ncNGABDF+aCjuSsmqtXgY4dgdhYzipcuRLIQ1NQA02aAHv2cFLHihUcZvzqK5PL\nFQgElosYgaWj0Wgypbfb2NigcuXKeO211wo89yUjJ4f4+PiYZH9WR0QE0K0bEBXFc1/Ll+fPvGQa\nNADWrQM0Gp4b273bdFoFAoHFIwwsB4go361TsuLRo0cAiqiB6fVA//6csFG3LrBqlWmSL7p0AaZO\n5fvvvgukf8YCgaDwIwwsB+QFzaZCHoGVKVPGZPu0GmbP5pCfpyewZQtgynnACROA9u05oeP998V8\nmEBQRJDIlEMMQbbodDrY29tDp9MhOTkZdkUpa+7sWZ6zSk1l8+re3fTHePgQqF6dE0PWrgX69DH9\nMQQCgUUhRmAoWJfl3PLkyRPodDp4e3sXLfNKSuLQYWoq8MEH5jEvAPDxAb77ju+PGgU8f26e4wgE\nAotBGBiM5aMKkiL/KuT5ryIXPvzmG848rFoV+P578x5r+HDg9deB8HDgiy/MeyyBQKA6RdrA4uLi\nMGfOHPzwww+Ij48vUIr8qyiSGYiXLgEzZ/L9RYuA4sXNezyNBvjlF85sXLQICAkx7/EEAoGqFGkD\nc3R0RPHixfH1119j+PDhCA0NBWDMPjRHBmKRGYHp9VwWKi0NCAoC/vMfZY5brRofT68Hxo5V5pgC\ngUAVirSBAcCIESPwv//9D0ePHsXEiRPx+PFjQ/ahKTMQw8PDAQClSpUy2T4tml9/BYKDgVKljKMw\npfjqK8DFhdeF7d2r7LEFAoFiFFkDk3t9AUBgYCCWLl2KlStXomHDhli4cCFCQkLw+PFjJCQkmOR4\nsoGVKFHCJPuzaJ4944ryAPDjj4CJFoLnGm9vYPx4vj9likirFwgKKUXWwCRJMvTnunDhgsFgwsLC\n8MEHH6Bjx44YMmQIJk2aZCjoWxCKlIFNmsTVNtq1A3r3VkfDyJHcfuXYMSC915tAIChcFMlaiBER\nEdi1axfWrl2LkJAQxMTEoGTJkmjbti26dOmCcuXK4dixY9ixYwdOnDgBHx8fjBkzpkDHjI6OBgCT\nlaWyWC5c4PChVsttT9TqnuzsDHzyCTB5MvcOa9VKHR0CgcBsFEkDO3HiBKZNmwZJktC2bVvUqFED\nLVq0QP369Q2v6d69O4YMGYLk5GQEBAQU+JjJyckAAHt7+wLvy2Ih4saTej2vxapRQ109o0dz6v7+\n/cD580CdOurqEQgEJqVIGljLli0RHBwMFxcX6PV6Q4dknU4HbXpxWVtbW9SqVctkxywSBvbnn8DB\ng1wuasoUtdXw3NvgwcBPP/GocP58tRUJBAITUiTnwBwdHeHu7g6tVmswLwAG8wJMX8hXnm/LWPG+\nUJGSAowbx/enTeP5J0sgKIi3K1ZwCxeBQFBoKJIGlhtMnUYvN7GUm1oWOhYvBu7c4XqEw4errcZI\nzZq8Bi0ujmskCgSCQoMwMIWQkzciIyNVVmIGEhKAr7/m+1OnApY2ynzvPd6uW6eqDIFAYFqEgSmE\n3IW5UBrY/PlAWBhQrx7Qs6faal6mRw821f37eY2aQCAoFAgDUwjZwKKiolRWYmJiY42VNr7+Wr20\n+Zzw9ATatgV0OmDzZrXVCAQCEyEMTCEK7Qhs8WJuXdK0KdC5s9pqskdeUL1li7o6BAKByRAGphCF\n0sDS0oC5c/n+559b5uhLpmtX3v79N8/ZCQQCq0cYmEIUyiSOTZuAe/eAKlWAN95QW03OlC4NNGzI\nDTb371dbjUAgMAEWli5WeCmUI7BZs3g7ZgyXjrJ0unUDTp8Gtm+3fMMt5EREALt2ccOCe/d4KtXF\nBahY0RiNdnVVW6XA0hEGphCFLokjOBg4cYIXLA8erLaa3PHGG1wbcft2LntlySHPQsrFi9yke9Mm\nXvueFT/+CNjZ8bTlZ5+JCmCC7BEGphCFbgT2ww+8ff99IH2RtsVTrx5Qpgzw8CFw7hz/W6AIkZE8\nTbpoEf9bo+HE0LZtuQepiws3MLhyhacpDx0CVq0CVq/mvqjTpwMeHuqeg8DykMiU9ZIE2fLw4UP4\n+vqiZMmSePz4sdpyCsbdu0Dlyhw2vHuXTcFaCAoCFi7kWo2TJqmtpkhw+jSPpu7dA2xt+Zpn3Dig\nbNns33PvHkeo58/nXCFPT0547dFDOd0Cy0ckcShEoRqB/fQTV5x/5x3rMi+A58EADiMKzM6iRUDz\n5mxIjRpxU4Aff8zZvACgfHlOcD1/njvhPH8OvPUWMHYskF5WVCAQIzClICLY2tpCp9MhKSnJeqvS\nx8YCvr5ATAxfWjdooLaivJGQwJfzSUnAo0ecnSgwCzNmGBtzf/ghj6jy82dPxGY2bhyPxtq04cYH\nIslDIEZgCiFJElxcXAAAsdZcFf3339m8/vMf6zMvAChenDtFA8DOnepqKcRMmsTmJUncyebnn/Nn\nXgDv45NPeF6sVCleBfH66zyVKSjaCANTEGdnZwBWbGA6nXHhcgE7VKuKnEK/bZu6OgopP/7IHXW0\nWu5iM2KEafbbrBlw/Djg78+Nv1u2FCZW1BEGpiBWb2AbNwK3bgEVKgBvvqm2mvwjV+X46y9usyIw\nGZs28WgJAJYuBQYMMO3+K1ZkE6tfn/8UW7fmSLCgaCIMTEGs2sD0er6sBoDx461j4XJ2+Pry5Xxi\nIrB1q9pqCg3XrgGDBvGc1ddf831z4OkJ7N0L1K0L3LjBc2LWntgryB/CwBTEqg1syxbg0iX+8Zf7\na1kz/fvzdtUqdXUUEhITgbff5gHtO+8YkzfMhYcHrxerXZuNs2tX0XC7KCIMTEHs7OwAAKnWlgdM\nZBx9ff55/mfjLYm33+ZR5J49okeYCZg0iats+Ptz6rwSRU48PdnEqlQB/v0X6NNHpNgXNYSBKYg2\nPeym0+lUVpJHduwAzp7llPPAQLXVmIYSJYD27Tkve8MGtdVYNf/+yynyGg2wciWQHmhQBG9vrqno\n5QXs3g188AFfbwmKBsLAFESj4Y9br9errCQPEAFTp/L9zz4DHBzU1WNK5DDi6tXq6rBi0tL4mkav\nB0aP5sXKSlOlCieUFisGLFkCzJunvAaBOggDUxCrHIH99Rdw6hSPWEyVD20p9OjBhnz4MHD/vtpq\nrJIFC3hwXr68McqsBq+9xksUAeDTT/m/VFD4EQamIJYwAiPiYhSRkbys65V88w1vP/2UFwEXJpyd\nge7d+f6aNepqsUJiYoyD89mzAScndfX06cOlptLSeIpTrBEr/AgDU5DExEQAQLFixRQ7JhEPoP77\nX84cd3Xl4vEeHtyywt+fu6Fs3gwkJ7/w5iNH+ObuzpMLhZF+/XgrshHzzA8/cP5Ls2aWU2R3xgxO\nqw8PB3r1yuJvWlCoEAamIAnpreyLKzCSSUjgousNGgCNG/MXOziYU43t7bl9hV7P62iWL+dCqQ0a\nvJDFNX06b0ePVnZmXknkzonnzgGXL6utxmoIDzd21PnuO8tprWZjw4PpcuWAf/7hEZmg8CIMTEHi\n4+MBAI5m7J+l0/FEtr8/dw45e5bTjUeP5myt8HCuYxsdzVenZ84AM2cCNWvyYMTWNn1H//7LaV2O\njsCoUWbTqzr29tzrAxDJHHnghx+A+HiuytW8udpqMuPtzYmldnbcOGHtWrUVCcwGCRSjZs2aBIDO\nnz9vlv2fOEFUqxYRBw6J6tYlWrmSKDHx1e/V64lSUjI80KsX72TsWLNotSj27eNzrVSJPwhBjjx9\nSuToyB/ZqVNqq8men35ijU5ORFevqq1GYA7ECExBzBVCTEriVhPNmvFi0goVgD/+4NHVgAG5y3yX\npAyjrytXuF+FnR3wf/9nUq0WScuWvMbt9m3g5Em11Vg8s2fz6KtLF6BhQ7XVZM+HHwJ9+3J1kN69\nOawuKFwIA1MQc4QQb94EmjYFvv+e/z1uHE/l9O/PC0vzxcyZPIgbOtTQLyspyTR6LRKtln/pAJHM\n8QoiIozrrL78Ul0tr0KSeB44IICroH34oVjkXNgQBqYgsoGZagT255+ceHHuHFC5MidpfPcdL+jM\nN3fv8vBNq+WFy+l88QWwfn2BJVsu8qLmtWs5D1uQJXPnciJQ+/a89srScXbm+bBixYBly7hCvqDw\nIAxMIYjIZCFEvZ5LEvbqxWtxevbkcGHjxiYQ+t13nAnSvz/3rgCHYH75hYu0/vGHCY5hiTRoAPj5\nAU+eAAdPcYCBAAAgAElEQVQOqK3GIomKMraDmzRJXS15oWZN/vsFgI8+4gs+QeFAGJhCpKSkQK/X\nw9bWFraGyaa8k5DAizS/+45ThmfP5itMk7RXDwvjS1RJAiZMMDzs6MgdVIh4zdj27SY4lqUhSaJC\n/SuYN4+zV1u14obc1sSgQVzyKjmZ58Oio9VWJDAJameRFBUiIiIIALm5ueV7H48fEzVuzJlVrq6c\nPGdSxo7lnffsmeXT48fz0w4OnPFY6Lh6lU/Q2ZkoIUFtNRZFbCyRhwd/PPv3q60mfyQkcGau/Ccu\nEk6tHzECU4iCzn9dvsxzDidPcpbh8eNcccBkRERwYTsg22ZO06cDw4dzQkfPnjxgK1QEBHAoMTYW\n2LlTbTUWxW+/8Z/Ia6/xCMwaKVaM53FdXHj+WA6HCqwXYWAKUZD5r2PHeLHo3bs8z3XiBFC9uokF\nzpvHudEdO/KPeBZIEvDzz8Drr3Mb9969C2G+gxxGFLURDeh0HKoGOMvVUqpu5IcqVdiMAT6X4GB1\n9QgKhjAwhcivge3YAbRrxxPoPXpwfkHJkiYWFxtrvBx9RStdW1u+ivXx4VGgXG2q0CBX5di5kw1d\ngE2bgDt3ONP1zTfVVlNwevYExozhi68+fUQ/U2tGGJhCyBXo5ZYquWHFCv7BSEriCegNG8xUEP7X\nX7k8ffPmQIsWr3x5iRJcPxHgauSnTplBk1qUKwc0acLZMrt3q63GIpBrHn7yCa+uKAx8+y2vn3zw\nABg4kDN7BdaHMDCFyGsrldmzOXNKp+OEwIULzfTjkZRk/IX64otcx4fatOGrWJ2OC9VbU4uzVyKP\nwkSnZpw5wyFrd3dgyBC11ZgOW1te8ufpCezZY+waJLAuhIEpRG4NjIijeHIFp1mzOExntnmHpUuB\nx4+BevWATp3y9NapUwFfX/6RW7jQTPrUoFcv3m7fDqS3wCmqyAt/Bw3i5RSFibJleV2jJAGTJwN/\n/622IkFeEQamEFK6A1EOtWzS0rjp8YwZPNpatoxHOWYjKck4iZWH0ZeMkxMwZw7f/+9/gadPTaxP\nLSpW5ESWuDi+PC+iJCYaF64PHaquFnPRsSMwcSJfOPbvL5pgWhvCwBTiVSOw1FT+Ai1ezMV3N2/m\nq16zsmgRf2Pr1OGGYPmgZ0+gQwdOMilUCR1vv83bIhxG3LyZF/w2bAjUrq22GvMxeTLQti1fgL3z\nDpCSorYiQW4RBqYQORmYXB1AXqOydy/3WTIrCQlGx5kyJd+VfyWJq4IAwPz5QGioifSpjRxG3Lq1\nyLb1lb373XfV1WFutFouvlKmDC9ZCQwURX+tBWFgCiEbWMX0+oIyiYmcabh1K0+U79unUJmeX37h\nua8GDYDu3Qu0qzp1uJh7SgowbZqJ9KlNlSpA3bq8xGDvXrXVKE5iojEJM5+Dc6uiRAlg2zbO8l2x\nohD9HRdyhIEphEajQZ06dbBy5UrDY3FxQNeuPM3i7c1rvBTpr/TsGfD113x/yhSTZIhMncpXsr/9\nBly/XuDdWQZyNmKhLsOfNX/9xYP0hg052aEoUL8+m9jAgWxkha7STCFEGJhCFCtWDAcOHICHhwcA\nnlvo1IlNq3Rp4OBBHskowoQJvO6rfXvuSmgC/Px4ol+nA776yiS7VB95HmzLliI3MfLnn7zt2VNd\nHUrTpg2PwMaONbTCE1gwEuWUFicwGXq93hBGjIhg8zp1iq9u9+1jA1CEf/7hFZw2Nty+OSDAZLsO\nDeXIm07HtRtNuGv1qF2bP6edO4HOndVWowipqVztJTKSm3NXraq2IguAiMPJAA/PbGzU1SMAIEZg\niiGb19OnfJV36hRnax8+rKB56XTcEImIF5qZ2GHKlePFrnp9IcpILIKLmg8fZvOqWrUImldcHE9I\nT5nCw8+AAF7tbGPDPYtcXXkVtK0tT5w1aQL068ftqbdtK0RrSawDMQJTkLAwrmt4+TLg788jL19f\nBQX8+ivw/vt80CtXeCGXibl7lw2ZCLh6lUdkVs3ly0CNGoCHBye9FKCXm7UwciQXbf7vf4tIhYq0\nNI6ZrlkD7NrF6yOzwtGR54sTEnKuPeXnx6H5bt248nUR+JtRC2FgChEaymtNbt7k38O//wZKlVJQ\nwPPn7JoREcC6dcb5HTMwbBhXcBg6FFiyxGyHUY4aNdjI9uzhRW+FGL2ew9qPHnGUQJGkIrXQ6Th/\nfto04MYN4+NNm3Jd0Lp1OYRcurRx5AXw1VlqKo+27tzhW0gIh+dPnmSDk3Fz4wWew4ZxtRtrLuVv\niajYi6zIcPMmUbly3EivXj2ip09VEDFiBAto29bsnfxu3iTSaolsbIhu3zbroZRh0iT+7IYPV1uJ\n2Tlxgk+1bNlC3vDx8mWiRo34ZAGiKlWI5swhevCgYPtNTSU6fpxowgSiGjWM+weI6tQhmjuXKCrK\nNOcgIGFgZubyZaLSpfnv97XXiCIjVRBx8iSRJLGjXL6syCEHDeJzHjFCkcOZl7Nn+WRKly7kv+pE\nn3/OpzpqlNpKzIReT/Tjj0T29kan/v13Np5XEBfHnal1ujwc7/x5oo8/Nrazljt+jx1LFBqa//MQ\nEJEwMLNy+jSRtzf/zbZsSRQTo4IInc54pfnZZ4od9upVIo2GyNaW6N49xQ5rHvR6Ih8f/gzPnFFb\njdnQ64n8/Pg0DxxQW40ZSEnhUbRsJMOGEUVH5/rthw4ZfW/GjDweOymJaN06/iGQj29jQzRwIF8g\nCfKFMDAzsWsXkaMj/5127EgUH6+SkIULWYSPD18+Kkj//nzoDz9U9LDmQQ7BTp2qthKzcekSn6Kn\nZ64GJNZFQgJRhw58gg4ORGvW5Gs3GzZwMAMgWrIkn1pOnSLq25fj7LKZtW9PtG9foR/hmxphYGbg\nt9+Mf5sDBxIlJxufe1DQGHteePbMGLrI5xe2IISE8Jfdzo4oLEzxw5uWLVv4c2zcWG0lZmPaND7F\nIUPUVmJiEhKI2rXjkytRguiffwq0u59/5l1ptUTbtxdgR3fvEo0ZQ+TkZDSyxo2J/vwzj3HKoosw\nMBOi1xt/BACi8eMzX1Ddvn2bateurZygoCAW0qaNald2PXuyhC++UOXwpiMujuNHkkT05InaasxC\nvXr8f7Vtm9pKTEhCAo9uZPMy0RzwF1/wLosV48SXAhERQfT118b5BoAoIIBo6dLMV7+ClxAGZiIS\nEowhM0kimjcv8/NpaWlUpkwZcnZ2VkbQqVPGxI2QEGWOmQXHjvFn4u7OHmDVdOrEJ/P772orMTl3\n7vCpOTkRJSaqrcZEpKURdetmNC8Tfg/0eqKhQ40h16tXTbDT+Hiin34iKl/eaGS+vkSzZike/rcW\nhIGZgNBQovr1jT8Amza9/JrY2FgCQI6OjuYXpNNxKALgbCeVee01lvLTT2orKSDz5vGJ9O6tthKT\nM3s2n9rbb6utxISMHs0n5eHBE3wmJiWFqEsXPkT58kQPH5pwxytWZE7D9/AgmjxZpTU4loswsALy\n9998cQcQVapEdPFi1q+Lj48nAFSsWDHzi1q0iAWVKaNS6mNmNmwwfj5paWqrKQC3b/OJuLgUutDO\n66/zqa1apbYSEzF3Lp+QnR3R4cNmO0xcnPFasU4dEy/x0uk4ntusmdHIihfntHyrT+01DcLA8klq\nKtHEicaMpLZtOWciOxITEwkA2dvbm1fY8+cc0wCIVq8277FySVoaUcWKLKlAk96WQPXqfCL79qmt\nxGQ8eWJMtslDVrnlsnu38Yu5cqXZD/f0KZG/v3G6OSnJDAc5fNg43JNT8N97T7F1nZaKKOabD0JD\nuSDv119zZZivvuIqQ56e2b9HSi8hQ+au3PXf/3LZqNatuT+6BaDVcglGgPtoWjVdu/J21y51dZiQ\nrVv5V7FtW+4IbtXcvw8MGMAnNHky3zczXl7c/LNUKWD/fmDw4JxLJeaLFi2AHTuAc+e4NJVeD/z+\nO1C9OnfEPXy4aLaRVttBrQm9nuiXX3ghvVyYIbcLPlNSUggA2djYmE/ggQMszNbWLDH/ghAezrI0\nGiuPfvz9N3/GSmaTmpmOHfmUFi5UW0kBSU42Trh27qx4KvrZs8bfhv79zRxlvnWL6IMPjCurAZ7I\nLGIIA8slt29zeED+W+nZk3+Uc0taWhoBII1GYx6B8fFElSuzuK++Ms8xCki/fizvyy/VVlIAkpI4\ndxogevRIbTUF5skTY93KnELgVsH//Z+xPJRKJ3PwoHFZV6dOCmTePn7MX6jSpYnu3zfzwSwPYWCv\nID6ek3/k3ywvL6K1a/O+rEqv1xMAMtug95NPWGCtWhabYHDwoHHkatWVHjp35hNZtkxtJQXmp5/4\nVLp2VVtJATl0yDg3VOCFWQXj1Cn+nZDrnyqyiN+qv1D5R8yBZQMRsHo1N/SbMgVITAT69uWuGn36\n5L0rgpThDWTqWPWWLcCcOTzZtGQJYGdn2v2biNdf51ZJYWHcTsZq6diRt3v2qKvDBKxaxdv+/dXV\nUSDi47mTKsBzwE2aqCqnYUPg2DFu8HriBNCgARAcbOaDFtUO0Wo76Itcu3aNBgwYQI9UCs/o9Vw1\nqGFDY7iwXj2+wCsoGo2GAFCqKa+Wbt0icnVlod9/b7r9mompU41zBFbL5ct8Et7eVl3yR168XLy4\nla+THTXKmMduQdGHsDCiFi2M09ILFohSh6bGYgzswYMHNGLECNJqtQSARo4cqejx09K4WHTt2kbj\nKlGCaPFi06xdyhhC1JnqRy8hgahBAxb75ptW8e2Ql1IVK2YRS9Tyh17P8ywA0b//qq0m38yYwafQ\nt6/aSgrA2bPGijMWWNU9JYWXbeV37twSiI2NpfsWOr+m+rgzIiICM2fOxLx585CUlASNRoPAwEB8\n9tlnihz/6VPuHvzrr9xYFQDKlAE++wwYPhwoXtz4Wr1ej7t37+Lu3bvQaDSwtbWFjY0NbG1tUbx4\ncTg7O8PFxQWOjo7QaDJHZ/XpebWSJL30XL7Q6ThF+MwZoEIF4LffrKLba8WKwH/+Axw9yl3cBw9W\nW1E+kCTuzLxkCbBvH3faBZCWloakpCTo9XoQkWGb8X5+n0tNTc10S0lJMdxPS0uDVquFnZ0dbG1t\nM20dHBxQvHhxFCtWzPA3KoezrT58SAR8/DFvR43iDsoWhq0tR/cbNQI++ID/5o8eBRYu5Ox3a2Dr\n1q0YMGAA6tWrh27duqFbt26oX7++aX7HCohEpM7igbi4OMydOxf/+9//EB0dDQDo2bMnJk2aBH9/\n/0xf4he/zNn9OyUlBQkJCUhMTERCQgISEhKQnJyMzp07wyZDjDgxkZfx/PEHsH07kJLCj1eowMY1\nZAjg4JBZ77Zt2/Dpp5/iRsbW49kgSRKcnJwMhiab2oEDBwwG7ejoCCcnJzg6Ohpu9vb20Gq1Wd5q\n1aoFHx8f40HGjOFvhqsrB9xr1AAA6HQ6pKSkwMHBIdO8myWxcCEQFMTrjtScC0tNTUVUVBQiIyMz\n3eTHoqOjERMTg+joaERHR6Nz584YOXIkv/n33/kPpVcvYMMGAMD+/fvRtm1b9U7oFfTt2xerV68G\nAFy6BNSqBbi7A48fG6dNhwwZgpiYGIPhZTS/rB6T79vZ2UGSJMMFmnxfvmX1vc3KqOX7kiTBwcHh\npZubmxu0Wi2LXbeO1zp6ewPXrwNubip9srnj7l3+kzl4kP89YADw/fe8fiw/xMXF4dGjRwgLC8Oj\nR4/w+PFjREdHIz4+HnFxcYiPj0diYiIAZPq/sLGxgb29PRwcHLLdZry/c+dOrFy5EklJSYZjlyhR\nAu3atUOnTp3Qvn17lChRQhVDU8XALl68iNq1ayt2vPXr16N3794A+G9+6FCe9wX4YrpLF7466tSJ\n8yAycuHCBcyfPx+XLl2Ck5MTNBrNS1fDqampSExMRExMDGJjYxEXF2dS/b/88guCgoKMD8ydC3zy\nCV/e7dnDi5YBJCcno0WLFjh16hQ0Go3BRJ2cnF66n91NNlYnJyfY2dlBq9XCxsbmpZtWq830owTg\npQuOjI/b29ujXLlyAIDISKB0ab5wePCAR7wAcOvWLcTFxeW4vxcvUvK6TUhIQExMDCIjI/P8/9Ss\nWTMcO3aM/3H1KlCtGuDjwycB/kEpXbo0AGT6EZfvv7jN7XOSJMHW1tZwk0dY8n0bGxukpaVlGpml\npKQgJSUFSUlJhvP/7bff0KVLFwDAF18A06dzlGHhQj6l4OBgNGvWLE+fiZK0bNkSB+Vf/9RUzrC6\nfZvDJyNGAOC/oZ49e4KIoNVqodPpoNPpkJaWluVWp9NlebEs3yRJQrFixV66ZYy4ZLd1dXVFzZo1\nUaJECcM56PXAvHnA+PFAUhIvHJ8yBfjoI/46ZyQqKgohISE4c+YMQkNDM5lVWFgYYmNjFfrkX835\n8+cV/U2XUSWEmJ1Ty19aGxubl67iXvVv+Uvu6Oj40lXiw4cPDceoVo3Nq1Ejzibs149/g7Kjdu3a\n+CWP5SN0Oh3i4uIQGxtrMLXHjx+jR48esLe3x5w5cwxXSBlvycnJhi+V/MUKDAxE9+7djTtfvJjN\nC+DYZ7p5AcD//d//4fbt27C3t0dycjJiYmIQExOTJ+3m5Pr16/Dz84O7O18sbNkCbNrEX14A2Llz\nJ0aPHq2YHo1GAzc3N7i7u2e6yY+5uroabi4uLnB3dzf8qMHfn6/4Hz5kA/P1hZOTk0X9qGSHnGEL\nZA4fenl5YceOHZnM/lX35W1KSkq2kRH5M8uNUcv39Xo9kpOTkZSUZLhNnz7dKHbZMjavgABg2DDD\nwyNHjsSFCxdM+nnFy1e7+aR3795YsGABvLy8oNFw1PONN3i7YwcHU+bNA6ZO5Uxn+SLazc0NzZs3\nR+3atbFp0ybcvXsX58+fR2RkJADAwcEBpUuXRpkyZVCmTBmUKlUK7u7umaI7xYoVA5D5YjAtLc3w\n2eZn++zZMzx8+BA6nQ4Af4/s7e0L9BnlF1VGYEQEnU6H4OBgbNu2Ddu2bcPVq1cNz2u1WkybNg0T\nJkwww7G52kz6YEAxIiMj4eHhAVdXV0RFReVvJ8uWcQyCCJg1i//ysyE1NRVxcXGGmzwyjI2NRWxs\nrME0M75GNlX5vjy/It/kK1f59uIFBICXHsv4+JgxY/Dhhx8CAFauBN59F2jVCjhwgDWHh4ejffv2\nhtdntT87O7tsw1mv2sr3XVxc4ObmBmdn54KFPTp14hHwunXA22/nfz8Kc+IE0LQpX7jdu/dy1MHi\nSUnh9RihoezEffsCABISEvDgwQPDaFSn0xkiCFlt5VtWF8PyTa/XIykpCYmJiZluCQkJhu+SfKGY\n1X15a29vj5kzZxpGwDLbtgHjxgHXrvG/q1UDPv2Uw4svTmMA/Nsp5wrIYVulOHXqFCZMmIB9+/YB\nAEqVKoVJkyZh2LBhsFNr6U5BMkBMyY0bN2jWrFnUunVrsrGxoXXr1qktyaQ8ffqUAJCHh0f+drBq\nFddhAohmzjStOBWIijKWlnr8WG01+WTiRP7/mDBBbSV5Qs46/7//U1tJPlmwgE+gRg2ra2+Qlpb2\nUhZyair3rixXLnMG9IQJllGr98qVK9SrVy9DFrWrqyvNmDGD4iygwZ/FGFhGIiMjKbHQdNVjwsLC\nCACVKFEi729euNBYXXvqVNOLU4muXfmUfvlFbSX5ZM0aPoHu3dVWkmtSU43tf06fVltNPkhM5CaP\nANH69WqrMSnJydwGrG5do5EB3GtwyhSi4GDzFNzQ6/Wk0+leMtbo6GgaP348DRw4kACQg4MDff75\n5/T8+XPTi8gnFmlghZHQ0FACQD4+Prl/k15vXKxTyMyLiOi33/i02rVTW0k+uXiRT6ByZbWV5Jq/\n/mLJ/v5WsWzwZWbNMi5atuJF5Dmh13P3lMBAY40C+ebqStS6NdGYMTxq27ePu0HnZSG6Xq+ntGxG\nrjqdjmLSF2jOnj2bJEmi0aNH0wcffEAPTdax03QIA1OIW7duEQCqUKFC7t6g03E3ZYBHX/Pnm1eg\nCjx/zutPtVorbTSbnMwnIElcNNMKeO89/pOaPFltJfkgJsZYZHDHDrXVKEJiItHmzUQffkhUpUpm\nM3vx9vPPL79fp9ORPocrlevXr9OSJUtowIAB5OfnR5Ik0S/pIZFx48aRJEn0VXpxcJNWEDIRqi9k\nLiqkpqYCAGxfzJXNirg4znDYvJlrnK1YYZioLkx4ePBasD17OCMxQzKZdWBnx8kEV67wrUEDtRXl\nSFISL6QFOPvW6pg9G3j2DGjeHOjcWW01iuDgwAue5UXPDx4A589zW7DLl/nfciJsyZIvvz+rJKVn\nz55h8uTJWLRoEdLS0uDq6oqAgAC0bNkSkydPRq9evQBwkgbASxOy25faCANTiFwb2PXrQO/ewMWL\nnKa9bh2QnplXGOnd25jIZ3UGBvAC8itXgJAQizewnTuBmBiWGRCgtpo88uwZr/oFgBkzrKLqjDnw\n9eWb3FdVhghIS9NDr2ejSUlJQXBwMPbt24eIiAgMGDAATZs2BcBFGRYsWICAgADMnj0b3t7eKFmy\nJNzc3ODo6GjIbKxSpQoAGFLkLdHALE+RudHpuG1quqEoRVpaGgBe25ElRLyuq149Nq+AAOCffwq1\neQFAjx6cxr1vHzeStjrSK6AgJERdHbkgvWCIpTTqzhszZwKxsbx0oUULtdWoAqWveHr48CEOHjyI\nx48fA0B65RLA1lYDjUaD06dPo1KlSmjbti02bNiAvXv34u2338aoUaOQnJwMR0dHAMDnn3+OTp06\noUGDBvBNX8eYMS1froYSGhqKiIiITBosBrVjmIpz7JhxNvSdd4j++IMoIsLsh719+zZt2bKFkrOq\nln3jhjElD+DOj1FRZtdkKXTowKe9eLHaSvLB+vVk6ABswSQmGhst3r6ttpo8cv++sfPwmTNqq1EF\nOUPwxo0bZG9vT5Ik0bvvvpvp+X///ZfWr19P1atXpxo1atC2bdsoOjqaIiMjqV27dqTVaunIkSNE\nROTh4UFBQUH077//0ooVK2jQoEHUsWNHunbtmmGfu3fvJh8fH6pfvz7dvHmTiHgZQE5zakpT9Axs\n925eP5Jx9lOrJWrVijOc0v+jFOHJE6Lx44ns7FiHiwvR8uVWmh6WfxYv5tPv0EFtJfng+nUWn5fs\nUhXYutWYkm11jBjB4t9+W20lqtOnTx9ycXGhLl26kCRJ9NFHHxmSKz799FNq06YN7d27N9N7li9f\nTj169KD9+/cbHnvjjTdIkiRyc3OjUqVKUevWrWnNmjWUnJxsyFA8fPgwOTs7U8eOHenZCx2uIyMj\nKSQkRHUzK3oGJnPrFtGcOURt2rCBZTQ0Pz/+0qxebfpVtno9X0UGBRE5OBiPOXiwQq1bLY9nz6w4\nGzEtjRtqAaq1sc8NgwezxG++UVtJHrlxg/8wNBrOFy+k3Lhxg4YNG2YY6WTFtWvXyNHR0ZAlOGLE\nCJIkiZYvX05ERMePH6dWrVrRsWPHiIgzDL/88kuSJIlGjBhBqampBsPp27cv1a1blxITEykhIYFi\ns8jDv3TpEjk7O5OzszMFBQXRhg0b6L333qPq1auTJEnk7OxMoaGhpv4o8kTRNbCMRERwpYu+fV9e\neAEQVa1KNGgQ0dy5REeOcEOfvFx5PHzIubCffkpUsWLmfXfvrnoLdEugUyf+OBYuVFtJPmjShMVn\nuMK1JFJTidzdWaLVeUC/fix86FC1lZiVQYMGGVLYXxzVyP/eu3cveXt70x9//EFERCEhIdSoUSOq\nX78+XU4v2TFy5EiaPn06ERF988035O7uTm+++Sa1bduW6tatSxcvXiSdTkdDhw4lPz+/l3To9Xp6\nmn4VmZSURE2aNCFJkgw3T09PevPNN2n16tX0559/UpTKUx0iCxHgnhL9+vEtNZV7bB04wLejR7ny\n+NWrwPLlxve4ugKVKgElSgCenrwPSeJy06mpQHg48OgRF15Mn2w1UKoUt+EYOZIragvQpw+wezdn\nIw4frraaPFKnDifcnD+fqbiypXD6NHcA8POzsuzD8+e51qGdHTB5stpq8gSl13vVarU51iuUXyMX\n6PX09IQkSYbH5X1JkoT4+HhERkYiLCwMAFC9enVMmzYN77//Pg4ePIhq1aqhYsWKOHfuHADgww8/\nxLvvvgs3Nzc8efIE3377LaZMmYL169ejSpUqWL58OaKjo3Hv3j3s2LEDBw4cwJkzZ9C4cWOsW7cO\nzs7OWLFiBcaNG4fDhw+jfv36GDt2LBo0aAAvLy+LaNckDOxFbG2B117j24QJXDj07Fk2tdOngQsX\ngBs3gOhofjw3uLgADRtyCfyuXYFmzaywgqp56dGDe4Tt389NRr291VaUB+Q2Eiaugm4q/vqLtx06\nqKsjz0ycyNsPP1S++nYBkftuvQqtVovU1FSULVsWAHLsNyhnMLu4uAAAjhw5gokTJyI8PByHDx/G\nBx98gGrVqmH79u2G18vvcXZ2RunSpZGUlGQoCAwA5cuXN7SDatWqFcaOHYv33nsPzs7OSEtLg5+f\nH1atWoXiGTv7WhDCwF6FnR3QpAnfZIh4hHX3Lud+P38OyBXmNRq+lSjBTa/KlOEvnwWuobAk3N2B\ndu240eiff7KZWQ116vD2/Hl1dWSDVRrYsWPcbdbRkS8krYyoqCisXbsWOp0OgYGBOVZr12q1qJoe\nicnYokRGvm9nZwedTodNmzbB19cXEyZMQEBAgOFYM2fOROXKlSFJEu7du4fy5csjNjYWFy9exC+/\n/IKVK1di48aNkCQJpUqVgouLC/z9/fHGG2+gTJkyaN26NcqVKweNRgMigo2NDYjIYF46nc5Qud9i\nUDWAKRBkQK6N2Lq12krySFQUC7e3N0+11QIQFcU5EDY2RNHRaqvJJXo90euv82f65Zdqq3klGZMj\n5H9/9dVXhkSHyMjIHN+v1+tp3rx5htT4F4vqyvu+dOkS+fj4kCRJVLx4cerWrRtFR0fT2rVrqVix\nYt33RU8AACAASURBVPTll1/SvXv3qHfv3jRu3DhasmQJjRgxgsqVK0eSJNHYsWMN+wwPD6fz589T\nvJWUQMsOYWAKkZiYSAsWLKBx48apLcViiYw0tlh58kRtNXmkfHn+wbWE/hcZ2LSJZbVoobaSPLB3\nL4t2d7f49ZCRkZE0depUWrZsGRHxOqnjx48bkh6CgoJyrCEom9Py5cupePHi1LNnT4PhvWhkz549\noxYtWlDNmjUNmYZERPfv36fWrVtT48aN6fbt2/T++++TJElkb29P1apVo2HDhtHGjRuzzDR8UYe1\nIQxMIR48eEAAqHTp0mpLsWi6dOHfrgUL1FaSR7p3Z+Fr1qitJBMffMCypk1TW0ku0euJmjdn0TNm\nqK3mlYSHhxvMavPmzURE1LRpU5IkiVq3bk23bt3K8f2ySS1fvtyQ7p7RaJKSkuj8+fMUHBxMaWlp\nNGTIEGrSpAkRsVnKa7b+/PNP8vLyosuXL9OdO3fo3Llz5jhdi0NMzCiEHEdOSEhQWYll06cPb9ev\nV1dHnrHQRA6rm//at4/nvzw9gY8+UlvNK/H29kZQUBC0Wi3ee+89tG7dGmfPnoWtrS2++OILVKpU\nKcf3U3ppJg8PD0iShPXr12P8+PGYOXMmWrRogTJlyqBu3br46KOPEBMTg8qVK2d6v5yp2KVLF4wY\nMQKOjo6oUKEC6qTPy+r1euj1essrAWUiRBKHQsj1x+Lj41VWYtm8+SYngh48yHkyJUqorSiXWKCB\n3brFN3d3i68zbGTqVN6OHQs4O6urJZf89NNPKF68OGbPno1Dhw4BAPr27Yu2bdtCr9fnWARXfq5W\nrVqoXr06QkJCMH/+fABA7dq1MWjQILz11lvQaDRwdHREVFQUwsPDkZSUBAcHB8N+7O3t8c0332S7\n/0KL2kPAooJeryetVksAKCUlRW05Fo1cFtKqwohXr7LocuXUVmJgwQIrq8B06hQLdnPj3l9WxJMn\nT2j06NGGcGLVqlUpODiYiCjb5pEvcvv2berYsSPVqlWLPv74Y7p06RIlJCS89JrHpq4OZMUUcnu2\nHCRJEqOwXPL227y1qjBilSrcvCk01LikQmWsLnw4dy5vAwOtZvQl4+rqisTERMO/r127hoEDB+KP\nP/4whPlygohQsWJF7Ny5ExcuXMCcOXNQo0YNFCtW7KXXlMyq8VcRRRiYgjg5OQEA4uLiVFZi2bwY\nRrQKtFqgZk2+bwFhxLQ0nk4CrKQjT1gYsHYtr5e0grmvF9m/fz8WL14MHx8fnD9/Ht26dcPt27fx\n7rvv4vvvv0dMTAyA7NuRSJIEIjKswdLr9Vm+RpAZYWAK4unpCYA7ogqyx82NRw16vbGDsFVgQfNg\nJ09y80p/f6B8ebXV5IKVK7kEW/fuQIUKaqvJMxPTq4ZMnDgRtWrVwpYtWzA5vfzVrFmzcqywISMb\nlCRJhX/uykSIJA4F8fLyAgA8ffpUZSWWT+/ewI4dwNatwPvvq60ml8gVOdJr0amJ1YUP167l7aBB\n6urIB4mJiahevTpq1KiBgQMHGh7/4osvUL9+fSQlJaFatWoAxCjK1AgDUxDv9AJ/wsBeTefOvD1w\nAEhIACy0FFtm6tfn7Zkz6uqAlRnYzZv8mTk5Gf/jrYhixYphyZIl0Ov1cHBwMBTftbGxQbdu3dSW\nV6gR41QFEQaWe0qW5PrHSUk8F2YV1K3LHQkuXWLhKhEVxcXxbWyAVq1Uk5F75GydN9/kRBgrxM7O\nzpDWLkZZyiEMTEGEgeWNLl14u3OnujpyjZMTUK0aZ1CoOA+2fz/PHzZrZiXJfHL48J131NUhsDqE\ngSmIMLC8kdHArKaQgLxi+PRp1SQcOMDbdu1Uk5B7rl3jKv6urlYS7xRYEsLAFEQkceSNhg25otCd\nO8D162qrySWvvcbbw4dVkyAfumVL1STkHnn09dZbgL29uloEVocwMAUpkV4XSRhY7tBqgU6d+P6O\nHepqyTVt2/J23z6O4ylMRARw8SK3sWvcWPHD551163grF8EUCPKAMDAFkQ0s3GpW56qPHEZMbzJr\n+fj7A2XLAs+eqdLg8tgxDrc2aWIF+RAhIXzz8LCSeKfA0hAGpiDCwPJO5848Ejt8GIiMVFtNLpAk\nY+mLXbsUP/yRI7x9/XXFD5135PBhz55cekUgyCPCwBTEw8MDWq0WUVFRSElJUVuOVeDuzj/GOh2w\ne7faanLJm2/ydsMGxQ8tL0GTp+IsFiJg1Sq+L7IPBflEGJiCaDQaQyaiKCeVe+S1oFu3qqsj13To\nALi4AGfP8iJdhSAyFgGpW1exw+aPQ4e414uvL9C6tdpqBFaKMDCFEWHEvNO9O2937eJyeRaPg4Nx\nFCYnKSjAgwecxOHlBfj4KHbY/LF4MW+HDOEYsUCQD4SBKYwwsLxTuTJQvToQHa1qdnrekMNiK1Yo\ntojt7FneygVBLJaoKGDjRr4/ZIi6WgRWjTAwhXF3dwcARFlIzyhroUcP3q5Zo66OXNOxI1C6NHD1\nKnD8uCKHtJrw4apVXGqrXTugYkW11QisGGFgCiP3BIuNjVVZiXUxYABvN2wAkpPV1ZIrbGyAwYP5\n/pIlihxSHoHVq6fI4fKPHD4cNkxdHQKrRxiYwjinF6cTTS3zRvXqPLKIirKi2ohDh/J23TpAgQuW\njCFEi+Xff1moh4dxWC0Q5BNhYAojRmD5Rx6F/fGHujpyjZ8frwGIjzeueTITz58D9+5x25mAALMe\nqmDIo9GBA61gpbXA0hEGpjDCwPJPv36cnLB9Oyd0WAVymMzMYUR5/Vfduhac1JeYaLz6EOFDgQkQ\nBqYwNjbcQ1SvQp08a8fHh/tbJScbk9gsnt69uafJiRPAlStmO4xsYHIxfIvkzz/5yqNRI6B2bbXV\nCAoBwsAEVoXcsX3lSnV15JrixY0p9cuWme0wcveWhg3NdoiCI5I3BCZGGJjAqujVi6dODh4E7t9X\nW00ukdc6rVjBNbFMDBEQHMz3LdbAbt7k/7RixYC+fdVWIygkCAMTWBWurlyZI2MpPYunaVNO6Hj0\nCPjrL5Pv/soVICwMKFmSG0JbJEuX8rZPH/5PFAhMgDAwhZHnviSLLpVg2chhRAWLXBQMSQLee4/v\n//67yXf/99+8bdfOQitwpKUZz1uEDwUmRBiYwkSm9wRxc3NTWYn10qkTd2oOCTFWn7B4ZNfdvh1I\nSDDprvfs4a3cxcXi2L2bh4j+/sB//qO2GkEhQhiYwshV6L28vFRWYr3Y2hqnUawmmaNcOW6RnJBg\ndBwT8Pw5sHcvoNEYu1dbHBmTNyxyiCiwVoSBKYxsYHJbFUH+ePdd3q5axREqq6BXL96asE/Y+vVc\nob99e54DszgeP+ZRp1YLDBqkthpBIUMYmMKIEZhpaNyY8yIePwb27VNbTS6RDWz7dpMVdJRHoHKV\nEotj+XLOvHzjDaBUKbXVCAoZwsAURhiYaZAk44/2+vXqask1lSsDdeoAMTEmcd07d4Bjx3ip2Vtv\nmUCfqSEyViAJDFRXi6BQIgxMYYSBmY6ePXm7ZYtZlleZB9lpTNBeWl5G8OabQHqFMsvi6FHg+nVu\nK2OxE3QCa0YYmILodDpERERAkiRDXzBB/qlZE6hSBXj2jH8rrYJu3Xi7fXuB1gAQGcOHcoKjxZGx\n63J6CTWBwJQIA1OQyMhIEBHc3d0NNREF+UeSjAOaTZvU1ZJr6tXjoo4PHxr7n+SDs2e5V6aXl4Wm\nz0dHG2O7clsZgcDECANTEBE+ND0ZDcxqFjXLo7AChBHlou7vvMPLCiyONWu4+nyrVjz3JxCYAWFg\nCiIMzPQ0acJTLKGh3CvRKpANbNu2fL1dpwNWr+b7Fh8+FMkbAjMiDExBhIGZHo3G2Nh382Z1teSa\nNm04dfDff4EHD/L89sOHubBFpUps4BbH+fNcHt/V1ZhpIxCYAWFgCiIMzDxY3TyYgwPQoQPf3749\nz2+Xp5b69LHQwhZy6vyAAVx9XiAwE8LAFOTp06cAhIGZmpYt+WI/JAS4cUNtNbkkn2FEnY77QgLA\n22+bWJMpSEzkKsuACB8KzI4wMAURIzDzYGfHhR4AKxqFde3Kw6d9+4D4+Fy/7ehR4MkTDh/Wq2dG\nffll40YgKoobk1mkQEFhQhiYgggDMx9yGNFq5sFKluQJrORkrsabS+Qyir17W2j4cNEi3g4frq4O\nQZFAGJiCCAMzH5068dRScDAnOFgF+Qgj7tjBW4vMjbh6lTNMHB2Bfv3UViMoAggDUxBRid58ODoa\nF/Ru2aKullyTsSpHeqPTnLh1i+sfurtzhM7ikFPn+/UDnJ3V1SIoEggDUxAxAjMvVhdGrFkTqFAB\nCA8HTp585cvlzstt2nB3EosiORlYtozvi/ChQCGEgSmIMDDz0q0brwvbv58rGVk8eazKIU+VWWTp\nqC1buChl7dpAo0ZqqxEUEYSBKURKSgpiYmKg1Wrh6uqqtpxCiZcX8Prr3ODRBMXelSGX82A6HRsz\nYKEGtnAhb0eMsNDsEkFhRBiYQkRERAAAPDw8IIkvuNno04e3a9eqqyPXtGzJ80WXLvEEVzacOQNE\nRnL6fKVKCurLDbdu8XKAYsUsuLOmoDAiDEwhnj9/DgDw9PRUWUnhplcvDiPu2QOkXzNYNnZ2xl5Z\nOYzC5Pmvdu0U0JRXfvyRt337Am5u6mr5//bOPS7Kauvjv/0MV+UqIDZeEgVN8M4RMAWviaNg2pt5\nT+3NUsvrqY9ancC3TLDQMLWL4iW1g2bmDdTykimK+cpLmsqBBPWAiiIEKDdh1vvHdh4YAUGF5xkO\n+/v5zGce5tmz99qjzI+199prCRoVQsAUoqIHJqg/mjfnQQ6lpQ3oUHMtlhENBZwHDVLAnschNxdY\nv55fz5mjri2CRocQMIUwCJjwwOqfsWP5c4NZRhw2jLuNx45VGX1SWAjExfHrgQMVtq0moqKAu3e5\nYd26qW2NoJEhBEwhDEuIwgOrf0aN4gWADx/mEeomj5MT0KcPjz45eLDS7ZMneZR69+48UMVkKC0t\nXz6cN09dWwSNEiFgCiGWEJWjWTOe7F2v56n5GgSPWEY07H+Z3PLhtm3A1auAhwf3IgUChRECphD5\n+fkAAFuRoUARDMuI0dHq2lFrRozgzzEx3LOpgOH8l0kJWGkpsHgxv160iC+BCgQKI/7XKURJSQkA\nwNLSUmVLGgcvvghYWgLHjwPXr6ttTS3o2JF7Mjk5fM3wAXfu8BD6Jk14xL3JsHUrr13Tvj0waZLa\n1ggaKULAFEIImLLY2QE6HUBUXgDS5KliGTEnhz8PG8ZFzCS4fx/4n//h1yEhfMNRIFABIWAKYRAw\nCwsLlS1pPDTYZcQKaURatuSepElln9+0CUhN5V7j+PFqWyNoxAgBUwiDgJmbm6tsSeMhKIh7LfHx\nwJUraltTC/r04anmk5OBf/0LAE9u8cILJhQjUVICfPQRvw4NNcGswoLGhBAwhZAebHLra1E2Q1A3\nNG1aXql5+3Z1bakVZmZ83RMwWkacMwcwmfSZ69YB164Bnp7A6NFqWyNo5AgBU4gmDzYwCgoKVLak\ncdHgDjUblhErCJi/v0q2PExBQbn39dFHwvsSqI4QMIUwCFhhYaHKljQudDqeKzchgQfNmTxDh3JP\n7MQJIDMTAN8DMwlWrwZu3gS8vcuLrwkEKiIETCGsra0BCA9MaayseEg90EAONdvbcxHT603LbczL\nA8LC+PWSJaJkisAkEAKmEMIDUw/DqtyBA+raUWsmTuTPW7aoa0dFVqzg6f39/XmaE4HABBACphDC\nA1OPwYN5ooi4OO5ImDwjRvCDbGfOAJcuqW0NP00dEcGvhfclMCGEgCmECOJQD0dHwM+PZz8yVDU2\naayty6NP1qxR1xYACA8H8vOBwEATiigRCISAKYbBAxNLiOpgqBnZYJYR336bP2/cWGWJFcXIzARW\nreLXH3+snh0CQRUIAVMI4YGpS0UBI1LXluq4fZs7OgCALl2AAQN4ra0NG9QzKjycFyR78UXgb39T\nzw6BoAqEgCmEIQdicXGxypY0Try9eS2tq1d5ogtTZNUq7nDJGCocf/opFxGluXED+PJLfh0aqvz4\nAkENCAFTCCFg6iJJ5cFzpriMWFICfP11+WodAJ7ct3t3nk7fICRKEhYGFBXxM1/duys/vkBQA0LA\nFEIImPqY8j7YDz/w7SYLiwpLnJJUvu+0dClfTlSKjAyuqIDwvgQmixAwhRACpj4GD+yXX9RZkXsU\nq1fz57feeihKfdgwHkKZlcVFTClCQ4HiYuDll4GuXZUbVyB4DISAKYQQMPVxdQV69uSrYocPq21N\nOb//zs+o2dmVn2GWYQxYvpxff/qpMufCzp4FoqJ4SisReSgwYYSAKYQQMNPgv/6LP2/erK4dFTF4\nX5MnAzY2VTTo3RuYNo0Xkpwxo37DKIl48IjhuWPH+htLIHhKGJGpBhX/Z3Hjxg1otVq4urri5s2b\napvTaPn3v4FnnwXMzXleWkdHde3JyeFFKwsLuXP13HPVNMzO5mKSlQWsXQu8/nr9GLRhA/Daa0Dz\n5jxc02TquAgElREemEIID8w0aN2aF4gsKQG++05ta3jYfGEhT3dVrXgBQLNmwOef8+s5c+SCl3XK\n1avlofsREUK8BCaPEDCFMAiYoTKzQD1ee40/r1mj7qFmvb48U9Rbb9XiDePH80dBAU81VZeH4u/f\nByZN4iepR40CJkyou74FgnpCLCEqRGlpKczNzaHRaFBaWqq2OY2a+/eBtm358aqffuIemRocPMhD\n+1u3BlJTecxEjeTm8kiU1FReETk6mofbPy1z5gArVwLPPAMkJvIlRIHAxBEemEJoNBowxlBWVoay\nsjK1zWnUmJuXezyGVTk1MBxanjGjluIF8GW9vXt5yOL33wMLFz69G/nll1y8zM35gTQhXoIGgvDA\nFMTKygrFxcUoLCyElZWV2uY0arKyuOdTVAQkJSkfbJeWBrRvzzUjPR1wcXnMDvbv55k6ysqA+fOB\nzz57sjInmzYBU6bw6/oMDhEI6gHhgSmIhYUFABHIYQo4O/MtH4DXalSar77ijtMrrzyBeAGATsc9\nMHNzfk7sv/+bq3FtIeIHo6dO5T9/+mmjEC+9Xo/x48dDkiS8Xov5ZmZm4oUXXkBKSooC1tUNCQkJ\nWLx4MTaomQRaKUigGM7OzgSAbt26pbYpAiK6dImIMSILC6L0dOXGLSggcnIiAoji45+ys337iKys\neGedOxOdOFHze27dInrpJf4egCgs7CmNUJedO3eSk5MTMcbkR9euXenPP/+s1HbmzJnEGCN7e3ti\njNGRI0fke9u3b6d33nlH/lmv11Pfvn2JMUaffPIJERF5eHgYjWN4TJgwgdLS0oiIKDk5mZ5//vkq\n2zHGaO7cuURElJGRQf7+/kb3LC0tacuWLU/0ORQVFdG4ceNIkiTS6XSUmJhIREQJCQkkSRKFhYXR\n/fv3ydzcnN57771K7w8JCSHGGH377bdERLR+/Xpq3rx5lXPQaDSUkJDwRHbWJULAFESr1RIA+ve/\n/622KYIHjB7Nv8MffKcowvr1fExvbyK9vg46/L//I3J3LxekgQOJNm4kysgoH6C4mOjMGaJ33yWy\nt+ft7OyI9uypAwPU48yZM2RpaUmtWrWi2bNnU1RUFC1atIjs7e3Jzs6OLl26JLeNj48nxhhFRkbS\n7du3yc3NjTw9PUn/4DOaM2cOMcZowYIFRET0xRdfkIWFBWk0GvL29iYiIsYYSZJEY8eOpaioKIqK\niqJp06YRY4z8/PyIiEin0xFjjIYOHSq3MTw2bNhA9+7do9LSUvL19SUzMzMaMWIErV27llavXk1d\nunQhxhgtWbLksT6HwsJC8vLyIltbW1q7dq08JyKi5cuXE2OMpk6dSkVFRcQYoyZNmtCJh/7YMQjY\nsWPH6ObNm8QYIzMzMwoNDa00j4MHDz7+P1Y9IARMQdq2bUsA6PLly2qbInhAYiL/Lre2JsrMrP/x\n9Hqibt34mBs21GHHBQVEH3xAZGtbLmQAUdOmRI6ORGZmxq8HBhIlJ9ehAepw8eJFsrS0pMWLFxu9\nnp2dTS4uLhQUFCS/tmLFCrK0tKScnBwi4gLFGKPY2FgiKhcwV1dXSkhIIK1WS8uXL6ewsDBijBER\nFzCdTlfJDk9PT3J1dSUiomXLlpG5uTkVFxc/0vaAgAByc3Mzek2v19O0adPIwcGhSg+yKoqKikin\n05GFhQWlpqZWun/x4sVKAsYYo86dOxu1MwjYb7/9RkREnTt3pldffbVWNqiF2ANTEMNZsKLH2asQ\n1CvduvFYiMJCZfbCfv2V5z5s3hwYN64OO7a2Bj76CLh2jeemGjKEH36+d4+n+ygt5ZEq06YBp07x\nlPweHnVoAIeI5wDOyOBJk7dtA37+uf6KSnfq1AmzZs0CPRSL5ujoiE2bNiEmJga5DwaPiYmBjY0N\nHBwcAABBQUFwdHTE3r17AQBt2rQBANy6dQve3t5o0aIFpk+fjhYtWoBVCJAJDg42Gmv//v24dOkS\n/v73vwMAbG1tUVZWhsTERNy8eVN+PHx8Zs2aNZXsZoxh1apVsLW1le2qidWrV+PAgQOYP38+3Nzc\nKt3ftWuXfF3RhgsXLhjtk5WWlqJly5bo1asXAKBp06ZIS0vD9evX5TlkZWXVyibFUFtBGxPdu3cn\nAHT27Fm1TRFUID6eOyU2NkR37tTvWCNH8rFCQup3HJmcHKKsLKLCwnobIi/P2Lmr6mFmRjRoEN+y\nq2tCQ0MpNDS0ynstWrSg6OhoKigoIK1WS6+88op8Lzs7m4KDg6l///5ERHT06FF5j8rKykr2RFJS\nUow8sI4dO1J8fDxdv36dIiMjycrKivz9/eV+IyMjiTFGtra2JEmSfL3hIZc7LS2N2rZtW6XdCxcu\npMDAwFrN//Tp09S6dWtijNGwYcMo+SHP2uBZzZkzh/75z38SY4zi4+Np6NCh1KJFC8rIyCAiok6d\nOhl5hD169CCNRkM2Njay19axY0e5vSkgPDAFMYTOF5paLY9Gjq8vP8x89y6wbFn9jZOaCuzezWt+\nTZ9ef+MY4eAAODkBCh7bMDPjHmbv3rwaS+/eXMYOHwbu3Kn78fR6fbX3fH190aZNG2RmZuLGjRtI\nSkpCRkYGli1bBhcXF+zbt6+SVzFv3jzExcXJnoj00EHx5ORk9O7dGy1btsTcuXPh4+OD2NhY+f6e\nPXvg7u6OvLw8nDt3DocOHcJff/2FKYbjCg+gR5xg8vHxkT3CmvDx8cG1a9dw+PBh3LlzB15eXthc\nRbbqkSNHyqs/vr6++OKLL1BQUIDAwED88ccfuHPnjuxppqenIzExEaGhocjLy8OhQ4dw/vx5JCUl\nQavV1souJajt8UlBHWBtbQ1ACJgpsmQJX+qKjOSHnFu3rvsxwsL4F/m4cUCLFnXfv1rY2tZ8lvrO\nHeDQIWDAgLof/6effoJOp6v0ekFBAfbv34/NmzfjzgPlPH/+PFq3bg0bGxts374dK1asQFxcHG7d\numX03p49e8rXx48fN7onSRLeeustDB8+HJIkwd/fX94eAPhSXN++fQEAXl5e8PLyqtbu6tixYwf8\n/PxqmLkxAwYMwMmTJ7Fu3TrMnDkTXl5e6Nmzpzz3h4XY3d0de/fuhU6nQ9cHNd9GjBghzwEAAgIC\nwBjDwIEDH8sWpRAemIIYBEzsgZkevXrxM1lFRfVTgPjKFZ7oXZKARYvqvn9Tx8kJGDOmfpJ8NK+m\n0127dsHX1xe2trbya6+++iqOHDmC3NxcvPTSS3jzzTcBACdPnqy2/4c9pcDAQERGRmLIkCEYPHiw\nkXiVlZUhNTUVOTk5ICJkZ2cb7YPdv39fbutSzQHAkpIS7Nu3r0pRrglJkjBx4kSYm5vjm2++AVBZ\ngCsSEBCAhQsXAuD7b6NHjwYA+dxbVlYWysrKjOZw+/btx7arvhAemIIID8y0+fhjYOdOLjQzZgB/\n+1vd9b10KY+jmDhRlNiqa3r27FlJZAoLCxEREYGlD1WxnjJlCvr37y//3KFDBwDAtWvXqgyAMFDR\nexk1alS17fLz85Geno709HR4eHggNTVVvscYQ2xsLAIDA2W7q2L58uUYPnw43N3dqx3HQEZGBvbv\n34/AwEAcP34cd+/exZo1a5CXl4fg4GBkZ2cjKSkJjDGYm5tX2cf777+P9PR0ODk5YciDsuUXLlwA\nAIwZMwatW7fGlStX5PbPPvssUlJSYFbr/Gf1h/oWNCKEgJk2Hh48p21EBN+jOn0a0Gievt+LF3mB\nY0kCPvjg6fsTGENERlGC+fn5eOONN+Dg4CB/IScnJ8PKygq9e/c2eq+Pj4/swXXr1g3u7u7y76kB\nPz8/oz0lQ0adqmjSpAm0Wi08PT3RqlUrBAQE4JlnnkG/fv3g7OxcrWgBPEPPgQMHEBYWhri4uFrN\n/ejRo3jjjTcgSZK8F+jn54djx46hT58+uHLlCkpKSsAYg6+vL/5VRRkeSZLw9ddfG73Wvn172NjY\nYNSoUdA8+CV4/vnn0aZNG3Tr1s0kxAsQAqYoQsBMn9BQHvp99ixPL7hgwdP1RwTMns1TFs6YIbyv\nuqaoqAh79uyBq6sr1q1bh5iYGOzevRu9evXCkSNH5HaXL1+GtbW10XKfgenTp8sBE8nJyZXuP/fc\nc3juQbG2KVOmwNfXt1p7LCwskJ6eXivbt23bhpycHKxbtw6pqan46quvUFxcjNjY2Gr3zR6mb9++\nsLS0RElJCXQ6HWJiYqptK0mSkdA/iuDgYOTl5dWqraqoGgPZyJg1axYBoBUrVqhtiuARxMaWh36f\nPv10fUVF8b6aNePR7IK6JTEx0SjFkY2NDYWGhlJeXp7aptVI9+7dZbsN6Z/OnTtXp2NkZGSQJEk0\nf/58IiJKTU2lnj171ukYaiI8MAURHljDQKfjS4mRkTwM/ORJoFWrx+/nzz+59wXwsi1OTnVrSCc+\nOgAADbxJREFUpwBwc3PD4sWLERAQgH79+qltzmMxf/585Obm4u233663MbRarVH5Jjc3N5w9e7be\nxlMaIWAKYthEFQUtTZ/wcODMGS5eQ4cCx48Djo61f//t28Dw4TwRxpgxPHhDUPfY2dnhH//4h9pm\nPBGTDOUQBE+MCKNXEMP6M4kSbCaPpSWvG9mpE3DhAtCvH8/SVBtycoBhw4DkZJ6q6uuvn6xUl0Ag\neDRCwBRECFjDolkz4OBBHnhx/jzQvTsPsX9UQe3TpwE/P+B//xdo146nHLS3V85mgaAxIQRMQQxn\nSYSANRxatwbi4vhyYE4O8NprQIcOPFrx5595iHxCArBxI08K3Ls397y6dgWOHv3PyrghEJgaYg9M\nQQwe2KNytwlMDycnvpz43Xf8HFdqKrB4cdVtLSyAuXOBkBCgSRNl7RQIGhtCwBRELCE2XBgDJkzg\nARmHDwN79vCyKFlZXLQ6dAD69OHBGtVkCBIIBHWMWEJUECFgDR8zMyAwkJfcOnECSEoCzp0DduwA\n5s0T4mXq6PV6jB8/HpIk4fXXX6+xfWZmJl544QU5N2Bj5ejRowgNDcWPP/6otilGCAFTELEHJhDU\nPT/++COcnZ0hSZL86NatGy5fvlyp7axZsxAdHQ07OzusX78eR48ele99//33ePfdd+WfiQgvv/wy\nDh8+jB07dgDguRMrjmN4TJw4Uc4XmJKSgj59+lTZTpIkzJs3DwBw/fp1BAQEGN2zsrLC1q1bn+hz\n2LdvH9q3bw9JkvDcc89h586dldro9Xq88847sLCwkMccPXp0td9JOTk5GDJkCAYNGoSUlBR0794d\nALB7925IkoTo6GikpaVBo9HIyYMrMmXKFEiSJCcUDg8Ph52dXZWfi42NDa5fv/54k1bvDHXjY8mS\nJQSAFi5cqLYpAsF/BGfOnCFLS0tq1aoVzZ49m6KiomjRokVkb29PdnZ2dOnSJbltfHw8McYoMjKS\nbt++TW5ubuTp6Ul6vZ6IiObMmUOMMVqwYAEREX3xxRdkYWFBGo2GvL29iYjkrBljx46lqKgoioqK\nomnTphFjjPz8/IiISKfTEWOMhg4dKrcxPDZs2ED37t2j0tJS8vX1JTMzMxoxYgStXbuWVq9eTV26\ndCHGGC1ZsuSxPoft27eTmZkZOTg40MKFCyk8PJxGjhxZqV1ERAQxxqhr1670zTffkI+PDzHGaObM\nmZXaXr9+nVq1akUuLi60e/duo3uzZ88mxhgtXryYkpKSiDFGLi4ulJSUZNRu8uTJxBijq1ev0unT\np4kxRk2bNqWIiIhKn01cXNxjzZmISAiYgnzyyScEQP4FEQgET8fFixfJ0tKSFi9ebPR6dnY2ubi4\nUFBQkPzaihUryNLSknJycoiICxRjjGJjY4moXMBcXV0pISGBtFotLV++nMLCwowqMut0ukp2eHp6\nkqurKxERLVu2jMzNzam4uPiRtgcEBBhVQCYi0uv1NG3aNHJwcKA///yzVp/BsWPHSKPRkKurK/3+\n++/VtktNTSUzMzPq0qUL/fHHH0REVFZWRmPHjiXGGEVFRclts7Ozydvbm5ycnCg3N7dSX7GxsZUE\nzFARuiKTJ08mjUZDmZmZVFJSQg4ODvThhx/Wal61QQRxKIjYAxP8R1JczOvFADx7sV7Po14YA/Lz\ngYICwNmZh3MOHgx06VJnQ3fq1AmzZs2q9Dvl6OiITZs2Yfjw4cjNzYW9vT1iYmJgY2MDBwcHAEBQ\nUBBCQkLkoo6GhL63bt2Ct7c3evTogenTp2P79u1GSXCDg4ONxtq/fz8uXbqE8PBwAICtrS3KysqQ\nmJhoVFXZ2dnZKIv7mjVrEBQUZNQXYwyrVq3CgQMHsHfvXsydO/eR8y8uLsakSZPAGMORI0fg6elZ\nbdulS5eiefPmOHv2rJwVSJIkbN26FTk5OVi1ahVee+01AEBISAgSEhLw5Zdfws7OrlJfu3btkq8r\n1jg7cOAADh8+jEGDBgHgWYeef/55OeO/lZUVkpOTcfPmTfk9lpaWcHycNDcVqTMpFNRIeHg4AaB3\n331XbVMEgrojL49nLK7N45tv6nz40NBQCg0NrfJeixYtKDo6mgoKCkir1dIrr7wi38vOzqbg4GDq\n378/EREdPXqUGGM0d+5csrKyot9++42IiFJSUow8sI4dO1J8fDxdv36dIiMjycrKivz9/eV+IyMj\niTFGtra2JEmSfL1hwwYj29LS0qht27ZV2r1w4UIKDAysce7fffcdMcZoxowZj2yXlpZGFhYWdOjQ\noSrvG7y4y5cvExHR3r17ycnJiTQaDU2cOJEyMjKM2huWBlesWEFLly4lOzs7OnfuHPXo0YO8vLwo\nPz+fiIisra1pwIABRMS9y2bNmpG5uTk1adKEGGOk0WioV69edPfu3RrnWhXCA6tniAh//fUXHB0d\nH3kOLDc3F3Z2drUudyAQmAwWFvzgmwFJKvfEbG35gbjMTCA3t069LwN6vd6o4GRFfH190aZNG2Rm\nZuLGjRtISkpCRkYGtm7divfeew96vb5S6ZJ58+Zh0qRJcu2uh/tOTk42qivm7+9vVMZkz549cHd3\nR3JyMi5cuIDMzEz079+/Uj/0iJUYHx8f3Llzp8a5FxcXAwCmTp36yHZbtmyBr6+v7Bk9jJ2dHfR6\nPS5duoR27dohKCgIWVlZ2LlzJ95//305KGTw4MFG7xs5ciQ2btyIZs2aoUuXLli5ciUGDhyIF198\nEStXrkRRUZH8nRYXF4ecnBx8++23GD16NI4fP4527dqhXbt2Nc6zWp5I9gS1orS0lGbMmEEeHh50\n+/Zt+vTTTwmAXNqAiP9VsnXrVnJ2dqZt27apaK1A0DDx8/OrtAdGRHTv3j2ysLCgvLw8SktLMyq7\nYmtrSz/88AP17duXGGOUmZkpe2BXr1416mfjxo1GHphGo6HZs2fTwYMH6eeff6aioiKj9v369aOp\nU6fWaPdXX31VrQc2fvx4WrlyZY19GGz+6KOPHtmua9eu9OOPP1Z5r7S0lMaNG0cdOnSg0tLSSvdL\nSkrogw8+IK1WS2lpaUREFBQURJIk0ZUrVygkJMRoHtHR0aTRaOTP+uOPPzay9eHP92kQYfT1SGFh\nIU6dOoWUlBQEBwfLa8X04C+vq1evYvjw4ZgwYQKysrJM7oyFQNAQMOyvPMyuXbvg6+sLW1tb+bVX\nX30VR44cQW5uLl566SW8+eabAICTJ09W2z895CkFBgYiMjISQ4YMweDBg42KZJaVlSE1NRU5OTkg\nImRnZ+PmzZvyo+J+kUs1hwZLSkqwb98+6HS6Gufev39/+Pn5ITQ0FBcvXjS6d+XKFcyaNQvp6ek4\nf/58lftMKSkpGDVqFI4cOYJdu3bJ1ZcrYm5ujrfeegs3btxAdHQ0AMhh8VUxZswYTJ48GQDf03v5\n5ZflsQAgKysLJSUlRp9LdnZ2jXOtCrGEWI/Y2NggJiYGvXv3Rnx8PO7evQuA/ydfuXIl3nvvPdy7\ndw8ODg5Yvnw5pkyZoq7BAkEDpGfPnpVEprCwEBEREVhqCC55wJQpU9C/f3/55w4dOgAArl27Bjc3\nt2rHqLj8N2rUqGrb5efnIz09Henp6fDw8EBqaqp8jzGG2NhYBAYGynZXxfLlyzF8+HC4u7tXO05F\ntmzZgkGDBsHf3x8zZ87EqFGjkJCQgLlz52LixIlwcHCAi4sL5s+fj/Hjx8P+QXbpU6dO4dtvv0WP\nHj1w6NAhdOrUCQCQlJSEkydPYtiwYThw4AAKCwsRHh4OKysrBAYG4uLFi8jLywNjTA4GeZhVq1Yh\nLy8PAQEB6PigDPmFCxcA8CVXR0dHozNffn5+j/wjojqEgNUzWq0W+/fvR58+ffDHH38AALZv3y5H\n4YwePRorV65EC5H1VSB4IojIaO84Pz8fb7zxBhwcHDBkyBAAfN/KysrKaO8K4HtNBg+uW7ducHd3\nlwvPGvDz88PmzZvlny0sLKq1pUmTJtBqtfD09ESrVq0QEBCAZ555Bv369YOzs3O1ogXw/awDBw4g\nLCwMcXFxtZ5/u3btcOrUKUREROCzzz7DkiVLwBjD+PHjERERgaZNmyImJgbLli3DggULoNfr0aFD\nB4wePRrJycmVhHvHjh348MMPIUmSvF8/dOhQxMTEwMvLC7/88gsAoGXLltBqtVXaZG1tje+//97o\nNQ8PD7i4uGD48OEAuKAPGjQILi4u8PX1rfV8jaizxUjBI/n1119Jo9EQAAJAWq2Wdu3apbZZAkGD\nprCwkHr06EFDhw6ltWvX0siRI4kxRj4+PkaRbWvWrKFmzZpV2UdISEi1+0MPM3Xq1EqHdZ+UsLAw\nsre3p7Vr19KiRYvI0dGRmjRpQr/88kud9P+knDhxgjQaDUmSVGV0o2Evq127dkTEo0Cr28urb4SA\nKcjUqVMJAHXu3Jn++usvtc0RCBo8iYmJRsEZNjY2FBoaSnl5eWqbViPdu3eX7ZYkiXQ6HZ07d05t\ns2rk5MmTpNFo6PPPPyciotOnT9cq5L8+YETiVK1S0ENLHQKB4OnIy8tDZGQkAgIC0K9fP7XNeSw2\nb96M3NxcvP3222qb0mARAiYQCASCBokIoxcIBAJBg0QImEAgEAgaJELABAKBQNAgEQImEAgEggaJ\nEDCBQCAQNEiEgAkEAoGgQSIETCAQCAQNEiFgAoFAIGiQCAETCAQCQYPk/wEPvRJNIO9OCwAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from IPython.display import Image\n", "Image(data=resources['outputs']['output_3_0.png'], format='png')" @@ -272,11 +414,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['nbconvert.preprocessors.ExtractOutputPreprocessor']" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# create a configuration object that changes the preprocessors\n", "from traitlets.config import Config\n", @@ -297,11 +450,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "resources without figures:\n", + "['inlining', 'metadata', 'output_extension', 'raw_mimetypes']\n", + "\n", + "resources with extracted figures (notice that there's one more field called 'outputs'):\n", + "['inlining', 'metadata', 'output_extension', 'outputs', 'raw_mimetypes']\n", + "\n", + "the actual figures are:\n", + "['output_13_1.png', 'output_16_0.png', 'output_18_1.png', 'output_3_0.png', 'output_5_0.png']\n" + ] + } + ], "source": [ "(_, resources) = html_exporter.from_notebook_node(jake_notebook)\n", "(_, resources_with_fig) = html_exporter_with_figs.from_notebook_node(jake_notebook)\n", @@ -350,11 +518,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/benjaminrk/conda/lib/python3.5/site-packages/ipykernel/__main__.py:9: DeprecationWarning: metadata {'config': True} was set from the constructor. Metadata should be set using the .tag() method, e.g., Int().tag(key1='value1', key2='value2')\n", + "/Users/benjaminrk/conda/lib/python3.5/site-packages/ipykernel/__main__.py:10: DeprecationWarning: metadata {'config': True} was set from the constructor. Metadata should be set using the .tag() method, e.g., Int().tag(key1='value1', key2='value2')\n" + ] + } + ], "source": [ "from traitlets import Integer\n", "from nbconvert.preprocessors import Preprocessor\n", @@ -382,11 +559,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Sometimes when showing schematic plots, this is the type of figure I\n", + "want to display. But drawing it by hand is a pain: I'd rather just use\n", + "matplotlib. The problem is, matplotlib is a bit too precise. Attempting\n", + "to duplicate this figure in matplotlib leads to something like this:\n", + "\n", + ".. code:: python\n", + "\n", + " Image('http://jakevdp.github.com/figures/mpl_version.png')\n", + "\n", + "\n", + "\n", + "\n", + ".. image:: output_5_0.png\n", + "\n", + "\n", + "\n" + ] + } + ], "source": [ "# Create a new config object that configures both the new preprocessor, as well as the exporter\n", "c = Config()\n", @@ -410,11 +611,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "
\n", + "
\n", + "FOOOOOOOOTEEEEER\n", + "\n" + ] + } + ], "source": [ "from jinja2 import DictLoader\n", "\n", @@ -481,7 +693,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.4" + "version": "3.5.1" } }, "nbformat": 4, diff --git a/readthedocs.yml b/readthedocs.yml new file mode 100644 index 000000000..68c129fb3 --- /dev/null +++ b/readthedocs.yml @@ -0,0 +1,5 @@ +conda: + file: docs/environment.yml +python: + version: 2 # pandoc fails with Python 3 (missing libgmp??) + setup_py_install: true