
FreeBody Visualiser

Developer Guide

v0.1

Justas Medeisis
jm4711@ic.ac.uk

September 8, 2015

Introduction

The standalone FreeBody Visualiser (FBV) presents musculoskeletal model
data generated by the FreeBody software package[1, 3] using interactive,
animated three-dimensional graphics. FreeBody outputs that can be viewed
with FBV include the movement of bones and muscles, muscle activations
and joint contact forces. Use FBV to:

• find errors in the model;

• quickly and effectively analyse the model;

• demonstrate the model to colleagues and / or the public.

This source code manual contains detailed information about the tech-
nology and software architecture behind FBV. The document is split into
multiple sections, each of which presents a different perspective into the
project and its files.

1

Contents

1 Overview 3
1.1 GameObjects and Components 3
1.2 Scripts . 5

2 Modules 8
2.1 Controller . 8
2.2 Muscle Module . 9
2.3 Force Module . 10
2.4 Marker Module . 10
2.5 Bone Module . 11

3 User Interface 12

4 Data Loading 13
4.1 Finding Files . 13

4.1.1 Files Used by FBV . 15
4.2 Parsing CSV Files . 16
4.3 Parsing STL Files . 16

5 Support for Mobile Devices 17
5.1 Android Plugin . 18
5.2 FreeBody Model Package . 19
5.3 Virtual Reality Mode . 21

6 Future Work 22

7 Glossary 23

2

1 Overview

The FreeBody Visualiser (FBV) is powered by Unity,[6] a cross-platform en-
gine and development system for interactive 3D applications. This document
is not an exhaustive reference on Unity-specific features. For up-to-date de-
tails on Unity’s APIs and editor, refer to Unity’s official documentation and
tutorials.[7] FBV was developed with Unity 5.1 and Microsoft Visual Studio
2013 with the Visual Studio 2013 Tools for Unity extension.

Like for most Unity projects, everything of interest in FBV can be found
under the Assets folder. MainScene defines all the GameObjects and the lay-
out for the UI (see Section 1.1). The Scripts folder contains all the logic for
FBV in the form of C# scripts (see Section 1.2). The Prefabs folder con-
tains templates (known as prefabs in Unity terminology) for GameObjects,
primarily used in FBV’s UI; modifying a template updates all GameObjects
that derive from it. The Fonts folder contains the files for the Roboto font[5]
which is used throughout FBV. The Cardboard folder contains scripts and
resources used by the Google Cardboard plugin (see Section 5.3). The re-
maining folders contain more esoteric files.

1.1 GameObjects and Components

As a Unity project, FBV consists of a number of entities known as GameObjects
(see Fig. 1). Each GameObject is nothing more than a unique bundle of com-
ponents, which necessarily contains the Transform and optionally contains
any number of additional components. A GameObject may also contain
subordinate (known as child) GameObjects. The most common components
found in FBV’s GameObjects are:

• Transform - a mandatory component. Defines the GameObject’s po-
sition in 3D space.

• Script - a component that refers to a script (i.e. source code) file that
operates on its parent GameObject and, potentially, other GameObjects.
Also known as a behaviour. Most of FBV’s logic and rendering takes
place in scripts.

• Mesh Renderer - a component responsible for rendering (drawing) a
mesh (see Section 7 for definition), specifically used to render the 3D
bone models.

• Canvas and Rect Transform - components used to define the FBV
user interface (UI) using Unity’s “New UI” system (introduced in

3

Unity 4.6).

Figure 1: FreeBody Visualiser’s GameObject hierarchy as seen in the Unity
editor.

Below is a list of all the major FBV GameObjects, with a short summary
of each:

• Main Camera - represents the main view into the 3D virtual space in
which FBV renders all graphics.

• Directional Light - through its Light component, defines the di-
rection, strength and other properties of the lighting for all rendered
meshes.

• Muscles - renders FreeBody model muscles.

• Joint Forces - renders FreeBody model joint contact forces.

• Ground Forces - renders FreeBody model ground reaction forces.

• Markers - renders FreeBody model markers.

• Bones - a group of GameObjects representing bones in the lower limb
model, each of which renders its corresponding mesh.

• Controller - responsible for all FBV logic.

• Canvas - a group of GameObjects that define the FBV UI for PC.

4

• Mobile Canvas - a group of GameObjects that define the FBV UI for
mobile devices, i.e. for FreeBody Visualiser Mobile.

• EventSystem - responsible for dispatching keyboard, mouse and ori-
entation input events to all other objects and scripts.

1.2 Scripts

Scripts drive most of the interesting parts of FBV. Every GameObject has
at least one script; some are generic Unity scripts, but most are unique to
FBV.

Unity supports multiple programming languages for writing scripts. FBV’s
scripts are all written in C#. Below is a list of all the custom scripts in FBV,
with a short summary of each:

• Data

– ModelController.cs - delegates most logic to other scripts. Re-
sponsible for:

1. loading a FreeBody model,

2. updating the UI and other scripts after a model has loaded,
and

3. setting up UI controls that directly control visualisation.

– FrameController.cs - keeps track of the current animation frame.

– FreeBodyModel.cs - holder for FreeBody 1.1 XML parameter file
data with fields relevant to visualisation.

– ModelParameterLoader.cs - reads FreeBody 1.1 XML parame-
ter files, and returns a populated FreeBodyModel.

– DataPathUtils.cs - contains list of all relevant file paths for a
given FreeBodyModel.

– MusclePart.cs - contains list of all lower limb muscle parts.

– BoneData.cs - holder for loaded bone position and orientation
data.

– MuscleDataLoader.cs - reads and parses FreeBody files related
to muscle visualisation.

– MarkerDataLoader.cs - reads and parses FreeBody files related
to marker visualisation.

5

– JointForceDataLoader.cs - reads and parses FreeBody files re-
lated to joint contact force visualisation.

– GroundForceDataLoader.cs - reads and parses FreeBody files
related to ground contact force visualisation.

– BoneDataLoader.cs - reads and parses FreeBody files related to
bone visualisation.

– FloatCsvFileReader.cs - common logic for reading .CSV files
containing lists of floats, vectors and / or quaternions into the
respective data structures for use within FBV.

– PrimitiveUtils.cs - generates primitive meshes.

– StlFileReader.cs - parses .STL 3D model files into meshes.

– BinaryReaderExtension.cs - allows for “binary” data files to
be interpreted and read as “ASCII” files. Used to enable more
elegant code in StlFileReader.cs.

– FrameMismatchException.cs - used to report frame count mis-
match during loading.

• Graphics

– MuscleMesh.cs - renders muscle parts as lines.

– MarkerMesh.cs - renders markers as spheres.

– JointForceMesh.cs - renders joint contact force vectors as 3D
arrow pairs.

– GroundForceMesh.cs - renders ground contact force vectors as
3D arrow pairs.

– BoneMesh.cs - renders a bone mesh.

• UI

– UIController.cs - manages interactions strictly between differ-
ent UI elements, e.g. toggles that control visibility of UI panels.

– CameraOrbit.cs - allows for camera (user’s view) control that
orbits the visualised model.

– DragPanelHotspot.cs - allows for the main control panel to be
dragged around the window.

6

– FPSDisplay.cs - updates a text field with the program’s current
frames per second.

– VRController.cs - manages UI in the context of the FBV Mobile
3D VR mode.

– ToggleWrapper.cs, ToggleUtils.cs, ToggleSprite.cs - used
by toggle elements in the UI.

7

2 Modules

The FBV project can be thought of as a collection of modules, each dedicated
to loading and rendering a specific FreeBody model feature. The modules
are all linked and managed by a global controller.

2.1 Controller

The controller is responsible for loading FreeBody model data relevant to
all modules. It load the FreeBody 1.1 XML parameter file[2] to parse the
location of files necessary to load all modules. The controller updates all
modules once a new XML parameter file has been parsed and a FreeBody
model is ready to be loaded.

The controller also acts as the conduit for UI control of all modules. It
hooks into events from toggles, buttons and sliders to toggle the visibility
of and configure the visualisation settings of modules.

Relevant GameObjects:

• Controller

Relevant scripts:

• ModelController.cs

• FreeBodyModel.cs

• ModelParameterLoader.cs

• DataPathUtils.cs

• FrameController.cs

8

2.2 Muscle Module

The muscle module displays muscle part positions and, optionally, activa-
tions, per frame. Data is loaded from multiple files. Muscles are rendered
as a mesh consisting of screen-aligned rectangles that approximate lines.
Width and color of these rectangles (muscle parts) is modulated according
to normalised activation values, or, if activation display is disabled, width
is fixed and color set according to muscle part membership to pre-defined
muscle groups.

Relevant GameObjects:

• Muscles

Relevant scripts:

• MusclePart.cs

• MuscleDataLoader.cs

• MuscleMesh.cs

• FloatCsvFileReader.cs

9

2.3 Force Module

Forces include joint contact forces and ground reaction forces. Data nec-
essary for force display - position, direction, and magnitude, per frame - is
loaded from multiple files. Forces are rendered as 3D arrows: the arrow tip
denotes the position; the arrow orientation denotes the direction; and the
arrow length denotes the magnitude of the corresponding force.

Relevant GameObjects:

• Joint Forces

• Ground Forces

Relevant scripts:

• JointForceDataLoader.cs

• GroundForceDataLoader.cs

• JointForceMesh.cs

• GroundForceMesh.cs

• FloatCsvFileReader.cs

• PrimitiveUtils.cs

2.4 Marker Module

Markers are the simplest feature to visualise. They are loaded in as posi-
tions, per frame, and are rendered as simple spheres.

Relevant GameObjects:

• Markers

Relevant scripts:

• MarkerDataLoader.cs

• MarkerMesh.cs

• FloatCsvFileReader.cs

• PrimitiveUtils.cs

10

2.5 Bone Module

The bone module loads in bone positions and rotations, per frame, as well
as position and rotation offsets. Bone models are dynamically loaded from
.STL model files and are rendered as meshes. Performance may suffer if
highly detailed .STL models are used. Note that due to a limit on mesh
size, large .STL models need to be rendered using more than one mesh.

Relevant GameObjects:

• Bones

• Foot

• Tibia

• Fibula

• Femur

• Pelvis

• Patella

Relevant scripts:

• BoneData.cs

• BoneDataLoader.cs

• BoneMesh.cs

• FloatCsvFileReader.cs

• StlFileReader.cs

11

3 User Interface

The user interface is constructed using Unity’s “New UI” system within
the Canvas (see Fig. 2a) and Mobile Canvas (see Fig. 2b) GameObjects to
provide two modes, depending on the platform that FBV is running on (see
Section 5 for details on FBV Mobile).

(a) Desktop UI. (b) Mobile UI.

Figure 2: FBV supports two different UI modalities.

Relevant GameObjects:

• Canvas

• Mobile Canvas

• EventSystem

Relevant scripts:

• CameraOrbit.cs

• UIController.cs

• DragPanelHotspot.cs

• FPSDisplay.cs

12

4 Data Loading

4.1 Finding Files

FBV loads a model by reading in the paths of all its relevant files from a Free-
Body 1.1 XML parameter file. This is done by the ModelParameterLoader.cs
script. Refer to the FreeBody 1.1 User’s Guide for an overview of the
schema.[2]

The XML elements and attributes parsed and used by FBV are listed
below:

• study level parameters

– study name

– responsible person

– output directory path for visualisation

– output directory path for optimisation

• universal physical parameters

– frames per second

– radius per marker metres

• subject

– subject sex

– subject height metres

– subject mass kg

– subject anatomy dataset path

– subject anatomy dataset file name

• dynamic trial parameters

– start frame number

– end frame number

An example XML parameter file can be found on the following page.
Please note that this file does not strictly adhere to the full original FreeBody
1.1 XML parameter file schema[2]; instead, it demonstrates use of the subset
of elements and attributes parsed by FBV. The name of the file is arbitrary.

13

study params.xml

<?xml version="1.0" encoding="utf-8"?>

<study_level_parameters

study_name="1037_walking6_c14_new"

responsible_person="Ziyun Ding (z.ding@imperial.ac.uk)"

output_directory_path_for_visualisation=

"C:\example\1037_C14\walking6\Outputs\Muscle_geometry"

output_directory_path_for_optimisation=

"C:\example\1037_C14\walking6\Outputs\Optimisation">

<universal_physical_parameters

frames_per_second="100"

radius_per_marker_metres="0.007"/>

<subject

subject_sex="Male"

subject_height_metres="1.92"

subject_mass_kg="85"

subject_anatomy_dataset_path="C:\example\Anatomy_dataset"

subject_anatomy_dataset_file_name="Zhan303_C14_dataset.xml">

<dynamic_trial_parameters

start_frame_number="1"

end_frame_number="77" />

</subject>

</study_level_parameters>

Once the XML parameter file has been parsed, the DataPathUtils.cs

script derives paths to all files needed for model visualisation. The file paths
in the list in Section 4.1.1 use the following abbreviations that refer to paths
obtained from the XML parameter file attributes (see Section 4.1):

• VIS = value of output directory path for visualisation.

• OPT = value of output directory path for optimisation.

• STUDY = value of study name.

• AN PATH = value of subject anatomy dataset path.

• AN PREFIX = value of subject anatomy dataset file name, with the
suffix trimmed; e.g. if the value is Zhan303 C01 dataset.xml, AN PREFIX

= Zhan303 C01.

14

4.1.1 Files Used by FBV

The following is a list of all files used by FBV to display the model, sorted by
model feature. All abbreviations (capitalised) are explained in the previous
section.

• Muscles:

– VIS/STUDY muscle path{i}.csv - position of each muscle’s origin
and insertion points, per frame. Note that this path refers to
multiple files, where the {i} is replaced by {i ∈ Z | 0 ≤ i < 163},
and 163 is the number of distinct muscle elements.

– OPT/STUDY force gcs.csv - actual activation of each muscle, per
frame.

– OPT/STUDY force ub.csv - maximum activation of each muscle,
per frame.

• Joint contact forces:

– VIS/STUDY rot centres gcs.csv - positions of ankle, knee and
hip joints.

– VIS/STUDY tf contact gcs.csv - positions of lateral and medial
tibiofemoral joints.

– OPT/STUDY force gcs.csv - magnitudes and directions of joint
contact forces. (note same file as for muscle activations)

• External forces:

– VIS/STUDY external forces.csv - positions, magnitudes and
directions of ground reaction forces.

• Markers:

– VIS/STUDY dynamic marker.csv - positions of dynamic markers.

– VIS/STUDY virtual static marker.csv - positions of virtual static
markers.

• Bones:

– VIS/STUDY anatomy model origin.csv - default position offset
for each bone in model.

– VIS/STUDY anatomy model orientation.csv - default rotation
offset for each bone in model.

15

– VIS/STUDY origins.csv - position of each bone in model for each
frame.

– OPT/STUDY lcs quaternion.csv - rotation of each bone in model
for each frame.

– (optional) AN PATH/AN PREFIX bones/AN PREFIX Foot.stl

– (optional) AN PATH/AN PREFIX bones/AN PREFIX Tibia.stl

– (optional) AN PATH/AN PREFIX bones/AN PREFIX Fibula.stl

– (optional) AN PATH/AN PREFIX bones/AN PREFIX Patella.stl

– (optional) AN PATH/AN PREFIX bones/AN PREFIX Femur.stl

– (optional) AN PATH/AN PREFIX bones/AN PREFIX Pelvis.stl

4.2 Parsing CSV Files

CSV files are parsed by the FloatCsvFileReader.csv script, which makes
use of the fact that all FreeBody output CSV files are tables of floats and
reads the files one line at a time. Depending on the feature being loaded,
delegate scripts parse the floats as either floats (for magnitudes, activations),
vectors (for positions, forces) or quaternions (for orientations).

4.3 Parsing STL Files

STL model files are parsed by the StlFileReader.cs script, which supports
both binary and ASCII STL files.

16

5 Support for Mobile Devices

The experimental FreeBody Visualiser Mobile (FBVM) is FBV for mobile
devices (see Fig. 3). FBVM has most of the capabilities of FBV, with some
additional features and benefits:

• view FreeBody models on the go with no need for a powerful worksta-
tion;

• view FreeBody models in interactive three-dimensional space;

• load FreeBody models from a single file with no need for manual con-
figuration.

Figure 3: FreeBody Visualiser Mobile.

FBVM is designed to be intuitive and simple to use, with fewer config-
uration options but all the power of FBV. FBVM is a mobile application
for smartphones and tablets running an Android OS. FBVM is classified as
experimental because it has received only limited testing and uses a novel
package format for distribution and loading of FreeBody data.

FBVM is, in fact, the same Unity project as FBV. All the logic and
rendering is identical to FBV, with two key differences:

17

1. The Canvas UI container is disabled and the Mobile Canvas is enabled
instead to display a simplified UI with larger targets that is more
appropriate for touch screens.

2. A Unity plugin exists for each mobile platform supported by FBVM
(currently, only Android), with logic to launch a system-specific file
picker and allow the user to select a FreeBody model package (see
Section 5.2) to load.

The platform-specific plugins can be found in the Assets/Plugins folder.

5.1 Android Plugin

The Android plugin is a .JAR library file, developed as an Android Studio
project. The Android library project consists of only three files of interest:

1. MainActivity.java - extends from GoogleUnityActivity provided
by the Cardboard SDK (see Section 5.3); hosts the Unity player and
can launch the native Android file picker.

2. FreeBodyFileLoader.java - unpacks a FreeBody model package .ZIP
file (see Section 5.2) after it has been selected by the user to local
storage, such that it can be treated by FBVM just like FBV treats

3. AndroidManifest.xml - declares various app configuration values.

18

5.2 FreeBody Model Package

FBVM uses an alternative data storage mechanism to that of FBV. To
greatly simplify distribution and loading on mobile devices, all FreeBody
files are consolidated into a single directory, here referred to as a FreeBody
model package. A model package is an entirely self-contained directory that
contains all the files of a single FreeBody model. The directory is compressed
to become a .ZIP file archive, which offers two benefits:

1. FreeBody model packages can be distributed as a single file, and

2. the compressed file, by definition, is of a smaller size.

The layout of the model package can be seen below. The package con-
tains a standard FreeBody 1.1 XML parameter file, which must be named
parameters.xml, at its root path. The one primary requirement for the
XML parameter file unique to this model package format is that all file
paths must be relative and contained within the package. A rela-
tive path in this context is a file path with its root as the root of the model
package directory (i.e. the location of the parameters.xml file). The name
of the model package .ZIP archive is arbitrary.

Model package layout

study_name.zip

| parameters.xml

| <... files>

An example XML parameter file that conforms to this relative path
requirement for a FreeBody model package can be found on the following
page (compare to a standard XML parameter file in Section 4.1). Note the
relative path values for the attributes

• output directory path for visualisation,

• output directory path for optimisation, and

• subject anatomy dataset path.

Note also that paths are defined with forward-slashes (/) instead of back-
slashes (\) to better conform to the major mobile OS (derived from Unix)
conventions.

19

parameters.xml

<?xml version="1.0" encoding="utf-8"?>

<study_level_parameters

study_name="1037_walking6_c14_new"

responsible_person="Ziyun Ding (z.ding@imperial.ac.uk)"

output_directory_path_for_visualisation=

"./Outputs/Muscle_geometry"

output_directory_path_for_optimisation=

"./Outputs/Optimisation">

<universal_physical_parameters

frames_per_second="100"

radius_per_marker_metres="0.007"/>

<subject

subject_sex="Male"

subject_height_metres="1.92"

subject_mass_kg="85"

subject_anatomy_dataset_path="./Anatomy_dataset"

subject_anatomy_dataset_file_name="Zhan303_C14_dataset.xml">

<dynamic_trial_parameters

start_frame_number="1"

end_frame_number="77" />

</subject>

</study_level_parameters>

The corresponding file structure of the model package can be seen below.

Example model package layout

C14_walking6.zip

| parameters.xml

--Anatomy_dataset

| Zhan303_C14_dataset.xml

--Zhan303_C14_bones

| <... files>

--Outputs

--Muscle_geometry

| <... files>

--Optimisation

| <... files>

20

5.3 Virtual Reality Mode

FBVM has a 3D virtual reality (VR) mode which visualises the model in
stereoscopic 3D (see Fig. 4). This is achieved by use of Google’s Cardboard
SDK for Unity v0.5.0.[4]

Figure 4: FreeBody model in stereoscopic 3D.

Relevant GameObjects:

• Main Camera

• Controller

Relevant scripts:

• VRController.cs

• UIController.cs

21

6 Future Work

Suggested future work:

• Create standalone script to automatically convert an existing well-
formed XML parameter file to a self-contained FreeBody model pack-
age.

• Add support for loading FreeBody model package format archives to
the desktop version of FBV, to enable easier distribution and cross-
platform support.

• Deploy and test FBV for Mac and Linux.

• Deploy and tweak FBVM to support iOS.

• Add tests.

• Devise a data schema to dynamically determine relevant bone models
to load, expanding visualisation support beyond the lower limb models
currently defined by FreeBody 1.1. The fixed bone GameObjects are
currently the primary lower limb specific part of the project.

• Devise a data schema to dynamically determine number of muscle
parts to load, for same reasons as above.

• On completion of the two above items, add support for display of any
animated anatomic biomechanical model adhering to the FreeBody
model data format.

22

7 Glossary

Common terms used throughout this document:

• FreeBody model - a set of files conforming to the FreeBody data
structure, including input and output files of the FreeBody Lower
Limb Model and the FreeBody Matlab Optimisation and Visualisa-
tion applications and (optionally) 3D bone model files, for a single
study. In FreeBody 1.1, the locations of these files are declared in an
XML parameter file.

• FreeBody model package - a custom schema for a self-contained
.ZIP file archive that contains a valid FreeBody model XML parameter
file and all associated files needed for visualisation.

• Mesh - (as used in a computer graphics context) short for polygon
mesh, which is a collection of vertices (points in 3D space) and faces
(planes in 3D space) connecting them that together define a solid 3D
shape.

23

References

[1] D. J. Cleather and A. M. J. Bull. “The development of a segment-based
musculoskeletal model of the lower limb: introducing FREEBODY”. en.
In: Royal Society Open Science 2.6 (June 2015), pp. 140449–140449.
issn: 2054-5703. doi: 10.1098/rsos.140449. url: http://rsos.

royalsocietypublishing.org/content/2/6/140449.abstract.

[2] Ziyun Ding. XML-based interactive lower limb musculoskeletal mod-
elling software FreeBody 1.1 Users Guide. 2015. url: http://www.
msksoftware.org.uk/software/freebody/.

[3] Ziyun Ding, Daniel Cleather, and A.M.J. Bull. FreeBody. 2015. url:
http://www.msksoftware.org.uk/software/freebody/ (visited on
July 10, 2015).

[4] Google Inc. Cardboard SDK for Unity. 2015. url: https://developers.
google.com/cardboard/unity/ (visited on Dec. 26, 2014).

[5] Christian Robertson. Roboto - Google Fonts. 2014. url: https://www.
google.com/fonts/specimen/Roboto (visited on Sept. 8, 2015).

[6] Unity Technologies. Unity - Game Engine. 2015. url: http://unity3d.
com/ (visited on Sept. 3, 2015).

[7] Unity Technologies. Unity - Learn. url: http://unity3d.com/learn
(visited on Sept. 3, 2015).

24

http://dx.doi.org/10.1098/rsos.140449
http://rsos.royalsocietypublishing.org/content/2/6/140449.abstract
http://rsos.royalsocietypublishing.org/content/2/6/140449.abstract
http://www.msksoftware.org.uk/software/freebody/
http://www.msksoftware.org.uk/software/freebody/
http://www.msksoftware.org.uk/software/freebody/
https://developers.google.com/cardboard/unity/
https://developers.google.com/cardboard/unity/
https://www.google.com/fonts/specimen/Roboto
https://www.google.com/fonts/specimen/Roboto
http://unity3d.com/
http://unity3d.com/
http://unity3d.com/learn

	Overview
	GameObjects and Components
	Scripts

	Modules
	Controller
	Muscle Module
	Force Module
	Marker Module
	Bone Module

	User Interface
	Data Loading
	Finding Files
	Files Used by FBV

	Parsing CSV Files
	Parsing STL Files

	Support for Mobile Devices
	Android Plugin
	FreeBody Model Package
	Virtual Reality Mode

	Future Work
	Glossary

