diff --git a/crypto/fipsmodule/ec/ec_nistp.c b/crypto/fipsmodule/ec/ec_nistp.c index e370866f85..f3025ee3bd 100644 --- a/crypto/fipsmodule/ec/ec_nistp.c +++ b/crypto/fipsmodule/ec/ec_nistp.c @@ -17,7 +17,7 @@ // |----------------------------| // | 1. | x | x | x* | // | 2. | x | x | x* | -// | 3. | | | | +// | 3. | x | x | | // | 4. | x | x | x* | // | 5. | | | | // * For P-256, only the Fiat-crypto implementation in p256.c is replaced. @@ -498,3 +498,141 @@ void ec_nistp_scalar_mul(const ec_nistp_meth *ctx, cmovznz(y_out, ctx->felem_num_limbs, t, y_tmp, y_res); cmovznz(z_out, ctx->felem_num_limbs, t, z_tmp, z_res); } + +// Multiplication of the base point G of the curve with the given scalar. +// The product is computed with the Comb method using a precomputed table +// and the regular-wNAF scalar encoding. +// +// While the algorithm is generic and works for different curves, window sizes, +// and scalar sizes, for clarity, we describe it by using the example of P-521. +// +// The precomputed table has 27 sub-tables each holding 16 points: +// +// 0 : [1]G, [3]G, ..., [31]G +// 1 : [1*2^20]G, [3*2^20]G, ..., [31*2^20]G +// ... +// i : [1*2^20i]G, [3*2^20i]G, ..., [31*2^20i]G +// ... +// 26 : [2^520]G, [3*2^520]G, ..., [31*2^520]G +// Computing the negation of a point P = (x, y) is relatively easy: +// -P = (x, -y). +// So we may assume that for each sub-table we have 32 points instead of 16: +// [\pm 1*2^20i]G, [\pm 3*2^20i]G, ..., [\pm 31*2^20i]G. +// +// The 521-bit |scalar| is recoded (regular-wNAF encoding) into 105 signed +// digits, each of length 5 bits, as explained in the +// |p521_felem_mul_scalar_rwnaf| function. Namely, +// scalar' = s_0 + s_1*2^5 + s_2*2^10 + ... + s_104*2^520, +// where digits s_i are in [\pm 1, \pm 3, ..., \pm 31]. Note that for an odd +// scalar we have that scalar = scalar', while in the case of an even +// scalar we have that scalar = scalar' - 1. +// +// To compute the required product, [scalar]G, we may do the following. +// Group the recoded digits of the scalar in 4 groups: +// | corresponding multiples in +// digits | the recoded representation +// ------------------------------------------------------------------------- +// (0): {s_0, s_4, s_8, ..., s_100, s_104} | { 2^0, 2^20, ..., 2^500, 2^520} +// (1): {s_1, s_5, s_9, ..., s_101} | { 2^5, 2^25, ..., 2^505} +// (2): {s_2, s_6, s_10, ..., s_102} | {2^10, 2^30, ..., 2^510} +// (3): {s_3, s_7, s_11, ..., s_103} | {2^15, 2^35, ..., 2^515} +// corresponding sub-table lookup | { T0, T1, ..., T25, T26} +// +// The group (0) digits correspond precisely to the multiples of G that are +// held in the 27 precomputed sub-tables, so we may simply read the appropriate +// points from the sub-tables and sum them all up (negating if needed, i.e., if +// a digit s_i is negative, we read the point corresponding to the abs(s_i) and +// negate it before adding it to the sum). +// The remaining three groups (1), (2), and (3), correspond to the multiples +// of G from the sub-tables multiplied additionally by 2^5, 2^10, and 2^15, +// respectively. Therefore, for these groups we may read the appropriate points +// from the table, double them 5, 10, or 15 times, respectively, and add them +// to the final result. +// +// To minimize the number of required doubling operations we process the digits +// of the scalar from left to right. In other words, the algorithm is: +// 1. For group (i) in this order (3, 2, 1, 0): +// 2. Double the accumulator 5 times except in the first iteration. +// 3. Read the points corresponding to the group (i) digits from the tables +// and add them to an accumulator. +// 4. If the scalar is even subtract G from the accumulator. +// +// Note: this function is designed to be constant-time. +void ec_nistp_scalar_mul_base(const ec_nistp_meth *ctx, + ec_nistp_felem_limb *x_out, + ec_nistp_felem_limb *y_out, + ec_nistp_felem_limb *z_out, + const EC_SCALAR *scalar) { + // Regular-wNAF encoding of the scalar. + int16_t rwnaf[SCALAR_MUL_MAX_NUM_WINDOWS]; + scalar_rwnaf(rwnaf, SCALAR_MUL_WINDOW_SIZE, scalar, ctx->felem_num_bits); + size_t num_windows = DIV_AND_CEIL(ctx->felem_num_bits, SCALAR_MUL_WINDOW_SIZE); + + // We need two point accumulators, so we define them of maximum size + // to avoid allocation, and just take pointers to individual coordinates. + // (This cruft will disapear when we refactor point_add/dbl to work with + // whole points instead of individual coordinates). + ec_nistp_felem_limb res[3 * FELEM_MAX_NUM_OF_LIMBS] = {0}; + ec_nistp_felem_limb tmp[3 * FELEM_MAX_NUM_OF_LIMBS] = {0}; + ec_nistp_felem_limb *x_res = &res[0]; + ec_nistp_felem_limb *y_res = &res[ctx->felem_num_limbs]; + ec_nistp_felem_limb *z_res = &res[ctx->felem_num_limbs * 2]; + ec_nistp_felem_limb *x_tmp = &tmp[0]; + ec_nistp_felem_limb *y_tmp = &tmp[ctx->felem_num_limbs]; + ec_nistp_felem_limb *z_tmp = &tmp[ctx->felem_num_limbs * 2]; + + // Process the 4 groups of digits starting from group (3) down to group (0). + for (int i = 3; i >= 0; i--) { + // Double |res| 5 times in each iteration, except in the first one. + for (size_t j = 0; i != 3 && j < SCALAR_MUL_WINDOW_SIZE; j++) { + ctx->point_dbl(x_res, y_res, z_res, x_res, y_res, z_res); + } + + // Process the digits in the current group from the most to the least + // significant one. + size_t start_idx = ((num_windows - i - 1) / 4) * 4 + i; + + for (int j = start_idx; j >= 0; j -= 4) { + // For each digit |d| in the current group read the corresponding point + // from the table and add it to |res|. If |d| is negative, negate + // the point before adding it to |res|. + int16_t d = rwnaf[j]; + int16_t is_neg = (d >> 15) & 1; // is_neg = (d < 0) ? 1 : 0 + d = (d ^ -is_neg) + is_neg; // d = abs(d) + + int16_t idx = d >> 1; + + // Select the point to add, in constant time. + size_t point_num_limbs = 2 * ctx->felem_num_limbs; // Affine points. + size_t subtable_num_limbs = SCALAR_MUL_TABLE_NUM_POINTS * point_num_limbs; + size_t table_idx = (j / 4) * subtable_num_limbs; + const ec_nistp_felem_limb *table = &ctx->scalar_mul_base_table[table_idx]; + select_point_from_table(ctx, tmp, table, idx, 0); + + // Negate y coordinate of the point tmp = (x, y); ftmp = -y. + ec_nistp_felem ftmp; + ctx->felem_neg(ftmp, y_tmp); + + cmovznz(y_tmp, ctx->felem_num_limbs, is_neg, y_tmp, ftmp); + + // Add the point to the accumulator |res|. + ctx->point_add(x_res, y_res, z_res, x_res, y_res, z_res, 1, + x_tmp, y_tmp, ctx->felem_one); + } + } + + // Conditionally subtract G if the scalar is even, in constant-time. + const ec_nistp_felem_limb *x_mp = &ctx->scalar_mul_base_table[0]; + const ec_nistp_felem_limb *y_mp = &ctx->scalar_mul_base_table[ctx->felem_num_limbs]; + ec_nistp_felem ftmp; + ctx->felem_neg(ftmp, y_mp); + + // Subtract P from the accumulator. + ctx->point_add(x_tmp, y_tmp, z_tmp, x_res, y_res, z_res, 1, x_mp, ftmp, ctx->felem_one); + + // Select |res| or |res - P| based on parity of the scalar. + ec_nistp_felem_limb t = scalar->words[0] & 1; + cmovznz(x_out, ctx->felem_num_limbs, t, x_tmp, x_res); + cmovznz(y_out, ctx->felem_num_limbs, t, y_tmp, y_res); + cmovznz(z_out, ctx->felem_num_limbs, t, z_tmp, z_res); +} diff --git a/crypto/fipsmodule/ec/ec_nistp.h b/crypto/fipsmodule/ec/ec_nistp.h index d567dc18ee..13e143a88c 100644 --- a/crypto/fipsmodule/ec/ec_nistp.h +++ b/crypto/fipsmodule/ec/ec_nistp.h @@ -54,6 +54,7 @@ typedef struct { void (*felem_sqr)(ec_nistp_felem_limb *c, const ec_nistp_felem_limb *a); void (*felem_neg)(ec_nistp_felem_limb *c, const ec_nistp_felem_limb *a); ec_nistp_felem_limb (*felem_nz)(const ec_nistp_felem_limb *a); + const ec_nistp_felem_limb *felem_one; void (*point_dbl)(ec_nistp_felem_limb *x_out, ec_nistp_felem_limb *y_out, @@ -72,6 +73,7 @@ typedef struct { const ec_nistp_felem_limb *y2, const ec_nistp_felem_limb *z2); + const ec_nistp_felem_limb *scalar_mul_base_table; } ec_nistp_meth; const ec_nistp_meth *p256_methods(void); @@ -106,5 +108,11 @@ void ec_nistp_scalar_mul(const ec_nistp_meth *ctx, const ec_nistp_felem_limb *y_in, const ec_nistp_felem_limb *z_in, const EC_SCALAR *scalar); + +void ec_nistp_scalar_mul_base(const ec_nistp_meth *ctx, + ec_nistp_felem_limb *x_out, + ec_nistp_felem_limb *y_out, + ec_nistp_felem_limb *z_out, + const EC_SCALAR *scalar); #endif // EC_NISTP_H diff --git a/crypto/fipsmodule/ec/p384.c b/crypto/fipsmodule/ec/p384.c index f11bee777b..e3e8063ab3 100644 --- a/crypto/fipsmodule/ec/p384.c +++ b/crypto/fipsmodule/ec/p384.c @@ -91,16 +91,6 @@ static void p384_felem_copy(p384_limb_t out[P384_NLIMBS], } } -static void p384_felem_cmovznz(p384_limb_t out[P384_NLIMBS], - p384_limb_t t, - const p384_limb_t z[P384_NLIMBS], - const p384_limb_t nz[P384_NLIMBS]) { - p384_limb_t mask = constant_time_is_zero_w(t); - for (size_t i = 0; i < P384_NLIMBS; i++) { - out[i] = constant_time_select_w(mask, z[i], nz[i]); - } -} - static void p384_from_generic(p384_felem out, const EC_FELEM *in) { #ifdef OPENSSL_BIG_ENDIAN uint8_t tmp[P384_EC_FELEM_BYTES]; @@ -270,6 +260,8 @@ static void p384_point_add(p384_felem x3, p384_felem y3, p384_felem z3, ec_nistp_point_add(p384_methods(), x3, y3, z3, x1, y1, z1, mixed, x2, y2, z2); } +#include "p384_table.h" + #if defined(EC_NISTP_USE_S2N_BIGNUM) DEFINE_METHOD_FUNCTION(ec_nistp_meth, p384_methods) { out->felem_num_limbs = P384_NLIMBS; @@ -280,8 +272,10 @@ DEFINE_METHOD_FUNCTION(ec_nistp_meth, p384_methods) { out->felem_sqr = bignum_montsqr_p384_selector; out->felem_neg = bignum_neg_p384; out->felem_nz = p384_felem_nz; + out->felem_one = p384_felem_one; out->point_dbl = p384_point_double; out->point_add = p384_point_add; + out->scalar_mul_base_table = (const ec_nistp_felem_limb*) p384_g_pre_comp; } #else DEFINE_METHOD_FUNCTION(ec_nistp_meth, p384_methods) { @@ -293,8 +287,10 @@ DEFINE_METHOD_FUNCTION(ec_nistp_meth, p384_methods) { out->felem_sqr = fiat_p384_square; out->felem_neg = fiat_p384_opp; out->felem_nz = p384_felem_nz; + out->felem_one = p384_felem_one; out->point_dbl = p384_point_double; out->point_add = p384_point_add; + out->scalar_mul_base_table = (const ec_nistp_felem_limb*) p384_g_pre_comp; } #endif @@ -494,20 +490,6 @@ OPENSSL_STATIC_ASSERT(P384_MUL_WSIZE == 5, #define P384_MUL_TABLE_SIZE (P384_MUL_TWO_TO_WSIZE >> 1) #define P384_MUL_PUB_TABLE_SIZE (1 << (P384_MUL_PUB_WSIZE - 1)) -// p384_select_point_affine selects the |idx|-th affine point from -// the given precomputed table and copies it to |out| in constant-time. -static void p384_select_point_affine(p384_felem out[2], - size_t idx, - const p384_felem table[][2], - size_t table_size) { - OPENSSL_memset(out, 0, sizeof(p384_felem) * 2); - for (size_t i = 0; i < table_size; i++) { - p384_limb_t mismatch = i ^ idx; - p384_felem_cmovznz(out[0], mismatch, table[i][0], out[0]); - p384_felem_cmovznz(out[1], mismatch, table[i][1], out[1]); - } -} - // Multiplication of an arbitrary point by a scalar, r = [scalar]P. static void ec_GFp_nistp384_point_mul(const EC_GROUP *group, EC_JACOBIAN *r, const EC_JACOBIAN *p, @@ -526,135 +508,14 @@ static void ec_GFp_nistp384_point_mul(const EC_GROUP *group, EC_JACOBIAN *r, p384_to_generic(&r->Z, res[2]); } -// Include the precomputed table for the based point scalar multiplication. -#include "p384_table.h" - // Multiplication of the base point G of P-384 curve with the given scalar. -// The product is computed with the Comb method using the precomputed table -// |p384_g_pre_comp| from |p384_table.h| file and the regular-wNAF scalar -// encoding. -// -// The |p384_g_pre_comp| table has 20 sub-tables each holding 16 points: -// 0 : [1]G, [3]G, ..., [31]G -// 1 : [1*2^20]G, [3*2^20]G, ..., [31*2^20]G -// ... -// i : [1*2^20i]G, [3*2^20i]G, ..., [31*2^20i]G -// ... -// 19 : [2^380]G, [3*2^380]G, ..., [31*2^380]G. -// Computing the negation of a point P = (x, y) is relatively easy: -// -P = (x, -y). -// So we may assume that for each sub-table we have 32 points instead of 16: -// [\pm 1*2^20i]G, [\pm 3*2^20i]G, ..., [\pm 31*2^20i]G. -// -// The 384-bit |scalar| is recoded (regular-wNAF encoding) into 77 signed -// digits, each of length 5 bits, as explained in the -// |p384_felem_mul_scalar_rwnaf| function. Namely, -// scalar' = s_0 + s_1*2^5 + s_2*2^10 + ... + s_76*2^380, -// where digits s_i are in [\pm 1, \pm 3, ..., \pm 31]. Note that for an odd -// scalar we have that scalar = scalar', while in the case of an even -// scalar we have that scalar = scalar' - 1. -// -// To compute the required product, [scalar]G, we may do the following. -// Group the recoded digits of the scalar in 4 groups: -// | corresponding multiples in -// digits | the recoded representation -// ------------------------------------------------------------------------- -// (0): {s_0, s_4, s_8, ..., s_72, s_76} | { 2^0, 2^20, ..., 2^360, 2^380} -// (1): {s_1, s_5, s_9, ..., s_73} | { 2^5, 2^25, ..., 2^365} -// (2): {s_2, s_6, s_10, ..., s_74} | {2^10, 2^30, ..., 2^370} -// (3): {s_3, s_7, s_11, ..., s_75} | {2^15, 2^35, ..., 2^375} -// corresponding sub-table lookup | { T0, T1, ..., T18, T19} -// -// The group (0) digits correspond precisely to the multiples of G that are -// held in the 20 precomputed sub-tables, so we may simply read the appropriate -// points from the sub-tables and sum them all up (negating if needed, i.e., if -// a digit s_i is negative, we read the point corresponding to the abs(s_i) and -// negate it before adding it to the sum). -// The remaining three groups (1), (2), and (3), correspond to the multiples -// of G from the sub-tables multiplied additionally by 2^5, 2^10, and 2^15, -// respectively. Therefore, for these groups we may read the appropriate points -// from the table, double them 5, 10, or 15 times, respectively, and add them -// to the final result. -// -// To minimize the number of required doubling operations we process the digits -// of the scalar from left to right. In other words, the algorithm is: -// 1. Read the points corresponding to the group (3) digits from the table -// and add them to an accumulator. -// 2. Double the accumulator 5 times. -// 3. Repeat steps 1. and 2. for groups (2) and (1), -// and perform step 1. for group (0). -// 4. If the scalar is even subtract G from the accumulator. -// -// Note: this function is constant-time. static void ec_GFp_nistp384_point_mul_base(const EC_GROUP *group, EC_JACOBIAN *r, const EC_SCALAR *scalar) { + p384_felem res[3] = {{0}, {0}, {0}}; - p384_felem res[3] = {{0}, {0}, {0}}, tmp[3] = {{0}, {0}, {0}}, ftmp; - int16_t rnaf[P384_MUL_NWINDOWS] = {0}; - - // Recode the scalar. - scalar_rwnaf(rnaf, P384_MUL_WSIZE, scalar, 384); - - // Process the 4 groups of digits starting from group (3) down to group (0). - for (int i = 3; i >= 0; i--) { - // Double |res| 5 times in each iteration, except in the first one. - for (int j = 0; i != 3 && j < P384_MUL_WSIZE; j++) { - p384_point_double(res[0], res[1], res[2], res[0], res[1], res[2]); - } + ec_nistp_scalar_mul_base(p384_methods(), res[0], res[1], res[2], scalar); - // Process the digits in the current group from the most to the least - // significant one (this is a requirement to ensure that the case of point - // doubling can't happen). - // For group (3) we process digits s_75 to s_3, for group (2) s_74 to s_2, - // group (1) s_73 to s_1, and for group (0) s_76 to s_0. - const size_t start_idx = ((P384_MUL_NWINDOWS - i - 1)/4)*4 + i; - - for (int j = start_idx; j >= 0; j -= 4) { - // For each digit |d| in the current group read the corresponding point - // from the table and add it to |res|. If |d| is negative, negate - // the point before adding it to |res|. - int16_t d = rnaf[j]; - // is_neg = (d < 0) ? 1 : 0 - int16_t is_neg = (d >> 15) & 1; - // d = abs(d) - d = (d ^ -is_neg) + is_neg; - - int16_t idx = d >> 1; - - // Select the point to add, in constant time. - p384_select_point_affine(tmp, idx, p384_g_pre_comp[j / 4], - P384_MUL_TABLE_SIZE); - - // Negate y coordinate of the point tmp = (x, y); ftmp = -y. - p384_felem_opp(ftmp, tmp[1]); - // Conditionally select y or -y depending on the sign of the digit |d|. - p384_felem_cmovznz(tmp[1], is_neg, tmp[1], ftmp); - - // Add the point to the accumulator |res|. - // Note that the points in the pre-computed table are given with affine - // coordinates. The point addition function computes a sum of two points, - // either both given in projective, or one in projective and the other one - // in affine coordinates. The |mixed| flag indicates the latter option, - // in which case we set the third coordinate of the second point to one. - p384_point_add(res[0], res[1], res[2], res[0], res[1], res[2], - 1 /* mixed */, tmp[0], tmp[1], p384_felem_one); - } - } - - // Conditionally subtract G if the scalar is even, in constant-time. - // First, compute |tmp| = |res| + (-G). - p384_felem_copy(tmp[0], p384_g_pre_comp[0][0][0]); - p384_felem_opp(tmp[1], p384_g_pre_comp[0][0][1]); - p384_point_add(tmp[0], tmp[1], tmp[2], res[0], res[1], res[2], - 1 /* mixed */, tmp[0], tmp[1], p384_felem_one); - - // Select |res| or |tmp| based on the |scalar| parity. - p384_felem_cmovznz(res[0], scalar->words[0] & 1, tmp[0], res[0]); - p384_felem_cmovznz(res[1], scalar->words[0] & 1, tmp[1], res[1]); - p384_felem_cmovznz(res[2], scalar->words[0] & 1, tmp[2], res[2]); - - // Copy the result to the output. p384_to_generic(&r->X, res[0]); p384_to_generic(&r->Y, res[1]); p384_to_generic(&r->Z, res[2]); diff --git a/crypto/fipsmodule/ec/p521.c b/crypto/fipsmodule/ec/p521.c index b1ed65dc7b..c35cde1d96 100644 --- a/crypto/fipsmodule/ec/p521.c +++ b/crypto/fipsmodule/ec/p521.c @@ -154,16 +154,6 @@ static void p521_felem_copy(p521_limb_t out[P521_NLIMBS], } } -static void p521_felem_cmovznz(p521_limb_t out[P521_NLIMBS], - p521_limb_t t, - const p521_limb_t z[P521_NLIMBS], - const p521_limb_t nz[P521_NLIMBS]) { - p521_limb_t mask = constant_time_is_zero_w(t); - for (size_t i = 0; i < P521_NLIMBS; i++) { - out[i] = constant_time_select_w(mask, z[i], nz[i]); - } -} - // NOTE: the input and output are in little-endian representation. static void p521_from_generic(p521_felem out, const EC_FELEM *in) { #ifdef OPENSSL_BIG_ENDIAN @@ -288,6 +278,8 @@ static void p521_point_add(p521_felem x3, p521_felem y3, p521_felem z3, ec_nistp_point_add(p521_methods(), x3, y3, z3, x1, y1, z1, mixed, x2, y2, z2); } +#include "p521_table.h" + #if defined(EC_NISTP_USE_S2N_BIGNUM) DEFINE_METHOD_FUNCTION(ec_nistp_meth, p521_methods) { out->felem_num_limbs = P521_NLIMBS; @@ -298,8 +290,10 @@ DEFINE_METHOD_FUNCTION(ec_nistp_meth, p521_methods) { out->felem_sqr = bignum_sqr_p521_selector; out->felem_neg = bignum_neg_p521; out->felem_nz = p521_felem_nz; + out->felem_one = p521_felem_one; out->point_dbl = p521_point_double; out->point_add = p521_point_add; + out->scalar_mul_base_table = (const ec_nistp_felem_limb*) p521_g_pre_comp; } #else DEFINE_METHOD_FUNCTION(ec_nistp_meth, p521_methods) { @@ -311,8 +305,10 @@ DEFINE_METHOD_FUNCTION(ec_nistp_meth, p521_methods) { out->felem_sqr = fiat_secp521r1_carry_square; out->felem_neg = fiat_secp521r1_carry_opp; out->felem_nz = p521_felem_nz; + out->felem_one = p521_felem_one; out->point_dbl = p521_point_double; out->point_add = p521_point_add; + out->scalar_mul_base_table = (const ec_nistp_felem_limb*) p521_g_pre_comp; } #endif @@ -433,18 +429,6 @@ OPENSSL_STATIC_ASSERT(P521_MUL_WSIZE == 5, // p521_select_point_affine selects the |idx|-th affine point from // the given precomputed table and copies it to |out| in constant-time. -static void p521_select_point_affine(p521_felem out[2], - size_t idx, - const p521_felem table[][2], - size_t table_size) { - OPENSSL_memset(out, 0, sizeof(p521_felem) * 2); - for (size_t i = 0; i < table_size; i++) { - p521_limb_t mismatch = i ^ idx; - p521_felem_cmovznz(out[0], mismatch, table[i][0], out[0]); - p521_felem_cmovznz(out[1], mismatch, table[i][1], out[1]); - } -} - // Multiplication of an arbitrary point by a scalar, r = [scalar]P. static void ec_GFp_nistp521_point_mul(const EC_GROUP *group, EC_JACOBIAN *r, const EC_JACOBIAN *p, @@ -463,135 +447,14 @@ static void ec_GFp_nistp521_point_mul(const EC_GROUP *group, EC_JACOBIAN *r, p521_to_generic(&r->Z, res[2]); } -// Include the precomputed table for the based point scalar multiplication. -#include "p521_table.h" - // Multiplication of the base point G of P-521 curve with the given scalar. -// The product is computed with the Comb method using the precomputed table -// |p521_g_pre_comp| from |p521_table.h| file and the regular-wNAF scalar -// encoding. -// -// The |p521_g_pre_comp| table has 27 sub-tables each holding 16 points: -// 0 : [1]G, [3]G, ..., [31]G -// 1 : [1*2^20]G, [3*2^20]G, ..., [31*2^20]G -// ... -// i : [1*2^20i]G, [3*2^20i]G, ..., [31*2^20i]G -// ... -// 26 : [2^520]G, [3*2^520]G, ..., [31*2^520]G -// Computing the negation of a point P = (x, y) is relatively easy: -// -P = (x, -y). -// So we may assume that for each sub-table we have 32 points instead of 16: -// [\pm 1*2^20i]G, [\pm 3*2^20i]G, ..., [\pm 31*2^20i]G. -// -// The 521-bit |scalar| is recoded (regular-wNAF encoding) into 105 signed -// digits, each of length 5 bits, as explained in the -// |p521_felem_mul_scalar_rwnaf| function. Namely, -// scalar' = s_0 + s_1*2^5 + s_2*2^10 + ... + s_104*2^520, -// where digits s_i are in [\pm 1, \pm 3, ..., \pm 31]. Note that for an odd -// scalar we have that scalar = scalar', while in the case of an even -// scalar we have that scalar = scalar' - 1. -// -// To compute the required product, [scalar]G, we may do the following. -// Group the recoded digits of the scalar in 4 groups: -// | corresponding multiples in -// digits | the recoded representation -// ------------------------------------------------------------------------- -// (0): {s_0, s_4, s_8, ..., s_100, s_104} | { 2^0, 2^20, ..., 2^500, 2^520} -// (1): {s_1, s_5, s_9, ..., s_101} | { 2^5, 2^25, ..., 2^505} -// (2): {s_2, s_6, s_10, ..., s_102} | {2^10, 2^30, ..., 2^510} -// (3): {s_3, s_7, s_11, ..., s_103} | {2^15, 2^35, ..., 2^515} -// corresponding sub-table lookup | { T0, T1, ..., T25, T26} -// -// The group (0) digits correspond precisely to the multiples of G that are -// held in the 27 precomputed sub-tables, so we may simply read the appropriate -// points from the sub-tables and sum them all up (negating if needed, i.e., if -// a digit s_i is negative, we read the point corresponding to the abs(s_i) and -// negate it before adding it to the sum). -// The remaining three groups (1), (2), and (3), correspond to the multiples -// of G from the sub-tables multiplied additionally by 2^5, 2^10, and 2^15, -// respectively. Therefore, for these groups we may read the appropriate points -// from the table, double them 5, 10, or 15 times, respectively, and add them -// to the final result. -// -// To minimize the number of required doubling operations we process the digits -// of the scalar from left to right. In other words, the algorithm is: -// 1. Read the points corresponding to the group (3) digits from the table -// and add them to an accumulator. -// 2. Double the accumulator 5 times. -// 3. Repeat steps 1. and 2. for groups (2) and (1), -// and perform step 1. for group (0). -// 4. If the scalar is even subtract G from the accumulator. -// -// Note: this function is constant-time. static void ec_GFp_nistp521_point_mul_base(const EC_GROUP *group, EC_JACOBIAN *r, const EC_SCALAR *scalar) { + p521_felem res[3] = {{0}, {0}, {0}}; - p521_felem res[3] = {{0}, {0}, {0}}, tmp[3] = {{0}, {0}, {0}}, ftmp; - int16_t rnaf[P521_MUL_NWINDOWS] = {0}; - - // Recode the scalar. - scalar_rwnaf(rnaf, P521_MUL_WSIZE, scalar, 521); - - // Process the 4 groups of digits starting from group (3) down to group (0). - for (int i = 3; i >= 0; i--) { - // Double |res| 5 times in each iteration, except in the first one. - for (size_t j = 0; i != 3 && j < P521_MUL_WSIZE; j++) { - p521_point_double(res[0], res[1], res[2], res[0], res[1], res[2]); - } - - // Process the digits in the current group from the most to the least - // significant one (this is a requirement to ensure that the case of point - // doubling can't happen). - // For group (3) we process digits s_103 to s_3, for group (2) s_102 to s_2, - // group (1) s_101 to s_1, and for group (0) s_104 to s_0. - const size_t start_idx = ((P521_MUL_NWINDOWS - i - 1)/4)*4 + i; - - for (int j = start_idx; j >= 0; j -= 4) { - // For each digit |d| in the current group read the corresponding point - // from the table and add it to |res|. If |d| is negative, negate - // the point before adding it to |res|. - int16_t d = rnaf[j]; - // is_neg = (d < 0) ? 1 : 0 - int16_t is_neg = (d >> 15) & 1; - // d = abs(d) - d = (d ^ -is_neg) + is_neg; - - int16_t idx = d >> 1; - - // Select the point to add, in constant time. - p521_select_point_affine(tmp, idx, p521_g_pre_comp[j / 4], - P521_MUL_TABLE_SIZE); - - // Negate y coordinate of the point tmp = (x, y); ftmp = -y. - p521_felem_opp(ftmp, tmp[1]); - // Conditionally select y or -y depending on the sign of the digit |d|. - p521_felem_cmovznz(tmp[1], is_neg, tmp[1], ftmp); - - // Add the point to the accumulator |res|. - // Note that the points in the pre-computed table are given with affine - // coordinates. The point addition function computes a sum of two points, - // either both given in projective, or one in projective and the other one - // in affine coordinates. The |mixed| flag indicates the latter option, - // in which case we set the third coordinate of the second point to one. - p521_point_add(res[0], res[1], res[2], res[0], res[1], res[2], - 1 /* mixed */, tmp[0], tmp[1], p521_felem_one); - } - } + ec_nistp_scalar_mul_base(p521_methods(), res[0], res[1], res[2], scalar); - // Conditionally subtract G if the scalar is even, in constant-time. - // First, compute |tmp| = |res| + (-G). - p521_felem_copy(tmp[0], p521_g_pre_comp[0][0][0]); - p521_felem_opp(tmp[1], p521_g_pre_comp[0][0][1]); - p521_point_add(tmp[0], tmp[1], tmp[2], res[0], res[1], res[2], - 1 /* mixed */, tmp[0], tmp[1], p521_felem_one); - - // Select |res| or |tmp| based on the |scalar| parity. - p521_felem_cmovznz(res[0], scalar->words[0] & 1, tmp[0], res[0]); - p521_felem_cmovznz(res[1], scalar->words[0] & 1, tmp[1], res[1]); - p521_felem_cmovznz(res[2], scalar->words[0] & 1, tmp[2], res[2]); - - // Copy the result to the output. p521_to_generic(&r->X, res[0]); p521_to_generic(&r->Y, res[1]); p521_to_generic(&r->Z, res[2]);