-
Notifications
You must be signed in to change notification settings - Fork 13
/
main.py
executable file
·792 lines (608 loc) · 34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
import argparse
import os
import shutil
import time
import datetime
######################
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.autograd as autograd
import torchvision.transforms as transforms
######################
import numpy as np
from loss_functions import *
from models import SFMnet as SFMnet
import flow_transforms
from tensorboardX import SummaryWriter
from utils import tensor2array
import imageio as io
import logging
from lib.config import cfg, cfg_from_file, save_config_to_file
from demon_metrics import compute_motion_errors,l1_inverse,scale_invariant,abs_relative
import random
from models.SFMnet import Pose2RT
from flow_viz import flow_to_image
from KITTI_loader import KITTIVOLoaderGT,KITTIRAWLoaderGT
# from DEMON_loader import DEMON_GT_LOADER
# from flow_training import train_flow
###################### for mixed precision training
try:
from torch.cuda.amp import GradScaler
except:
# dummy GradScaler for PyTorch < 1.6
class GradScaler:
def __init__(self):
pass
def scale(self, loss):
return loss
def unscale_(self, optimizer):
pass
def step(self, optimizer):
optimizer.step()
def update(self):
pass
try:
autocast = torch.cuda.amp.autocast
except:
# dummy autocast for PyTorch < 1.6
class autocast:
def __init__(self, enabled):
pass
def __enter__(self):
pass
def __exit__(self, *args):
pass
parser = argparse.ArgumentParser(description='Structure from Motion network',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--data', metavar='DIR',help='path to train dataset')
parser.add_argument('--cfg', dest='cfg', default=None, type=str)
######################
parser.add_argument('--pretrained', dest='pretrained', default=None, metavar='PATH',
help='path to pre-trained SFMnet model')
parser.add_argument('--pretrained-flow', dest='pretrained_flow', default=None, metavar='PATH',
help='path to pre-trained epiflow model')
parser.add_argument('--pretrained-depth', dest='pretrained_depth', default=None, metavar='PATH',
help='path to pre-trained dspnet model')
parser.add_argument('--nlabel', type=int ,default=64, help='number of label')
parser.add_argument('--save-images', action='store_true',help='save validation images')
######################
parser.add_argument('--solver', default='adam',choices=['adam','sgd'],
help='solver algorithms')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--epoch-size', default=0, type=int, metavar='N',
help='manual epoch size (will match dataset size if set to 0)')
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M',
help='beta parameter for adam')
parser.add_argument('--weight-decay', '--wd', default=4e-4, type=float,
metavar='W', help='weight decay')
######################
parser.add_argument('--print-freq', '-p', default=50, type=int,
metavar='N', help='logger.info frequency')
parser.add_argument('-v', '--validate', dest='validate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--div-flow', default=1,
help='value by which flow will be divided. Original value is 20 but 1 with batchNorm gives good results')
parser.add_argument('--milestones', default=[2,5,8], metavar='N', nargs='*', help='epochs at which learning rate is divided by 2')
parser.add_argument('--fix-flownet', dest='fix_flownet', action='store_true', help='do not train flownet')
parser.add_argument('--fix-depthnet', dest='fix_depthnet', action='store_true', help='do not train depthnet')
best_EPE = -1; n_iter = 0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main():
global args, best_EPE, save_path,n_iter
args = parser.parse_args()
if args.cfg is not None:
cfg_from_file(args.cfg)
assert cfg.TAG == os.path.splitext(os.path.basename(args.cfg))[0], 'TAG name should be file name'
save_path = os.path.join("output",cfg.TAG)
if not os.path.exists(save_path): os.makedirs(save_path)
# set log files
log_file = os.path.join(save_path, 'log_train.txt')
logger = create_logger(log_file)
logger.info('**********************Start logging**********************')
logger.info('=> will save everything to {}'.format(save_path))
# save configs for future reference
for _,key in enumerate(args.__dict__):
logger.info(args.__dict__[key])
save_config_to_file(cfg, logger=logger)
scaler = GradScaler(enabled=cfg.MIXED_PREC)
#### set Tensorboard
train_writer = SummaryWriter(os.path.join(save_path,'train'))
test_writer = SummaryWriter(os.path.join(save_path,'test'))
# image loading, normalize
input_transform = flow_transforms.Compose([
flow_transforms.ArrayToTensorCo(),
flow_transforms.NormalizeCo(mean=[0,0,0], std=[255,255,255]),
flow_transforms.NormalizeCo(mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]) ])
depth_transform = flow_transforms.Compose([flow_transforms.ArrayToTensorCo()])
# set image size
co_transform_train = flow_transforms.ComposeCo([
flow_transforms.RandomCropCo((cfg.TRAIN_SIZE[0],cfg.TRAIN_SIZE[1])),])
co_transform_val = flow_transforms.ComposeCo([
flow_transforms.CenterCropCo((cfg.VAL_SIZE[0], cfg.VAL_SIZE[1])),])
logger.info("=> fetching img pairs in '{}'".format(args.data))
#### data loader
if cfg.KITTI_RAW_DATASET:
train_set = KITTIRAWLoaderGT(root=args.data, transform=input_transform,target_transform=depth_transform,co_transform=co_transform_train, train=True)
val_set = KITTIRAWLoaderGT(root=args.data, transform=input_transform,target_transform=depth_transform,co_transform=co_transform_val, train=False)
elif cfg.DEMON_DATASET:
if not args.validate: train_set = DEMON_GT_LOADER(root=args.data, transform=input_transform,target_transform=depth_transform,co_transform=co_transform_train, train=True,ttype='train.txt')
val_set = DEMON_GT_LOADER(root=args.data, transform=input_transform,target_transform=depth_transform,co_transform=co_transform_val, train=False,ttype='test.txt')
else:
train_set = KITTIVOLoaderGT(root=args.data, transform=input_transform,target_transform=depth_transform,co_transform=co_transform_train, train=True)
val_set = KITTIVOLoaderGT(root=args.data, transform=input_transform,target_transform=depth_transform,co_transform=co_transform_val, train=False)
if cfg.GENERATE_DEMON_POSE_TO_SAVE or cfg.GENERATE_DEMON_POSE_OR_DEPTH:
val_set = DEMON_GT_LOADER(root=args.data, transform=input_transform,target_transform=depth_transform,co_transform=co_transform_val, train=False,ttype='train.txt',return_path=True)
try:
logger.info('{} samples found, {} train samples and {} test samples '.format(len(val_set)+len(train_set),len(train_set),len(val_set)))
except:
logger.info('{} test samples '.format(len(val_set)))
if not args.validate:
train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size,
num_workers=args.workers, pin_memory=True, shuffle=True, drop_last=True)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size,
num_workers=args.workers, pin_memory=True, shuffle=False)
##################################################################
# create model and load
# nlabel is the number of plane candidates, for plane sweeping
model = SFMnet(args.nlabel)
if args.pretrained:
network_data = torch.load(args.pretrained)
logger.info("=> using pre-trained model '{}'".format(args.pretrained))
model.load_state_dict(network_data["state_dict"],strict=False)
else:
network_data = None
logger.info("=> creating new model")
# optimizer
assert(args.solver in ['adam', 'sgd'])
logger.info('=> setting {} solver'.format(args.solver))
if args.solver == 'adam':
optimizer = torch.optim.Adam(model.parameters(), args.lr, betas=(args.momentum, args.beta), weight_decay=args.weight_decay)
elif args.solver == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
else:
raise NotImplementedError
model = torch.nn.DataParallel(model).cuda()
if args.pretrained_flow:
temp_dict = {}
pretrained_dict = torch.load(args.pretrained_flow)
# TBD: remove these dummy codes
flag = False
for key in pretrained_dict['state_dict'].keys():
if 'flow_estimator' in key:
flag = True; temp_dict[key.replace('flow_estimator.','')] = pretrained_dict['state_dict'][key]
if flag: pretrained_dict['state_dict'] = temp_dict
model_dict = model.module.flow_estimator.state_dict()
model_dict.update(pretrained_dict)
model.module.flow_estimator.load_state_dict(model_dict['state_dict'],strict=False)
logger.info("=> using pre-trained flow network: '{}'".format(args.pretrained_flow))
if args.pretrained_depth:
pretrained_dict = torch.load(args.pretrained_depth)
model_dict = model.module.depth_estimator.state_dict()
model_dict.update(pretrained_dict)
model.module.depth_estimator.load_state_dict(model_dict['state_dict'],strict=False)
logger.info("=> using pre-trained dpsnet: '{}'".format(args.pretrained_depth))
cudnn.benchmark = True
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.MILESTONES, gamma=0.5)
epoch = 0
### validate
if cfg.GENERATE_DEMON_POSE_TO_SAVE:
from generate_demon_pose import generate_DEMON_pose
with torch.no_grad():
best_EPE = generate_DEMON_pose(val_loader, model, epoch,logger)
return
if args.validate:
with torch.no_grad():
if cfg.SAVE_POSE:
best_EPE = save_pose(val_loader, model, epoch,logger)
else:
best_EPE = validate(val_loader, model, epoch,logger)
return
##################################################################
for epoch in range(args.start_epoch, args.epochs):
# fix the weights
if args.fix_flownet:
for fparams in model.module.flow_estimator.parameters(): fparams.requires_grad = False
if args.fix_depthnet:
for fparams in model.module.depth_estimator.parameters(): fparams.requires_grad = False
is_best = False
if cfg.TRAIN_FLOW:
# train optical flow on Demon datasets
train_loss,n_iter = train_flow(train_loader, model, optimizer, epoch,
train_writer,scaler,logger=logger,n_iter=n_iter,args=args)
else:
# train depth
train_loss,scheduler = train_epoch(train_loader, model, optimizer, epoch,
train_writer,scaler,logger,scheduler=scheduler)
scheduler.step()
save_checkpoint({'epoch': epoch + 1,'state_dict': model.module.state_dict()},
is_best, filename='checkpoint{}.pth.tar'.format(epoch))
with torch.no_grad():
best_EPE = validate(val_loader, model, epoch,logger)
def train_epoch(train_loader, model, optimizer, epoch, train_writer,scaler,logger=None,scheduler=None):
global n_iter, args
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
epoch_size = len(train_loader) if args.epoch_size == 0 else min(len(train_loader), args.epoch_size)
# switch to train mode
model.train()
end = time.time()
for i, (input, intrinsics, poses, pred_poses, depth_gt) in enumerate(train_loader):
optimizer.zero_grad()
data_time.update(time.time() - end)
# two frames
input0 = input[0].to(device); input1 = input[1].to(device)
# add random noise
stdv = np.random.uniform(0.0, 3.0/255)
input0 = (input0 + stdv * torch.randn(*input0.shape).cuda()).clamp(-1, 1)
input1 = (input1 + stdv * torch.randn(*input1.shape).cuda()).clamp(-1, 1)
# forward and backward pose
pose_gt_fw = poses[0].to(device);pose_gt_bw = poses[1].to(device)
# we could save predicted poses as local files, to reduce training time
pred_pose_fw = pred_poses[0].to(device) if pred_poses is not None else None
pred_pose_bw = pred_poses[1].to(device) if pred_poses is not None else None
depth_fw_gt = depth_gt[0].to(device); depth_bw_gt = depth_gt[1].to(device)
raw_shape = input1.shape; height_raw = raw_shape[2]; width_raw= raw_shape[3]
# DICLFlow limits the size of input frames, so we pad the inputs
# feel free to delete this part if using other flow estimator
height_new = int(np.ceil(raw_shape[2]/128)*128)
width_new = int(np.ceil(raw_shape[3]/128)*128)
padding = (0, width_new-raw_shape[3], 0, height_new-raw_shape[2])
input1 = torch.nn.functional.pad(input1, padding, "replicate", 0)
input0 = torch.nn.functional.pad(input0, padding, "replicate", 0)
# conduct training in a backward way
# plz note backward here indicates from input1 (target frame) to input0 (reference frame)
# rather than back-propagation
flow_2D_bw, pose_bw, depth_bw, depth_bw_init, rot_and_trans = model(input1, input0, intrinsics, pose_gt_bw, pred_pose_bw, cfg.GT_POSE, h_side = raw_shape[2], w_side = raw_shape[3],logger=logger)
intrinsics_invs = intrinsics.inverse().float().to(device)
intrinsics = intrinsics.float().to(device)
# filter out meaningless depth values (out of range, NaN or Inf)
mask_bw = (depth_bw_gt <= args.nlabel*cfg.MIN_DEPTH) & (depth_bw_gt >= cfg.MIN_DEPTH) & (depth_bw_gt == depth_bw_gt)
mask_fw = (depth_fw_gt <= args.nlabel*cfg.MIN_DEPTH) & (depth_fw_gt >= cfg.MIN_DEPTH) & (depth_fw_gt == depth_fw_gt)
if not args.fix_depthnet:
################## Compute Depth Loss ########################
with autocast(enabled=cfg.MIXED_PREC):
if cfg.RESCALE_DEPTH:
# the translation scale of ground truth poses
scale = torch.norm(pose_gt_bw[:,:,-1:].squeeze(-1),dim=-1)
scale_mask = (scale> cfg.MIN_TRAIN_SCALE) & (scale< cfg.MAX_TRAIN_SCALE)
rescale_ratio = scale/cfg.NORM_TARGET
# to keep scale consistent
depth_bw = depth_bw*rescale_ratio.view(scale.shape[0],1,1,1)
if cfg.RESCALE_DEPTH_REMASK:
# recheck the boundary of scales, unnecessary
depth_bw_gt_rescale = depth_bw_gt/(rescale_ratio.view(-1,1,1,1))
mask_bw = (depth_bw_gt_rescale <= args.nlabel*cfg.MIN_DEPTH) & (depth_bw_gt_rescale >= cfg.MIN_DEPTH) & (depth_bw_gt_rescale == depth_bw_gt_rescale)
train_writer.add_scalar('max_gt_depth', depth_bw_gt_rescale.max().item(), n_iter)
train_writer.add_scalar('min_gt_depth', depth_bw_gt_rescale[depth_bw_gt_rescale>0].min().item(), n_iter)
mask_bw = mask_bw.detach()
# pick the valid ones for optimization
pred_init_toloss = depth_bw_init[scale_mask][mask_bw[scale_mask]]
pred_toloss = depth_bw[scale_mask][mask_bw[scale_mask]]
gt_toloss = depth_bw_gt[scale_mask][mask_bw[scale_mask]]
else:
# pick the valid ones for optimization
scale = torch.norm(pose_gt_bw[:,:,-1:].squeeze(-1),dim=-1)
scale_mask = (scale> cfg.MIN_TRAIN_SCALE)
pred_init_toloss = depth_bw_init[scale_mask][mask_bw[scale_mask]]
pred_toloss = depth_bw[scale_mask][mask_bw[scale_mask]]
gt_toloss = depth_bw_gt[scale_mask][mask_bw[scale_mask]]
# follow the setting of DPSNet
loss_depth_init = 0.7*(F.smooth_l1_loss(pred_init_toloss, gt_toloss))
loss_depth_out = F.smooth_l1_loss(pred_toloss, gt_toloss)
loss_depth = loss_depth_out + loss_depth_init
train_writer.add_scalar('depth_init', loss_depth_init.item(), n_iter)
train_writer.add_scalar('depth_out', loss_depth_out.item(), n_iter)
loss = loss_depth
if rot_and_trans is not None:
################## Compute Pose Loss ########################
### if use deep pose regression
gt_rt_raw = Pose2RT(pose_gt_bw)
gt_rt = torch.cat((gt_rt_raw[:,:3],F.normalize(gt_rt_raw[:, 3:])),dim=1)
loss_fn = torch.nn.MSELoss(reduction='none')
pose_loss = loss_fn(rot_and_trans,gt_rt).mean(dim=0)
pose_loss[:3] = pose_loss[:3]*20
pose_loss = pose_loss.mean()
train_writer.add_scalar('pose_loss', pose_loss.mean().item(), n_iter)
loss = loss + pose_loss.mean()
# check if there are extreme values
if loss>9999: import pdb;pdb.set_trace()
losses.update(loss.item(), input0.size(0))
train_writer.add_scalar('train_loss', loss, n_iter)
cur_lr = optimizer.param_groups[0]['lr']
train_writer.add_scalar('cur_lr', cur_lr, n_iter)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
batch_time.update(time.time() - end)
end = time.time()
# recording and visualization
if i % args.print_freq == 0:
input0=0.5 + (input0[0])*0.5; input1=0.5 + (input1[0])*0.5
train_writer.add_image(('left'+str(0)),input0,n_iter)
train_writer.add_image(('right'+str(0)),input1,n_iter)
# for visualization
disp_bw = [cfg.MIN_DEPTH*args.nlabel/(depth_bw.detach().cpu())]
disp_bw_gt = [cfg.MIN_DEPTH*args.nlabel/(depth_bw_gt.squeeze(1).detach().cpu())]
if flow_2D_bw is not None:
flo_bw_raw_vis=flow2rgb_raw(flow_2D_bw[0],max_value=128)
train_writer.add_image(('flo_bw_raw'),flo_bw_raw_vis,n_iter)
for j in range(len(disp_bw)):
disp_bw_to_show=tensor2array(disp_bw[j][0], max_value=80, colormap='bone')
disp_bw_gt_to_show=tensor2array(disp_bw_gt[j][0], max_value=80, colormap='bone')
train_writer.add_image(('depth_bw'+str(j)),disp_bw_to_show,n_iter)
train_writer.add_image(('depth_bw_gt'+str(j)),disp_bw_gt_to_show,n_iter)
logger.info('Epoch: [{0}][{1}/{2}]\t Time {3}\t Data {4}\t Loss {5}'
.format(epoch, i, epoch_size, batch_time, data_time, losses))
n_iter += 1
if i >= epoch_size:
break
return losses.avg, scheduler
def validate(val_loader, model, epoch,logger=None):
global args
batch_time = AverageMeter(); depth_EPEs = AverageMeter()
abs_rel_t = AverageMeter(); sq_rel_t = AverageMeter(); rmse_t = AverageMeter(); rmse_log_t = AverageMeter()
a1_t = AverageMeter(); a2_t = AverageMeter(); a3_t = AverageMeter(); d1_all_t = AverageMeter()
l1_inv_t =AverageMeter(); sc_inv_t =AverageMeter()
# switch to evaluate mode
import matplotlib
model.eval()
end = time.time()
dis_list = []; rel_dis_list = []; scale_list = []; change_ratio_list = []
errors_fw_l = []; errors_bw_l = []; depth_list = []; epe_tmp =[]
for i, (inputs, intrinsics, poses, pred_poses, depth_gt) in enumerate(val_loader):
input0 = inputs[0].to(device)
input1 = inputs[1].to(device)
pose_gt_fw = poses[0].to(device)
pose_gt_bw = poses[1].to(device)
depth_fw_gt = depth_gt[0].to(device)
depth_bw_gt = depth_gt[1].to(device)
pred_pose_fw = pred_poses[0].to(device) if pred_poses is not None else None
pred_pose_bw = pred_poses[1].to(device) if pred_poses is not None else None
intrinsics_invs = intrinsics.inverse().float().to(device)
intrinsics = intrinsics.float().to(device)
raw_shape = input1.shape
height_raw = raw_shape[2]; width_raw= raw_shape[3]
# if the flow estimation module is not 'DICL', you could modify the codes below accordingly
height_new = int(np.ceil(raw_shape[2]/128)*128)
width_new = int(np.ceil(raw_shape[3]/128)*128)
padding = (0, width_new-raw_shape[3], 0, height_new-raw_shape[2])
input1 = torch.nn.functional.pad(input1, padding, "replicate", 0)
input0 = torch.nn.functional.pad(input0, padding, "replicate", 0)
#######################################
b, _, h, w = input0.size()
if cfg.RECORD_POSE:
# compute forward and backward poses
pose_fw, flow_2D_fw = model(input0, input1, intrinsics, pose_gt_fw, pred_pose_fw, cfg.GT_POSE,raw_shape[2],raw_shape[3])
pose_bw, flow_2D_bw = model(input1, input0, intrinsics, pose_gt_bw, pred_pose_bw, cfg.GT_POSE,raw_shape[2],raw_shape[3])
def pose_to_motion(pose):
# convert pose matrix to motion
rt = Pose2RT(pose)
out = torch.cat((rt[:,:3],F.normalize(rt[:, 3:])),dim=1)
return out[0].cpu().numpy()
for bat in range(len(pose_fw)):
motion_fw = pose_to_motion(pose_fw[bat])
motion_bw = pose_to_motion(pose_bw[bat])
motion_gt_fw = pose_to_motion(pose_gt_fw[bat].unsqueeze(0))
motion_gt_bw = pose_to_motion(pose_gt_bw[bat].unsqueeze(0))
error_fw = compute_motion_errors(motion_fw, motion_gt_fw, True)
error_bw = compute_motion_errors(motion_bw, motion_gt_bw, True)
errors_fw_l.append(np.array(error_fw))
errors_bw_l.append(np.array(error_bw))
errors_fw_mean = np.array(errors_fw_l).mean(axis=0)
logger.info('Pose Error: [{0}/{1}]\t Time {2}\t error rot {3} t {4} trans {5}'.format(i, len(val_loader), batch_time, errors_fw_mean[0], errors_fw_mean[1], errors_fw_mean[2]))
continue
else:
# conduct inference, both depth and pose
flow_2D_bw, pose_bw, depth_bw, time_dict = model(input1, input0, intrinsics, pose_gt_bw,pred_pose_bw, cfg.GT_POSE,raw_shape[2],raw_shape[3])
if cfg.RESCALE_DEPTH:
#### could skip this step during inference
batch_num = len(depth_bw_gt)
scale = torch.norm(pose_gt_bw[:,:,-1:].squeeze(-1),dim=-1)
rescale_ratio = scale/cfg.NORM_TARGET
depth_bw = depth_bw*rescale_ratio.view(batch_num,1,1,1)
depth_bw = depth_bw[:,:,:height_raw,:width_raw]
if flow_2D_bw is not None:
flow_2D_bw = flow_2D_bw[:,:,:height_raw,:width_raw]
flow_2D_plot = flow2rgb_raw(flow_2D_bw[0], max_value=128)
flow_2D_plot = np.transpose(flow_2D_plot, (1, 2, 0))
###############################################################
### dummy codes
### possibly helpful if someone would like to save visualization
# if args.save_images:
# ref_cv =inputs[0][0].cpu().numpy().transpose(1,2,0)[:,:,::-1]
# tar_cv =inputs[1][0].cpu().numpy().transpose(1,2,0)[:,:,::-1]
# ref_cv = (ref_cv*0.5+0.5)*255;tar_cv = (tar_cv*0.5+0.5)*255
# cv2.imwrite(path_1,ref_cv)
# realflow_vis = flow_to_image(flow_2D_bw[0].cpu().detach().numpy().transpose(1,2,0),None)
# cv2.imwrite(path_2,tar_cv)
# cv2.imwrite(path_pred,realflow_vis)
###############################################################
# the same threshold and masking strategy as used by previous methods
if cfg.DEMON_DATASET:
mask_bw = (depth_bw_gt <= 10) & (depth_bw_gt >= 0.5) & (depth_bw_gt == depth_bw_gt)
else:
mask_bw = (depth_bw_gt>0) & (depth_bw_gt<80)
crop_mask = mask_bw.clone()
crop_mask[:] = 0
gt_height, gt_width = mask_bw.shape[2:]
crop = np.array([0.40810811 * gt_height, 0.99189189 * gt_height,0.03594771 * gt_width, 0.96405229 * gt_width]).astype(np.int32)
crop_mask[:,:,crop[0]:crop[1], crop[2]:crop[3]] = 1
mask_bw = mask_bw & crop_mask
### median scale shift, because of the scale ambiguity
median_scale_list = []
for b_idx in range(len(depth_bw_gt)):
try:
cur_median_scale = (depth_bw_gt[b_idx][mask_bw[b_idx]].median()/depth_bw[b_idx][mask_bw[b_idx]].median()).detach();
except:
cur_median_scale = depth_bw_gt[b_idx].median()/depth_bw[b_idx].median()
median_scale_list.append(cur_median_scale)
median_scale = torch.FloatTensor(median_scale_list).to(depth_bw.device).type_as(depth_bw)
depth_bw = depth_bw * (median_scale.view(-1,1,1,1))
# check bound
max_range = cfg.MIN_DEPTH * args.nlabel
depth_bw[depth_bw<=cfg.MIN_DEPTH] = cfg.MIN_DEPTH
depth_bw[depth_bw>max_range] = max_range
# compute errors
abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3, l1_inv, sc_inv = evaluate_metric(depth_bw_gt[mask_bw].cpu().numpy(),depth_bw[mask_bw].detach().cpu().numpy())
# record errors
abs_rel_t.update(abs_rel, intrinsics.size(0))
sq_rel_t.update(sq_rel, intrinsics.size(0))
rmse_t.update(rmse, intrinsics.size(0))
rmse_log_t.update(rmse_log, intrinsics.size(0))
a1_t.update(a1, intrinsics.size(0)); a2_t.update(a2, intrinsics.size(0)); a3_t.update(a3, intrinsics.size(0))
l1_inv_t.update(l1_inv, intrinsics.size(0)); sc_inv_t.update(sc_inv, intrinsics.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
if args.print_freq==1:
# print per-frame detail, for debugging
scale = torch.norm(pose_gt_bw[:,:,-1],dim=-1)
logger.info('Test: [{0}/{1}]\t Scale {2}\t abs_rel {3} l1_inv {4} sc_inv {5}'.format(i, len(val_loader), scale.mean().item(), abs_rel_t,l1_inv_t,sc_inv_t))
else:
logger.info('Test: [{0}/{1}]\t Time {2}\t abs_rel {3}'.format(i, len(val_loader), batch_time,abs_rel_t))
if args.save_images:
visual_path = os.path.join(save_path,'val_visual')
if not os.path.exists(visual_path):
os.makedirs(visual_path)
depth_plot = depth_bw[0].detach().cpu().numpy().squeeze()
matplotlib.image.imsave(visual_path+"/{0:06}.png".format(i),np.uint16(depth_plot*256))
if flow_2D_bw is not None: matplotlib.image.imsave(visual_path+"/{0:06}_flow2d.png".format(i),flow_2D_plot)
if cfg.RECORD_POSE:
logger.info('Forward Error:'); logger.info(np.array(errors_fw_l).mean(axis=0))
logger.info('Backward Error:'); logger.info(np.array(errors_bw_l).mean(axis=0))
else:
logger.info('abs_rel {0} sq_rel {1} rmse {2} rmse_log {3} a1 {4} a2 {5} a3 {6} l1_inv {7} sc_inv {8} d1_all {9}'.format(abs_rel_t.avg,sq_rel_t.avg,rmse_t.avg,rmse_log_t.avg,a1_t.avg,a2_t.avg,a3_t.avg,l1_inv_t.avg,sc_inv_t.avg,d1_all_t.avg))
return depth_EPEs.avg
def save_pose(val_loader, model, epoch, logger=None):
'''
save sequence pose for evaluation
'''
global args
batch_time = AverageMeter(); depth_EPEs = AverageMeter()
abs_rel_t = AverageMeter(); sq_rel_t = AverageMeter(); rmse_t = AverageMeter(); rmse_log_t = AverageMeter()
a1_t = AverageMeter(); a2_t = AverageMeter(); a3_t = AverageMeter()
l1_inv_t =AverageMeter(); sc_inv_t =AverageMeter()
# switch to evaluate mode
model.eval()
import matplotlib
end = time.time()
dis_list = []; rel_dis_list = []; scale_list = []; change_ratio_list = []
errors_fw_l = []; errors_bw_l = []
for i, (inputs, intrinsics, poses, pred_poses, depth_gt,img2_path) in enumerate(val_loader):
input0 = inputs[0].to(device)
input1 = inputs[1].to(device)
pose_gt_fw = poses[0].to(device)
pose_gt_bw = poses[1].to(device)
depth_fw_gt = depth_gt[0].to(device)
depth_bw_gt = depth_gt[1].to(device)
pred_pose_fw = pred_poses[0].to(device) if pred_poses is not None else None
pred_pose_bw = pred_poses[1].to(device) if pred_poses is not None else None
intrinsics_invs = intrinsics.inverse().float().to(device)
intrinsics = intrinsics.float().to(device)
#######################################
raw_shape = input1.shape
height_raw = raw_shape[2]; width_raw= raw_shape[3]
# if the flow estimation module is not 'DICL', you could modify the codes below accordingly
height_new = int(np.ceil(raw_shape[2]/128)*128)
width_new = int(np.ceil(raw_shape[3]/128)*128)
padding = (0, width_new-raw_shape[3], 0, height_new-raw_shape[2])
input1 = torch.nn.functional.pad(input1, padding, "replicate", 0)
input0 = torch.nn.functional.pad(input0, padding, "replicate", 0)
b, _, h, w = input0.size()
pose_fw, flow_2D_raw_fw = model(input0, input1, intrinsics, pose_gt_fw, pred_pose_fw, cfg.GT_POSE,raw_shape[2],raw_shape[3])
pose_bw, flow_2D_raw_bw = model(input1, input0, intrinsics, pose_gt_bw, pred_pose_bw, cfg.GT_POSE,raw_shape[2],raw_shape[3])
# save the predicted poses as a numpy file, each corresponds to a sequence
for batch_idx in range(len(input0)):
pred_poses_fb = torch.cat((pose_fw[batch_idx],pose_bw[batch_idx])).cpu().numpy()
np_save_path = img2_path[batch_idx].replace('.png','.npy').replace('image_02','pred_poses_fb')
if not os.path.exists(os.path.dirname(np_save_path)):
os.makedirs(os.path.dirname(np_save_path))
np.save(np_save_path,pred_poses_fb)
logger.info('SAVE POSE: [{0}/{1}]\t Time {2}\t '.format(i, len(val_loader), batch_time))
continue
if cfg.RECORD_POSE:
logger.info(cfg.DEMON_DATASET_SPE)
logger.info('Forward Error:'); logger.info(np.array(errors_fw_l).mean(axis=0))
logger.info('Backward Error:'); logger.info(np.array(errors_bw_l).mean(axis=0))
else:
logger.info('abs_rel {0} sq_rel {1} rmse {2} rmse_log {3} a1 {4} a2 {5} a3 {6} l1_inv {7} sc_inv {8}'.format(abs_rel_t.avg,sq_rel_t.avg,rmse_t.avg,rmse_log_t.avg,a1_t.avg,a2_t.avg,a3_t.avg,l1_inv_t.avg,sc_inv_t.avg))
return depth_EPEs.avg
############################################## Utility ##############################################
def create_logger(log_file):
log_format = '%(asctime)s %(levelname)5s %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format, filename=log_file)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter(log_format))
logging.getLogger(__name__).addHandler(console)
return logging.getLogger(__name__)
def convert_disps_to_depths_kitti(gt_disp, intrinsic):
focus = intrinsic[:,0,0]
shape = [*gt_disp.size()]
mask = (gt_disp > 0).float()
focus = focus.view(shape[0],1,1).repeat(1,shape[1],shape[2]).float()
gt_depth = (focus * 0.54) / (gt_disp + (1.0 - mask))
return gt_depth * mask
def evaluate_metric(gt, pred):
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred)**2) / gt)
l1_inv = l1_inverse(gt,pred)
sc_inv = scale_invariant(gt,pred)
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3,l1_inv,sc_inv
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __repr__(self):
return '{:.3f} ({:.3f})'.format(self.val, self.avg)
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, os.path.join(save_path,filename))
if is_best:
shutil.copyfile(os.path.join(save_path,filename), os.path.join(save_path,'model_best.pth.tar'))
def flow2rgb_raw(flow_map, max_value):
flow_map_np = flow_map.detach().cpu().numpy()
_, h, w = flow_map_np.shape
flow_map_np[:,(flow_map_np[0] == 0) & (flow_map_np[1] == 0)] = float('nan')
rgb_map = np.ones((3,h,w)).astype(np.float32)
if max_value is not None:
normalized_flow_map = flow_map_np / max_value
else:
normalized_flow_map = flow_map_np / (np.abs(flow_map_np).max())
rgb_map[0] += normalized_flow_map[0]
rgb_map[1] -= 0.5*(normalized_flow_map[0] + normalized_flow_map[1])
rgb_map[2] += normalized_flow_map[1]
return rgb_map.clip(0,1)
if __name__ == '__main__':
main()