-
Notifications
You must be signed in to change notification settings - Fork 27
/
train_vast.py
380 lines (314 loc) · 16.8 KB
/
train_vast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import logging
import os
import copy
from glob import glob
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel, PartitionScene
from scene.vastgs.appearance_network import decouple_appearance
from utils.general_utils import safe_state
from utils.partition_utils import data_partition, read_camList
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from utils.manhattan_utils import get_man_trans
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
import multiprocessing as mp
from seamless_merging import seamless_merge
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, logger=None):
# read train and test camera list
test_camList = read_camList(dataset.model_path + "/test_cameras.txt")
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
# scene = Scene(dataset, gaussians)
scene = PartitionScene(dataset, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc=f"Training progress Partition: {dataset.partition_id}")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
new_viewpoint_stack = []
for view in viewpoint_stack: # 训练时剔除测试集图片
if view.image_name not in test_camList:
new_viewpoint_stack.append(view)
viewpoint_stack = new_viewpoint_stack
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# decouple appearance model
decouple_image, transformation_map = decouple_appearance(image, gaussians, viewpoint_cam.uid)
gt_image = viewpoint_cam.original_image.cuda()
# if viewpoint_cam.image_name in test_camList:
# # 如果该图片在测试集中,移除该图像的右半边用于test,仅使用左半边图像进行train
# gt_image = gt_image[..., :gt_image.shape[-1] // 2]
# image = image[..., :image.shape[-1] // 2]
# decouple_image = decouple_image[..., :decouple_image.shape[-1] // 2]
# Loss
# Ll1 = l1_loss(image, gt_image)
Ll1 = l1_loss(decouple_image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background), logger=logger)
if (iteration in saving_iterations):
if logger is not None:
logger.info(f"Saving Gaussians at iteration {iteration}")
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none=True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def parallel_local_training(gpu_id, partition_id, lp_args, op_args, pp_args, test_iterations, save_iterations, checkpoint_iterations,
start_checkpoint, debug_from):
torch.cuda.set_device(gpu_id)
partition_model_path = f"{lp_args.model_path}/partition_point_cloud/visible"
lp_args.partition_id = partition_id
lp_args.partition_model_path = partition_model_path
logger = setup_logging(partition_id, file_path=partition_model_path)
# 启动训练
logger.info("Starting process")
training(lp_args, op_args, pp_args, test_iterations, save_iterations, checkpoint_iterations,start_checkpoint, debug_from, logger=logger)
logger.info("Finishing process")
def setup_logging(partition_id, file_path):
# 创建一个 logger
logger = logging.getLogger(f'Client_{partition_id}')
logger.setLevel(logging.INFO) # 设置日志级别
# 创建文件 handler,用于写入日志文件
if not os.path.exists(file_path):
os.makedirs(file_path)
file_handler = logging.FileHandler(f'{file_path}/Partition_{partition_id}.log')
# 创建 formatter
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
# 添加 handler 到 logger
logger.addHandler(file_handler)
return logger
def prepare_output_and_logger(args):
# if not args.model_path:
# if os.getenv('OAR_JOB_ID'):
# unique_str=os.getenv('OAR_JOB_ID')
# else:
# unique_str = str(uuid.uuid4())
# args.model_path = os.path.join("./output/", unique_str[0:10])
if not args.model_path:
model_path = os.path.join("./output/", args.exp_name)
# 如果这个文件存在,就在这个文件名的基础上创建新的文件夹,文件名后面跟上1,2,3
if os.path.exists(model_path):
base_name = os.path.basename(model_path)
dir_name = os.path.dirname(model_path)
file_name, file_ext = os.path.splitext(base_name)
counter = 1
while os.path.exists(os.path.join(dir_name, f"{file_name}_{counter}{file_ext}")):
counter += 1
new_folder_name = f"{file_name}_{counter}{file_ext}"
model_path = os.path.join(dir_name, new_folder_name)
args.model_path = model_path
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok=True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
var_dict = copy.deepcopy(vars(args))
del_var_list = ["manhattan", "man_trans", "pos", "rot",
"m_region", "n_region", "extend_rate", "visible_rate",
"num_gpus", "partition_id", "partition_model_path", "platform",
"llffhold"] # 删除多余的变量,防止无法使用SIBR可视化
for key in vars(args).keys():
if key in del_var_list:
del var_dict[key]
cfg_log_f.write(str(Namespace(**var_dict)))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, logger=None):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
if logger is not None:
logger.info("[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000, 60_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000, 60_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default=None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
lp, op, pp = lp.extract(args), op.extract(args), pp.extract(args)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
# Manhattan Alignment
lp.man_trans = get_man_trans(lp)
# train multi gpu
mp.set_start_method('spawn', force=True)
tb_writer = prepare_output_and_logger(lp)
# data partition
partition_num, partition_id_list = data_partition(lp)
cuda_devices = torch.cuda.device_count()
print(f"Found {cuda_devices} CUDA devices")
training_round = partition_num // cuda_devices
remainder = partition_num % cuda_devices
# Main Loops
for i in range(training_round):
partition_pool = [i + training_round * j for j in range(cuda_devices)]
processes = []
for index, device_id in enumerate(range(cuda_devices)):
partition_index = partition_pool[index]
partition_id = partition_id_list[partition_index]
print("train partition {} on gpu {}".format(partition_id, device_id))
p = mp.Process(target=parallel_local_training, name=f"Partition_{partition_id}",
args=(device_id, partition_id, lp, op, pp,
args.test_iterations, args.save_iterations, args.checkpoint_iterations,
args.start_checkpoint, args.debug_from))
processes.append(p)
p.start()
for p in processes:
p.join() # 等待所有进程完成
# processes = []
torch.cuda.empty_cache()
if remainder != 0:
partition_pool = [cuda_devices * training_round + i for i in range(remainder)]
processes = []
for index, device_id in enumerate(range(cuda_devices)[:remainder]):
# torch.cuda.set_device(device_id)
partition_index = partition_pool[index]
partition_id = partition_id_list[partition_index]
print("train partition {} on gpu {}".format(partition_id, device_id))
p = mp.Process(target=parallel_local_training, name=f"Partition_{partition_id}",
args=(device_id, partition_id, lp, op, pp,
args.test_iterations, args.save_iterations, args.checkpoint_iterations,
args.start_checkpoint, args.debug_from))
processes.append(p)
p.start()
for p in processes:
p.join()
torch.cuda.empty_cache()
print("\nTraining complete.")
# seamless_merging 无缝合并
print("Merging Partitions...")
all_point_cloud_dir = glob(os.path.join(lp.model_path, "point_cloud", "*"))
for point_cloud_dir in all_point_cloud_dir:
seamless_merge(lp.model_path, point_cloud_dir)
# All done
print("All Done!")