forked from aseveryn/deep-qa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parse.py
249 lines (197 loc) · 7.86 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import re
import os
import numpy as np
import cPickle
import subprocess
from collections import defaultdict
from alphabet import Alphabet
UNKNOWN_WORD_IDX = 0
def load_data(fname):
lines = open(fname).readlines()
qids, questions, answers, labels = [], [], [], []
num_skipped = 0
prev = ''
qid2num_answers = {}
for i, line in enumerate(lines):
line = line.strip()
qid_match = re.match('<QApairs id=\'(.*)\'>', line)
if qid_match:
qid = qid_match.group(1)
qid2num_answers[qid] = 0
if prev and prev.startswith('<question>'):
question = line.lower().split('\t')
label = re.match('^<(positive|negative)>', prev)
if label:
label = label.group(1)
label = 1 if label == 'positive' else 0
answer = line.lower().split('\t')
if len(answer) > 60:
num_skipped += 1
continue
labels.append(label)
answers.append(answer)
questions.append(question)
qids.append(qid)
qid2num_answers[qid] += 1
prev = line
# print sorted(qid2num_answers.items(), key=lambda x: float(x[0]))
print 'num_skipped', num_skipped
return qids, questions, answers, labels
def compute_overlap_features(questions, answers, word2df=None, stoplist=None):
word2df = word2df if word2df else {}
stoplist = stoplist if stoplist else set()
feats_overlap = []
for question, answer in zip(questions, answers):
# q_set = set(question)
# a_set = set(answer)
q_set = set([q for q in question if q not in stoplist])
a_set = set([a for a in answer if a not in stoplist])
word_overlap = q_set.intersection(a_set)
# overlap = float(len(word_overlap)) / (len(q_set) * len(a_set) + 1e-8)
overlap = float(len(word_overlap)) / (len(q_set) + len(a_set))
# q_set = set([q for q in question if q not in stoplist])
# a_set = set([a for a in answer if a not in stoplist])
word_overlap = q_set.intersection(a_set)
df_overlap = 0.0
for w in word_overlap:
df_overlap += word2df[w]
df_overlap /= (len(q_set) + len(a_set))
feats_overlap.append(np.array([
overlap,
df_overlap,
]))
return np.array(feats_overlap)
def compute_overlap_idx(questions, answers, stoplist, q_max_sent_length, a_max_sent_length):
stoplist = stoplist if stoplist else []
feats_overlap = []
q_indices, a_indices = [], []
for question, answer in zip(questions, answers):
q_set = set([q for q in question if q not in stoplist])
a_set = set([a for a in answer if a not in stoplist])
word_overlap = q_set.intersection(a_set)
q_idx = np.ones(q_max_sent_length) * 2
for i, q in enumerate(question):
value = 0
if q in word_overlap:
value = 1
q_idx[i] = value
q_indices.append(q_idx)
#### ERROR
# a_idx = np.ones(a_max_sent_length) * 2
# for i, q in enumerate(question):
# value = 0
# if q in word_overlap:
a_idx = np.ones(a_max_sent_length) * 2
for i, a in enumerate(answer):
value = 0
if a in word_overlap:
value = 1
a_idx[i] = value
a_indices.append(a_idx)
q_indices = np.vstack(q_indices).astype('int32')
a_indices = np.vstack(a_indices).astype('int32')
return q_indices, a_indices
def compute_dfs(docs):
word2df = defaultdict(float)
for doc in docs:
for w in set(doc):
word2df[w] += 1.0
num_docs = len(docs)
for w, value in word2df.iteritems():
word2df[w] /= np.math.log(num_docs / value)
return word2df
def add_to_vocab(data, alphabet):
for sentence in data:
for token in sentence:
alphabet.add(token)
def convert2indices(data, alphabet, dummy_word_idx, max_sent_length=40):
data_idx = []
for sentence in data:
ex = np.ones(max_sent_length) * dummy_word_idx
for i, token in enumerate(sentence):
idx = alphabet.get(token, UNKNOWN_WORD_IDX)
ex[i] = idx
data_idx.append(ex)
data_idx = np.array(data_idx).astype('int32')
return data_idx
if __name__ == '__main__':
# stoplist = set([line.strip() for line in open('en.txt')])
# import string
# punct = set(string.punctuation)
# stoplist.update(punct)
stoplist = None
train = 'jacana-qa-naacl2013-data-results/train.xml'
train_all = 'jacana-qa-naacl2013-data-results/train-all.xml'
train_files = [train, train_all]
for train in train_files:
print train
dev = 'jacana-qa-naacl2013-data-results/dev.xml'
test = 'jacana-qa-naacl2013-data-results/test.xml'
train_basename = os.path.basename(train)
name, ext = os.path.splitext(train_basename)
outdir = '{}'.format(name.upper())
print 'outdir', outdir
if not os.path.exists(outdir):
os.makedirs(outdir)
# all_fname = train
all_fname = "/tmp/trec-merged.txt"
files = ' '.join([train, dev, test])
subprocess.call("/bin/cat {} > {}".format(files, all_fname), shell=True)
# qids, questions, answers, labels = load_data(all_fname, stoplist)
qids, questions, answers, labels = load_data(all_fname)
### Compute document frequencies.
seen = set()
unique_questions = []
for q, qid in zip(questions, qids):
if qid not in seen:
seen.add(qid)
unique_questions.append(q)
docs = answers + unique_questions
word2dfs = compute_dfs(docs)
print word2dfs.items()[:10]
#########
alphabet = Alphabet(start_feature_id=0)
alphabet.add('UNKNOWN_WORD_IDX')
add_to_vocab(answers, alphabet)
add_to_vocab(questions, alphabet)
basename = os.path.basename(train)
cPickle.dump(alphabet, open(os.path.join(outdir, 'vocab.pickle'), 'w'))
print "alphabet", len(alphabet)
dummy_word_idx = alphabet.fid
q_max_sent_length = max(map(lambda x: len(x), questions))
a_max_sent_length = max(map(lambda x: len(x), answers))
print 'q_max_sent_length', q_max_sent_length
print 'a_max_sent_length', a_max_sent_length
# Convert dev and test sets
for fname in [train, dev, test]:
print fname
# qids, questions, answers, labels = load_data(fname, stoplist)
qids, questions, answers, labels = load_data(fname)
overlap_feats = compute_overlap_features(questions, answers, stoplist=None, word2df=word2dfs)
overlap_feats_stoplist = compute_overlap_features(questions, answers, stoplist=stoplist, word2df=word2dfs)
overlap_feats = np.hstack([overlap_feats, overlap_feats_stoplist])
# overlap_feats = compute_overlap_features(questions, answers, None)
# print overlap_feats[:10]
print 'overlap_feats', overlap_feats.shape
qids = np.array(qids)
labels = np.array(labels).astype('int32')
_, counts = np.unique(labels, return_counts=True)
print counts / float(np.sum(counts))
print "questions", len(np.unique(qids))
# print "questions", len(qids)
print "pairs", len(labels)
# stoplist = None
q_overlap_indices, a_overlap_indices = compute_overlap_idx(questions, answers, stoplist, q_max_sent_length, a_max_sent_length)
# print q_overlap_indices[:3]
# print a_overlap_indices[:3]
questions_idx = convert2indices(questions, alphabet, dummy_word_idx, q_max_sent_length)
answers_idx = convert2indices(answers, alphabet, dummy_word_idx, a_max_sent_length)
print 'answers_idx', answers_idx.shape
basename, _ = os.path.splitext(os.path.basename(fname))
np.save(os.path.join(outdir, '{}.qids.npy'.format(basename)), qids)
np.save(os.path.join(outdir, '{}.questions.npy'.format(basename)), questions_idx)
np.save(os.path.join(outdir, '{}.answers.npy'.format(basename)), answers_idx)
np.save(os.path.join(outdir, '{}.labels.npy'.format(basename)), labels)
np.save(os.path.join(outdir, '{}.overlap_feats.npy'.format(basename)), overlap_feats)
np.save(os.path.join(outdir, '{}.q_overlap_indices.npy'.format(basename)), q_overlap_indices)
np.save(os.path.join(outdir, '{}.a_overlap_indices.npy'.format(basename)), a_overlap_indices)