-
Notifications
You must be signed in to change notification settings - Fork 0
/
prec.py
28 lines (21 loc) · 810 Bytes
/
prec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import numpy as np
import cv2
from matplotlib import pyplot as plt
img1 = cv2.imread('C:\Users\Karma_is_Bitch\Desktop\mail to mam\ccsmall.jpg',0) # queryImage
img2 = cv2.imread('C:\Users\Karma_is_Bitch\Desktop\mail to mam\cc.jpg',0) # trainImage
# Initiate SIFT detector
sift = sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k=2)
# Apply ratio test
good = []
for m,n in matches:
if m.distance < 0.75*n.distance:
good.append([m])
# cv2.drawMatchesKnn expects list of lists as matches.
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,flags=2)
plt.imshow(img3),plt.show()