forked from pyg-team/pytorch_geometric
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pyproject.toml
213 lines (197 loc) · 5.18 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
[build-system]
requires=["flit_core >=3.2,<4"]
build-backend="flit_core.buildapi"
[project]
name="torch-geometric"
version="2.6.0"
authors=[
{name="Matthias Fey", email="matthias@pyg.org"},
]
description="Graph Neural Network Library for PyTorch"
readme="README.md"
requires-python=">=3.8"
keywords=[
"deep-learning",
"pytorch",
"geometric-deep-learning",
"graph-neural-networks",
"graph-convolutional-networks",
]
classifiers=[
"Development Status :: 5 - Production/Stable",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: 3 :: Only",
]
dependencies=[
"aiohttp",
"fsspec",
"jinja2",
"numpy",
"psutil>=5.8.0",
"pyparsing",
"requests",
"tqdm",
]
[project.optional-dependencies]
graphgym=[
"protobuf<4.21",
"pytorch-lightning<2.3.0",
"yacs",
]
modelhub=[
"huggingface_hub"
]
benchmark=[
"matplotlib",
"networkx",
"pandas",
"protobuf<4.21",
"wandb",
]
test=[
"onnx",
"onnxruntime",
"pytest",
"pytest-cov",
]
dev=[
"ipython",
"matplotlib-inline",
"pre-commit",
"torch_geometric[test]",
]
full = [
"scipy",
"scikit-learn",
"ase",
"captum<0.7.0",
"graphviz",
"h5py",
"matplotlib",
"networkx",
"numba<0.60.0",
"opt_einsum",
"pandas",
"pgmpy",
"pynndescent",
"pytorch-memlab",
"rdflib",
"rdkit",
"scikit-image",
"statsmodels",
"sympy",
"tabulate",
"torch_geometric[graphgym, modelhub]",
"torchmetrics",
"trimesh",
]
[project.urls]
homepage="https://pyg.org"
documentation="https://pytorch-geometric.readthedocs.io"
repository="https://github.com/pyg-team/pytorch_geometric.git"
changelog="https://github.com/pyg-team/pytorch_geometric/blob/master/CHANGELOG.md"
[tool.flit.module]
name="torch_geometric"
[tool.yapf]
based_on_style = "pep8"
split_before_named_assigns = false
blank_line_before_nested_class_or_def = false
[tool.mypy]
files = ["torch_geometric"]
install_types = true
non_interactive = true
ignore_missing_imports = true
show_error_codes = true
warn_redundant_casts = true
warn_unused_configs = true
warn_unused_ignores = true
disallow_untyped_defs = true
disallow_incomplete_defs = true
[[tool.mypy.overrides]]
ignore_errors = true
module = [
"torch_geometric.data.*",
"torch_geometric.sampler.*",
"torch_geometric.loader.*",
"torch_geometric.nn.*",
"torch_geometric.explain.*",
"torch_geometric.profile.*",
"torch_geometric.contrib.*",
"torch_geometric.graphgym.*",
"torch_geometric.distributed.*",
]
[tool.isort]
multi_line_output = 3
include_trailing_comma = true
skip = [".gitignore", "__init__.py"]
[tool.ruff] # https://docs.astral.sh/ruff/rules
src = ["torch_geometric"]
line-length = 80
indent-width = 4
target-version = "py38"
[tool.ruff.lint]
select = [
"D", # pydocstyle
]
ignore = [
"D100", # TODO Don't ignore "Missing docstring in public module"
"D101", # TODO Don't ignore "Missing docstring in public class"
"D102", # TODO Don't ignore "Missing docstring in public method"
"D103", # TODO Don't ignore "Missing docstring in public function"
"D104", # TODO Don't ignore "Missing docstring in public package"
"D105", # Ignore "Missing docstring in magic method"
"D107", # Ignore "Missing docstring in __init__"
"D205", # Ignore "blank line required between summary line and description"
]
[tool.ruff.format]
quote-style = "single"
[tool.ruff.lint.pydocstyle]
convention = "google"
[tool.pytest.ini_options]
addopts = [
"--capture=no",
"--color=yes",
"-vv",
]
filterwarnings = [
"ignore:distutils:DeprecationWarning",
"ignore:'torch_geometric.contrib' contains experimental code:UserWarning",
# Filter `torch` warnings:
"ignore:The PyTorch API of nested tensors is in prototype stage:UserWarning",
"ignore:scatter_reduce():UserWarning",
"ignore:Sparse CSR tensor support is in beta state:UserWarning",
"ignore:Sparse CSC tensor support is in beta state:UserWarning",
"ignore:torch.distributed._sharded_tensor will be deprecated:DeprecationWarning",
# Filter `torch.compile` warnings:
"ignore:pkg_resources is deprecated as an API",
"ignore:Deprecated call to `pkg_resources.declare_namespace",
# Filter `captum` warnings:
"ignore:Setting backward hooks on ReLU activations:UserWarning",
"ignore:.*did not already require gradients, required_grads has been set automatically:UserWarning",
# Filter `pytorch_lightning` warnings:
"ignore:GPU available but not used:UserWarning",
]
[tool.coverage.run]
source = ["torch_geometric"]
omit = [
"torch_geometric/distributed/*",
"torch_geometric/datasets/*",
"torch_geometric/data/extract.py",
"torch_geometric/nn/data_parallel.py",
]
[tool.coverage.report]
exclude_lines = [
"pragma: no cover",
"pass",
"raise NotImplementedError",
"register_parameter",
"torch.cuda.is_available",
]
[tool.setuptools]
py-modules = []