-
Notifications
You must be signed in to change notification settings - Fork 1
/
LC110-Balanced-Binary-Tree.py
72 lines (56 loc) · 1.87 KB
/
LC110-Balanced-Binary-Tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the left and right subtrees of every
node differ in height by no more than 1.
Example 1.
Input: root = [3,9,20,null,null,15,7]
Output: true
Example 2.
Input: root = [1,2,2,3,3,null,null,4,4]
Output: false
Example 3:
Input: root = []
Output: true
Constraints:
(*) The number of nodes in the tree is in the range [0, 5000].
(*)-10^4 <= Node.val <= 10^4
"""
from TreeNode import TreeNode
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
"""
Checking isBalanced using new depth attribute
Time complexity: O(n)
Space complexity: O(n)
"""
if root is None: return True
if root.left is not None:
is_left_balanced = self.isBalanced(root.left)
left_depth = root.left.depth
else:
is_left_balanced = True
left_depth = 0
if root.right is not None:
is_right_balanced = self.isBalanced(root.right)
right_depth = root.right.depth
else:
is_right_balanced = True
right_depth = 0
# determine the depth
root.depth = max(right_depth, left_depth) + 1
# determine if the node is balanced
root.is_balanced = is_left_balanced and is_right_balanced and abs(right_depth - left_depth) <= 1
return root.is_balanced
if __name__ == '__main__':
from run_tests import run_tests
correct_answers = [
[[3, 9, 20, None, None, 15, 7], True],
[[1,2,2,3,3,None,None,4,4], False],
[[], True]
]
correct_answers = [
[TreeNode.to_treenode(lst), ans] for lst, ans in correct_answers
]
print('Run tests for isBalanced')
run_tests(Solution().isBalanced, correct_answers)