forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
libra_fast_rcnn_r50_fpn_1x_coco.py
50 lines (50 loc) · 1.5 KB
/
libra_fast_rcnn_r50_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
_base_ = '../fast_rcnn/fast_rcnn_r50_fpn_1x_coco.py'
# model settings
model = dict(
neck=[
dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
dict(
type='BFP',
in_channels=256,
num_levels=5,
refine_level=2,
refine_type='non_local')
],
roi_head=dict(
bbox_head=dict(
loss_bbox=dict(
_delete_=True,
type='BalancedL1Loss',
alpha=0.5,
gamma=1.5,
beta=1.0,
loss_weight=1.0))))
# model training and testing settings
train_cfg = dict(
rcnn=dict(
sampler=dict(
_delete_=True,
type='CombinedSampler',
num=512,
pos_fraction=0.25,
add_gt_as_proposals=True,
pos_sampler=dict(type='InstanceBalancedPosSampler'),
neg_sampler=dict(
type='IoUBalancedNegSampler',
floor_thr=-1,
floor_fraction=0,
num_bins=3))))
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
data = dict(
train=dict(proposal_file=data_root +
'libra_proposals/rpn_r50_fpn_1x_train2017.pkl'),
val=dict(proposal_file=data_root +
'libra_proposals/rpn_r50_fpn_1x_val2017.pkl'),
test=dict(proposal_file=data_root +
'libra_proposals/rpn_r50_fpn_1x_val2017.pkl'))