-
Notifications
You must be signed in to change notification settings - Fork 349
/
flickr8k.py
94 lines (77 loc) · 2.57 KB
/
flickr8k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import cPickle as pkl
import gzip
import os
import sys
import time
import numpy
def prepare_data(caps, features, worddict, maxlen=None, n_words=10000, zero_pad=False):
# x: a list of sentences
seqs = []
feat_list = []
for cc in caps:
seqs.append([worddict[w] if worddict[w] < n_words else 1 for w in cc[0].split()])
feat_list.append(features[cc[1]])
lengths = [len(s) for s in seqs]
if maxlen != None and numpy.max(lengths) >= maxlen:
new_seqs = []
new_feat_list = []
new_lengths = []
for l, s, y in zip(lengths, seqs, feat_list):
if l < maxlen:
new_seqs.append(s)
new_feat_list.append(y)
new_lengths.append(l)
lengths = new_lengths
feat_list = new_feat_list
seqs = new_seqs
if len(lengths) < 1:
return None, None, None
y = numpy.zeros((len(feat_list), feat_list[0].shape[1])).astype('float32')
for idx, ff in enumerate(feat_list):
y[idx,:] = numpy.array(ff.todense())
y = y.reshape([y.shape[0], 14*14, 512])
if zero_pad:
y_pad = numpy.zeros((y.shape[0], y.shape[1]+1, y.shape[2])).astype('float32')
y_pad[:,:-1,:] = y
y = y_pad
n_samples = len(seqs)
maxlen = numpy.max(lengths)+1
x = numpy.zeros((maxlen, n_samples)).astype('int64')
x_mask = numpy.zeros((maxlen, n_samples)).astype('float32')
for idx, s in enumerate(seqs):
x[:lengths[idx],idx] = s
x_mask[:lengths[idx]+1,idx] = 1.
return x, x_mask, y
def load_data(load_train=True, load_dev=True, load_test=True, path='./'):
''' Loads the dataset
:type dataset: string
:param dataset: the path to the dataset
'''
#############
# LOAD DATA #
#############
print '... loading data'
if load_train:
with open(path+'flicker_8k_align.train.pkl', 'rb') as f:
train_cap = pkl.load(f)
train_feat = pkl.load(f)
train = (train_cap, train_feat)
else:
train = None
if load_test:
with open(path+'flicker_8k_align.test.pkl', 'rb') as f:
test_cap = pkl.load(f)
test_feat = pkl.load(f)
test = (test_cap, test_feat)
else:
test = None
if load_dev:
with open(path+'flicker_8k_align.dev.pkl', 'rb') as f:
dev_cap = pkl.load(f)
dev_feat = pkl.load(f)
valid = (dev_cap, dev_feat)
else:
valid = None
with open(path+'dictionary.pkl', 'rb') as f:
worddict = pkl.load(f)
return train, valid, test, worddict