This repository has been archived by the owner on Jan 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ISR_16_Timers_Array.ino
430 lines (334 loc) · 14.1 KB
/
ISR_16_Timers_Array.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/****************************************************************************************************************************
ISR_16_Timers_Array.ino
For SAM DUE boards
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/SAMDUE_TimerInterrupt
Licensed under MIT license
Now even you use all these new 16 ISR-based timers,with their maximum interval practically unlimited (limited only by
unsigned long miliseconds), you just consume only one SAM DUE timer and avoid conflicting with other cores' tasks.
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
*****************************************************************************************************************************/
/*
Notes:
Special design is necessary to share data between interrupt code and the rest of your program.
Variables usually need to be "volatile" types. Volatile tells the compiler to avoid optimizations that assume
variable can not spontaneously change. Because your function may change variables while your program is using them,
the compiler needs this hint. But volatile alone is often not enough.
When accessing shared variables, usually interrupts must be disabled. Even with volatile,
if the interrupt changes a multi-byte variable between a sequence of instructions, it can be read incorrectly.
If your data is multiple variables, such as an array and a count, usually interrupts need to be disabled
or the entire sequence of your code which accesses the data.
RPM Measuring uses high frequency hardware timer 1Hz == 1ms) to measure the time from of one rotation, in ms
then convert to RPM. One rotation is detected by reading the state of a magnetic REED SW or IR LED Sensor
Asssuming LOW is active.
For example: Max speed is 600RPM => 10 RPS => minimum 100ms a rotation. We'll use 80ms for debouncing
If the time between active state is less than 8ms => consider noise.
RPM = 60000 / (rotation time in ms)
We use interrupt to detect whenever the SW is active, set a flag then use timer to count the time between active state
This example will demonstrate the nearly perfect accuracy compared to software timers by printing the actual elapsed millisecs.
Being ISR-based timers, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet
and Blynk services. You can also have many (up to 16) timers to use.
This non-being-blocked important feature is absolutely necessary for mission-critical tasks.
You'll see blynkTimer is blocked while connecting to WiFi / Internet / Blynk, and elapsed time is very unaccurate
In this super simple example, you don't see much different after Blynk is connected, because of no competing task is
written
*/
#if !( defined(ARDUINO_SAM_DUE) || defined(__SAM3X8E__) )
#error This code is designed to run on SAM DUE board / platform! Please check your Tools->Board setting.
#endif
// These define's must be placed at the beginning before #include "SAMDUETimerInterrupt.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
// Don't define TIMER_INTERRUPT_DEBUG > 2. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 0
#define _TIMERINTERRUPT_LOGLEVEL_ 0
// To be included only in main(), .ino with setup() to avoid `Multiple Definitions` Linker Error
#include "SAMDUETimerInterrupt.h"
// To be included only in main(), .ino with setup() to avoid `Multiple Definitions` Linker Error
#include "SAMDUE_ISR_Timer.h"
#include <SimpleTimer.h> // https://github.com/jfturcot/SimpleTimer
#ifndef LED_BUILTIN
#define LED_BUILTIN 13
#endif
#ifndef LED_BLUE
#define LED_BLUE 2
#endif
#ifndef LED_RED
#define LED_RED 3
#endif
// Resolution for ISR_Timer. Smaller => more precise.
#define HW_TIMER_INTERVAL_US 100L
volatile uint32_t startMillis = 0;
// Init SAMDUE_ISR_Timer
// Each SAMDUE_ISR_Timer can service 16 different ISR-based timers
SAMDUE_ISR_Timer ISR_Timer;
#define LED_TOGGLE_INTERVAL_MS 500L
void TimerHandler()
{
static bool toggle = false;
static bool started = false;
static int timeRun = 0;
ISR_Timer.run();
// Toggle LED every LED_TOGGLE_INTERVAL_MS = 500ms = 0.5s
if (++timeRun == ( (LED_TOGGLE_INTERVAL_MS * 1000) / HW_TIMER_INTERVAL_US) )
{
timeRun = 0;
if (!started)
{
started = true;
pinMode(LED_BUILTIN, OUTPUT);
}
//timer interrupt toggles pin LED_BUILTIN
digitalWrite(LED_BUILTIN, toggle);
toggle = !toggle;
}
}
#define NUMBER_ISR_TIMERS 16
// You can assign any interval for any timer here, in milliseconds
uint32_t TimerInterval[NUMBER_ISR_TIMERS] =
{
1000L, 2000L, 3000L, 4000L, 5000L, 6000L, 7000L, 8000L,
9000L, 10000L, 11000L, 12000L, 13000L, 14000L, 15000L, 16000L
};
typedef void (*irqCallback) ();
#if (TIMER_INTERRUPT_DEBUG > 0)
void printStatus(uint16_t index, unsigned long deltaMillis, unsigned long currentMillis)
{
Serial.print(TimerInterval[index] / 1000); Serial.print("s: Delta ms = "); Serial.print(deltaMillis);
Serial.print(", ms = "); Serial.println(currentMillis);
}
#endif
// In SAMDUE, avoid doing something fancy in ISR, for example complex Serial.print with String() argument
// The pure simple Serial.prints here are just for demonstration and testing. Must be eliminate in working environment
// Or you can get this run-time error / crash
void doingSomething0()
{
#if (TIMER_INTERRUPT_DEBUG > 0)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(0, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething1()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(1, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething2()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(2, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething3()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(3, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething4()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(4, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething5()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(5, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething6()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(6, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething7()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(7, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething8()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(8, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething9()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(9, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething10()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(10, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
// In SAMDUE, avoid doing something fancy in ISR, for example complex Serial.print with String() argument
// The pure simple Serial.prints here are just for demonstration and testing. Must be eliminate in working environment
// Or you can get this run-time error / crash
void doingSomething11()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(11, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
// In SAMDUE, avoid doing something fancy in ISR, for example complex Serial.print with String() argument
// The pure simple Serial.prints here are just for demonstration and testing. Must be eliminate in working environment
// Or you can get this run-time error / crash
void doingSomething12()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(12, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething13()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(13, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething14()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(14, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
void doingSomething15()
{
#if (TIMER_INTERRUPT_DEBUG > 1)
static unsigned long previousMillis = startMillis;
unsigned long currentMillis = millis();
unsigned long deltaMillis = currentMillis - previousMillis;
printStatus(15, deltaMillis, currentMillis);
previousMillis = currentMillis;
#endif
}
irqCallback irqCallbackFunc[NUMBER_ISR_TIMERS] =
{
doingSomething0, doingSomething1, doingSomething2, doingSomething3,
doingSomething4, doingSomething5, doingSomething6, doingSomething7,
doingSomething8, doingSomething9, doingSomething10, doingSomething11,
doingSomething12, doingSomething13, doingSomething14, doingSomething15
};
////////////////////////////////////////////////
#define SIMPLE_TIMER_MS 2000L
// Init SimpleTimer
SimpleTimer simpleTimer;
// Here is software Timer, you can do somewhat fancy stuffs without many issues.
// But always avoid
// 1. Long delay() it just doing nothing and pain-without-gain wasting CPU power.Plan and design your code / strategy ahead
// 2. Very long "do", "while", "for" loops without predetermined exit time.
void simpleTimerDoingSomething2s()
{
static unsigned long previousMillis = startMillis;
unsigned long currMillis = millis();
Serial.print(F("simpleTimer2s: Dms=")); Serial.print(SIMPLE_TIMER_MS);
Serial.print(F(", actual=")); Serial.println(currMillis - previousMillis);
previousMillis = currMillis;
}
uint16_t attachDueInterrupt(double microseconds, timerCallback callback, const char* TimerName)
{
DueTimerInterrupt dueTimerInterrupt = DueTimer.getAvailable();
dueTimerInterrupt.attachInterruptInterval(microseconds, callback);
uint16_t timerNumber = dueTimerInterrupt.getTimerNumber();
Serial.print(TimerName); Serial.print(F(" attached to Timer(")); Serial.print(timerNumber); Serial.println(F(")"));
return timerNumber;
}
void setup()
{
Serial.begin(115200);
while (!Serial);
delay(100);
Serial.print(F("\nStarting ISR_16_Timers_Array on ")); Serial.println(BOARD_NAME);
Serial.println(SAMDUE_TIMER_INTERRUPT_VERSION);
Serial.print(F("CPU Frequency = ")); Serial.print(F_CPU / 1000000); Serial.println(F(" MHz"));
Serial.print(F("Timer Frequency = ")); Serial.print(SystemCoreClock / 1000000); Serial.println(F(" MHz"));
// Interval in microsecs
attachDueInterrupt(HW_TIMER_INTERVAL_US, TimerHandler, "ITimer");
// Just to demonstrate, don't use too many ISR Timers if not absolutely necessary
// You can use up to 16 timer for each ISR_Timer
for (int i = 0; i < NUMBER_ISR_TIMERS; i++)
{
ISR_Timer.setInterval(TimerInterval[i], irqCallbackFunc[i]);
}
// You need this timer for non-critical tasks. Avoid abusing ISR if not absolutely necessary.
simpleTimer.setInterval(SIMPLE_TIMER_MS, simpleTimerDoingSomething2s);
}
#define BLOCKING_TIME_MS 11111L
void loop()
{
// This unadvised blocking task is used to demonstrate the blocking effects onto the execution and accuracy to Software timer
// You see the time elapse of ISR_Timer still accurate, whereas very unaccurate for Software Timer
// The time elapse for 2000ms software timer now becomes 11111ms (BLOCKING_TIME_MS)
// While that of ISR_Timer is still prefect.
delay(BLOCKING_TIME_MS);
// You need this Software timer for non-critical tasks. Avoid abusing ISR if not absolutely necessary
// You don't need to and never call ISR_Timer.run() here in the loop(). It's already handled by ISR timer.
simpleTimer.run();
}