-
Notifications
You must be signed in to change notification settings - Fork 1
/
_pkgdown.yml
87 lines (79 loc) · 1.98 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
url: https://kinleyid.github.io/tempodisco/
template:
bootstrap: 5
light-switch: true
bslib:
primary: '#bf6900'
base_font: 'Georgia'
navbar:
structure:
left: [intro, articles, reference]
components:
articles:
text: Examples
menu:
- text: Data preprocessing
- text: Processing adjusting-amounts data
href: articles/adjusting-amounts.html
- text: Identifying nonsystematic discounting
href: articles/nonsystematic-discounting.html
- text: Model fitting
- text: Modeling choice-level data
href: articles/modeling-binary-choice-data.html
- text: Visualizing models
href: articles/visualizing-models.html
- text: Statistical inference
- text: Measuring area under the curve
href: articles/area-under-curve.html
- text: Comparing across discount functions
href: articles/comparing-models.html
- text: Analyzing data from multiple participants
href: articles/analyzing-study.html
- text: Advanced topics
- text: Drift diffusion models
href: articles/drift-diffusion-models.html
- text: Custom discount functions
href: articles/custom-discount-functions.html
reference:
- title: Temporal discounting models
contents:
- td_ipm
- td_bclm
- td_bcnm
- td_ddm
- title: Discount functions
contents:
- td_fn
- discount_function
- title: Scoring response data
contents:
- adj_amt_indiffs
- indiffs
- kirby_score
- wileyto_score
- most_consistent_indiffs
- title: Data quality checks
contents:
- nonsys
- attention_checks
- kirby_consistency
- invariance_checks
- title: Model-agnostic measures of discounting
contents:
- AUC
- ED50
- title: Methods
contents:
- plot.td_um
- starts_with("coef")
- starts_with("deviance")
- starts_with("fitted")
- starts_with("logLik")
- starts_with("predict")
- starts_with("residuals")
- title: Datasets
contents:
- td_bc_single_ptpt
- adj_amt_sim
- td_ip_simulated_ptpt
- td_bc_study