diff --git a/README.md b/README.md index b2ad952..a46b7ee 100644 --- a/README.md +++ b/README.md @@ -9,8 +9,7 @@ [![codecov](https://codecov.io/github/kinleyid/tempodisco/graph/badge.svg?token=CCQXS3SNGB)](https://codecov.io/github/kinleyid/tempodisco) -The goal of tempodisco is to provide easy access to common methods for -working with temporal discounting data. +`tempodisco` is an R package for working with delay discounting data. ## Installation @@ -44,11 +43,10 @@ head(indiff_data) #> 5 360 0.015625 ``` -This returns a data frame with a column for each delay and a column for -the corresponding indifference points. The function `td_ipm` can then be -used to identify the best-fitting discount function (according to the -Bayesian information criterion) from any subset of the following -options: +This returns a data frame containing the delays and corresponding +indifference points. The function `td_ipm` can then be used to identify +the best-fitting discount function (according to the Bayesian +information criterion) from any subset of the following options: | Name | Functional form | |----------------------------------------------------------------------------------------------|---------------------------------------------------------| @@ -224,7 +222,7 @@ plot(mod, log = 'x', verbose = F, p_lines = c(0.05, 0.95)) To model reaction times using a drift diffusion model, we can use `td_ddm` (here, for speed, we are starting the optimization near optimal -values): +values for this dataset): ``` r ddm <- td_ddm(td_bc_single_ptpt, discount_function = 'exponential',