forked from microsoft/DeepSpeed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
executable file
·308 lines (255 loc) · 11.2 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
DeepSpeed library
To build wheel on Windows:
1. Install pytorch, such as pytorch 1.12 + cuda 11.6.
2. Install visual cpp build tool.
3. Include cuda toolkit.
4. Launch cmd console with Administrator privilege for creating required symlink folders.
Create a new wheel via the following command:
build_win.bat
The wheel will be located at: dist/*.whl
"""
import os
import sys
import subprocess
from setuptools import setup, find_packages
from setuptools.command import egg_info
import time
torch_available = True
try:
import torch
except ImportError:
torch_available = False
print('[WARNING] Unable to import torch, pre-compiling ops will be disabled. ' \
'Please visit https://pytorch.org/ to see how to properly install torch on your system.')
from op_builder import get_default_compute_capabilities, OpBuilder
from op_builder.all_ops import ALL_OPS
from op_builder.builder import installed_cuda_version
# Fetch rocm state.
is_rocm_pytorch = OpBuilder.is_rocm_pytorch()
rocm_version = OpBuilder.installed_rocm_version()
RED_START = '\033[31m'
RED_END = '\033[0m'
ERROR = f"{RED_START} [ERROR] {RED_END}"
def abort(msg):
print(f"{ERROR} {msg}")
assert False, msg
def fetch_requirements(path):
with open(path, 'r') as fd:
return [r.strip() for r in fd.readlines()]
install_requires = fetch_requirements('requirements/requirements.txt')
extras_require = {
'1bit': [], # add cupy based on cuda/rocm version
'1bit_mpi': fetch_requirements('requirements/requirements-1bit-mpi.txt'),
'readthedocs': fetch_requirements('requirements/requirements-readthedocs.txt'),
'dev': fetch_requirements('requirements/requirements-dev.txt'),
'autotuning': fetch_requirements('requirements/requirements-autotuning.txt'),
'autotuning_ml': fetch_requirements('requirements/requirements-autotuning-ml.txt'),
'sparse_attn': fetch_requirements('requirements/requirements-sparse_attn.txt'),
'sparse': fetch_requirements('requirements/requirements-sparse_pruning.txt'),
'inf': fetch_requirements('requirements/requirements-inf.txt'),
'sd': fetch_requirements('requirements/requirements-sd.txt'),
'triton': fetch_requirements('requirements/requirements-triton.txt'),
}
# Add specific cupy version to both onebit extension variants.
if torch_available and torch.cuda.is_available():
cupy = None
if is_rocm_pytorch:
rocm_major, rocm_minor = rocm_version
# XXX cupy support for rocm 5 is not available yet.
if rocm_major <= 4:
cupy = f"cupy-rocm-{rocm_major}-{rocm_minor}"
else:
cuda_major_ver, cuda_minor_ver = installed_cuda_version()
if (cuda_major_ver < 11) or ((cuda_major_ver == 11) and (cuda_minor_ver < 3)):
cupy = f"cupy-cuda{cuda_major_ver}{cuda_minor_ver}"
else:
cupy = f"cupy-cuda{cuda_major_ver}x"
if cupy:
extras_require['1bit'].append(cupy)
extras_require['1bit_mpi'].append(cupy)
# Make an [all] extra that installs all needed dependencies.
all_extras = set()
for extra in extras_require.items():
for req in extra[1]:
all_extras.add(req)
extras_require['all'] = list(all_extras)
cmdclass = {}
# For any pre-installed ops force disable ninja.
if torch_available:
from accelerator import get_accelerator
cmdclass['build_ext'] = get_accelerator().build_extension().with_options(use_ninja=False)
if torch_available:
TORCH_MAJOR = torch.__version__.split('.')[0]
TORCH_MINOR = torch.__version__.split('.')[1]
else:
TORCH_MAJOR = "0"
TORCH_MINOR = "0"
if torch_available and not torch.cuda.is_available():
# Fix to allow docker builds, similar to https://github.com/NVIDIA/apex/issues/486.
print("[WARNING] Torch did not find cuda available, if cross-compiling or running with cpu only "
"you can ignore this message. Adding compute capability for Pascal, Volta, and Turing "
"(compute capabilities 6.0, 6.1, 6.2)")
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
os.environ["TORCH_CUDA_ARCH_LIST"] = get_default_compute_capabilities()
ext_modules = []
# Default to pre-install kernels to false so we rely on JIT on Linux, opposite on Windows.
BUILD_OP_PLATFORM = 1 if sys.platform == "win32" else 0
BUILD_OP_DEFAULT = int(os.environ.get('DS_BUILD_OPS', BUILD_OP_PLATFORM))
print(f"DS_BUILD_OPS={BUILD_OP_DEFAULT}")
if BUILD_OP_DEFAULT:
assert torch_available, "Unable to pre-compile ops without torch installed. Please install torch before attempting to pre-compile ops."
def command_exists(cmd):
if sys.platform == "win32":
result = subprocess.Popen(f'{cmd}', stdout=subprocess.PIPE, shell=True)
return result.wait() == 1
else:
result = subprocess.Popen(f'type {cmd}', stdout=subprocess.PIPE, shell=True)
return result.wait() == 0
def op_envvar(op_name):
assert hasattr(ALL_OPS[op_name], 'BUILD_VAR'), \
f"{op_name} is missing BUILD_VAR field"
return ALL_OPS[op_name].BUILD_VAR
def op_enabled(op_name):
env_var = op_envvar(op_name)
return int(os.environ.get(env_var, BUILD_OP_DEFAULT))
compatible_ops = dict.fromkeys(ALL_OPS.keys(), False)
install_ops = dict.fromkeys(ALL_OPS.keys(), False)
for op_name, builder in ALL_OPS.items():
op_compatible = builder.is_compatible()
compatible_ops[op_name] = op_compatible
# If op is requested but not available, throw an error.
if op_enabled(op_name) and not op_compatible:
env_var = op_envvar(op_name)
if env_var not in os.environ:
builder.warning(f"One can disable {op_name} with {env_var}=0")
abort(f"Unable to pre-compile {op_name}")
# If op is compatible but install is not enabled (JIT mode).
if is_rocm_pytorch and op_compatible and not op_enabled(op_name):
builder.hipify_extension()
# If op install enabled, add builder to extensions.
if op_enabled(op_name) and op_compatible:
assert torch_available, f"Unable to pre-compile {op_name}, please first install torch"
install_ops[op_name] = op_enabled(op_name)
ext_modules.append(builder.builder())
print(f'Install Ops={install_ops}')
# Write out version/git info.
git_hash_cmd = "git rev-parse --short HEAD"
git_branch_cmd = "git rev-parse --abbrev-ref HEAD"
if command_exists('git') and 'DS_BUILD_STRING' not in os.environ:
try:
result = subprocess.check_output(git_hash_cmd, shell=True)
git_hash = result.decode('utf-8').strip()
result = subprocess.check_output(git_branch_cmd, shell=True)
git_branch = result.decode('utf-8').strip()
except subprocess.CalledProcessError:
git_hash = "unknown"
git_branch = "unknown"
else:
git_hash = "unknown"
git_branch = "unknown"
def create_dir_symlink(src, dest):
if not os.path.islink(dest):
if os.path.exists(dest):
os.remove(dest)
assert not os.path.exists(dest)
os.symlink(src, dest)
if sys.platform == "win32":
# This creates a symbolic links on Windows.
# It needs Administrator privilege to create symlinks on Windows.
create_dir_symlink('..\\..\\csrc', '.\\deepspeed\\ops\\csrc')
create_dir_symlink('..\\..\\op_builder', '.\\deepspeed\\ops\\op_builder')
create_dir_symlink('..\\accelerator', '.\\deepspeed\\accelerator')
egg_info.manifest_maker.template = 'MANIFEST_win.in'
# Parse the DeepSpeed version string from version.txt.
version_str = open('version.txt', 'r').read().strip()
# Build specifiers like .devX can be added at install time. Otherwise, add the git hash.
# Example: DS_BUILD_STRING=".dev20201022" python setup.py sdist bdist_wheel.
# Building wheel for distribution, update version file.
if 'DS_BUILD_STRING' in os.environ:
# Build string env specified, probably building for distribution.
with open('build.txt', 'w') as fd:
fd.write(os.environ.get('DS_BUILD_STRING'))
version_str += os.environ.get('DS_BUILD_STRING')
elif os.path.isfile('build.txt'):
# build.txt exists, probably installing from distribution.
with open('build.txt', 'r') as fd:
version_str += fd.read().strip()
else:
# None of the above, probably installing from source.
version_str += f'+{git_hash}'
torch_version = ".".join([TORCH_MAJOR, TORCH_MINOR])
bf16_support = False
# Set cuda_version to 0.0 if cpu-only.
cuda_version = "0.0"
nccl_version = "0.0"
# Set hip_version to 0.0 if cpu-only.
hip_version = "0.0"
if torch_available and torch.version.cuda is not None:
cuda_version = ".".join(torch.version.cuda.split('.')[:2])
if sys.platform != "win32":
if isinstance(torch.cuda.nccl.version(), int):
# This will break if minor version > 9.
nccl_version = ".".join(str(torch.cuda.nccl.version())[:2])
else:
nccl_version = ".".join(map(str, torch.cuda.nccl.version()[:2]))
if hasattr(torch.cuda, 'is_bf16_supported') and torch.cuda.is_available():
bf16_support = torch.cuda.is_bf16_supported()
if torch_available and hasattr(torch.version, 'hip') and torch.version.hip is not None:
hip_version = ".".join(torch.version.hip.split('.')[:2])
torch_info = {
"version": torch_version,
"bf16_support": bf16_support,
"cuda_version": cuda_version,
"nccl_version": nccl_version,
"hip_version": hip_version
}
print(f"version={version_str}, git_hash={git_hash}, git_branch={git_branch}")
with open('deepspeed/git_version_info_installed.py', 'w') as fd:
fd.write(f"version='{version_str}'\n")
fd.write(f"git_hash='{git_hash}'\n")
fd.write(f"git_branch='{git_branch}'\n")
fd.write(f"installed_ops={install_ops}\n")
fd.write(f"compatible_ops={compatible_ops}\n")
fd.write(f"torch_info={torch_info}\n")
print(f'install_requires={install_requires}')
print(f'compatible_ops={compatible_ops}')
print(f'ext_modules={ext_modules}')
# Parse README.md to make long_description for PyPI page.
thisdir = os.path.abspath(os.path.dirname(__file__))
with open(os.path.join(thisdir, 'README.md'), encoding='utf-8') as fin:
readme_text = fin.read()
start_time = time.time()
setup(name='deepspeed',
version=version_str,
description='DeepSpeed library',
long_description=readme_text,
long_description_content_type='text/markdown',
author='DeepSpeed Team',
author_email='deepspeed-info@microsoft.com',
url='http://deepspeed.ai',
project_urls={
'Documentation': 'https://deepspeed.readthedocs.io',
'Source': 'https://github.com/microsoft/DeepSpeed',
},
install_requires=install_requires,
extras_require=extras_require,
packages=find_packages(include=['deepspeed', 'deepspeed.*']),
include_package_data=True,
scripts=[
'bin/deepspeed', 'bin/deepspeed.pt', 'bin/ds', 'bin/ds_ssh', 'bin/ds_report', 'bin/ds_bench', 'bin/dsr',
'bin/ds_elastic'
],
classifiers=[
'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9',
'Programming Language :: Python :: 3.10'
],
license='Apache Software License 2.0',
ext_modules=ext_modules,
cmdclass=cmdclass)
end_time = time.time()
print(f'deepspeed build time = {end_time - start_time} secs')