forked from tealeg/xlsx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
date.go
147 lines (133 loc) · 4.96 KB
/
date.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
package xlsx
import (
"math"
"time"
)
const (
MJD_0 float64 = 2400000.5
MJD_JD2000 float64 = 51544.5
secondsInADay = float64((24 * time.Hour) / time.Second)
nanosInADay = float64((24 * time.Hour) / time.Nanosecond)
)
var (
timeLocationUTC, _ = time.LoadLocation("UTC")
unixEpoc = time.Date(1970, time.January, 1, 0, 0, 0, 0, time.UTC)
// In 1900 mode, Excel takes dates in floating point numbers of days starting with Jan 1 1900.
// The days are not zero indexed, so Jan 1 1900 would be 1.
// Except that Excel pretends that Feb 29, 1900 occurred to be compatible with a bug in Lotus 123.
// So, this constant uses Dec 30, 1899 instead of Jan 1, 1900, so the diff will be correct.
// http://www.cpearson.com/excel/datetime.htm
excel1900Epoc = time.Date(1899, time.December, 30, 0, 0, 0, 0, time.UTC)
excel1904Epoc = time.Date(1904, time.January, 1, 0, 0, 0, 0, time.UTC)
// Days between epocs, including both off by one errors for 1900.
daysBetween1970And1900 = float64(unixEpoc.Sub(excel1900Epoc) / (24 * time.Hour))
daysBetween1970And1904 = float64(unixEpoc.Sub(excel1904Epoc) / (24 * time.Hour))
)
func TimeToUTCTime(t time.Time) time.Time {
return time.Date(t.Year(), t.Month(), t.Day(), t.Hour(), t.Minute(), t.Second(), t.Nanosecond(), timeLocationUTC)
}
func shiftJulianToNoon(julianDays, julianFraction float64) (float64, float64) {
switch {
case -0.5 < julianFraction && julianFraction < 0.5:
julianFraction += 0.5
case julianFraction >= 0.5:
julianDays += 1
julianFraction -= 0.5
case julianFraction <= -0.5:
julianDays -= 1
julianFraction += 1.5
}
return julianDays, julianFraction
}
// Return the integer values for hour, minutes, seconds and
// nanoseconds that comprised a given fraction of a day.
// values would round to 1 us.
func fractionOfADay(fraction float64) (hours, minutes, seconds, nanoseconds int) {
const (
c1us = 1e3
c1s = 1e9
c1day = 24 * 60 * 60 * c1s
)
frac := int64(c1day*fraction + c1us/2)
nanoseconds = int((frac%c1s)/c1us) * c1us
frac /= c1s
seconds = int(frac % 60)
frac /= 60
minutes = int(frac % 60)
hours = int(frac / 60)
return
}
func julianDateToGregorianTime(part1, part2 float64) time.Time {
part1I, part1F := math.Modf(part1)
part2I, part2F := math.Modf(part2)
julianDays := part1I + part2I
julianFraction := part1F + part2F
julianDays, julianFraction = shiftJulianToNoon(julianDays, julianFraction)
day, month, year := doTheFliegelAndVanFlandernAlgorithm(int(julianDays))
hours, minutes, seconds, nanoseconds := fractionOfADay(julianFraction)
return time.Date(year, time.Month(month), day, hours, minutes, seconds, nanoseconds, time.UTC)
}
// By this point generations of programmers have repeated the
// algorithm sent to the editor of "Communications of the ACM" in 1968
// (published in CACM, volume 11, number 10, October 1968, p.657).
// None of those programmers seems to have found it necessary to
// explain the constants or variable names set out by Henry F. Fliegel
// and Thomas C. Van Flandern. Maybe one day I'll buy that jounal and
// expand an explanation here - that day is not today.
func doTheFliegelAndVanFlandernAlgorithm(jd int) (day, month, year int) {
l := jd + 68569
n := (4 * l) / 146097
l = l - (146097*n+3)/4
i := (4000 * (l + 1)) / 1461001
l = l - (1461*i)/4 + 31
j := (80 * l) / 2447
d := l - (2447*j)/80
l = j / 11
m := j + 2 - (12 * l)
y := 100*(n-49) + i + l
return d, m, y
}
// Convert an excelTime representation (stored as a floating point number) to a time.Time.
func TimeFromExcelTime(excelTime float64, date1904 bool) time.Time {
var date time.Time
var wholeDaysPart = int(excelTime)
// Excel uses Julian dates prior to March 1st 1900, and
// Gregorian thereafter.
if wholeDaysPart <= 61 {
const OFFSET1900 = 15018.0
const OFFSET1904 = 16480.0
var date time.Time
if date1904 {
date = julianDateToGregorianTime(MJD_0, excelTime+OFFSET1904)
} else {
date = julianDateToGregorianTime(MJD_0, excelTime+OFFSET1900)
}
return date
}
var floatPart = excelTime - float64(wholeDaysPart)
if date1904 {
date = excel1904Epoc
} else {
date = excel1900Epoc
}
durationPart := time.Duration(nanosInADay * floatPart)
return date.AddDate(0, 0, wholeDaysPart).Add(durationPart)
}
// TimeToExcelTime will convert a time.Time into Excel's float representation, in either 1900 or 1904
// mode. If you don't know which to use, set date1904 to false.
// TODO should this should handle Julian dates?
func TimeToExcelTime(t time.Time, date1904 bool) float64 {
// Get the number of days since the unix epoc
daysSinceUnixEpoc := float64(t.Unix()) / secondsInADay
// Get the number of nanoseconds in days since Unix() is in seconds.
nanosPart := float64(t.Nanosecond()) / nanosInADay
// Add both together plus the number of days difference between unix and Excel epocs.
var offsetDays float64
if date1904 {
offsetDays = daysBetween1970And1904
} else {
offsetDays = daysBetween1970And1900
}
daysSinceExcelEpoc := daysSinceUnixEpoc + offsetDays + nanosPart
return daysSinceExcelEpoc
}