From ad4937186a7382edb2ad7ef430451d46220a3c86 Mon Sep 17 00:00:00 2001 From: Sutou Kouhei Date: Tue, 24 Dec 2024 09:21:15 +0900 Subject: [PATCH] Adjust --- docs/source/format/StatisticsSchema.rst | 136 +++++++++++------------- 1 file changed, 62 insertions(+), 74 deletions(-) diff --git a/docs/source/format/StatisticsSchema.rst b/docs/source/format/StatisticsSchema.rst index 728b411f6ce96..e5c3563c709f8 100644 --- a/docs/source/format/StatisticsSchema.rst +++ b/docs/source/format/StatisticsSchema.rst @@ -34,8 +34,8 @@ be read as Apache Arrow data may have statistics. For example, the Apache Parquet C++ implementation can read an Apache Parquet file as Apache Arrow data and the Apache Parquet file may have statistics. -We standardize the representation of statistics as an Apache Arrow array -for ease of exchange. +We standardize the representation of statistics as an Apache Arrow +array for ease of exchange. Use case -------- @@ -86,7 +86,7 @@ Here is the outline of the schema for statistics:: struct< column: int32, statistics: map< - key: dictionary, + key: dictionary, items: dense_union<...all needed types...> > > @@ -124,12 +124,13 @@ Here is the details of the ``map`` of the ``statistics``: - Nullable - Notes * - key - - ``dictionary`` + - ``dictionary`` - ``false`` - - The string key is the name of the statistic. Dictionary-encoding is used for - efficiency as the same statistic may be repeated for different columns. - Different keys are assigned for exact and - approximate statistic values. Each statistic has their own description below. + - The string key is the name of the + statistic. Dictionary-encoding is used for efficiency as the + same statistic may be repeated for different columns. + Different keys are assigned for exact and approximate statistic + values. Each statistic has their own description below. * - items - ``dense_union`` - ``false`` @@ -139,31 +140,31 @@ Here is the details of the ``map`` of the ``statistics``: ``int64`` distinct count statistic and a ``float64`` average byte width statistic. See the description of each statistic below. - Dense union has name for each field but we don't standardize field names for the dense union because we - can access to proper field by type code not name. So we can use - any valid name for fields. + Dense union has name for each field but we don't standardize + field names for the dense union because we can access to proper + field by type code not name. So we can use any valid name for + fields. .. _statistics-schema-key: Standard statistics ------------------- -Each statistic kind has a name that appears as a key in the statistics map -for each column or entire table. ``dictionary`` -is used to encode the key for space-efficiency. +Each statistic kind has a name that appears as a key in the statistics +map for each column or entire table. ``dictionary`` is used to encode the key for space-efficiency. We assign different names for variations of the same statistic instead of using flags. For example, we assign different statistic names for -exact and approximate values of the "distinct_count" statistic. +exact and approximate values of the "distinct count" statistic. The colon symbol ``:`` is to be used as a namespace separator like :ref:`format_metadata`. It can be used multiple times in a key. -The ``ARROW`` prefix is a reserved namespace for pre-defined -statistic names in current and future versions of this specification. -User-defined statistics must not use it. -For example, you can use your product name as namespace -such as ``MY_PRODUCT:my_statistics:exact``. +The ``ARROW`` prefix is a reserved namespace for pre-defined statistic +names in current and future versions of this specification. +User-defined statistics must not use it. For example, you can use your +product name as namespace such as ``MY_PRODUCT:my_statistics:exact``. Here are pre-defined statistics keys: @@ -223,13 +224,12 @@ Here are pre-defined statistics keys: - The number of rows in the target table, record batch or array. (approximate) -If you find a statistic that might be useful to multiple -systems, please propose it on the `Apache Arrow development -mailing-list `__. +If you find a statistic that might be useful to multiple systems, +please propose it on the `Apache Arrow development mailing-list +`__. -Interoperability improves when producers and consumers of -statistics follow a previously agreed upon statistic -specification. +Interoperability improves when producers and consumers of statistics +follow a previously agreed upon statistic specification. .. _statistics-schema-examples: @@ -304,10 +304,7 @@ Statistics schema:: struct< column: int32, statistics: map< - key: dictionary< - indices: int32, - dictionary: utf8 - >, + key: dictionary, items: dense_union<0: int64> > > @@ -327,6 +324,13 @@ Statistics array:: ] statistics: key: + values: [ + "ARROW:row_count:exact", + "ARROW:null_count:exact", + "ARROW:distinct_count:exact", + "ARROW:max_value:exact", + "ARROW:min_value:exact", + ], indices: [ 0, # "ARROW:row_count:exact" 1, # "ARROW:null_count:exact" @@ -338,13 +342,6 @@ Statistics array:: 3, # "ARROW:max_value:exact" 4, # "ARROW:min_value:exact" ] - dictionary: [ - "ARROW:row_count:exact", - "ARROW:null_count:exact", - "ARROW:distinct_count:exact", - "ARROW:max_value:exact", - "ARROW:min_value:exact", - ], items: children: 0: [ # int64 @@ -478,10 +475,7 @@ Statistics schema:: struct< column: int32, statistics: map< - key: dictionary< - indices: int32, - dictionary: utf8 - >, + key: dictionary, items: dense_union< # For the number of rows, the number of nulls and so on. 0: int64, @@ -511,6 +505,15 @@ Statistics array:: ] statistics: key: + values: [ + "ARROW:row_count:exact", + "ARROW:null_count:exact", + "ARROW:distinct_count:exact", + "ARROW:max_value:approximate", + "ARROW:min_value:approximate", + "ARROW:max_value:exact", + "ARROW:min_value:exact", + ] indices: [ 0, # "ARROW:row_count:exact" 1, # "ARROW:null_count:exact" @@ -527,15 +530,6 @@ Statistics array:: 1, # "ARROW:null_count:exact" 2, # "ARROW:distinct_count:exact" ] - dictionary: [ - "ARROW:row_count:exact", - "ARROW:null_count:exact", - "ARROW:distinct_count:exact", - "ARROW:max_value:approximate", - "ARROW:min_value:approximate", - "ARROW:max_value:exact", - "ARROW:min_value:exact", - ], items: children: 0: [ # int64 @@ -639,10 +633,7 @@ Statistics schema:: struct< column: int32, statistics: map< - key: dictionary< - indices: int32, - dictionary: utf8 - >, + key: dictionary, items: dense_union<0: int64> > > @@ -658,6 +649,13 @@ Statistics array:: ] statistics: key: + values: [ + "ARROW:row_count:exact", + "ARROW:null_count:exact", + "ARROW:distinct_count:exact", + "ARROW:max_value:exact", + "ARROW:min_value:exact", + ] indices: [ 0, # "ARROW:row_count:exact" 1, # "ARROW:null_count:exact" @@ -665,13 +663,6 @@ Statistics array:: 3, # "ARROW:max_value:exact" 4, # "ARROW:min_value:exact" ] - dictionary: [ - "ARROW:row_count:exact", - "ARROW:null_count:exact", - "ARROW:distinct_count:exact", - "ARROW:max_value:exact", - "ARROW:min_value:exact", - ], items: children: 0: [ # int64 @@ -783,10 +774,7 @@ Statistics schema:: struct< column: int32, statistics: map< - key: dictionary< - indices: int32, - dictionary: utf8 - >, + key: dictionary, items: dense_union< # For the number of rows, the number of nulls and so on. 0: int64, @@ -814,6 +802,15 @@ Statistics array:: ] statistics: key: + values: [ + "ARROW:row_count:exact", + "ARROW:null_count:exact", + "ARROW:distinct_count:exact", + "ARROW:max_value:approximate", + "ARROW:min_value:approximate", + "ARROW:max_value:exact", + "ARROW:min_value:exact", + ] indices: [ 0, # "ARROW:row_count:exact" 1, # "ARROW:null_count:exact" @@ -828,15 +825,6 @@ Statistics array:: 3, # "ARROW:max_value:approximate" 4, # "ARROW:min_value:approximate" ] - dictionary: [ - "ARROW:row_count:exact", - "ARROW:null_count:exact", - "ARROW:distinct_count:exact", - "ARROW:max_value:approximate", - "ARROW:min_value:approximate", - "ARROW:max_value:exact", - "ARROW:min_value:exact", - ], items: children: 0: [ # int64