-
-
Notifications
You must be signed in to change notification settings - Fork 312
/
base_model.py
271 lines (234 loc) · 10.1 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from __future__ import annotations
from pathlib import Path
from typing import Any, ClassVar, DefaultDict, Dict, List, Optional, Set, Tuple
from pydantic import Field
from datamodel_code_generator import cached_property
from datamodel_code_generator.imports import Import
from datamodel_code_generator.model import (
ConstraintsBase,
DataModel,
DataModelFieldBase,
)
from datamodel_code_generator.model.base import UNDEFINED
from datamodel_code_generator.model.pydantic.imports import IMPORT_EXTRA, IMPORT_FIELD
from datamodel_code_generator.reference import Reference
from datamodel_code_generator.types import UnionIntFloat, chain_as_tuple
class Constraints(ConstraintsBase):
gt: Optional[UnionIntFloat] = Field(None, alias='exclusiveMinimum')
ge: Optional[UnionIntFloat] = Field(None, alias='minimum')
lt: Optional[UnionIntFloat] = Field(None, alias='exclusiveMaximum')
le: Optional[UnionIntFloat] = Field(None, alias='maximum')
multiple_of: Optional[float] = Field(None, alias='multipleOf')
min_items: Optional[int] = Field(None, alias='minItems')
max_items: Optional[int] = Field(None, alias='maxItems')
min_length: Optional[int] = Field(None, alias='minLength')
max_length: Optional[int] = Field(None, alias='maxLength')
regex: Optional[str] = Field(None, alias='pattern')
unique_items: Optional[bool] = Field(None, alias='uniqueItems')
class DataModelField(DataModelFieldBase):
_EXCLUDE_FIELD_KEYS: ClassVar[Set[str]] = {
'alias',
'default',
'const',
'gt',
'ge',
'lt',
'le',
'multiple_of',
'min_items',
'max_items',
'min_length',
'max_length',
'regex',
}
_COMPARE_EXPRESSIONS: ClassVar[Set[str]] = {'gt', 'ge', 'lt', 'le'}
constraints: Optional[Constraints] = None
@property
def method(self) -> Optional[str]:
return self.validator
@property
def validator(self) -> Optional[str]:
return None
# TODO refactor this method for other validation logic
# from datamodel_code_generator.model.pydantic import VALIDATOR_TEMPLATE
#
# return VALIDATOR_TEMPLATE.render(
# field_name=self.name, types=','.join([t.type_hint for t in self.data_types])
# )
@property
def field(self) -> Optional[str]:
"""for backwards compatibility"""
result = str(self)
if (
self.use_default_kwarg
and not result.startswith('Field(...')
and not result.startswith('Field(default_factory=')
):
# Use `default=` for fields that have a default value so that type
# checkers using @dataclass_transform can infer the field as
# optional in __init__.
result = result.replace('Field(', 'Field(default=')
if result == '':
return None
return result
def self_reference(self) -> bool:
return isinstance(self.parent, BaseModel) and self.parent.reference.path in {
d.reference.path for d in self.data_type.all_data_types if d.reference
}
def _get_strict_field_constraint_value(self, constraint: str, value: Any) -> Any:
if value is None or constraint not in self._COMPARE_EXPRESSIONS:
return value
if any(
data_type.type == 'float' for data_type in self.data_type.all_data_types
):
return float(value)
return int(value)
def _get_default_as_pydantic_model(self) -> Optional[str]:
for data_type in self.data_type.data_types or (self.data_type,):
# TODO: Check nested data_types
if data_type.is_dict or self.data_type.is_union:
# TODO: Parse Union and dict model for default
continue
elif data_type.is_list and len(data_type.data_types) == 1:
data_type = data_type.data_types[0]
if (
data_type.reference
and isinstance(data_type.reference.source, BaseModel)
and isinstance(self.default, list)
): # pragma: no cover
return f'lambda :[{data_type.alias or data_type.reference.source.class_name}.parse_obj(v) for v in {repr(self.default)}]'
elif data_type.reference and isinstance(
data_type.reference.source, BaseModel
): # pragma: no cover
return f'lambda :{data_type.alias or data_type.reference.source.class_name}.parse_obj({repr(self.default)})'
return None
def __str__(self) -> str:
data: Dict[str, Any] = {
k: v for k, v in self.extras.items() if k not in self._EXCLUDE_FIELD_KEYS
}
if self.alias:
data['alias'] = self.alias
if (
self.constraints is not None
and not self.self_reference()
and not self.data_type.strict
):
data = {
**data,
**{
k: self._get_strict_field_constraint_value(k, v)
for k, v in self.constraints.dict().items()
},
}
if self.use_field_description:
data.pop('description', None) # Description is part of field docstring
if self.const:
data['const'] = True
discriminator = data.pop('discriminator', None)
if discriminator:
if isinstance(discriminator, str):
data['discriminator'] = discriminator
elif isinstance(discriminator, dict): # pragma: no cover
data['discriminator'] = discriminator['propertyName']
if self.required:
default_factory = None
elif self.default and 'default_factory' not in data:
default_factory = self._get_default_as_pydantic_model()
else:
default_factory = data.pop('default_factory', None)
field_arguments = sorted(
f'{k}={repr(v)}' for k, v in data.items() if v is not None
)
if not field_arguments and not default_factory:
if self.nullable and self.required:
return 'Field(...)' # Field() is for mypy
return ''
if self.use_annotated:
pass
elif self.required:
field_arguments = ['...', *field_arguments]
elif default_factory:
field_arguments = [f'default_factory={default_factory}', *field_arguments]
else:
field_arguments = [f'{repr(self.default)}', *field_arguments]
return f'Field({", ".join(field_arguments)})'
@property
def annotated(self) -> Optional[str]:
if not self.use_annotated or not str(self):
return None
return f'Annotated[{self.type_hint}, {str(self)}]'
class BaseModel(DataModel):
TEMPLATE_FILE_PATH: ClassVar[str] = 'pydantic/BaseModel.jinja2'
BASE_CLASS: ClassVar[str] = 'pydantic.BaseModel'
def __init__(
self,
*,
reference: Reference,
fields: List[DataModelField],
decorators: Optional[List[str]] = None,
base_classes: Optional[List[Reference]] = None,
custom_base_class: Optional[str] = None,
custom_template_dir: Optional[Path] = None,
extra_template_data: Optional[DefaultDict[str, Any]] = None,
path: Optional[Path] = None,
description: Optional[str] = None,
default: Any = UNDEFINED,
nullable: bool = False,
) -> None:
methods: List[str] = [field.method for field in fields if field.method]
super().__init__(
fields=fields, # type: ignore
reference=reference,
decorators=decorators,
base_classes=base_classes,
custom_base_class=custom_base_class,
custom_template_dir=custom_template_dir,
extra_template_data=extra_template_data,
methods=methods,
path=path,
description=description,
default=default,
nullable=nullable,
)
config_parameters: Dict[str, Any] = {}
additionalProperties = self.extra_template_data.get('additionalProperties')
allow_extra_fields = self.extra_template_data.get('allow_extra_fields')
if additionalProperties is not None or allow_extra_fields:
config_parameters['extra'] = (
'Extra.allow'
if additionalProperties or allow_extra_fields
else 'Extra.forbid'
)
self._additional_imports.append(IMPORT_EXTRA)
for config_attribute in 'allow_population_by_field_name', 'allow_mutation':
if config_attribute in self.extra_template_data:
config_parameters[config_attribute] = self.extra_template_data[
config_attribute
]
for data_type in self.all_data_types:
if data_type.is_custom_type:
config_parameters['arbitrary_types_allowed'] = True
break
if isinstance(self.extra_template_data.get('config'), dict):
for key, value in self.extra_template_data['config'].items():
config_parameters[key] = value
if config_parameters:
from datamodel_code_generator.model.pydantic import Config
self.extra_template_data['config'] = Config.parse_obj(config_parameters)
@property
def imports(self) -> Tuple[Import, ...]:
if any(f for f in self.fields if f.field):
return chain_as_tuple(super().imports, (IMPORT_FIELD,))
return super().imports
@cached_property
def template_file_path(self) -> Path:
# This property is for Backward compatibility
# Current version supports '{custom_template_dir}/BaseModel.jinja'
# But, Future version will support only '{custom_template_dir}/pydantic/BaseModel.jinja'
if self._custom_template_dir is not None:
custom_template_file_path = (
self._custom_template_dir / Path(self.TEMPLATE_FILE_PATH).name
)
if custom_template_file_path.exists():
return custom_template_file_path
return super().template_file_path