
Summary
Evacuator is the work-in-progress name for a novel generational garbage collection (GC) algorithm
that uses object characteristics and current operating conditions to select optimal strategies for laying
out evacuated objects in the heap while maintaining high evacuation throughput. This work was
started at IBM Canada and recently resumed to explore some new techniques intended to streamline
stack operation.

The Evacuator prototype under test works with a classical generational heap model, with a nursery
comprised of an evacuation and a survivor region (which receives young evacuated objects), and a
tenure region (receiving old evacuated objects). It has minimal integration points touching other JVM
components and can easily be extended to subsume copy/forward work in more modern multi-
generational and concurrent collectors.

OpenJ9 builds that include Evacuator can be run with Scavenger or Evacuator; either can be selected
with appropriate command-line directives. Preliminary benchmarking with a subset of SPECjvm2008
benchmarks demonstrate that Evacuator outperforms Scavenger in terms of object collocation and
completes fixed benchmark workloads in less time using less energy (>1% speedup vs Scavenger).
Over time, and across the spectrum of servers running Java, this amounts to a significant reduction in
operating cost.

This technical paper briefly describes the Evacuator prototype, presents some preliminary
benchmarking results, and offers some suggestions for further work.

Overview
Evacuator is designed for extension to other generational frameworks and can easily be adapted to
operate with >3 heap regions or regions of variable size and/or concurrently with the application as for
modern collectors, such as OpenJDK’s Z or OpenJ9’s Concurrent Scavenger. Each region is
associated with an allocator that reserves heap space for object copy and recycles unused reserved
heap space. Below is a representation of the classical heap layout used for Evacuator prototyping.

The central feature of Evacuator design is the scan stack, consisting of a fixed number of frames.
Each frame contains an object scanner within a scanspace, a scan head and base and end points
spanning a contiguous range of bytes within a survivor or tenure copyspace. The scan head is
positioned at the head of the object being scanned, and the object scanner pulls references to
evacuation space from the object for copying. Each copyspace has a base and an end point spanning
a contiguous range of reserved survivor or tenure space and a copy head marking the position where
the next object will be copied. The copy head partitions the copyspace into a range of unscanned copy
(workspace) and heap space reserved but not yet consumed (whitespace).

The graphic below illustrates the kinds of spaces involved in Evacuator collections (this is a bit
outdated – scanspaces no longer map reserved whitespace, their endpoints are coincident with past
impressions of a copyspace copy head).

There are two copyspaces – inside and outside – for the survivor region and two for the tenure region.
The copy head of an inside copyspace is tracked by the end point of the topmost scanscape that is
scanning within the respective region. Copy proceeds until an object is copied outside the frame
boundary and is pushed up the stack, freezing the scanspace end point. After scanning above and
popping back into the frame scanning proceeds within the scanspace until the scan head advances to
the end point and the frame is popped. The outside copyspaces receive objects that overflow the
inside copyspace and release workspaces to a worklist that buffers deferred scan work.

The size of objects admitted for inside copying is determined by a specified maximum inside copy size
(MICS). The maximum distance between the base of a scanspace and the end point is limited by a
specified maximum inside copy distance (MICD). Also, leaf objects and arrays of primitive (instances
of classes that contain no referent pointers) that do not require scanning are admitted for inside
copying, irrespective of size, only when they can be copied with cache line containment as described
below. This is a key feature, as it results in frequent recursive collocation of String objects with
associated text (char[]), hash table nodes with hashed keys and values, etc.

As each evacuation reference is pulled from the object scanner the symmetric distance between the
scan head and the copy head of the inside copyspace is determined by XOR’ing the respective
addresses. If the result is less than the size of a L1 cache line (64 bytes for AMD64 machines), the
inside copyspace is selected to receive the collocated copy. The end point of the scanspace is clipped
and fixed if the distance between the base of the scan space and the head of the copied object
exceeds the maximum inside copy distance (4kb by default), and the copied object is pushed into a
superior frame for scanning. In that case, the end point of the scanspace in the inferior frame is
coincident with the base of the scanspace in pushed frame, as shown below.

Objects between the base and scan head are completely scanned and are dropped from the workflow
when the scan head reaches the end point and the frame is popped off the stack.

Objects not captured for inside copying are copied to the outside copyspace for the selected (survivor
or tenure) region. When the distance between the base of the outside copyspace and the copy head
passes a variable maximum workspace size (MWS) threshold the copyspace is rebased to release a
workspace to the worklist and the base pointer is set to the copy head, leaving only whitespace
between copy head and end point. When the volume of remaining whitespace becomes too small to
be useful (<256 bytes) or overflows excessively the remaining whitespace is trimmed to a whitelist
holding fragments of unused whitespace and the copyspace is refreshed with new whitespace. Each
survivor region has its own whitelist, which is a priority queue retaining up to 15 whitespaces
presenting largest on top. Smaller whitespaces that underflow the whitelists are marked as heap holes
and recycled or discarded.

Objects that overflow inside and outside copyspaces are routed into an overflow copyspace (outside
copy may be deflected back to the respective inside copyspace if it overflows outside copyspace and
outside copyspace cannot be refreshed). Ordinarily, the overflow copyspace also receives leaf objects
and primitive arrays that escape cache line containment and drops from the workflow after copy as
they do not require scanning. But when a stall or stack overflow condition is raised these objects are
copied to the outside copyspaces unless copied inside for collocation, and the MWS is reduced. This
increases the rate and volume of distributable work flowing into the worklists of working evacuators,
and helps to redistribute branches of recursive structures (eg XML/JSON object model) among
evacuator threads when scan stacks overflow. This is demonstrated with the SPECjbb2008
xml.validation benchmark, which overflows the scan stack frequently.

Each evacuator instance has a local worklist that receives workspaces released from outside
copyspaces and distributes workspaces locally and to starved evacuator threads. Each evacuator
pulls workspaces from its local worklist, filling up to half of its bottom stack frames, to refresh
whenever its scan stack runs dry. Only one workspace can be pulled if a stall condition is set,
indicating that the evacuator’s worklist volume is below quota or that another evacuator thread has
stalled and is waiting for work. In that case, the MICS and MICD are restricted to admit only very small
objects for inside copying (MICD = 32 bytes, with exceptions for collocatable leaf and primitive objects
of any size) and to push each inside copy up the stack (MICD = 0 bytes forces depth-first scanning).
These restrictions increase the volume of outside copy and unscanned work flowing into the worklist
while allowing important small objects to continue to be scanned and copied depth-first to maximize
collocation.

An evacuator controller is responsible for instantiating and destroying evacuator instances. The
controller also provides a work distribution bus that allows starving evacuator instances to pull
workspaces directly from other evacuators’ worklists. While on the bus stalled evacuators seek a
donor with a maximal volume of distributable work and pulls roughly half of the available volume. This
has a general load-leveling tendency as long as there a sufficient volume of available work.

Evacuator threads must scan all work on scan stack, worklist, outside and overflow copyspaces before
taking the work distribution bus to look for work. If there is no distributable work available they will stall
and wait on the bus monitor for another evacuator to notify of distributable work or until all evacuators
stall and wait on the bus. The last evacuator to stall releases all evacuator threads to continue to the
next stage of the GC cycle.

Evacuator operation is summarized in the graphic below, which also is a bit out of date. It shows only
the outside copyspaces and the overflow copyspace (labeled survivor copyspace, tenure copyspace,
large object copyspace in the diagram), including the inside copyspaces was a late design decision. In
the diagram below, the inside survivor and tenure copyspaces belong with tops vertically aligned with
stack bottom, inside edges horizontally aligned with center of corresponding outside copyspace, and
each with two arcs labeled scan inside and copy inside leading from (pick one) active|passive
scanspace.

Also remove the clip remainder arcs out of active|passive scanspace, scanspaces no longer map
whitespace. Workspaces are never released from inside copyspaces – all inside copy is scanned
inline on the stack. All copyspaces are refreshed from whitelists when whitelist top() volume is ≥MICS
but are generally refreshed with 128kb of whitespace from the region memory allocator. Otherwise
allocations are occasionally made for the overflow copyspace to specifically fit large solo objects –
these are released as workspaces (or dropped from workflow if primitive array) as soon as copy is
complete.

Benchmarking Performance†

The below table presents average statistics for salient outcomes for each benchmark. The average
duration of the interval between successive GC cycles (interval-ms), benchmark score, total run time
in seconds, and CPU utilization as reported by Linux time for two runs of each benchmark are
presented in the columns on the left. The columns on the right for GC performance are averages over
all generational GC cycles summed over 2 runs, the N column shows the number of GC cycles.

† Table is incorrect, xml.validation heap was 768m owing to an error in the benchmarking script, and there
were >20 global GCs for each scavenger or evacuator run. No global GCs occurred during the xml.transform
or derby runs and all other metric values were as shown.

The gc-ms metric represents the difference between system clock samples taken just before and after
the GC slave threads are forked and joined. The kb/ms metric is GC throughput (copied-kb / gc-ms).
The cache% metric represents the percentage of evacuated objects collocated with 64-byte L1 cache
line containment of referring pointer and head of referent object. The cpu% metric is average CPU
utilization reported per thread from kernel rusage() sampled contemporaneously with the system clock
for gc-ms.

For each benchmark the least average benchmark score for the Evacuator runs was greater than the
best average score for any of the Scavenger runs, and the percentage of object copied with cache line
containment was 2-3 times greater for each the Evacuator runs, versus Scavenger. Scavenger
throughput is outstanding – for these benchmarks Scavenger threads rarely stalled. Working
evacuator threads strive to maintain a distributable volume of work for sharing with starved
evacuators, and as evacuation reaches its final stages they tend to spin on local scan work without
raising worklist volume above quota. However, the execution speedup obtained by increased
collocation of objects appears to compensate for the concomitant increase in GC time (see interval-
ms and time in the table above).

The tables above do not directly show evacuation volumes copied-kb but they are not in agreement
(copied-kb > (N+1)*interval-ms + N*gc-ms) with the values reported in the tables for interval and GC
times. The interval-ms values are stripped from the verbose GC log and may be used inappropriately
here. In future reports this will be measured as intended directly, but for present purposes these
values can be viewed as comparable in a relative sense.

Fragmentation within the nursery and wherever tenure copy is laid down is negligible, with <10-3
percent of reserved whitespace discarded in tenure or survivor space, due to the inclusion of whitelists
as described above. Inside copyspaces cannot be refreshed until <32 bytes of whitespace remain.
Outside copyspaces are driven to <256 bytes unless there is a large volume of overflow. Whitespace
fragments trimmed from outside and overflow copyspaces are always presented to the appropriate
whitelist, which retains the 15 largest fragments and discards overflow and all fragments of <64 bytes.
Large whitespace remainders in survivor copyspaces when an evacuator instance completes are
recycled back into the memory pool and are available for reuse by the application. Tenure whitelists
retain their contents between generational cycles and are recycled back into the only in the event of a
global GC, where they are collected and recycled for application use.

Going Forward
There are number of features yet to be developed and tested in the Evacuator framework. Generally,
Evacuator tries to scan evacuated objects in the same order as they are copied, Ideally, they should
be scanned in the same order in which they are allocated. The OpenJ9 stack walker presents thread
slots (stack frame references to heap objects) to evacuators in top-down order. Presentation from the
bottom up would tend to trace the natural order in which parent-child reference arcs are formed and
would produce more frequent and salient collocation of objects.

Generational collectors have boundary issues that emerge when the available whitespace in the
survivor or tenure region runs low. When survivor space is exhausted and the memory allocator for the
survivor region fails to deliver a TLH or whitespace for a solo object copy, the requesting thread is
forced to allocate from tenure. For Scavenger there is no other option since any reserved whitespace
that it might be holding is inaccessible (Scavenger scan/copy structures in deferred worklists hold
reserved whitespace but it is not accessible for reuse).

Evacuator instances can access and reuse whitespace bound within their own copyspaces but this is
a strictly limited resource. However, the survivor/tenure barrier is seldom breached before nearing the
end of the evacuation cycle and if one or more other evacuators are stalled they should be able to
yield their whitespace to keep other evacuators, possibly, from breaching the survivor/tenure barrier
and overflowing young objects into tenure space. This may prevent the collector from making
unwarranted changes to the heap configuration to deal with transient conditions.

Similarly, and more importantly, the memory allocator for the tenure region may also run dry,
precluding any further new whitespace allocations in any region. Currently, Scavenger and Evacuator
both abort in this situation, with the consequence that a time-intensive single-threaded back-out
algorithm must be executed to undo the evacuation so that a global GC may run before the application
can proceed. To reduce the likelihood of this event, evacuator instances that fail to allocate whitespace
from the memory allocator should first strip stalled evacuators of whitespace, assume their
outstanding scan work, and attempt to continue, possibly completing without back-out but signaling
that a global GC is required. This would likely reduce the frequency of back-out and consequent
disruption of application throughput, which is something that everyone would like to avoid.

Finally, Evacuator tracks a rich set of metrics that could be used to characterize an application’s
workflow and adapt GC operation to optimize collection and application throughput. Each evacuator
thread is the sole operator of an evacuating automaton. As each object is presented for evacuation the
operator receives some characteristics of the object (shape, size, age, leaf, hottest reference
field?, …) and an array of metrics describing the state of the evacuation process. It uses this
information to direct the action of the evacuating automaton and effect collocated object copy. Further
refinement in this regard is certainly possible, and the metric data from trace-enabled Evacuator builds
is a starting point for exploring this. To what extent can the application data direct its own collection?

Conclusion
Benchmarking with the current prototype suggests that an application speedup of >1% can be realized
with the Evacuator algorithm, making it a good candidate for GC in applications that are throughput
oriented. But the real motivation for continuing to investigate this algorithm is to repurpose it for use in
more modern region-base generational collectors like OpenJ9’s balanced collector OpenJDK Z.
Adaptation for use in concurrent collectors should not be discounted – evacuator threads can be
paused after completing (or kicking off) any copy-forward operation and restarted at a later time, or
can be stripped of resources (unscanned work, unused whitespaces) whenever they are paused or
stalled – these resources can then be reallocated to other evacuator instances or reused in other
ways.

Appendix – Building and Running
Evacuator repos are here:

https://github.com/ktbriggs-gc/omr - (evacuator-redux branch)

https://github.com/ktbriggs-gc/openj9 - (evacuator-redux branch)

These branches and my openj9-openjdk-jdk8 repo are a bit out of date with the respective masters
(last pulled ~June 17).

$ gitc openj9-openjdk-jdk8 log --oneline -n 1

61d22079a8 (HEAD -> openj9) Merge pull request #396 from keithc-ca/close_mutex.

$ /root/bootjdk8/bin/java -version

openjdk version "1.8.0_242"
OpenJDK Runtime Environment (build 1.8.0_242-b08)
Eclipse OpenJ9 VM (build openj9-0.18.1, JRE 1.8.0 Linux amd64-64-Bit Compressed
References 20200122_511 (JIT enabled, AOT enabled)
OpenJ9 - 51a5857d2
OMR - 7a1b0239a
JCL - 8cf8a30581 based on jdk8u242-b08)

I always configure with –disable-ddr. Other than that, standard configure & make should do it.

A caveat to anyone who tries this: Testing to date has been limited to hours of grinding on three
SPECjvm2008 benchmarks with various heap configurations, including very small fixed heap size
(forcing multiple aborts), default variable heap sizes (2MB and rising), and large-ish (~1G) heaps.

In Evacuator builds of OpenJ9 Java, scavenger will run for gencon by default. To run OpenJ9 Java
with evacuator enabled, select -Xgc:recursiveScanOrdering. Other evacuator options are:

-XXgc:recursiveMaximumStackDepth (>0, 1=breadth-first copy always1, 16=default)

-XXgc:recursiveMaximumInsideCopySize (>16, ≤4096, 4096=default)

-XXgc:recursiveMaximumInsideCopyDist (0=depth-first scan, ≤65536, 4096=default)

-XXgc:recursiveScanOptions (0=default, 16=breadth-first copy all root/remembered objects)

-XXgc:recursiveTraceOptions (0=default, 1 prints per gc metrics if tracing enabled in the build)

Scan and trace options are additive. Additional trace options include 128 (whitespace allocation) and
512 (fill allocated whitespace with holes and verify all copy/forward reservations and all fragments
trimmed from exhausted copyspaces are unused whitespace). Tracing is enabled in evacuator builds
only if EVACUATOR_DEBUG_ALWAYS or EVACUATOR_DEBUG is defined in EvacuatorBase.hpp.
These are (should) not be defined in committed source, so must be edited in if desired.

For anyone planning to make changes, I recommend defining EVACUATOR_DEBUG in
EvacuatorBase.hpp and compiling a debug build (there is a blog post describing how to do this here:
https://blog.openj9.org/2018/06/05/debugging-openj9-in-docker-with-gdb/). This will enable a minefield
of assertions that will blow up if you nudge anything the wrong way. You’ll love it. I also recommend
setting a breakpoint at trclog.c:1448 to catch these and other assertions that may be triggered in
OpenJ9 Java.

https://github.com/ktbriggs-gc/omr
https://blog.openj9.org/2018/06/05/debugging-openj9-in-docker-with-gdb/
https://github.com/ktbriggs-gc/openj9

Appendix – Evacuator Tracing
Below is a scaled-down image of trace output for one evacuator GC cycle. It may be readable when
scaled up.

The gc-start and gc-end rows should explain themselves. They are followed by two histograms objects
and arrays counting evacuated objects (including all arrays) and pointer arrays by volume (in bytes) in
bins with open endpoints at log2(N), N<15 (the last bins are unbounded). The two large numbers at the
end of these rows are the total evacuated object/array counts and volumes.

The copyspaces and workspaces histograms count refresh allocation and work release by volume in
bytes in bins of equal size. The copyspace bins are 8196 bytes in size, workspace bins are 1024 bytes
wide. The last number on the copyspaces row is the total evacuated volume. The last two numbers on
the workspaces row are the total workspace volume and the number of workspaces pulled into
evacuator scan stacks. The latter number may be smaller than the sum of the histogram bins because
contiguous workspaces may be coalesced when pulled.

The work-time row presents aggregate thread statistics. The first six pairs of statistics are count and
time in milliseconds spent in the respective state. The run% statistic is relative to the realMs reported
in the gc-end row; it represents the percentage of 4*realMs that evacuators were executing their main
evacuation method, and cpu% represents the percentage of run% that evacuator threads were
consuming CPU bandwidth. The per thread rows break down the work-time aggregated statistics by
thread.

The 0/1 matrix following is an equivalence map on the set of evacuated objects induced by the
controller’s stalled thread map. Each row counts the number of objects evacuated by one of the 0s
while the corresponding 1s were starved of scan work. This is followed by another equivalence map
on evacuated objects (concordance) induced by object characteristics and operating conditions raised
when each object was evacuated. The two-letter acronyms for these are described below (leaf may be
added to this list in a later commit).

so (stack overflow) forcing modal MICS (32) and MICD (0) and minimal workspace release (MWS) as stack winds down

stf (survivor tail fill) forcing outside survivor copy to fill copyspace remainder

ttf (tenure tail fill) forcing outside tenure copy to fill copyspace remainder

st (stall) forcing modal MICS/MICD/minimal MWS to increase worklist volume

bfr (breadth-first root) forcing outside copy for a root or remembered object

rs (remembered set) this is raised while copying a remembered object (recursive scan unless bfr or object forced outside)

sr (scan root) this is raised while copying a root object (recursive scan unless bfr or object forced outside)

sw (scan worklist) this is raised while scanning the worklist (never with rs or sr)

sc (scan clearable) this is raised during clearing stages (bfr is forced during clearing stages)

acp (array copy) this is raised when copying a pointer array object

asc (array scan) this is raised when scanning a pointer array object

bfa (breadth-first always) forcing outside copy for all objects all the time (forces bfr)

A cursory look at the metrics for the sampled GC cycle show that the total evacuated volume (all
survivor copy) was equal to the scanned volume (79% of copied volume) plus the volume of leaf
objects (21%) dropped from the worklfow after copy, as expected. The controller asserts this invariant
after each evacuation stage completes, and asserts that the total volume of survivor whitespace
allocated equals volume used for copy pulls volume recycled or discarded at the end of each
generational collection. The latter invariant my not hold for tenure whitespace because some it,
sourced from one or more previous collections, is retained on tenure whitelists between collections
until a global GC is triggered.

Of the volume scanned, 71% was copied inside, only 29% was copied outside and later pulled into
Evacuator stacks from the worklists. Discovery of new scan work inline is a performance win for both
Scavenger and Evacuator threads but inhibits production of distributable work. This can be seen by
summing object counts for the stall map rows with >0 1s and comparing this sum with the sum of
counts in the condition map for rows containing st. The stall map count will always be less than the st
count because st is raised when an evacuator sees another evacuator stall or when its own worklist
volume is below quota (typically 2*MWS). The magnitude of the difference (54% in the sampled GC)
reflects how often evacuator threads are grinding with modal MICS/MICD and admitting primitive
objects into outside copyspaces trying to pump up the volume of distributable scan work.

