
Summary
Evacuator is the work-in-progress name for a novel generational garbage collection (GC) algorithm 
that uses object characteristics and current operating conditions to select optimal strategies for laying 
out evacuated objects in the heap while maintaining high evacuation throughput. This work was 
started at IBM Canada and recently resumed to explore some new techniques intended to streamline 
stack operation.

The Evacuator prototype under test works with a classical generational heap model, with a nursery 
comprised of an evacuation and a survivor region (which receives young evacuated objects), and a 
tenure region (receiving old evacuated objects). It has minimal integration points touching other JVM 
components and can easily be extended to subsume copy/forward work in more modern multi-
generational and concurrent collectors.

OpenJ9 builds that include Evacuator can be run with Scavenger or Evacuator; either can be selected 
with appropriate command-line directives. Preliminary benchmarking with a subset of SPECjvm2008 
benchmarks demonstrate that Evacuator outperforms Scavenger in terms of object collocation and 
completes fixed benchmark workloads in less time using less energy (>1% speedup vs Scavenger). 
Over time, and across the spectrum of servers running Java, this amounts to a significant reduction in 
operating cost. 

This technical paper briefly describes the Evacuator prototype, presents some preliminary 
benchmarking results, and offers some suggestions for further work.

Overview
Evacuator is designed for extension to other generational frameworks and can easily be adapted to 
operate with >3 heap regions or regions of variable size and/or concurrently with the application as for 
modern collectors, such as OpenJDK’s Z or OpenJ9’s Concurrent Scavenger. Each region is 
associated with an allocator that reserves heap space for object copy and recycles unused reserved 
heap space. Below is a representation of the classical heap layout used for Evacuator prototyping.



The central feature of Evacuator design is the scan stack, consisting of a fixed number of frames. 
Each frame contains an object scanner within a scanspace, a scan head and base and end points 
spanning a contiguous range of bytes within a survivor or tenure copyspace.  The scan head is 
positioned at the head of the object being scanned, and the object scanner pulls references to 
evacuation space from the object for copying. Each copyspace has a base and an end point spanning 
a contiguous range of reserved survivor or tenure space and a copy head marking the position where 
the next object will be copied. The copy head partitions the copyspace into a range of unscanned copy
(workspace) and heap space reserved but not yet consumed (whitespace). 

The graphic below illustrates the kinds of spaces involved in Evacuator collections (this is a bit 
outdated – scanspaces no longer map reserved whitespace, their endpoints are coincident with past 
impressions of a copyspace copy head).

There are two copyspaces – inside and outside – for the survivor region and two for the tenure region. 
The copy head of an inside copyspace is tracked by the end point of the topmost scanscape that is 
scanning within the respective region. Copy proceeds until an object is copied outside the frame 
boundary and is pushed up the stack, freezing the scanspace end point. After scanning above and 
popping back into the frame scanning proceeds within the scanspace until the scan head advances to 
the end point and the frame is popped. The outside copyspaces receive objects that overflow the 
inside copyspace and release workspaces to a worklist that buffers deferred scan work.

The size of objects admitted for inside copying is determined by a specified maximum inside copy size
(MICS). The maximum distance between the base of a scanspace and the end point is limited by a 
specified maximum inside copy distance (MICD). Also, leaf objects and arrays of primitive (instances 
of classes that contain no referent pointers) that do not require scanning are admitted for inside 
copying, irrespective of size, only when they can be copied with cache line containment as described 
below. This is a key feature, as it results in frequent recursive collocation of String objects with 
associated text (char[]), hash table nodes with hashed keys and values, etc. 



As each evacuation reference is pulled from the object scanner the symmetric distance between the 
scan head and the copy head of the inside copyspace is determined by XOR’ing the respective 
addresses. If the result is less than the size of a L1 cache line (64 bytes for AMD64 machines), the 
inside copyspace is selected to receive the collocated copy. The end point of the scanspace is clipped 
and fixed if the distance between the base of the scan space and the head of the copied object 
exceeds the maximum inside copy distance (4kb by default), and the copied object is pushed into a 
superior frame for scanning. In that case, the end point of the scanspace in the inferior frame is 
coincident with the base of the scanspace in pushed frame, as shown below.

Objects between the  base and scan head are completely scanned and are dropped from the workflow
when the scan head reaches the end point and the frame is popped off the stack. 

Objects not captured for inside copying are copied to the outside copyspace for the selected (survivor 
or tenure) region. When the distance between the base of the outside copyspace and the copy head 
passes a variable maximum workspace size (MWS) threshold the copyspace is rebased to release a 
workspace to the worklist and the base pointer is set to the copy head, leaving only whitespace 
between copy head and end point. When the volume of remaining whitespace becomes too small to 
be useful (<256 bytes) or overflows excessively the remaining whitespace is trimmed to a whitelist 
holding fragments of unused whitespace and the copyspace is refreshed with new whitespace. Each 
survivor region has its own whitelist, which is a priority queue retaining up to 15 whitespaces 
presenting largest on top. Smaller whitespaces that underflow the whitelists are marked as heap holes
and recycled or discarded.



Objects that overflow inside and outside copyspaces are routed into an overflow copyspace (outside 
copy may be deflected back to the respective inside copyspace if it overflows outside copyspace and 
outside copyspace cannot be refreshed). Ordinarily, the overflow copyspace also receives leaf objects 
and primitive arrays that escape cache line containment and drops from the workflow after copy as 
they do not require scanning. But when a stall or stack overflow condition is raised these objects are 
copied to the outside copyspaces unless copied inside for collocation, and the MWS is reduced. This 
increases the rate and volume of distributable work flowing into the worklists of working evacuators, 
and helps to redistribute branches of recursive structures (eg XML/JSON object model) among 
evacuator threads when scan stacks overflow. This is demonstrated with the SPECjbb2008 
xml.validation benchmark, which overflows the scan stack frequently.

Each evacuator instance has a local worklist that receives workspaces released from outside 
copyspaces and distributes workspaces locally and to starved evacuator threads. Each evacuator 
pulls workspaces from its local worklist, filling up to half of its bottom stack frames, to refresh 
whenever its scan stack runs dry. Only one workspace can be pulled if a stall condition is set, 
indicating that the evacuator’s worklist volume is below quota or that another evacuator thread has 
stalled and is waiting for work. In that case, the MICS and MICD are restricted to admit only very small
objects for inside copying (MICD = 32 bytes, with exceptions for collocatable leaf and primitive objects 
of any size) and to push each inside copy up the stack (MICD = 0 bytes forces depth-first scanning). 
These restrictions increase the volume of outside copy and unscanned work flowing into the worklist 
while allowing important small objects to continue to be scanned and copied depth-first to maximize 
collocation.

An evacuator controller is responsible for instantiating and destroying evacuator instances. The 
controller also provides a work distribution bus that allows starving evacuator instances to pull 
workspaces directly from other evacuators’ worklists. While on the bus stalled evacuators seek a 
donor with a maximal volume of distributable work and pulls roughly half of the available volume. This 
has a general load-leveling tendency as long as there a sufficient volume of available work. 

Evacuator threads must scan all work on scan stack, worklist, outside and overflow copyspaces before
taking the work distribution bus to look for work. If there is no distributable work available they will stall 
and wait on the bus monitor for another evacuator to notify of distributable work or until all evacuators 
stall and wait on the bus. The last evacuator to stall releases all evacuator threads to continue to the 
next stage of the GC cycle.



Evacuator operation is summarized in the graphic below, which also is a bit out of date. It shows only 
the outside copyspaces and the overflow copyspace (labeled survivor copyspace, tenure copyspace, 
large object copyspace in the diagram), including the inside copyspaces was a late design decision. In
the diagram below, the inside survivor and tenure copyspaces belong with tops vertically aligned with 
stack bottom, inside edges horizontally aligned with center of corresponding outside copyspace, and 
each with two arcs labeled scan inside and copy inside leading from (pick one) active|passive 
scanspace.

Also remove the clip remainder arcs out of active|passive scanspace, scanspaces no longer map 
whitespace. Workspaces are never released from inside copyspaces – all inside copy is scanned 
inline on the stack. All copyspaces are refreshed from whitelists when whitelist top() volume is ≥MICS 
but are generally refreshed with 128kb of whitespace from the region memory allocator. Otherwise 
allocations are occasionally made for the overflow copyspace to specifically fit large solo objects – 
these are released as workspaces (or dropped from workflow if primitive array) as soon as copy is 
complete.



Benchmarking Performance†

The below table presents average statistics for salient outcomes for each benchmark. The average 
duration of the interval between successive GC cycles (interval-ms), benchmark score, total run time 
in seconds, and CPU utilization as reported by Linux time for two runs of each benchmark are 
presented in the columns on the left. The columns on the right for GC performance are averages over 
all generational GC cycles summed over 2 runs, the N column shows the number of GC cycles. 

† Table is incorrect, xml.validation heap was 768m owing to an error in the benchmarking script, and there 
were >20 global GCs for each scavenger or evacuator run. No global GCs occurred during the xml.transform 
or derby runs and all other metric values were as shown.



The gc-ms metric represents the difference between system clock samples taken just before and after 
the GC slave threads are forked and joined. The kb/ms metric is GC throughput (copied-kb / gc-ms). 
The cache% metric represents the percentage of evacuated objects collocated with 64-byte L1 cache 
line containment of referring pointer and head of referent object. The cpu% metric is average CPU 
utilization reported per thread from kernel rusage() sampled contemporaneously with the system clock
for gc-ms.

For each benchmark the least average benchmark score for the Evacuator runs was greater than the 
best average score for any of the Scavenger runs, and the percentage of object copied with cache line
containment was 2-3 times greater for each the Evacuator runs, versus Scavenger. Scavenger 
throughput is outstanding – for these benchmarks Scavenger threads rarely stalled. Working 
evacuator threads strive to maintain a distributable volume of work for sharing with starved 
evacuators, and as evacuation reaches its final stages they tend to spin on local scan work without 
raising worklist volume above quota. However, the execution speedup obtained by increased 
collocation of objects appears to compensate for the concomitant increase in GC time (see interval-
ms and time in the table above). 

The tables above do not directly show evacuation volumes copied-kb but they are not in agreement 
(copied-kb > (N+1)*interval-ms + N*gc-ms) with the values reported in the tables for interval and GC 
times. The interval-ms values are stripped from the verbose GC log and may be used inappropriately 
here. In future reports this will be measured as intended directly, but for present purposes these 
values can be viewed as comparable in a relative sense.

Fragmentation within the nursery and wherever tenure copy is laid down is negligible, with <10-3 
percent of reserved whitespace discarded in tenure or survivor space, due to the inclusion of whitelists
as described above. Inside copyspaces cannot be refreshed until <32 bytes of whitespace remain. 
Outside copyspaces are driven to <256 bytes unless there is a large volume of overflow. Whitespace 
fragments trimmed from outside and overflow copyspaces are always presented to the appropriate 
whitelist, which retains the 15 largest fragments and discards overflow and all fragments of <64 bytes. 
Large whitespace remainders in survivor copyspaces when an evacuator instance completes are 
recycled back into the memory pool and are available for reuse by the application. Tenure whitelists 
retain their contents between generational cycles and are recycled back into the only in the event of a 
global GC, where they are collected and recycled for application use. 

Going Forward
There are number of features yet to be developed and tested in the Evacuator framework. Generally, 
Evacuator tries to scan evacuated objects in the same order as they are copied, Ideally, they should 
be scanned in the same order in which they are allocated. The OpenJ9 stack walker presents thread 
slots (stack frame references to heap objects) to evacuators in top-down order. Presentation from the 
bottom up would tend to trace the natural order in which parent-child reference arcs are formed and 
would produce more frequent and salient collocation of objects.  



Generational collectors have boundary issues that emerge when the available whitespace in the 
survivor or tenure region runs low. When survivor space is exhausted and the memory allocator for the
survivor region fails to deliver a TLH or whitespace for a solo object copy, the requesting thread is 
forced to allocate from tenure. For Scavenger there is no other option since any reserved whitespace 
that it might be holding is inaccessible (Scavenger scan/copy structures in deferred worklists hold 
reserved whitespace but it is not accessible for reuse).

Evacuator instances can access and reuse whitespace bound within their own copyspaces but this is 
a strictly limited resource. However, the survivor/tenure barrier is seldom breached before nearing the 
end of the evacuation cycle and if one or more other evacuators are stalled they should be able to 
yield their whitespace to keep other evacuators, possibly, from breaching the survivor/tenure barrier 
and overflowing young objects into tenure space. This may prevent the collector from making 
unwarranted changes to the heap configuration to deal with transient conditions.

Similarly, and more importantly, the memory allocator for the tenure region may also run dry, 
precluding any further new whitespace allocations in any region. Currently, Scavenger and Evacuator 
both abort in this situation, with the consequence that a time-intensive single-threaded back-out 
algorithm must be executed to undo the evacuation so that a global GC may run before the application
can proceed. To reduce the likelihood of this event, evacuator instances that fail to allocate whitespace
from the memory allocator should first strip stalled evacuators of whitespace, assume their 
outstanding scan work, and attempt to continue, possibly completing without back-out but signaling 
that a global GC is required. This would likely reduce the frequency of back-out and consequent 
disruption of application throughput, which is something that everyone would like to avoid. 

Finally, Evacuator tracks a rich set of metrics that could be used to characterize an application’s 
workflow and adapt GC operation to optimize collection and application throughput. Each evacuator 
thread is the sole operator of an evacuating automaton. As each object is presented for evacuation the
operator receives some characteristics of the object (shape, size, age, leaf, hottest reference 
field?, …) and an array of metrics describing the state of the evacuation process. It uses this 
information to direct the action of the evacuating automaton and effect collocated object copy. Further 
refinement in this regard is certainly possible, and the metric data from trace-enabled Evacuator builds
is a starting point for exploring this. To what extent can the application data direct its own collection?

Conclusion
Benchmarking with the current prototype suggests that an application speedup of >1% can be realized
with the Evacuator algorithm, making it a good candidate for GC in applications that are throughput 
oriented. But the real motivation for continuing to investigate this algorithm is to repurpose it for use in 
more modern region-base generational collectors like OpenJ9’s balanced collector OpenJDK Z. 
Adaptation for use in concurrent collectors should not be discounted – evacuator threads can be 
paused after completing (or kicking off) any copy-forward operation and restarted at a later time, or 
can be stripped of resources (unscanned work, unused whitespaces) whenever they are paused or 
stalled – these resources can then be reallocated to other evacuator instances or reused in other 
ways.



Appendix – Building and Running
Evacuator repos are here:

https://github.com/ktbriggs-gc/omr - (evacuator-redux branch)

https://github.com/ktbriggs-gc/openj9 - (evacuator-redux branch)

These branches and my openj9-openjdk-jdk8 repo are a bit out of date with the respective masters 
(last pulled ~June 17).

$ gitc openj9-openjdk-jdk8 log --oneline -n 1

61d22079a8 (HEAD -> openj9) Merge pull request #396 from keithc-ca/close_mutex.

$ /root/bootjdk8/bin/java -version

openjdk version "1.8.0_242"
OpenJDK Runtime Environment (build 1.8.0_242-b08)
Eclipse OpenJ9 VM (build openj9-0.18.1, JRE 1.8.0 Linux amd64-64-Bit Compressed 
References 20200122_511 (JIT enabled, AOT enabled)
OpenJ9 - 51a5857d2
OMR - 7a1b0239a
JCL - 8cf8a30581 based on jdk8u242-b08)

I always configure with –disable-ddr. Other than that, standard configure & make should do it. 

A caveat to anyone who tries this: Testing to date has been limited to hours of grinding on three 
SPECjvm2008 benchmarks with various heap configurations, including very small fixed heap size 
(forcing multiple aborts), default variable heap sizes (2MB and rising), and large-ish (~1G) heaps.

In Evacuator builds of OpenJ9 Java, scavenger will run for gencon by default. To run OpenJ9 Java 
with evacuator enabled, select -Xgc:recursiveScanOrdering. Other evacuator options are:

-XXgc:recursiveMaximumStackDepth (>0, 1=breadth-first copy always1, 16=default)

-XXgc:recursiveMaximumInsideCopySize (>16, ≤4096, 4096=default)

-XXgc:recursiveMaximumInsideCopyDist (0=depth-first scan, ≤65536, 4096=default)

-XXgc:recursiveScanOptions (0=default, 16=breadth-first copy all root/remembered objects )

-XXgc:recursiveTraceOptions (0=default, 1 prints per gc metrics if tracing enabled in the build)

Scan and trace options are additive. Additional trace options include 128 (whitespace allocation) and 
512 (fill allocated whitespace with holes and verify all copy/forward reservations and all fragments 
trimmed from exhausted copyspaces are unused whitespace). Tracing is enabled in evacuator builds 
only if EVACUATOR_DEBUG_ALWAYS or EVACUATOR_DEBUG is defined in EvacuatorBase.hpp. 
These are (should) not be defined in committed source, so must be edited in if desired. 

For anyone planning to make changes, I recommend defining  EVACUATOR_DEBUG in  
EvacuatorBase.hpp and compiling a debug build (there is a blog post describing how to do this here: 
https://blog.openj9.org/2018/06/05/debugging-openj9-in-docker-with-gdb/). This will enable a minefield
of assertions that will blow up if you nudge anything the wrong way. You’ll love it. I also recommend 
setting a breakpoint at trclog.c:1448 to catch these and other assertions that may be triggered in 
OpenJ9 Java.

https://github.com/ktbriggs-gc/omr
https://blog.openj9.org/2018/06/05/debugging-openj9-in-docker-with-gdb/
https://github.com/ktbriggs-gc/openj9


Appendix – Evacuator Tracing
Below is a scaled-down image of trace output for one evacuator GC cycle. It may be readable when 
scaled up. 

The gc-start and gc-end rows should explain themselves. They are followed by two histograms objects
and arrays counting evacuated objects (including all arrays) and pointer arrays by volume (in bytes) in 
bins with open endpoints at log2(N), N<15 (the last bins are unbounded). The two large numbers at the
end of these rows are the total evacuated object/array counts and volumes. 

The copyspaces and workspaces histograms count refresh allocation and work release by volume in 
bytes in bins of equal size. The copyspace bins are 8196 bytes in size, workspace bins are 1024 bytes
wide. The last number on the copyspaces row is the total evacuated volume. The last two numbers on 
the workspaces row are the total workspace volume and the number of workspaces pulled into 
evacuator scan stacks. The latter number may be smaller than the sum of the histogram bins because
contiguous workspaces may be coalesced when pulled. 

The work-time row presents aggregate thread statistics. The first six pairs of statistics are count and 
time in milliseconds spent in the respective state. The run% statistic is relative to the realMs reported 
in the gc-end row; it represents the percentage of 4*realMs that evacuators were executing their main 
evacuation method, and cpu% represents the percentage of run% that evacuator threads were 
consuming CPU bandwidth. The per thread rows break down the work-time aggregated statistics by 
thread.



The 0/1 matrix following is an equivalence map on the set of evacuated objects induced by the 
controller’s stalled thread map. Each row counts the number of objects evacuated by one of the 0s 
while the corresponding 1s were starved of scan work. This is followed by another equivalence map 
on evacuated objects (concordance) induced by object characteristics and operating conditions raised 
when each object was evacuated. The two-letter acronyms for these are described below (leaf may be
added to this list in a later commit).

so (stack overflow) forcing modal MICS (32) and MICD (0) and minimal workspace release (MWS) as stack winds down

stf (survivor tail fill) forcing outside survivor copy to fill copyspace remainder 

ttf (tenure tail fill) forcing outside tenure copy to fill copyspace remainder

st (stall) forcing modal MICS/MICD/minimal MWS to increase worklist volume

bfr (breadth-first root) forcing outside copy for a root or remembered object

rs (remembered set) this is raised while copying a remembered object (recursive scan unless bfr or object forced outside)

sr (scan root) this is raised while copying a root object (recursive scan unless bfr or object forced outside)

sw (scan worklist) this is raised while scanning the worklist (never with rs or sr)

sc (scan clearable) this is raised during clearing stages (bfr is forced during clearing stages)

acp (array copy) this is raised when copying a pointer array object

asc (array scan) this is raised when scanning a pointer array object

bfa (breadth-first always) forcing outside copy for all objects all the time (forces bfr)

A cursory look at the metrics for the sampled GC cycle show that the total evacuated volume (all 
survivor copy) was equal to the scanned volume (79% of copied volume) plus the volume of leaf 
objects (21%) dropped from the worklfow after copy, as expected. The controller asserts this invariant 
after each evacuation stage completes, and asserts that the total volume of survivor whitespace 
allocated equals volume used for copy pulls volume recycled or discarded at the end of each 
generational collection. The latter invariant my not hold for tenure whitespace because some it, 
sourced from one or more previous collections, is retained on tenure whitelists between collections 
until a global GC is triggered.

Of the volume scanned, 71% was copied inside, only 29% was copied outside and later pulled into 
Evacuator stacks from the worklists. Discovery of new scan work inline is a performance win for both 
Scavenger and Evacuator threads but inhibits production of distributable work. This can be seen by 
summing object counts for the stall map rows with >0 1s and comparing this sum with the sum of 
counts in the condition map for rows containing st. The stall map count will always be less than the st 
count because st is raised when an evacuator sees another evacuator stall or when its own worklist 
volume is below quota (typically 2*MWS). The magnitude of the difference (54% in the sampled GC) 
reflects how often evacuator threads are grinding with modal MICS/MICD and admitting primitive 
objects into outside copyspaces trying to pump up the volume of distributable scan work.


