diff --git a/vendor/github.com/NYTimes/gziphandler/.gitignore b/vendor/github.com/NYTimes/gziphandler/.gitignore new file mode 100644 index 000000000..1377554eb --- /dev/null +++ b/vendor/github.com/NYTimes/gziphandler/.gitignore @@ -0,0 +1 @@ +*.swp diff --git a/vendor/github.com/NYTimes/gziphandler/.travis.yml b/vendor/github.com/NYTimes/gziphandler/.travis.yml new file mode 100644 index 000000000..94dfae362 --- /dev/null +++ b/vendor/github.com/NYTimes/gziphandler/.travis.yml @@ -0,0 +1,10 @@ +language: go +go: + - 1.x + - tip +env: + - GO111MODULE=on +install: + - go mod download +script: + - go test -race -v diff --git a/vendor/github.com/NYTimes/gziphandler/CODE_OF_CONDUCT.md b/vendor/github.com/NYTimes/gziphandler/CODE_OF_CONDUCT.md new file mode 100644 index 000000000..cdbca194c --- /dev/null +++ b/vendor/github.com/NYTimes/gziphandler/CODE_OF_CONDUCT.md @@ -0,0 +1,75 @@ +--- +layout: code-of-conduct +version: v1.0 +--- + +This code of conduct outlines our expectations for participants within the **NYTimes/gziphandler** community, as well as steps to reporting unacceptable behavior. We are committed to providing a welcoming and inspiring community for all and expect our code of conduct to be honored. Anyone who violates this code of conduct may be banned from the community. + +Our open source community strives to: + +* **Be friendly and patient.** +* **Be welcoming**: We strive to be a community that welcomes and supports people of all backgrounds and identities. This includes, but is not limited to members of any race, ethnicity, culture, national origin, colour, immigration status, social and economic class, educational level, sex, sexual orientation, gender identity and expression, age, size, family status, political belief, religion, and mental and physical ability. +* **Be considerate**: Your work will be used by other people, and you in turn will depend on the work of others. Any decision you take will affect users and colleagues, and you should take those consequences into account when making decisions. Remember that we're a world-wide community, so you might not be communicating in someone else's primary language. +* **Be respectful**: Not all of us will agree all the time, but disagreement is no excuse for poor behavior and poor manners. We might all experience some frustration now and then, but we cannot allow that frustration to turn into a personal attack. It’s important to remember that a community where people feel uncomfortable or threatened is not a productive one. +* **Be careful in the words that we choose**: we are a community of professionals, and we conduct ourselves professionally. Be kind to others. Do not insult or put down other participants. Harassment and other exclusionary behavior aren't acceptable. +* **Try to understand why we disagree**: Disagreements, both social and technical, happen all the time. It is important that we resolve disagreements and differing views constructively. Remember that we’re different. The strength of our community comes from its diversity, people from a wide range of backgrounds. Different people have different perspectives on issues. Being unable to understand why someone holds a viewpoint doesn’t mean that they’re wrong. Don’t forget that it is human to err and blaming each other doesn’t get us anywhere. Instead, focus on helping to resolve issues and learning from mistakes. + +## Definitions + +Harassment includes, but is not limited to: + +- Offensive comments related to gender, gender identity and expression, sexual orientation, disability, mental illness, neuro(a)typicality, physical appearance, body size, race, age, regional discrimination, political or religious affiliation +- Unwelcome comments regarding a person’s lifestyle choices and practices, including those related to food, health, parenting, drugs, and employment +- Deliberate misgendering. This includes deadnaming or persistently using a pronoun that does not correctly reflect a person's gender identity. You must address people by the name they give you when not addressing them by their username or handle +- Physical contact and simulated physical contact (eg, textual descriptions like “*hug*” or “*backrub*”) without consent or after a request to stop +- Threats of violence, both physical and psychological +- Incitement of violence towards any individual, including encouraging a person to commit suicide or to engage in self-harm +- Deliberate intimidation +- Stalking or following +- Harassing photography or recording, including logging online activity for harassment purposes +- Sustained disruption of discussion +- Unwelcome sexual attention, including gratuitous or off-topic sexual images or behaviour +- Pattern of inappropriate social contact, such as requesting/assuming inappropriate levels of intimacy with others +- Continued one-on-one communication after requests to cease +- Deliberate “outing” of any aspect of a person’s identity without their consent except as necessary to protect others from intentional abuse +- Publication of non-harassing private communication + +Our open source community prioritizes marginalized people’s safety over privileged people’s comfort. We will not act on complaints regarding: + +- ‘Reverse’ -isms, including ‘reverse racism,’ ‘reverse sexism,’ and ‘cisphobia’ +- Reasonable communication of boundaries, such as “leave me alone,” “go away,” or “I’m not discussing this with you” +- Refusal to explain or debate social justice concepts +- Communicating in a ‘tone’ you don’t find congenial +- Criticizing racist, sexist, cissexist, or otherwise oppressive behavior or assumptions + + +### Diversity Statement + +We encourage everyone to participate and are committed to building a community for all. Although we will fail at times, we seek to treat everyone both as fairly and equally as possible. Whenever a participant has made a mistake, we expect them to take responsibility for it. If someone has been harmed or offended, it is our responsibility to listen carefully and respectfully, and do our best to right the wrong. + +Although this list cannot be exhaustive, we explicitly honor diversity in age, gender, gender identity or expression, culture, ethnicity, language, national origin, political beliefs, profession, race, religion, sexual orientation, socioeconomic status, and technical ability. We will not tolerate discrimination based on any of the protected +characteristics above, including participants with disabilities. + +### Reporting Issues + +If you experience or witness unacceptable behavior—or have any other concerns—please report it by contacting us via **code@nytimes.com**. All reports will be handled with discretion. In your report please include: + +- Your contact information. +- Names (real, nicknames, or pseudonyms) of any individuals involved. If there are additional witnesses, please +include them as well. Your account of what occurred, and if you believe the incident is ongoing. If there is a publicly available record (e.g. a mailing list archive or a public IRC logger), please include a link. +- Any additional information that may be helpful. + +After filing a report, a representative will contact you personally, review the incident, follow up with any additional questions, and make a decision as to how to respond. If the person who is harassing you is part of the response team, they will recuse themselves from handling your incident. If the complaint originates from a member of the response team, it will be handled by a different member of the response team. We will respect confidentiality requests for the purpose of protecting victims of abuse. + +### Attribution & Acknowledgements + +We all stand on the shoulders of giants across many open source communities. We'd like to thank the communities and projects that established code of conducts and diversity statements as our inspiration: + +* [Django](https://www.djangoproject.com/conduct/reporting/) +* [Python](https://www.python.org/community/diversity/) +* [Ubuntu](http://www.ubuntu.com/about/about-ubuntu/conduct) +* [Contributor Covenant](http://contributor-covenant.org/) +* [Geek Feminism](http://geekfeminism.org/about/code-of-conduct/) +* [Citizen Code of Conduct](http://citizencodeofconduct.org/) + +This Code of Conduct was based on https://github.com/todogroup/opencodeofconduct diff --git a/vendor/github.com/NYTimes/gziphandler/CONTRIBUTING.md b/vendor/github.com/NYTimes/gziphandler/CONTRIBUTING.md new file mode 100644 index 000000000..b89a9eb4f --- /dev/null +++ b/vendor/github.com/NYTimes/gziphandler/CONTRIBUTING.md @@ -0,0 +1,30 @@ +# Contributing to NYTimes/gziphandler + +This is an open source project started by handful of developers at The New York Times and open to the entire Go community. + +We really appreciate your help! + +## Filing issues + +When filing an issue, make sure to answer these five questions: + +1. What version of Go are you using (`go version`)? +2. What operating system and processor architecture are you using? +3. What did you do? +4. What did you expect to see? +5. What did you see instead? + +## Contributing code + +Before submitting changes, please follow these guidelines: + +1. Check the open issues and pull requests for existing discussions. +2. Open an issue to discuss a new feature. +3. Write tests. +4. Make sure code follows the ['Go Code Review Comments'](https://github.com/golang/go/wiki/CodeReviewComments). +5. Make sure your changes pass `go test`. +6. Make sure the entire test suite passes locally and on Travis CI. +7. Open a Pull Request. +8. [Squash your commits](http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html) after receiving feedback and add a [great commit message](http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html). + +Unless otherwise noted, the gziphandler source files are distributed under the Apache 2.0-style license found in the LICENSE.md file. diff --git a/vendor/github.com/NYTimes/gziphandler/LICENSE b/vendor/github.com/NYTimes/gziphandler/LICENSE new file mode 100644 index 000000000..df6192d36 --- /dev/null +++ b/vendor/github.com/NYTimes/gziphandler/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright 2016-2017 The New York Times Company + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/vendor/github.com/NYTimes/gziphandler/README.md b/vendor/github.com/NYTimes/gziphandler/README.md new file mode 100644 index 000000000..6259acaca --- /dev/null +++ b/vendor/github.com/NYTimes/gziphandler/README.md @@ -0,0 +1,56 @@ +Gzip Handler +============ + +This is a tiny Go package which wraps HTTP handlers to transparently gzip the +response body, for clients which support it. Although it's usually simpler to +leave that to a reverse proxy (like nginx or Varnish), this package is useful +when that's undesirable. + +## Install +```bash +go get -u github.com/NYTimes/gziphandler +``` + +## Usage + +Call `GzipHandler` with any handler (an object which implements the +`http.Handler` interface), and it'll return a new handler which gzips the +response. For example: + +```go +package main + +import ( + "io" + "net/http" + "github.com/NYTimes/gziphandler" +) + +func main() { + withoutGz := http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { + w.Header().Set("Content-Type", "text/plain") + io.WriteString(w, "Hello, World") + }) + + withGz := gziphandler.GzipHandler(withoutGz) + + http.Handle("/", withGz) + http.ListenAndServe("0.0.0.0:8000", nil) +} +``` + + +## Documentation + +The docs can be found at [godoc.org][docs], as usual. + + +## License + +[Apache 2.0][license]. + + + + +[docs]: https://godoc.org/github.com/NYTimes/gziphandler +[license]: https://github.com/NYTimes/gziphandler/blob/master/LICENSE diff --git a/vendor/github.com/NYTimes/gziphandler/gzip.go b/vendor/github.com/NYTimes/gziphandler/gzip.go new file mode 100644 index 000000000..c112bbdf8 --- /dev/null +++ b/vendor/github.com/NYTimes/gziphandler/gzip.go @@ -0,0 +1,532 @@ +package gziphandler // import "github.com/NYTimes/gziphandler" + +import ( + "bufio" + "compress/gzip" + "fmt" + "io" + "mime" + "net" + "net/http" + "strconv" + "strings" + "sync" +) + +const ( + vary = "Vary" + acceptEncoding = "Accept-Encoding" + contentEncoding = "Content-Encoding" + contentType = "Content-Type" + contentLength = "Content-Length" +) + +type codings map[string]float64 + +const ( + // DefaultQValue is the default qvalue to assign to an encoding if no explicit qvalue is set. + // This is actually kind of ambiguous in RFC 2616, so hopefully it's correct. + // The examples seem to indicate that it is. + DefaultQValue = 1.0 + + // DefaultMinSize is the default minimum size until we enable gzip compression. + // 1500 bytes is the MTU size for the internet since that is the largest size allowed at the network layer. + // If you take a file that is 1300 bytes and compress it to 800 bytes, it’s still transmitted in that same 1500 byte packet regardless, so you’ve gained nothing. + // That being the case, you should restrict the gzip compression to files with a size greater than a single packet, 1400 bytes (1.4KB) is a safe value. + DefaultMinSize = 1400 +) + +// gzipWriterPools stores a sync.Pool for each compression level for reuse of +// gzip.Writers. Use poolIndex to covert a compression level to an index into +// gzipWriterPools. +var gzipWriterPools [gzip.BestCompression - gzip.BestSpeed + 2]*sync.Pool + +func init() { + for i := gzip.BestSpeed; i <= gzip.BestCompression; i++ { + addLevelPool(i) + } + addLevelPool(gzip.DefaultCompression) +} + +// poolIndex maps a compression level to its index into gzipWriterPools. It +// assumes that level is a valid gzip compression level. +func poolIndex(level int) int { + // gzip.DefaultCompression == -1, so we need to treat it special. + if level == gzip.DefaultCompression { + return gzip.BestCompression - gzip.BestSpeed + 1 + } + return level - gzip.BestSpeed +} + +func addLevelPool(level int) { + gzipWriterPools[poolIndex(level)] = &sync.Pool{ + New: func() interface{} { + // NewWriterLevel only returns error on a bad level, we are guaranteeing + // that this will be a valid level so it is okay to ignore the returned + // error. + w, _ := gzip.NewWriterLevel(nil, level) + return w + }, + } +} + +// GzipResponseWriter provides an http.ResponseWriter interface, which gzips +// bytes before writing them to the underlying response. This doesn't close the +// writers, so don't forget to do that. +// It can be configured to skip response smaller than minSize. +type GzipResponseWriter struct { + http.ResponseWriter + index int // Index for gzipWriterPools. + gw *gzip.Writer + + code int // Saves the WriteHeader value. + + minSize int // Specifed the minimum response size to gzip. If the response length is bigger than this value, it is compressed. + buf []byte // Holds the first part of the write before reaching the minSize or the end of the write. + ignore bool // If true, then we immediately passthru writes to the underlying ResponseWriter. + + contentTypes []parsedContentType // Only compress if the response is one of these content-types. All are accepted if empty. +} + +type GzipResponseWriterWithCloseNotify struct { + *GzipResponseWriter +} + +func (w GzipResponseWriterWithCloseNotify) CloseNotify() <-chan bool { + return w.ResponseWriter.(http.CloseNotifier).CloseNotify() +} + +// Write appends data to the gzip writer. +func (w *GzipResponseWriter) Write(b []byte) (int, error) { + // GZIP responseWriter is initialized. Use the GZIP responseWriter. + if w.gw != nil { + return w.gw.Write(b) + } + + // If we have already decided not to use GZIP, immediately passthrough. + if w.ignore { + return w.ResponseWriter.Write(b) + } + + // Save the write into a buffer for later use in GZIP responseWriter (if content is long enough) or at close with regular responseWriter. + // On the first write, w.buf changes from nil to a valid slice + w.buf = append(w.buf, b...) + + var ( + cl, _ = strconv.Atoi(w.Header().Get(contentLength)) + ct = w.Header().Get(contentType) + ce = w.Header().Get(contentEncoding) + ) + // Only continue if they didn't already choose an encoding or a known unhandled content length or type. + if ce == "" && (cl == 0 || cl >= w.minSize) && (ct == "" || handleContentType(w.contentTypes, ct)) { + // If the current buffer is less than minSize and a Content-Length isn't set, then wait until we have more data. + if len(w.buf) < w.minSize && cl == 0 { + return len(b), nil + } + // If the Content-Length is larger than minSize or the current buffer is larger than minSize, then continue. + if cl >= w.minSize || len(w.buf) >= w.minSize { + // If a Content-Type wasn't specified, infer it from the current buffer. + if ct == "" { + ct = http.DetectContentType(w.buf) + w.Header().Set(contentType, ct) + } + // If the Content-Type is acceptable to GZIP, initialize the GZIP writer. + if handleContentType(w.contentTypes, ct) { + if err := w.startGzip(); err != nil { + return 0, err + } + return len(b), nil + } + } + } + // If we got here, we should not GZIP this response. + if err := w.startPlain(); err != nil { + return 0, err + } + return len(b), nil +} + +// startGzip initializes a GZIP writer and writes the buffer. +func (w *GzipResponseWriter) startGzip() error { + // Set the GZIP header. + w.Header().Set(contentEncoding, "gzip") + + // if the Content-Length is already set, then calls to Write on gzip + // will fail to set the Content-Length header since its already set + // See: https://github.com/golang/go/issues/14975. + w.Header().Del(contentLength) + + // Write the header to gzip response. + if w.code != 0 { + w.ResponseWriter.WriteHeader(w.code) + // Ensure that no other WriteHeader's happen + w.code = 0 + } + + // Initialize and flush the buffer into the gzip response if there are any bytes. + // If there aren't any, we shouldn't initialize it yet because on Close it will + // write the gzip header even if nothing was ever written. + if len(w.buf) > 0 { + // Initialize the GZIP response. + w.init() + n, err := w.gw.Write(w.buf) + + // This should never happen (per io.Writer docs), but if the write didn't + // accept the entire buffer but returned no specific error, we have no clue + // what's going on, so abort just to be safe. + if err == nil && n < len(w.buf) { + err = io.ErrShortWrite + } + return err + } + return nil +} + +// startPlain writes to sent bytes and buffer the underlying ResponseWriter without gzip. +func (w *GzipResponseWriter) startPlain() error { + if w.code != 0 { + w.ResponseWriter.WriteHeader(w.code) + // Ensure that no other WriteHeader's happen + w.code = 0 + } + w.ignore = true + // If Write was never called then don't call Write on the underlying ResponseWriter. + if w.buf == nil { + return nil + } + n, err := w.ResponseWriter.Write(w.buf) + w.buf = nil + // This should never happen (per io.Writer docs), but if the write didn't + // accept the entire buffer but returned no specific error, we have no clue + // what's going on, so abort just to be safe. + if err == nil && n < len(w.buf) { + err = io.ErrShortWrite + } + return err +} + +// WriteHeader just saves the response code until close or GZIP effective writes. +func (w *GzipResponseWriter) WriteHeader(code int) { + if w.code == 0 { + w.code = code + } +} + +// init graps a new gzip writer from the gzipWriterPool and writes the correct +// content encoding header. +func (w *GzipResponseWriter) init() { + // Bytes written during ServeHTTP are redirected to this gzip writer + // before being written to the underlying response. + gzw := gzipWriterPools[w.index].Get().(*gzip.Writer) + gzw.Reset(w.ResponseWriter) + w.gw = gzw +} + +// Close will close the gzip.Writer and will put it back in the gzipWriterPool. +func (w *GzipResponseWriter) Close() error { + if w.ignore { + return nil + } + + if w.gw == nil { + // GZIP not triggered yet, write out regular response. + err := w.startPlain() + // Returns the error if any at write. + if err != nil { + err = fmt.Errorf("gziphandler: write to regular responseWriter at close gets error: %q", err.Error()) + } + return err + } + + err := w.gw.Close() + gzipWriterPools[w.index].Put(w.gw) + w.gw = nil + return err +} + +// Flush flushes the underlying *gzip.Writer and then the underlying +// http.ResponseWriter if it is an http.Flusher. This makes GzipResponseWriter +// an http.Flusher. +func (w *GzipResponseWriter) Flush() { + if w.gw == nil && !w.ignore { + // Only flush once startGzip or startPlain has been called. + // + // Flush is thus a no-op until we're certain whether a plain + // or gzipped response will be served. + return + } + + if w.gw != nil { + w.gw.Flush() + } + + if fw, ok := w.ResponseWriter.(http.Flusher); ok { + fw.Flush() + } +} + +// Hijack implements http.Hijacker. If the underlying ResponseWriter is a +// Hijacker, its Hijack method is returned. Otherwise an error is returned. +func (w *GzipResponseWriter) Hijack() (net.Conn, *bufio.ReadWriter, error) { + if hj, ok := w.ResponseWriter.(http.Hijacker); ok { + return hj.Hijack() + } + return nil, nil, fmt.Errorf("http.Hijacker interface is not supported") +} + +// verify Hijacker interface implementation +var _ http.Hijacker = &GzipResponseWriter{} + +// MustNewGzipLevelHandler behaves just like NewGzipLevelHandler except that in +// an error case it panics rather than returning an error. +func MustNewGzipLevelHandler(level int) func(http.Handler) http.Handler { + wrap, err := NewGzipLevelHandler(level) + if err != nil { + panic(err) + } + return wrap +} + +// NewGzipLevelHandler returns a wrapper function (often known as middleware) +// which can be used to wrap an HTTP handler to transparently gzip the response +// body if the client supports it (via the Accept-Encoding header). Responses will +// be encoded at the given gzip compression level. An error will be returned only +// if an invalid gzip compression level is given, so if one can ensure the level +// is valid, the returned error can be safely ignored. +func NewGzipLevelHandler(level int) (func(http.Handler) http.Handler, error) { + return NewGzipLevelAndMinSize(level, DefaultMinSize) +} + +// NewGzipLevelAndMinSize behave as NewGzipLevelHandler except it let the caller +// specify the minimum size before compression. +func NewGzipLevelAndMinSize(level, minSize int) (func(http.Handler) http.Handler, error) { + return GzipHandlerWithOpts(CompressionLevel(level), MinSize(minSize)) +} + +func GzipHandlerWithOpts(opts ...option) (func(http.Handler) http.Handler, error) { + c := &config{ + level: gzip.DefaultCompression, + minSize: DefaultMinSize, + } + + for _, o := range opts { + o(c) + } + + if err := c.validate(); err != nil { + return nil, err + } + + return func(h http.Handler) http.Handler { + index := poolIndex(c.level) + + return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) { + w.Header().Add(vary, acceptEncoding) + if acceptsGzip(r) { + gw := &GzipResponseWriter{ + ResponseWriter: w, + index: index, + minSize: c.minSize, + contentTypes: c.contentTypes, + } + defer gw.Close() + + if _, ok := w.(http.CloseNotifier); ok { + gwcn := GzipResponseWriterWithCloseNotify{gw} + h.ServeHTTP(gwcn, r) + } else { + h.ServeHTTP(gw, r) + } + + } else { + h.ServeHTTP(w, r) + } + }) + }, nil +} + +// Parsed representation of one of the inputs to ContentTypes. +// See https://golang.org/pkg/mime/#ParseMediaType +type parsedContentType struct { + mediaType string + params map[string]string +} + +// equals returns whether this content type matches another content type. +func (pct parsedContentType) equals(mediaType string, params map[string]string) bool { + if pct.mediaType != mediaType { + return false + } + // if pct has no params, don't care about other's params + if len(pct.params) == 0 { + return true + } + + // if pct has any params, they must be identical to other's. + if len(pct.params) != len(params) { + return false + } + for k, v := range pct.params { + if w, ok := params[k]; !ok || v != w { + return false + } + } + return true +} + +// Used for functional configuration. +type config struct { + minSize int + level int + contentTypes []parsedContentType +} + +func (c *config) validate() error { + if c.level != gzip.DefaultCompression && (c.level < gzip.BestSpeed || c.level > gzip.BestCompression) { + return fmt.Errorf("invalid compression level requested: %d", c.level) + } + + if c.minSize < 0 { + return fmt.Errorf("minimum size must be more than zero") + } + + return nil +} + +type option func(c *config) + +func MinSize(size int) option { + return func(c *config) { + c.minSize = size + } +} + +func CompressionLevel(level int) option { + return func(c *config) { + c.level = level + } +} + +// ContentTypes specifies a list of content types to compare +// the Content-Type header to before compressing. If none +// match, the response will be returned as-is. +// +// Content types are compared in a case-insensitive, whitespace-ignored +// manner. +// +// A MIME type without any other directive will match a content type +// that has the same MIME type, regardless of that content type's other +// directives. I.e., "text/html" will match both "text/html" and +// "text/html; charset=utf-8". +// +// A MIME type with any other directive will only match a content type +// that has the same MIME type and other directives. I.e., +// "text/html; charset=utf-8" will only match "text/html; charset=utf-8". +// +// By default, responses are gzipped regardless of +// Content-Type. +func ContentTypes(types []string) option { + return func(c *config) { + c.contentTypes = []parsedContentType{} + for _, v := range types { + mediaType, params, err := mime.ParseMediaType(v) + if err == nil { + c.contentTypes = append(c.contentTypes, parsedContentType{mediaType, params}) + } + } + } +} + +// GzipHandler wraps an HTTP handler, to transparently gzip the response body if +// the client supports it (via the Accept-Encoding header). This will compress at +// the default compression level. +func GzipHandler(h http.Handler) http.Handler { + wrapper, _ := NewGzipLevelHandler(gzip.DefaultCompression) + return wrapper(h) +} + +// acceptsGzip returns true if the given HTTP request indicates that it will +// accept a gzipped response. +func acceptsGzip(r *http.Request) bool { + acceptedEncodings, _ := parseEncodings(r.Header.Get(acceptEncoding)) + return acceptedEncodings["gzip"] > 0.0 +} + +// returns true if we've been configured to compress the specific content type. +func handleContentType(contentTypes []parsedContentType, ct string) bool { + // If contentTypes is empty we handle all content types. + if len(contentTypes) == 0 { + return true + } + + mediaType, params, err := mime.ParseMediaType(ct) + if err != nil { + return false + } + + for _, c := range contentTypes { + if c.equals(mediaType, params) { + return true + } + } + + return false +} + +// parseEncodings attempts to parse a list of codings, per RFC 2616, as might +// appear in an Accept-Encoding header. It returns a map of content-codings to +// quality values, and an error containing the errors encountered. It's probably +// safe to ignore those, because silently ignoring errors is how the internet +// works. +// +// See: http://tools.ietf.org/html/rfc2616#section-14.3. +func parseEncodings(s string) (codings, error) { + c := make(codings) + var e []string + + for _, ss := range strings.Split(s, ",") { + coding, qvalue, err := parseCoding(ss) + + if err != nil { + e = append(e, err.Error()) + } else { + c[coding] = qvalue + } + } + + // TODO (adammck): Use a proper multi-error struct, so the individual errors + // can be extracted if anyone cares. + if len(e) > 0 { + return c, fmt.Errorf("errors while parsing encodings: %s", strings.Join(e, ", ")) + } + + return c, nil +} + +// parseCoding parses a single conding (content-coding with an optional qvalue), +// as might appear in an Accept-Encoding header. It attempts to forgive minor +// formatting errors. +func parseCoding(s string) (coding string, qvalue float64, err error) { + for n, part := range strings.Split(s, ";") { + part = strings.TrimSpace(part) + qvalue = DefaultQValue + + if n == 0 { + coding = strings.ToLower(part) + } else if strings.HasPrefix(part, "q=") { + qvalue, err = strconv.ParseFloat(strings.TrimPrefix(part, "q="), 64) + + if qvalue < 0.0 { + qvalue = 0.0 + } else if qvalue > 1.0 { + qvalue = 1.0 + } + } + } + + if coding == "" { + err = fmt.Errorf("empty content-coding") + } + + return +} diff --git a/vendor/github.com/NYTimes/gziphandler/gzip_go18.go b/vendor/github.com/NYTimes/gziphandler/gzip_go18.go new file mode 100644 index 000000000..fa9665b7e --- /dev/null +++ b/vendor/github.com/NYTimes/gziphandler/gzip_go18.go @@ -0,0 +1,43 @@ +// +build go1.8 + +package gziphandler + +import "net/http" + +// Push initiates an HTTP/2 server push. +// Push returns ErrNotSupported if the client has disabled push or if push +// is not supported on the underlying connection. +func (w *GzipResponseWriter) Push(target string, opts *http.PushOptions) error { + pusher, ok := w.ResponseWriter.(http.Pusher) + if ok && pusher != nil { + return pusher.Push(target, setAcceptEncodingForPushOptions(opts)) + } + return http.ErrNotSupported +} + +// setAcceptEncodingForPushOptions sets "Accept-Encoding" : "gzip" for PushOptions without overriding existing headers. +func setAcceptEncodingForPushOptions(opts *http.PushOptions) *http.PushOptions { + + if opts == nil { + opts = &http.PushOptions{ + Header: http.Header{ + acceptEncoding: []string{"gzip"}, + }, + } + return opts + } + + if opts.Header == nil { + opts.Header = http.Header{ + acceptEncoding: []string{"gzip"}, + } + return opts + } + + if encoding := opts.Header.Get(acceptEncoding); encoding == "" { + opts.Header.Add(acceptEncoding, "gzip") + return opts + } + + return opts +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/LICENSE b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/LICENSE new file mode 100644 index 000000000..52cf18e42 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/LICENSE @@ -0,0 +1,26 @@ +Copyright 2021 The ANTLR Project + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + 3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from this + software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn.go new file mode 100644 index 000000000..a4e2079e6 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn.go @@ -0,0 +1,159 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import "sync" + +var ATNInvalidAltNumber int + +type ATN struct { + // DecisionToState is the decision points for all rules, subrules, optional + // blocks, ()+, ()*, etc. Used to build DFA predictors for them. + DecisionToState []DecisionState + + // grammarType is the ATN type and is used for deserializing ATNs from strings. + grammarType int + + // lexerActions is referenced by action transitions in the ATN for lexer ATNs. + lexerActions []LexerAction + + // maxTokenType is the maximum value for any symbol recognized by a transition in the ATN. + maxTokenType int + + modeNameToStartState map[string]*TokensStartState + + modeToStartState []*TokensStartState + + // ruleToStartState maps from rule index to starting state number. + ruleToStartState []*RuleStartState + + // ruleToStopState maps from rule index to stop state number. + ruleToStopState []*RuleStopState + + // ruleToTokenType maps the rule index to the resulting token type for lexer + // ATNs. For parser ATNs, it maps the rule index to the generated bypass token + // type if ATNDeserializationOptions.isGenerateRuleBypassTransitions was + // specified, and otherwise is nil. + ruleToTokenType []int + + states []ATNState + + mu sync.Mutex + stateMu sync.RWMutex + edgeMu sync.RWMutex +} + +func NewATN(grammarType int, maxTokenType int) *ATN { + return &ATN{ + grammarType: grammarType, + maxTokenType: maxTokenType, + modeNameToStartState: make(map[string]*TokensStartState), + } +} + +// NextTokensInContext computes the set of valid tokens that can occur starting +// in state s. If ctx is nil, the set of tokens will not include what can follow +// the rule surrounding s. In other words, the set will be restricted to tokens +// reachable staying within the rule of s. +func (a *ATN) NextTokensInContext(s ATNState, ctx RuleContext) *IntervalSet { + return NewLL1Analyzer(a).Look(s, nil, ctx) +} + +// NextTokensNoContext computes the set of valid tokens that can occur starting +// in s and staying in same rule. Token.EPSILON is in set if we reach end of +// rule. +func (a *ATN) NextTokensNoContext(s ATNState) *IntervalSet { + a.mu.Lock() + defer a.mu.Unlock() + iset := s.GetNextTokenWithinRule() + if iset == nil { + iset = a.NextTokensInContext(s, nil) + iset.readOnly = true + s.SetNextTokenWithinRule(iset) + } + return iset +} + +func (a *ATN) NextTokens(s ATNState, ctx RuleContext) *IntervalSet { + if ctx == nil { + return a.NextTokensNoContext(s) + } + + return a.NextTokensInContext(s, ctx) +} + +func (a *ATN) addState(state ATNState) { + if state != nil { + state.SetATN(a) + state.SetStateNumber(len(a.states)) + } + + a.states = append(a.states, state) +} + +func (a *ATN) removeState(state ATNState) { + a.states[state.GetStateNumber()] = nil // Just free the memory; don't shift states in the slice +} + +func (a *ATN) defineDecisionState(s DecisionState) int { + a.DecisionToState = append(a.DecisionToState, s) + s.setDecision(len(a.DecisionToState) - 1) + + return s.getDecision() +} + +func (a *ATN) getDecisionState(decision int) DecisionState { + if len(a.DecisionToState) == 0 { + return nil + } + + return a.DecisionToState[decision] +} + +// getExpectedTokens computes the set of input symbols which could follow ATN +// state number stateNumber in the specified full parse context ctx and returns +// the set of potentially valid input symbols which could follow the specified +// state in the specified context. This method considers the complete parser +// context, but does not evaluate semantic predicates (i.e. all predicates +// encountered during the calculation are assumed true). If a path in the ATN +// exists from the starting state to the RuleStopState of the outermost context +// without Matching any symbols, Token.EOF is added to the returned set. +// +// A nil ctx defaults to ParserRuleContext.EMPTY. +// +// It panics if the ATN does not contain state stateNumber. +func (a *ATN) getExpectedTokens(stateNumber int, ctx RuleContext) *IntervalSet { + if stateNumber < 0 || stateNumber >= len(a.states) { + panic("Invalid state number.") + } + + s := a.states[stateNumber] + following := a.NextTokens(s, nil) + + if !following.contains(TokenEpsilon) { + return following + } + + expected := NewIntervalSet() + + expected.addSet(following) + expected.removeOne(TokenEpsilon) + + for ctx != nil && ctx.GetInvokingState() >= 0 && following.contains(TokenEpsilon) { + invokingState := a.states[ctx.GetInvokingState()] + rt := invokingState.GetTransitions()[0] + + following = a.NextTokens(rt.(*RuleTransition).followState, nil) + expected.addSet(following) + expected.removeOne(TokenEpsilon) + ctx = ctx.GetParent().(RuleContext) + } + + if following.contains(TokenEpsilon) { + expected.addOne(TokenEOF) + } + + return expected +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_config.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_config.go new file mode 100644 index 000000000..97ba417f7 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_config.go @@ -0,0 +1,295 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "fmt" +) + +type comparable interface { + equals(other interface{}) bool +} + +// ATNConfig is a tuple: (ATN state, predicted alt, syntactic, semantic +// context). The syntactic context is a graph-structured stack node whose +// path(s) to the root is the rule invocation(s) chain used to arrive at the +// state. The semantic context is the tree of semantic predicates encountered +// before reaching an ATN state. +type ATNConfig interface { + comparable + + hash() int + + GetState() ATNState + GetAlt() int + GetSemanticContext() SemanticContext + + GetContext() PredictionContext + SetContext(PredictionContext) + + GetReachesIntoOuterContext() int + SetReachesIntoOuterContext(int) + + String() string + + getPrecedenceFilterSuppressed() bool + setPrecedenceFilterSuppressed(bool) +} + +type BaseATNConfig struct { + precedenceFilterSuppressed bool + state ATNState + alt int + context PredictionContext + semanticContext SemanticContext + reachesIntoOuterContext int +} + +func NewBaseATNConfig7(old *BaseATNConfig) *BaseATNConfig { // TODO: Dup + return &BaseATNConfig{ + state: old.state, + alt: old.alt, + context: old.context, + semanticContext: old.semanticContext, + reachesIntoOuterContext: old.reachesIntoOuterContext, + } +} + +func NewBaseATNConfig6(state ATNState, alt int, context PredictionContext) *BaseATNConfig { + return NewBaseATNConfig5(state, alt, context, SemanticContextNone) +} + +func NewBaseATNConfig5(state ATNState, alt int, context PredictionContext, semanticContext SemanticContext) *BaseATNConfig { + if semanticContext == nil { + panic("semanticContext cannot be nil") // TODO: Necessary? + } + + return &BaseATNConfig{state: state, alt: alt, context: context, semanticContext: semanticContext} +} + +func NewBaseATNConfig4(c ATNConfig, state ATNState) *BaseATNConfig { + return NewBaseATNConfig(c, state, c.GetContext(), c.GetSemanticContext()) +} + +func NewBaseATNConfig3(c ATNConfig, state ATNState, semanticContext SemanticContext) *BaseATNConfig { + return NewBaseATNConfig(c, state, c.GetContext(), semanticContext) +} + +func NewBaseATNConfig2(c ATNConfig, semanticContext SemanticContext) *BaseATNConfig { + return NewBaseATNConfig(c, c.GetState(), c.GetContext(), semanticContext) +} + +func NewBaseATNConfig1(c ATNConfig, state ATNState, context PredictionContext) *BaseATNConfig { + return NewBaseATNConfig(c, state, context, c.GetSemanticContext()) +} + +func NewBaseATNConfig(c ATNConfig, state ATNState, context PredictionContext, semanticContext SemanticContext) *BaseATNConfig { + if semanticContext == nil { + panic("semanticContext cannot be nil") + } + + return &BaseATNConfig{ + state: state, + alt: c.GetAlt(), + context: context, + semanticContext: semanticContext, + reachesIntoOuterContext: c.GetReachesIntoOuterContext(), + precedenceFilterSuppressed: c.getPrecedenceFilterSuppressed(), + } +} + +func (b *BaseATNConfig) getPrecedenceFilterSuppressed() bool { + return b.precedenceFilterSuppressed +} + +func (b *BaseATNConfig) setPrecedenceFilterSuppressed(v bool) { + b.precedenceFilterSuppressed = v +} + +func (b *BaseATNConfig) GetState() ATNState { + return b.state +} + +func (b *BaseATNConfig) GetAlt() int { + return b.alt +} + +func (b *BaseATNConfig) SetContext(v PredictionContext) { + b.context = v +} +func (b *BaseATNConfig) GetContext() PredictionContext { + return b.context +} + +func (b *BaseATNConfig) GetSemanticContext() SemanticContext { + return b.semanticContext +} + +func (b *BaseATNConfig) GetReachesIntoOuterContext() int { + return b.reachesIntoOuterContext +} + +func (b *BaseATNConfig) SetReachesIntoOuterContext(v int) { + b.reachesIntoOuterContext = v +} + +// An ATN configuration is equal to another if both have the same state, they +// predict the same alternative, and syntactic/semantic contexts are the same. +func (b *BaseATNConfig) equals(o interface{}) bool { + if b == o { + return true + } + + var other, ok = o.(*BaseATNConfig) + + if !ok { + return false + } + + var equal bool + + if b.context == nil { + equal = other.context == nil + } else { + equal = b.context.equals(other.context) + } + + var ( + nums = b.state.GetStateNumber() == other.state.GetStateNumber() + alts = b.alt == other.alt + cons = b.semanticContext.equals(other.semanticContext) + sups = b.precedenceFilterSuppressed == other.precedenceFilterSuppressed + ) + + return nums && alts && cons && sups && equal +} + +func (b *BaseATNConfig) hash() int { + var c int + if b.context != nil { + c = b.context.hash() + } + + h := murmurInit(7) + h = murmurUpdate(h, b.state.GetStateNumber()) + h = murmurUpdate(h, b.alt) + h = murmurUpdate(h, c) + h = murmurUpdate(h, b.semanticContext.hash()) + return murmurFinish(h, 4) +} + +func (b *BaseATNConfig) String() string { + var s1, s2, s3 string + + if b.context != nil { + s1 = ",[" + fmt.Sprint(b.context) + "]" + } + + if b.semanticContext != SemanticContextNone { + s2 = "," + fmt.Sprint(b.semanticContext) + } + + if b.reachesIntoOuterContext > 0 { + s3 = ",up=" + fmt.Sprint(b.reachesIntoOuterContext) + } + + return fmt.Sprintf("(%v,%v%v%v%v)", b.state, b.alt, s1, s2, s3) +} + +type LexerATNConfig struct { + *BaseATNConfig + lexerActionExecutor *LexerActionExecutor + passedThroughNonGreedyDecision bool +} + +func NewLexerATNConfig6(state ATNState, alt int, context PredictionContext) *LexerATNConfig { + return &LexerATNConfig{BaseATNConfig: NewBaseATNConfig5(state, alt, context, SemanticContextNone)} +} + +func NewLexerATNConfig5(state ATNState, alt int, context PredictionContext, lexerActionExecutor *LexerActionExecutor) *LexerATNConfig { + return &LexerATNConfig{ + BaseATNConfig: NewBaseATNConfig5(state, alt, context, SemanticContextNone), + lexerActionExecutor: lexerActionExecutor, + } +} + +func NewLexerATNConfig4(c *LexerATNConfig, state ATNState) *LexerATNConfig { + return &LexerATNConfig{ + BaseATNConfig: NewBaseATNConfig(c, state, c.GetContext(), c.GetSemanticContext()), + lexerActionExecutor: c.lexerActionExecutor, + passedThroughNonGreedyDecision: checkNonGreedyDecision(c, state), + } +} + +func NewLexerATNConfig3(c *LexerATNConfig, state ATNState, lexerActionExecutor *LexerActionExecutor) *LexerATNConfig { + return &LexerATNConfig{ + BaseATNConfig: NewBaseATNConfig(c, state, c.GetContext(), c.GetSemanticContext()), + lexerActionExecutor: lexerActionExecutor, + passedThroughNonGreedyDecision: checkNonGreedyDecision(c, state), + } +} + +func NewLexerATNConfig2(c *LexerATNConfig, state ATNState, context PredictionContext) *LexerATNConfig { + return &LexerATNConfig{ + BaseATNConfig: NewBaseATNConfig(c, state, context, c.GetSemanticContext()), + lexerActionExecutor: c.lexerActionExecutor, + passedThroughNonGreedyDecision: checkNonGreedyDecision(c, state), + } +} + +func NewLexerATNConfig1(state ATNState, alt int, context PredictionContext) *LexerATNConfig { + return &LexerATNConfig{BaseATNConfig: NewBaseATNConfig5(state, alt, context, SemanticContextNone)} +} + +func (l *LexerATNConfig) hash() int { + var f int + if l.passedThroughNonGreedyDecision { + f = 1 + } else { + f = 0 + } + h := murmurInit(7) + h = murmurUpdate(h, l.state.GetStateNumber()) + h = murmurUpdate(h, l.alt) + h = murmurUpdate(h, l.context.hash()) + h = murmurUpdate(h, l.semanticContext.hash()) + h = murmurUpdate(h, f) + h = murmurUpdate(h, l.lexerActionExecutor.hash()) + h = murmurFinish(h, 6) + return h +} + +func (l *LexerATNConfig) equals(other interface{}) bool { + var othert, ok = other.(*LexerATNConfig) + + if l == other { + return true + } else if !ok { + return false + } else if l.passedThroughNonGreedyDecision != othert.passedThroughNonGreedyDecision { + return false + } + + var b bool + + if l.lexerActionExecutor != nil { + b = !l.lexerActionExecutor.equals(othert.lexerActionExecutor) + } else { + b = othert.lexerActionExecutor != nil + } + + if b { + return false + } + + return l.BaseATNConfig.equals(othert.BaseATNConfig) +} + + +func checkNonGreedyDecision(source *LexerATNConfig, target ATNState) bool { + var ds, ok = target.(DecisionState) + + return source.passedThroughNonGreedyDecision || (ok && ds.getNonGreedy()) +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_config_set.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_config_set.go new file mode 100644 index 000000000..49ad4a719 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_config_set.go @@ -0,0 +1,407 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import "fmt" + +type ATNConfigSet interface { + hash() int + Add(ATNConfig, *DoubleDict) bool + AddAll([]ATNConfig) bool + + GetStates() Set + GetPredicates() []SemanticContext + GetItems() []ATNConfig + + OptimizeConfigs(interpreter *BaseATNSimulator) + + Equals(other interface{}) bool + + Length() int + IsEmpty() bool + Contains(ATNConfig) bool + ContainsFast(ATNConfig) bool + Clear() + String() string + + HasSemanticContext() bool + SetHasSemanticContext(v bool) + + ReadOnly() bool + SetReadOnly(bool) + + GetConflictingAlts() *BitSet + SetConflictingAlts(*BitSet) + + Alts() *BitSet + + FullContext() bool + + GetUniqueAlt() int + SetUniqueAlt(int) + + GetDipsIntoOuterContext() bool + SetDipsIntoOuterContext(bool) +} + +// BaseATNConfigSet is a specialized set of ATNConfig that tracks information +// about its elements and can combine similar configurations using a +// graph-structured stack. +type BaseATNConfigSet struct { + cachedHash int + + // configLookup is used to determine whether two BaseATNConfigSets are equal. We + // need all configurations with the same (s, i, _, semctx) to be equal. A key + // effectively doubles the number of objects associated with ATNConfigs. All + // keys are hashed by (s, i, _, pi), not including the context. Wiped out when + // read-only because a set becomes a DFA state. + configLookup Set + + // configs is the added elements. + configs []ATNConfig + + // TODO: These fields make me pretty uncomfortable, but it is nice to pack up + // info together because it saves recomputation. Can we track conflicts as they + // are added to save scanning configs later? + conflictingAlts *BitSet + + // dipsIntoOuterContext is used by parsers and lexers. In a lexer, it indicates + // we hit a pred while computing a closure operation. Do not make a DFA state + // from the BaseATNConfigSet in this case. TODO: How is this used by parsers? + dipsIntoOuterContext bool + + // fullCtx is whether it is part of a full context LL prediction. Used to + // determine how to merge $. It is a wildcard with SLL, but not for an LL + // context merge. + fullCtx bool + + // Used in parser and lexer. In lexer, it indicates we hit a pred + // while computing a closure operation. Don't make a DFA state from a. + hasSemanticContext bool + + // readOnly is whether it is read-only. Do not + // allow any code to manipulate the set if true because DFA states will point at + // sets and those must not change. It not protect other fields; conflictingAlts + // in particular, which is assigned after readOnly. + readOnly bool + + // TODO: These fields make me pretty uncomfortable, but it is nice to pack up + // info together because it saves recomputation. Can we track conflicts as they + // are added to save scanning configs later? + uniqueAlt int +} + +func (b *BaseATNConfigSet) Alts() *BitSet { + alts := NewBitSet() + for _, it := range b.configs { + alts.add(it.GetAlt()) + } + return alts +} + +func NewBaseATNConfigSet(fullCtx bool) *BaseATNConfigSet { + return &BaseATNConfigSet{ + cachedHash: -1, + configLookup: newArray2DHashSetWithCap(hashATNConfig, equalATNConfigs, 16, 2), + fullCtx: fullCtx, + } +} + +// Add merges contexts with existing configs for (s, i, pi, _), where s is the +// ATNConfig.state, i is the ATNConfig.alt, and pi is the +// ATNConfig.semanticContext. We use (s,i,pi) as the key. Updates +// dipsIntoOuterContext and hasSemanticContext when necessary. +func (b *BaseATNConfigSet) Add(config ATNConfig, mergeCache *DoubleDict) bool { + if b.readOnly { + panic("set is read-only") + } + + if config.GetSemanticContext() != SemanticContextNone { + b.hasSemanticContext = true + } + + if config.GetReachesIntoOuterContext() > 0 { + b.dipsIntoOuterContext = true + } + + existing := b.configLookup.Add(config).(ATNConfig) + + if existing == config { + b.cachedHash = -1 + b.configs = append(b.configs, config) // Track order here + return true + } + + // Merge a previous (s, i, pi, _) with it and save the result + rootIsWildcard := !b.fullCtx + merged := merge(existing.GetContext(), config.GetContext(), rootIsWildcard, mergeCache) + + // No need to check for existing.context because config.context is in the cache, + // since the only way to create new graphs is the "call rule" and here. We cache + // at both places. + existing.SetReachesIntoOuterContext(intMax(existing.GetReachesIntoOuterContext(), config.GetReachesIntoOuterContext())) + + // Preserve the precedence filter suppression during the merge + if config.getPrecedenceFilterSuppressed() { + existing.setPrecedenceFilterSuppressed(true) + } + + // Replace the context because there is no need to do alt mapping + existing.SetContext(merged) + + return true +} + +func (b *BaseATNConfigSet) GetStates() Set { + states := newArray2DHashSet(nil, nil) + + for i := 0; i < len(b.configs); i++ { + states.Add(b.configs[i].GetState()) + } + + return states +} + +func (b *BaseATNConfigSet) HasSemanticContext() bool { + return b.hasSemanticContext +} + +func (b *BaseATNConfigSet) SetHasSemanticContext(v bool) { + b.hasSemanticContext = v +} + +func (b *BaseATNConfigSet) GetPredicates() []SemanticContext { + preds := make([]SemanticContext, 0) + + for i := 0; i < len(b.configs); i++ { + c := b.configs[i].GetSemanticContext() + + if c != SemanticContextNone { + preds = append(preds, c) + } + } + + return preds +} + +func (b *BaseATNConfigSet) GetItems() []ATNConfig { + return b.configs +} + +func (b *BaseATNConfigSet) OptimizeConfigs(interpreter *BaseATNSimulator) { + if b.readOnly { + panic("set is read-only") + } + + if b.configLookup.Len() == 0 { + return + } + + for i := 0; i < len(b.configs); i++ { + config := b.configs[i] + + config.SetContext(interpreter.getCachedContext(config.GetContext())) + } +} + +func (b *BaseATNConfigSet) AddAll(coll []ATNConfig) bool { + for i := 0; i < len(coll); i++ { + b.Add(coll[i], nil) + } + + return false +} + +func (b *BaseATNConfigSet) Equals(other interface{}) bool { + if b == other { + return true + } else if _, ok := other.(*BaseATNConfigSet); !ok { + return false + } + + other2 := other.(*BaseATNConfigSet) + + return b.configs != nil && + // TODO: b.configs.equals(other2.configs) && // TODO: Is b necessary? + b.fullCtx == other2.fullCtx && + b.uniqueAlt == other2.uniqueAlt && + b.conflictingAlts == other2.conflictingAlts && + b.hasSemanticContext == other2.hasSemanticContext && + b.dipsIntoOuterContext == other2.dipsIntoOuterContext +} + +func (b *BaseATNConfigSet) hash() int { + if b.readOnly { + if b.cachedHash == -1 { + b.cachedHash = b.hashCodeConfigs() + } + + return b.cachedHash + } + + return b.hashCodeConfigs() +} + +func (b *BaseATNConfigSet) hashCodeConfigs() int { + h := 1 + for _, config := range b.configs { + h = 31*h + config.hash() + } + return h +} + +func (b *BaseATNConfigSet) Length() int { + return len(b.configs) +} + +func (b *BaseATNConfigSet) IsEmpty() bool { + return len(b.configs) == 0 +} + +func (b *BaseATNConfigSet) Contains(item ATNConfig) bool { + if b.configLookup == nil { + panic("not implemented for read-only sets") + } + + return b.configLookup.Contains(item) +} + +func (b *BaseATNConfigSet) ContainsFast(item ATNConfig) bool { + if b.configLookup == nil { + panic("not implemented for read-only sets") + } + + return b.configLookup.Contains(item) // TODO: containsFast is not implemented for Set +} + +func (b *BaseATNConfigSet) Clear() { + if b.readOnly { + panic("set is read-only") + } + + b.configs = make([]ATNConfig, 0) + b.cachedHash = -1 + b.configLookup = newArray2DHashSet(nil, equalATNConfigs) +} + +func (b *BaseATNConfigSet) FullContext() bool { + return b.fullCtx +} + +func (b *BaseATNConfigSet) GetDipsIntoOuterContext() bool { + return b.dipsIntoOuterContext +} + +func (b *BaseATNConfigSet) SetDipsIntoOuterContext(v bool) { + b.dipsIntoOuterContext = v +} + +func (b *BaseATNConfigSet) GetUniqueAlt() int { + return b.uniqueAlt +} + +func (b *BaseATNConfigSet) SetUniqueAlt(v int) { + b.uniqueAlt = v +} + +func (b *BaseATNConfigSet) GetConflictingAlts() *BitSet { + return b.conflictingAlts +} + +func (b *BaseATNConfigSet) SetConflictingAlts(v *BitSet) { + b.conflictingAlts = v +} + +func (b *BaseATNConfigSet) ReadOnly() bool { + return b.readOnly +} + +func (b *BaseATNConfigSet) SetReadOnly(readOnly bool) { + b.readOnly = readOnly + + if readOnly { + b.configLookup = nil // Read only, so no need for the lookup cache + } +} + +func (b *BaseATNConfigSet) String() string { + s := "[" + + for i, c := range b.configs { + s += c.String() + + if i != len(b.configs)-1 { + s += ", " + } + } + + s += "]" + + if b.hasSemanticContext { + s += ",hasSemanticContext=" + fmt.Sprint(b.hasSemanticContext) + } + + if b.uniqueAlt != ATNInvalidAltNumber { + s += ",uniqueAlt=" + fmt.Sprint(b.uniqueAlt) + } + + if b.conflictingAlts != nil { + s += ",conflictingAlts=" + b.conflictingAlts.String() + } + + if b.dipsIntoOuterContext { + s += ",dipsIntoOuterContext" + } + + return s +} + +type OrderedATNConfigSet struct { + *BaseATNConfigSet +} + +func NewOrderedATNConfigSet() *OrderedATNConfigSet { + b := NewBaseATNConfigSet(false) + + b.configLookup = newArray2DHashSet(nil, nil) + + return &OrderedATNConfigSet{BaseATNConfigSet: b} +} + +func hashATNConfig(i interface{}) int { + o := i.(ATNConfig) + hash := 7 + hash = 31*hash + o.GetState().GetStateNumber() + hash = 31*hash + o.GetAlt() + hash = 31*hash + o.GetSemanticContext().hash() + return hash +} + +func equalATNConfigs(a, b interface{}) bool { + if a == nil || b == nil { + return false + } + + if a == b { + return true + } + + var ai, ok = a.(ATNConfig) + var bi, ok1 = b.(ATNConfig) + + if !ok || !ok1 { + return false + } + + if ai.GetState().GetStateNumber() != bi.GetState().GetStateNumber() { + return false + } + + if ai.GetAlt() != bi.GetAlt() { + return false + } + + return ai.GetSemanticContext().equals(bi.GetSemanticContext()) +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_deserialization_options.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_deserialization_options.go new file mode 100644 index 000000000..cb8eafb0b --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_deserialization_options.go @@ -0,0 +1,61 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import "errors" + +var defaultATNDeserializationOptions = ATNDeserializationOptions{true, true, false} + +type ATNDeserializationOptions struct { + readOnly bool + verifyATN bool + generateRuleBypassTransitions bool +} + +func (opts *ATNDeserializationOptions) ReadOnly() bool { + return opts.readOnly +} + +func (opts *ATNDeserializationOptions) SetReadOnly(readOnly bool) { + if opts.readOnly { + panic(errors.New("Cannot mutate read only ATNDeserializationOptions")) + } + opts.readOnly = readOnly +} + +func (opts *ATNDeserializationOptions) VerifyATN() bool { + return opts.verifyATN +} + +func (opts *ATNDeserializationOptions) SetVerifyATN(verifyATN bool) { + if opts.readOnly { + panic(errors.New("Cannot mutate read only ATNDeserializationOptions")) + } + opts.verifyATN = verifyATN +} + +func (opts *ATNDeserializationOptions) GenerateRuleBypassTransitions() bool { + return opts.generateRuleBypassTransitions +} + +func (opts *ATNDeserializationOptions) SetGenerateRuleBypassTransitions(generateRuleBypassTransitions bool) { + if opts.readOnly { + panic(errors.New("Cannot mutate read only ATNDeserializationOptions")) + } + opts.generateRuleBypassTransitions = generateRuleBypassTransitions +} + +func DefaultATNDeserializationOptions() *ATNDeserializationOptions { + return NewATNDeserializationOptions(&defaultATNDeserializationOptions) +} + +func NewATNDeserializationOptions(other *ATNDeserializationOptions) *ATNDeserializationOptions { + o := new(ATNDeserializationOptions) + if other != nil { + *o = *other + o.readOnly = false + } + return o +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_deserializer.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_deserializer.go new file mode 100644 index 000000000..aea9bbfa9 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_deserializer.go @@ -0,0 +1,683 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "fmt" + "strconv" +) + +const serializedVersion = 4 + +type loopEndStateIntPair struct { + item0 *LoopEndState + item1 int +} + +type blockStartStateIntPair struct { + item0 BlockStartState + item1 int +} + +type ATNDeserializer struct { + options *ATNDeserializationOptions + data []int32 + pos int +} + +func NewATNDeserializer(options *ATNDeserializationOptions) *ATNDeserializer { + if options == nil { + options = &defaultATNDeserializationOptions + } + + return &ATNDeserializer{options: options} +} + +func stringInSlice(a string, list []string) int { + for i, b := range list { + if b == a { + return i + } + } + + return -1 +} + +func (a *ATNDeserializer) Deserialize(data []int32) *ATN { + a.data = data + a.pos = 0 + a.checkVersion() + + atn := a.readATN() + + a.readStates(atn) + a.readRules(atn) + a.readModes(atn) + + sets := a.readSets(atn, nil) + + a.readEdges(atn, sets) + a.readDecisions(atn) + a.readLexerActions(atn) + a.markPrecedenceDecisions(atn) + a.verifyATN(atn) + + if a.options.GenerateRuleBypassTransitions() && atn.grammarType == ATNTypeParser { + a.generateRuleBypassTransitions(atn) + // Re-verify after modification + a.verifyATN(atn) + } + + return atn + +} + +func (a *ATNDeserializer) checkVersion() { + version := a.readInt() + + if version != serializedVersion { + panic("Could not deserialize ATN with version " + strconv.Itoa(version) + " (expected " + strconv.Itoa(serializedVersion) + ").") + } +} + +func (a *ATNDeserializer) readATN() *ATN { + grammarType := a.readInt() + maxTokenType := a.readInt() + + return NewATN(grammarType, maxTokenType) +} + +func (a *ATNDeserializer) readStates(atn *ATN) { + nstates := a.readInt() + + // Allocate worst case size. + loopBackStateNumbers := make([]loopEndStateIntPair, 0, nstates) + endStateNumbers := make([]blockStartStateIntPair, 0, nstates) + + // Preallocate states slice. + atn.states = make([]ATNState, 0, nstates) + + for i := 0; i < nstates; i++ { + stype := a.readInt() + + // Ignore bad types of states + if stype == ATNStateInvalidType { + atn.addState(nil) + continue + } + + ruleIndex := a.readInt() + + s := a.stateFactory(stype, ruleIndex) + + if stype == ATNStateLoopEnd { + loopBackStateNumber := a.readInt() + + loopBackStateNumbers = append(loopBackStateNumbers, loopEndStateIntPair{s.(*LoopEndState), loopBackStateNumber}) + } else if s2, ok := s.(BlockStartState); ok { + endStateNumber := a.readInt() + + endStateNumbers = append(endStateNumbers, blockStartStateIntPair{s2, endStateNumber}) + } + + atn.addState(s) + } + + // Delay the assignment of loop back and end states until we know all the state + // instances have been initialized + for _, pair := range loopBackStateNumbers { + pair.item0.loopBackState = atn.states[pair.item1] + } + + for _, pair := range endStateNumbers { + pair.item0.setEndState(atn.states[pair.item1].(*BlockEndState)) + } + + numNonGreedyStates := a.readInt() + for j := 0; j < numNonGreedyStates; j++ { + stateNumber := a.readInt() + + atn.states[stateNumber].(DecisionState).setNonGreedy(true) + } + + numPrecedenceStates := a.readInt() + for j := 0; j < numPrecedenceStates; j++ { + stateNumber := a.readInt() + + atn.states[stateNumber].(*RuleStartState).isPrecedenceRule = true + } +} + +func (a *ATNDeserializer) readRules(atn *ATN) { + nrules := a.readInt() + + if atn.grammarType == ATNTypeLexer { + atn.ruleToTokenType = make([]int, nrules) + } + + atn.ruleToStartState = make([]*RuleStartState, nrules) + + for i := range atn.ruleToStartState { + s := a.readInt() + startState := atn.states[s].(*RuleStartState) + + atn.ruleToStartState[i] = startState + + if atn.grammarType == ATNTypeLexer { + tokenType := a.readInt() + + atn.ruleToTokenType[i] = tokenType + } + } + + atn.ruleToStopState = make([]*RuleStopState, nrules) + + for _, state := range atn.states { + if s2, ok := state.(*RuleStopState); ok { + atn.ruleToStopState[s2.ruleIndex] = s2 + atn.ruleToStartState[s2.ruleIndex].stopState = s2 + } + } +} + +func (a *ATNDeserializer) readModes(atn *ATN) { + nmodes := a.readInt() + atn.modeToStartState = make([]*TokensStartState, nmodes) + + for i := range atn.modeToStartState { + s := a.readInt() + + atn.modeToStartState[i] = atn.states[s].(*TokensStartState) + } +} + +func (a *ATNDeserializer) readSets(atn *ATN, sets []*IntervalSet) []*IntervalSet { + m := a.readInt() + + // Preallocate the needed capacity. + if cap(sets)-len(sets) < m { + isets := make([]*IntervalSet, len(sets), len(sets)+m) + copy(isets, sets) + sets = isets + } + + for i := 0; i < m; i++ { + iset := NewIntervalSet() + + sets = append(sets, iset) + + n := a.readInt() + containsEOF := a.readInt() + + if containsEOF != 0 { + iset.addOne(-1) + } + + for j := 0; j < n; j++ { + i1 := a.readInt() + i2 := a.readInt() + + iset.addRange(i1, i2) + } + } + + return sets +} + +func (a *ATNDeserializer) readEdges(atn *ATN, sets []*IntervalSet) { + nedges := a.readInt() + + for i := 0; i < nedges; i++ { + var ( + src = a.readInt() + trg = a.readInt() + ttype = a.readInt() + arg1 = a.readInt() + arg2 = a.readInt() + arg3 = a.readInt() + trans = a.edgeFactory(atn, ttype, src, trg, arg1, arg2, arg3, sets) + srcState = atn.states[src] + ) + + srcState.AddTransition(trans, -1) + } + + // Edges for rule stop states can be derived, so they are not serialized + for _, state := range atn.states { + for _, t := range state.GetTransitions() { + var rt, ok = t.(*RuleTransition) + + if !ok { + continue + } + + outermostPrecedenceReturn := -1 + + if atn.ruleToStartState[rt.getTarget().GetRuleIndex()].isPrecedenceRule { + if rt.precedence == 0 { + outermostPrecedenceReturn = rt.getTarget().GetRuleIndex() + } + } + + trans := NewEpsilonTransition(rt.followState, outermostPrecedenceReturn) + + atn.ruleToStopState[rt.getTarget().GetRuleIndex()].AddTransition(trans, -1) + } + } + + for _, state := range atn.states { + if s2, ok := state.(BlockStartState); ok { + // We need to know the end state to set its start state + if s2.getEndState() == nil { + panic("IllegalState") + } + + // Block end states can only be associated to a single block start state + if s2.getEndState().startState != nil { + panic("IllegalState") + } + + s2.getEndState().startState = state + } + + if s2, ok := state.(*PlusLoopbackState); ok { + for _, t := range s2.GetTransitions() { + if t2, ok := t.getTarget().(*PlusBlockStartState); ok { + t2.loopBackState = state + } + } + } else if s2, ok := state.(*StarLoopbackState); ok { + for _, t := range s2.GetTransitions() { + if t2, ok := t.getTarget().(*StarLoopEntryState); ok { + t2.loopBackState = state + } + } + } + } +} + +func (a *ATNDeserializer) readDecisions(atn *ATN) { + ndecisions := a.readInt() + + for i := 0; i < ndecisions; i++ { + s := a.readInt() + decState := atn.states[s].(DecisionState) + + atn.DecisionToState = append(atn.DecisionToState, decState) + decState.setDecision(i) + } +} + +func (a *ATNDeserializer) readLexerActions(atn *ATN) { + if atn.grammarType == ATNTypeLexer { + count := a.readInt() + + atn.lexerActions = make([]LexerAction, count) + + for i := range atn.lexerActions { + actionType := a.readInt() + data1 := a.readInt() + data2 := a.readInt() + atn.lexerActions[i] = a.lexerActionFactory(actionType, data1, data2) + } + } +} + +func (a *ATNDeserializer) generateRuleBypassTransitions(atn *ATN) { + count := len(atn.ruleToStartState) + + for i := 0; i < count; i++ { + atn.ruleToTokenType[i] = atn.maxTokenType + i + 1 + } + + for i := 0; i < count; i++ { + a.generateRuleBypassTransition(atn, i) + } +} + +func (a *ATNDeserializer) generateRuleBypassTransition(atn *ATN, idx int) { + bypassStart := NewBasicBlockStartState() + + bypassStart.ruleIndex = idx + atn.addState(bypassStart) + + bypassStop := NewBlockEndState() + + bypassStop.ruleIndex = idx + atn.addState(bypassStop) + + bypassStart.endState = bypassStop + + atn.defineDecisionState(bypassStart.BaseDecisionState) + + bypassStop.startState = bypassStart + + var excludeTransition Transition + var endState ATNState + + if atn.ruleToStartState[idx].isPrecedenceRule { + // Wrap from the beginning of the rule to the StarLoopEntryState + endState = nil + + for i := 0; i < len(atn.states); i++ { + state := atn.states[i] + + if a.stateIsEndStateFor(state, idx) != nil { + endState = state + excludeTransition = state.(*StarLoopEntryState).loopBackState.GetTransitions()[0] + + break + } + } + + if excludeTransition == nil { + panic("Couldn't identify final state of the precedence rule prefix section.") + } + } else { + endState = atn.ruleToStopState[idx] + } + + // All non-excluded transitions that currently target end state need to target + // blockEnd instead + for i := 0; i < len(atn.states); i++ { + state := atn.states[i] + + for j := 0; j < len(state.GetTransitions()); j++ { + transition := state.GetTransitions()[j] + + if transition == excludeTransition { + continue + } + + if transition.getTarget() == endState { + transition.setTarget(bypassStop) + } + } + } + + // All transitions leaving the rule start state need to leave blockStart instead + ruleToStartState := atn.ruleToStartState[idx] + count := len(ruleToStartState.GetTransitions()) + + for count > 0 { + bypassStart.AddTransition(ruleToStartState.GetTransitions()[count-1], -1) + ruleToStartState.SetTransitions([]Transition{ruleToStartState.GetTransitions()[len(ruleToStartState.GetTransitions())-1]}) + } + + // Link the new states + atn.ruleToStartState[idx].AddTransition(NewEpsilonTransition(bypassStart, -1), -1) + bypassStop.AddTransition(NewEpsilonTransition(endState, -1), -1) + + MatchState := NewBasicState() + + atn.addState(MatchState) + MatchState.AddTransition(NewAtomTransition(bypassStop, atn.ruleToTokenType[idx]), -1) + bypassStart.AddTransition(NewEpsilonTransition(MatchState, -1), -1) +} + +func (a *ATNDeserializer) stateIsEndStateFor(state ATNState, idx int) ATNState { + if state.GetRuleIndex() != idx { + return nil + } + + if _, ok := state.(*StarLoopEntryState); !ok { + return nil + } + + maybeLoopEndState := state.GetTransitions()[len(state.GetTransitions())-1].getTarget() + + if _, ok := maybeLoopEndState.(*LoopEndState); !ok { + return nil + } + + var _, ok = maybeLoopEndState.GetTransitions()[0].getTarget().(*RuleStopState) + + if maybeLoopEndState.(*LoopEndState).epsilonOnlyTransitions && ok { + return state + } + + return nil +} + +// markPrecedenceDecisions analyzes the StarLoopEntryState states in the +// specified ATN to set the StarLoopEntryState.precedenceRuleDecision field to +// the correct value. +func (a *ATNDeserializer) markPrecedenceDecisions(atn *ATN) { + for _, state := range atn.states { + if _, ok := state.(*StarLoopEntryState); !ok { + continue + } + + // We analyze the ATN to determine if a ATN decision state is the + // decision for the closure block that determines whether a + // precedence rule should continue or complete. + if atn.ruleToStartState[state.GetRuleIndex()].isPrecedenceRule { + maybeLoopEndState := state.GetTransitions()[len(state.GetTransitions())-1].getTarget() + + if s3, ok := maybeLoopEndState.(*LoopEndState); ok { + var _, ok2 = maybeLoopEndState.GetTransitions()[0].getTarget().(*RuleStopState) + + if s3.epsilonOnlyTransitions && ok2 { + state.(*StarLoopEntryState).precedenceRuleDecision = true + } + } + } + } +} + +func (a *ATNDeserializer) verifyATN(atn *ATN) { + if !a.options.VerifyATN() { + return + } + + // Verify assumptions + for _, state := range atn.states { + if state == nil { + continue + } + + a.checkCondition(state.GetEpsilonOnlyTransitions() || len(state.GetTransitions()) <= 1, "") + + switch s2 := state.(type) { + case *PlusBlockStartState: + a.checkCondition(s2.loopBackState != nil, "") + + case *StarLoopEntryState: + a.checkCondition(s2.loopBackState != nil, "") + a.checkCondition(len(s2.GetTransitions()) == 2, "") + + switch s2.transitions[0].getTarget().(type) { + case *StarBlockStartState: + _, ok := s2.transitions[1].getTarget().(*LoopEndState) + + a.checkCondition(ok, "") + a.checkCondition(!s2.nonGreedy, "") + + case *LoopEndState: + var _, ok = s2.transitions[1].getTarget().(*StarBlockStartState) + + a.checkCondition(ok, "") + a.checkCondition(s2.nonGreedy, "") + + default: + panic("IllegalState") + } + + case *StarLoopbackState: + a.checkCondition(len(state.GetTransitions()) == 1, "") + + var _, ok = state.GetTransitions()[0].getTarget().(*StarLoopEntryState) + + a.checkCondition(ok, "") + + case *LoopEndState: + a.checkCondition(s2.loopBackState != nil, "") + + case *RuleStartState: + a.checkCondition(s2.stopState != nil, "") + + case BlockStartState: + a.checkCondition(s2.getEndState() != nil, "") + + case *BlockEndState: + a.checkCondition(s2.startState != nil, "") + + case DecisionState: + a.checkCondition(len(s2.GetTransitions()) <= 1 || s2.getDecision() >= 0, "") + + default: + var _, ok = s2.(*RuleStopState) + + a.checkCondition(len(s2.GetTransitions()) <= 1 || ok, "") + } + } +} + +func (a *ATNDeserializer) checkCondition(condition bool, message string) { + if !condition { + if message == "" { + message = "IllegalState" + } + + panic(message) + } +} + +func (a *ATNDeserializer) readInt() int { + v := a.data[a.pos] + + a.pos++ + + return int(v) // data is 32 bits but int is at least that big +} + +func (a *ATNDeserializer) edgeFactory(atn *ATN, typeIndex, src, trg, arg1, arg2, arg3 int, sets []*IntervalSet) Transition { + target := atn.states[trg] + + switch typeIndex { + case TransitionEPSILON: + return NewEpsilonTransition(target, -1) + + case TransitionRANGE: + if arg3 != 0 { + return NewRangeTransition(target, TokenEOF, arg2) + } + + return NewRangeTransition(target, arg1, arg2) + + case TransitionRULE: + return NewRuleTransition(atn.states[arg1], arg2, arg3, target) + + case TransitionPREDICATE: + return NewPredicateTransition(target, arg1, arg2, arg3 != 0) + + case TransitionPRECEDENCE: + return NewPrecedencePredicateTransition(target, arg1) + + case TransitionATOM: + if arg3 != 0 { + return NewAtomTransition(target, TokenEOF) + } + + return NewAtomTransition(target, arg1) + + case TransitionACTION: + return NewActionTransition(target, arg1, arg2, arg3 != 0) + + case TransitionSET: + return NewSetTransition(target, sets[arg1]) + + case TransitionNOTSET: + return NewNotSetTransition(target, sets[arg1]) + + case TransitionWILDCARD: + return NewWildcardTransition(target) + } + + panic("The specified transition type is not valid.") +} + +func (a *ATNDeserializer) stateFactory(typeIndex, ruleIndex int) ATNState { + var s ATNState + + switch typeIndex { + case ATNStateInvalidType: + return nil + + case ATNStateBasic: + s = NewBasicState() + + case ATNStateRuleStart: + s = NewRuleStartState() + + case ATNStateBlockStart: + s = NewBasicBlockStartState() + + case ATNStatePlusBlockStart: + s = NewPlusBlockStartState() + + case ATNStateStarBlockStart: + s = NewStarBlockStartState() + + case ATNStateTokenStart: + s = NewTokensStartState() + + case ATNStateRuleStop: + s = NewRuleStopState() + + case ATNStateBlockEnd: + s = NewBlockEndState() + + case ATNStateStarLoopBack: + s = NewStarLoopbackState() + + case ATNStateStarLoopEntry: + s = NewStarLoopEntryState() + + case ATNStatePlusLoopBack: + s = NewPlusLoopbackState() + + case ATNStateLoopEnd: + s = NewLoopEndState() + + default: + panic(fmt.Sprintf("state type %d is invalid", typeIndex)) + } + + s.SetRuleIndex(ruleIndex) + + return s +} + +func (a *ATNDeserializer) lexerActionFactory(typeIndex, data1, data2 int) LexerAction { + switch typeIndex { + case LexerActionTypeChannel: + return NewLexerChannelAction(data1) + + case LexerActionTypeCustom: + return NewLexerCustomAction(data1, data2) + + case LexerActionTypeMode: + return NewLexerModeAction(data1) + + case LexerActionTypeMore: + return LexerMoreActionINSTANCE + + case LexerActionTypePopMode: + return LexerPopModeActionINSTANCE + + case LexerActionTypePushMode: + return NewLexerPushModeAction(data1) + + case LexerActionTypeSkip: + return LexerSkipActionINSTANCE + + case LexerActionTypeType: + return NewLexerTypeAction(data1) + + default: + panic(fmt.Sprintf("lexer action %d is invalid", typeIndex)) + } +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_simulator.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_simulator.go new file mode 100644 index 000000000..d5454d6d5 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_simulator.go @@ -0,0 +1,50 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +var ATNSimulatorError = NewDFAState(0x7FFFFFFF, NewBaseATNConfigSet(false)) + +type IATNSimulator interface { + SharedContextCache() *PredictionContextCache + ATN() *ATN + DecisionToDFA() []*DFA +} + +type BaseATNSimulator struct { + atn *ATN + sharedContextCache *PredictionContextCache + decisionToDFA []*DFA +} + +func NewBaseATNSimulator(atn *ATN, sharedContextCache *PredictionContextCache) *BaseATNSimulator { + b := new(BaseATNSimulator) + + b.atn = atn + b.sharedContextCache = sharedContextCache + + return b +} + +func (b *BaseATNSimulator) getCachedContext(context PredictionContext) PredictionContext { + if b.sharedContextCache == nil { + return context + } + + visited := make(map[PredictionContext]PredictionContext) + + return getCachedBasePredictionContext(context, b.sharedContextCache, visited) +} + +func (b *BaseATNSimulator) SharedContextCache() *PredictionContextCache { + return b.sharedContextCache +} + +func (b *BaseATNSimulator) ATN() *ATN { + return b.atn +} + +func (b *BaseATNSimulator) DecisionToDFA() []*DFA { + return b.decisionToDFA +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_state.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_state.go new file mode 100644 index 000000000..3835bb2e9 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_state.go @@ -0,0 +1,392 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import "strconv" + +// Constants for serialization. +const ( + ATNStateInvalidType = 0 + ATNStateBasic = 1 + ATNStateRuleStart = 2 + ATNStateBlockStart = 3 + ATNStatePlusBlockStart = 4 + ATNStateStarBlockStart = 5 + ATNStateTokenStart = 6 + ATNStateRuleStop = 7 + ATNStateBlockEnd = 8 + ATNStateStarLoopBack = 9 + ATNStateStarLoopEntry = 10 + ATNStatePlusLoopBack = 11 + ATNStateLoopEnd = 12 + + ATNStateInvalidStateNumber = -1 +) + +var ATNStateInitialNumTransitions = 4 + +type ATNState interface { + GetEpsilonOnlyTransitions() bool + + GetRuleIndex() int + SetRuleIndex(int) + + GetNextTokenWithinRule() *IntervalSet + SetNextTokenWithinRule(*IntervalSet) + + GetATN() *ATN + SetATN(*ATN) + + GetStateType() int + + GetStateNumber() int + SetStateNumber(int) + + GetTransitions() []Transition + SetTransitions([]Transition) + AddTransition(Transition, int) + + String() string + hash() int +} + +type BaseATNState struct { + // NextTokenWithinRule caches lookahead during parsing. Not used during construction. + NextTokenWithinRule *IntervalSet + + // atn is the current ATN. + atn *ATN + + epsilonOnlyTransitions bool + + // ruleIndex tracks the Rule index because there are no Rule objects at runtime. + ruleIndex int + + stateNumber int + + stateType int + + // Track the transitions emanating from this ATN state. + transitions []Transition +} + +func NewBaseATNState() *BaseATNState { + return &BaseATNState{stateNumber: ATNStateInvalidStateNumber, stateType: ATNStateInvalidType} +} + +func (as *BaseATNState) GetRuleIndex() int { + return as.ruleIndex +} + +func (as *BaseATNState) SetRuleIndex(v int) { + as.ruleIndex = v +} +func (as *BaseATNState) GetEpsilonOnlyTransitions() bool { + return as.epsilonOnlyTransitions +} + +func (as *BaseATNState) GetATN() *ATN { + return as.atn +} + +func (as *BaseATNState) SetATN(atn *ATN) { + as.atn = atn +} + +func (as *BaseATNState) GetTransitions() []Transition { + return as.transitions +} + +func (as *BaseATNState) SetTransitions(t []Transition) { + as.transitions = t +} + +func (as *BaseATNState) GetStateType() int { + return as.stateType +} + +func (as *BaseATNState) GetStateNumber() int { + return as.stateNumber +} + +func (as *BaseATNState) SetStateNumber(stateNumber int) { + as.stateNumber = stateNumber +} + +func (as *BaseATNState) GetNextTokenWithinRule() *IntervalSet { + return as.NextTokenWithinRule +} + +func (as *BaseATNState) SetNextTokenWithinRule(v *IntervalSet) { + as.NextTokenWithinRule = v +} + +func (as *BaseATNState) hash() int { + return as.stateNumber +} + +func (as *BaseATNState) String() string { + return strconv.Itoa(as.stateNumber) +} + +func (as *BaseATNState) equals(other interface{}) bool { + if ot, ok := other.(ATNState); ok { + return as.stateNumber == ot.GetStateNumber() + } + + return false +} + +func (as *BaseATNState) isNonGreedyExitState() bool { + return false +} + +func (as *BaseATNState) AddTransition(trans Transition, index int) { + if len(as.transitions) == 0 { + as.epsilonOnlyTransitions = trans.getIsEpsilon() + } else if as.epsilonOnlyTransitions != trans.getIsEpsilon() { + as.epsilonOnlyTransitions = false + } + + if index == -1 { + as.transitions = append(as.transitions, trans) + } else { + as.transitions = append(as.transitions[:index], append([]Transition{trans}, as.transitions[index:]...)...) + // TODO: as.transitions.splice(index, 1, trans) + } +} + +type BasicState struct { + *BaseATNState +} + +func NewBasicState() *BasicState { + b := NewBaseATNState() + + b.stateType = ATNStateBasic + + return &BasicState{BaseATNState: b} +} + +type DecisionState interface { + ATNState + + getDecision() int + setDecision(int) + + getNonGreedy() bool + setNonGreedy(bool) +} + +type BaseDecisionState struct { + *BaseATNState + decision int + nonGreedy bool +} + +func NewBaseDecisionState() *BaseDecisionState { + return &BaseDecisionState{BaseATNState: NewBaseATNState(), decision: -1} +} + +func (s *BaseDecisionState) getDecision() int { + return s.decision +} + +func (s *BaseDecisionState) setDecision(b int) { + s.decision = b +} + +func (s *BaseDecisionState) getNonGreedy() bool { + return s.nonGreedy +} + +func (s *BaseDecisionState) setNonGreedy(b bool) { + s.nonGreedy = b +} + +type BlockStartState interface { + DecisionState + + getEndState() *BlockEndState + setEndState(*BlockEndState) +} + +// BaseBlockStartState is the start of a regular (...) block. +type BaseBlockStartState struct { + *BaseDecisionState + endState *BlockEndState +} + +func NewBlockStartState() *BaseBlockStartState { + return &BaseBlockStartState{BaseDecisionState: NewBaseDecisionState()} +} + +func (s *BaseBlockStartState) getEndState() *BlockEndState { + return s.endState +} + +func (s *BaseBlockStartState) setEndState(b *BlockEndState) { + s.endState = b +} + +type BasicBlockStartState struct { + *BaseBlockStartState +} + +func NewBasicBlockStartState() *BasicBlockStartState { + b := NewBlockStartState() + + b.stateType = ATNStateBlockStart + + return &BasicBlockStartState{BaseBlockStartState: b} +} + +var _ BlockStartState = &BasicBlockStartState{} + +// BlockEndState is a terminal node of a simple (a|b|c) block. +type BlockEndState struct { + *BaseATNState + startState ATNState +} + +func NewBlockEndState() *BlockEndState { + b := NewBaseATNState() + + b.stateType = ATNStateBlockEnd + + return &BlockEndState{BaseATNState: b} +} + +// RuleStopState is the last node in the ATN for a rule, unless that rule is the +// start symbol. In that case, there is one transition to EOF. Later, we might +// encode references to all calls to this rule to compute FOLLOW sets for error +// handling. +type RuleStopState struct { + *BaseATNState +} + +func NewRuleStopState() *RuleStopState { + b := NewBaseATNState() + + b.stateType = ATNStateRuleStop + + return &RuleStopState{BaseATNState: b} +} + +type RuleStartState struct { + *BaseATNState + stopState ATNState + isPrecedenceRule bool +} + +func NewRuleStartState() *RuleStartState { + b := NewBaseATNState() + + b.stateType = ATNStateRuleStart + + return &RuleStartState{BaseATNState: b} +} + +// PlusLoopbackState is a decision state for A+ and (A|B)+. It has two +// transitions: one to the loop back to start of the block, and one to exit. +type PlusLoopbackState struct { + *BaseDecisionState +} + +func NewPlusLoopbackState() *PlusLoopbackState { + b := NewBaseDecisionState() + + b.stateType = ATNStatePlusLoopBack + + return &PlusLoopbackState{BaseDecisionState: b} +} + +// PlusBlockStartState is the start of a (A|B|...)+ loop. Technically it is a +// decision state; we don't use it for code generation. Somebody might need it, +// it is included for completeness. In reality, PlusLoopbackState is the real +// decision-making node for A+. +type PlusBlockStartState struct { + *BaseBlockStartState + loopBackState ATNState +} + +func NewPlusBlockStartState() *PlusBlockStartState { + b := NewBlockStartState() + + b.stateType = ATNStatePlusBlockStart + + return &PlusBlockStartState{BaseBlockStartState: b} +} + +var _ BlockStartState = &PlusBlockStartState{} + +// StarBlockStartState is the block that begins a closure loop. +type StarBlockStartState struct { + *BaseBlockStartState +} + +func NewStarBlockStartState() *StarBlockStartState { + b := NewBlockStartState() + + b.stateType = ATNStateStarBlockStart + + return &StarBlockStartState{BaseBlockStartState: b} +} + +var _ BlockStartState = &StarBlockStartState{} + +type StarLoopbackState struct { + *BaseATNState +} + +func NewStarLoopbackState() *StarLoopbackState { + b := NewBaseATNState() + + b.stateType = ATNStateStarLoopBack + + return &StarLoopbackState{BaseATNState: b} +} + +type StarLoopEntryState struct { + *BaseDecisionState + loopBackState ATNState + precedenceRuleDecision bool +} + +func NewStarLoopEntryState() *StarLoopEntryState { + b := NewBaseDecisionState() + + b.stateType = ATNStateStarLoopEntry + + // False precedenceRuleDecision indicates whether s state can benefit from a precedence DFA during SLL decision making. + return &StarLoopEntryState{BaseDecisionState: b} +} + +// LoopEndState marks the end of a * or + loop. +type LoopEndState struct { + *BaseATNState + loopBackState ATNState +} + +func NewLoopEndState() *LoopEndState { + b := NewBaseATNState() + + b.stateType = ATNStateLoopEnd + + return &LoopEndState{BaseATNState: b} +} + +// TokensStartState is the Tokens rule start state linking to each lexer rule start state. +type TokensStartState struct { + *BaseDecisionState +} + +func NewTokensStartState() *TokensStartState { + b := NewBaseDecisionState() + + b.stateType = ATNStateTokenStart + + return &TokensStartState{BaseDecisionState: b} +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_type.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_type.go new file mode 100644 index 000000000..a7b48976b --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/atn_type.go @@ -0,0 +1,11 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +// Represent the type of recognizer an ATN applies to. +const ( + ATNTypeLexer = 0 + ATNTypeParser = 1 +) diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/char_stream.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/char_stream.go new file mode 100644 index 000000000..70c1207f7 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/char_stream.go @@ -0,0 +1,12 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +type CharStream interface { + IntStream + GetText(int, int) string + GetTextFromTokens(start, end Token) string + GetTextFromInterval(*Interval) string +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/common_token_factory.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/common_token_factory.go new file mode 100644 index 000000000..330ff8f31 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/common_token_factory.go @@ -0,0 +1,56 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +// TokenFactory creates CommonToken objects. +type TokenFactory interface { + Create(source *TokenSourceCharStreamPair, ttype int, text string, channel, start, stop, line, column int) Token +} + +// CommonTokenFactory is the default TokenFactory implementation. +type CommonTokenFactory struct { + // copyText indicates whether CommonToken.setText should be called after + // constructing tokens to explicitly set the text. This is useful for cases + // where the input stream might not be able to provide arbitrary substrings of + // text from the input after the lexer creates a token (e.g. the + // implementation of CharStream.GetText in UnbufferedCharStream panics an + // UnsupportedOperationException). Explicitly setting the token text allows + // Token.GetText to be called at any time regardless of the input stream + // implementation. + // + // The default value is false to avoid the performance and memory overhead of + // copying text for every token unless explicitly requested. + copyText bool +} + +func NewCommonTokenFactory(copyText bool) *CommonTokenFactory { + return &CommonTokenFactory{copyText: copyText} +} + +// CommonTokenFactoryDEFAULT is the default CommonTokenFactory. It does not +// explicitly copy token text when constructing tokens. +var CommonTokenFactoryDEFAULT = NewCommonTokenFactory(false) + +func (c *CommonTokenFactory) Create(source *TokenSourceCharStreamPair, ttype int, text string, channel, start, stop, line, column int) Token { + t := NewCommonToken(source, ttype, channel, start, stop) + + t.line = line + t.column = column + + if text != "" { + t.SetText(text) + } else if c.copyText && source.charStream != nil { + t.SetText(source.charStream.GetTextFromInterval(NewInterval(start, stop))) + } + + return t +} + +func (c *CommonTokenFactory) createThin(ttype int, text string) Token { + t := NewCommonToken(nil, ttype, TokenDefaultChannel, -1, -1) + t.SetText(text) + + return t +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/common_token_stream.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/common_token_stream.go new file mode 100644 index 000000000..c90e9b890 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/common_token_stream.go @@ -0,0 +1,447 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "strconv" +) + +// CommonTokenStream is an implementation of TokenStream that loads tokens from +// a TokenSource on-demand and places the tokens in a buffer to provide access +// to any previous token by index. This token stream ignores the value of +// Token.getChannel. If your parser requires the token stream filter tokens to +// only those on a particular channel, such as Token.DEFAULT_CHANNEL or +// Token.HIDDEN_CHANNEL, use a filtering token stream such a CommonTokenStream. +type CommonTokenStream struct { + channel int + + // fetchedEOF indicates whether the Token.EOF token has been fetched from + // tokenSource and added to tokens. This field improves performance for the + // following cases: + // + // consume: The lookahead check in consume to preven consuming the EOF symbol is + // optimized by checking the values of fetchedEOF and p instead of calling LA. + // + // fetch: The check to prevent adding multiple EOF symbols into tokens is + // trivial with bt field. + fetchedEOF bool + + // index indexs into tokens of the current token (next token to consume). + // tokens[p] should be LT(1). It is set to -1 when the stream is first + // constructed or when SetTokenSource is called, indicating that the first token + // has not yet been fetched from the token source. For additional information, + // see the documentation of IntStream for a description of initializing methods. + index int + + // tokenSource is the TokenSource from which tokens for the bt stream are + // fetched. + tokenSource TokenSource + + // tokens is all tokens fetched from the token source. The list is considered a + // complete view of the input once fetchedEOF is set to true. + tokens []Token +} + +func NewCommonTokenStream(lexer Lexer, channel int) *CommonTokenStream { + return &CommonTokenStream{ + channel: channel, + index: -1, + tokenSource: lexer, + tokens: make([]Token, 0), + } +} + +func (c *CommonTokenStream) GetAllTokens() []Token { + return c.tokens +} + +func (c *CommonTokenStream) Mark() int { + return 0 +} + +func (c *CommonTokenStream) Release(marker int) {} + +func (c *CommonTokenStream) reset() { + c.Seek(0) +} + +func (c *CommonTokenStream) Seek(index int) { + c.lazyInit() + c.index = c.adjustSeekIndex(index) +} + +func (c *CommonTokenStream) Get(index int) Token { + c.lazyInit() + + return c.tokens[index] +} + +func (c *CommonTokenStream) Consume() { + SkipEOFCheck := false + + if c.index >= 0 { + if c.fetchedEOF { + // The last token in tokens is EOF. Skip the check if p indexes any fetched. + // token except the last. + SkipEOFCheck = c.index < len(c.tokens)-1 + } else { + // No EOF token in tokens. Skip the check if p indexes a fetched token. + SkipEOFCheck = c.index < len(c.tokens) + } + } else { + // Not yet initialized + SkipEOFCheck = false + } + + if !SkipEOFCheck && c.LA(1) == TokenEOF { + panic("cannot consume EOF") + } + + if c.Sync(c.index + 1) { + c.index = c.adjustSeekIndex(c.index + 1) + } +} + +// Sync makes sure index i in tokens has a token and returns true if a token is +// located at index i and otherwise false. +func (c *CommonTokenStream) Sync(i int) bool { + n := i - len(c.tokens) + 1 // TODO: How many more elements do we need? + + if n > 0 { + fetched := c.fetch(n) + return fetched >= n + } + + return true +} + +// fetch adds n elements to buffer and returns the actual number of elements +// added to the buffer. +func (c *CommonTokenStream) fetch(n int) int { + if c.fetchedEOF { + return 0 + } + + for i := 0; i < n; i++ { + t := c.tokenSource.NextToken() + + t.SetTokenIndex(len(c.tokens)) + c.tokens = append(c.tokens, t) + + if t.GetTokenType() == TokenEOF { + c.fetchedEOF = true + + return i + 1 + } + } + + return n +} + +// GetTokens gets all tokens from start to stop inclusive. +func (c *CommonTokenStream) GetTokens(start int, stop int, types *IntervalSet) []Token { + if start < 0 || stop < 0 { + return nil + } + + c.lazyInit() + + subset := make([]Token, 0) + + if stop >= len(c.tokens) { + stop = len(c.tokens) - 1 + } + + for i := start; i < stop; i++ { + t := c.tokens[i] + + if t.GetTokenType() == TokenEOF { + break + } + + if types == nil || types.contains(t.GetTokenType()) { + subset = append(subset, t) + } + } + + return subset +} + +func (c *CommonTokenStream) LA(i int) int { + return c.LT(i).GetTokenType() +} + +func (c *CommonTokenStream) lazyInit() { + if c.index == -1 { + c.setup() + } +} + +func (c *CommonTokenStream) setup() { + c.Sync(0) + c.index = c.adjustSeekIndex(0) +} + +func (c *CommonTokenStream) GetTokenSource() TokenSource { + return c.tokenSource +} + +// SetTokenSource resets the c token stream by setting its token source. +func (c *CommonTokenStream) SetTokenSource(tokenSource TokenSource) { + c.tokenSource = tokenSource + c.tokens = make([]Token, 0) + c.index = -1 +} + +// NextTokenOnChannel returns the index of the next token on channel given a +// starting index. Returns i if tokens[i] is on channel. Returns -1 if there are +// no tokens on channel between i and EOF. +func (c *CommonTokenStream) NextTokenOnChannel(i, channel int) int { + c.Sync(i) + + if i >= len(c.tokens) { + return -1 + } + + token := c.tokens[i] + + for token.GetChannel() != c.channel { + if token.GetTokenType() == TokenEOF { + return -1 + } + + i++ + c.Sync(i) + token = c.tokens[i] + } + + return i +} + +// previousTokenOnChannel returns the index of the previous token on channel +// given a starting index. Returns i if tokens[i] is on channel. Returns -1 if +// there are no tokens on channel between i and 0. +func (c *CommonTokenStream) previousTokenOnChannel(i, channel int) int { + for i >= 0 && c.tokens[i].GetChannel() != channel { + i-- + } + + return i +} + +// GetHiddenTokensToRight collects all tokens on a specified channel to the +// right of the current token up until we see a token on DEFAULT_TOKEN_CHANNEL +// or EOF. If channel is -1, it finds any non-default channel token. +func (c *CommonTokenStream) GetHiddenTokensToRight(tokenIndex, channel int) []Token { + c.lazyInit() + + if tokenIndex < 0 || tokenIndex >= len(c.tokens) { + panic(strconv.Itoa(tokenIndex) + " not in 0.." + strconv.Itoa(len(c.tokens)-1)) + } + + nextOnChannel := c.NextTokenOnChannel(tokenIndex+1, LexerDefaultTokenChannel) + from := tokenIndex + 1 + + // If no onchannel to the right, then nextOnChannel == -1, so set to to last token + var to int + + if nextOnChannel == -1 { + to = len(c.tokens) - 1 + } else { + to = nextOnChannel + } + + return c.filterForChannel(from, to, channel) +} + +// GetHiddenTokensToLeft collects all tokens on channel to the left of the +// current token until we see a token on DEFAULT_TOKEN_CHANNEL. If channel is +// -1, it finds any non default channel token. +func (c *CommonTokenStream) GetHiddenTokensToLeft(tokenIndex, channel int) []Token { + c.lazyInit() + + if tokenIndex < 0 || tokenIndex >= len(c.tokens) { + panic(strconv.Itoa(tokenIndex) + " not in 0.." + strconv.Itoa(len(c.tokens)-1)) + } + + prevOnChannel := c.previousTokenOnChannel(tokenIndex-1, LexerDefaultTokenChannel) + + if prevOnChannel == tokenIndex-1 { + return nil + } + + // If there are none on channel to the left and prevOnChannel == -1 then from = 0 + from := prevOnChannel + 1 + to := tokenIndex - 1 + + return c.filterForChannel(from, to, channel) +} + +func (c *CommonTokenStream) filterForChannel(left, right, channel int) []Token { + hidden := make([]Token, 0) + + for i := left; i < right+1; i++ { + t := c.tokens[i] + + if channel == -1 { + if t.GetChannel() != LexerDefaultTokenChannel { + hidden = append(hidden, t) + } + } else if t.GetChannel() == channel { + hidden = append(hidden, t) + } + } + + if len(hidden) == 0 { + return nil + } + + return hidden +} + +func (c *CommonTokenStream) GetSourceName() string { + return c.tokenSource.GetSourceName() +} + +func (c *CommonTokenStream) Size() int { + return len(c.tokens) +} + +func (c *CommonTokenStream) Index() int { + return c.index +} + +func (c *CommonTokenStream) GetAllText() string { + return c.GetTextFromInterval(nil) +} + +func (c *CommonTokenStream) GetTextFromTokens(start, end Token) string { + if start == nil || end == nil { + return "" + } + + return c.GetTextFromInterval(NewInterval(start.GetTokenIndex(), end.GetTokenIndex())) +} + +func (c *CommonTokenStream) GetTextFromRuleContext(interval RuleContext) string { + return c.GetTextFromInterval(interval.GetSourceInterval()) +} + +func (c *CommonTokenStream) GetTextFromInterval(interval *Interval) string { + c.lazyInit() + c.Fill() + + if interval == nil { + interval = NewInterval(0, len(c.tokens)-1) + } + + start := interval.Start + stop := interval.Stop + + if start < 0 || stop < 0 { + return "" + } + + if stop >= len(c.tokens) { + stop = len(c.tokens) - 1 + } + + s := "" + + for i := start; i < stop+1; i++ { + t := c.tokens[i] + + if t.GetTokenType() == TokenEOF { + break + } + + s += t.GetText() + } + + return s +} + +// Fill gets all tokens from the lexer until EOF. +func (c *CommonTokenStream) Fill() { + c.lazyInit() + + for c.fetch(1000) == 1000 { + continue + } +} + +func (c *CommonTokenStream) adjustSeekIndex(i int) int { + return c.NextTokenOnChannel(i, c.channel) +} + +func (c *CommonTokenStream) LB(k int) Token { + if k == 0 || c.index-k < 0 { + return nil + } + + i := c.index + n := 1 + + // Find k good tokens looking backward + for n <= k { + // Skip off-channel tokens + i = c.previousTokenOnChannel(i-1, c.channel) + n++ + } + + if i < 0 { + return nil + } + + return c.tokens[i] +} + +func (c *CommonTokenStream) LT(k int) Token { + c.lazyInit() + + if k == 0 { + return nil + } + + if k < 0 { + return c.LB(-k) + } + + i := c.index + n := 1 // We know tokens[n] is valid + + // Find k good tokens + for n < k { + // Skip off-channel tokens, but make sure to not look past EOF + if c.Sync(i + 1) { + i = c.NextTokenOnChannel(i+1, c.channel) + } + + n++ + } + + return c.tokens[i] +} + +// getNumberOfOnChannelTokens counts EOF once. +func (c *CommonTokenStream) getNumberOfOnChannelTokens() int { + var n int + + c.Fill() + + for i := 0; i < len(c.tokens); i++ { + t := c.tokens[i] + + if t.GetChannel() == c.channel { + n++ + } + + if t.GetTokenType() == TokenEOF { + break + } + } + + return n +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/dfa.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/dfa.go new file mode 100644 index 000000000..d55a2a87d --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/dfa.go @@ -0,0 +1,170 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "sort" +) + +type DFA struct { + // atnStartState is the ATN state in which this was created + atnStartState DecisionState + + decision int + + // states is all the DFA states. Use Map to get the old state back; Set can only + // indicate whether it is there. + states map[int]*DFAState + + s0 *DFAState + + // precedenceDfa is the backing field for isPrecedenceDfa and setPrecedenceDfa. + // True if the DFA is for a precedence decision and false otherwise. + precedenceDfa bool +} + +func NewDFA(atnStartState DecisionState, decision int) *DFA { + dfa := &DFA{ + atnStartState: atnStartState, + decision: decision, + states: make(map[int]*DFAState), + } + if s, ok := atnStartState.(*StarLoopEntryState); ok && s.precedenceRuleDecision { + dfa.precedenceDfa = true + dfa.s0 = NewDFAState(-1, NewBaseATNConfigSet(false)) + dfa.s0.isAcceptState = false + dfa.s0.requiresFullContext = false + } + return dfa +} + +// getPrecedenceStartState gets the start state for the current precedence and +// returns the start state corresponding to the specified precedence if a start +// state exists for the specified precedence and nil otherwise. d must be a +// precedence DFA. See also isPrecedenceDfa. +func (d *DFA) getPrecedenceStartState(precedence int) *DFAState { + if !d.getPrecedenceDfa() { + panic("only precedence DFAs may contain a precedence start state") + } + + // s0.edges is never nil for a precedence DFA + if precedence < 0 || precedence >= len(d.getS0().getEdges()) { + return nil + } + + return d.getS0().getIthEdge(precedence) +} + +// setPrecedenceStartState sets the start state for the current precedence. d +// must be a precedence DFA. See also isPrecedenceDfa. +func (d *DFA) setPrecedenceStartState(precedence int, startState *DFAState) { + if !d.getPrecedenceDfa() { + panic("only precedence DFAs may contain a precedence start state") + } + + if precedence < 0 { + return + } + + // Synchronization on s0 here is ok. When the DFA is turned into a + // precedence DFA, s0 will be initialized once and not updated again. s0.edges + // is never nil for a precedence DFA. + s0 := d.getS0() + if precedence >= s0.numEdges() { + edges := append(s0.getEdges(), make([]*DFAState, precedence+1-s0.numEdges())...) + s0.setEdges(edges) + d.setS0(s0) + } + + s0.setIthEdge(precedence, startState) +} + +func (d *DFA) getPrecedenceDfa() bool { + return d.precedenceDfa +} + +// setPrecedenceDfa sets whether d is a precedence DFA. If precedenceDfa differs +// from the current DFA configuration, then d.states is cleared, the initial +// state s0 is set to a new DFAState with an empty outgoing DFAState.edges to +// store the start states for individual precedence values if precedenceDfa is +// true or nil otherwise, and d.precedenceDfa is updated. +func (d *DFA) setPrecedenceDfa(precedenceDfa bool) { + if d.getPrecedenceDfa() != precedenceDfa { + d.setStates(make(map[int]*DFAState)) + + if precedenceDfa { + precedenceState := NewDFAState(-1, NewBaseATNConfigSet(false)) + + precedenceState.setEdges(make([]*DFAState, 0)) + precedenceState.isAcceptState = false + precedenceState.requiresFullContext = false + d.setS0(precedenceState) + } else { + d.setS0(nil) + } + + d.precedenceDfa = precedenceDfa + } +} + +func (d *DFA) getS0() *DFAState { + return d.s0 +} + +func (d *DFA) setS0(s *DFAState) { + d.s0 = s +} + +func (d *DFA) getState(hash int) (*DFAState, bool) { + s, ok := d.states[hash] + return s, ok +} + +func (d *DFA) setStates(states map[int]*DFAState) { + d.states = states +} + +func (d *DFA) setState(hash int, state *DFAState) { + d.states[hash] = state +} + +func (d *DFA) numStates() int { + return len(d.states) +} + +type dfaStateList []*DFAState + +func (d dfaStateList) Len() int { return len(d) } +func (d dfaStateList) Less(i, j int) bool { return d[i].stateNumber < d[j].stateNumber } +func (d dfaStateList) Swap(i, j int) { d[i], d[j] = d[j], d[i] } + +// sortedStates returns the states in d sorted by their state number. +func (d *DFA) sortedStates() []*DFAState { + vs := make([]*DFAState, 0, len(d.states)) + + for _, v := range d.states { + vs = append(vs, v) + } + + sort.Sort(dfaStateList(vs)) + + return vs +} + +func (d *DFA) String(literalNames []string, symbolicNames []string) string { + if d.getS0() == nil { + return "" + } + + return NewDFASerializer(d, literalNames, symbolicNames).String() +} + +func (d *DFA) ToLexerString() string { + if d.getS0() == nil { + return "" + } + + return NewLexerDFASerializer(d).String() +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/dfa_serializer.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/dfa_serializer.go new file mode 100644 index 000000000..bf2ccc06c --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/dfa_serializer.go @@ -0,0 +1,158 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "fmt" + "strconv" + "strings" +) + +// DFASerializer is a DFA walker that knows how to dump them to serialized +// strings. +type DFASerializer struct { + dfa *DFA + literalNames []string + symbolicNames []string +} + +func NewDFASerializer(dfa *DFA, literalNames, symbolicNames []string) *DFASerializer { + if literalNames == nil { + literalNames = make([]string, 0) + } + + if symbolicNames == nil { + symbolicNames = make([]string, 0) + } + + return &DFASerializer{ + dfa: dfa, + literalNames: literalNames, + symbolicNames: symbolicNames, + } +} + +func (d *DFASerializer) String() string { + if d.dfa.getS0() == nil { + return "" + } + + buf := "" + states := d.dfa.sortedStates() + + for _, s := range states { + if s.edges != nil { + n := len(s.edges) + + for j := 0; j < n; j++ { + t := s.edges[j] + + if t != nil && t.stateNumber != 0x7FFFFFFF { + buf += d.GetStateString(s) + buf += "-" + buf += d.getEdgeLabel(j) + buf += "->" + buf += d.GetStateString(t) + buf += "\n" + } + } + } + } + + if len(buf) == 0 { + return "" + } + + return buf +} + +func (d *DFASerializer) getEdgeLabel(i int) string { + if i == 0 { + return "EOF" + } else if d.literalNames != nil && i-1 < len(d.literalNames) { + return d.literalNames[i-1] + } else if d.symbolicNames != nil && i-1 < len(d.symbolicNames) { + return d.symbolicNames[i-1] + } + + return strconv.Itoa(i - 1) +} + +func (d *DFASerializer) GetStateString(s *DFAState) string { + var a, b string + + if s.isAcceptState { + a = ":" + } + + if s.requiresFullContext { + b = "^" + } + + baseStateStr := a + "s" + strconv.Itoa(s.stateNumber) + b + + if s.isAcceptState { + if s.predicates != nil { + return baseStateStr + "=>" + fmt.Sprint(s.predicates) + } + + return baseStateStr + "=>" + fmt.Sprint(s.prediction) + } + + return baseStateStr +} + +type LexerDFASerializer struct { + *DFASerializer +} + +func NewLexerDFASerializer(dfa *DFA) *LexerDFASerializer { + return &LexerDFASerializer{DFASerializer: NewDFASerializer(dfa, nil, nil)} +} + +func (l *LexerDFASerializer) getEdgeLabel(i int) string { + var sb strings.Builder + sb.Grow(6) + sb.WriteByte('\'') + sb.WriteRune(rune(i)) + sb.WriteByte('\'') + return sb.String() +} + +func (l *LexerDFASerializer) String() string { + if l.dfa.getS0() == nil { + return "" + } + + buf := "" + states := l.dfa.sortedStates() + + for i := 0; i < len(states); i++ { + s := states[i] + + if s.edges != nil { + n := len(s.edges) + + for j := 0; j < n; j++ { + t := s.edges[j] + + if t != nil && t.stateNumber != 0x7FFFFFFF { + buf += l.GetStateString(s) + buf += "-" + buf += l.getEdgeLabel(j) + buf += "->" + buf += l.GetStateString(t) + buf += "\n" + } + } + } + } + + if len(buf) == 0 { + return "" + } + + return buf +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/dfa_state.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/dfa_state.go new file mode 100644 index 000000000..970ed1986 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/dfa_state.go @@ -0,0 +1,171 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "fmt" +) + +// PredPrediction maps a predicate to a predicted alternative. +type PredPrediction struct { + alt int + pred SemanticContext +} + +func NewPredPrediction(pred SemanticContext, alt int) *PredPrediction { + return &PredPrediction{alt: alt, pred: pred} +} + +func (p *PredPrediction) String() string { + return "(" + fmt.Sprint(p.pred) + ", " + fmt.Sprint(p.alt) + ")" +} + +// DFAState represents a set of possible ATN configurations. As Aho, Sethi, +// Ullman p. 117 says: "The DFA uses its state to keep track of all possible +// states the ATN can be in after reading each input symbol. That is to say, +// after reading input a1a2..an, the DFA is in a state that represents the +// subset T of the states of the ATN that are reachable from the ATN's start +// state along some path labeled a1a2..an." In conventional NFA-to-DFA +// conversion, therefore, the subset T would be a bitset representing the set of +// states the ATN could be in. We need to track the alt predicted by each state +// as well, however. More importantly, we need to maintain a stack of states, +// tracking the closure operations as they jump from rule to rule, emulating +// rule invocations (method calls). I have to add a stack to simulate the proper +// lookahead sequences for the underlying LL grammar from which the ATN was +// derived. +// +// I use a set of ATNConfig objects, not simple states. An ATNConfig is both a +// state (ala normal conversion) and a RuleContext describing the chain of rules +// (if any) followed to arrive at that state. +// +// A DFAState may have multiple references to a particular state, but with +// different ATN contexts (with same or different alts) meaning that state was +// reached via a different set of rule invocations. +type DFAState struct { + stateNumber int + configs ATNConfigSet + + // edges elements point to the target of the symbol. Shift up by 1 so (-1) + // Token.EOF maps to the first element. + edges []*DFAState + + isAcceptState bool + + // prediction is the ttype we match or alt we predict if the state is accept. + // Set to ATN.INVALID_ALT_NUMBER when predicates != nil or + // requiresFullContext. + prediction int + + lexerActionExecutor *LexerActionExecutor + + // requiresFullContext indicates it was created during an SLL prediction that + // discovered a conflict between the configurations in the state. Future + // ParserATNSimulator.execATN invocations immediately jump doing + // full context prediction if true. + requiresFullContext bool + + // predicates is the predicates associated with the ATN configurations of the + // DFA state during SLL parsing. When we have predicates, requiresFullContext + // is false, since full context prediction evaluates predicates on-the-fly. If + // d is + // not nil, then prediction is ATN.INVALID_ALT_NUMBER. + // + // We only use these for non-requiresFullContext but conflicting states. That + // means we know from the context (it's $ or we don't dip into outer context) + // that it's an ambiguity not a conflict. + // + // This list is computed by + // ParserATNSimulator.predicateDFAState. + predicates []*PredPrediction +} + +func NewDFAState(stateNumber int, configs ATNConfigSet) *DFAState { + if configs == nil { + configs = NewBaseATNConfigSet(false) + } + + return &DFAState{configs: configs, stateNumber: stateNumber} +} + +// GetAltSet gets the set of all alts mentioned by all ATN configurations in d. +func (d *DFAState) GetAltSet() Set { + alts := newArray2DHashSet(nil, nil) + + if d.configs != nil { + for _, c := range d.configs.GetItems() { + alts.Add(c.GetAlt()) + } + } + + if alts.Len() == 0 { + return nil + } + + return alts +} + +func (d *DFAState) getEdges() []*DFAState { + return d.edges +} + +func (d *DFAState) numEdges() int { + return len(d.edges) +} + +func (d *DFAState) getIthEdge(i int) *DFAState { + return d.edges[i] +} + +func (d *DFAState) setEdges(newEdges []*DFAState) { + d.edges = newEdges +} + +func (d *DFAState) setIthEdge(i int, edge *DFAState) { + d.edges[i] = edge +} + +func (d *DFAState) setPrediction(v int) { + d.prediction = v +} + +// equals returns whether d equals other. Two DFAStates are equal if their ATN +// configuration sets are the same. This method is used to see if a state +// already exists. +// +// Because the number of alternatives and number of ATN configurations are +// finite, there is a finite number of DFA states that can be processed. This is +// necessary to show that the algorithm terminates. +// +// Cannot test the DFA state numbers here because in +// ParserATNSimulator.addDFAState we need to know if any other state exists that +// has d exact set of ATN configurations. The stateNumber is irrelevant. +func (d *DFAState) equals(other interface{}) bool { + if d == other { + return true + } else if _, ok := other.(*DFAState); !ok { + return false + } + + return d.configs.Equals(other.(*DFAState).configs) +} + +func (d *DFAState) String() string { + var s string + if d.isAcceptState { + if d.predicates != nil { + s = "=>" + fmt.Sprint(d.predicates) + } else { + s = "=>" + fmt.Sprint(d.prediction) + } + } + + return fmt.Sprintf("%d:%s%s", d.stateNumber, fmt.Sprint(d.configs), s) +} + +func (d *DFAState) hash() int { + h := murmurInit(7) + h = murmurUpdate(h, d.configs.hash()) + return murmurFinish(h, 1) +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/diagnostic_error_listener.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/diagnostic_error_listener.go new file mode 100644 index 000000000..1fec43d9d --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/diagnostic_error_listener.go @@ -0,0 +1,111 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "strconv" +) + +// +// This implementation of {@link ANTLRErrorListener} can be used to identify +// certain potential correctness and performance problems in grammars. "reports" +// are made by calling {@link Parser//NotifyErrorListeners} with the appropriate +// message. +// +//
+// This implementation prints messages to {@link System//err} containing the +// values of {@code line}, {@code charPositionInLine}, and {@code msg} using +// the following format.
+// +//+// line line:charPositionInLine msg +//+// +func (c *ConsoleErrorListener) SyntaxError(recognizer Recognizer, offendingSymbol interface{}, line, column int, msg string, e RecognitionException) { + fmt.Fprintln(os.Stderr, "line "+strconv.Itoa(line)+":"+strconv.Itoa(column)+" "+msg) +} + +type ProxyErrorListener struct { + *DefaultErrorListener + delegates []ErrorListener +} + +func NewProxyErrorListener(delegates []ErrorListener) *ProxyErrorListener { + if delegates == nil { + panic("delegates is not provided") + } + l := new(ProxyErrorListener) + l.delegates = delegates + return l +} + +func (p *ProxyErrorListener) SyntaxError(recognizer Recognizer, offendingSymbol interface{}, line, column int, msg string, e RecognitionException) { + for _, d := range p.delegates { + d.SyntaxError(recognizer, offendingSymbol, line, column, msg, e) + } +} + +func (p *ProxyErrorListener) ReportAmbiguity(recognizer Parser, dfa *DFA, startIndex, stopIndex int, exact bool, ambigAlts *BitSet, configs ATNConfigSet) { + for _, d := range p.delegates { + d.ReportAmbiguity(recognizer, dfa, startIndex, stopIndex, exact, ambigAlts, configs) + } +} + +func (p *ProxyErrorListener) ReportAttemptingFullContext(recognizer Parser, dfa *DFA, startIndex, stopIndex int, conflictingAlts *BitSet, configs ATNConfigSet) { + for _, d := range p.delegates { + d.ReportAttemptingFullContext(recognizer, dfa, startIndex, stopIndex, conflictingAlts, configs) + } +} + +func (p *ProxyErrorListener) ReportContextSensitivity(recognizer Parser, dfa *DFA, startIndex, stopIndex, prediction int, configs ATNConfigSet) { + for _, d := range p.delegates { + d.ReportContextSensitivity(recognizer, dfa, startIndex, stopIndex, prediction, configs) + } +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/error_strategy.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/error_strategy.go new file mode 100644 index 000000000..c4080dbfd --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/error_strategy.go @@ -0,0 +1,762 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "fmt" + "reflect" + "strconv" + "strings" +) + +type ErrorStrategy interface { + reset(Parser) + RecoverInline(Parser) Token + Recover(Parser, RecognitionException) + Sync(Parser) + InErrorRecoveryMode(Parser) bool + ReportError(Parser, RecognitionException) + ReportMatch(Parser) +} + +// This is the default implementation of {@link ANTLRErrorStrategy} used for +// error Reporting and recovery in ANTLR parsers. +// +type DefaultErrorStrategy struct { + errorRecoveryMode bool + lastErrorIndex int + lastErrorStates *IntervalSet +} + +var _ ErrorStrategy = &DefaultErrorStrategy{} + +func NewDefaultErrorStrategy() *DefaultErrorStrategy { + + d := new(DefaultErrorStrategy) + + // Indicates whether the error strategy is currently "recovering from an + // error". This is used to suppress Reporting multiple error messages while + // attempting to recover from a detected syntax error. + // + // @see //InErrorRecoveryMode + // + d.errorRecoveryMode = false + + // The index into the input stream where the last error occurred. + // This is used to prevent infinite loops where an error is found + // but no token is consumed during recovery...another error is found, + // ad nauseum. This is a failsafe mechanism to guarantee that at least + // one token/tree node is consumed for two errors. + // + d.lastErrorIndex = -1 + d.lastErrorStates = nil + return d +} + +//
The default implementation simply calls {@link //endErrorCondition} to +// ensure that the handler is not in error recovery mode.
+func (d *DefaultErrorStrategy) reset(recognizer Parser) { + d.endErrorCondition(recognizer) +} + +// +// This method is called to enter error recovery mode when a recognition +// exception is Reported. +// +// @param recognizer the parser instance +// +func (d *DefaultErrorStrategy) beginErrorCondition(recognizer Parser) { + d.errorRecoveryMode = true +} + +func (d *DefaultErrorStrategy) InErrorRecoveryMode(recognizer Parser) bool { + return d.errorRecoveryMode +} + +// +// This method is called to leave error recovery mode after recovering from +// a recognition exception. +// +// @param recognizer +// +func (d *DefaultErrorStrategy) endErrorCondition(recognizer Parser) { + d.errorRecoveryMode = false + d.lastErrorStates = nil + d.lastErrorIndex = -1 +} + +// +// {@inheritDoc} +// +//The default implementation simply calls {@link //endErrorCondition}.
+// +func (d *DefaultErrorStrategy) ReportMatch(recognizer Parser) { + d.endErrorCondition(recognizer) +} + +// +// {@inheritDoc} +// +//The default implementation returns immediately if the handler is already +// in error recovery mode. Otherwise, it calls {@link //beginErrorCondition} +// and dispatches the Reporting task based on the runtime type of {@code e} +// according to the following table.
+// +//The default implementation reSynchronizes the parser by consuming tokens +// until we find one in the reSynchronization set--loosely the set of tokens +// that can follow the current rule.
+// +func (d *DefaultErrorStrategy) Recover(recognizer Parser, e RecognitionException) { + + if d.lastErrorIndex == recognizer.GetInputStream().Index() && + d.lastErrorStates != nil && d.lastErrorStates.contains(recognizer.GetState()) { + // uh oh, another error at same token index and previously-Visited + // state in ATN must be a case where LT(1) is in the recovery + // token set so nothing got consumed. Consume a single token + // at least to prevent an infinite loop d is a failsafe. + recognizer.Consume() + } + d.lastErrorIndex = recognizer.GetInputStream().Index() + if d.lastErrorStates == nil { + d.lastErrorStates = NewIntervalSet() + } + d.lastErrorStates.addOne(recognizer.GetState()) + followSet := d.getErrorRecoverySet(recognizer) + d.consumeUntil(recognizer, followSet) +} + +// The default implementation of {@link ANTLRErrorStrategy//Sync} makes sure +// that the current lookahead symbol is consistent with what were expecting +// at d point in the ATN. You can call d anytime but ANTLR only +// generates code to check before subrules/loops and each iteration. +// +//Implements Jim Idle's magic Sync mechanism in closures and optional +// subrules. E.g.,
+// +//+// a : Sync ( stuff Sync )* +// Sync : {consume to what can follow Sync} +//+// +// At the start of a sub rule upon error, {@link //Sync} performs single +// token deletion, if possible. If it can't do that, it bails on the current +// rule and uses the default error recovery, which consumes until the +// reSynchronization set of the current rule. +// +//
If the sub rule is optional ({@code (...)?}, {@code (...)*}, or block +// with an empty alternative), then the expected set includes what follows +// the subrule.
+// +//During loop iteration, it consumes until it sees a token that can start a +// sub rule or what follows loop. Yes, that is pretty aggressive. We opt to +// stay in the loop as long as possible.
+// +//ORIGINS
+// +//Previous versions of ANTLR did a poor job of their recovery within loops. +// A single mismatch token or missing token would force the parser to bail +// out of the entire rules surrounding the loop. So, for rule
+// +//+// classfunc : 'class' ID '{' member* '}' +//+// +// input with an extra token between members would force the parser to +// consume until it found the next class definition rather than the next +// member definition of the current class. +// +//
This functionality cost a little bit of effort because the parser has to +// compare token set at the start of the loop and at each iteration. If for +// some reason speed is suffering for you, you can turn off d +// functionality by simply overriding d method as a blank { }.
+// +func (d *DefaultErrorStrategy) Sync(recognizer Parser) { + // If already recovering, don't try to Sync + if d.InErrorRecoveryMode(recognizer) { + return + } + + s := recognizer.GetInterpreter().atn.states[recognizer.GetState()] + la := recognizer.GetTokenStream().LA(1) + + // try cheaper subset first might get lucky. seems to shave a wee bit off + nextTokens := recognizer.GetATN().NextTokens(s, nil) + if nextTokens.contains(TokenEpsilon) || nextTokens.contains(la) { + return + } + + switch s.GetStateType() { + case ATNStateBlockStart, ATNStateStarBlockStart, ATNStatePlusBlockStart, ATNStateStarLoopEntry: + // Report error and recover if possible + if d.SingleTokenDeletion(recognizer) != nil { + return + } + panic(NewInputMisMatchException(recognizer)) + case ATNStatePlusLoopBack, ATNStateStarLoopBack: + d.ReportUnwantedToken(recognizer) + expecting := NewIntervalSet() + expecting.addSet(recognizer.GetExpectedTokens()) + whatFollowsLoopIterationOrRule := expecting.addSet(d.getErrorRecoverySet(recognizer)) + d.consumeUntil(recognizer, whatFollowsLoopIterationOrRule) + default: + // do nothing if we can't identify the exact kind of ATN state + } +} + +// This is called by {@link //ReportError} when the exception is a +// {@link NoViableAltException}. +// +// @see //ReportError +// +// @param recognizer the parser instance +// @param e the recognition exception +// +func (d *DefaultErrorStrategy) ReportNoViableAlternative(recognizer Parser, e *NoViableAltException) { + tokens := recognizer.GetTokenStream() + var input string + if tokens != nil { + if e.startToken.GetTokenType() == TokenEOF { + input = "This method is called when {@link //singleTokenDeletion} identifies +// single-token deletion as a viable recovery strategy for a mismatched +// input error.
+// +//The default implementation simply returns if the handler is already in +// error recovery mode. Otherwise, it calls {@link //beginErrorCondition} to +// enter error recovery mode, followed by calling +// {@link Parser//NotifyErrorListeners}.
+// +// @param recognizer the parser instance +// +func (d *DefaultErrorStrategy) ReportUnwantedToken(recognizer Parser) { + if d.InErrorRecoveryMode(recognizer) { + return + } + d.beginErrorCondition(recognizer) + t := recognizer.GetCurrentToken() + tokenName := d.GetTokenErrorDisplay(t) + expecting := d.GetExpectedTokens(recognizer) + msg := "extraneous input " + tokenName + " expecting " + + expecting.StringVerbose(recognizer.GetLiteralNames(), recognizer.GetSymbolicNames(), false) + recognizer.NotifyErrorListeners(msg, t, nil) +} + +// This method is called to Report a syntax error which requires the +// insertion of a missing token into the input stream. At the time d +// method is called, the missing token has not yet been inserted. When d +// method returns, {@code recognizer} is in error recovery mode. +// +//This method is called when {@link //singleTokenInsertion} identifies +// single-token insertion as a viable recovery strategy for a mismatched +// input error.
+// +//The default implementation simply returns if the handler is already in +// error recovery mode. Otherwise, it calls {@link //beginErrorCondition} to +// enter error recovery mode, followed by calling +// {@link Parser//NotifyErrorListeners}.
+// +// @param recognizer the parser instance +// +func (d *DefaultErrorStrategy) ReportMissingToken(recognizer Parser) { + if d.InErrorRecoveryMode(recognizer) { + return + } + d.beginErrorCondition(recognizer) + t := recognizer.GetCurrentToken() + expecting := d.GetExpectedTokens(recognizer) + msg := "missing " + expecting.StringVerbose(recognizer.GetLiteralNames(), recognizer.GetSymbolicNames(), false) + + " at " + d.GetTokenErrorDisplay(t) + recognizer.NotifyErrorListeners(msg, t, nil) +} + +//The default implementation attempts to recover from the mismatched input +// by using single token insertion and deletion as described below. If the +// recovery attempt fails, d method panics an +// {@link InputMisMatchException}.
+// +//EXTRA TOKEN (single token deletion)
+// +//{@code LA(1)} is not what we are looking for. If {@code LA(2)} has the +// right token, however, then assume {@code LA(1)} is some extra spurious +// token and delete it. Then consume and return the next token (which was +// the {@code LA(2)} token) as the successful result of the Match operation.
+// +//This recovery strategy is implemented by {@link +// //singleTokenDeletion}.
+// +//MISSING TOKEN (single token insertion)
+// +//If current token (at {@code LA(1)}) is consistent with what could come +// after the expected {@code LA(1)} token, then assume the token is missing +// and use the parser's {@link TokenFactory} to create it on the fly. The +// "insertion" is performed by returning the created token as the successful +// result of the Match operation.
+// +//This recovery strategy is implemented by {@link +// //singleTokenInsertion}.
+// +//EXAMPLE
+// +//For example, Input {@code i=(3} is clearly missing the {@code ')'}. When +// the parser returns from the nested call to {@code expr}, it will have +// call chain:
+// +//+// stat &rarr expr &rarr atom +//+// +// and it will be trying to Match the {@code ')'} at d point in the +// derivation: +// +//
+// => ID '=' '(' INT ')' ('+' atom)* '' +// ^ +//+// +// The attempt to Match {@code ')'} will fail when it sees {@code ''} and +// call {@link //recoverInline}. To recover, it sees that {@code LA(1)==''} +// is in the set of tokens that can follow the {@code ')'} token reference +// in rule {@code atom}. It can assume that you forgot the {@code ')'}. +// +func (d *DefaultErrorStrategy) RecoverInline(recognizer Parser) Token { + // SINGLE TOKEN DELETION + MatchedSymbol := d.SingleTokenDeletion(recognizer) + if MatchedSymbol != nil { + // we have deleted the extra token. + // now, move past ttype token as if all were ok + recognizer.Consume() + return MatchedSymbol + } + // SINGLE TOKEN INSERTION + if d.SingleTokenInsertion(recognizer) { + return d.GetMissingSymbol(recognizer) + } + // even that didn't work must panic the exception + panic(NewInputMisMatchException(recognizer)) +} + +// +// This method implements the single-token insertion inline error recovery +// strategy. It is called by {@link //recoverInline} if the single-token +// deletion strategy fails to recover from the mismatched input. If this +// method returns {@code true}, {@code recognizer} will be in error recovery +// mode. +// +//
This method determines whether or not single-token insertion is viable by +// checking if the {@code LA(1)} input symbol could be successfully Matched +// if it were instead the {@code LA(2)} symbol. If d method returns +// {@code true}, the caller is responsible for creating and inserting a +// token with the correct type to produce d behavior.
+// +// @param recognizer the parser instance +// @return {@code true} if single-token insertion is a viable recovery +// strategy for the current mismatched input, otherwise {@code false} +// +func (d *DefaultErrorStrategy) SingleTokenInsertion(recognizer Parser) bool { + currentSymbolType := recognizer.GetTokenStream().LA(1) + // if current token is consistent with what could come after current + // ATN state, then we know we're missing a token error recovery + // is free to conjure up and insert the missing token + atn := recognizer.GetInterpreter().atn + currentState := atn.states[recognizer.GetState()] + next := currentState.GetTransitions()[0].getTarget() + expectingAtLL2 := atn.NextTokens(next, recognizer.GetParserRuleContext()) + if expectingAtLL2.contains(currentSymbolType) { + d.ReportMissingToken(recognizer) + return true + } + + return false +} + +// This method implements the single-token deletion inline error recovery +// strategy. It is called by {@link //recoverInline} to attempt to recover +// from mismatched input. If this method returns nil, the parser and error +// handler state will not have changed. If this method returns non-nil, +// {@code recognizer} will not be in error recovery mode since the +// returned token was a successful Match. +// +//If the single-token deletion is successful, d method calls +// {@link //ReportUnwantedToken} to Report the error, followed by +// {@link Parser//consume} to actually "delete" the extraneous token. Then, +// before returning {@link //ReportMatch} is called to signal a successful +// Match.
+// +// @param recognizer the parser instance +// @return the successfully Matched {@link Token} instance if single-token +// deletion successfully recovers from the mismatched input, otherwise +// {@code nil} +// +func (d *DefaultErrorStrategy) SingleTokenDeletion(recognizer Parser) Token { + NextTokenType := recognizer.GetTokenStream().LA(2) + expecting := d.GetExpectedTokens(recognizer) + if expecting.contains(NextTokenType) { + d.ReportUnwantedToken(recognizer) + // print("recoverFromMisMatchedToken deleting " \ + // + str(recognizer.GetTokenStream().LT(1)) \ + // + " since " + str(recognizer.GetTokenStream().LT(2)) \ + // + " is what we want", file=sys.stderr) + recognizer.Consume() // simply delete extra token + // we want to return the token we're actually Matching + MatchedSymbol := recognizer.GetCurrentToken() + d.ReportMatch(recognizer) // we know current token is correct + return MatchedSymbol + } + + return nil +} + +// Conjure up a missing token during error recovery. +// +// The recognizer attempts to recover from single missing +// symbols. But, actions might refer to that missing symbol. +// For example, x=ID {f($x)}. The action clearly assumes +// that there has been an identifier Matched previously and that +// $x points at that token. If that token is missing, but +// the next token in the stream is what we want we assume that +// d token is missing and we keep going. Because we +// have to return some token to replace the missing token, +// we have to conjure one up. This method gives the user control +// over the tokens returned for missing tokens. Mostly, +// you will want to create something special for identifier +// tokens. For literals such as '{' and ',', the default +// action in the parser or tree parser works. It simply creates +// a CommonToken of the appropriate type. The text will be the token. +// If you change what tokens must be created by the lexer, +// override d method to create the appropriate tokens. +// +func (d *DefaultErrorStrategy) GetMissingSymbol(recognizer Parser) Token { + currentSymbol := recognizer.GetCurrentToken() + expecting := d.GetExpectedTokens(recognizer) + expectedTokenType := expecting.first() + var tokenText string + + if expectedTokenType == TokenEOF { + tokenText = "+// This error strategy is useful in the following scenarios.
+// +//+// {@code myparser.setErrorHandler(NewBailErrorStrategy())}
+// +// @see Parser//setErrorHandler(ANTLRErrorStrategy) + +type BailErrorStrategy struct { + *DefaultErrorStrategy +} + +var _ ErrorStrategy = &BailErrorStrategy{} + +func NewBailErrorStrategy() *BailErrorStrategy { + + b := new(BailErrorStrategy) + + b.DefaultErrorStrategy = NewDefaultErrorStrategy() + + return b +} + +// Instead of recovering from exception {@code e}, re-panic it wrapped +// in a {@link ParseCancellationException} so it is not caught by the +// rule func catches. Use {@link Exception//getCause()} to get the +// original {@link RecognitionException}. +// +func (b *BailErrorStrategy) Recover(recognizer Parser, e RecognitionException) { + context := recognizer.GetParserRuleContext() + for context != nil { + context.SetException(e) + if parent, ok := context.GetParent().(ParserRuleContext); ok { + context = parent + } else { + context = nil + } + } + panic(NewParseCancellationException()) // TODO we don't emit e properly +} + +// Make sure we don't attempt to recover inline if the parser +// successfully recovers, it won't panic an exception. +// +func (b *BailErrorStrategy) RecoverInline(recognizer Parser) Token { + b.Recover(recognizer, NewInputMisMatchException(recognizer)) + + return nil +} + +// Make sure we don't attempt to recover from problems in subrules.// +func (b *BailErrorStrategy) Sync(recognizer Parser) { + // pass +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/errors.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/errors.go new file mode 100644 index 000000000..2ef74926e --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/errors.go @@ -0,0 +1,241 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +// The root of the ANTLR exception hierarchy. In general, ANTLR tracks just +// 3 kinds of errors: prediction errors, failed predicate errors, and +// mismatched input errors. In each case, the parser knows where it is +// in the input, where it is in the ATN, the rule invocation stack, +// and what kind of problem occurred. + +type RecognitionException interface { + GetOffendingToken() Token + GetMessage() string + GetInputStream() IntStream +} + +type BaseRecognitionException struct { + message string + recognizer Recognizer + offendingToken Token + offendingState int + ctx RuleContext + input IntStream +} + +func NewBaseRecognitionException(message string, recognizer Recognizer, input IntStream, ctx RuleContext) *BaseRecognitionException { + + // todo + // Error.call(this) + // + // if (!!Error.captureStackTrace) { + // Error.captureStackTrace(this, RecognitionException) + // } else { + // stack := NewError().stack + // } + // TODO may be able to use - "runtime" func Stack(buf []byte, all bool) int + + t := new(BaseRecognitionException) + + t.message = message + t.recognizer = recognizer + t.input = input + t.ctx = ctx + // The current {@link Token} when an error occurred. Since not all streams + // support accessing symbols by index, we have to track the {@link Token} + // instance itself. + t.offendingToken = nil + // Get the ATN state number the parser was in at the time the error + // occurred. For {@link NoViableAltException} and + // {@link LexerNoViableAltException} exceptions, this is the + // {@link DecisionState} number. For others, it is the state whose outgoing + // edge we couldn't Match. + t.offendingState = -1 + if t.recognizer != nil { + t.offendingState = t.recognizer.GetState() + } + + return t +} + +func (b *BaseRecognitionException) GetMessage() string { + return b.message +} + +func (b *BaseRecognitionException) GetOffendingToken() Token { + return b.offendingToken +} + +func (b *BaseRecognitionException) GetInputStream() IntStream { + return b.input +} + +//If the state number is not known, b method returns -1.
+ +// +// Gets the set of input symbols which could potentially follow the +// previously Matched symbol at the time b exception was panicn. +// +//If the set of expected tokens is not known and could not be computed, +// b method returns {@code nil}.
+// +// @return The set of token types that could potentially follow the current +// state in the ATN, or {@code nil} if the information is not available. +// / +func (b *BaseRecognitionException) getExpectedTokens() *IntervalSet { + if b.recognizer != nil { + return b.recognizer.GetATN().getExpectedTokens(b.offendingState, b.ctx) + } + + return nil +} + +func (b *BaseRecognitionException) String() string { + return b.message +} + +type LexerNoViableAltException struct { + *BaseRecognitionException + + startIndex int + deadEndConfigs ATNConfigSet +} + +func NewLexerNoViableAltException(lexer Lexer, input CharStream, startIndex int, deadEndConfigs ATNConfigSet) *LexerNoViableAltException { + + l := new(LexerNoViableAltException) + + l.BaseRecognitionException = NewBaseRecognitionException("", lexer, input, nil) + + l.startIndex = startIndex + l.deadEndConfigs = deadEndConfigs + + return l +} + +func (l *LexerNoViableAltException) String() string { + symbol := "" + if l.startIndex >= 0 && l.startIndex < l.input.Size() { + symbol = l.input.(CharStream).GetTextFromInterval(NewInterval(l.startIndex, l.startIndex)) + } + return "LexerNoViableAltException" + symbol +} + +type NoViableAltException struct { + *BaseRecognitionException + + startToken Token + offendingToken Token + ctx ParserRuleContext + deadEndConfigs ATNConfigSet +} + +// Indicates that the parser could not decide which of two or more paths +// to take based upon the remaining input. It tracks the starting token +// of the offending input and also knows where the parser was +// in the various paths when the error. Reported by ReportNoViableAlternative() +// +func NewNoViableAltException(recognizer Parser, input TokenStream, startToken Token, offendingToken Token, deadEndConfigs ATNConfigSet, ctx ParserRuleContext) *NoViableAltException { + + if ctx == nil { + ctx = recognizer.GetParserRuleContext() + } + + if offendingToken == nil { + offendingToken = recognizer.GetCurrentToken() + } + + if startToken == nil { + startToken = recognizer.GetCurrentToken() + } + + if input == nil { + input = recognizer.GetInputStream().(TokenStream) + } + + n := new(NoViableAltException) + n.BaseRecognitionException = NewBaseRecognitionException("", recognizer, input, ctx) + + // Which configurations did we try at input.Index() that couldn't Match + // input.LT(1)?// + n.deadEndConfigs = deadEndConfigs + // The token object at the start index the input stream might + // not be buffering tokens so get a reference to it. (At the + // time the error occurred, of course the stream needs to keep a + // buffer all of the tokens but later we might not have access to those.) + n.startToken = startToken + n.offendingToken = offendingToken + + return n +} + +type InputMisMatchException struct { + *BaseRecognitionException +} + +// This signifies any kind of mismatched input exceptions such as +// when the current input does not Match the expected token. +// +func NewInputMisMatchException(recognizer Parser) *InputMisMatchException { + + i := new(InputMisMatchException) + i.BaseRecognitionException = NewBaseRecognitionException("", recognizer, recognizer.GetInputStream(), recognizer.GetParserRuleContext()) + + i.offendingToken = recognizer.GetCurrentToken() + + return i + +} + +// A semantic predicate failed during validation. Validation of predicates +// occurs when normally parsing the alternative just like Matching a token. +// Disambiguating predicate evaluation occurs when we test a predicate during +// prediction. + +type FailedPredicateException struct { + *BaseRecognitionException + + ruleIndex int + predicateIndex int + predicate string +} + +func NewFailedPredicateException(recognizer Parser, predicate string, message string) *FailedPredicateException { + + f := new(FailedPredicateException) + + f.BaseRecognitionException = NewBaseRecognitionException(f.formatMessage(predicate, message), recognizer, recognizer.GetInputStream(), recognizer.GetParserRuleContext()) + + s := recognizer.GetInterpreter().atn.states[recognizer.GetState()] + trans := s.GetTransitions()[0] + if trans2, ok := trans.(*PredicateTransition); ok { + f.ruleIndex = trans2.ruleIndex + f.predicateIndex = trans2.predIndex + } else { + f.ruleIndex = 0 + f.predicateIndex = 0 + } + f.predicate = predicate + f.offendingToken = recognizer.GetCurrentToken() + + return f +} + +func (f *FailedPredicateException) formatMessage(predicate, message string) string { + if message != "" { + return message + } + + return "failed predicate: {" + predicate + "}?" +} + +type ParseCancellationException struct { +} + +func NewParseCancellationException() *ParseCancellationException { + // Error.call(this) + // Error.captureStackTrace(this, ParseCancellationException) + return new(ParseCancellationException) +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/file_stream.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/file_stream.go new file mode 100644 index 000000000..842170c08 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/file_stream.go @@ -0,0 +1,49 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "bytes" + "io" + "os" +) + +// This is an InputStream that is loaded from a file all at once +// when you construct the object. + +type FileStream struct { + *InputStream + + filename string +} + +func NewFileStream(fileName string) (*FileStream, error) { + + buf := bytes.NewBuffer(nil) + + f, err := os.Open(fileName) + if err != nil { + return nil, err + } + defer f.Close() + _, err = io.Copy(buf, f) + if err != nil { + return nil, err + } + + fs := new(FileStream) + + fs.filename = fileName + s := string(buf.Bytes()) + + fs.InputStream = NewInputStream(s) + + return fs, nil + +} + +func (f *FileStream) GetSourceName() string { + return f.filename +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/input_stream.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/input_stream.go new file mode 100644 index 000000000..5ff270f53 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/input_stream.go @@ -0,0 +1,113 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +type InputStream struct { + name string + index int + data []rune + size int +} + +func NewInputStream(data string) *InputStream { + + is := new(InputStream) + + is.name = "The {@code Skip} command does not have any parameters, so l action is +// implemented as a singleton instance exposed by {@link //INSTANCE}.
+type LexerSkipAction struct { + *BaseLexerAction +} + +func NewLexerSkipAction() *LexerSkipAction { + la := new(LexerSkipAction) + la.BaseLexerAction = NewBaseLexerAction(LexerActionTypeSkip) + return la +} + +// Provides a singleton instance of l parameterless lexer action. +var LexerSkipActionINSTANCE = NewLexerSkipAction() + +func (l *LexerSkipAction) execute(lexer Lexer) { + lexer.Skip() +} + +func (l *LexerSkipAction) String() string { + return "skip" +} + +// Implements the {@code type} lexer action by calling {@link Lexer//setType} +// with the assigned type. +type LexerTypeAction struct { + *BaseLexerAction + + thetype int +} + +func NewLexerTypeAction(thetype int) *LexerTypeAction { + l := new(LexerTypeAction) + l.BaseLexerAction = NewBaseLexerAction(LexerActionTypeType) + l.thetype = thetype + return l +} + +func (l *LexerTypeAction) execute(lexer Lexer) { + lexer.SetType(l.thetype) +} + +func (l *LexerTypeAction) hash() int { + h := murmurInit(0) + h = murmurUpdate(h, l.actionType) + h = murmurUpdate(h, l.thetype) + return murmurFinish(h, 2) +} + +func (l *LexerTypeAction) equals(other LexerAction) bool { + if l == other { + return true + } else if _, ok := other.(*LexerTypeAction); !ok { + return false + } else { + return l.thetype == other.(*LexerTypeAction).thetype + } +} + +func (l *LexerTypeAction) String() string { + return "actionType(" + strconv.Itoa(l.thetype) + ")" +} + +// Implements the {@code pushMode} lexer action by calling +// {@link Lexer//pushMode} with the assigned mode. +type LexerPushModeAction struct { + *BaseLexerAction + + mode int +} + +func NewLexerPushModeAction(mode int) *LexerPushModeAction { + + l := new(LexerPushModeAction) + l.BaseLexerAction = NewBaseLexerAction(LexerActionTypePushMode) + + l.mode = mode + return l +} + +//This action is implemented by calling {@link Lexer//pushMode} with the +// value provided by {@link //getMode}.
+func (l *LexerPushModeAction) execute(lexer Lexer) { + lexer.PushMode(l.mode) +} + +func (l *LexerPushModeAction) hash() int { + h := murmurInit(0) + h = murmurUpdate(h, l.actionType) + h = murmurUpdate(h, l.mode) + return murmurFinish(h, 2) +} + +func (l *LexerPushModeAction) equals(other LexerAction) bool { + if l == other { + return true + } else if _, ok := other.(*LexerPushModeAction); !ok { + return false + } else { + return l.mode == other.(*LexerPushModeAction).mode + } +} + +func (l *LexerPushModeAction) String() string { + return "pushMode(" + strconv.Itoa(l.mode) + ")" +} + +// Implements the {@code popMode} lexer action by calling {@link Lexer//popMode}. +// +//The {@code popMode} command does not have any parameters, so l action is +// implemented as a singleton instance exposed by {@link //INSTANCE}.
+type LexerPopModeAction struct { + *BaseLexerAction +} + +func NewLexerPopModeAction() *LexerPopModeAction { + + l := new(LexerPopModeAction) + + l.BaseLexerAction = NewBaseLexerAction(LexerActionTypePopMode) + + return l +} + +var LexerPopModeActionINSTANCE = NewLexerPopModeAction() + +//This action is implemented by calling {@link Lexer//popMode}.
+func (l *LexerPopModeAction) execute(lexer Lexer) { + lexer.PopMode() +} + +func (l *LexerPopModeAction) String() string { + return "popMode" +} + +// Implements the {@code more} lexer action by calling {@link Lexer//more}. +// +//The {@code more} command does not have any parameters, so l action is +// implemented as a singleton instance exposed by {@link //INSTANCE}.
+ +type LexerMoreAction struct { + *BaseLexerAction +} + +func NewLexerMoreAction() *LexerMoreAction { + l := new(LexerMoreAction) + l.BaseLexerAction = NewBaseLexerAction(LexerActionTypeMore) + + return l +} + +var LexerMoreActionINSTANCE = NewLexerMoreAction() + +//This action is implemented by calling {@link Lexer//popMode}.
+func (l *LexerMoreAction) execute(lexer Lexer) { + lexer.More() +} + +func (l *LexerMoreAction) String() string { + return "more" +} + +// Implements the {@code mode} lexer action by calling {@link Lexer//mode} with +// the assigned mode. +type LexerModeAction struct { + *BaseLexerAction + + mode int +} + +func NewLexerModeAction(mode int) *LexerModeAction { + l := new(LexerModeAction) + l.BaseLexerAction = NewBaseLexerAction(LexerActionTypeMode) + l.mode = mode + return l +} + +//This action is implemented by calling {@link Lexer//mode} with the +// value provided by {@link //getMode}.
+func (l *LexerModeAction) execute(lexer Lexer) { + lexer.SetMode(l.mode) +} + +func (l *LexerModeAction) hash() int { + h := murmurInit(0) + h = murmurUpdate(h, l.actionType) + h = murmurUpdate(h, l.mode) + return murmurFinish(h, 2) +} + +func (l *LexerModeAction) equals(other LexerAction) bool { + if l == other { + return true + } else if _, ok := other.(*LexerModeAction); !ok { + return false + } else { + return l.mode == other.(*LexerModeAction).mode + } +} + +func (l *LexerModeAction) String() string { + return "mode(" + strconv.Itoa(l.mode) + ")" +} + +// Executes a custom lexer action by calling {@link Recognizer//action} with the +// rule and action indexes assigned to the custom action. The implementation of +// a custom action is added to the generated code for the lexer in an override +// of {@link Recognizer//action} when the grammar is compiled. +// +//This class may represent embedded actions created with the {...}
+// syntax in ANTLR 4, as well as actions created for lexer commands where the
+// command argument could not be evaluated when the grammar was compiled.
Custom actions are implemented by calling {@link Lexer//action} with the +// appropriate rule and action indexes.
+func (l *LexerCustomAction) execute(lexer Lexer) { + lexer.Action(nil, l.ruleIndex, l.actionIndex) +} + +func (l *LexerCustomAction) hash() int { + h := murmurInit(0) + h = murmurUpdate(h, l.actionType) + h = murmurUpdate(h, l.ruleIndex) + h = murmurUpdate(h, l.actionIndex) + return murmurFinish(h, 3) +} + +func (l *LexerCustomAction) equals(other LexerAction) bool { + if l == other { + return true + } else if _, ok := other.(*LexerCustomAction); !ok { + return false + } else { + return l.ruleIndex == other.(*LexerCustomAction).ruleIndex && l.actionIndex == other.(*LexerCustomAction).actionIndex + } +} + +// Implements the {@code channel} lexer action by calling +// {@link Lexer//setChannel} with the assigned channel. +// Constructs a New{@code channel} action with the specified channel value. +// @param channel The channel value to pass to {@link Lexer//setChannel}. +type LexerChannelAction struct { + *BaseLexerAction + + channel int +} + +func NewLexerChannelAction(channel int) *LexerChannelAction { + l := new(LexerChannelAction) + l.BaseLexerAction = NewBaseLexerAction(LexerActionTypeChannel) + l.channel = channel + return l +} + +//This action is implemented by calling {@link Lexer//setChannel} with the +// value provided by {@link //getChannel}.
+func (l *LexerChannelAction) execute(lexer Lexer) { + lexer.SetChannel(l.channel) +} + +func (l *LexerChannelAction) hash() int { + h := murmurInit(0) + h = murmurUpdate(h, l.actionType) + h = murmurUpdate(h, l.channel) + return murmurFinish(h, 2) +} + +func (l *LexerChannelAction) equals(other LexerAction) bool { + if l == other { + return true + } else if _, ok := other.(*LexerChannelAction); !ok { + return false + } else { + return l.channel == other.(*LexerChannelAction).channel + } +} + +func (l *LexerChannelAction) String() string { + return "channel(" + strconv.Itoa(l.channel) + ")" +} + +// This implementation of {@link LexerAction} is used for tracking input offsets +// for position-dependent actions within a {@link LexerActionExecutor}. +// +//This action is not serialized as part of the ATN, and is only required for +// position-dependent lexer actions which appear at a location other than the +// end of a rule. For more information about DFA optimizations employed for +// lexer actions, see {@link LexerActionExecutor//append} and +// {@link LexerActionExecutor//fixOffsetBeforeMatch}.
+ +// Constructs a Newindexed custom action by associating a character offset +// with a {@link LexerAction}. +// +//Note: This class is only required for lexer actions for which +// {@link LexerAction//isPositionDependent} returns {@code true}.
+// +// @param offset The offset into the input {@link CharStream}, relative to +// the token start index, at which the specified lexer action should be +// executed. +// @param action The lexer action to execute at a particular offset in the +// input {@link CharStream}. +type LexerIndexedCustomAction struct { + *BaseLexerAction + + offset int + lexerAction LexerAction + isPositionDependent bool +} + +func NewLexerIndexedCustomAction(offset int, lexerAction LexerAction) *LexerIndexedCustomAction { + + l := new(LexerIndexedCustomAction) + l.BaseLexerAction = NewBaseLexerAction(lexerAction.getActionType()) + + l.offset = offset + l.lexerAction = lexerAction + l.isPositionDependent = true + + return l +} + +//This method calls {@link //execute} on the result of {@link //getAction} +// using the provided {@code lexer}.
+func (l *LexerIndexedCustomAction) execute(lexer Lexer) { + // assume the input stream position was properly set by the calling code + l.lexerAction.execute(lexer) +} + +func (l *LexerIndexedCustomAction) hash() int { + h := murmurInit(0) + h = murmurUpdate(h, l.offset) + h = murmurUpdate(h, l.lexerAction.hash()) + return murmurFinish(h, 2) +} + +func (l *LexerIndexedCustomAction) equals(other LexerAction) bool { + if l == other { + return true + } else if _, ok := other.(*LexerIndexedCustomAction); !ok { + return false + } else { + return l.offset == other.(*LexerIndexedCustomAction).offset && l.lexerAction == other.(*LexerIndexedCustomAction).lexerAction + } +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/lexer_action_executor.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/lexer_action_executor.go new file mode 100644 index 000000000..056941dd6 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/lexer_action_executor.go @@ -0,0 +1,173 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +// Represents an executor for a sequence of lexer actions which traversed during +// the Matching operation of a lexer rule (token). +// +//The executor tracks position information for position-dependent lexer actions +// efficiently, ensuring that actions appearing only at the end of the rule do +// not cause bloating of the {@link DFA} created for the lexer.
+ +type LexerActionExecutor struct { + lexerActions []LexerAction + cachedHash int +} + +func NewLexerActionExecutor(lexerActions []LexerAction) *LexerActionExecutor { + + if lexerActions == nil { + lexerActions = make([]LexerAction, 0) + } + + l := new(LexerActionExecutor) + + l.lexerActions = lexerActions + + // Caches the result of {@link //hashCode} since the hash code is an element + // of the performance-critical {@link LexerATNConfig//hashCode} operation. + l.cachedHash = murmurInit(57) + for _, a := range lexerActions { + l.cachedHash = murmurUpdate(l.cachedHash, a.hash()) + } + + return l +} + +// Creates a {@link LexerActionExecutor} which executes the actions for +// the input {@code lexerActionExecutor} followed by a specified +// {@code lexerAction}. +// +// @param lexerActionExecutor The executor for actions already traversed by +// the lexer while Matching a token within a particular +// {@link LexerATNConfig}. If this is {@code nil}, the method behaves as +// though it were an empty executor. +// @param lexerAction The lexer action to execute after the actions +// specified in {@code lexerActionExecutor}. +// +// @return A {@link LexerActionExecutor} for executing the combine actions +// of {@code lexerActionExecutor} and {@code lexerAction}. +func LexerActionExecutorappend(lexerActionExecutor *LexerActionExecutor, lexerAction LexerAction) *LexerActionExecutor { + if lexerActionExecutor == nil { + return NewLexerActionExecutor([]LexerAction{lexerAction}) + } + + return NewLexerActionExecutor(append(lexerActionExecutor.lexerActions, lexerAction)) +} + +// Creates a {@link LexerActionExecutor} which encodes the current offset +// for position-dependent lexer actions. +// +//Normally, when the executor encounters lexer actions where +// {@link LexerAction//isPositionDependent} returns {@code true}, it calls +// {@link IntStream//seek} on the input {@link CharStream} to set the input +// position to the end of the current token. This behavior provides +// for efficient DFA representation of lexer actions which appear at the end +// of a lexer rule, even when the lexer rule Matches a variable number of +// characters.
+// +//Prior to traversing a Match transition in the ATN, the current offset +// from the token start index is assigned to all position-dependent lexer +// actions which have not already been assigned a fixed offset. By storing +// the offsets relative to the token start index, the DFA representation of +// lexer actions which appear in the middle of tokens remains efficient due +// to sharing among tokens of the same length, regardless of their absolute +// position in the input stream.
+// +//If the current executor already has offsets assigned to all +// position-dependent lexer actions, the method returns {@code this}.
+// +// @param offset The current offset to assign to all position-dependent +// lexer actions which do not already have offsets assigned. +// +// @return A {@link LexerActionExecutor} which stores input stream offsets +// for all position-dependent lexer actions. +// / +func (l *LexerActionExecutor) fixOffsetBeforeMatch(offset int) *LexerActionExecutor { + var updatedLexerActions []LexerAction + for i := 0; i < len(l.lexerActions); i++ { + _, ok := l.lexerActions[i].(*LexerIndexedCustomAction) + if l.lexerActions[i].getIsPositionDependent() && !ok { + if updatedLexerActions == nil { + updatedLexerActions = make([]LexerAction, 0) + + for _, a := range l.lexerActions { + updatedLexerActions = append(updatedLexerActions, a) + } + } + + updatedLexerActions[i] = NewLexerIndexedCustomAction(offset, l.lexerActions[i]) + } + } + if updatedLexerActions == nil { + return l + } + + return NewLexerActionExecutor(updatedLexerActions) +} + +// Execute the actions encapsulated by l executor within the context of a +// particular {@link Lexer}. +// +//This method calls {@link IntStream//seek} to set the position of the +// {@code input} {@link CharStream} prior to calling +// {@link LexerAction//execute} on a position-dependent action. Before the +// method returns, the input position will be restored to the same position +// it was in when the method was invoked.
+// +// @param lexer The lexer instance. +// @param input The input stream which is the source for the current token. +// When l method is called, the current {@link IntStream//index} for +// {@code input} should be the start of the following token, i.e. 1 +// character past the end of the current token. +// @param startIndex The token start index. This value may be passed to +// {@link IntStream//seek} to set the {@code input} position to the beginning +// of the token. +// / +func (l *LexerActionExecutor) execute(lexer Lexer, input CharStream, startIndex int) { + requiresSeek := false + stopIndex := input.Index() + + defer func() { + if requiresSeek { + input.Seek(stopIndex) + } + }() + + for i := 0; i < len(l.lexerActions); i++ { + lexerAction := l.lexerActions[i] + if la, ok := lexerAction.(*LexerIndexedCustomAction); ok { + offset := la.offset + input.Seek(startIndex + offset) + lexerAction = la.lexerAction + requiresSeek = (startIndex + offset) != stopIndex + } else if lexerAction.getIsPositionDependent() { + input.Seek(stopIndex) + requiresSeek = false + } + lexerAction.execute(lexer) + } +} + +func (l *LexerActionExecutor) hash() int { + if l == nil { + return 61 + } + return l.cachedHash +} + +func (l *LexerActionExecutor) equals(other interface{}) bool { + if l == other { + return true + } + othert, ok := other.(*LexerActionExecutor) + if !ok { + return false + } + if othert == nil { + return false + } + return l.cachedHash == othert.cachedHash && &l.lexerActions == &othert.lexerActions +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/lexer_atn_simulator.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/lexer_atn_simulator.go new file mode 100644 index 000000000..dc05153ea --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/lexer_atn_simulator.go @@ -0,0 +1,679 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "fmt" + "strconv" + "strings" +) + +var ( + LexerATNSimulatorDebug = false + LexerATNSimulatorDFADebug = false + + LexerATNSimulatorMinDFAEdge = 0 + LexerATNSimulatorMaxDFAEdge = 127 // forces unicode to stay in ATN + + LexerATNSimulatorMatchCalls = 0 +) + +type ILexerATNSimulator interface { + IATNSimulator + + reset() + Match(input CharStream, mode int) int + GetCharPositionInLine() int + GetLine() int + GetText(input CharStream) string + Consume(input CharStream) +} + +type LexerATNSimulator struct { + *BaseATNSimulator + + recog Lexer + predictionMode int + mergeCache DoubleDict + startIndex int + Line int + CharPositionInLine int + mode int + prevAccept *SimState + MatchCalls int +} + +func NewLexerATNSimulator(recog Lexer, atn *ATN, decisionToDFA []*DFA, sharedContextCache *PredictionContextCache) *LexerATNSimulator { + l := new(LexerATNSimulator) + + l.BaseATNSimulator = NewBaseATNSimulator(atn, sharedContextCache) + + l.decisionToDFA = decisionToDFA + l.recog = recog + // The current token's starting index into the character stream. + // Shared across DFA to ATN simulation in case the ATN fails and the + // DFA did not have a previous accept state. In l case, we use the + // ATN-generated exception object. + l.startIndex = -1 + // line number 1..n within the input/// + l.Line = 1 + // The index of the character relative to the beginning of the line + // 0..n-1/// + l.CharPositionInLine = 0 + l.mode = LexerDefaultMode + // Used during DFA/ATN exec to record the most recent accept configuration + // info + l.prevAccept = NewSimState() + // done + return l +} + +func (l *LexerATNSimulator) copyState(simulator *LexerATNSimulator) { + l.CharPositionInLine = simulator.CharPositionInLine + l.Line = simulator.Line + l.mode = simulator.mode + l.startIndex = simulator.startIndex +} + +func (l *LexerATNSimulator) Match(input CharStream, mode int) int { + l.MatchCalls++ + l.mode = mode + mark := input.Mark() + + defer func() { + input.Release(mark) + }() + + l.startIndex = input.Index() + l.prevAccept.reset() + + dfa := l.decisionToDFA[mode] + + var s0 *DFAState + l.atn.stateMu.RLock() + s0 = dfa.getS0() + l.atn.stateMu.RUnlock() + + if s0 == nil { + return l.MatchATN(input) + } + + return l.execATN(input, s0) +} + +func (l *LexerATNSimulator) reset() { + l.prevAccept.reset() + l.startIndex = -1 + l.Line = 1 + l.CharPositionInLine = 0 + l.mode = LexerDefaultMode +} + +func (l *LexerATNSimulator) MatchATN(input CharStream) int { + startState := l.atn.modeToStartState[l.mode] + + if LexerATNSimulatorDebug { + fmt.Println("MatchATN mode " + strconv.Itoa(l.mode) + " start: " + startState.String()) + } + oldMode := l.mode + s0Closure := l.computeStartState(input, startState) + suppressEdge := s0Closure.hasSemanticContext + s0Closure.hasSemanticContext = false + + next := l.addDFAState(s0Closure, suppressEdge) + + predict := l.execATN(input, next) + + if LexerATNSimulatorDebug { + fmt.Println("DFA after MatchATN: " + l.decisionToDFA[oldMode].ToLexerString()) + } + return predict +} + +func (l *LexerATNSimulator) execATN(input CharStream, ds0 *DFAState) int { + + if LexerATNSimulatorDebug { + fmt.Println("start state closure=" + ds0.configs.String()) + } + if ds0.isAcceptState { + // allow zero-length tokens + l.captureSimState(l.prevAccept, input, ds0) + } + t := input.LA(1) + s := ds0 // s is current/from DFA state + + for { // while more work + if LexerATNSimulatorDebug { + fmt.Println("execATN loop starting closure: " + s.configs.String()) + } + + // As we move src->trg, src->trg, we keep track of the previous trg to + // avoid looking up the DFA state again, which is expensive. + // If the previous target was already part of the DFA, we might + // be able to avoid doing a reach operation upon t. If s!=nil, + // it means that semantic predicates didn't prevent us from + // creating a DFA state. Once we know s!=nil, we check to see if + // the DFA state has an edge already for t. If so, we can just reuse + // it's configuration set there's no point in re-computing it. + // This is kind of like doing DFA simulation within the ATN + // simulation because DFA simulation is really just a way to avoid + // computing reach/closure sets. Technically, once we know that + // we have a previously added DFA state, we could jump over to + // the DFA simulator. But, that would mean popping back and forth + // a lot and making things more complicated algorithmically. + // This optimization makes a lot of sense for loops within DFA. + // A character will take us back to an existing DFA state + // that already has lots of edges out of it. e.g., .* in comments. + target := l.getExistingTargetState(s, t) + if target == nil { + target = l.computeTargetState(input, s, t) + // print("Computed:" + str(target)) + } + if target == ATNSimulatorError { + break + } + // If l is a consumable input element, make sure to consume before + // capturing the accept state so the input index, line, and char + // position accurately reflect the state of the interpreter at the + // end of the token. + if t != TokenEOF { + l.Consume(input) + } + if target.isAcceptState { + l.captureSimState(l.prevAccept, input, target) + if t == TokenEOF { + break + } + } + t = input.LA(1) + s = target // flip current DFA target becomes Newsrc/from state + } + + return l.failOrAccept(l.prevAccept, input, s.configs, t) +} + +// Get an existing target state for an edge in the DFA. If the target state +// for the edge has not yet been computed or is otherwise not available, +// l method returns {@code nil}. +// +// @param s The current DFA state +// @param t The next input symbol +// @return The existing target DFA state for the given input symbol +// {@code t}, or {@code nil} if the target state for l edge is not +// already cached +func (l *LexerATNSimulator) getExistingTargetState(s *DFAState, t int) *DFAState { + if t < LexerATNSimulatorMinDFAEdge || t > LexerATNSimulatorMaxDFAEdge { + return nil + } + + l.atn.edgeMu.RLock() + defer l.atn.edgeMu.RUnlock() + if s.getEdges() == nil { + return nil + } + target := s.getIthEdge(t - LexerATNSimulatorMinDFAEdge) + if LexerATNSimulatorDebug && target != nil { + fmt.Println("reuse state " + strconv.Itoa(s.stateNumber) + " edge to " + strconv.Itoa(target.stateNumber)) + } + return target +} + +// Compute a target state for an edge in the DFA, and attempt to add the +// computed state and corresponding edge to the DFA. +// +// @param input The input stream +// @param s The current DFA state +// @param t The next input symbol +// +// @return The computed target DFA state for the given input symbol +// {@code t}. If {@code t} does not lead to a valid DFA state, l method +// returns {@link //ERROR}. +func (l *LexerATNSimulator) computeTargetState(input CharStream, s *DFAState, t int) *DFAState { + reach := NewOrderedATNConfigSet() + + // if we don't find an existing DFA state + // Fill reach starting from closure, following t transitions + l.getReachableConfigSet(input, s.configs, reach.BaseATNConfigSet, t) + + if len(reach.configs) == 0 { // we got nowhere on t from s + if !reach.hasSemanticContext { + // we got nowhere on t, don't panic out l knowledge it'd + // cause a failover from DFA later. + l.addDFAEdge(s, t, ATNSimulatorError, nil) + } + // stop when we can't Match any more char + return ATNSimulatorError + } + // Add an edge from s to target DFA found/created for reach + return l.addDFAEdge(s, t, nil, reach.BaseATNConfigSet) +} + +func (l *LexerATNSimulator) failOrAccept(prevAccept *SimState, input CharStream, reach ATNConfigSet, t int) int { + if l.prevAccept.dfaState != nil { + lexerActionExecutor := prevAccept.dfaState.lexerActionExecutor + l.accept(input, lexerActionExecutor, l.startIndex, prevAccept.index, prevAccept.line, prevAccept.column) + return prevAccept.dfaState.prediction + } + + // if no accept and EOF is first char, return EOF + if t == TokenEOF && input.Index() == l.startIndex { + return TokenEOF + } + + panic(NewLexerNoViableAltException(l.recog, input, l.startIndex, reach)) +} + +// Given a starting configuration set, figure out all ATN configurations +// we can reach upon input {@code t}. Parameter {@code reach} is a return +// parameter. +func (l *LexerATNSimulator) getReachableConfigSet(input CharStream, closure ATNConfigSet, reach ATNConfigSet, t int) { + // l is used to Skip processing for configs which have a lower priority + // than a config that already reached an accept state for the same rule + SkipAlt := ATNInvalidAltNumber + + for _, cfg := range closure.GetItems() { + currentAltReachedAcceptState := (cfg.GetAlt() == SkipAlt) + if currentAltReachedAcceptState && cfg.(*LexerATNConfig).passedThroughNonGreedyDecision { + continue + } + + if LexerATNSimulatorDebug { + + fmt.Printf("testing %s at %s\n", l.GetTokenName(t), cfg.String()) // l.recog, true)) + } + + for _, trans := range cfg.GetState().GetTransitions() { + target := l.getReachableTarget(trans, t) + if target != nil { + lexerActionExecutor := cfg.(*LexerATNConfig).lexerActionExecutor + if lexerActionExecutor != nil { + lexerActionExecutor = lexerActionExecutor.fixOffsetBeforeMatch(input.Index() - l.startIndex) + } + treatEOFAsEpsilon := (t == TokenEOF) + config := NewLexerATNConfig3(cfg.(*LexerATNConfig), target, lexerActionExecutor) + if l.closure(input, config, reach, + currentAltReachedAcceptState, true, treatEOFAsEpsilon) { + // any remaining configs for l alt have a lower priority + // than the one that just reached an accept state. + SkipAlt = cfg.GetAlt() + } + } + } + } +} + +func (l *LexerATNSimulator) accept(input CharStream, lexerActionExecutor *LexerActionExecutor, startIndex, index, line, charPos int) { + if LexerATNSimulatorDebug { + fmt.Printf("ACTION %v\n", lexerActionExecutor) + } + // seek to after last char in token + input.Seek(index) + l.Line = line + l.CharPositionInLine = charPos + if lexerActionExecutor != nil && l.recog != nil { + lexerActionExecutor.execute(l.recog, input, startIndex) + } +} + +func (l *LexerATNSimulator) getReachableTarget(trans Transition, t int) ATNState { + if trans.Matches(t, 0, LexerMaxCharValue) { + return trans.getTarget() + } + + return nil +} + +func (l *LexerATNSimulator) computeStartState(input CharStream, p ATNState) *OrderedATNConfigSet { + configs := NewOrderedATNConfigSet() + for i := 0; i < len(p.GetTransitions()); i++ { + target := p.GetTransitions()[i].getTarget() + cfg := NewLexerATNConfig6(target, i+1, BasePredictionContextEMPTY) + l.closure(input, cfg, configs, false, false, false) + } + + return configs +} + +// Since the alternatives within any lexer decision are ordered by +// preference, l method stops pursuing the closure as soon as an accept +// state is reached. After the first accept state is reached by depth-first +// search from {@code config}, all other (potentially reachable) states for +// l rule would have a lower priority. +// +// @return {@code true} if an accept state is reached, otherwise +// {@code false}. +func (l *LexerATNSimulator) closure(input CharStream, config *LexerATNConfig, configs ATNConfigSet, + currentAltReachedAcceptState, speculative, treatEOFAsEpsilon bool) bool { + + if LexerATNSimulatorDebug { + fmt.Println("closure(" + config.String() + ")") // config.String(l.recog, true) + ")") + } + + _, ok := config.state.(*RuleStopState) + if ok { + + if LexerATNSimulatorDebug { + if l.recog != nil { + fmt.Printf("closure at %s rule stop %s\n", l.recog.GetRuleNames()[config.state.GetRuleIndex()], config) + } else { + fmt.Printf("closure at rule stop %s\n", config) + } + } + + if config.context == nil || config.context.hasEmptyPath() { + if config.context == nil || config.context.isEmpty() { + configs.Add(config, nil) + return true + } + + configs.Add(NewLexerATNConfig2(config, config.state, BasePredictionContextEMPTY), nil) + currentAltReachedAcceptState = true + } + if config.context != nil && !config.context.isEmpty() { + for i := 0; i < config.context.length(); i++ { + if config.context.getReturnState(i) != BasePredictionContextEmptyReturnState { + newContext := config.context.GetParent(i) // "pop" return state + returnState := l.atn.states[config.context.getReturnState(i)] + cfg := NewLexerATNConfig2(config, returnState, newContext) + currentAltReachedAcceptState = l.closure(input, cfg, configs, currentAltReachedAcceptState, speculative, treatEOFAsEpsilon) + } + } + } + return currentAltReachedAcceptState + } + // optimization + if !config.state.GetEpsilonOnlyTransitions() { + if !currentAltReachedAcceptState || !config.passedThroughNonGreedyDecision { + configs.Add(config, nil) + } + } + for j := 0; j < len(config.state.GetTransitions()); j++ { + trans := config.state.GetTransitions()[j] + cfg := l.getEpsilonTarget(input, config, trans, configs, speculative, treatEOFAsEpsilon) + if cfg != nil { + currentAltReachedAcceptState = l.closure(input, cfg, configs, + currentAltReachedAcceptState, speculative, treatEOFAsEpsilon) + } + } + return currentAltReachedAcceptState +} + +// side-effect: can alter configs.hasSemanticContext +func (l *LexerATNSimulator) getEpsilonTarget(input CharStream, config *LexerATNConfig, trans Transition, + configs ATNConfigSet, speculative, treatEOFAsEpsilon bool) *LexerATNConfig { + + var cfg *LexerATNConfig + + if trans.getSerializationType() == TransitionRULE { + + rt := trans.(*RuleTransition) + newContext := SingletonBasePredictionContextCreate(config.context, rt.followState.GetStateNumber()) + cfg = NewLexerATNConfig2(config, trans.getTarget(), newContext) + + } else if trans.getSerializationType() == TransitionPRECEDENCE { + panic("Precedence predicates are not supported in lexers.") + } else if trans.getSerializationType() == TransitionPREDICATE { + // Track traversing semantic predicates. If we traverse, + // we cannot add a DFA state for l "reach" computation + // because the DFA would not test the predicate again in the + // future. Rather than creating collections of semantic predicates + // like v3 and testing them on prediction, v4 will test them on the + // fly all the time using the ATN not the DFA. This is slower but + // semantically it's not used that often. One of the key elements to + // l predicate mechanism is not adding DFA states that see + // predicates immediately afterwards in the ATN. For example, + + // a : ID {p1}? | ID {p2}? + + // should create the start state for rule 'a' (to save start state + // competition), but should not create target of ID state. The + // collection of ATN states the following ID references includes + // states reached by traversing predicates. Since l is when we + // test them, we cannot cash the DFA state target of ID. + + pt := trans.(*PredicateTransition) + + if LexerATNSimulatorDebug { + fmt.Println("EVAL rule " + strconv.Itoa(trans.(*PredicateTransition).ruleIndex) + ":" + strconv.Itoa(pt.predIndex)) + } + configs.SetHasSemanticContext(true) + if l.evaluatePredicate(input, pt.ruleIndex, pt.predIndex, speculative) { + cfg = NewLexerATNConfig4(config, trans.getTarget()) + } + } else if trans.getSerializationType() == TransitionACTION { + if config.context == nil || config.context.hasEmptyPath() { + // execute actions anywhere in the start rule for a token. + // + // TODO: if the entry rule is invoked recursively, some + // actions may be executed during the recursive call. The + // problem can appear when hasEmptyPath() is true but + // isEmpty() is false. In l case, the config needs to be + // split into two contexts - one with just the empty path + // and another with everything but the empty path. + // Unfortunately, the current algorithm does not allow + // getEpsilonTarget to return two configurations, so + // additional modifications are needed before we can support + // the split operation. + lexerActionExecutor := LexerActionExecutorappend(config.lexerActionExecutor, l.atn.lexerActions[trans.(*ActionTransition).actionIndex]) + cfg = NewLexerATNConfig3(config, trans.getTarget(), lexerActionExecutor) + } else { + // ignore actions in referenced rules + cfg = NewLexerATNConfig4(config, trans.getTarget()) + } + } else if trans.getSerializationType() == TransitionEPSILON { + cfg = NewLexerATNConfig4(config, trans.getTarget()) + } else if trans.getSerializationType() == TransitionATOM || + trans.getSerializationType() == TransitionRANGE || + trans.getSerializationType() == TransitionSET { + if treatEOFAsEpsilon { + if trans.Matches(TokenEOF, 0, LexerMaxCharValue) { + cfg = NewLexerATNConfig4(config, trans.getTarget()) + } + } + } + return cfg +} + +// Evaluate a predicate specified in the lexer. +// +//If {@code speculative} is {@code true}, l method was called before +// {@link //consume} for the Matched character. This method should call +// {@link //consume} before evaluating the predicate to ensure position +// sensitive values, including {@link Lexer//GetText}, {@link Lexer//GetLine}, +// and {@link Lexer//getcolumn}, properly reflect the current +// lexer state. This method should restore {@code input} and the simulator +// to the original state before returning (i.e. undo the actions made by the +// call to {@link //consume}.
+// +// @param input The input stream. +// @param ruleIndex The rule containing the predicate. +// @param predIndex The index of the predicate within the rule. +// @param speculative {@code true} if the current index in {@code input} is +// one character before the predicate's location. +// +// @return {@code true} if the specified predicate evaluates to +// {@code true}. +// / +func (l *LexerATNSimulator) evaluatePredicate(input CharStream, ruleIndex, predIndex int, speculative bool) bool { + // assume true if no recognizer was provided + if l.recog == nil { + return true + } + if !speculative { + return l.recog.Sempred(nil, ruleIndex, predIndex) + } + savedcolumn := l.CharPositionInLine + savedLine := l.Line + index := input.Index() + marker := input.Mark() + + defer func() { + l.CharPositionInLine = savedcolumn + l.Line = savedLine + input.Seek(index) + input.Release(marker) + }() + + l.Consume(input) + return l.recog.Sempred(nil, ruleIndex, predIndex) +} + +func (l *LexerATNSimulator) captureSimState(settings *SimState, input CharStream, dfaState *DFAState) { + settings.index = input.Index() + settings.line = l.Line + settings.column = l.CharPositionInLine + settings.dfaState = dfaState +} + +func (l *LexerATNSimulator) addDFAEdge(from *DFAState, tk int, to *DFAState, cfgs ATNConfigSet) *DFAState { + if to == nil && cfgs != nil { + // leading to l call, ATNConfigSet.hasSemanticContext is used as a + // marker indicating dynamic predicate evaluation makes l edge + // dependent on the specific input sequence, so the static edge in the + // DFA should be omitted. The target DFAState is still created since + // execATN has the ability to reSynchronize with the DFA state cache + // following the predicate evaluation step. + // + // TJP notes: next time through the DFA, we see a pred again and eval. + // If that gets us to a previously created (but dangling) DFA + // state, we can continue in pure DFA mode from there. + // / + suppressEdge := cfgs.HasSemanticContext() + cfgs.SetHasSemanticContext(false) + + to = l.addDFAState(cfgs, true) + + if suppressEdge { + return to + } + } + // add the edge + if tk < LexerATNSimulatorMinDFAEdge || tk > LexerATNSimulatorMaxDFAEdge { + // Only track edges within the DFA bounds + return to + } + if LexerATNSimulatorDebug { + fmt.Println("EDGE " + from.String() + " -> " + to.String() + " upon " + strconv.Itoa(tk)) + } + l.atn.edgeMu.Lock() + defer l.atn.edgeMu.Unlock() + if from.getEdges() == nil { + // make room for tokens 1..n and -1 masquerading as index 0 + from.setEdges(make([]*DFAState, LexerATNSimulatorMaxDFAEdge-LexerATNSimulatorMinDFAEdge+1)) + } + from.setIthEdge(tk-LexerATNSimulatorMinDFAEdge, to) // connect + + return to +} + +// Add a NewDFA state if there isn't one with l set of +// configurations already. This method also detects the first +// configuration containing an ATN rule stop state. Later, when +// traversing the DFA, we will know which rule to accept. +func (l *LexerATNSimulator) addDFAState(configs ATNConfigSet, suppressEdge bool) *DFAState { + + proposed := NewDFAState(-1, configs) + var firstConfigWithRuleStopState ATNConfig + + for _, cfg := range configs.GetItems() { + + _, ok := cfg.GetState().(*RuleStopState) + + if ok { + firstConfigWithRuleStopState = cfg + break + } + } + if firstConfigWithRuleStopState != nil { + proposed.isAcceptState = true + proposed.lexerActionExecutor = firstConfigWithRuleStopState.(*LexerATNConfig).lexerActionExecutor + proposed.setPrediction(l.atn.ruleToTokenType[firstConfigWithRuleStopState.GetState().GetRuleIndex()]) + } + hash := proposed.hash() + dfa := l.decisionToDFA[l.mode] + + l.atn.stateMu.Lock() + defer l.atn.stateMu.Unlock() + existing, ok := dfa.getState(hash) + if ok { + proposed = existing + } else { + proposed.stateNumber = dfa.numStates() + configs.SetReadOnly(true) + proposed.configs = configs + dfa.setState(hash, proposed) + } + if !suppressEdge { + dfa.setS0(proposed) + } + return proposed +} + +func (l *LexerATNSimulator) getDFA(mode int) *DFA { + return l.decisionToDFA[mode] +} + +// Get the text Matched so far for the current token. +func (l *LexerATNSimulator) GetText(input CharStream) string { + // index is first lookahead char, don't include. + return input.GetTextFromInterval(NewInterval(l.startIndex, input.Index()-1)) +} + +func (l *LexerATNSimulator) Consume(input CharStream) { + curChar := input.LA(1) + if curChar == int('\n') { + l.Line++ + l.CharPositionInLine = 0 + } else { + l.CharPositionInLine++ + } + input.Consume() +} + +func (l *LexerATNSimulator) GetCharPositionInLine() int { + return l.CharPositionInLine +} + +func (l *LexerATNSimulator) GetLine() int { + return l.Line +} + +func (l *LexerATNSimulator) GetTokenName(tt int) string { + if tt == -1 { + return "EOF" + } + + var sb strings.Builder + sb.Grow(6) + sb.WriteByte('\'') + sb.WriteRune(rune(tt)) + sb.WriteByte('\'') + + return sb.String() +} + +func resetSimState(sim *SimState) { + sim.index = -1 + sim.line = 0 + sim.column = -1 + sim.dfaState = nil +} + +type SimState struct { + index int + line int + column int + dfaState *DFAState +} + +func NewSimState() *SimState { + s := new(SimState) + resetSimState(s) + return s +} + +func (s *SimState) reset() { + resetSimState(s) +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/ll1_analyzer.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/ll1_analyzer.go new file mode 100644 index 000000000..6ffb37de6 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/ll1_analyzer.go @@ -0,0 +1,212 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +type LL1Analyzer struct { + atn *ATN +} + +func NewLL1Analyzer(atn *ATN) *LL1Analyzer { + la := new(LL1Analyzer) + la.atn = atn + return la +} + +//* Special value added to the lookahead sets to indicate that we hit +// a predicate during analysis if {@code seeThruPreds==false}. +/// +const ( + LL1AnalyzerHitPred = TokenInvalidType +) + +//* +// Calculates the SLL(1) expected lookahead set for each outgoing transition +// of an {@link ATNState}. The returned array has one element for each +// outgoing transition in {@code s}. If the closure from transition +// i leads to a semantic predicate before Matching a symbol, the +// element at index i of the result will be {@code nil}. +// +// @param s the ATN state +// @return the expected symbols for each outgoing transition of {@code s}. +func (la *LL1Analyzer) getDecisionLookahead(s ATNState) []*IntervalSet { + if s == nil { + return nil + } + count := len(s.GetTransitions()) + look := make([]*IntervalSet, count) + for alt := 0; alt < count; alt++ { + look[alt] = NewIntervalSet() + lookBusy := newArray2DHashSet(nil, nil) + seeThruPreds := false // fail to get lookahead upon pred + la.look1(s.GetTransitions()[alt].getTarget(), nil, BasePredictionContextEMPTY, look[alt], lookBusy, NewBitSet(), seeThruPreds, false) + // Wipe out lookahead for la alternative if we found nothing + // or we had a predicate when we !seeThruPreds + if look[alt].length() == 0 || look[alt].contains(LL1AnalyzerHitPred) { + look[alt] = nil + } + } + return look +} + +//* +// Compute set of tokens that can follow {@code s} in the ATN in the +// specified {@code ctx}. +// +//If {@code ctx} is {@code nil} and the end of the rule containing +// {@code s} is reached, {@link Token//EPSILON} is added to the result set. +// If {@code ctx} is not {@code nil} and the end of the outermost rule is +// reached, {@link Token//EOF} is added to the result set.
+// +// @param s the ATN state +// @param stopState the ATN state to stop at. This can be a +// {@link BlockEndState} to detect epsilon paths through a closure. +// @param ctx the complete parser context, or {@code nil} if the context +// should be ignored +// +// @return The set of tokens that can follow {@code s} in the ATN in the +// specified {@code ctx}. +/// +func (la *LL1Analyzer) Look(s, stopState ATNState, ctx RuleContext) *IntervalSet { + r := NewIntervalSet() + seeThruPreds := true // ignore preds get all lookahead + var lookContext PredictionContext + if ctx != nil { + lookContext = predictionContextFromRuleContext(s.GetATN(), ctx) + } + la.look1(s, stopState, lookContext, r, newArray2DHashSet(nil, nil), NewBitSet(), seeThruPreds, true) + return r +} + +//* +// Compute set of tokens that can follow {@code s} in the ATN in the +// specified {@code ctx}. +// +//If {@code ctx} is {@code nil} and {@code stopState} or the end of the +// rule containing {@code s} is reached, {@link Token//EPSILON} is added to +// the result set. If {@code ctx} is not {@code nil} and {@code addEOF} is +// {@code true} and {@code stopState} or the end of the outermost rule is +// reached, {@link Token//EOF} is added to the result set.
+// +// @param s the ATN state. +// @param stopState the ATN state to stop at. This can be a +// {@link BlockEndState} to detect epsilon paths through a closure. +// @param ctx The outer context, or {@code nil} if the outer context should +// not be used. +// @param look The result lookahead set. +// @param lookBusy A set used for preventing epsilon closures in the ATN +// from causing a stack overflow. Outside code should pass +// {@code NewSetIf the symbol type does not Match, +// {@link ANTLRErrorStrategy//recoverInline} is called on the current error +// strategy to attempt recovery. If {@link //getBuildParseTree} is +// {@code true} and the token index of the symbol returned by +// {@link ANTLRErrorStrategy//recoverInline} is -1, the symbol is added to +// the parse tree by calling {@link ParserRuleContext//addErrorNode}.
+// +// @param ttype the token type to Match +// @return the Matched symbol +// @panics RecognitionException if the current input symbol did not Match +// {@code ttype} and the error strategy could not recover from the +// mismatched symbol + +func (p *BaseParser) Match(ttype int) Token { + + t := p.GetCurrentToken() + + if t.GetTokenType() == ttype { + p.errHandler.ReportMatch(p) + p.Consume() + } else { + t = p.errHandler.RecoverInline(p) + if p.BuildParseTrees && t.GetTokenIndex() == -1 { + // we must have conjured up a Newtoken during single token + // insertion + // if it's not the current symbol + p.ctx.AddErrorNode(t) + } + } + + return t +} + +// Match current input symbol as a wildcard. If the symbol type Matches +// (i.e. has a value greater than 0), {@link ANTLRErrorStrategy//ReportMatch} +// and {@link //consume} are called to complete the Match process. +// +//If the symbol type does not Match, +// {@link ANTLRErrorStrategy//recoverInline} is called on the current error +// strategy to attempt recovery. If {@link //getBuildParseTree} is +// {@code true} and the token index of the symbol returned by +// {@link ANTLRErrorStrategy//recoverInline} is -1, the symbol is added to +// the parse tree by calling {@link ParserRuleContext//addErrorNode}.
+// +// @return the Matched symbol +// @panics RecognitionException if the current input symbol did not Match +// a wildcard and the error strategy could not recover from the mismatched +// symbol + +func (p *BaseParser) MatchWildcard() Token { + t := p.GetCurrentToken() + if t.GetTokenType() > 0 { + p.errHandler.ReportMatch(p) + p.Consume() + } else { + t = p.errHandler.RecoverInline(p) + if p.BuildParseTrees && t.GetTokenIndex() == -1 { + // we must have conjured up a Newtoken during single token + // insertion + // if it's not the current symbol + p.ctx.AddErrorNode(t) + } + } + return t +} + +func (p *BaseParser) GetParserRuleContext() ParserRuleContext { + return p.ctx +} + +func (p *BaseParser) SetParserRuleContext(v ParserRuleContext) { + p.ctx = v +} + +func (p *BaseParser) GetParseListeners() []ParseTreeListener { + if p.parseListeners == nil { + return make([]ParseTreeListener, 0) + } + return p.parseListeners +} + +// Registers {@code listener} to receive events during the parsing process. +// +//To support output-preserving grammar transformations (including but not +// limited to left-recursion removal, automated left-factoring, and +// optimized code generation), calls to listener methods during the parse +// may differ substantially from calls made by +// {@link ParseTreeWalker//DEFAULT} used after the parse is complete. In +// particular, rule entry and exit events may occur in a different order +// during the parse than after the parser. In addition, calls to certain +// rule entry methods may be omitted.
+// +//With the following specific exceptions, calls to listener events are +// deterministic, i.e. for identical input the calls to listener +// methods will be the same.
+// +//If {@code listener} is {@code nil} or has not been added as a parse +// listener, p.method does nothing.
+// @param listener the listener to remove +// +func (p *BaseParser) RemoveParseListener(listener ParseTreeListener) { + + if p.parseListeners != nil { + + idx := -1 + for i, v := range p.parseListeners { + if v == listener { + idx = i + break + } + } + + if idx == -1 { + return + } + + // remove the listener from the slice + p.parseListeners = append(p.parseListeners[0:idx], p.parseListeners[idx+1:]...) + + if len(p.parseListeners) == 0 { + p.parseListeners = nil + } + } +} + +// Remove all parse listeners. +func (p *BaseParser) removeParseListeners() { + p.parseListeners = nil +} + +// Notify any parse listeners of an enter rule event. +func (p *BaseParser) TriggerEnterRuleEvent() { + if p.parseListeners != nil { + ctx := p.ctx + for _, listener := range p.parseListeners { + listener.EnterEveryRule(ctx) + ctx.EnterRule(listener) + } + } +} + +// +// Notify any parse listeners of an exit rule event. +// +// @see //addParseListener +// +func (p *BaseParser) TriggerExitRuleEvent() { + if p.parseListeners != nil { + // reverse order walk of listeners + ctx := p.ctx + l := len(p.parseListeners) - 1 + + for i := range p.parseListeners { + listener := p.parseListeners[l-i] + ctx.ExitRule(listener) + listener.ExitEveryRule(ctx) + } + } +} + +func (p *BaseParser) GetInterpreter() *ParserATNSimulator { + return p.Interpreter +} + +func (p *BaseParser) GetATN() *ATN { + return p.Interpreter.atn +} + +func (p *BaseParser) GetTokenFactory() TokenFactory { + return p.input.GetTokenSource().GetTokenFactory() +} + +// Tell our token source and error strategy about a Newway to create tokens.// +func (p *BaseParser) setTokenFactory(factory TokenFactory) { + p.input.GetTokenSource().setTokenFactory(factory) +} + +// The ATN with bypass alternatives is expensive to create so we create it +// lazily. +// +// @panics UnsupportedOperationException if the current parser does not +// implement the {@link //getSerializedATN()} method. +// +func (p *BaseParser) GetATNWithBypassAlts() { + + // TODO + panic("Not implemented!") + + // serializedAtn := p.getSerializedATN() + // if (serializedAtn == nil) { + // panic("The current parser does not support an ATN with bypass alternatives.") + // } + // result := p.bypassAltsAtnCache[serializedAtn] + // if (result == nil) { + // deserializationOptions := NewATNDeserializationOptions(nil) + // deserializationOptions.generateRuleBypassTransitions = true + // result = NewATNDeserializer(deserializationOptions).deserialize(serializedAtn) + // p.bypassAltsAtnCache[serializedAtn] = result + // } + // return result +} + +// The preferred method of getting a tree pattern. For example, here's a +// sample use: +// +//+// ParseTree t = parser.expr() +// ParseTreePattern p = parser.compileParseTreePattern("<ID>+0", +// MyParser.RULE_expr) +// ParseTreeMatch m = p.Match(t) +// String id = m.Get("ID") +//+ +func (p *BaseParser) compileParseTreePattern(pattern, patternRuleIndex, lexer Lexer) { + + panic("NewParseTreePatternMatcher not implemented!") + // + // if (lexer == nil) { + // if (p.GetTokenStream() != nil) { + // tokenSource := p.GetTokenStream().GetTokenSource() + // if _, ok := tokenSource.(ILexer); ok { + // lexer = tokenSource + // } + // } + // } + // if (lexer == nil) { + // panic("Parser can't discover a lexer to use") + // } + + // m := NewParseTreePatternMatcher(lexer, p) + // return m.compile(pattern, patternRuleIndex) +} + +func (p *BaseParser) GetInputStream() IntStream { + return p.GetTokenStream() +} + +func (p *BaseParser) SetInputStream(input TokenStream) { + p.SetTokenStream(input) +} + +func (p *BaseParser) GetTokenStream() TokenStream { + return p.input +} + +// Set the token stream and reset the parser.// +func (p *BaseParser) SetTokenStream(input TokenStream) { + p.input = nil + p.reset() + p.input = input +} + +// Match needs to return the current input symbol, which gets put +// into the label for the associated token ref e.g., x=ID. +// +func (p *BaseParser) GetCurrentToken() Token { + return p.input.LT(1) +} + +func (p *BaseParser) NotifyErrorListeners(msg string, offendingToken Token, err RecognitionException) { + if offendingToken == nil { + offendingToken = p.GetCurrentToken() + } + p._SyntaxErrors++ + line := offendingToken.GetLine() + column := offendingToken.GetColumn() + listener := p.GetErrorListenerDispatch() + listener.SyntaxError(p, offendingToken, line, column, msg, err) +} + +func (p *BaseParser) Consume() Token { + o := p.GetCurrentToken() + if o.GetTokenType() != TokenEOF { + p.GetInputStream().Consume() + } + hasListener := p.parseListeners != nil && len(p.parseListeners) > 0 + if p.BuildParseTrees || hasListener { + if p.errHandler.InErrorRecoveryMode(p) { + node := p.ctx.AddErrorNode(o) + if p.parseListeners != nil { + for _, l := range p.parseListeners { + l.VisitErrorNode(node) + } + } + + } else { + node := p.ctx.AddTokenNode(o) + if p.parseListeners != nil { + for _, l := range p.parseListeners { + l.VisitTerminal(node) + } + } + } + // node.invokingState = p.state + } + + return o +} + +func (p *BaseParser) addContextToParseTree() { + // add current context to parent if we have a parent + if p.ctx.GetParent() != nil { + p.ctx.GetParent().(ParserRuleContext).AddChild(p.ctx) + } +} + +func (p *BaseParser) EnterRule(localctx ParserRuleContext, state, ruleIndex int) { + p.SetState(state) + p.ctx = localctx + p.ctx.SetStart(p.input.LT(1)) + if p.BuildParseTrees { + p.addContextToParseTree() + } + if p.parseListeners != nil { + p.TriggerEnterRuleEvent() + } +} + +func (p *BaseParser) ExitRule() { + p.ctx.SetStop(p.input.LT(-1)) + // trigger event on ctx, before it reverts to parent + if p.parseListeners != nil { + p.TriggerExitRuleEvent() + } + p.SetState(p.ctx.GetInvokingState()) + if p.ctx.GetParent() != nil { + p.ctx = p.ctx.GetParent().(ParserRuleContext) + } else { + p.ctx = nil + } +} + +func (p *BaseParser) EnterOuterAlt(localctx ParserRuleContext, altNum int) { + localctx.SetAltNumber(altNum) + // if we have Newlocalctx, make sure we replace existing ctx + // that is previous child of parse tree + if p.BuildParseTrees && p.ctx != localctx { + if p.ctx.GetParent() != nil { + p.ctx.GetParent().(ParserRuleContext).RemoveLastChild() + p.ctx.GetParent().(ParserRuleContext).AddChild(localctx) + } + } + p.ctx = localctx +} + +// Get the precedence level for the top-most precedence rule. +// +// @return The precedence level for the top-most precedence rule, or -1 if +// the parser context is not nested within a precedence rule. + +func (p *BaseParser) GetPrecedence() int { + if len(p.precedenceStack) == 0 { + return -1 + } + + return p.precedenceStack[len(p.precedenceStack)-1] +} + +func (p *BaseParser) EnterRecursionRule(localctx ParserRuleContext, state, ruleIndex, precedence int) { + p.SetState(state) + p.precedenceStack.Push(precedence) + p.ctx = localctx + p.ctx.SetStart(p.input.LT(1)) + if p.parseListeners != nil { + p.TriggerEnterRuleEvent() // simulates rule entry for + // left-recursive rules + } +} + +// +// Like {@link //EnterRule} but for recursive rules. + +func (p *BaseParser) PushNewRecursionContext(localctx ParserRuleContext, state, ruleIndex int) { + previous := p.ctx + previous.SetParent(localctx) + previous.SetInvokingState(state) + previous.SetStop(p.input.LT(-1)) + + p.ctx = localctx + p.ctx.SetStart(previous.GetStart()) + if p.BuildParseTrees { + p.ctx.AddChild(previous) + } + if p.parseListeners != nil { + p.TriggerEnterRuleEvent() // simulates rule entry for + // left-recursive rules + } +} + +func (p *BaseParser) UnrollRecursionContexts(parentCtx ParserRuleContext) { + p.precedenceStack.Pop() + p.ctx.SetStop(p.input.LT(-1)) + retCtx := p.ctx // save current ctx (return value) + // unroll so ctx is as it was before call to recursive method + if p.parseListeners != nil { + for p.ctx != parentCtx { + p.TriggerExitRuleEvent() + p.ctx = p.ctx.GetParent().(ParserRuleContext) + } + } else { + p.ctx = parentCtx + } + // hook into tree + retCtx.SetParent(parentCtx) + if p.BuildParseTrees && parentCtx != nil { + // add return ctx into invoking rule's tree + parentCtx.AddChild(retCtx) + } +} + +func (p *BaseParser) GetInvokingContext(ruleIndex int) ParserRuleContext { + ctx := p.ctx + for ctx != nil { + if ctx.GetRuleIndex() == ruleIndex { + return ctx + } + ctx = ctx.GetParent().(ParserRuleContext) + } + return nil +} + +func (p *BaseParser) Precpred(localctx RuleContext, precedence int) bool { + return precedence >= p.precedenceStack[len(p.precedenceStack)-1] +} + +func (p *BaseParser) inContext(context ParserRuleContext) bool { + // TODO: useful in parser? + return false +} + +// +// Checks whether or not {@code symbol} can follow the current state in the +// ATN. The behavior of p.method is equivalent to the following, but is +// implemented such that the complete context-sensitive follow set does not +// need to be explicitly constructed. +// +//
+// return getExpectedTokens().contains(symbol) +//+// +// @param symbol the symbol type to check +// @return {@code true} if {@code symbol} can follow the current state in +// the ATN, otherwise {@code false}. + +func (p *BaseParser) IsExpectedToken(symbol int) bool { + atn := p.Interpreter.atn + ctx := p.ctx + s := atn.states[p.state] + following := atn.NextTokens(s, nil) + if following.contains(symbol) { + return true + } + if !following.contains(TokenEpsilon) { + return false + } + for ctx != nil && ctx.GetInvokingState() >= 0 && following.contains(TokenEpsilon) { + invokingState := atn.states[ctx.GetInvokingState()] + rt := invokingState.GetTransitions()[0] + following = atn.NextTokens(rt.(*RuleTransition).followState, nil) + if following.contains(symbol) { + return true + } + ctx = ctx.GetParent().(ParserRuleContext) + } + if following.contains(TokenEpsilon) && symbol == TokenEOF { + return true + } + + return false +} + +// Computes the set of input symbols which could follow the current parser +// state and context, as given by {@link //GetState} and {@link //GetContext}, +// respectively. +// +// @see ATN//getExpectedTokens(int, RuleContext) +// +func (p *BaseParser) GetExpectedTokens() *IntervalSet { + return p.Interpreter.atn.getExpectedTokens(p.state, p.ctx) +} + +func (p *BaseParser) GetExpectedTokensWithinCurrentRule() *IntervalSet { + atn := p.Interpreter.atn + s := atn.states[p.state] + return atn.NextTokens(s, nil) +} + +// Get a rule's index (i.e., {@code RULE_ruleName} field) or -1 if not found.// +func (p *BaseParser) GetRuleIndex(ruleName string) int { + var ruleIndex, ok = p.GetRuleIndexMap()[ruleName] + if ok { + return ruleIndex + } + + return -1 +} + +// Return List<String> of the rule names in your parser instance +// leading up to a call to the current rule. You could override if +// you want more details such as the file/line info of where +// in the ATN a rule is invoked. +// +// this very useful for error messages. + +func (p *BaseParser) GetRuleInvocationStack(c ParserRuleContext) []string { + if c == nil { + c = p.ctx + } + stack := make([]string, 0) + for c != nil { + // compute what follows who invoked us + ruleIndex := c.GetRuleIndex() + if ruleIndex < 0 { + stack = append(stack, "n/a") + } else { + stack = append(stack, p.GetRuleNames()[ruleIndex]) + } + + vp := c.GetParent() + + if vp == nil { + break + } + + c = vp.(ParserRuleContext) + } + return stack +} + +// For debugging and other purposes.// +func (p *BaseParser) GetDFAStrings() string { + return fmt.Sprint(p.Interpreter.decisionToDFA) +} + +// For debugging and other purposes.// +func (p *BaseParser) DumpDFA() { + seenOne := false + for _, dfa := range p.Interpreter.decisionToDFA { + if dfa.numStates() > 0 { + if seenOne { + fmt.Println() + } + fmt.Println("Decision " + strconv.Itoa(dfa.decision) + ":") + fmt.Print(dfa.String(p.LiteralNames, p.SymbolicNames)) + seenOne = true + } + } +} + +func (p *BaseParser) GetSourceName() string { + return p.GrammarFileName +} + +// During a parse is sometimes useful to listen in on the rule entry and exit +// events as well as token Matches. p.is for quick and dirty debugging. +// +func (p *BaseParser) SetTrace(trace *TraceListener) { + if trace == nil { + p.RemoveParseListener(p.tracer) + p.tracer = nil + } else { + if p.tracer != nil { + p.RemoveParseListener(p.tracer) + } + p.tracer = NewTraceListener(p) + p.AddParseListener(p.tracer) + } +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/parser_atn_simulator.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/parser_atn_simulator.go new file mode 100644 index 000000000..888d51297 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/parser_atn_simulator.go @@ -0,0 +1,1544 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "fmt" + "strconv" + "strings" +) + +var ( + ParserATNSimulatorDebug = false + ParserATNSimulatorListATNDecisions = false + ParserATNSimulatorDFADebug = false + ParserATNSimulatorRetryDebug = false + TurnOffLRLoopEntryBranchOpt = false +) + +type ParserATNSimulator struct { + *BaseATNSimulator + + parser Parser + predictionMode int + input TokenStream + startIndex int + dfa *DFA + mergeCache *DoubleDict + outerContext ParserRuleContext +} + +func NewParserATNSimulator(parser Parser, atn *ATN, decisionToDFA []*DFA, sharedContextCache *PredictionContextCache) *ParserATNSimulator { + + p := new(ParserATNSimulator) + + p.BaseATNSimulator = NewBaseATNSimulator(atn, sharedContextCache) + + p.parser = parser + p.decisionToDFA = decisionToDFA + // SLL, LL, or LL + exact ambig detection?// + p.predictionMode = PredictionModeLL + // LAME globals to avoid parameters!!!!! I need these down deep in predTransition + p.input = nil + p.startIndex = 0 + p.outerContext = nil + p.dfa = nil + // Each prediction operation uses a cache for merge of prediction contexts. + // Don't keep around as it wastes huge amounts of memory. DoubleKeyMap + // isn't Synchronized but we're ok since two threads shouldn't reuse same + // parser/atnsim object because it can only handle one input at a time. + // This maps graphs a and b to merged result c. (a,b)&rarrc. We can avoid + // the merge if we ever see a and b again. Note that (b,a)&rarrc should + // also be examined during cache lookup. + // + p.mergeCache = nil + + return p +} + +func (p *ParserATNSimulator) GetPredictionMode() int { + return p.predictionMode +} + +func (p *ParserATNSimulator) SetPredictionMode(v int) { + p.predictionMode = v +} + +func (p *ParserATNSimulator) reset() { +} + +func (p *ParserATNSimulator) AdaptivePredict(input TokenStream, decision int, outerContext ParserRuleContext) int { + if ParserATNSimulatorDebug || ParserATNSimulatorListATNDecisions { + fmt.Println("AdaptivePredict decision " + strconv.Itoa(decision) + + " exec LA(1)==" + p.getLookaheadName(input) + + " line " + strconv.Itoa(input.LT(1).GetLine()) + ":" + + strconv.Itoa(input.LT(1).GetColumn())) + } + + p.input = input + p.startIndex = input.Index() + p.outerContext = outerContext + + dfa := p.decisionToDFA[decision] + p.dfa = dfa + m := input.Mark() + index := input.Index() + + defer func() { + p.dfa = nil + p.mergeCache = nil // wack cache after each prediction + input.Seek(index) + input.Release(m) + }() + + // Now we are certain to have a specific decision's DFA + // But, do we still need an initial state? + var s0 *DFAState + p.atn.stateMu.RLock() + if dfa.getPrecedenceDfa() { + p.atn.edgeMu.RLock() + // the start state for a precedence DFA depends on the current + // parser precedence, and is provided by a DFA method. + s0 = dfa.getPrecedenceStartState(p.parser.GetPrecedence()) + p.atn.edgeMu.RUnlock() + } else { + // the start state for a "regular" DFA is just s0 + s0 = dfa.getS0() + } + p.atn.stateMu.RUnlock() + + if s0 == nil { + if outerContext == nil { + outerContext = RuleContextEmpty + } + if ParserATNSimulatorDebug || ParserATNSimulatorListATNDecisions { + fmt.Println("predictATN decision " + strconv.Itoa(dfa.decision) + + " exec LA(1)==" + p.getLookaheadName(input) + + ", outerContext=" + outerContext.String(p.parser.GetRuleNames(), nil)) + } + fullCtx := false + s0Closure := p.computeStartState(dfa.atnStartState, RuleContextEmpty, fullCtx) + + p.atn.stateMu.Lock() + if dfa.getPrecedenceDfa() { + // If p is a precedence DFA, we use applyPrecedenceFilter + // to convert the computed start state to a precedence start + // state. We then use DFA.setPrecedenceStartState to set the + // appropriate start state for the precedence level rather + // than simply setting DFA.s0. + // + dfa.s0.configs = s0Closure + s0Closure = p.applyPrecedenceFilter(s0Closure) + s0 = p.addDFAState(dfa, NewDFAState(-1, s0Closure)) + p.atn.edgeMu.Lock() + dfa.setPrecedenceStartState(p.parser.GetPrecedence(), s0) + p.atn.edgeMu.Unlock() + } else { + s0 = p.addDFAState(dfa, NewDFAState(-1, s0Closure)) + dfa.setS0(s0) + } + p.atn.stateMu.Unlock() + } + + alt := p.execATN(dfa, s0, input, index, outerContext) + if ParserATNSimulatorDebug { + fmt.Println("DFA after predictATN: " + dfa.String(p.parser.GetLiteralNames(), nil)) + } + return alt + +} + +// Performs ATN simulation to compute a predicted alternative based +// upon the remaining input, but also updates the DFA cache to avoid +// having to traverse the ATN again for the same input sequence. + +// There are some key conditions we're looking for after computing a new +// set of ATN configs (proposed DFA state): +// if the set is empty, there is no viable alternative for current symbol +// does the state uniquely predict an alternative? +// does the state have a conflict that would prevent us from +// putting it on the work list? + +// We also have some key operations to do: +// add an edge from previous DFA state to potentially NewDFA state, D, +// upon current symbol but only if adding to work list, which means in all +// cases except no viable alternative (and possibly non-greedy decisions?) +// collecting predicates and adding semantic context to DFA accept states +// adding rule context to context-sensitive DFA accept states +// consuming an input symbol +// Reporting a conflict +// Reporting an ambiguity +// Reporting a context sensitivity +// Reporting insufficient predicates + +// cover these cases: +// dead end +// single alt +// single alt + preds +// conflict +// conflict + preds +// +func (p *ParserATNSimulator) execATN(dfa *DFA, s0 *DFAState, input TokenStream, startIndex int, outerContext ParserRuleContext) int { + + if ParserATNSimulatorDebug || ParserATNSimulatorListATNDecisions { + fmt.Println("execATN decision " + strconv.Itoa(dfa.decision) + + " exec LA(1)==" + p.getLookaheadName(input) + + " line " + strconv.Itoa(input.LT(1).GetLine()) + ":" + strconv.Itoa(input.LT(1).GetColumn())) + } + + previousD := s0 + + if ParserATNSimulatorDebug { + fmt.Println("s0 = " + s0.String()) + } + t := input.LA(1) + for { // for more work + D := p.getExistingTargetState(previousD, t) + if D == nil { + D = p.computeTargetState(dfa, previousD, t) + } + if D == ATNSimulatorError { + // if any configs in previous dipped into outer context, that + // means that input up to t actually finished entry rule + // at least for SLL decision. Full LL doesn't dip into outer + // so don't need special case. + // We will get an error no matter what so delay until after + // decision better error message. Also, no reachable target + // ATN states in SLL implies LL will also get nowhere. + // If conflict in states that dip out, choose min since we + // will get error no matter what. + e := p.noViableAlt(input, outerContext, previousD.configs, startIndex) + input.Seek(startIndex) + alt := p.getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previousD.configs, outerContext) + if alt != ATNInvalidAltNumber { + return alt + } + + panic(e) + } + if D.requiresFullContext && p.predictionMode != PredictionModeSLL { + // IF PREDS, MIGHT RESOLVE TO SINGLE ALT => SLL (or syntax error) + conflictingAlts := D.configs.GetConflictingAlts() + if D.predicates != nil { + if ParserATNSimulatorDebug { + fmt.Println("DFA state has preds in DFA sim LL failover") + } + conflictIndex := input.Index() + if conflictIndex != startIndex { + input.Seek(startIndex) + } + conflictingAlts = p.evalSemanticContext(D.predicates, outerContext, true) + if conflictingAlts.length() == 1 { + if ParserATNSimulatorDebug { + fmt.Println("Full LL avoided") + } + return conflictingAlts.minValue() + } + if conflictIndex != startIndex { + // restore the index so Reporting the fallback to full + // context occurs with the index at the correct spot + input.Seek(conflictIndex) + } + } + if ParserATNSimulatorDFADebug { + fmt.Println("ctx sensitive state " + outerContext.String(nil, nil) + " in " + D.String()) + } + fullCtx := true + s0Closure := p.computeStartState(dfa.atnStartState, outerContext, fullCtx) + p.ReportAttemptingFullContext(dfa, conflictingAlts, D.configs, startIndex, input.Index()) + alt := p.execATNWithFullContext(dfa, D, s0Closure, input, startIndex, outerContext) + return alt + } + if D.isAcceptState { + if D.predicates == nil { + return D.prediction + } + stopIndex := input.Index() + input.Seek(startIndex) + alts := p.evalSemanticContext(D.predicates, outerContext, true) + + switch alts.length() { + case 0: + panic(p.noViableAlt(input, outerContext, D.configs, startIndex)) + case 1: + return alts.minValue() + default: + // Report ambiguity after predicate evaluation to make sure the correct set of ambig alts is Reported. + p.ReportAmbiguity(dfa, D, startIndex, stopIndex, false, alts, D.configs) + return alts.minValue() + } + } + previousD = D + + if t != TokenEOF { + input.Consume() + t = input.LA(1) + } + } + + panic("Should not have reached p state") +} + +// Get an existing target state for an edge in the DFA. If the target state +// for the edge has not yet been computed or is otherwise not available, +// p method returns {@code nil}. +// +// @param previousD The current DFA state +// @param t The next input symbol +// @return The existing target DFA state for the given input symbol +// {@code t}, or {@code nil} if the target state for p edge is not +// already cached + +func (p *ParserATNSimulator) getExistingTargetState(previousD *DFAState, t int) *DFAState { + if t+1 < 0 { + return nil + } + + p.atn.edgeMu.RLock() + defer p.atn.edgeMu.RUnlock() + edges := previousD.getEdges() + if edges == nil || t+1 >= len(edges) { + return nil + } + return previousD.getIthEdge(t + 1) +} + +// Compute a target state for an edge in the DFA, and attempt to add the +// computed state and corresponding edge to the DFA. +// +// @param dfa The DFA +// @param previousD The current DFA state +// @param t The next input symbol +// +// @return The computed target DFA state for the given input symbol +// {@code t}. If {@code t} does not lead to a valid DFA state, p method +// returns {@link //ERROR}. + +func (p *ParserATNSimulator) computeTargetState(dfa *DFA, previousD *DFAState, t int) *DFAState { + reach := p.computeReachSet(previousD.configs, t, false) + + if reach == nil { + p.addDFAEdge(dfa, previousD, t, ATNSimulatorError) + return ATNSimulatorError + } + // create Newtarget state we'll add to DFA after it's complete + D := NewDFAState(-1, reach) + + predictedAlt := p.getUniqueAlt(reach) + + if ParserATNSimulatorDebug { + altSubSets := PredictionModegetConflictingAltSubsets(reach) + fmt.Println("SLL altSubSets=" + fmt.Sprint(altSubSets) + + ", previous=" + previousD.configs.String() + + ", configs=" + reach.String() + + ", predict=" + strconv.Itoa(predictedAlt) + + ", allSubsetsConflict=" + + fmt.Sprint(PredictionModeallSubsetsConflict(altSubSets)) + + ", conflictingAlts=" + p.getConflictingAlts(reach).String()) + } + if predictedAlt != ATNInvalidAltNumber { + // NO CONFLICT, UNIQUELY PREDICTED ALT + D.isAcceptState = true + D.configs.SetUniqueAlt(predictedAlt) + D.setPrediction(predictedAlt) + } else if PredictionModehasSLLConflictTerminatingPrediction(p.predictionMode, reach) { + // MORE THAN ONE VIABLE ALTERNATIVE + D.configs.SetConflictingAlts(p.getConflictingAlts(reach)) + D.requiresFullContext = true + // in SLL-only mode, we will stop at p state and return the minimum alt + D.isAcceptState = true + D.setPrediction(D.configs.GetConflictingAlts().minValue()) + } + if D.isAcceptState && D.configs.HasSemanticContext() { + p.predicateDFAState(D, p.atn.getDecisionState(dfa.decision)) + if D.predicates != nil { + D.setPrediction(ATNInvalidAltNumber) + } + } + // all adds to dfa are done after we've created full D state + D = p.addDFAEdge(dfa, previousD, t, D) + return D +} + +func (p *ParserATNSimulator) predicateDFAState(dfaState *DFAState, decisionState DecisionState) { + // We need to test all predicates, even in DFA states that + // uniquely predict alternative. + nalts := len(decisionState.GetTransitions()) + // Update DFA so reach becomes accept state with (predicate,alt) + // pairs if preds found for conflicting alts + altsToCollectPredsFrom := p.getConflictingAltsOrUniqueAlt(dfaState.configs) + altToPred := p.getPredsForAmbigAlts(altsToCollectPredsFrom, dfaState.configs, nalts) + if altToPred != nil { + dfaState.predicates = p.getPredicatePredictions(altsToCollectPredsFrom, altToPred) + dfaState.setPrediction(ATNInvalidAltNumber) // make sure we use preds + } else { + // There are preds in configs but they might go away + // when OR'd together like {p}? || NONE == NONE. If neither + // alt has preds, resolve to min alt + dfaState.setPrediction(altsToCollectPredsFrom.minValue()) + } +} + +// comes back with reach.uniqueAlt set to a valid alt +func (p *ParserATNSimulator) execATNWithFullContext(dfa *DFA, D *DFAState, s0 ATNConfigSet, input TokenStream, startIndex int, outerContext ParserRuleContext) int { + + if ParserATNSimulatorDebug || ParserATNSimulatorListATNDecisions { + fmt.Println("execATNWithFullContext " + s0.String()) + } + + fullCtx := true + foundExactAmbig := false + var reach ATNConfigSet + previous := s0 + input.Seek(startIndex) + t := input.LA(1) + predictedAlt := -1 + + for { // for more work + reach = p.computeReachSet(previous, t, fullCtx) + if reach == nil { + // if any configs in previous dipped into outer context, that + // means that input up to t actually finished entry rule + // at least for LL decision. Full LL doesn't dip into outer + // so don't need special case. + // We will get an error no matter what so delay until after + // decision better error message. Also, no reachable target + // ATN states in SLL implies LL will also get nowhere. + // If conflict in states that dip out, choose min since we + // will get error no matter what. + e := p.noViableAlt(input, outerContext, previous, startIndex) + input.Seek(startIndex) + alt := p.getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previous, outerContext) + if alt != ATNInvalidAltNumber { + return alt + } + + panic(e) + } + altSubSets := PredictionModegetConflictingAltSubsets(reach) + if ParserATNSimulatorDebug { + fmt.Println("LL altSubSets=" + fmt.Sprint(altSubSets) + ", predict=" + + strconv.Itoa(PredictionModegetUniqueAlt(altSubSets)) + ", resolvesToJustOneViableAlt=" + + fmt.Sprint(PredictionModeresolvesToJustOneViableAlt(altSubSets))) + } + reach.SetUniqueAlt(p.getUniqueAlt(reach)) + // unique prediction? + if reach.GetUniqueAlt() != ATNInvalidAltNumber { + predictedAlt = reach.GetUniqueAlt() + break + } + if p.predictionMode != PredictionModeLLExactAmbigDetection { + predictedAlt = PredictionModeresolvesToJustOneViableAlt(altSubSets) + if predictedAlt != ATNInvalidAltNumber { + break + } + } else { + // In exact ambiguity mode, we never try to terminate early. + // Just keeps scarfing until we know what the conflict is + if PredictionModeallSubsetsConflict(altSubSets) && PredictionModeallSubsetsEqual(altSubSets) { + foundExactAmbig = true + predictedAlt = PredictionModegetSingleViableAlt(altSubSets) + break + } + // else there are multiple non-conflicting subsets or + // we're not sure what the ambiguity is yet. + // So, keep going. + } + previous = reach + if t != TokenEOF { + input.Consume() + t = input.LA(1) + } + } + // If the configuration set uniquely predicts an alternative, + // without conflict, then we know that it's a full LL decision + // not SLL. + if reach.GetUniqueAlt() != ATNInvalidAltNumber { + p.ReportContextSensitivity(dfa, predictedAlt, reach, startIndex, input.Index()) + return predictedAlt + } + // We do not check predicates here because we have checked them + // on-the-fly when doing full context prediction. + + // + // In non-exact ambiguity detection mode, we might actually be able to + // detect an exact ambiguity, but I'm not going to spend the cycles + // needed to check. We only emit ambiguity warnings in exact ambiguity + // mode. + // + // For example, we might know that we have conflicting configurations. + // But, that does not mean that there is no way forward without a + // conflict. It's possible to have nonconflicting alt subsets as in: + + // altSubSets=[{1, 2}, {1, 2}, {1}, {1, 2}] + + // from + // + // [(17,1,[5 $]), (13,1,[5 10 $]), (21,1,[5 10 $]), (11,1,[$]), + // (13,2,[5 10 $]), (21,2,[5 10 $]), (11,2,[$])] + // + // In p case, (17,1,[5 $]) indicates there is some next sequence that + // would resolve p without conflict to alternative 1. Any other viable + // next sequence, however, is associated with a conflict. We stop + // looking for input because no amount of further lookahead will alter + // the fact that we should predict alternative 1. We just can't say for + // sure that there is an ambiguity without looking further. + + p.ReportAmbiguity(dfa, D, startIndex, input.Index(), foundExactAmbig, reach.Alts(), reach) + + return predictedAlt +} + +func (p *ParserATNSimulator) computeReachSet(closure ATNConfigSet, t int, fullCtx bool) ATNConfigSet { + if ParserATNSimulatorDebug { + fmt.Println("in computeReachSet, starting closure: " + closure.String()) + } + if p.mergeCache == nil { + p.mergeCache = NewDoubleDict() + } + intermediate := NewBaseATNConfigSet(fullCtx) + + // Configurations already in a rule stop state indicate reaching the end + // of the decision rule (local context) or end of the start rule (full + // context). Once reached, these configurations are never updated by a + // closure operation, so they are handled separately for the performance + // advantage of having a smaller intermediate set when calling closure. + // + // For full-context reach operations, separate handling is required to + // ensure that the alternative Matching the longest overall sequence is + // chosen when multiple such configurations can Match the input. + + var skippedStopStates []*BaseATNConfig + + // First figure out where we can reach on input t + for _, c := range closure.GetItems() { + if ParserATNSimulatorDebug { + fmt.Println("testing " + p.GetTokenName(t) + " at " + c.String()) + } + + if _, ok := c.GetState().(*RuleStopState); ok { + if fullCtx || t == TokenEOF { + skippedStopStates = append(skippedStopStates, c.(*BaseATNConfig)) + if ParserATNSimulatorDebug { + fmt.Println("added " + c.String() + " to SkippedStopStates") + } + } + continue + } + + for _, trans := range c.GetState().GetTransitions() { + target := p.getReachableTarget(trans, t) + if target != nil { + cfg := NewBaseATNConfig4(c, target) + intermediate.Add(cfg, p.mergeCache) + if ParserATNSimulatorDebug { + fmt.Println("added " + cfg.String() + " to intermediate") + } + } + } + } + + // Now figure out where the reach operation can take us... + var reach ATNConfigSet + + // This block optimizes the reach operation for intermediate sets which + // trivially indicate a termination state for the overall + // AdaptivePredict operation. + // + // The conditions assume that intermediate + // contains all configurations relevant to the reach set, but p + // condition is not true when one or more configurations have been + // withheld in SkippedStopStates, or when the current symbol is EOF. + // + if skippedStopStates == nil && t != TokenEOF { + if len(intermediate.configs) == 1 { + // Don't pursue the closure if there is just one state. + // It can only have one alternative just add to result + // Also don't pursue the closure if there is unique alternative + // among the configurations. + reach = intermediate + } else if p.getUniqueAlt(intermediate) != ATNInvalidAltNumber { + // Also don't pursue the closure if there is unique alternative + // among the configurations. + reach = intermediate + } + } + // If the reach set could not be trivially determined, perform a closure + // operation on the intermediate set to compute its initial value. + // + if reach == nil { + reach = NewBaseATNConfigSet(fullCtx) + closureBusy := newArray2DHashSet(nil, nil) + treatEOFAsEpsilon := t == TokenEOF + amount := len(intermediate.configs) + for k := 0; k < amount; k++ { + p.closure(intermediate.configs[k], reach, closureBusy, false, fullCtx, treatEOFAsEpsilon) + } + } + if t == TokenEOF { + // After consuming EOF no additional input is possible, so we are + // only interested in configurations which reached the end of the + // decision rule (local context) or end of the start rule (full + // context). Update reach to contain only these configurations. This + // handles both explicit EOF transitions in the grammar and implicit + // EOF transitions following the end of the decision or start rule. + // + // When reach==intermediate, no closure operation was performed. In + // p case, removeAllConfigsNotInRuleStopState needs to check for + // reachable rule stop states as well as configurations already in + // a rule stop state. + // + // This is handled before the configurations in SkippedStopStates, + // because any configurations potentially added from that list are + // already guaranteed to meet p condition whether or not it's + // required. + // + reach = p.removeAllConfigsNotInRuleStopState(reach, reach == intermediate) + } + // If SkippedStopStates!=nil, then it contains at least one + // configuration. For full-context reach operations, these + // configurations reached the end of the start rule, in which case we + // only add them back to reach if no configuration during the current + // closure operation reached such a state. This ensures AdaptivePredict + // chooses an alternative Matching the longest overall sequence when + // multiple alternatives are viable. + // + if skippedStopStates != nil && ((!fullCtx) || (!PredictionModehasConfigInRuleStopState(reach))) { + for l := 0; l < len(skippedStopStates); l++ { + reach.Add(skippedStopStates[l], p.mergeCache) + } + } + if len(reach.GetItems()) == 0 { + return nil + } + + return reach +} + +// +// Return a configuration set containing only the configurations from +// {@code configs} which are in a {@link RuleStopState}. If all +// configurations in {@code configs} are already in a rule stop state, p +// method simply returns {@code configs}. +// +//
When {@code lookToEndOfRule} is true, p method uses +// {@link ATN//NextTokens} for each configuration in {@code configs} which is +// not already in a rule stop state to see if a rule stop state is reachable +// from the configuration via epsilon-only transitions.
+// +// @param configs the configuration set to update +// @param lookToEndOfRule when true, p method checks for rule stop states +// reachable by epsilon-only transitions from each configuration in +// {@code configs}. +// +// @return {@code configs} if all configurations in {@code configs} are in a +// rule stop state, otherwise return a Newconfiguration set containing only +// the configurations from {@code configs} which are in a rule stop state +// +func (p *ParserATNSimulator) removeAllConfigsNotInRuleStopState(configs ATNConfigSet, lookToEndOfRule bool) ATNConfigSet { + if PredictionModeallConfigsInRuleStopStates(configs) { + return configs + } + result := NewBaseATNConfigSet(configs.FullContext()) + for _, config := range configs.GetItems() { + if _, ok := config.GetState().(*RuleStopState); ok { + result.Add(config, p.mergeCache) + continue + } + if lookToEndOfRule && config.GetState().GetEpsilonOnlyTransitions() { + NextTokens := p.atn.NextTokens(config.GetState(), nil) + if NextTokens.contains(TokenEpsilon) { + endOfRuleState := p.atn.ruleToStopState[config.GetState().GetRuleIndex()] + result.Add(NewBaseATNConfig4(config, endOfRuleState), p.mergeCache) + } + } + } + return result +} + +func (p *ParserATNSimulator) computeStartState(a ATNState, ctx RuleContext, fullCtx bool) ATNConfigSet { + // always at least the implicit call to start rule + initialContext := predictionContextFromRuleContext(p.atn, ctx) + configs := NewBaseATNConfigSet(fullCtx) + for i := 0; i < len(a.GetTransitions()); i++ { + target := a.GetTransitions()[i].getTarget() + c := NewBaseATNConfig6(target, i+1, initialContext) + closureBusy := newArray2DHashSet(nil, nil) + p.closure(c, configs, closureBusy, true, fullCtx, false) + } + return configs +} + +// +// This method transforms the start state computed by +// {@link //computeStartState} to the special start state used by a +// precedence DFA for a particular precedence value. The transformation +// process applies the following changes to the start state's configuration +// set. +// +//+// The prediction context must be considered by p filter to address +// situations like the following. +//
+//
+//
+// grammar TA
+// prog: statement* EOF
+// statement: letterA | statement letterA 'b'
+// letterA: 'a'
+//
+//
+// +// If the above grammar, the ATN state immediately before the token +// reference {@code 'a'} in {@code letterA} is reachable from the left edge +// of both the primary and closure blocks of the left-recursive rule +// {@code statement}. The prediction context associated with each of these +// configurations distinguishes between them, and prevents the alternative +// which stepped out to {@code prog} (and then back in to {@code statement} +// from being eliminated by the filter. +//
+// +// @param configs The configuration set computed by +// {@link //computeStartState} as the start state for the DFA. +// @return The transformed configuration set representing the start state +// for a precedence DFA at a particular precedence level (determined by +// calling {@link Parser//getPrecedence}). +// +func (p *ParserATNSimulator) applyPrecedenceFilter(configs ATNConfigSet) ATNConfigSet { + + statesFromAlt1 := make(map[int]PredictionContext) + configSet := NewBaseATNConfigSet(configs.FullContext()) + + for _, config := range configs.GetItems() { + // handle alt 1 first + if config.GetAlt() != 1 { + continue + } + updatedContext := config.GetSemanticContext().evalPrecedence(p.parser, p.outerContext) + if updatedContext == nil { + // the configuration was eliminated + continue + } + statesFromAlt1[config.GetState().GetStateNumber()] = config.GetContext() + if updatedContext != config.GetSemanticContext() { + configSet.Add(NewBaseATNConfig2(config, updatedContext), p.mergeCache) + } else { + configSet.Add(config, p.mergeCache) + } + } + for _, config := range configs.GetItems() { + + if config.GetAlt() == 1 { + // already handled + continue + } + // In the future, p elimination step could be updated to also + // filter the prediction context for alternatives predicting alt>1 + // (basically a graph subtraction algorithm). + if !config.getPrecedenceFilterSuppressed() { + context := statesFromAlt1[config.GetState().GetStateNumber()] + if context != nil && context.equals(config.GetContext()) { + // eliminated + continue + } + } + configSet.Add(config, p.mergeCache) + } + return configSet +} + +func (p *ParserATNSimulator) getReachableTarget(trans Transition, ttype int) ATNState { + if trans.Matches(ttype, 0, p.atn.maxTokenType) { + return trans.getTarget() + } + + return nil +} + +func (p *ParserATNSimulator) getPredsForAmbigAlts(ambigAlts *BitSet, configs ATNConfigSet, nalts int) []SemanticContext { + + altToPred := make([]SemanticContext, nalts+1) + for _, c := range configs.GetItems() { + if ambigAlts.contains(c.GetAlt()) { + altToPred[c.GetAlt()] = SemanticContextorContext(altToPred[c.GetAlt()], c.GetSemanticContext()) + } + } + nPredAlts := 0 + for i := 1; i <= nalts; i++ { + pred := altToPred[i] + if pred == nil { + altToPred[i] = SemanticContextNone + } else if pred != SemanticContextNone { + nPredAlts++ + } + } + // nonambig alts are nil in altToPred + if nPredAlts == 0 { + altToPred = nil + } + if ParserATNSimulatorDebug { + fmt.Println("getPredsForAmbigAlts result " + fmt.Sprint(altToPred)) + } + return altToPred +} + +func (p *ParserATNSimulator) getPredicatePredictions(ambigAlts *BitSet, altToPred []SemanticContext) []*PredPrediction { + pairs := make([]*PredPrediction, 0) + containsPredicate := false + for i := 1; i < len(altToPred); i++ { + pred := altToPred[i] + // unpredicated is indicated by SemanticContextNONE + if ambigAlts != nil && ambigAlts.contains(i) { + pairs = append(pairs, NewPredPrediction(pred, i)) + } + if pred != SemanticContextNone { + containsPredicate = true + } + } + if !containsPredicate { + return nil + } + return pairs +} + +// +// This method is used to improve the localization of error messages by +// choosing an alternative rather than panicing a +// {@link NoViableAltException} in particular prediction scenarios where the +// {@link //ERROR} state was reached during ATN simulation. +// +//+// The default implementation of p method uses the following +// algorithm to identify an ATN configuration which successfully parsed the +// decision entry rule. Choosing such an alternative ensures that the +// {@link ParserRuleContext} returned by the calling rule will be complete +// and valid, and the syntax error will be Reported later at a more +// localized location.
+// +//+// In some scenarios, the algorithm described above could predict an +// alternative which will result in a {@link FailedPredicateException} in +// the parser. Specifically, p could occur if the only configuration +// capable of successfully parsing to the end of the decision rule is +// blocked by a semantic predicate. By choosing p alternative within +// {@link //AdaptivePredict} instead of panicing a +// {@link NoViableAltException}, the resulting +// {@link FailedPredicateException} in the parser will identify the specific +// predicate which is preventing the parser from successfully parsing the +// decision rule, which helps developers identify and correct logic errors +// in semantic predicates. +//
+// +// @param configs The ATN configurations which were valid immediately before +// the {@link //ERROR} state was reached +// @param outerContext The is the \gamma_0 initial parser context from the paper +// or the parser stack at the instant before prediction commences. +// +// @return The value to return from {@link //AdaptivePredict}, or +// {@link ATN//INVALID_ALT_NUMBER} if a suitable alternative was not +// identified and {@link //AdaptivePredict} should Report an error instead. +// +func (p *ParserATNSimulator) getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(configs ATNConfigSet, outerContext ParserRuleContext) int { + cfgs := p.splitAccordingToSemanticValidity(configs, outerContext) + semValidConfigs := cfgs[0] + semInvalidConfigs := cfgs[1] + alt := p.GetAltThatFinishedDecisionEntryRule(semValidConfigs) + if alt != ATNInvalidAltNumber { // semantically/syntactically viable path exists + return alt + } + // Is there a syntactically valid path with a failed pred? + if len(semInvalidConfigs.GetItems()) > 0 { + alt = p.GetAltThatFinishedDecisionEntryRule(semInvalidConfigs) + if alt != ATNInvalidAltNumber { // syntactically viable path exists + return alt + } + } + return ATNInvalidAltNumber +} + +func (p *ParserATNSimulator) GetAltThatFinishedDecisionEntryRule(configs ATNConfigSet) int { + alts := NewIntervalSet() + + for _, c := range configs.GetItems() { + _, ok := c.GetState().(*RuleStopState) + + if c.GetReachesIntoOuterContext() > 0 || (ok && c.GetContext().hasEmptyPath()) { + alts.addOne(c.GetAlt()) + } + } + if alts.length() == 0 { + return ATNInvalidAltNumber + } + + return alts.first() +} + +// Walk the list of configurations and split them according to +// those that have preds evaluating to true/false. If no pred, assume +// true pred and include in succeeded set. Returns Pair of sets. +// +// Create a NewSet so as not to alter the incoming parameter. +// +// Assumption: the input stream has been restored to the starting point +// prediction, which is where predicates need to evaluate. + +type ATNConfigSetPair struct { + item0, item1 ATNConfigSet +} + +func (p *ParserATNSimulator) splitAccordingToSemanticValidity(configs ATNConfigSet, outerContext ParserRuleContext) []ATNConfigSet { + succeeded := NewBaseATNConfigSet(configs.FullContext()) + failed := NewBaseATNConfigSet(configs.FullContext()) + + for _, c := range configs.GetItems() { + if c.GetSemanticContext() != SemanticContextNone { + predicateEvaluationResult := c.GetSemanticContext().evaluate(p.parser, outerContext) + if predicateEvaluationResult { + succeeded.Add(c, nil) + } else { + failed.Add(c, nil) + } + } else { + succeeded.Add(c, nil) + } + } + return []ATNConfigSet{succeeded, failed} +} + +// Look through a list of predicate/alt pairs, returning alts for the +// pairs that win. A {@code NONE} predicate indicates an alt containing an +// unpredicated config which behaves as "always true." If !complete +// then we stop at the first predicate that evaluates to true. This +// includes pairs with nil predicates. +// +func (p *ParserATNSimulator) evalSemanticContext(predPredictions []*PredPrediction, outerContext ParserRuleContext, complete bool) *BitSet { + predictions := NewBitSet() + for i := 0; i < len(predPredictions); i++ { + pair := predPredictions[i] + if pair.pred == SemanticContextNone { + predictions.add(pair.alt) + if !complete { + break + } + continue + } + + predicateEvaluationResult := pair.pred.evaluate(p.parser, outerContext) + if ParserATNSimulatorDebug || ParserATNSimulatorDFADebug { + fmt.Println("eval pred " + pair.String() + "=" + fmt.Sprint(predicateEvaluationResult)) + } + if predicateEvaluationResult { + if ParserATNSimulatorDebug || ParserATNSimulatorDFADebug { + fmt.Println("PREDICT " + fmt.Sprint(pair.alt)) + } + predictions.add(pair.alt) + if !complete { + break + } + } + } + return predictions +} + +func (p *ParserATNSimulator) closure(config ATNConfig, configs ATNConfigSet, closureBusy Set, collectPredicates, fullCtx, treatEOFAsEpsilon bool) { + initialDepth := 0 + p.closureCheckingStopState(config, configs, closureBusy, collectPredicates, + fullCtx, initialDepth, treatEOFAsEpsilon) +} + +func (p *ParserATNSimulator) closureCheckingStopState(config ATNConfig, configs ATNConfigSet, closureBusy Set, collectPredicates, fullCtx bool, depth int, treatEOFAsEpsilon bool) { + if ParserATNSimulatorDebug { + fmt.Println("closure(" + config.String() + ")") + fmt.Println("configs(" + configs.String() + ")") + if config.GetReachesIntoOuterContext() > 50 { + panic("problem") + } + } + + if _, ok := config.GetState().(*RuleStopState); ok { + // We hit rule end. If we have context info, use it + // run thru all possible stack tops in ctx + if !config.GetContext().isEmpty() { + for i := 0; i < config.GetContext().length(); i++ { + if config.GetContext().getReturnState(i) == BasePredictionContextEmptyReturnState { + if fullCtx { + configs.Add(NewBaseATNConfig1(config, config.GetState(), BasePredictionContextEMPTY), p.mergeCache) + continue + } else { + // we have no context info, just chase follow links (if greedy) + if ParserATNSimulatorDebug { + fmt.Println("FALLING off rule " + p.getRuleName(config.GetState().GetRuleIndex())) + } + p.closureWork(config, configs, closureBusy, collectPredicates, fullCtx, depth, treatEOFAsEpsilon) + } + continue + } + returnState := p.atn.states[config.GetContext().getReturnState(i)] + newContext := config.GetContext().GetParent(i) // "pop" return state + + c := NewBaseATNConfig5(returnState, config.GetAlt(), newContext, config.GetSemanticContext()) + // While we have context to pop back from, we may have + // gotten that context AFTER having falling off a rule. + // Make sure we track that we are now out of context. + c.SetReachesIntoOuterContext(config.GetReachesIntoOuterContext()) + p.closureCheckingStopState(c, configs, closureBusy, collectPredicates, fullCtx, depth-1, treatEOFAsEpsilon) + } + return + } else if fullCtx { + // reached end of start rule + configs.Add(config, p.mergeCache) + return + } else { + // else if we have no context info, just chase follow links (if greedy) + if ParserATNSimulatorDebug { + fmt.Println("FALLING off rule " + p.getRuleName(config.GetState().GetRuleIndex())) + } + } + } + p.closureWork(config, configs, closureBusy, collectPredicates, fullCtx, depth, treatEOFAsEpsilon) +} + +// Do the actual work of walking epsilon edges// +func (p *ParserATNSimulator) closureWork(config ATNConfig, configs ATNConfigSet, closureBusy Set, collectPredicates, fullCtx bool, depth int, treatEOFAsEpsilon bool) { + state := config.GetState() + // optimization + if !state.GetEpsilonOnlyTransitions() { + configs.Add(config, p.mergeCache) + // make sure to not return here, because EOF transitions can act as + // both epsilon transitions and non-epsilon transitions. + } + for i := 0; i < len(state.GetTransitions()); i++ { + if i == 0 && p.canDropLoopEntryEdgeInLeftRecursiveRule(config) { + continue + } + + t := state.GetTransitions()[i] + _, ok := t.(*ActionTransition) + continueCollecting := collectPredicates && !ok + c := p.getEpsilonTarget(config, t, continueCollecting, depth == 0, fullCtx, treatEOFAsEpsilon) + if ci, ok := c.(*BaseATNConfig); ok && ci != nil { + newDepth := depth + + if _, ok := config.GetState().(*RuleStopState); ok { + // target fell off end of rule mark resulting c as having dipped into outer context + // We can't get here if incoming config was rule stop and we had context + // track how far we dip into outer context. Might + // come in handy and we avoid evaluating context dependent + // preds if p is > 0. + + if p.dfa != nil && p.dfa.getPrecedenceDfa() { + if t.(*EpsilonTransition).outermostPrecedenceReturn == p.dfa.atnStartState.GetRuleIndex() { + c.setPrecedenceFilterSuppressed(true) + } + } + + c.SetReachesIntoOuterContext(c.GetReachesIntoOuterContext() + 1) + + if closureBusy.Add(c) != c { + // avoid infinite recursion for right-recursive rules + continue + } + + configs.SetDipsIntoOuterContext(true) // TODO: can remove? only care when we add to set per middle of p method + newDepth-- + if ParserATNSimulatorDebug { + fmt.Println("dips into outer ctx: " + c.String()) + } + } else { + if !t.getIsEpsilon() && closureBusy.Add(c) != c { + // avoid infinite recursion for EOF* and EOF+ + continue + } + if _, ok := t.(*RuleTransition); ok { + // latch when newDepth goes negative - once we step out of the entry context we can't return + if newDepth >= 0 { + newDepth++ + } + } + } + p.closureCheckingStopState(c, configs, closureBusy, continueCollecting, fullCtx, newDepth, treatEOFAsEpsilon) + } + } +} + +func (p *ParserATNSimulator) canDropLoopEntryEdgeInLeftRecursiveRule(config ATNConfig) bool { + if TurnOffLRLoopEntryBranchOpt { + return false + } + + _p := config.GetState() + + // First check to see if we are in StarLoopEntryState generated during + // left-recursion elimination. For efficiency, also check if + // the context has an empty stack case. If so, it would mean + // global FOLLOW so we can't perform optimization + if startLoop, ok := _p.(StarLoopEntryState); !ok || !startLoop.precedenceRuleDecision || config.GetContext().isEmpty() || config.GetContext().hasEmptyPath() { + return false + } + + // Require all return states to return back to the same rule + // that p is in. + numCtxs := config.GetContext().length() + for i := 0; i < numCtxs; i++ { + returnState := p.atn.states[config.GetContext().getReturnState(i)] + if returnState.GetRuleIndex() != _p.GetRuleIndex() { + return false + } + } + + decisionStartState := _p.(BlockStartState).GetTransitions()[0].getTarget().(BlockStartState) + blockEndStateNum := decisionStartState.getEndState().stateNumber + blockEndState := p.atn.states[blockEndStateNum].(*BlockEndState) + + // Verify that the top of each stack context leads to loop entry/exit + // state through epsilon edges and w/o leaving rule. + + for i := 0; i < numCtxs; i++ { // for each stack context + returnStateNumber := config.GetContext().getReturnState(i) + returnState := p.atn.states[returnStateNumber] + + // all states must have single outgoing epsilon edge + if len(returnState.GetTransitions()) != 1 || !returnState.GetTransitions()[0].getIsEpsilon() { + return false + } + + // Look for prefix op case like 'not expr', (' type ')' expr + returnStateTarget := returnState.GetTransitions()[0].getTarget() + if returnState.GetStateType() == ATNStateBlockEnd && returnStateTarget == _p { + continue + } + + // Look for 'expr op expr' or case where expr's return state is block end + // of (...)* internal block; the block end points to loop back + // which points to p but we don't need to check that + if returnState == blockEndState { + continue + } + + // Look for ternary expr ? expr : expr. The return state points at block end, + // which points at loop entry state + if returnStateTarget == blockEndState { + continue + } + + // Look for complex prefix 'between expr and expr' case where 2nd expr's + // return state points at block end state of (...)* internal block + if returnStateTarget.GetStateType() == ATNStateBlockEnd && + len(returnStateTarget.GetTransitions()) == 1 && + returnStateTarget.GetTransitions()[0].getIsEpsilon() && + returnStateTarget.GetTransitions()[0].getTarget() == _p { + continue + } + + // anything else ain't conforming + return false + } + + return true +} + +func (p *ParserATNSimulator) getRuleName(index int) string { + if p.parser != nil && index >= 0 { + return p.parser.GetRuleNames()[index] + } + var sb strings.Builder + sb.Grow(32) + + sb.WriteString("If {@code to} is {@code nil}, p method returns {@code nil}. +// Otherwise, p method returns the {@link DFAState} returned by calling +// {@link //addDFAState} for the {@code to} state.
+// +// @param dfa The DFA +// @param from The source state for the edge +// @param t The input symbol +// @param to The target state for the edge +// +// @return If {@code to} is {@code nil}, p method returns {@code nil} +// otherwise p method returns the result of calling {@link //addDFAState} +// on {@code to} +// +func (p *ParserATNSimulator) addDFAEdge(dfa *DFA, from *DFAState, t int, to *DFAState) *DFAState { + if ParserATNSimulatorDebug { + fmt.Println("EDGE " + from.String() + " -> " + to.String() + " upon " + p.GetTokenName(t)) + } + if to == nil { + return nil + } + p.atn.stateMu.Lock() + to = p.addDFAState(dfa, to) // used existing if possible not incoming + p.atn.stateMu.Unlock() + if from == nil || t < -1 || t > p.atn.maxTokenType { + return to + } + p.atn.edgeMu.Lock() + if from.getEdges() == nil { + from.setEdges(make([]*DFAState, p.atn.maxTokenType+1+1)) + } + from.setIthEdge(t+1, to) // connect + p.atn.edgeMu.Unlock() + + if ParserATNSimulatorDebug { + var names []string + if p.parser != nil { + names = p.parser.GetLiteralNames() + } + + fmt.Println("DFA=\n" + dfa.String(names, nil)) + } + return to +} + +// +// Add state {@code D} to the DFA if it is not already present, and return +// the actual instance stored in the DFA. If a state equivalent to {@code D} +// is already in the DFA, the existing state is returned. Otherwise p +// method returns {@code D} after adding it to the DFA. +// +//If {@code D} is {@link //ERROR}, p method returns {@link //ERROR} and +// does not change the DFA.
+// +// @param dfa The dfa +// @param D The DFA state to add +// @return The state stored in the DFA. This will be either the existing +// state if {@code D} is already in the DFA, or {@code D} itself if the +// state was not already present. +// +func (p *ParserATNSimulator) addDFAState(dfa *DFA, d *DFAState) *DFAState { + if d == ATNSimulatorError { + return d + } + hash := d.hash() + existing, ok := dfa.getState(hash) + if ok { + return existing + } + d.stateNumber = dfa.numStates() + if !d.configs.ReadOnly() { + d.configs.OptimizeConfigs(p.BaseATNSimulator) + d.configs.SetReadOnly(true) + } + dfa.setState(hash, d) + if ParserATNSimulatorDebug { + fmt.Println("adding NewDFA state: " + d.String()) + } + return d +} + +func (p *ParserATNSimulator) ReportAttemptingFullContext(dfa *DFA, conflictingAlts *BitSet, configs ATNConfigSet, startIndex, stopIndex int) { + if ParserATNSimulatorDebug || ParserATNSimulatorRetryDebug { + interval := NewInterval(startIndex, stopIndex+1) + fmt.Println("ReportAttemptingFullContext decision=" + strconv.Itoa(dfa.decision) + ":" + configs.String() + + ", input=" + p.parser.GetTokenStream().GetTextFromInterval(interval)) + } + if p.parser != nil { + p.parser.GetErrorListenerDispatch().ReportAttemptingFullContext(p.parser, dfa, startIndex, stopIndex, conflictingAlts, configs) + } +} + +func (p *ParserATNSimulator) ReportContextSensitivity(dfa *DFA, prediction int, configs ATNConfigSet, startIndex, stopIndex int) { + if ParserATNSimulatorDebug || ParserATNSimulatorRetryDebug { + interval := NewInterval(startIndex, stopIndex+1) + fmt.Println("ReportContextSensitivity decision=" + strconv.Itoa(dfa.decision) + ":" + configs.String() + + ", input=" + p.parser.GetTokenStream().GetTextFromInterval(interval)) + } + if p.parser != nil { + p.parser.GetErrorListenerDispatch().ReportContextSensitivity(p.parser, dfa, startIndex, stopIndex, prediction, configs) + } +} + +// If context sensitive parsing, we know it's ambiguity not conflict// +func (p *ParserATNSimulator) ReportAmbiguity(dfa *DFA, D *DFAState, startIndex, stopIndex int, + exact bool, ambigAlts *BitSet, configs ATNConfigSet) { + if ParserATNSimulatorDebug || ParserATNSimulatorRetryDebug { + interval := NewInterval(startIndex, stopIndex+1) + fmt.Println("ReportAmbiguity " + ambigAlts.String() + ":" + configs.String() + + ", input=" + p.parser.GetTokenStream().GetTextFromInterval(interval)) + } + if p.parser != nil { + p.parser.GetErrorListenerDispatch().ReportAmbiguity(p.parser, dfa, startIndex, stopIndex, exact, ambigAlts, configs) + } +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/parser_rule_context.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/parser_rule_context.go new file mode 100644 index 000000000..49cd10c5f --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/parser_rule_context.go @@ -0,0 +1,362 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "reflect" + "strconv" +) + +type ParserRuleContext interface { + RuleContext + + SetException(RecognitionException) + + AddTokenNode(token Token) *TerminalNodeImpl + AddErrorNode(badToken Token) *ErrorNodeImpl + + EnterRule(listener ParseTreeListener) + ExitRule(listener ParseTreeListener) + + SetStart(Token) + GetStart() Token + + SetStop(Token) + GetStop() Token + + AddChild(child RuleContext) RuleContext + RemoveLastChild() +} + +type BaseParserRuleContext struct { + *BaseRuleContext + + start, stop Token + exception RecognitionException + children []Tree +} + +func NewBaseParserRuleContext(parent ParserRuleContext, invokingStateNumber int) *BaseParserRuleContext { + prc := new(BaseParserRuleContext) + + prc.BaseRuleContext = NewBaseRuleContext(parent, invokingStateNumber) + + prc.RuleIndex = -1 + // * If we are debugging or building a parse tree for a Visitor, + // we need to track all of the tokens and rule invocations associated + // with prc rule's context. This is empty for parsing w/o tree constr. + // operation because we don't the need to track the details about + // how we parse prc rule. + // / + prc.children = nil + prc.start = nil + prc.stop = nil + // The exception that forced prc rule to return. If the rule successfully + // completed, prc is {@code nil}. + prc.exception = nil + + return prc +} + +func (prc *BaseParserRuleContext) SetException(e RecognitionException) { + prc.exception = e +} + +func (prc *BaseParserRuleContext) GetChildren() []Tree { + return prc.children +} + +func (prc *BaseParserRuleContext) CopyFrom(ctx *BaseParserRuleContext) { + // from RuleContext + prc.parentCtx = ctx.parentCtx + prc.invokingState = ctx.invokingState + prc.children = nil + prc.start = ctx.start + prc.stop = ctx.stop +} + +func (prc *BaseParserRuleContext) GetText() string { + if prc.GetChildCount() == 0 { + return "" + } + + var s string + for _, child := range prc.children { + s += child.(ParseTree).GetText() + } + + return s +} + +// Double dispatch methods for listeners +func (prc *BaseParserRuleContext) EnterRule(listener ParseTreeListener) { +} + +func (prc *BaseParserRuleContext) ExitRule(listener ParseTreeListener) { +} + +// * Does not set parent link other add methods do that/// +func (prc *BaseParserRuleContext) addTerminalNodeChild(child TerminalNode) TerminalNode { + if prc.children == nil { + prc.children = make([]Tree, 0) + } + if child == nil { + panic("Child may not be null") + } + prc.children = append(prc.children, child) + return child +} + +func (prc *BaseParserRuleContext) AddChild(child RuleContext) RuleContext { + if prc.children == nil { + prc.children = make([]Tree, 0) + } + if child == nil { + panic("Child may not be null") + } + prc.children = append(prc.children, child) + return child +} + +// * Used by EnterOuterAlt to toss out a RuleContext previously added as +// we entered a rule. If we have // label, we will need to remove +// generic ruleContext object. +// / +func (prc *BaseParserRuleContext) RemoveLastChild() { + if prc.children != nil && len(prc.children) > 0 { + prc.children = prc.children[0 : len(prc.children)-1] + } +} + +func (prc *BaseParserRuleContext) AddTokenNode(token Token) *TerminalNodeImpl { + + node := NewTerminalNodeImpl(token) + prc.addTerminalNodeChild(node) + node.parentCtx = prc + return node + +} + +func (prc *BaseParserRuleContext) AddErrorNode(badToken Token) *ErrorNodeImpl { + node := NewErrorNodeImpl(badToken) + prc.addTerminalNodeChild(node) + node.parentCtx = prc + return node +} + +func (prc *BaseParserRuleContext) GetChild(i int) Tree { + if prc.children != nil && len(prc.children) >= i { + return prc.children[i] + } + + return nil +} + +func (prc *BaseParserRuleContext) GetChildOfType(i int, childType reflect.Type) RuleContext { + if childType == nil { + return prc.GetChild(i).(RuleContext) + } + + for j := 0; j < len(prc.children); j++ { + child := prc.children[j] + if reflect.TypeOf(child) == childType { + if i == 0 { + return child.(RuleContext) + } + + i-- + } + } + + return nil +} + +func (prc *BaseParserRuleContext) ToStringTree(ruleNames []string, recog Recognizer) string { + return TreesStringTree(prc, ruleNames, recog) +} + +func (prc *BaseParserRuleContext) GetRuleContext() RuleContext { + return prc +} + +func (prc *BaseParserRuleContext) Accept(visitor ParseTreeVisitor) interface{} { + return visitor.VisitChildren(prc) +} + +func (prc *BaseParserRuleContext) SetStart(t Token) { + prc.start = t +} + +func (prc *BaseParserRuleContext) GetStart() Token { + return prc.start +} + +func (prc *BaseParserRuleContext) SetStop(t Token) { + prc.stop = t +} + +func (prc *BaseParserRuleContext) GetStop() Token { + return prc.stop +} + +func (prc *BaseParserRuleContext) GetToken(ttype int, i int) TerminalNode { + + for j := 0; j < len(prc.children); j++ { + child := prc.children[j] + if c2, ok := child.(TerminalNode); ok { + if c2.GetSymbol().GetTokenType() == ttype { + if i == 0 { + return c2 + } + + i-- + } + } + } + return nil +} + +func (prc *BaseParserRuleContext) GetTokens(ttype int) []TerminalNode { + if prc.children == nil { + return make([]TerminalNode, 0) + } + + tokens := make([]TerminalNode, 0) + + for j := 0; j < len(prc.children); j++ { + child := prc.children[j] + if tchild, ok := child.(TerminalNode); ok { + if tchild.GetSymbol().GetTokenType() == ttype { + tokens = append(tokens, tchild) + } + } + } + + return tokens +} + +func (prc *BaseParserRuleContext) GetPayload() interface{} { + return prc +} + +func (prc *BaseParserRuleContext) getChild(ctxType reflect.Type, i int) RuleContext { + if prc.children == nil || i < 0 || i >= len(prc.children) { + return nil + } + + j := -1 // what element have we found with ctxType? + for _, o := range prc.children { + + childType := reflect.TypeOf(o) + + if childType.Implements(ctxType) { + j++ + if j == i { + return o.(RuleContext) + } + } + } + return nil +} + +// Go lacks generics, so it's not possible for us to return the child with the correct type, but we do +// check for convertibility + +func (prc *BaseParserRuleContext) GetTypedRuleContext(ctxType reflect.Type, i int) RuleContext { + return prc.getChild(ctxType, i) +} + +func (prc *BaseParserRuleContext) GetTypedRuleContexts(ctxType reflect.Type) []RuleContext { + if prc.children == nil { + return make([]RuleContext, 0) + } + + contexts := make([]RuleContext, 0) + + for _, child := range prc.children { + childType := reflect.TypeOf(child) + + if childType.ConvertibleTo(ctxType) { + contexts = append(contexts, child.(RuleContext)) + } + } + return contexts +} + +func (prc *BaseParserRuleContext) GetChildCount() int { + if prc.children == nil { + return 0 + } + + return len(prc.children) +} + +func (prc *BaseParserRuleContext) GetSourceInterval() *Interval { + if prc.start == nil || prc.stop == nil { + return TreeInvalidInterval + } + + return NewInterval(prc.start.GetTokenIndex(), prc.stop.GetTokenIndex()) +} + +//need to manage circular dependencies, so export now + +// Print out a whole tree, not just a node, in LISP format +// (root child1 .. childN). Print just a node if b is a leaf. +// + +func (prc *BaseParserRuleContext) String(ruleNames []string, stop RuleContext) string { + + var p ParserRuleContext = prc + s := "[" + for p != nil && p != stop { + if ruleNames == nil { + if !p.IsEmpty() { + s += strconv.Itoa(p.GetInvokingState()) + } + } else { + ri := p.GetRuleIndex() + var ruleName string + if ri >= 0 && ri < len(ruleNames) { + ruleName = ruleNames[ri] + } else { + ruleName = strconv.Itoa(ri) + } + s += ruleName + } + if p.GetParent() != nil && (ruleNames != nil || !p.GetParent().(ParserRuleContext).IsEmpty()) { + s += " " + } + pi := p.GetParent() + if pi != nil { + p = pi.(ParserRuleContext) + } else { + p = nil + } + } + s += "]" + return s +} + +var RuleContextEmpty = NewBaseParserRuleContext(nil, -1) + +type InterpreterRuleContext interface { + ParserRuleContext +} + +type BaseInterpreterRuleContext struct { + *BaseParserRuleContext +} + +func NewBaseInterpreterRuleContext(parent BaseInterpreterRuleContext, invokingStateNumber, ruleIndex int) *BaseInterpreterRuleContext { + + prc := new(BaseInterpreterRuleContext) + + prc.BaseParserRuleContext = NewBaseParserRuleContext(parent, invokingStateNumber) + + prc.RuleIndex = ruleIndex + + return prc +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/prediction_context.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/prediction_context.go new file mode 100644 index 000000000..9fdfd52b2 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/prediction_context.go @@ -0,0 +1,751 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "strconv" +) + +// Represents {@code $} in local context prediction, which means wildcard. +// {@code//+x =//}. +// / +const ( + BasePredictionContextEmptyReturnState = 0x7FFFFFFF +) + +// Represents {@code $} in an array in full context mode, when {@code $} +// doesn't mean wildcard: {@code $ + x = [$,x]}. Here, +// {@code $} = {@link //EmptyReturnState}. +// / + +var ( + BasePredictionContextglobalNodeCount = 1 + BasePredictionContextid = BasePredictionContextglobalNodeCount +) + +type PredictionContext interface { + hash() int + GetParent(int) PredictionContext + getReturnState(int) int + equals(PredictionContext) bool + length() int + isEmpty() bool + hasEmptyPath() bool + String() string +} + +type BasePredictionContext struct { + cachedHash int +} + +func NewBasePredictionContext(cachedHash int) *BasePredictionContext { + pc := new(BasePredictionContext) + pc.cachedHash = cachedHash + + return pc +} + +func (b *BasePredictionContext) isEmpty() bool { + return false +} + +func calculateHash(parent PredictionContext, returnState int) int { + h := murmurInit(1) + h = murmurUpdate(h, parent.hash()) + h = murmurUpdate(h, returnState) + return murmurFinish(h, 2) +} + +var _emptyPredictionContextHash int + +func init() { + _emptyPredictionContextHash = murmurInit(1) + _emptyPredictionContextHash = murmurFinish(_emptyPredictionContextHash, 0) +} + +func calculateEmptyHash() int { + return _emptyPredictionContextHash +} + +// Used to cache {@link BasePredictionContext} objects. Its used for the shared +// context cash associated with contexts in DFA states. This cache +// can be used for both lexers and parsers. + +type PredictionContextCache struct { + cache map[PredictionContext]PredictionContext +} + +func NewPredictionContextCache() *PredictionContextCache { + t := new(PredictionContextCache) + t.cache = make(map[PredictionContext]PredictionContext) + return t +} + +// Add a context to the cache and return it. If the context already exists, +// return that one instead and do not add a Newcontext to the cache. +// Protect shared cache from unsafe thread access. +// +func (p *PredictionContextCache) add(ctx PredictionContext) PredictionContext { + if ctx == BasePredictionContextEMPTY { + return BasePredictionContextEMPTY + } + existing := p.cache[ctx] + if existing != nil { + return existing + } + p.cache[ctx] = ctx + return ctx +} + +func (p *PredictionContextCache) Get(ctx PredictionContext) PredictionContext { + return p.cache[ctx] +} + +func (p *PredictionContextCache) length() int { + return len(p.cache) +} + +type SingletonPredictionContext interface { + PredictionContext +} + +type BaseSingletonPredictionContext struct { + *BasePredictionContext + + parentCtx PredictionContext + returnState int +} + +func NewBaseSingletonPredictionContext(parent PredictionContext, returnState int) *BaseSingletonPredictionContext { + var cachedHash int + if parent != nil { + cachedHash = calculateHash(parent, returnState) + } else { + cachedHash = calculateEmptyHash() + } + + s := new(BaseSingletonPredictionContext) + s.BasePredictionContext = NewBasePredictionContext(cachedHash) + + s.parentCtx = parent + s.returnState = returnState + + return s +} + +func SingletonBasePredictionContextCreate(parent PredictionContext, returnState int) PredictionContext { + if returnState == BasePredictionContextEmptyReturnState && parent == nil { + // someone can pass in the bits of an array ctx that mean $ + return BasePredictionContextEMPTY + } + + return NewBaseSingletonPredictionContext(parent, returnState) +} + +func (b *BaseSingletonPredictionContext) length() int { + return 1 +} + +func (b *BaseSingletonPredictionContext) GetParent(index int) PredictionContext { + return b.parentCtx +} + +func (b *BaseSingletonPredictionContext) getReturnState(index int) int { + return b.returnState +} + +func (b *BaseSingletonPredictionContext) hasEmptyPath() bool { + return b.returnState == BasePredictionContextEmptyReturnState +} + +func (b *BaseSingletonPredictionContext) equals(other PredictionContext) bool { + if b == other { + return true + } else if _, ok := other.(*BaseSingletonPredictionContext); !ok { + return false + } else if b.hash() != other.hash() { + return false // can't be same if hash is different + } + + otherP := other.(*BaseSingletonPredictionContext) + + if b.returnState != other.getReturnState(0) { + return false + } else if b.parentCtx == nil { + return otherP.parentCtx == nil + } + + return b.parentCtx.equals(otherP.parentCtx) +} + +func (b *BaseSingletonPredictionContext) hash() int { + return b.cachedHash +} + +func (b *BaseSingletonPredictionContext) String() string { + var up string + + if b.parentCtx == nil { + up = "" + } else { + up = b.parentCtx.String() + } + + if len(up) == 0 { + if b.returnState == BasePredictionContextEmptyReturnState { + return "$" + } + + return strconv.Itoa(b.returnState) + } + + return strconv.Itoa(b.returnState) + " " + up +} + +var BasePredictionContextEMPTY = NewEmptyPredictionContext() + +type EmptyPredictionContext struct { + *BaseSingletonPredictionContext +} + +func NewEmptyPredictionContext() *EmptyPredictionContext { + + p := new(EmptyPredictionContext) + + p.BaseSingletonPredictionContext = NewBaseSingletonPredictionContext(nil, BasePredictionContextEmptyReturnState) + + return p +} + +func (e *EmptyPredictionContext) isEmpty() bool { + return true +} + +func (e *EmptyPredictionContext) GetParent(index int) PredictionContext { + return nil +} + +func (e *EmptyPredictionContext) getReturnState(index int) int { + return e.returnState +} + +func (e *EmptyPredictionContext) equals(other PredictionContext) bool { + return e == other +} + +func (e *EmptyPredictionContext) String() string { + return "$" +} + +type ArrayPredictionContext struct { + *BasePredictionContext + + parents []PredictionContext + returnStates []int +} + +func NewArrayPredictionContext(parents []PredictionContext, returnStates []int) *ArrayPredictionContext { + // Parent can be nil only if full ctx mode and we make an array + // from {@link //EMPTY} and non-empty. We merge {@link //EMPTY} by using + // nil parent and + // returnState == {@link //EmptyReturnState}. + hash := murmurInit(1) + + for _, parent := range parents { + hash = murmurUpdate(hash, parent.hash()) + } + + for _, returnState := range returnStates { + hash = murmurUpdate(hash, returnState) + } + + hash = murmurFinish(hash, len(parents)<<1) + + c := new(ArrayPredictionContext) + c.BasePredictionContext = NewBasePredictionContext(hash) + + c.parents = parents + c.returnStates = returnStates + + return c +} + +func (a *ArrayPredictionContext) GetReturnStates() []int { + return a.returnStates +} + +func (a *ArrayPredictionContext) hasEmptyPath() bool { + return a.getReturnState(a.length()-1) == BasePredictionContextEmptyReturnState +} + +func (a *ArrayPredictionContext) isEmpty() bool { + // since EmptyReturnState can only appear in the last position, we + // don't need to verify that size==1 + return a.returnStates[0] == BasePredictionContextEmptyReturnState +} + +func (a *ArrayPredictionContext) length() int { + return len(a.returnStates) +} + +func (a *ArrayPredictionContext) GetParent(index int) PredictionContext { + return a.parents[index] +} + +func (a *ArrayPredictionContext) getReturnState(index int) int { + return a.returnStates[index] +} + +func (a *ArrayPredictionContext) equals(other PredictionContext) bool { + if _, ok := other.(*ArrayPredictionContext); !ok { + return false + } else if a.cachedHash != other.hash() { + return false // can't be same if hash is different + } else { + otherP := other.(*ArrayPredictionContext) + return &a.returnStates == &otherP.returnStates && &a.parents == &otherP.parents + } +} + +func (a *ArrayPredictionContext) hash() int { + return a.BasePredictionContext.cachedHash +} + +func (a *ArrayPredictionContext) String() string { + if a.isEmpty() { + return "[]" + } + + s := "[" + for i := 0; i < len(a.returnStates); i++ { + if i > 0 { + s = s + ", " + } + if a.returnStates[i] == BasePredictionContextEmptyReturnState { + s = s + "$" + continue + } + s = s + strconv.Itoa(a.returnStates[i]) + if a.parents[i] != nil { + s = s + " " + a.parents[i].String() + } else { + s = s + "nil" + } + } + + return s + "]" +} + +// Convert a {@link RuleContext} tree to a {@link BasePredictionContext} graph. +// Return {@link //EMPTY} if {@code outerContext} is empty or nil. +// / +func predictionContextFromRuleContext(a *ATN, outerContext RuleContext) PredictionContext { + if outerContext == nil { + outerContext = RuleContextEmpty + } + // if we are in RuleContext of start rule, s, then BasePredictionContext + // is EMPTY. Nobody called us. (if we are empty, return empty) + if outerContext.GetParent() == nil || outerContext == RuleContextEmpty { + return BasePredictionContextEMPTY + } + // If we have a parent, convert it to a BasePredictionContext graph + parent := predictionContextFromRuleContext(a, outerContext.GetParent().(RuleContext)) + state := a.states[outerContext.GetInvokingState()] + transition := state.GetTransitions()[0] + + return SingletonBasePredictionContextCreate(parent, transition.(*RuleTransition).followState.GetStateNumber()) +} + +func merge(a, b PredictionContext, rootIsWildcard bool, mergeCache *DoubleDict) PredictionContext { + // share same graph if both same + if a == b { + return a + } + + ac, ok1 := a.(*BaseSingletonPredictionContext) + bc, ok2 := b.(*BaseSingletonPredictionContext) + + if ok1 && ok2 { + return mergeSingletons(ac, bc, rootIsWildcard, mergeCache) + } + // At least one of a or b is array + // If one is $ and rootIsWildcard, return $ as// wildcard + if rootIsWildcard { + if _, ok := a.(*EmptyPredictionContext); ok { + return a + } + if _, ok := b.(*EmptyPredictionContext); ok { + return b + } + } + // convert singleton so both are arrays to normalize + if _, ok := a.(*BaseSingletonPredictionContext); ok { + a = NewArrayPredictionContext([]PredictionContext{a.GetParent(0)}, []int{a.getReturnState(0)}) + } + if _, ok := b.(*BaseSingletonPredictionContext); ok { + b = NewArrayPredictionContext([]PredictionContext{b.GetParent(0)}, []int{b.getReturnState(0)}) + } + return mergeArrays(a.(*ArrayPredictionContext), b.(*ArrayPredictionContext), rootIsWildcard, mergeCache) +} + +// +// Merge two {@link SingletonBasePredictionContext} instances. +// +//Stack tops equal, parents merge is same return left graph.
+//
Same stack top, parents differ merge parents giving array node, then
+// remainders of those graphs. A Newroot node is created to point to the
+// merged parents.
+//
Different stack tops pointing to same parent. Make array node for the
+// root where both element in the root point to the same (original)
+// parent.
+//
Different stack tops pointing to different parents. Make array node for
+// the root where each element points to the corresponding original
+// parent.
+//
These local-context merge operations are used when {@code rootIsWildcard} +// is true.
+// +//{@link //EMPTY} is superset of any graph return {@link //EMPTY}.
+//
{@link //EMPTY} and anything is {@code //EMPTY}, so merged parent is
+// {@code //EMPTY} return left graph.
+//
Special case of last merge if local context.
+//
These full-context merge operations are used when {@code rootIsWildcard} +// is false.
+// +// +// +//Must keep all contexts {@link //EMPTY} in array is a special value (and
+// nil parent).
+//
Different tops, different parents.
+//
Shared top, same parents.
+//
Shared top, different parents.
+//
Shared top, all shared parents.
+//
Equal tops, merge parents and reduce top to
+// {@link SingletonBasePredictionContext}.
+//
+ // When using this prediction mode, the parser will either return a correct + // parse tree (i.e. the same parse tree that would be returned with the + // {@link //LL} prediction mode), or it will Report a syntax error. If a + // syntax error is encountered when using the {@link //SLL} prediction mode, + // it may be due to either an actual syntax error in the input or indicate + // that the particular combination of grammar and input requires the more + // powerful {@link //LL} prediction abilities to complete successfully.
+ // + //+ // This prediction mode does not provide any guarantees for prediction + // behavior for syntactically-incorrect inputs.
+ // + PredictionModeSLL = 0 + // + // The LL(*) prediction mode. This prediction mode allows the current parser + // context to be used for resolving SLL conflicts that occur during + // prediction. This is the fastest prediction mode that guarantees correct + // parse results for all combinations of grammars with syntactically correct + // inputs. + // + //+ // When using this prediction mode, the parser will make correct decisions + // for all syntactically-correct grammar and input combinations. However, in + // cases where the grammar is truly ambiguous this prediction mode might not + // Report a precise answer for exactly which alternatives are + // ambiguous.
+ // + //+ // This prediction mode does not provide any guarantees for prediction + // behavior for syntactically-incorrect inputs.
+ // + PredictionModeLL = 1 + // + // The LL(*) prediction mode with exact ambiguity detection. In addition to + // the correctness guarantees provided by the {@link //LL} prediction mode, + // this prediction mode instructs the prediction algorithm to determine the + // complete and exact set of ambiguous alternatives for every ambiguous + // decision encountered while parsing. + // + //+ // This prediction mode may be used for diagnosing ambiguities during + // grammar development. Due to the performance overhead of calculating sets + // of ambiguous alternatives, this prediction mode should be avoided when + // the exact results are not necessary.
+ // + //+ // This prediction mode does not provide any guarantees for prediction + // behavior for syntactically-incorrect inputs.
+ // + PredictionModeLLExactAmbigDetection = 2 +) + +// +// Computes the SLL prediction termination condition. +// +//+// This method computes the SLL prediction termination condition for both of +// the following cases.
+// +//COMBINED SLL+LL PARSING
+// +//When LL-fallback is enabled upon SLL conflict, correct predictions are +// ensured regardless of how the termination condition is computed by this +// method. Due to the substantially higher cost of LL prediction, the +// prediction should only fall back to LL when the additional lookahead +// cannot lead to a unique SLL prediction.
+// +//Assuming combined SLL+LL parsing, an SLL configuration set with only +// conflicting subsets should fall back to full LL, even if the +// configuration sets don't resolve to the same alternative (e.g. +// {@code {1,2}} and {@code {3,4}}. If there is at least one non-conflicting +// configuration, SLL could continue with the hopes that more lookahead will +// resolve via one of those non-conflicting configurations.
+// +//Here's the prediction termination rule them: SLL (for SLL+LL parsing) +// stops when it sees only conflicting configuration subsets. In contrast, +// full LL keeps going when there is uncertainty.
+// +//HEURISTIC
+// +//As a heuristic, we stop prediction when we see any conflicting subset +// unless we see a state that only has one alternative associated with it. +// The single-alt-state thing lets prediction continue upon rules like +// (otherwise, it would admit defeat too soon):
+// +//{@code [12|1|[], 6|2|[], 12|2|[]]. s : (ID | ID ID?) '' }
+// +//When the ATN simulation reaches the state before {@code ''}, it has a +// DFA state that looks like: {@code [12|1|[], 6|2|[], 12|2|[]]}. Naturally +// {@code 12|1|[]} and {@code 12|2|[]} conflict, but we cannot stop +// processing this node because alternative to has another way to continue, +// via {@code [6|2|[]]}.
+// +//It also let's us continue for this rule:
+// +//{@code [1|1|[], 1|2|[], 8|3|[]] a : A | A | A B }
+// +//After Matching input A, we reach the stop state for rule A, state 1. +// State 8 is the state right before B. Clearly alternatives 1 and 2 +// conflict and no amount of further lookahead will separate the two. +// However, alternative 3 will be able to continue and so we do not stop +// working on this state. In the previous example, we're concerned with +// states associated with the conflicting alternatives. Here alt 3 is not +// associated with the conflicting configs, but since we can continue +// looking for input reasonably, don't declare the state done.
+// +//PURE SLL PARSING
+// +//To handle pure SLL parsing, all we have to do is make sure that we +// combine stack contexts for configurations that differ only by semantic +// predicate. From there, we can do the usual SLL termination heuristic.
+// +//PREDICATES IN SLL+LL PARSING
+// +//SLL decisions don't evaluate predicates until after they reach DFA stop +// states because they need to create the DFA cache that works in all +// semantic situations. In contrast, full LL evaluates predicates collected +// during start state computation so it can ignore predicates thereafter. +// This means that SLL termination detection can totally ignore semantic +// predicates.
+// +//Implementation-wise, {@link ATNConfigSet} combines stack contexts but not +// semantic predicate contexts so we might see two configurations like the +// following.
+// +//{@code (s, 1, x, {}), (s, 1, x', {p})}
+// +//Before testing these configurations against others, we have to merge +// {@code x} and {@code x'} (without modifying the existing configurations). +// For example, we test {@code (x+x')==x''} when looking for conflicts in +// the following configurations.
+// +//{@code (s, 1, x, {}), (s, 1, x', {p}), (s, 2, x'', {})}
+// +//If the configuration set has predicates (as indicated by +// {@link ATNConfigSet//hasSemanticContext}), this algorithm makes a copy of +// the configurations to strip out all of the predicates so that a standard +// {@link ATNConfigSet} will merge everything ignoring predicates.
+// +func PredictionModehasSLLConflictTerminatingPrediction(mode int, configs ATNConfigSet) bool { + // Configs in rule stop states indicate reaching the end of the decision + // rule (local context) or end of start rule (full context). If all + // configs meet this condition, then none of the configurations is able + // to Match additional input so we terminate prediction. + // + if PredictionModeallConfigsInRuleStopStates(configs) { + return true + } + // pure SLL mode parsing + if mode == PredictionModeSLL { + // Don't bother with combining configs from different semantic + // contexts if we can fail over to full LL costs more time + // since we'll often fail over anyway. + if configs.HasSemanticContext() { + // dup configs, tossing out semantic predicates + dup := NewBaseATNConfigSet(false) + for _, c := range configs.GetItems() { + + // NewBaseATNConfig({semanticContext:}, c) + c = NewBaseATNConfig2(c, SemanticContextNone) + dup.Add(c, nil) + } + configs = dup + } + // now we have combined contexts for configs with dissimilar preds + } + // pure SLL or combined SLL+LL mode parsing + altsets := PredictionModegetConflictingAltSubsets(configs) + return PredictionModehasConflictingAltSet(altsets) && !PredictionModehasStateAssociatedWithOneAlt(configs) +} + +// Checks if any configuration in {@code configs} is in a +// {@link RuleStopState}. Configurations meeting this condition have reached +// the end of the decision rule (local context) or end of start rule (full +// context). +// +// @param configs the configuration set to test +// @return {@code true} if any configuration in {@code configs} is in a +// {@link RuleStopState}, otherwise {@code false} +func PredictionModehasConfigInRuleStopState(configs ATNConfigSet) bool { + for _, c := range configs.GetItems() { + if _, ok := c.GetState().(*RuleStopState); ok { + return true + } + } + return false +} + +// Checks if all configurations in {@code configs} are in a +// {@link RuleStopState}. Configurations meeting this condition have reached +// the end of the decision rule (local context) or end of start rule (full +// context). +// +// @param configs the configuration set to test +// @return {@code true} if all configurations in {@code configs} are in a +// {@link RuleStopState}, otherwise {@code false} +func PredictionModeallConfigsInRuleStopStates(configs ATNConfigSet) bool { + + for _, c := range configs.GetItems() { + if _, ok := c.GetState().(*RuleStopState); !ok { + return false + } + } + return true +} + +// +// Full LL prediction termination. +// +//Can we stop looking ahead during ATN simulation or is there some +// uncertainty as to which alternative we will ultimately pick, after +// consuming more input? Even if there are partial conflicts, we might know +// that everything is going to resolve to the same minimum alternative. That +// means we can stop since no more lookahead will change that fact. On the +// other hand, there might be multiple conflicts that resolve to different +// minimums. That means we need more look ahead to decide which of those +// alternatives we should predict.
+// +//The basic idea is to split the set of configurations {@code C}, into +// conflicting subsets {@code (s, _, ctx, _)} and singleton subsets with +// non-conflicting configurations. Two configurations conflict if they have +// identical {@link ATNConfig//state} and {@link ATNConfig//context} values +// but different {@link ATNConfig//alt} value, e.g. {@code (s, i, ctx, _)} +// and {@code (s, j, ctx, _)} for {@code i!=j}.
+// +//Reduce these configuration subsets to the set of possible alternatives. +// You can compute the alternative subsets in one pass as follows:
+// +//{@code A_s,ctx = {i | (s, i, ctx, _)}} for each configuration in +// {@code C} holding {@code s} and {@code ctx} fixed.
+// +//Or in pseudo-code, for each configuration {@code c} in {@code C}:
+// +//+// map[c] U= c.{@link ATNConfig//alt alt} // map hash/equals uses s and x, not +// alt and not pred +//+// +//
The values in {@code map} are the set of {@code A_s,ctx} sets.
+// +//If {@code |A_s,ctx|=1} then there is no conflict associated with +// {@code s} and {@code ctx}.
+// +//Reduce the subsets to singletons by choosing a minimum of each subset. If +// the union of these alternative subsets is a singleton, then no amount of +// more lookahead will help us. We will always pick that alternative. If, +// however, there is more than one alternative, then we are uncertain which +// alternative to predict and must continue looking for resolution. We may +// or may not discover an ambiguity in the future, even if there are no +// conflicting subsets this round.
+// +//The biggest sin is to terminate early because it means we've made a +// decision but were uncertain as to the eventual outcome. We haven't used +// enough lookahead. On the other hand, announcing a conflict too late is no +// big deal you will still have the conflict. It's just inefficient. It +// might even look until the end of file.
+// +//No special consideration for semantic predicates is required because +// predicates are evaluated on-the-fly for full LL prediction, ensuring that +// no configuration contains a semantic context during the termination +// check.
+// +//CONFLICTING CONFIGS
+// +//Two configurations {@code (s, i, x)} and {@code (s, j, x')}, conflict +// when {@code i!=j} but {@code x=x'}. Because we merge all +// {@code (s, i, _)} configurations together, that means that there are at +// most {@code n} configurations associated with state {@code s} for +// {@code n} possible alternatives in the decision. The merged stacks +// complicate the comparison of configuration contexts {@code x} and +// {@code x'}. Sam checks to see if one is a subset of the other by calling +// merge and checking to see if the merged result is either {@code x} or +// {@code x'}. If the {@code x} associated with lowest alternative {@code i} +// is the superset, then {@code i} is the only possible prediction since the +// others resolve to {@code min(i)} as well. However, if {@code x} is +// associated with {@code j>i} then at least one stack configuration for +// {@code j} is not in conflict with alternative {@code i}. The algorithm +// should keep going, looking for more lookahead due to the uncertainty.
+// +//For simplicity, I'm doing a equality check between {@code x} and +// {@code x'} that lets the algorithm continue to consume lookahead longer +// than necessary. The reason I like the equality is of course the +// simplicity but also because that is the test you need to detect the +// alternatives that are actually in conflict.
+// +//CONTINUE/STOP RULE
+// +//Continue if union of resolved alternative sets from non-conflicting and +// conflicting alternative subsets has more than one alternative. We are +// uncertain about which alternative to predict.
+// +//The complete set of alternatives, {@code [i for (_,i,_)]}, tells us which +// alternatives are still in the running for the amount of input we've +// consumed at this point. The conflicting sets let us to strip away +// configurations that won't lead to more states because we resolve +// conflicts to the configuration with a minimum alternate for the +// conflicting set.
+// +//CASES
+// +//EXACT AMBIGUITY DETECTION
+// +//If all states Report the same conflicting set of alternatives, then we +// know we have the exact ambiguity set.
+// +//|A_i|>1
and
+// A_i = A_j
for all i, j.
In other words, we continue examining lookahead until all {@code A_i} +// have more than one alternative and all {@code A_i} are the same. If +// {@code A={{1,2}, {1,3}}}, then regular LL prediction would terminate +// because the resolved set is {@code {1}}. To determine what the real +// ambiguity is, we have to know whether the ambiguity is between one and +// two or one and three so we keep going. We can only stop prediction when +// we need exact ambiguity detection when the sets look like +// {@code A={{1,2}}} or {@code {{1,2},{1,2}}}, etc...
+// +func PredictionModeresolvesToJustOneViableAlt(altsets []*BitSet) int { + return PredictionModegetSingleViableAlt(altsets) +} + +// +// Determines if every alternative subset in {@code altsets} contains more +// than one alternative. +// +// @param altsets a collection of alternative subsets +// @return {@code true} if every {@link BitSet} in {@code altsets} has +// {@link BitSet//cardinality cardinality} > 1, otherwise {@code false} +// +func PredictionModeallSubsetsConflict(altsets []*BitSet) bool { + return !PredictionModehasNonConflictingAltSet(altsets) +} + +// +// Determines if any single alternative subset in {@code altsets} contains +// exactly one alternative. +// +// @param altsets a collection of alternative subsets +// @return {@code true} if {@code altsets} contains a {@link BitSet} with +// {@link BitSet//cardinality cardinality} 1, otherwise {@code false} +// +func PredictionModehasNonConflictingAltSet(altsets []*BitSet) bool { + for i := 0; i < len(altsets); i++ { + alts := altsets[i] + if alts.length() == 1 { + return true + } + } + return false +} + +// +// Determines if any single alternative subset in {@code altsets} contains +// more than one alternative. +// +// @param altsets a collection of alternative subsets +// @return {@code true} if {@code altsets} contains a {@link BitSet} with +// {@link BitSet//cardinality cardinality} > 1, otherwise {@code false} +// +func PredictionModehasConflictingAltSet(altsets []*BitSet) bool { + for i := 0; i < len(altsets); i++ { + alts := altsets[i] + if alts.length() > 1 { + return true + } + } + return false +} + +// +// Determines if every alternative subset in {@code altsets} is equivalent. +// +// @param altsets a collection of alternative subsets +// @return {@code true} if every member of {@code altsets} is equal to the +// others, otherwise {@code false} +// +func PredictionModeallSubsetsEqual(altsets []*BitSet) bool { + var first *BitSet + + for i := 0; i < len(altsets); i++ { + alts := altsets[i] + if first == nil { + first = alts + } else if alts != first { + return false + } + } + + return true +} + +// +// Returns the unique alternative predicted by all alternative subsets in +// {@code altsets}. If no such alternative exists, this method returns +// {@link ATN//INVALID_ALT_NUMBER}. +// +// @param altsets a collection of alternative subsets +// +func PredictionModegetUniqueAlt(altsets []*BitSet) int { + all := PredictionModeGetAlts(altsets) + if all.length() == 1 { + return all.minValue() + } + + return ATNInvalidAltNumber +} + +// Gets the complete set of represented alternatives for a collection of +// alternative subsets. This method returns the union of each {@link BitSet} +// in {@code altsets}. +// +// @param altsets a collection of alternative subsets +// @return the set of represented alternatives in {@code altsets} +// +func PredictionModeGetAlts(altsets []*BitSet) *BitSet { + all := NewBitSet() + for _, alts := range altsets { + all.or(alts) + } + return all +} + +// +// This func gets the conflicting alt subsets from a configuration set. +// For each configuration {@code c} in {@code configs}: +// +//+// map[c] U= c.{@link ATNConfig//alt alt} // map hash/equals uses s and x, not +// alt and not pred +//+// +func PredictionModegetConflictingAltSubsets(configs ATNConfigSet) []*BitSet { + configToAlts := make(map[int]*BitSet) + + for _, c := range configs.GetItems() { + key := 31 * c.GetState().GetStateNumber() + c.GetContext().hash() + + alts, ok := configToAlts[key] + if !ok { + alts = NewBitSet() + configToAlts[key] = alts + } + alts.add(c.GetAlt()) + } + + values := make([]*BitSet, 0, 10) + for _, v := range configToAlts { + values = append(values, v) + } + return values +} + +// +// Get a map from state to alt subset from a configuration set. For each +// configuration {@code c} in {@code configs}: +// +//
+// map[c.{@link ATNConfig//state state}] U= c.{@link ATNConfig//alt alt} +//+// +func PredictionModeGetStateToAltMap(configs ATNConfigSet) *AltDict { + m := NewAltDict() + + for _, c := range configs.GetItems() { + alts := m.Get(c.GetState().String()) + if alts == nil { + alts = NewBitSet() + m.put(c.GetState().String(), alts) + } + alts.(*BitSet).add(c.GetAlt()) + } + return m +} + +func PredictionModehasStateAssociatedWithOneAlt(configs ATNConfigSet) bool { + values := PredictionModeGetStateToAltMap(configs).values() + for i := 0; i < len(values); i++ { + if values[i].(*BitSet).length() == 1 { + return true + } + } + return false +} + +func PredictionModegetSingleViableAlt(altsets []*BitSet) int { + result := ATNInvalidAltNumber + + for i := 0; i < len(altsets); i++ { + alts := altsets[i] + minAlt := alts.minValue() + if result == ATNInvalidAltNumber { + result = minAlt + } else if result != minAlt { // more than 1 viable alt + return ATNInvalidAltNumber + } + } + return result +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/recognizer.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/recognizer.go new file mode 100644 index 000000000..93efcf355 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/recognizer.go @@ -0,0 +1,217 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "fmt" + "strings" + + "strconv" +) + +type Recognizer interface { + GetLiteralNames() []string + GetSymbolicNames() []string + GetRuleNames() []string + + Sempred(RuleContext, int, int) bool + Precpred(RuleContext, int) bool + + GetState() int + SetState(int) + Action(RuleContext, int, int) + AddErrorListener(ErrorListener) + RemoveErrorListeners() + GetATN() *ATN + GetErrorListenerDispatch() ErrorListener +} + +type BaseRecognizer struct { + listeners []ErrorListener + state int + + RuleNames []string + LiteralNames []string + SymbolicNames []string + GrammarFileName string +} + +func NewBaseRecognizer() *BaseRecognizer { + rec := new(BaseRecognizer) + rec.listeners = []ErrorListener{ConsoleErrorListenerINSTANCE} + rec.state = -1 + return rec +} + +var tokenTypeMapCache = make(map[string]int) +var ruleIndexMapCache = make(map[string]int) + +func (b *BaseRecognizer) checkVersion(toolVersion string) { + runtimeVersion := "4.10.1" + if runtimeVersion != toolVersion { + fmt.Println("ANTLR runtime and generated code versions disagree: " + runtimeVersion + "!=" + toolVersion) + } +} + +func (b *BaseRecognizer) Action(context RuleContext, ruleIndex, actionIndex int) { + panic("action not implemented on Recognizer!") +} + +func (b *BaseRecognizer) AddErrorListener(listener ErrorListener) { + b.listeners = append(b.listeners, listener) +} + +func (b *BaseRecognizer) RemoveErrorListeners() { + b.listeners = make([]ErrorListener, 0) +} + +func (b *BaseRecognizer) GetRuleNames() []string { + return b.RuleNames +} + +func (b *BaseRecognizer) GetTokenNames() []string { + return b.LiteralNames +} + +func (b *BaseRecognizer) GetSymbolicNames() []string { + return b.SymbolicNames +} + +func (b *BaseRecognizer) GetLiteralNames() []string { + return b.LiteralNames +} + +func (b *BaseRecognizer) GetState() int { + return b.state +} + +func (b *BaseRecognizer) SetState(v int) { + b.state = v +} + +//func (b *Recognizer) GetTokenTypeMap() { +// var tokenNames = b.GetTokenNames() +// if (tokenNames==nil) { +// panic("The current recognizer does not provide a list of token names.") +// } +// var result = tokenTypeMapCache[tokenNames] +// if(result==nil) { +// result = tokenNames.reduce(function(o, k, i) { o[k] = i }) +// result.EOF = TokenEOF +// tokenTypeMapCache[tokenNames] = result +// } +// return result +//} + +// Get a map from rule names to rule indexes. +// +//
Used for XPath and tree pattern compilation.
+// +func (b *BaseRecognizer) GetRuleIndexMap() map[string]int { + + panic("Method not defined!") + // var ruleNames = b.GetRuleNames() + // if (ruleNames==nil) { + // panic("The current recognizer does not provide a list of rule names.") + // } + // + // var result = ruleIndexMapCache[ruleNames] + // if(result==nil) { + // result = ruleNames.reduce(function(o, k, i) { o[k] = i }) + // ruleIndexMapCache[ruleNames] = result + // } + // return result +} + +func (b *BaseRecognizer) GetTokenType(tokenName string) int { + panic("Method not defined!") + // var ttype = b.GetTokenTypeMap()[tokenName] + // if (ttype !=nil) { + // return ttype + // } else { + // return TokenInvalidType + // } +} + +//func (b *Recognizer) GetTokenTypeMap() map[string]int { +// Vocabulary vocabulary = getVocabulary() +// +// Synchronized (tokenTypeMapCache) { +// Map+// Since tokens on hidden channels (e.g. whitespace or comments) are not +// added to the parse trees, they will not appear in the output of b +// method. +// + +func (b *BaseRuleContext) GetParent() Tree { + return b.parentCtx +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/semantic_context.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/semantic_context.go new file mode 100644 index 000000000..9ada43077 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/semantic_context.go @@ -0,0 +1,466 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "fmt" + "strconv" +) + +// A tree structure used to record the semantic context in which +// an ATN configuration is valid. It's either a single predicate, +// a conjunction {@code p1&&p2}, or a sum of products {@code p1||p2}. +// +//
I have scoped the {@link AND}, {@link OR}, and {@link Predicate} subclasses of +// {@link SemanticContext} within the scope of this outer class.
+// + +type SemanticContext interface { + comparable + + evaluate(parser Recognizer, outerContext RuleContext) bool + evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext + + hash() int + String() string +} + +func SemanticContextandContext(a, b SemanticContext) SemanticContext { + if a == nil || a == SemanticContextNone { + return b + } + if b == nil || b == SemanticContextNone { + return a + } + result := NewAND(a, b) + if len(result.opnds) == 1 { + return result.opnds[0] + } + + return result +} + +func SemanticContextorContext(a, b SemanticContext) SemanticContext { + if a == nil { + return b + } + if b == nil { + return a + } + if a == SemanticContextNone || b == SemanticContextNone { + return SemanticContextNone + } + result := NewOR(a, b) + if len(result.opnds) == 1 { + return result.opnds[0] + } + + return result +} + +type Predicate struct { + ruleIndex int + predIndex int + isCtxDependent bool +} + +func NewPredicate(ruleIndex, predIndex int, isCtxDependent bool) *Predicate { + p := new(Predicate) + + p.ruleIndex = ruleIndex + p.predIndex = predIndex + p.isCtxDependent = isCtxDependent // e.g., $i ref in pred + return p +} + +//The default {@link SemanticContext}, which is semantically equivalent to +//a predicate of the form {@code {true}?}. + +var SemanticContextNone SemanticContext = NewPredicate(-1, -1, false) + +func (p *Predicate) evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext { + return p +} + +func (p *Predicate) evaluate(parser Recognizer, outerContext RuleContext) bool { + + var localctx RuleContext + + if p.isCtxDependent { + localctx = outerContext + } + + return parser.Sempred(localctx, p.ruleIndex, p.predIndex) +} + +func (p *Predicate) equals(other interface{}) bool { + if p == other { + return true + } else if _, ok := other.(*Predicate); !ok { + return false + } else { + return p.ruleIndex == other.(*Predicate).ruleIndex && + p.predIndex == other.(*Predicate).predIndex && + p.isCtxDependent == other.(*Predicate).isCtxDependent + } +} + +func (p *Predicate) hash() int { + h := murmurInit(0) + h = murmurUpdate(h, p.ruleIndex) + h = murmurUpdate(h, p.predIndex) + if p.isCtxDependent { + h = murmurUpdate(h, 1) + } else { + h = murmurUpdate(h, 0) + } + return murmurFinish(h, 3) +} + +func (p *Predicate) String() string { + return "{" + strconv.Itoa(p.ruleIndex) + ":" + strconv.Itoa(p.predIndex) + "}?" +} + +type PrecedencePredicate struct { + precedence int +} + +func NewPrecedencePredicate(precedence int) *PrecedencePredicate { + + p := new(PrecedencePredicate) + p.precedence = precedence + + return p +} + +func (p *PrecedencePredicate) evaluate(parser Recognizer, outerContext RuleContext) bool { + return parser.Precpred(outerContext, p.precedence) +} + +func (p *PrecedencePredicate) evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext { + if parser.Precpred(outerContext, p.precedence) { + return SemanticContextNone + } + + return nil +} + +func (p *PrecedencePredicate) compareTo(other *PrecedencePredicate) int { + return p.precedence - other.precedence +} + +func (p *PrecedencePredicate) equals(other interface{}) bool { + if p == other { + return true + } else if _, ok := other.(*PrecedencePredicate); !ok { + return false + } else { + return p.precedence == other.(*PrecedencePredicate).precedence + } +} + +func (p *PrecedencePredicate) hash() int { + h := uint32(1) + h = 31*h + uint32(p.precedence) + return int(h) +} + +func (p *PrecedencePredicate) String() string { + return "{" + strconv.Itoa(p.precedence) + ">=prec}?" +} + +func PrecedencePredicatefilterPrecedencePredicates(set Set) []*PrecedencePredicate { + result := make([]*PrecedencePredicate, 0) + + set.Each(func(v interface{}) bool { + if c2, ok := v.(*PrecedencePredicate); ok { + result = append(result, c2) + } + return true + }) + + return result +} + +// A semantic context which is true whenever none of the contained contexts +// is false.` + +type AND struct { + opnds []SemanticContext +} + +func NewAND(a, b SemanticContext) *AND { + + operands := newArray2DHashSet(nil, nil) + if aa, ok := a.(*AND); ok { + for _, o := range aa.opnds { + operands.Add(o) + } + } else { + operands.Add(a) + } + + if ba, ok := b.(*AND); ok { + for _, o := range ba.opnds { + operands.Add(o) + } + } else { + operands.Add(b) + } + precedencePredicates := PrecedencePredicatefilterPrecedencePredicates(operands) + if len(precedencePredicates) > 0 { + // interested in the transition with the lowest precedence + var reduced *PrecedencePredicate + + for _, p := range precedencePredicates { + if reduced == nil || p.precedence < reduced.precedence { + reduced = p + } + } + + operands.Add(reduced) + } + + vs := operands.Values() + opnds := make([]SemanticContext, len(vs)) + for i, v := range vs { + opnds[i] = v.(SemanticContext) + } + + and := new(AND) + and.opnds = opnds + + return and +} + +func (a *AND) equals(other interface{}) bool { + if a == other { + return true + } else if _, ok := other.(*AND); !ok { + return false + } else { + for i, v := range other.(*AND).opnds { + if !a.opnds[i].equals(v) { + return false + } + } + return true + } +} + +// +// {@inheritDoc} +// +//+// The evaluation of predicates by a context is short-circuiting, but +// unordered.
+// +func (a *AND) evaluate(parser Recognizer, outerContext RuleContext) bool { + for i := 0; i < len(a.opnds); i++ { + if !a.opnds[i].evaluate(parser, outerContext) { + return false + } + } + return true +} + +func (a *AND) evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext { + differs := false + operands := make([]SemanticContext, 0) + + for i := 0; i < len(a.opnds); i++ { + context := a.opnds[i] + evaluated := context.evalPrecedence(parser, outerContext) + differs = differs || (evaluated != context) + if evaluated == nil { + // The AND context is false if any element is false + return nil + } else if evaluated != SemanticContextNone { + // Reduce the result by Skipping true elements + operands = append(operands, evaluated) + } + } + if !differs { + return a + } + + if len(operands) == 0 { + // all elements were true, so the AND context is true + return SemanticContextNone + } + + var result SemanticContext + + for _, o := range operands { + if result == nil { + result = o + } else { + result = SemanticContextandContext(result, o) + } + } + + return result +} + +func (a *AND) hash() int { + h := murmurInit(37) // Init with a value different from OR + for _, op := range a.opnds { + h = murmurUpdate(h, op.hash()) + } + return murmurFinish(h, len(a.opnds)) +} + +func (a *OR) hash() int { + h := murmurInit(41) // Init with a value different from AND + for _, op := range a.opnds { + h = murmurUpdate(h, op.hash()) + } + return murmurFinish(h, len(a.opnds)) +} + +func (a *AND) String() string { + s := "" + + for _, o := range a.opnds { + s += "&& " + fmt.Sprint(o) + } + + if len(s) > 3 { + return s[0:3] + } + + return s +} + +// +// A semantic context which is true whenever at least one of the contained +// contexts is true. +// + +type OR struct { + opnds []SemanticContext +} + +func NewOR(a, b SemanticContext) *OR { + + operands := newArray2DHashSet(nil, nil) + if aa, ok := a.(*OR); ok { + for _, o := range aa.opnds { + operands.Add(o) + } + } else { + operands.Add(a) + } + + if ba, ok := b.(*OR); ok { + for _, o := range ba.opnds { + operands.Add(o) + } + } else { + operands.Add(b) + } + precedencePredicates := PrecedencePredicatefilterPrecedencePredicates(operands) + if len(precedencePredicates) > 0 { + // interested in the transition with the lowest precedence + var reduced *PrecedencePredicate + + for _, p := range precedencePredicates { + if reduced == nil || p.precedence > reduced.precedence { + reduced = p + } + } + + operands.Add(reduced) + } + + vs := operands.Values() + + opnds := make([]SemanticContext, len(vs)) + for i, v := range vs { + opnds[i] = v.(SemanticContext) + } + + o := new(OR) + o.opnds = opnds + + return o +} + +func (o *OR) equals(other interface{}) bool { + if o == other { + return true + } else if _, ok := other.(*OR); !ok { + return false + } else { + for i, v := range other.(*OR).opnds { + if !o.opnds[i].equals(v) { + return false + } + } + return true + } +} + +//+// The evaluation of predicates by o context is short-circuiting, but +// unordered.
+// +func (o *OR) evaluate(parser Recognizer, outerContext RuleContext) bool { + for i := 0; i < len(o.opnds); i++ { + if o.opnds[i].evaluate(parser, outerContext) { + return true + } + } + return false +} + +func (o *OR) evalPrecedence(parser Recognizer, outerContext RuleContext) SemanticContext { + differs := false + operands := make([]SemanticContext, 0) + for i := 0; i < len(o.opnds); i++ { + context := o.opnds[i] + evaluated := context.evalPrecedence(parser, outerContext) + differs = differs || (evaluated != context) + if evaluated == SemanticContextNone { + // The OR context is true if any element is true + return SemanticContextNone + } else if evaluated != nil { + // Reduce the result by Skipping false elements + operands = append(operands, evaluated) + } + } + if !differs { + return o + } + if len(operands) == 0 { + // all elements were false, so the OR context is false + return nil + } + var result SemanticContext + + for _, o := range operands { + if result == nil { + result = o + } else { + result = SemanticContextorContext(result, o) + } + } + + return result +} + +func (o *OR) String() string { + s := "" + + for _, o := range o.opnds { + s += "|| " + fmt.Sprint(o) + } + + if len(s) > 3 { + return s[0:3] + } + + return s +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/token.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/token.go new file mode 100644 index 000000000..2d8e99095 --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/token.go @@ -0,0 +1,210 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +import ( + "strconv" + "strings" +) + +type TokenSourceCharStreamPair struct { + tokenSource TokenSource + charStream CharStream +} + +// A token has properties: text, type, line, character position in the line +// (so we can ignore tabs), token channel, index, and source from which +// we obtained this token. + +type Token interface { + GetSource() *TokenSourceCharStreamPair + GetTokenType() int + GetChannel() int + GetStart() int + GetStop() int + GetLine() int + GetColumn() int + + GetText() string + SetText(s string) + + GetTokenIndex() int + SetTokenIndex(v int) + + GetTokenSource() TokenSource + GetInputStream() CharStream +} + +type BaseToken struct { + source *TokenSourceCharStreamPair + tokenType int // token type of the token + channel int // The parser ignores everything not on DEFAULT_CHANNEL + start int // optional return -1 if not implemented. + stop int // optional return -1 if not implemented. + tokenIndex int // from 0..n-1 of the token object in the input stream + line int // line=1..n of the 1st character + column int // beginning of the line at which it occurs, 0..n-1 + text string // text of the token. + readOnly bool +} + +const ( + TokenInvalidType = 0 + + // During lookahead operations, this "token" signifies we hit rule end ATN state + // and did not follow it despite needing to. + TokenEpsilon = -2 + + TokenMinUserTokenType = 1 + + TokenEOF = -1 + + // All tokens go to the parser (unless Skip() is called in that rule) + // on a particular "channel". The parser tunes to a particular channel + // so that whitespace etc... can go to the parser on a "hidden" channel. + + TokenDefaultChannel = 0 + + // Anything on different channel than DEFAULT_CHANNEL is not parsed + // by parser. + + TokenHiddenChannel = 1 +) + +func (b *BaseToken) GetChannel() int { + return b.channel +} + +func (b *BaseToken) GetStart() int { + return b.start +} + +func (b *BaseToken) GetStop() int { + return b.stop +} + +func (b *BaseToken) GetLine() int { + return b.line +} + +func (b *BaseToken) GetColumn() int { + return b.column +} + +func (b *BaseToken) GetTokenType() int { + return b.tokenType +} + +func (b *BaseToken) GetSource() *TokenSourceCharStreamPair { + return b.source +} + +func (b *BaseToken) GetTokenIndex() int { + return b.tokenIndex +} + +func (b *BaseToken) SetTokenIndex(v int) { + b.tokenIndex = v +} + +func (b *BaseToken) GetTokenSource() TokenSource { + return b.source.tokenSource +} + +func (b *BaseToken) GetInputStream() CharStream { + return b.source.charStream +} + +type CommonToken struct { + *BaseToken +} + +func NewCommonToken(source *TokenSourceCharStreamPair, tokenType, channel, start, stop int) *CommonToken { + + t := new(CommonToken) + + t.BaseToken = new(BaseToken) + + t.source = source + t.tokenType = tokenType + t.channel = channel + t.start = start + t.stop = stop + t.tokenIndex = -1 + if t.source.tokenSource != nil { + t.line = source.tokenSource.GetLine() + t.column = source.tokenSource.GetCharPositionInLine() + } else { + t.column = -1 + } + return t +} + +// An empty {@link Pair} which is used as the default value of +// {@link //source} for tokens that do not have a source. + +//CommonToken.EMPTY_SOURCE = [ nil, nil ] + +// Constructs a New{@link CommonToken} as a copy of another {@link Token}. +// +//+// If {@code oldToken} is also a {@link CommonToken} instance, the newly +// constructed token will share a reference to the {@link //text} field and +// the {@link Pair} stored in {@link //source}. Otherwise, {@link //text} will +// be assigned the result of calling {@link //GetText}, and {@link //source} +// will be constructed from the result of {@link Token//GetTokenSource} and +// {@link Token//GetInputStream}.
+// +// @param oldToken The token to copy. +// +func (c *CommonToken) clone() *CommonToken { + t := NewCommonToken(c.source, c.tokenType, c.channel, c.start, c.stop) + t.tokenIndex = c.GetTokenIndex() + t.line = c.GetLine() + t.column = c.GetColumn() + t.text = c.GetText() + return t +} + +func (c *CommonToken) GetText() string { + if c.text != "" { + return c.text + } + input := c.GetInputStream() + if input == nil { + return "" + } + n := input.Size() + if c.start < n && c.stop < n { + return input.GetTextFromInterval(NewInterval(c.start, c.stop)) + } + return "+// You can insert stuff, replace, and delete chunks. Note that the operations +// are done lazily--only if you convert the buffer to a {@link String} with +// {@link TokenStream#getText()}. This is very efficient because you are not +// moving data around all the time. As the buffer of tokens is converted to +// strings, the {@link #getText()} method(s) scan the input token stream and +// check to see if there is an operation at the current index. If so, the +// operation is done and then normal {@link String} rendering continues on the +// buffer. This is like having multiple Turing machine instruction streams +// (programs) operating on a single input tape. :)
+//+ +// This rewriter makes no modifications to the token stream. It does not ask the +// stream to fill itself up nor does it advance the input cursor. The token +// stream {@link TokenStream#index()} will return the same value before and +// after any {@link #getText()} call.
+ +//+// The rewriter only works on tokens that you have in the buffer and ignores the +// current input cursor. If you are buffering tokens on-demand, calling +// {@link #getText()} halfway through the input will only do rewrites for those +// tokens in the first half of the file.
+ +//+// Since the operations are done lazily at {@link #getText}-time, operations do +// not screw up the token index values. That is, an insert operation at token +// index {@code i} does not change the index values for tokens +// {@code i}+1..n-1.
+ +//+// Because operations never actually alter the buffer, you may always get the +// original token stream back without undoing anything. Since the instructions +// are queued up, you can easily simulate transactions and roll back any changes +// if there is an error just by removing instructions. For example,
+ +//+// CharStream input = new ANTLRFileStream("input"); +// TLexer lex = new TLexer(input); +// CommonTokenStream tokens = new CommonTokenStream(lex); +// T parser = new T(tokens); +// TokenStreamRewriter rewriter = new TokenStreamRewriter(tokens); +// parser.startRule(); +//+ +//
+// Then in the rules, you can execute (assuming rewriter is visible):
+ +//+// Token t,u; +// ... +// rewriter.insertAfter(t, "text to put after t");} +// rewriter.insertAfter(u, "text after u");} +// System.out.println(rewriter.getText()); +//+ +//
+// You can also have multiple "instruction streams" and get multiple rewrites +// from a single pass over the input. Just name the instruction streams and use +// that name again when printing the buffer. This could be useful for generating +// a C file and also its header file--all from the same buffer:
+ +//+// rewriter.insertAfter("pass1", t, "text to put after t");} +// rewriter.insertAfter("pass2", u, "text after u");} +// System.out.println(rewriter.getText("pass1")); +// System.out.println(rewriter.getText("pass2")); +//+ +//
+// If you don't use named rewrite streams, a "default" stream is used as the +// first example shows.
+ + + +const( + Default_Program_Name = "default" + Program_Init_Size = 100 + Min_Token_Index = 0 +) + +// Define the rewrite operation hierarchy + +type RewriteOperation interface { + // Execute the rewrite operation by possibly adding to the buffer. + // Return the index of the next token to operate on. + Execute(buffer *bytes.Buffer) int + String() string + GetInstructionIndex() int + GetIndex() int + GetText() string + GetOpName() string + GetTokens() TokenStream + SetInstructionIndex(val int) + SetIndex(int) + SetText(string) + SetOpName(string) + SetTokens(TokenStream) +} + +type BaseRewriteOperation struct { + //Current index of rewrites list + instruction_index int + //Token buffer index + index int + //Substitution text + text string + //Actual operation name + op_name string + //Pointer to token steam + tokens TokenStream +} + +func (op *BaseRewriteOperation)GetInstructionIndex() int{ + return op.instruction_index +} + +func (op *BaseRewriteOperation)GetIndex() int{ + return op.index +} + +func (op *BaseRewriteOperation)GetText() string{ + return op.text +} + +func (op *BaseRewriteOperation)GetOpName() string{ + return op.op_name +} + +func (op *BaseRewriteOperation)GetTokens() TokenStream{ + return op.tokens +} + +func (op *BaseRewriteOperation)SetInstructionIndex(val int){ + op.instruction_index = val +} + +func (op *BaseRewriteOperation)SetIndex(val int) { + op.index = val +} + +func (op *BaseRewriteOperation)SetText(val string){ + op.text = val +} + +func (op *BaseRewriteOperation)SetOpName(val string){ + op.op_name = val +} + +func (op *BaseRewriteOperation)SetTokens(val TokenStream) { + op.tokens = val +} + + +func (op *BaseRewriteOperation) Execute(buffer *bytes.Buffer) int{ + return op.index +} + +func (op *BaseRewriteOperation) String() string { + return fmt.Sprintf("<%s@%d:\"%s\">", + op.op_name, + op.tokens.Get(op.GetIndex()), + op.text, + ) + +} + + +type InsertBeforeOp struct { + BaseRewriteOperation +} + +func NewInsertBeforeOp(index int, text string, stream TokenStream) *InsertBeforeOp{ + return &InsertBeforeOp{BaseRewriteOperation:BaseRewriteOperation{ + index:index, + text:text, + op_name:"InsertBeforeOp", + tokens:stream, + }} +} + +func (op *InsertBeforeOp) Execute(buffer *bytes.Buffer) int{ + buffer.WriteString(op.text) + if op.tokens.Get(op.index).GetTokenType() != TokenEOF{ + buffer.WriteString(op.tokens.Get(op.index).GetText()) + } + return op.index+1 +} + +func (op *InsertBeforeOp) String() string { + return op.BaseRewriteOperation.String() +} + +// Distinguish between insert after/before to do the "insert afters" +// first and then the "insert befores" at same index. Implementation +// of "insert after" is "insert before index+1". + +type InsertAfterOp struct { + BaseRewriteOperation +} + +func NewInsertAfterOp(index int, text string, stream TokenStream) *InsertAfterOp{ + return &InsertAfterOp{BaseRewriteOperation:BaseRewriteOperation{ + index:index+1, + text:text, + tokens:stream, + }} +} + +func (op *InsertAfterOp) Execute(buffer *bytes.Buffer) int { + buffer.WriteString(op.text) + if op.tokens.Get(op.index).GetTokenType() != TokenEOF{ + buffer.WriteString(op.tokens.Get(op.index).GetText()) + } + return op.index+1 +} + +func (op *InsertAfterOp) String() string { + return op.BaseRewriteOperation.String() +} + +// I'm going to try replacing range from x..y with (y-x)+1 ReplaceOp +// instructions. +type ReplaceOp struct{ + BaseRewriteOperation + LastIndex int +} + +func NewReplaceOp(from, to int, text string, stream TokenStream)*ReplaceOp { + return &ReplaceOp{ + BaseRewriteOperation:BaseRewriteOperation{ + index:from, + text:text, + op_name:"ReplaceOp", + tokens:stream, + }, + LastIndex:to, + } +} + +func (op *ReplaceOp)Execute(buffer *bytes.Buffer) int{ + if op.text != ""{ + buffer.WriteString(op.text) + } + return op.LastIndex +1 +} + +func (op *ReplaceOp) String() string { + if op.text == "" { + return fmt.Sprintf("Since we never have to change the ATN transitions once we construct it, +// the states. We'll use the term Edge for the DFA to distinguish them from +// ATN transitions.
+ +type Transition interface { + getTarget() ATNState + setTarget(ATNState) + getIsEpsilon() bool + getLabel() *IntervalSet + getSerializationType() int + Matches(int, int, int) bool +} + +type BaseTransition struct { + target ATNState + isEpsilon bool + label int + intervalSet *IntervalSet + serializationType int +} + +func NewBaseTransition(target ATNState) *BaseTransition { + + if target == nil { + panic("target cannot be nil.") + } + + t := new(BaseTransition) + + t.target = target + // Are we epsilon, action, sempred? + t.isEpsilon = false + t.intervalSet = nil + + return t +} + +func (t *BaseTransition) getTarget() ATNState { + return t.target +} + +func (t *BaseTransition) setTarget(s ATNState) { + t.target = s +} + +func (t *BaseTransition) getIsEpsilon() bool { + return t.isEpsilon +} + +func (t *BaseTransition) getLabel() *IntervalSet { + return t.intervalSet +} + +func (t *BaseTransition) getSerializationType() int { + return t.serializationType +} + +func (t *BaseTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + panic("Not implemented") +} + +const ( + TransitionEPSILON = 1 + TransitionRANGE = 2 + TransitionRULE = 3 + TransitionPREDICATE = 4 // e.g., {isType(input.LT(1))}? + TransitionATOM = 5 + TransitionACTION = 6 + TransitionSET = 7 // ~(A|B) or ~atom, wildcard, which convert to next 2 + TransitionNOTSET = 8 + TransitionWILDCARD = 9 + TransitionPRECEDENCE = 10 +) + +var TransitionserializationNames = []string{ + "INVALID", + "EPSILON", + "RANGE", + "RULE", + "PREDICATE", + "ATOM", + "ACTION", + "SET", + "NOT_SET", + "WILDCARD", + "PRECEDENCE", +} + +//var TransitionserializationTypes struct { +// EpsilonTransition int +// RangeTransition int +// RuleTransition int +// PredicateTransition int +// AtomTransition int +// ActionTransition int +// SetTransition int +// NotSetTransition int +// WildcardTransition int +// PrecedencePredicateTransition int +//}{ +// TransitionEPSILON, +// TransitionRANGE, +// TransitionRULE, +// TransitionPREDICATE, +// TransitionATOM, +// TransitionACTION, +// TransitionSET, +// TransitionNOTSET, +// TransitionWILDCARD, +// TransitionPRECEDENCE +//} + +// TODO: make all transitions sets? no, should remove set edges +type AtomTransition struct { + *BaseTransition +} + +func NewAtomTransition(target ATNState, intervalSet int) *AtomTransition { + + t := new(AtomTransition) + t.BaseTransition = NewBaseTransition(target) + + t.label = intervalSet // The token type or character value or, signifies special intervalSet. + t.intervalSet = t.makeLabel() + t.serializationType = TransitionATOM + + return t +} + +func (t *AtomTransition) makeLabel() *IntervalSet { + s := NewIntervalSet() + s.addOne(t.label) + return s +} + +func (t *AtomTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return t.label == symbol +} + +func (t *AtomTransition) String() string { + return strconv.Itoa(t.label) +} + +type RuleTransition struct { + *BaseTransition + + followState ATNState + ruleIndex, precedence int +} + +func NewRuleTransition(ruleStart ATNState, ruleIndex, precedence int, followState ATNState) *RuleTransition { + + t := new(RuleTransition) + t.BaseTransition = NewBaseTransition(ruleStart) + + t.ruleIndex = ruleIndex + t.precedence = precedence + t.followState = followState + t.serializationType = TransitionRULE + t.isEpsilon = true + + return t +} + +func (t *RuleTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return false +} + +type EpsilonTransition struct { + *BaseTransition + + outermostPrecedenceReturn int +} + +func NewEpsilonTransition(target ATNState, outermostPrecedenceReturn int) *EpsilonTransition { + + t := new(EpsilonTransition) + t.BaseTransition = NewBaseTransition(target) + + t.serializationType = TransitionEPSILON + t.isEpsilon = true + t.outermostPrecedenceReturn = outermostPrecedenceReturn + return t +} + +func (t *EpsilonTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return false +} + +func (t *EpsilonTransition) String() string { + return "epsilon" +} + +type RangeTransition struct { + *BaseTransition + + start, stop int +} + +func NewRangeTransition(target ATNState, start, stop int) *RangeTransition { + + t := new(RangeTransition) + t.BaseTransition = NewBaseTransition(target) + + t.serializationType = TransitionRANGE + t.start = start + t.stop = stop + t.intervalSet = t.makeLabel() + return t +} + +func (t *RangeTransition) makeLabel() *IntervalSet { + s := NewIntervalSet() + s.addRange(t.start, t.stop) + return s +} + +func (t *RangeTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return symbol >= t.start && symbol <= t.stop +} + +func (t *RangeTransition) String() string { + var sb strings.Builder + sb.WriteByte('\'') + sb.WriteRune(rune(t.start)) + sb.WriteString("'..'") + sb.WriteRune(rune(t.stop)) + sb.WriteByte('\'') + return sb.String() +} + +type AbstractPredicateTransition interface { + Transition + IAbstractPredicateTransitionFoo() +} + +type BaseAbstractPredicateTransition struct { + *BaseTransition +} + +func NewBasePredicateTransition(target ATNState) *BaseAbstractPredicateTransition { + + t := new(BaseAbstractPredicateTransition) + t.BaseTransition = NewBaseTransition(target) + + return t +} + +func (a *BaseAbstractPredicateTransition) IAbstractPredicateTransitionFoo() {} + +type PredicateTransition struct { + *BaseAbstractPredicateTransition + + isCtxDependent bool + ruleIndex, predIndex int +} + +func NewPredicateTransition(target ATNState, ruleIndex, predIndex int, isCtxDependent bool) *PredicateTransition { + + t := new(PredicateTransition) + t.BaseAbstractPredicateTransition = NewBasePredicateTransition(target) + + t.serializationType = TransitionPREDICATE + t.ruleIndex = ruleIndex + t.predIndex = predIndex + t.isCtxDependent = isCtxDependent // e.g., $i ref in pred + t.isEpsilon = true + return t +} + +func (t *PredicateTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return false +} + +func (t *PredicateTransition) getPredicate() *Predicate { + return NewPredicate(t.ruleIndex, t.predIndex, t.isCtxDependent) +} + +func (t *PredicateTransition) String() string { + return "pred_" + strconv.Itoa(t.ruleIndex) + ":" + strconv.Itoa(t.predIndex) +} + +type ActionTransition struct { + *BaseTransition + + isCtxDependent bool + ruleIndex, actionIndex, predIndex int +} + +func NewActionTransition(target ATNState, ruleIndex, actionIndex int, isCtxDependent bool) *ActionTransition { + + t := new(ActionTransition) + t.BaseTransition = NewBaseTransition(target) + + t.serializationType = TransitionACTION + t.ruleIndex = ruleIndex + t.actionIndex = actionIndex + t.isCtxDependent = isCtxDependent // e.g., $i ref in pred + t.isEpsilon = true + return t +} + +func (t *ActionTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return false +} + +func (t *ActionTransition) String() string { + return "action_" + strconv.Itoa(t.ruleIndex) + ":" + strconv.Itoa(t.actionIndex) +} + +type SetTransition struct { + *BaseTransition +} + +func NewSetTransition(target ATNState, set *IntervalSet) *SetTransition { + + t := new(SetTransition) + t.BaseTransition = NewBaseTransition(target) + + t.serializationType = TransitionSET + if set != nil { + t.intervalSet = set + } else { + t.intervalSet = NewIntervalSet() + t.intervalSet.addOne(TokenInvalidType) + } + + return t +} + +func (t *SetTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return t.intervalSet.contains(symbol) +} + +func (t *SetTransition) String() string { + return t.intervalSet.String() +} + +type NotSetTransition struct { + *SetTransition +} + +func NewNotSetTransition(target ATNState, set *IntervalSet) *NotSetTransition { + + t := new(NotSetTransition) + + t.SetTransition = NewSetTransition(target, set) + + t.serializationType = TransitionNOTSET + + return t +} + +func (t *NotSetTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return symbol >= minVocabSymbol && symbol <= maxVocabSymbol && !t.intervalSet.contains(symbol) +} + +func (t *NotSetTransition) String() string { + return "~" + t.intervalSet.String() +} + +type WildcardTransition struct { + *BaseTransition +} + +func NewWildcardTransition(target ATNState) *WildcardTransition { + + t := new(WildcardTransition) + t.BaseTransition = NewBaseTransition(target) + + t.serializationType = TransitionWILDCARD + return t +} + +func (t *WildcardTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return symbol >= minVocabSymbol && symbol <= maxVocabSymbol +} + +func (t *WildcardTransition) String() string { + return "." +} + +type PrecedencePredicateTransition struct { + *BaseAbstractPredicateTransition + + precedence int +} + +func NewPrecedencePredicateTransition(target ATNState, precedence int) *PrecedencePredicateTransition { + + t := new(PrecedencePredicateTransition) + t.BaseAbstractPredicateTransition = NewBasePredicateTransition(target) + + t.serializationType = TransitionPRECEDENCE + t.precedence = precedence + t.isEpsilon = true + + return t +} + +func (t *PrecedencePredicateTransition) Matches(symbol, minVocabSymbol, maxVocabSymbol int) bool { + return false +} + +func (t *PrecedencePredicateTransition) getPredicate() *PrecedencePredicate { + return NewPrecedencePredicate(t.precedence) +} + +func (t *PrecedencePredicateTransition) String() string { + return fmt.Sprint(t.precedence) + " >= _p" +} diff --git a/vendor/github.com/antlr/antlr4/runtime/Go/antlr/tree.go b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/tree.go new file mode 100644 index 000000000..08ce22bba --- /dev/null +++ b/vendor/github.com/antlr/antlr4/runtime/Go/antlr/tree.go @@ -0,0 +1,256 @@ +// Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. +// Use of this file is governed by the BSD 3-clause license that +// can be found in the LICENSE.txt file in the project root. + +package antlr + +// The basic notion of a tree has a parent, a payload, and a list of children. +// It is the most abstract interface for all the trees used by ANTLR. +/// + +var TreeInvalidInterval = NewInterval(-1, -2) + +type Tree interface { + GetParent() Tree + SetParent(Tree) + GetPayload() interface{} + GetChild(i int) Tree + GetChildCount() int + GetChildren() []Tree +} + +type SyntaxTree interface { + Tree + + GetSourceInterval() *Interval +} + +type ParseTree interface { + SyntaxTree + + Accept(Visitor ParseTreeVisitor) interface{} + GetText() string + + ToStringTree([]string, Recognizer) string +} + +type RuleNode interface { + ParseTree + + GetRuleContext() RuleContext + GetBaseRuleContext() *BaseRuleContext +} + +type TerminalNode interface { + ParseTree + + GetSymbol() Token +} + +type ErrorNode interface { + TerminalNode + + errorNode() +} + +type ParseTreeVisitor interface { + Visit(tree ParseTree) interface{} + VisitChildren(node RuleNode) interface{} + VisitTerminal(node TerminalNode) interface{} + VisitErrorNode(node ErrorNode) interface{} +} + +type BaseParseTreeVisitor struct{} + +var _ ParseTreeVisitor = &BaseParseTreeVisitor{} + +func (v *BaseParseTreeVisitor) Visit(tree ParseTree) interface{} { return tree.Accept(v) } +func (v *BaseParseTreeVisitor) VisitChildren(node RuleNode) interface{} { return nil } +func (v *BaseParseTreeVisitor) VisitTerminal(node TerminalNode) interface{} { return nil } +func (v *BaseParseTreeVisitor) VisitErrorNode(node ErrorNode) interface{} { return nil } + +// TODO +//func (this ParseTreeVisitor) Visit(ctx) { +// if (Utils.isArray(ctx)) { +// self := this +// return ctx.map(function(child) { return VisitAtom(self, child)}) +// } else { +// return VisitAtom(this, ctx) +// } +//} +// +//func VisitAtom(Visitor, ctx) { +// if (ctx.parser == nil) { //is terminal +// return +// } +// +// name := ctx.parser.ruleNames[ctx.ruleIndex] +// funcName := "Visit" + Utils.titleCase(name) +// +// return Visitor[funcName](ctx) +//} + +type ParseTreeListener interface { + VisitTerminal(node TerminalNode) + VisitErrorNode(node ErrorNode) + EnterEveryRule(ctx ParserRuleContext) + ExitEveryRule(ctx ParserRuleContext) +} + +type BaseParseTreeListener struct{} + +var _ ParseTreeListener = &BaseParseTreeListener{} + +func (l *BaseParseTreeListener) VisitTerminal(node TerminalNode) {} +func (l *BaseParseTreeListener) VisitErrorNode(node ErrorNode) {} +func (l *BaseParseTreeListener) EnterEveryRule(ctx ParserRuleContext) {} +func (l *BaseParseTreeListener) ExitEveryRule(ctx ParserRuleContext) {} + +type TerminalNodeImpl struct { + parentCtx RuleContext + + symbol Token +} + +var _ TerminalNode = &TerminalNodeImpl{} + +func NewTerminalNodeImpl(symbol Token) *TerminalNodeImpl { + tn := new(TerminalNodeImpl) + + tn.parentCtx = nil + tn.symbol = symbol + + return tn +} + +func (t *TerminalNodeImpl) GetChild(i int) Tree { + return nil +} + +func (t *TerminalNodeImpl) GetChildren() []Tree { + return nil +} + +func (t *TerminalNodeImpl) SetChildren(tree []Tree) { + panic("Cannot set children on terminal node") +} + +func (t *TerminalNodeImpl) GetSymbol() Token { + return t.symbol +} + +func (t *TerminalNodeImpl) GetParent() Tree { + return t.parentCtx +} + +func (t *TerminalNodeImpl) SetParent(tree Tree) { + t.parentCtx = tree.(RuleContext) +} + +func (t *TerminalNodeImpl) GetPayload() interface{} { + return t.symbol +} + +func (t *TerminalNodeImpl) GetSourceInterval() *Interval { + if t.symbol == nil { + return TreeInvalidInterval + } + tokenIndex := t.symbol.GetTokenIndex() + return NewInterval(tokenIndex, tokenIndex) +} + +func (t *TerminalNodeImpl) GetChildCount() int { + return 0 +} + +func (t *TerminalNodeImpl) Accept(v ParseTreeVisitor) interface{} { + return v.VisitTerminal(t) +} + +func (t *TerminalNodeImpl) GetText() string { + return t.symbol.GetText() +} + +func (t *TerminalNodeImpl) String() string { + if t.symbol.GetTokenType() == TokenEOF { + return "