-
Notifications
You must be signed in to change notification settings - Fork 12
/
main.py
136 lines (119 loc) · 4.82 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import copy
import logging
import os
import yaml
import time
import submitit
from mdsim.common import distutils
from mdsim.common.flags import flags
from mdsim.common.registry import registry
from mdsim.common.utils import (
build_config,
create_grid,
save_experiment_log,
setup_imports,
setup_logging,
compose_data_cfg
)
class Runner(submitit.helpers.Checkpointable):
def __init__(self):
self.config = None
def __call__(self, config):
setup_logging()
self.config = copy.deepcopy(config)
if config['distributed']:
distutils.setup(config)
try:
setup_imports()
# compose dataset configs.
train_data_cfg = config['dataset']
train_data_cfg = compose_data_cfg(train_data_cfg)
config['dataset'] = [
train_data_cfg,
{'src': os.path.join(os.path.dirname(train_data_cfg['src']), 'val')}
]
self.config = copy.deepcopy(config)
# initialize trainer.
self.trainer = registry.get_trainer_class(
config.get("trainer", "energy")
)(
task=config["task"],
model=config["model"],
dataset=config["dataset"],
optimizer=config["optim"],
identifier=config["identifier"],
timestamp_id=config.get("timestamp_id", None),
run_dir=config.get("run_dir", None),
is_debug=config.get("is_debug", False),
print_every=config.get("print_every", 100),
seed=config.get("seed", 0),
logger=config.get("logger", "wandb"),
local_rank=config["local_rank"],
amp=config.get("amp", False),
cpu=config.get("cpu", False),
slurm=config.get("slurm", {}),
no_energy=config.get("no_energy", False)
)
# save config.
with open(os.path.join(self.trainer.config["cmd"]["checkpoint_dir"], 'config.yml'), 'w') as yf:
yaml.dump(self.config, yf, default_flow_style=False)
self.task = registry.get_task_class(config["mode"])(self.config)
self.task.setup(self.trainer)
start_time = time.time()
self.task.run()
distutils.synchronize()
if distutils.is_master():
logging.info(f"Total time taken: {time.time() - start_time}")
finally:
if config['distributed']:
distutils.cleanup()
def checkpoint(self, *args, **kwargs):
new_runner = Runner()
self.trainer.save(checkpoint_file="checkpoint.pt", training_state=True)
self.config["checkpoint"] = self.task.chkpt_path
self.config["timestamp_id"] = self.trainer.timestamp_id
if self.trainer.logger is not None:
self.trainer.logger.mark_preempting()
return submitit.helpers.DelayedSubmission(new_runner, self.config)
if __name__ == "__main__":
setup_logging()
parser = flags.get_parser()
args, override_args = parser.parse_known_args()
if args.nequip:
os.system(f'nequip-train {args.config_yml}')
else:
config = build_config(args, override_args)
if args.submit: # Run on cluster
slurm_add_params = config.get(
"slurm", None
) # additional slurm arguments
if args.sweep_yml: # Run grid search
configs = create_grid(config, args.sweep_yml)
else:
configs = [config]
logging.info(f"Submitting {len(configs)} jobs")
executor = submitit.AutoExecutor(
folder=args.logdir / "%j", slurm_max_num_timeout=3
)
executor.update_parameters(
name=args.identifier,
mem_gb=args.slurm_mem,
timeout_min=args.slurm_timeout * 60,
slurm_partition=args.slurm_partition,
gpus_per_node=args.num_gpus,
cpus_per_task=(config["optim"]["num_workers"] + 1),
tasks_per_node=(args.num_gpus if args.distributed else 1),
nodes=args.num_nodes,
slurm_additional_parameters=slurm_add_params,
)
for config in configs:
config["slurm"] = copy.deepcopy(executor.parameters)
config["slurm"]["folder"] = str(executor.folder)
jobs = executor.map_array(Runner(), configs)
logging.info(
f"Submitted jobs: {', '.join([job.job_id for job in jobs])}"
)
log_file = save_experiment_log(args, jobs, configs)
logging.info(f"Experiment log saved to: {log_file}")
else: # Run locally
Runner()(config)