-
Notifications
You must be signed in to change notification settings - Fork 106
/
main.py
454 lines (388 loc) · 15.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
"""Main entrypoint for the app."""
import asyncio
import os
from datetime import datetime
from operator import itemgetter
from typing import List, Optional, Sequence, Tuple, Union
import langsmith
from fastapi import FastAPI, Request, Depends
from fastapi.middleware.cors import CORSMiddleware
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
from langchain.chat_models import ChatAnthropic, ChatOpenAI, ChatVertexAI
from langchain.document_loaders import AsyncHtmlLoader
from langchain.document_transformers import Html2TextTransformer
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder, PromptTemplate
from langchain.retrievers import (
ContextualCompressionRetriever,
TavilySearchAPIRetriever,
)
from langchain.retrievers.document_compressors import (
DocumentCompressorPipeline,
EmbeddingsFilter,
)
from langchain.retrievers.kay import KayAiRetriever
from langchain.retrievers.you import YouRetriever
from langchain.schema import Document
from langchain.schema.document import Document
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.messages import AIMessage, HumanMessage
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.retriever import BaseRetriever
from langchain.schema.runnable import (
ConfigurableField,
Runnable,
RunnableBranch,
RunnableLambda,
RunnableMap,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Backup
from langchain.utilities import GoogleSearchAPIWrapper
from langserve import add_routes
from langsmith import Client
from pydantic import BaseModel, Field
from uuid import UUID
RESPONSE_TEMPLATE = """\
You are an expert researcher and writer, tasked with answering any question.
Generate a comprehensive and informative, yet concise answer of 250 words or less for the \
given question based solely on the provided search results (URL and content). You must \
only use information from the provided search results. Use an unbiased and \
journalistic tone. Combine search results together into a coherent answer. Do not \
repeat text. Cite search results using [${{number}}] notation. Only cite the most \
relevant results that answer the question accurately. Place these citations at the end \
of the sentence or paragraph that reference them - do not put them all at the end. If \
different results refer to different entities within the same name, write separate \
answers for each entity. If you want to cite multiple results for the same sentence, \
format it as `[${{number1}}] [${{number2}}]`. However, you should NEVER do this with the \
same number - if you want to cite `number1` multiple times for a sentence, only do \
`[${{number1}}]` not `[${{number1}}] [${{number1}}]`
You should use bullet points in your answer for readability. Put citations where they apply \
rather than putting them all at the end.
If there is nothing in the context relevant to the question at hand, just say "Hmm, \
I'm not sure." Don't try to make up an answer.
Anything between the following `context` html blocks is retrieved from a knowledge \
bank, not part of the conversation with the user.
<context>
{context}
<context/>
REMEMBER: If there is no relevant information within the context, just say "Hmm, I'm \
not sure." Don't try to make up an answer. Anything between the preceding 'context' \
html blocks is retrieved from a knowledge bank, not part of the conversation with the \
user. The current date is {current_date}.
"""
REPHRASE_TEMPLATE = """\
Given the following conversation and a follow up question, rephrase the follow up \
question to be a standalone question.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone Question:"""
client = Client()
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
expose_headers=["*"],
)
class ChatRequest(BaseModel):
question: str
chat_history: List[Tuple[str, str]] = Field(
...,
extra={"widget": {"type": "chat", "input": "question", "output": "answer"}},
)
class GoogleCustomSearchRetriever(BaseRetriever):
search: Optional[GoogleSearchAPIWrapper] = None
num_search_results = 6
def clean_search_query(self, query: str) -> str:
# Some search tools (e.g., Google) will
# fail to return results if query has a
# leading digit: 1. "LangCh..."
# Check if the first character is a digit
if query[0].isdigit():
# Find the position of the first quote
first_quote_pos = query.find('"')
if first_quote_pos != -1:
# Extract the part of the string after the quote
query = query[first_quote_pos + 1 :]
# Remove the trailing quote if present
if query.endswith('"'):
query = query[:-1]
return query.strip()
def search_tool(self, query: str, num_search_results: int = 1) -> List[dict]:
"""Returns num_search_results pages per Google search."""
query_clean = self.clean_search_query(query)
result = self.search.results(query_clean, num_search_results)
return result
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
):
if os.environ.get("GOOGLE_API_KEY", None) == None:
raise Exception("No Google API key provided")
if self.search == None:
self.search = GoogleSearchAPIWrapper()
# Get search questions
print("Generating questions for Google Search ...")
# Get urls
print("Searching for relevant urls...")
urls_to_look = []
search_results = self.search_tool(query, self.num_search_results)
print("Searching for relevant urls...")
print(f"Search results: {search_results}")
for res in search_results:
if res.get("link", None):
urls_to_look.append(res["link"])
print(search_results)
loader = AsyncHtmlLoader(urls_to_look)
html2text = Html2TextTransformer()
print("Indexing new urls...")
docs = loader.load()
docs = list(html2text.transform_documents(docs))
for i in range(len(docs)):
if search_results[i].get("title", None):
docs[i].metadata["title"] = search_results[i]["title"]
return docs
def get_retriever():
embeddings = OpenAIEmbeddings()
splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=20)
relevance_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.8)
pipeline_compressor = DocumentCompressorPipeline(
transformers=[splitter, relevance_filter]
)
base_tavily_retriever = TavilySearchAPIRetriever(
k=6, include_raw_content=True, include_images=True
)
tavily_retriever = ContextualCompressionRetriever(
base_compressor=pipeline_compressor, base_retriever=base_tavily_retriever
)
base_google_retriever = GoogleCustomSearchRetriever()
google_retriever = ContextualCompressionRetriever(
base_compressor=pipeline_compressor, base_retriever=base_google_retriever
)
base_you_retriever = YouRetriever(
ydc_api_key=os.environ.get("YDC_API_KEY", "not_provided")
)
you_retriever = ContextualCompressionRetriever(
base_compressor=pipeline_compressor, base_retriever=base_you_retriever
)
base_kay_retriever = KayAiRetriever.create(
dataset_id="company",
data_types=["10-K", "10-Q"],
num_contexts=6,
)
kay_retriever = ContextualCompressionRetriever(
base_compressor=pipeline_compressor, base_retriever=base_kay_retriever
)
base_kay_press_release_retriever = KayAiRetriever.create(
dataset_id="company",
data_types=["PressRelease"],
num_contexts=6,
)
kay_press_release_retriever = ContextualCompressionRetriever(
base_compressor=pipeline_compressor,
base_retriever=base_kay_press_release_retriever,
)
return tavily_retriever.configurable_alternatives(
# This gives this field an id
# When configuring the end runnable, we can then use this id to configure this field
ConfigurableField(id="retriever"),
default_key="tavily",
google=google_retriever,
you=you_retriever,
kay=kay_retriever,
kay_press_release=kay_press_release_retriever,
).with_config(run_name="FinalSourceRetriever")
def create_retriever_chain(
llm: BaseLanguageModel, retriever: BaseRetriever
) -> Runnable:
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(REPHRASE_TEMPLATE)
condense_question_chain = (
CONDENSE_QUESTION_PROMPT | llm | StrOutputParser()
).with_config(
run_name="CondenseQuestion",
)
conversation_chain = condense_question_chain | retriever
return RunnableBranch(
(
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
run_name="HasChatHistoryCheck"
),
conversation_chain.with_config(run_name="RetrievalChainWithHistory"),
),
(
RunnableLambda(itemgetter("question")).with_config(
run_name="Itemgetter:question"
)
| retriever
).with_config(run_name="RetrievalChainWithNoHistory"),
).with_config(run_name="RouteDependingOnChatHistory")
def serialize_history(request: ChatRequest):
chat_history = request.get("chat_history", [])
converted_chat_history = []
for message in chat_history:
if message[0] == "human":
converted_chat_history.append(HumanMessage(content=message[1]))
elif message[0] == "ai":
converted_chat_history.append(AIMessage(content=message[1]))
return converted_chat_history
def format_docs(docs: Sequence[Document]) -> str:
formatted_docs = []
for i, doc in enumerate(docs):
doc_string = f"<doc id='{i}'>{doc.page_content}</doc>"
formatted_docs.append(doc_string)
return "\n".join(formatted_docs)
def create_chain(
llm: BaseLanguageModel,
retriever: BaseRetriever,
) -> Runnable:
retriever_chain = create_retriever_chain(llm, retriever) | RunnableLambda(
format_docs
).with_config(run_name="FormatDocumentChunks")
_context = RunnableMap(
{
"context": retriever_chain.with_config(run_name="RetrievalChain"),
"question": RunnableLambda(itemgetter("question")).with_config(
run_name="Itemgetter:question"
),
"chat_history": RunnableLambda(itemgetter("chat_history")).with_config(
run_name="Itemgetter:chat_history"
),
}
)
prompt = ChatPromptTemplate.from_messages(
[
("system", RESPONSE_TEMPLATE),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
).partial(current_date=datetime.now().isoformat())
response_synthesizer = (prompt | llm | StrOutputParser()).with_config(
run_name="GenerateResponse",
)
return (
{
"question": RunnableLambda(itemgetter("question")).with_config(
run_name="Itemgetter:question"
),
"chat_history": RunnableLambda(serialize_history).with_config(
run_name="SerializeHistory"
),
}
| _context
| response_synthesizer
)
dir_path = os.path.dirname(os.path.realpath(__file__))
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = (
dir_path + "/" + ".google_vertex_ai_credentials.json"
)
has_google_creds = os.path.isfile(os.environ["GOOGLE_APPLICATION_CREDENTIALS"])
llm = ChatOpenAI(
model="gpt-3.5-turbo-16k",
# model="gpt-4",
streaming=True,
temperature=0.1,
).configurable_alternatives(
# This gives this field an id
# When configuring the end runnable, we can then use this id to configure this field
ConfigurableField(id="llm"),
default_key="openai",
anthropic=ChatAnthropic(
model="claude-2",
max_tokens=16384,
temperature=0.1,
anthropic_api_key=os.environ.get("ANTHROPIC_API_KEY", "not_provided"),
),
)
if has_google_creds:
llm = ChatOpenAI(
model="gpt-3.5-turbo-16k",
# model="gpt-4",
streaming=True,
temperature=0.1,
).configurable_alternatives(
# This gives this field an id
# When configuring the end runnable, we can then use this id to configure this field
ConfigurableField(id="llm"),
default_key="openai",
anthropic=ChatAnthropic(
model="claude-2",
max_tokens=16384,
temperature=0.1,
anthropic_api_key=os.environ.get("ANTHROPIC_API_KEY", "not_provided"),
),
googlevertex=ChatVertexAI(
model_name="chat-bison-32k",
temperature=0.1,
max_output_tokens=8192,
stream=True,
),
)
retriever = get_retriever()
chain = create_chain(llm, retriever)
add_routes(
app, chain, path="/chat", input_type=ChatRequest, config_keys=["configurable"]
)
class SendFeedbackBody(BaseModel):
run_id: UUID
key: str = "user_score"
score: Union[float, int, bool, None] = None
feedback_id: Optional[UUID] = None
comment: Optional[str] = None
@app.post("/feedback")
async def send_feedback(body: SendFeedbackBody):
client.create_feedback(
body.run_id,
body.key,
score=body.score,
comment=body.comment,
feedback_id=body.feedback_id,
)
return {"result": "posted feedback successfully", "code": 200}
class UpdateFeedbackBody(BaseModel):
feedback_id: UUID
score: Union[float, int, bool, None] = None
comment: Optional[str] = None
@app.patch("/feedback")
async def update_feedback(body: UpdateFeedbackBody):
feedback_id = body.feedback_id
if feedback_id is None:
return {
"result": "No feedback ID provided",
"code": 400,
}
client.update_feedback(
feedback_id,
score=body.score,
comment=body.comment,
)
return {"result": "patched feedback successfully", "code": 200}
# TODO: Update when async API is available
async def _arun(func, *args, **kwargs):
return await asyncio.get_running_loop().run_in_executor(None, func, *args, **kwargs)
async def aget_trace_url(run_id: str) -> str:
for i in range(5):
try:
await _arun(client.read_run, run_id)
break
except langsmith.utils.LangSmithError:
await asyncio.sleep(1**i)
if await _arun(client.run_is_shared, run_id):
return await _arun(client.read_run_shared_link, run_id)
return await _arun(client.share_run, run_id)
class GetTraceBody(BaseModel):
run_id: UUID
@app.post("/get_trace")
async def get_trace(body: GetTraceBody):
run_id = body.run_id
if run_id is None:
return {
"result": "No LangSmith run ID provided",
"code": 400,
}
return await aget_trace_url(str(run_id))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8080)