forked from google-research/selfstudy-adversarial-robustness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_pytorch.py
94 lines (75 loc) · 2.94 KB
/
convert_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import tensorflow as tf
import torch
import math
import numpy as np
tf.config.set_visible_devices([], 'GPU')
from common.networks import AllConvModel, AllConvModelTorch
from common.framework import get_checkpoint_abs_path
import logging
tf.get_logger().setLevel(logging.ERROR)
def fix(path):
path_tf = path[:-6]
path_torch = path_tf + ".torchmodel"
if os.path.exists(path_torch):
return
print()
print("Converting", path)
# Get input sizes
all_vars = tf.train.list_variables(
get_checkpoint_abs_path(path_tf))
# Is it a list of models? Or just one?
if 'model/0' in "".join([x[0] for x in all_vars]):
prefix = 'model/0'
else:
prefix = 'model'
input_size, filter_size = [shape for name,shape in all_vars if prefix+'/layers/0/kernel' in name][0][2:]
output_size = [shape for name,shape in all_vars if prefix+'/layers/9/kernel' in name][0][-1]
num_models = sum('/0/kernel' in x for x,_ in all_vars)
# Create the TF convnet
convnet = [AllConvModel(num_classes=output_size,
num_filters=filter_size,
input_shape=(32, 32, input_size))
for _ in range(num_models)]
convnet_load = convnet[0] if num_models == 1 else convnet
tf.train.Checkpoint(model=convnet_load).restore(
get_checkpoint_abs_path(path_tf))
weights = []
for model in convnet:
ws = []
for layer in model.layers:
if len(layer.weights) > 0:
ws.append(layer.weights)
weights.extend(ws[::-1])
models = [AllConvModelTorch(10, 64, (input_size, 32, 32)) for _ in range(num_models)]
for model in models:
for layer in model.layers:
if isinstance(layer, torch.nn.Conv2d):
w, b = weights.pop()
layer.weight = torch.nn.Parameter(torch.tensor(w.numpy().transpose((3,2,0,1))))
layer.bias = torch.nn.Parameter(torch.tensor(b.numpy()))
if len(models) == 1:
torch.save(models[0].state_dict(), path_torch)
else:
torch.save([model.state_dict() for model in models], path_torch)
def run():
for root,_,fs in os.walk(sys.argv[1] if len(sys.argv) > 1 else 'checkpoints'):
for f in fs:
if ".index" in f:
fix(os.path.join(root, f))
if __name__ == "__main__":
run()