diff --git a/Mathlib/Analysis/Analytic/Basic.lean b/Mathlib/Analysis/Analytic/Basic.lean index b2a03d4aec9d97..011fa34428c159 100644 --- a/Mathlib/Analysis/Analytic/Basic.lean +++ b/Mathlib/Analysis/Analytic/Basic.lean @@ -301,6 +301,18 @@ theorem le_mul_pow_of_radius_pos (p : FormalMultilinearSeries π•œ E F) (h : 0 < rw [inv_pow, ← div_eq_mul_inv] exact hCp n +lemma radius_le_of_le {π•œ' E' F' : Type*} + [NontriviallyNormedField π•œ'] [NormedAddCommGroup E'] [NormedSpace π•œ' E'] + [NormedAddCommGroup F'] [NormedSpace π•œ' F'] + {p : FormalMultilinearSeries π•œ E F} {q : FormalMultilinearSeries π•œ' E' F'} + (h : βˆ€ n, β€–p nβ€– ≀ β€–q nβ€–) : q.radius ≀ p.radius := by + apply le_of_forall_nnreal_lt (fun r hr ↦ ?_) + rcases norm_mul_pow_le_of_lt_radius _ hr with ⟨C, -, hC⟩ + apply le_radius_of_bound _ C (fun n ↦ ?_) + apply le_trans _ (hC n) + gcongr + exact h n + /-- The radius of the sum of two formal series is at least the minimum of their two radii. -/ theorem min_radius_le_radius_add (p q : FormalMultilinearSeries π•œ E F) : min p.radius q.radius ≀ (p + q).radius := by @@ -387,7 +399,7 @@ every point of `s`. -/ def AnalyticOnNhd (f : E β†’ F) (s : Set E) := βˆ€ x, x ∈ s β†’ AnalyticAt π•œ f x -/-- `f` is analytic within `s` if it is analytic within `s` at each point of `t`. Note that +/-- `f` is analytic within `s` if it is analytic within `s` at each point of `s`. Note that this is weaker than `AnalyticOnNhd π•œ f s`, as `f` is allowed to be arbitrary outside `s`. -/ def AnalyticOn (f : E β†’ F) (s : Set E) : Prop := βˆ€ x ∈ s, AnalyticWithinAt π•œ f s x @@ -478,6 +490,16 @@ lemma HasFPowerSeriesWithinOnBall.congr {f g : E β†’ F} {p : FormalMultilinearSe refine ⟨hy, ?_⟩ simpa [edist_eq_coe_nnnorm_sub] using h'y +/-- Variant of `HasFPowerSeriesWithinOnBall.congr` in which one requests equality on `insert x s` +instead of separating `x` and `s`. -/ +lemma HasFPowerSeriesWithinOnBall.congr' {f g : E β†’ F} {p : FormalMultilinearSeries π•œ E F} + {s : Set E} {x : E} {r : ℝβ‰₯0∞} (h : HasFPowerSeriesWithinOnBall f p s x r) + (h' : EqOn g f (insert x s ∩ EMetric.ball x r)) : + HasFPowerSeriesWithinOnBall g p s x r := by + refine ⟨h.r_le, h.r_pos, fun {y} hy h'y ↦ ?_⟩ + convert h.hasSum hy h'y using 1 + exact h' ⟨hy, by simpa [edist_eq_coe_nnnorm_sub] using h'y⟩ + lemma HasFPowerSeriesWithinAt.congr {f g : E β†’ F} {p : FormalMultilinearSeries π•œ E F} {s : Set E} {x : E} (h : HasFPowerSeriesWithinAt f p s x) (h' : g =αΆ [𝓝[s] x] f) (h'' : g x = f x) : HasFPowerSeriesWithinAt g p s x := by @@ -581,6 +603,37 @@ lemma HasFPowerSeriesAt.hasFPowerSeriesWithinAt (hf : HasFPowerSeriesAt f p x) : rw [← hasFPowerSeriesWithinAt_univ] at hf apply hf.mono (subset_univ _) +theorem HasFPowerSeriesWithinAt.mono_of_mem + (h : HasFPowerSeriesWithinAt f p s x) (hst : s ∈ 𝓝[t] x) : + HasFPowerSeriesWithinAt f p t x := by + rcases h with ⟨r, hr⟩ + rcases EMetric.mem_nhdsWithin_iff.1 hst with ⟨r', r'_pos, hr'⟩ + refine ⟨min r r', ?_⟩ + have Z := hr.of_le (by simp [r'_pos, hr.r_pos]) (min_le_left r r') + refine ⟨Z.r_le, Z.r_pos, fun {y} hy h'y ↦ ?_⟩ + apply Z.hasSum ?_ h'y + simp only [mem_insert_iff, add_right_eq_self] at hy + rcases hy with rfl | hy + Β· simp + apply mem_insert_of_mem _ (hr' ?_) + simp only [EMetric.mem_ball, edist_eq_coe_nnnorm_sub, sub_zero, lt_min_iff, mem_inter_iff, + add_sub_cancel_left, hy, and_true] at h'y ⊒ + exact h'y.2 + +@[simp] lemma hasFPowerSeriesWithinOnBall_insert_self : + HasFPowerSeriesWithinOnBall f p (insert x s) x r ↔ HasFPowerSeriesWithinOnBall f p s x r := by + refine ⟨fun h ↦ ?_, fun h ↦ ?_⟩ <;> + exact ⟨h.r_le, h.r_pos, fun {y} ↦ by simpa only [insert_idem] using h.hasSum (y := y)⟩ + +@[simp] theorem hasFPowerSeriesWithinAt_insert {y : E} : + HasFPowerSeriesWithinAt f p (insert y s) x ↔ HasFPowerSeriesWithinAt f p s x := by + rcases eq_or_ne x y with rfl | hy + Β· simp [HasFPowerSeriesWithinAt] + Β· refine ⟨fun h ↦ h.mono (subset_insert _ _), fun h ↦ ?_⟩ + apply HasFPowerSeriesWithinAt.mono_of_mem h + rw [nhdsWithin_insert_of_ne hy] + exact self_mem_nhdsWithin + theorem HasFPowerSeriesWithinOnBall.coeff_zero (hf : HasFPowerSeriesWithinOnBall f pf s x r) (v : Fin 0 β†’ E) : pf 0 v = f x := by have v_eq : v = fun i => 0 := Subsingleton.elim _ _ @@ -697,6 +750,11 @@ theorem analyticOnNhd_congr (hs : IsOpen s) (h : s.EqOn f g) : AnalyticOnNhd @[deprecated (since := "2024-09-26")] alias analyticOn_congr := analyticOnNhd_congr +theorem AnalyticWithinAt.mono_of_mem + (h : AnalyticWithinAt π•œ f s x) (hst : s ∈ 𝓝[t] x) : AnalyticWithinAt π•œ f t x := by + rcases h with ⟨p, hp⟩ + exact ⟨p, hp.mono_of_mem hst⟩ + lemma AnalyticOn.mono {f : E β†’ F} {s t : Set E} (h : AnalyticOn π•œ f t) (hs : s βŠ† t) : AnalyticOn π•œ f s := fun _ m ↦ (h _ (hs m)).mono hs @@ -704,21 +762,41 @@ lemma AnalyticOn.mono {f : E β†’ F} {s t : Set E} (h : AnalyticOn π•œ f t) @[deprecated (since := "2024-09-26")] alias AnalyticWithinOn.mono := AnalyticOn.mono +@[simp] theorem analyticWithinAt_insert {f : E β†’ F} {s : Set E} {x y : E} : + AnalyticWithinAt π•œ f (insert y s) x ↔ AnalyticWithinAt π•œ f s x := by + simp [AnalyticWithinAt] + /-! ### Composition with linear maps -/ +/-- If a function `f` has a power series `p` on a ball within a set and `g` is linear, +then `g ∘ f` has the power series `g ∘ p` on the same ball. -/ +theorem ContinuousLinearMap.comp_hasFPowerSeriesWithinOnBall (g : F β†’L[π•œ] G) + (h : HasFPowerSeriesWithinOnBall f p s x r) : + HasFPowerSeriesWithinOnBall (g ∘ f) (g.compFormalMultilinearSeries p) s x r where + r_le := h.r_le.trans (p.radius_le_radius_continuousLinearMap_comp _) + r_pos := h.r_pos + hasSum hy h'y := by + simpa only [ContinuousLinearMap.compFormalMultilinearSeries_apply, + ContinuousLinearMap.compContinuousMultilinearMap_coe, Function.comp_apply] using + g.hasSum (h.hasSum hy h'y) + /-- If a function `f` has a power series `p` on a ball and `g` is linear, then `g ∘ f` has the power series `g ∘ p` on the same ball. -/ theorem ContinuousLinearMap.comp_hasFPowerSeriesOnBall (g : F β†’L[π•œ] G) (h : HasFPowerSeriesOnBall f p x r) : - HasFPowerSeriesOnBall (g ∘ f) (g.compFormalMultilinearSeries p) x r := - { r_le := h.r_le.trans (p.radius_le_radius_continuousLinearMap_comp _) - r_pos := h.r_pos - hasSum := fun hy => by - simpa only [ContinuousLinearMap.compFormalMultilinearSeries_apply, - ContinuousLinearMap.compContinuousMultilinearMap_coe, Function.comp_apply] using - g.hasSum (h.hasSum hy) } + HasFPowerSeriesOnBall (g ∘ f) (g.compFormalMultilinearSeries p) x r := by + rw [← hasFPowerSeriesWithinOnBall_univ] at h ⊒ + exact g.comp_hasFPowerSeriesWithinOnBall h + +/-- If a function `f` is analytic on a set `s` and `g` is linear, then `g ∘ f` is analytic +on `s`. -/ +theorem ContinuousLinearMap.comp_analyticOn (g : F β†’L[π•œ] G) (h : AnalyticOn π•œ f s) : + AnalyticOn π•œ (g ∘ f) s := by + rintro x hx + rcases h x hx with ⟨p, r, hp⟩ + exact ⟨g.compFormalMultilinearSeries p, r, g.comp_hasFPowerSeriesWithinOnBall hp⟩ /-- If a function `f` is analytic on a set `s` and `g` is linear, then `g ∘ f` is analytic on `s`. -/ @@ -729,9 +807,6 @@ theorem ContinuousLinearMap.comp_analyticOnNhd rcases h x hx with ⟨p, r, hp⟩ exact ⟨g.compFormalMultilinearSeries p, r, g.comp_hasFPowerSeriesOnBall hp⟩ -@[deprecated (since := "2024-09-26")] -alias ContinuousLinearMap.comp_analyticOn := ContinuousLinearMap.comp_analyticOnNhd - /-! ### Relation between analytic function and the partial sums of its power series -/ @@ -1228,6 +1303,10 @@ protected theorem FormalMultilinearSeries.hasFPowerSeriesOnBall [CompleteSpace F rw [zero_add] exact p.hasSum hy } +theorem HasFPowerSeriesWithinOnBall.sum (h : HasFPowerSeriesWithinOnBall f p s x r) {y : E} + (h'y : x + y ∈ insert x s) (hy : y ∈ EMetric.ball (0 : E) r) : f (x + y) = p.sum y := + (h.hasSum h'y hy).tsum_eq.symm + theorem HasFPowerSeriesOnBall.sum (h : HasFPowerSeriesOnBall f p x r) {y : E} (hy : y ∈ EMetric.ball (0 : E) r) : f (x + y) = p.sum y := (h.hasSum hy).tsum_eq.symm diff --git a/Mathlib/Analysis/Analytic/ChangeOrigin.lean b/Mathlib/Analysis/Analytic/ChangeOrigin.lean index ea293a32628846..1658276bf5b4ac 100644 --- a/Mathlib/Analysis/Analytic/ChangeOrigin.lean +++ b/Mathlib/Analysis/Analytic/ChangeOrigin.lean @@ -226,6 +226,12 @@ def derivSeries : FormalMultilinearSeries π•œ E (E β†’L[π•œ] F) := (continuousMultilinearCurryFin1 π•œ E F : (E[Γ—1]β†’L[π•œ] F) β†’L[π•œ] E β†’L[π•œ] F) |>.compFormalMultilinearSeries (p.changeOriginSeries 1) +theorem radius_le_radius_derivSeries : p.radius ≀ p.derivSeries.radius := by + apply (p.le_changeOriginSeries_radius 1).trans (radius_le_of_le (fun n ↦ ?_)) + apply (ContinuousLinearMap.norm_compContinuousMultilinearMap_le _ _).trans + apply mul_le_of_le_one_left (norm_nonneg _) + exact ContinuousLinearMap.opNorm_le_bound _ zero_le_one (by simp) + end -- From this point on, assume that the space is complete, to make sure that series that converge @@ -284,39 +290,69 @@ theorem analyticAt_changeOrigin (p : FormalMultilinearSeries π•œ E F) (rp : p.r end FormalMultilinearSeries + section -variable [CompleteSpace F] {f : E β†’ F} {p : FormalMultilinearSeries π•œ E F} {x y : E} {r : ℝβ‰₯0∞} +variable [CompleteSpace F] {f : E β†’ F} {p : FormalMultilinearSeries π•œ E F} {s : Set E} + {x y : E} {r : ℝβ‰₯0∞} + +/-- If a function admits a power series expansion `p` within a set `s` on a ball `B (x, r)`, then +it also admits a power series on any subball of this ball (even with a different center provided +it belongs to `s`), given by `p.changeOrigin`. -/ +theorem HasFPowerSeriesWithinOnBall.changeOrigin (hf : HasFPowerSeriesWithinOnBall f p s x r) + (h : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) (hy : x + y ∈ insert x s) : + HasFPowerSeriesWithinOnBall f (p.changeOrigin y) s (x + y) (r - β€–yβ€–β‚Š) where + r_le := by + apply le_trans _ p.changeOrigin_radius + exact tsub_le_tsub hf.r_le le_rfl + r_pos := by simp [h] + hasSum {z} h'z hz := by + have : f (x + y + z) = + FormalMultilinearSeries.sum (FormalMultilinearSeries.changeOrigin p y) z := by + rw [mem_emetric_ball_zero_iff, lt_tsub_iff_right, add_comm] at hz + rw [p.changeOrigin_eval (hz.trans_le hf.r_le), add_assoc, hf.sum] + Β· have : insert (x + y) s βŠ† insert (x + y) (insert x s) := by + apply insert_subset_insert (subset_insert _ _) + rw [insert_eq_of_mem hy] at this + apply this + simpa [add_assoc] using h'z + refine mem_emetric_ball_zero_iff.2 (lt_of_le_of_lt ?_ hz) + exact mod_cast nnnorm_add_le y z + rw [this] + apply (p.changeOrigin y).hasSum + refine EMetric.ball_subset_ball (le_trans ?_ p.changeOrigin_radius) hz + exact tsub_le_tsub hf.r_le le_rfl /-- If a function admits a power series expansion `p` on a ball `B (x, r)`, then it also admits a power series on any subball of this ball (even with a different center), given by `p.changeOrigin`. -/ theorem HasFPowerSeriesOnBall.changeOrigin (hf : HasFPowerSeriesOnBall f p x r) - (h : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFPowerSeriesOnBall f (p.changeOrigin y) (x + y) (r - β€–yβ€–β‚Š) := - { r_le := by - apply le_trans _ p.changeOrigin_radius - exact tsub_le_tsub hf.r_le le_rfl - r_pos := by simp [h] - hasSum := fun {z} hz => by - have : f (x + y + z) = - FormalMultilinearSeries.sum (FormalMultilinearSeries.changeOrigin p y) z := by - rw [mem_emetric_ball_zero_iff, lt_tsub_iff_right, add_comm] at hz - rw [p.changeOrigin_eval (hz.trans_le hf.r_le), add_assoc, hf.sum] - refine mem_emetric_ball_zero_iff.2 (lt_of_le_of_lt ?_ hz) - exact mod_cast nnnorm_add_le y z - rw [this] - apply (p.changeOrigin y).hasSum - refine EMetric.ball_subset_ball (le_trans ?_ p.changeOrigin_radius) hz - exact tsub_le_tsub hf.r_le le_rfl } + (h : (β€–yβ€–β‚Š : ℝβ‰₯0∞) < r) : HasFPowerSeriesOnBall f (p.changeOrigin y) (x + y) (r - β€–yβ€–β‚Š) := by + rw [← hasFPowerSeriesWithinOnBall_univ] at hf ⊒ + exact hf.changeOrigin h (by simp) + +/-- If a function admits a power series expansion `p` on an open ball `B (x, r)`, then +it is analytic at every point of this ball. -/ +theorem HasFPowerSeriesWithinOnBall.analyticWithinAt_of_mem + (hf : HasFPowerSeriesWithinOnBall f p s x r) + (h : y ∈ insert x s ∩ EMetric.ball x r) : AnalyticWithinAt π•œ f s y := by + have : (β€–y - xβ€–β‚Š : ℝβ‰₯0∞) < r := by simpa [edist_eq_coe_nnnorm_sub] using h.2 + have := hf.changeOrigin this (by simpa using h.1) + rw [add_sub_cancel] at this + exact this.analyticWithinAt /-- If a function admits a power series expansion `p` on an open ball `B (x, r)`, then it is analytic at every point of this ball. -/ theorem HasFPowerSeriesOnBall.analyticAt_of_mem (hf : HasFPowerSeriesOnBall f p x r) (h : y ∈ EMetric.ball x r) : AnalyticAt π•œ f y := by - have : (β€–y - xβ€–β‚Š : ℝβ‰₯0∞) < r := by simpa [edist_eq_coe_nnnorm_sub] using h - have := hf.changeOrigin this - rw [add_sub_cancel] at this - exact this.analyticAt + rw [← hasFPowerSeriesWithinOnBall_univ] at hf + rw [← analyticWithinAt_univ] + exact hf.analyticWithinAt_of_mem (by simpa using h) + +theorem HasFPowerSeriesWithinOnBall.analyticOn (hf : HasFPowerSeriesWithinOnBall f p s x r) : + AnalyticOn π•œ f (insert x s ∩ EMetric.ball x r) := + fun _ hy ↦ ((analyticWithinAt_insert (y := x)).2 (hf.analyticWithinAt_of_mem hy)).mono + inter_subset_left theorem HasFPowerSeriesOnBall.analyticOnNhd (hf : HasFPowerSeriesOnBall f p x r) : AnalyticOnNhd π•œ f (EMetric.ball x r) :=