-
Notifications
You must be signed in to change notification settings - Fork 15
/
main_cifar10.py
227 lines (184 loc) · 7.13 KB
/
main_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""Train CIFAR10 with PyTorch."""
from __future__ import print_function
import argparse
import os
import numpy
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from models import PreActResNet18
from utils import progress_bar
from torch.autograd import Variable
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('--exp', default='cifar10_mixup', type=str,
help='name of the experiment')
parser.add_argument('--mixup', action='store_true',
help='whether to use mixup or not')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(
root='/data/public/cifar10', train=True, download=True,
transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(
root='/data/public/cifar10', train=False, download=True,
transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2)
# Model
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint_{}/ckpt.t7'.format(args.exp))
net = checkpoint['net']
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
else:
print('==> Building model..')
# net = VGG('VGG19')
# net = ResNet18()
net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()
if use_cuda:
net.cuda()
net = torch.nn.DataParallel(
net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=1e-4)
# Training
def shuffle_minibatch(inputs, targets, mixup=True):
"""Shuffle a minibatch and do linear interpolation between images and labels.
Args:
inputs: a numpy array of images with size batch_size x H x W x 3.
targets: a numpy array of labels with size batch_size x 1.
mixup: a boolen as whether to do mixup or not. If mixup is True, we
sample the weight from beta distribution using parameter alpha=1,
beta=1. If mixup is False, we set the weight to be 1 and 0
respectively for the randomly shuffled mini-batches.
"""
batch_size = inputs.shape[0]
rp1 = torch.randperm(batch_size)
inputs1 = inputs[rp1]
targets1 = targets[rp1]
targets1_1 = targets1.unsqueeze(1)
rp2 = torch.randperm(batch_size)
inputs2 = inputs[rp2]
targets2 = targets[rp2]
targets2_1 = targets2.unsqueeze(1)
y_onehot = torch.FloatTensor(batch_size, 10)
y_onehot.zero_()
targets1_oh = y_onehot.scatter_(1, targets1_1, 1)
y_onehot2 = torch.FloatTensor(batch_size, 10)
y_onehot2.zero_()
targets2_oh = y_onehot2.scatter_(1, targets2_1, 1)
if mixup is True:
a = numpy.random.beta(1, 1, [batch_size, 1])
else:
a = numpy.ones((batch_size, 1))
b = numpy.tile(a[..., None, None], [1, 3, 32, 32])
inputs1 = inputs1 * torch.from_numpy(b).float()
inputs2 = inputs2 * torch.from_numpy(1 - b).float()
c = numpy.tile(a, [1, 10])
targets1_oh = targets1_oh.float() * torch.from_numpy(c).float()
targets2_oh = targets2_oh.float() * torch.from_numpy(1 - c).float()
inputs_shuffle = inputs1 + inputs2
targets_shuffle = targets1_oh + targets2_oh
return inputs_shuffle, targets_shuffle
def train(epoch):
"""Training function."""
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs_shuffle, targets_shuffle = shuffle_minibatch(
inputs, targets, args.mixup)
if use_cuda:
inputs_shuffle, targets_shuffle = inputs_shuffle.cuda(), \
targets_shuffle.cuda()
optimizer.zero_grad()
inputs_shuffle, targets_shuffle = Variable(
inputs_shuffle), Variable(targets_shuffle)
outputs = net(inputs_shuffle)
m = nn.LogSoftmax()
loss = -m(outputs) * targets_shuffle
loss = torch.sum(loss) / 128
loss.backward()
optimizer.step()
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
_, targets = torch.max(targets_shuffle.data, 1)
correct += predicted.eq(targets).cpu().sum()
progress_bar(batch_idx, len(trainloader), 'Epoch %d, Training Loss: %.3f | Acc: %.3f%% (%d/%d)' # noqa
% (epoch, train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) # noqa
def test(epoch):
"""Testing function."""
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
progress_bar(batch_idx, len(testloader), 'Epoch %d, Test Loss: %.3f | Acc: %.3f%% (%d/%d)' # noqa
% (epoch, test_loss / (batch_idx + 1), 100. * correct / total, correct, total)) # noqa
# Save checkpoint.
acc = 100. * correct / total
if acc > best_acc:
print('Saving..')
state = {
'net': net.module if use_cuda else net,
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint_{}'.format(args.exp)):
os.mkdir('checkpoint_{}'.format(args.exp))
torch.save(state, './checkpoint_{}/ckpt.t7'.format(args.exp))
best_acc = acc
scheduler = lr_scheduler.MultiStepLR(
optimizer, milestones=[100, 150], gamma=0.1)
for epoch in range(start_epoch, start_epoch + 200):
scheduler.step()
train(epoch)
test(epoch)