-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph.go
467 lines (379 loc) · 10.7 KB
/
graph.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
package graph
import (
"container/heap"
"errors"
"fmt"
"golang.org/x/exp/slices"
"math"
"sync"
)
type Vertex[TValue comparable] struct {
value TValue
}
func (n *Vertex[TValue]) String() string {
return fmt.Sprintf("%v", n.value)
}
type weightedEdge[TValue comparable] struct {
destination *Vertex[TValue]
weight uint
tag *string
}
func (we weightedEdge[TValue]) Destination() TValue {
return we.destination.value
}
func (we weightedEdge[TValue]) Weight() uint {
return we.weight
}
func (we weightedEdge[TValue]) Tag() *string {
return we.tag
}
type WeightedEdge[TValue comparable] interface {
Destination() TValue
Weight() uint
Tag() *string
}
type PathEdge[TValue comparable] struct {
Source *Vertex[TValue]
Destination *Vertex[TValue]
Weight uint
Tag *string
}
func (pe PathEdge[TValue]) String() string {
if pe.Tag == nil {
return fmt.Sprintf("%s -> %s, Cost: %d",
pe.Source.String(),
pe.Destination.String(),
pe.Weight)
}
return fmt.Sprintf("%s -> %s, Cost: %d, tag: '%s'",
pe.Source.String(),
pe.Destination.String(),
pe.Weight,
*pe.Tag)
}
// Graph - a directed, weighted graph.
type Graph[TValue comparable] struct {
vertices []*Vertex[TValue]
edges map[Vertex[TValue]][]weightedEdge[TValue]
lock sync.RWMutex
}
// AddVertex adds a vertex to the graph without any edges. If the vertex already
// exists, no action is taken.
func (g *Graph[TValue]) AddVertex(v *Vertex[TValue]) {
g.lock.Lock()
defer g.lock.Unlock()
if !slices.Contains(g.vertices, v) {
g.vertices = append(g.vertices, v)
}
}
// RemoveSymmetricEdge removes src->dest and dest->src
func (g *Graph[TValue]) RemoveSymmetricEdge(src, dest *Vertex[TValue], tag *string) {
g.lock.Lock()
defer g.lock.Unlock()
g.removeEdge(src, dest, tag)
g.removeEdge(dest, src, tag)
}
// RemoveEdge removes only the edge src->dest. It will not remove dest->src
func (g *Graph[TValue]) RemoveEdge(src, dest *Vertex[TValue], tag *string) {
g.lock.Lock()
defer g.lock.Unlock()
g.removeEdge(src, dest, tag)
}
func (g *Graph[TValue]) removeEdge(src, dest *Vertex[TValue], tag *string) {
if g.vertices == nil {
return
}
if !g.containsEdge(src, dest, tag) {
return
}
f := func(we weightedEdge[TValue]) bool {
return we.destination == dest
}
if idx := slices.IndexFunc(g.edges[*src], f); idx >= 0 {
g.edges[*src] = slices.Delete(g.edges[*src], idx, idx+1)
}
}
// AddSymmetricEdge creates an edge from src->dest and dest->src with the same weight
// for both directions
func (g *Graph[TValue]) AddSymmetricEdge(src, dest *Vertex[TValue], weight uint, tag *string) error {
if err := g.isEdgeValid(src, dest, weight); err != nil {
return err
}
g.lock.Lock()
defer g.lock.Unlock()
if err := g.addEdge(src, dest, weight, tag); err != nil {
return err
}
if err := g.addEdge(dest, src, weight, tag); err != nil {
// rollback the previous add then return err
g.removeEdge(src, dest, tag)
return err
}
return nil
}
// AddEdge creates a directed edge from src->dest with a non-zero weight and
// an optional tag. Supply `nil` if there's no tag.
func (g *Graph[TValue]) AddEdge(src *Vertex[TValue], dest *Vertex[TValue], weight uint, tag *string) error {
if err := g.isEdgeValid(src, dest, weight); err != nil {
return err
}
g.lock.Lock()
defer g.lock.Unlock()
return g.addEdge(src, dest, weight, tag)
}
func (g *Graph[TValue]) isEdgeValid(src, dest *Vertex[TValue], weight uint) error {
if weight == 0 {
return errors.New("weight cannot be 0")
}
if src == nil {
return errors.New("src cannot be nil")
}
if dest == nil {
return errors.New("dest cannot be nil")
}
if !g.containsVertex(src) {
return errors.New("graph does not contain src")
}
if !g.containsVertex(dest) {
return errors.New("graph does not contain dest")
}
return nil
}
// addEdge is the helper method for both AddEdge and AddSymmetricEdge.
func (g *Graph[TValue]) addEdge(src *Vertex[TValue], dest *Vertex[TValue], weight uint, tag *string) error {
if !slices.Contains(g.vertices, src) {
return errors.New("unable to locate src in graph")
}
if !slices.Contains(g.vertices, dest) {
return errors.New("unable to locate dest in graph")
}
if g.edges == nil {
g.edges = make(map[Vertex[TValue]][]weightedEdge[TValue])
}
// check if src's edges contains dest
if g.containsEdge(src, dest, tag) {
return errors.New("this edge is already present")
}
// otherwise add src->dest
g.edges[*src] = append(g.edges[*src], weightedEdge[TValue]{dest, weight, tag})
return nil
}
// ContainsVertex checks if the graph contains a vertex
func (g *Graph[TValue]) ContainsVertex(v *Vertex[TValue]) bool {
g.lock.RLock()
defer g.lock.RUnlock()
return g.containsVertex(v)
}
func (g *Graph[TValue]) containsVertex(v *Vertex[TValue]) bool {
return slices.Contains(g.vertices, v)
}
// ContainsEdge checks if the graph contains the edge src->dest
func (g *Graph[TValue]) ContainsEdge(src, dest *Vertex[TValue], tag *string) bool {
g.lock.RLock()
defer g.lock.RUnlock()
return g.containsEdge(src, dest, tag)
}
// GetEdge retrieves an edge from the graph.
func (g *Graph[TValue]) GetEdge(src, dest *Vertex[TValue], tag *string) (WeightedEdge[TValue], error) {
g.lock.RLock()
defer g.lock.RUnlock()
return g.getEdge(src, dest, tag)
}
func (g *Graph[TValue]) getEdge(src, dest *Vertex[TValue], tag *string) (WeightedEdge[TValue], error) {
if !g.ContainsEdge(src, dest, tag) {
return nil, errors.New("unable to find edge")
}
es := g.edges[*src]
for _, we := range es {
if we.destination == dest && *we.tag == *tag {
return we, nil
}
}
return nil, errors.New("unable to find edge")
}
// ContainsSymmetricEdge checks if the graph contains an edge in both
// directions AND if that edge has the same weight in both directions.
func (g *Graph[TValue]) ContainsSymmetricEdge(src, dest *Vertex[TValue], tag *string) bool {
g.lock.RLock()
defer g.lock.RUnlock()
if !g.containsEdge(src, dest, tag) {
return false
}
if !g.containsEdge(dest, src, tag) {
return false
}
e1, err := g.getEdge(src, dest, tag)
if err != nil {
return false
}
e2, err := g.getEdge(dest, src, tag)
if err != nil {
return false
}
return e1.Weight() == e2.Weight()
}
func (g *Graph[TValue]) containsEdge(src, dest *Vertex[TValue], tag *string) bool {
edges, exists := g.edges[*src]
if !exists {
return false
}
for _, edge := range edges {
if edge.destination != dest {
continue
}
// found the destination, now check tags
// both tags are nil that's the same edge, we're done!
if edge.tag == nil && tag == nil {
return true
}
// tag isn't nil, edge isn't nil.
// We know that edge.destination does equal destination.
// All that's left is to check the tags!
if *edge.tag == *tag {
return true
}
}
return false
}
// ShortestPath is an implementation of Dijkstra's algorithm for a single
// src->dest route.
func (g *Graph[TValue]) ShortestPath(src, dest *Vertex[TValue]) ([]PathEdge[TValue], error) {
g.lock.RLock()
defer g.lock.RUnlock()
return g.shortestPath(src, dest)
}
type queueItem[TValue comparable] struct {
source *Vertex[TValue]
tag *string
weight uint
}
// shortestPath is an implementation of Dijkstra's algorithm
//
// Wikipedia claims:
//
// 1 function Dijkstra(Graph, source, target):
// 2
// 3 for each vertex v in Graph.Vertices:
// 4 dist[v] ← INFINITY
// 5 prev[v] ← UNDEFINED
// 6 add v to Q
// 7 dist[source] ← 0
// 8
// 9 while Q is not empty:
//
// 10 u ← vertex in Q with min dist[u]
//
// if u = target
// break
//
// 11 remove u from Q
// 12
// 13 for each neighbor v of u still in Q:
// 14 alt ← dist[u] + Graph.Edges(u, v)
// 15 if alt < dist[v]:
// 16 dist[v] ← alt
// 17 prev[v] ← u
// 18
//
// 1 S ← empty sequence
// 2 u ← target
// 3 if prev[u] is defined or u = source: // Do something only if the vertex is reachable
// 4 while u is defined: // Construct the shortest path with a stack S
// 5 insert u at the beginning of S // Push the vertex onto the stack
// 6 u ← prev[u] // Traverse from target to source
func (g *Graph[TValue]) shortestPath(src, dest *Vertex[TValue]) ([]PathEdge[TValue], error) {
// Set the distance to src to 0
distance := make(map[*Vertex[TValue]]uint)
distance[src] = 0
// create a vertex priority queue
q := &vertexDistanceHeap[TValue]{}
// for each vertex v in Graph.Vertices:
for _, v := range g.vertices {
if *v != *src {
// dist[v] ← INFINITY
distance[v] = math.MaxInt
// skipping prev[v] ← UNDEFINED
}
// Q.add_with_priority(v, dist[v])
heap.Push(q, vertexDistance[TValue]{vertex: v, distance: distance[v]})
}
prev := make(map[*Vertex[TValue]]queueItem[TValue])
// while Q is not empty:
for q.Len() != 0 {
// u ← vertex in Q with min dist[u]
u := heap.Pop(q).(vertexDistance[TValue])
//
if u.vertex == dest {
break
}
neighbors := g.edges[*u.vertex]
// for each neighbor v of u
for _, uToV := range neighbors {
v := uToV.destination
// alt ← dist[u] + Graph.Edges(u, v)
alt := distance[u.vertex] + uToV.weight
if distance[v] > alt {
// dist[v] ← alt
distance[v] = alt
// prev[v] ← u
prev[v] = queueItem[TValue]{u.vertex, uToV.tag, uToV.weight}
// Q.decrease_priority(v, alt)
q.updateDistance(v, alt)
}
}
heap.Init(q)
}
// And now we build up the shortest path!
// S ← empty sequence
path := []PathEdge[TValue]{}
// u ← target
u := dest
for {
// if prev[u] is defined or u = source:
qn, ok := prev[u]
if !ok {
break
}
// insert u at the beginning of S
t := make([]PathEdge[TValue], len(path)+1)
t[0] = PathEdge[TValue]{qn.source, u, qn.weight, qn.tag}
copy(t[1:], path)
path = t
// u ← prev[u]
u = prev[u].source
}
return path, nil
}
// vertexDistance implements a min-heap for calculating the shortest-path between
// two vertices in a graph
type vertexDistance[T comparable] struct {
vertex *Vertex[T]
distance uint
}
type vertexDistanceHeap[T comparable] []vertexDistance[T]
func (h *vertexDistanceHeap[T]) Len() int {
return len(*h)
}
func (h *vertexDistanceHeap[T]) Less(i, j int) bool {
return (*h)[i].distance < (*h)[j].distance
}
func (h *vertexDistanceHeap[T]) Swap(i, j int) {
(*h)[i], (*h)[j] = (*h)[j], (*h)[i]
}
func (h *vertexDistanceHeap[T]) Push(x interface{}) {
*h = append(*h, x.(vertexDistance[T]))
}
func (h *vertexDistanceHeap[T]) Pop() interface{} {
heapSize := len(*h)
lastVertex := (*h)[heapSize-1]
*h = (*h)[0 : heapSize-1]
return lastVertex
}
func (h *vertexDistanceHeap[T]) updateDistance(id *Vertex[T], val uint) {
for i := 0; i < len(*h); i++ {
if (*h)[i].vertex == id {
(*h)[i].distance = val
break
}
}
}