forked from gaussic/text-classification-cnn-rnn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_rnn.py
207 lines (166 loc) · 7.17 KB
/
run_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/python
# -*- coding: utf-8 -*-
from __future__ import print_function
import os
import sys
import time
from datetime import timedelta
import numpy as np
import tensorflow as tf
from sklearn import metrics
from rnn_model import TRNNConfig, TextRNN
from data.cnews_loader import read_vocab, read_category, batch_iter, process_file, build_vocab
base_path = 'data/cnews'
train_path = os.path.join(base_path, 'cnews.train.txt')
test_path = os.path.join(base_path, 'cnews.test.txt')
val_path = os.path.join(base_path, 'cnews.val.txt')
vocab_path = os.path.join(base_path, 'cnews.vocab.txt')
tensorboard_path = 'tensorboard/textrnn'
save_path = 'checkpoints/textrnn'
save_path = os.path.join(save_path, 'best_validation') # 最佳验证结果保存路径
def get_time_dif(start_time):
"""获取已使用时间"""
end_time = time.time()
time_dif = end_time - start_time
return timedelta(seconds=int(round(time_dif)))
def feed_data(batch_x, batch_y, keep_prob, is_train=False):
feed_dict = {
model.input_x: batch_x,
model.input_y: batch_y,
model.keep_prob: keep_prob,
model.is_train: is_train
}
return feed_dict
def evaluate(sess, x, y):
"""评估在某一数据上的准确率和损失"""
data_len = len(x)
batch_eval = batch_iter(x, y, batch_size=128)
total_loss = 0.0
total_acc = 0.0
for batch_x, batch_y in batch_eval:
batch_len = len(batch_x)
feed_dict = feed_data(batch_x, batch_y, keep_prob=1.0)
loss, acc = sess.run([model.loss, model.acc], feed_dict=feed_dict)
total_loss += loss * batch_len
total_acc += acc * batch_len
return total_loss / data_len, total_acc / data_len
def train():
print("Configuring TensorBoard and Saver...")
# 配置 Tensorboard,重新训练时,请将tensorboard文件夹删除,不然图会覆盖
if not os.path.exists(tensorboard_path):
os.makedirs(tensorboard_path)
tf.summary.scalar("loss", model.loss)
tf.summary.scalar("accuracy", model.acc)
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(tensorboard_path)
# 配置 Saver
saver = tf.train.Saver()
if not os.path.exists(save_path):
os.makedirs(save_path)
print("Loading training data...")
# 载入训练集与验证集
start_time = time.time()
train_x, train_y = process_file(train_path, word_to_id, cat_to_id, config.seq_length)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
print("Loading validation data...")
start_time = time.time()
val_x, val_y = process_file(val_path, word_to_id, cat_to_id, config.seq_length)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
# 创建session
session = tf.Session()
session.run(tf.global_variables_initializer())
writer.add_graph(session.graph)
print('Training and evaluating...')
start_time = time.time()
total_batch = 0 # 总批次
best_val_acc = 0.0 # 最佳验证集准确率
last_improved = 0 # 记录上一次提升批次
require_improvement = 1000 # 如果超过1000轮未提升,提前结束训练
jump_flag = False
for epoch in range(config.num_epochs):
print('Epoch:', epoch + 1)
batch_train = batch_iter(train_x, train_y, config.batch_size)
for batch_x, batch_y in batch_train:
feed_dict = feed_data(batch_x, batch_y, keep_prob=config.dropout_keep_prob, is_train=True)
session.run(model.optim, feed_dict=feed_dict) # 运行优化
if total_batch % config.save_per_batch == 0:
# 每多少轮次将训练结果写入tensorboard scalar
s = session.run(merged_summary, feed_dict=feed_dict)
writer.add_summary(s, total_batch)
if total_batch % config.print_per_batch == 0:
# 每多少轮次输出在训练集和验证集上的性能
feed_dict[model.keep_prob] = 1.0
train_loss, train_acc = session.run([model.loss, model.acc], feed_dict=feed_dict)
val_loss, val_acc = evaluate(session, val_x, val_y)
if val_acc > best_val_acc:
# 保存最好结果
best_val_acc = val_acc
last_improved = total_batch
saver.save(sess=session, save_path=save_path)
improved_str = '*'
else:
improved_str = ''
time_dif = get_time_dif(start_time)
msg = 'Iter: {0:>8}, Train Loss: {1:>8.2}, Train Acc: {2:>8.2%},' \
+ ' Val Loss: {3:>8.2}, Val Acc: {4:>8.2%}, Time: {5} {6}'
print(msg.format(total_batch, train_loss, train_acc, val_loss, val_acc, time_dif, improved_str))
total_batch += 1
if total_batch - last_improved > require_improvement:
# 验证集正确率长期不提升,提前结束训练
print("No optimization for a long time, auto-stopping...")
jump_flag = True
break # 跳出循环
if jump_flag: # 同上
break
def test():
print("Loading test data...")
start_time = time.time()
test_x, test_y = process_file(test_path, word_to_id, cat_to_id, config.seq_length)
session = tf.Session()
session.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess=session, save_path=save_path) # 读取保存的模型
print('Testing...')
test_loss, test_acc = evaluate(session, test_x, test_y)
msg = 'Test Loss: {0:>8.2}, Test Acc: {1:>8.2%}'
print(msg.format(test_loss, test_acc))
batch_size = 128
data_len = len(test_x)
num_batch = int((data_len - 1) / batch_size) + 1
y_test_cls = np.argmax(test_y, 1)
y_pred_cls = np.zeros(shape=data_len, dtype=np.int32) # 保存预测结果
for i in range(num_batch): # 逐批次处理
start_id = i * batch_size
end_id = min((i + 1) * batch_size, data_len)
feed_dict = {
model.input_x: test_x[start_id:end_id],
model.keep_prob: 1.0,
model.is_train: False
}
y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls, feed_dict=feed_dict)
# 评估
print("Precision, Recall and F1-Score...")
print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories))
# 混淆矩阵
print("Confusion Matrix...")
cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
print(cm)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
if __name__ == '__main__':
if len(sys.argv) != 2 or sys.argv[1] not in ['train', 'test']:
raise ValueError("""usage: python run_rnn.py [train / test]""")
print('Configuring RNN model...')
config = TRNNConfig()
if not os.path.exists(vocab_path): # 如果不存在词汇表,重建
build_vocab(train_path, vocab_path, config.vocab_size)
categories, cat_to_id = read_category()
words, word_to_id = read_vocab(vocab_path)
config.vocab_size = len(words)
model = TextRNN(config)
if sys.argv[1] == 'train':
train()
else:
test()