This repository contains the code for Accounting for Temporal Variability in Functional Magnetic Resonance Imaging Improves Prediction of Intelligence.
pytorch>1.0.0
tqdm
numpy
scipy
matplotlib
pandas
Convert each individual's fMRI data into a single numpy file (shape: time_steps * # of features). fMRI data from different tasks should be put in separate folders.
|-ROOT
|-- MID
|-- NBACK
|-- SST
|-- REST
|- NDAR_INVPG04NJDC.npy
|- ...
Train fMRI data example
python train_fmri.py --task mid --target nihtbx_cryst_uncorrect --test_fold 0 --data_root [DATA_DIR]
Train with feature selection example
python fea_slct.py --task mid --target nihtbx_cryst_uncorrect --test_fold 0 --regcoef 0.25 --data_root [DATA_DIR]
Feature selection fine-tuning/evaluation example
python fea_slct_eval.py --task mid --target nihtbx_cryst_uncorrect --test_fold 0 --model_path [MODEL_PATH] --data_root [DATA_DIR]
If you found this code useful, please cite our paper.
@misc{abcd_time_series,
url = {https://arxiv.org/abs/2211.07429},
author = {Li, Yang and Ma, Xin and Sunderraman, Raj and Ji, Shihao and Kundu, Suprateek},
title = {Accounting for Temporal Variability in Functional Magnetic Resonance Imaging Improves Prediction of Intelligence},
year = {2022},
}