Skip to content

Latest commit

 

History

History
746 lines (564 loc) · 24 KB

Wormhole-Install-And-Settings.md

File metadata and controls

746 lines (564 loc) · 24 KB

Wormhole + Flink 最佳实践

本文声明

  • 感谢 Wormhole 的官方帮助!官方微信群很友好,这让我很意外,只能感谢了!
  • 本人大数据和 Ansible 刚看,只会皮毛的皮毛。但是也因为这样的契机促使了我写这篇文章。
  • 因为刚入门,需要了解细节,所以没用 Ambari 这类工具,已经熟悉的可以考虑使用。
  • 希望对你们有帮助。

前置声明

  • 需要对 Linux 环境,流计算的一些基础概念有基础了解,比如:Source、Sink、YARN、Zookeeper、Kafka、Ansible 等
  • 如果有欠缺,可以查看本系列文章:点击我

本文目标

  • 统计 滑动窗口 下的流过的数据量(count)
  • 业务数据格式:
{
   "id": 1,
   "name": "test",
   "phone": "18074546423",
   "city": "Beijing",
   "time": "2017-12-22 10:00:00"
}

服务器基础环境设置

特别说明

  • 4 台 8C32G 服务器 CentOS 7.5,内存推荐 16G 或以上。
    • 为了方便,所有服务器都已经关闭防火墙,并且在云服务上设置安全组对外开通所有端口
    • 全程 root 用户
  • 整体部署结构图:

未命名文件(1).png

服务器基础配置

  • 给对应服务器设置 hostname,方便后面使用:
hostnamectl --static set-hostname linux01
hostnamectl --static set-hostname linux02
hostnamectl --static set-hostname linux03
hostnamectl --static set-hostname linux04
  • 给所有服务器设置 hosts:vim /etc/hosts
172.16.0.55       linux01
172.16.0.92       linux02
172.16.0.133      linux03
172.16.0.159      linux04
  • 在 linux01 生成密钥对,设置 SSH 免密登录
生产密钥对
ssh-keygen -t rsa


公钥内容写入 authorized_keys
cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_keys

测试:
ssh localhost

将公钥复制到其他机子
ssh-copy-id -i ~/.ssh/id_rsa.pub -p 22 root@linux02(根据提示输入 linux02 密码)

ssh-copy-id -i ~/.ssh/id_rsa.pub -p 22 root@linux03(根据提示输入 linux03 密码)

ssh-copy-id -i ~/.ssh/id_rsa.pub -p 22 root@linux04(根据提示输入 linux04 密码)


在 linux01 上测试
ssh linux01

ssh linux02

ssh linux03

ssh linux04
  • 安装基础软件:yum install -y zip unzip lrzsz git epel-release wget htop deltarpm
  • 安装 Ansible:yum install -y ansible
  • 配置 Inventory 编辑配置文件:vim /etc/ansible/hosts
  • 在文件尾部补上如下内容
[hadoop-host]
linux01
linux02
linux03

[kafka-host]
linux04

  • 测试 Ansible:ansible all -a 'ps',必须保证能得到如下结果:
linux01 | CHANGED | rc=0 >>
  PID TTY          TIME CMD
11088 pts/7    00:00:00 sh
11101 pts/7    00:00:00 python
11102 pts/7    00:00:00 ps

linux02 | CHANGED | rc=0 >>
  PID TTY          TIME CMD
10590 pts/1    00:00:00 sh
10603 pts/1    00:00:00 python
10604 pts/1    00:00:00 ps

linux03 | CHANGED | rc=0 >>
  PID TTY          TIME CMD
10586 pts/1    00:00:00 sh
10599 pts/1    00:00:00 python
10600 pts/1    00:00:00 ps

linux04 | CHANGED | rc=0 >>
  PID TTY          TIME CMD
10574 pts/1    00:00:00 sh
10587 pts/1    00:00:00 python
10588 pts/1    00:00:00 ps

服务器基础组件(CentOS 7.x)

  • 创建脚本文件:vim /opt/install-basic-playbook.yml
- hosts: all
  remote_user: root
  tasks:
    - name: Disable SELinux at next reboot
      selinux:
        state: disabled
        
    - name: disable firewalld
      command: "{{ item }}"
      with_items:
         - systemctl stop firewalld
         - systemctl disable firewalld
         
    - name: install-basic
      command: "{{ item }}"
      with_items:
         - yum install -y zip unzip lrzsz git epel-release wget htop deltarpm
         
    - name: install-vim
      shell: "{{ item }}"
      with_items:
         - yum install -y vim
         - curl https://raw.githubusercontent.com/wklken/vim-for-server/master/vimrc > ~/.vimrc
         
    - name: install-docker
      shell: "{{ item }}"
      with_items:
         - yum install -y yum-utils device-mapper-persistent-data lvm2
         - yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
         - yum makecache fast
         - yum install -y docker-ce
         - systemctl start docker.service
         - docker run hello-world
         
    - name: install-docker-compose
      shell: "{{ item }}"
      with_items:
         - curl -L https://github.com/docker/compose/releases/download/1.18.0/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose
         - chmod +x /usr/local/bin/docker-compose
         - docker-compose --version
         - systemctl restart docker.service
         - systemctl enable docker.service
         
  • 执行命令:ansible-playbook /opt/install-basic-playbook.yml

Wormhole 所需组件安装

关于版本号和端口问题

  • 百度云打包下载(提取码:8tm3):https://pan.baidu.com/s/1hJa-wdxGSjG_z1SS8Qt2cg
  • 版本:
    • jdk-8u191-linux-x64.tar.gz
    • zookeeper-3.4.13(Docker)
    • kafka_2.11-0.10.2.2.tgz
    • hadoop-2.6.5.tar.gz
    • flink-1.5.1-bin-hadoop26-scala_2.11.tgz
    • spark-2.2.0-bin-hadoop2.6.tgz
    • mysql-3.7(Docker)
    • wormhole-0.6.0-beta.tar.gz
  • 端口
    • 都采用组件默认端口

JDK 安装

  • 将 linux01 下的 JDK 压缩包复制到所有机子的 /opt 目录下:
scp -r /opt/jdk-8u191-linux-x64.tar.gz root@linux02:/opt

scp -r /opt/jdk-8u191-linux-x64.tar.gz root@linux03:/opt

scp -r /opt/jdk-8u191-linux-x64.tar.gz root@linux04:/opt
  • 在 linux01 创建脚本文件:vim /opt/jdk8-playbook.yml
- hosts: all
  remote_user: root
  tasks:
    - name: copy jdk
      copy: src=/opt/jdk-8u191-linux-x64.tar.gz dest=/usr/local
      
    - name: tar jdk
      shell: cd /usr/local && tar zxf jdk-8u191-linux-x64.tar.gz
      
    - name: set JAVA_HOME
      blockinfile: 
        path: /etc/profile
        marker: "#{mark} JDK ENV"
        block: |
          JAVA_HOME=/usr/local/jdk1.8.0_191
          JRE_HOME=$JAVA_HOME/jre
          PATH=$PATH:$JAVA_HOME/bin
          CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
          export JAVA_HOME
          export JRE_HOME
          export PATH
          export CLASSPATH
    
    - name: source profile
      shell: source /etc/profile
  • 执行命令:ansible-playbook /opt/jdk8-playbook.yml
  • 经过试验,发现还是要自己再手动:source /etc/profile,原因未知。

Hadoop 集群(HDFS,YARN)

  • Hadoop 集群(HDFS,YARN)(linux01、linux02、linux03):2.6.5
  • Hadoop 环境可以用脚本文件,剩余部分内容请参考上文手工操作:vim /opt/hadoop-playbook.yml
- hosts: hadoop-host
  remote_user: root
  tasks:
    - name: Creates directory
      file:
        path: /data/hadoop/hdfs/name
        state: directory
    - name: Creates directory
      file:
        path: /data/hadoop/hdfs/data
        state: directory
    - name: Creates directory
      file:
        path: /data/hadoop/hdfs/tmp
        state: directory

    - name: set HADOOP_HOME
      blockinfile: 
        path: /etc/profile
        marker: "#{mark} HADOOP ENV"
        block: |
          HADOOP_HOME=/usr/local/hadoop
          HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
          YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
          PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
          export HADOOP_CONF_DIR
          export YARN_CONF_DIR
          export HADOOP_HOME
          export PATH
    
    - name: source profile
      shell: source /etc/profile
  • 执行命令:ansible-playbook /opt/hadoop-playbook.yml
  • 剩余内容较多,具体参考:点击我
    • 解压压缩包:tar zxvf hadoop-2.6.5.tar.gz
    • 这里最好把目录重命名下:mv /usr/local/hadoop-2.6.5 /usr/local/hadoop
    • 剩下内容从:修改 linux01 配置,开始阅读

Flink

  • 须安装在 linux01
  • Flink 单点(linux01):1.5.1
  • 拷贝:cd /usr/local/ && cp /opt/flink-1.5.1-bin-hadoop26-scala_2.11.tgz .
  • 解压:tar zxf flink-*.tgz
  • 修改目录名:mv /usr/local/flink-1.5.1 /usr/local/flink
  • 修改配置文件:vim /usr/local/flink/conf/flink-conf.yaml
    • 在文件最前加上:env.java.home: /usr/local/jdk1.8.0_191
  • 启动:cd /usr/local/flink && ./bin/start-cluster.sh
  • 停止:cd /usr/local/flink && ./bin/stop-cluster.sh
  • 查看日志:tail -300f log/flink-*-standalonesession-*.log
  • 浏览器访问 WEB 管理:http://linux01:8081/
  • yarn 启动
    • 先停止下本地模式
    • 测试控制台启动:cd /usr/local/flink && ./bin/yarn-session.sh -n 2 -jm 2024 -tm 2024
    • 有可能会报:The Flink Yarn cluster has failed,可能是资源不够,需要调优内存相关参数

Zookeeper

  • Zookeeper 单点(linux04):3.4.13
  • 单个实例:docker run -d --restart always --name one-zookeeper -p 2181:2181 -v /etc/localtime:/etc/localtime zookeeper:3.4.13

Kafka

  • Kafka 单点(linux04):0.10.2.2
  • 上传压缩包到 /opt 目录下
  • 拷贝压缩包:cd /usr/local && cp /opt/kafka_2.11-0.10.2.2.tgz .
  • 解压:tar zxvf kafka_2.11-0.10.2.2.tgz
  • 删除压缩包并重命名目录:rm -rf kafka_2.11-0.10.2.2.tgz && mv /usr/local/kafka_2.11-0.10.2.2 /usr/local/kafka
  • 修改 kafka-server 的配置文件:vim /usr/local/kafka/config/server.properties
034 行:listeners=PLAINTEXT://0.0.0.0:9092
039 行:advertised.listeners=PLAINTEXT://linux04:9092
119 行:zookeeper.connect=linux04:2181
补充  :auto.create.topics.enable=true
  • 启动 kafka 服务(必须制定配置文件):cd /usr/local/kafka && bin/kafka-server-start.sh config/server.properties
    • 后台方式运行 kafka 服务:cd /usr/local/kafka && bin/kafka-server-start.sh -daemon config/server.properties
    • 停止 kafka 服务:cd /usr/local/kafka && bin/kafka-server-stop.sh
  • 再开一个终端测试:
    • 创建 topic 命令:cd /usr/local/kafka && bin/kafka-topics.sh --create --zookeeper linux04:2181 --replication-factor 1 --partitions 1 --topic my-topic-test
    • 查看 topic 命令:cd /usr/local/kafka && bin/kafka-topics.sh --list --zookeeper linux04:2181
    • 删除 topic:cd /usr/local/kafka && bin/kafka-topics.sh --delete --topic my-topic-test --zookeeper linux04:2181
    • 给 topic 发送消息命令:cd /usr/local/kafka && bin/kafka-console-producer.sh --broker-list linux04:9092 --topic my-topic-test,然后在出现交互输入框的时候输入你要发送的内容
    • 再开一个终端,进入 kafka 容器,接受消息:cd /usr/local/kafka && bin/kafka-console-consumer.sh --bootstrap-server linux04:9092 --topic my-topic-test --from-beginning
    • 此时发送的终端输入一个内容回车,接受消息的终端就可以收到。

MySQL

  • MySQL 单点(linux04):5.7
  • 创建本地数据存储 + 配置文件目录:mkdir -p /data/docker/mysql/datadir /data/docker/mysql/conf /data/docker/mysql/log
  • 在宿主机上创建一个配置文件:vim /data/docker/mysql/conf/mysql-1.cnf,内容如下:
[mysql]
default-character-set = utf8

[mysqld]
pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
datadir = /var/lib/mysql
symbolic-links=0

log-error=/var/log/mysql/error.log
default-storage-engine = InnoDB
collation-server = utf8_unicode_ci
init_connect = 'SET NAMES utf8'
character-set-server = utf8
lower_case_table_names = 1
max_allowed_packet = 50M
  • 赋权(避免挂载的时候,一些程序需要容器中的用户的特定权限使用):chmod -R 777 /data/docker/mysql/datadir /data/docker/mysql/log
  • 赋权:chown -R 0:0 /data/docker/mysql/conf
  • docker run -p 3306:3306 --name one-mysql -v /data/docker/mysql/datadir:/var/lib/mysql -v /data/docker/mysql/log:/var/log/mysql -v /data/docker/mysql/conf:/etc/mysql/conf.d -e MYSQL_ROOT_PASSWORD=aaabbb123456 -d mysql:5.7
  • 连上容器:docker exec -it one-mysql /bin/bash
    • 连上 MySQL:mysql -u root -p
    • 创建表:CREATE DATABASE wormhole DEFAULT CHARACTER SET utf8 COLLATE utf8_unicode_ci;
  • 确保用 sqlyog 能直接在外网连上,方便后面调试

Spark

  • 须安装在 linux01
  • Spark 单点(linux01):2.2.0
  • 上传压缩包到 /opt 目录下
  • 拷贝压缩包:cd /usr/local && cp /opt/spark-2.2.0-bin-hadoop2.6.tgz .
  • 解压:tar zxvf spark-2.2.0-bin-hadoop2.6.tgz
  • 重命名:mv /usr/local/spark-2.2.0-bin-hadoop2.6 /usr/local/spark
  • 增加环境变量:
vim /etc/profile

SPARK_HOME=/usr/local/spark
PATH=$PATH:${SPARK_HOME}/bin:${SPARK_HOME}/sbin
export SPARK_HOME
export PATH

source /etc/profile
  • 修改配置:cp $SPARK_HOME/conf/spark-env.sh.template $SPARK_HOME/conf/spark-env.sh
  • 修改配置:vim $SPARK_HOME/conf/spark-env.sh
  • 假设我的 hadoop 路径是:/usr/local/hadoop,则最尾巴增加:
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop

非必须组件

  • Elasticsearch(支持版本 5.x)(非必须,若无则无法查看 wormhole 处理数据的吞吐和延时)
  • Grafana (支持版本 4.x)(非必须,若无则无法查看 wormhole 处理数据的吞吐和延时的图形化展示)

Wormhole 安装 + 配置

  • 须安装在 linux01
  • wormhole 单点(linux01):0.6.0-beta,2018-12-06 版本
  • 先在 linux04 机子的 kafka 创建 topic:
cd /usr/local/kafka && bin/kafka-topics.sh --list --zookeeper linux04:2181
cd /usr/local/kafka && bin/kafka-topics.sh --create --zookeeper linux04:2181 --replication-factor 1 --partitions 1 --topic source
cd /usr/local/kafka && bin/kafka-topics.sh --create --zookeeper linux04:2181 --replication-factor 1 --partitions 1 --topic wormhole_feedback
cd /usr/local/kafka && bin/kafka-topics.sh --create --zookeeper linux04:2181 --replication-factor 1 --partitions 1 --topic wormhole_heartbeat
  • 上传压缩包到 /opt 目录下
  • 拷贝压缩包:cd /usr/local && cp /opt/wormhole-0.6.0-beta.tar.gz .
  • 解压:cd /usr/local && tar -xvf wormhole-0.6.0-beta.tar.gz
  • 修改配置文件:vim /usr/local/wormhole-0.6.0-beta/conf/application.conf

akka.http.server.request-timeout = 120s

wormholeServer {
  cluster.id = "" #optional global uuid
  host = "linux01"
  port = 8989
  ui.default.language = "Chinese"
  token.timeout = 1
  token.secret.key = "iytr174395lclkb?lgj~8u;[=L:ljg"
  admin.username = "admin"    #default admin user name
  admin.password = "admin"    #default admin user password
}

mysql = {
  driver = "slick.driver.MySQLDriver$"
  db = {
    driver = "com.mysql.jdbc.Driver"
    user = "root"
    password = "aaabbb123456"
    url = "jdbc:mysql://linux04:3306/wormhole?useUnicode=true&characterEncoding=UTF-8&useSSL=false"
    numThreads = 4
    minConnections = 4
    maxConnections = 10
    connectionTimeout = 3000
  }
}

#ldap = {
#  enabled = false
#  user = ""
#  pwd = ""
#  url = ""
#  dc = ""
#  read.timeout = 3000
#  read.timeout = 5000
#  connect = {
#    timeout = 5000
#    pool = true
#  }
#}

spark = {
  wormholeServer.user = "root"   #WormholeServer linux user
  wormholeServer.ssh.port = 22       #ssh port, please set WormholeServer linux user can password-less login itself remote
  spark.home = "/usr/local/spark"
  yarn.queue.name = "default"        #WormholeServer submit spark streaming/job queue
  wormhole.hdfs.root.path = "hdfs://linux01/wormhole"   #WormholeServer hdfslog data default hdfs root path
  yarn.rm1.http.url = "linux01:8088"    #Yarn ActiveResourceManager address
  yarn.rm2.http.url = "linux01:8088"   #Yarn StandbyResourceManager address
}

flink = {
  home = "/usr/local/flink"
  yarn.queue.name = "default"
  feedback.state.count=100
  checkpoint.enable=false
  checkpoint.interval=60000
  stateBackend="hdfs://linux01/flink-checkpoints"
  feedback.interval=30
}

zookeeper = {
  connection.url = "linux04:2181"  #WormholeServer stream and flow interaction channel
  wormhole.root.path = "/wormhole"   #zookeeper
}

kafka = {
  brokers.url = "linux04:9092"
  zookeeper.url = "linux04:2181"
  topic.refactor = 1
  using.cluster.suffix = false #if true, _${cluster.id} will be concatenated to consumer.feedback.topic
  consumer = {
    feedback.topic = "wormhole_feedback"
    poll-interval = 20ms
    poll-timeout = 1s
    stop-timeout = 30s
    close-timeout = 20s
    commit-timeout = 70s
    wakeup-timeout = 60s
    max-wakeups = 10
    session.timeout.ms = 60000
    heartbeat.interval.ms = 50000
    max.poll.records = 1000
    request.timeout.ms = 80000
    max.partition.fetch.bytes = 10485760
  }
}

#kerberos = {
#  keyTab=""      #the keyTab will be used on yarn
#  spark.principal=""   #the principal of spark
#  spark.keyTab=""      #the keyTab of spark
#  server.config=""     #the path of krb5.conf
#  jaas.startShell.config="" #the path of jaas config file which should be used by start.sh
#  jaas.yarn.config=""     #the path of jaas config file which will be uploaded to yarn
#  server.enabled=false   #enable wormhole connect to Kerberized cluster
#}

# choose monitor method among ES、MYSQL
monitor ={
   database.type="MYSQL"
}

#Wormhole feedback data store, if doesn't want to config, you will not see wormhole processing delay and throughput
#if not set, please comment it

#elasticSearch.http = {
#  url = "http://localhost:9200"
#  user = ""
#  password = ""
#}

#display wormhole processing delay and throughput data, get admin user token from grafana
#garfana should set to be anonymous login, so you can access the dashboard through wormhole directly
#if not set, please comment it

#grafana = {
#  url = "http://localhost:3000"
#  admin.token = "jihefouglokoj"
#}

#delete feedback history data on time
maintenance = {
  mysql.feedback.remain.maxDays = 7
  elasticSearch.feedback.remain.maxDays = 7
}


#Dbus integration, support serveral DBus services, if not set, please comment it

#dbus = {
#  api = [
#    {
#      login = {
#        url = "http://localhost:8080/keeper/login"
#        email = ""
#        password = ""
#      }
#      synchronization.namespace.url = "http://localhost:8080/keeper/tables/riderSearch"
#    }
#  ]
#}
  • 初始化表结构脚本路径:https://github.com/edp963/wormhole/blob/master/rider/conf/wormhole.sql
    • 该脚本存在一个问题:初始化脚本和补丁脚本混在一起,所以直接复制执行会有报错,但是报错的部分是不影响
    • 我是直接把基础 sql 和补丁 sql 分开执行,方便判断。
  • 启动:sh /usr/local/wormhole-0.6.0-beta/bin/start.sh
  • 查看 log:tail -200f /usr/local/wormhole-0.6.0-beta/logs/application.log
  • 部署完成,浏览器访问:http://linux01:8989
  • 默认管理员用户名:admin,密码:admin

创建用户

  • 参考官网,必须先了解下https://edp963.github.io/wormhole/quick-start.html
  • 必须创建用户,后面才能进入 Project 里面创建 Stream / Flow
  • 创建的用户类型必须是:user
  • 假设这里创建的用户叫做:user1@bg.com

创建 Source 需要涉及的概念

创建 Instance

  • Instance 用于绑定各个组件的所在服务连接
  • 一般我们都会选择 Kafka 作为 source,后面的基础也是基于 Kafka 作为 Source 的场景
  • 假设填写实例名:source_kafka
  • URL:linux04:9092

创建 Database

  • 各个组件的具体数据库、Topic 等信息
  • 假设填写 Topic Name:source
  • Partition:1

创建 Namespace

  • wormhole 抽象出来的概念
  • 用于数据分类
  • 假设填写 Tables:ums_extension id
  • 配置 schema,记得配置上 ums_ts
{
   "id": 1,
   "name": "test",
   "phone": "18074546423",
   "city": "Beijing",
   "time": "2017-12-22 10:00:00"
}

创建 Sink 需要涉及的概念

创建 Instance

  • 假设填写实例名:sink_mysql
  • URL:linux04:3306

创建 Database

  • 假设填写 Database Name:sink
  • config 参数:useUnicode=true&characterEncoding=UTF-8&useSSL=false&rewriteBatchedStatements=true

创建 Namespace

  • 假设填写 Tables: user id

创建 Project

  • 项目标识:demo

Flink Stream

  • Stream 是在 Project 内容页下才能创建
  • 一个 Stream 可以有多个 Flow
  • 并且是 Project 下面的用户才能创建,admin 用户没有权限
  • 要删除 Project 必须先进入 Project 内容页删除所有 Stream 之后 admin 才能删除 Project
  • 新建 Stream
    • Stream type 类型选择:Flink
    • 假设填写 Name:wormhole_stream_test

Flink Flow

  • 假设 Flow name 为:wormhole_flow_test
  • Flow 是在 Project 内容页下才能创建
  • 并且是 Project 下面的用户才能创建,admin 用户没有权限
  • Flow 会关联 source 和 sink
  • 要删除 Project 必须先进入 Project 内容页删除所有 Stream 之后 admin 才能删除 Project
  • 基于 Stream 新建 Flow
    • Pipeline
    • Transformation
      • https://edp963.github.io/wormhole/user-guide.html#cep
      • NO_SKIP 滑动窗口
      • SKIP_PAST_LAST_EVENT 滚动窗口
      • KeyBy 分组字段
      • Output
        • Agg:将匹配的多条数据做聚合,生成一条数据输出,例:field1:avg,field2:max(目前支持 max/min/avg/sum)
        • Detail:将匹配的多条数据逐一输出
        • FilteredRow:按条件选择指定的一条数据输出,例:head/last/ field1:min/max
    • Confirmation
  • 注意:Stream 处于 running 状态时,才可以启动 Flow

Kafka 发送测试数据

  • 在 linux04 机子上
  • cd /usr/local/kafka/bin && ./kafka-console-producer.sh --broker-list linux04:9092 --topic source --property "parse.key=true" --property "key.separator=@@@"
  • 发送 UMS 流消息协议规范格式:
data_increment_data.kafka.source_kafka.source.ums_extension.*.*.*@@@{"id": 1, "name": "test1", "phone":"18074546423", "city": "Beijing", "time": "2017-12-22 10:01:00"}

data_increment_data.kafka.source_kafka.source.ums_extension.*.*.*@@@{"id": 2, "name": "test2", "phone":"18074546423", "city": "Beijing", "time": "2017-12-22 10:02:00"}

data_increment_data.kafka.source_kafka.source.ums_extension.*.*.*@@@{"id": 3, "name": "test3", "phone":"18074546423", "city": "Beijing", "time": "2017-12-22 10:03:00"}

data_increment_data.kafka.source_kafka.source.ums_extension.*.*.*@@@{"id": 4, "name": "test4", "phone":"18074546423", "city": "Beijing", "time": "2017-12-22 10:04:00"}

data_increment_data.kafka.source_kafka.source.ums_extension.*.*.*@@@{"id": 5, "name": "test5", "phone":"18074546423", "city": "Beijing", "time": "2017-12-22 10:05:00"}

data_increment_data.kafka.source_kafka.source.ums_extension.*.*.*@@@{"id": 6, "name": "test6", "phone":"18074546423", "city": "Beijing", "time": "2017-12-22 10:06:00"}

data_increment_data.kafka.source_kafka.source.ums_extension.*.*.*@@@{"id": 7, "name": "test7", "phone":"18074546423", "city": "Beijing", "time": "2017-12-22 10:07:00"}

data_increment_data.kafka.source_kafka.source.ums_extension.*.*.*@@@{"id": 8, "name": "test8", "phone":"18074546423", "city": "Beijing", "time": "2017-12-22 10:08:00"}

data_increment_data.kafka.source_kafka.source.ums_extension.*.*.*@@@{"id": 9, "name": "test9", "phone":"18074546423", "city": "Beijing", "time": "2017-12-22 10:09:00"}