-
Notifications
You must be signed in to change notification settings - Fork 20
/
misc_calc_lib.py
546 lines (369 loc) · 17.1 KB
/
misc_calc_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
from __future__ import print_function
# Some miscellaneous functions.
# The function calc_aspec_ratio(at) contains a partial re-implementation of Noam Bernstein's min_aspect_ratio(vol, cell) found in ns_run.py of pymatnest.
#These creations are in part different from the ones used for the MEAM quasiharmonic calculations.
import subprocess
import numpy as np
import matplotlib.pyplot as plt
def create_hcp_custom(c_vs_a, V_per_at, z):
import quippy
import numpy as np
V = 2.0 * V_per_at
a = (2 * V / (3.0**(0.5) * c_vs_a))**(1.0/3.0)
c = c_vs_a * a
lattice = []
lattice.append([3.0**(0.5) /2.0 * a,-a/2.0,0])
lattice.append([3.0**(0.5) /2.0 * a, a/2.0,0])
lattice.append([0,0,c])
lattice = np.transpose(lattice)
unitcell = quippy.Atoms(n=0, lattice=lattice)
pos = []
pos.append([3.0**(0.5) /6.0 * a,0,0.0])
pos.append([3.0**(0.5) /2.0 * a,0,c/2.0])
for i in range(0,len(pos)):
unitcell.add_atoms(pos[i],z)
return unitcell
def create_omega_custom(c_vs_a, V_per_at, z):
import quippy
V = 3.0 * V_per_at
a = (2 * V / (3.0**(0.5) * c_vs_a))**(1.0/3.0)
c = c_vs_a * a
lattice = []
lattice.append([3.0**(0.5) /2.0 * a,-a/2.0,0])
lattice.append([3.0**(0.5) /2.0 * a, a/2.0,0])
lattice.append([0,0,c])
lattice = np.transpose(lattice)
unitcell = quippy.Atoms(n=0, lattice=lattice)
pos = []
pos.append([3.0**(0.5) /6.0 * a,0,0.0])
pos.append([3.0**(0.5) /2.0 * a,0,c/2.0])
pos.append([3.0**(0.5) * 5.0/6.0 * a,0,c/2.0])
for i in range(0,len(pos)):
unitcell.add_atoms(pos[i],z)
return unitcell
def create_beta_V(V_per_at, z):
import quippy
a = (2.0 * V_per_at)**(1.0/3.0)
unitcell = quippy.structures.bcc1(a, z)
return unitcell
def create_fcc_V(V_per_at, z):
import quippy
a = (4.0 * V_per_at)**(1.0/3.0)
unitcell = quippy.fcc(a, z)
return unitcell
def create_at_accord_struc(V ,z , struc):
# c/a ratios from (see structure names): Hennig et al., PHYSICAL REVIEW B 78, 054121 (2008)
# Trinkle et al., PHYSICAL REVIEW B 73, 094123 (2006)
allowed_struc = ["bcc", "fcc", "hcp", "hcp_Hennig_MEAM", "omega_Hennig_MEAM","hcp_Hennig_DFT", "omega_Hennig_DFT","bcc_Trinkle_TB", "hcp_Trinkle_TB", "omega_Trinkle_TB","bcc_Trinkle_fitting", "hcp_Trinkle_fitting", "omega_Trinkle_fitting"]
if struc in allowed_struc:
print("\nAccepted structure name!\n")
# print("IMPORTANT: WARNING! c_vs_a set to 1. Only use bcc!")
if struc == "bcc":
at = create_beta_V(V, z)
elif struc == "fcc":
at = create_fcc_V(V,z)
elif struc == "hcp":
c_vs_a = (8.0/3.0)**(0.5)
at = create_hcp_custom(c_vs_a, V, z)
elif struc == "hcp_Hennig_MEAM":
c_vs_a = 1.596
at = create_hcp_custom(c_vs_a, V, z)
elif struc == "omega_Hennig_MEAM":
c_vs_a = 0.611
at = create_omega_custom(c_vs_a, V, z)
elif struc == "hcp_Hennig_DFT":
c_vs_a = 1.583
at = create_hcp_custom(c_vs_a, V, z)
elif struc == "omega_Hennig_DFT":
c_vs_a = 0.619
at = create_omega_custom(c_vs_a, V, z)
elif struc == "bcc_Trinkle_TB":
at = create_beta_custom(V, z)
elif struc == "hcp_Trinkle_TB":
c_vs_a = 4.71/2.94
at = create_hcp_custom(c_vs_a, V, z)
elif struc == "omega_Trinkle_TB":
c_vs_a = 2.84/4.58
at = create_omega_custom(c_vs_a, V, z)
elif struc == "bcc_Trinkle_fitting":
at = create_beta_custom(V, z)
elif struc == "hcp_Trinkle_fitting":
c_vs_a = 1.588
at = create_hcp_custom(c_vs_a, V, z)
elif struc == "omega_Trinkle_fitting":
c_vs_a = 0.613
at = create_omega_custom(c_vs_a, V, z)
else:
print("\nERROR: Structure name '" + struc + "' not known!\n\nAllowed names are:")
for dummy_struc in allowed_struc:
print(dummy_struc)
print("")
quit()
return at
# Writes .cell as well as .param files based on templates
def write_cell_and_param(at, name_raw, template_name_cell):
write_file_cell = name_raw + ".cell"
write_cell(at, write_file_cell, template_name_cell)
write_param(write_file_cell, template_name_cell)
# Write a .cell file based on a template
def write_cell(at, write_file_cell, template_name_cell):
with open(write_file_cell, "w") as write_lines:
with open(template_name_cell, "r") as template_lines:
for line in template_lines:
write_lines.write(line)
if line.find("%block lattice_cart") >= 0:
cell = at.get_cell()
for i in xrange(0,3):
write_lines.write(" ".join(map(str, cell[i,:])) + "\n")
if line.find("%block positions_frac") >= 0:
scale_pos = at.get_scaled_positions()
print("Writing positions!")
for i in xrange(0,len(at)):
write_lines.write(str(at.get_atomic_numbers()[i]) + " " + " ".join(map(str, scale_pos[i,:])) + "\n")
def write_param(write_file_cell, template_name_cell):
with open(write_file_cell[0:-len(".cell")] + ".param", "w") as write_lines:
with open(template_name_cell[0:-len(".cell")] + ".param", "r") as template_lines:
for line in template_lines:
# print("test")
write_lines.write(line)
def write_sub_file(submis_com, nr_node_tot, sub_file):
sub_template = "CASTEP_TEMPLATE.sub"
with open(sub_file, "w") as write_lines:
with open(sub_template, "r") as template_lines:
for line in template_lines:
write_lines.write(line)
write_lines.write(submis_com + "\n")
write_lines.write("")
command = []
command.append("sed -i 's/\$nr_node_tot/" + str(nr_node_tot) + "/g' " + sub_file)
submit_commands(command)
command = []
def submit_commands(command):
for i in range(0,len(command)):
print(command[i])
subprocess.check_output(command[i],shell=True)
# The function calc_aspec_ratio(at) contains a partial re-implementation of Noam Bernsteins's min_aspect_ratio(vol, cell) found in ns_run.py of pymatnest.
def calc_aspec_ratio(at):
cell = at.get_cell()
V = at.get_volume()
aspec_ratio_array = []
for i in range(0,3):
# cell vector not in plane parallel to the cell surfaces whose distance are to measure
vec_0 = cell[i,:]
# cell vectors defining the plane
vec_1 = cell[(i+1)%3,:]
vec_2 = cell[(i+2)%3,:]
# vector orthogonal to plane
cross = np.cross(vec_1,vec_2)
# normalized orthogonal vector
cross_norm = cross/np.sqrt(np.dot(cross,cross))
# distance between cell surfaces normalized by cell volume:
aspec_ratio_array.append(abs(np.dot(cross_norm,vec_0))/V**(1.0/3))
return aspec_ratio_array
# Calcualtes powders spectrum via QUIP
def xrd_QUIP(QUIP_path, at, n_two_theta, two_theta_range):
xyz_fime = "temp_atom.xyz"
at.write(xyz_fime)
xrd_raw_fime = xyz_fime[:len(xyz_fime)-len(".xyz")] + ".xrd.raw"
xrd_final_fime = xyz_fime[:len(xyz_fime)-len(".xyz")] + ".xrd"
command = []
command.append( QUIP_path + '/structure_analysis_traj type=xrd xrd_2theta_range=' + two_theta_range + " xrd_n_2theta=" + str(n_two_theta)+ " infile=" + xyz_fime + " outfile=" + xrd_raw_fime)
command.append( QUIP_path + "/mean_var_correl infile=" + xrd_raw_fime + " outfile=" + xrd_final_fime + " mean")
submit_commands(command)
command = []
angle, xrd_temp = np.loadtxt( "temp_atom.xrd", skiprows=1, unpack = True)
submit_commands(["rm " + xyz_fime + "*" ])
submit_commands(["rm " + xyz_fime[:len(xyz_fime)-len(".xyz")] + ".xrd*"])
return [angle,xrd_temp]
#Calculates radial distribution function via QUIP
def rdfd_QUIP(QUIP_path, at, n_a, r_range):
rdfd_n_bins = int(n_a)
rdfd_bin_width = float(r_range[1] - r_range[0])/rdfd_n_bins
xyz_fime = "temp_atom.xyz"
at.write(xyz_fime)
rdfd_raw_fime = xyz_fime[:len(xyz_fime)-len(".xyz")] + ".rdfd.raw"
rdfd_final_fime = xyz_fime[:len(xyz_fime)-len(".xyz")] + ".rdfd"
command = []
command.append( QUIP_path + '/structure_analysis_traj type=rdfd rdfd_n_bins=' + str(rdfd_n_bins) + " rdfd_bin_width=" + str(rdfd_bin_width)+ " infile=" + xyz_fime + " outfile=" + rdfd_raw_fime)
command.append( QUIP_path + "/mean_var_correl infile=" + rdfd_raw_fime + " outfile=" + rdfd_final_fime + " mean")
submit_commands(command)
command = []
angle, rdfd_temp = np.loadtxt( "temp_atom.rdfd", skiprows=1, unpack = True)
submit_commands(["rm " + xyz_fime + "*" ])
submit_commands(["rm " + xyz_fime[:len(xyz_fime)-len(".xyz")] + ".rdfd*"])
return [angle,rdfd_temp]
def raw_filename_xyz_extxyz(filepath):
if filepath[len(filepath) - len(".extxyz") ::].find(".extxyz") == 0:
extens = ".extxyz"
elif filepath[len(filepath) - len(".xyz") ::].find(".xyz") == 0:
extens = ".xyz"
else:
print("ERROR: Filename neither '.extxyz' nor '.xyz' file! Aborting!")
quit()
if filepath.find("/") < 0:
reduced_filename = filepath
else:
reduced_filename = filepath[-filepath[::-1].find("/"):]
raw_reduced_filename = reduced_filename[:len(reduced_filename)-len(extens)]
return raw_reduced_filename
# Returns the x value (usually temperature) of the maximum y of a two column file over x_range = [x_start, x_end].
# Comments in the file are signfied by "#".
def find_x_of_max_y_of_file(filename, x_range, x_col_index, y_col_index):
vals_of_interests = []
with open(filename, "r") as flines:
for i, line in enumerate(flines):
if line[0] != "#" and i > 0: #Ommitting first lines and comments
line_float_split = map(float, line.split())
# If temperature is in the temeprature range of interest, append
if line_float_split[0] >= x_range[0] and line_float_split[0] <= x_range[1]:
vals_of_interests.append(line_float_split)
vals_trans = []
for el in zip(*vals_of_interests):
vals_trans.append(list(el))
max_index = find_max_index(vals_trans[y_col_index])
if len(max_index) > 1:
print("Error! There should only be one maximum. Either you got more two data points which are the same values and the maximum, which is very unlikely, or there's something wrong with the input file. Aborting!")
quit()
return vals_trans[x_col_index][max_index[0]]
#start for recursive function to find maximum values
def find_max_index(array):
return find_max_index_recursive(array, [])
# Yields a list of the index of the maximum values (In case there are more than one).
def find_max_index_recursive(array, index_list):
max_array = max(array)
max_index = array.index(max_array)
index_list.append(max_index)
# array with maximum replaced(hence "repl_" array):
repl_array = array[0:max_index] + [max_array - 999] + array[max_index + 1:]
if max_array == max(repl_array):
index_list = find_max_index_recursive(repl_array, index_list)
result_list = list(index_list)
return result_list
# Automatic calculation of average and standard deviation of maximum position (presumably of the C_P curve) for a number of results of different runs
# This assumes that the results are however already calculated.
# x_col_index and y_col_index are the indices of the columns of interest. In our case they should be T and C_P which are 0 and 3.
def find_avg_std_max_pos(filename_beginning, filename_ending, run_nr_start, run_nr_end, x_range, x_col_index, y_col_index):
pos_list = []
for i in xrange(run_nr_start, run_nr_end + 1, 1):
filename = filename_beginning + str(i) + filename_ending
pos_list.append(find_x_of_max_y_of_file(filename, x_range, x_col_index, y_col_index))
mean = np.mean(pos_list)
std = np.std(pos_list, ddof=1)
mean_error = std/np.sqrt(run_nr_end - run_nr_start + 1)
return [mean, std, mean_error]
# gets data from a number of files and returns the maximum y_value:
# returns an array with 0th entry being the list of data from the files and the 1st entry being
# the y_max value over all the data
# y_index denotes the index of the column we use as y in an x-y plot in case there are more than two.
def get_data_for_plot(result_name_list, y_index):
print(result_name_list)
max_vals = []
result_array = []
for filename in result_name_list:
data = np.loadtxt(filename, skiprows = 1, unpack = True)
max_vals.append(max(data[y_index]))
result_array.append(data)
max_over_runs = max(max_vals)
return [result_array, max_over_runs]
def make_name_list(name_raw, prefix, suffix, start_no, end_no):
name_list = []
for i in xrange(start_no, end_no + 1):
name_list.append(prefix + name_raw + str(i) + suffix)
return name_list
# plots C_P curves. If ask_for_check == True, it asks the user whether the C_P curve is acceptable
def plot_C_P(result_name_list, labels, x_index, y_index, T_mean, T_aim, ask_for_check_bool):
get_data_results = get_data_for_plot(result_name_list, y_index)
result_array = get_data_results[0]
max_over_runs = get_data_results[1]
if labels == []:
labels = result_name_list
for result in result_array:
plt.plot(result[x_index], result[y_index], '-')
plt.plot((T_mean, T_mean), (0, 1.2 * max_over_runs), '-')
plt.plot((T_aim, T_aim), (0, 1.2 * max_over_runs), '--')
plt.legend(labels)
plt.show()
if ask_for_check_bool:
ask_for_check()
# plots the xrds of result_name_list and comp_name_list (the latter adjusted to fit on screen). It also asks the user whether the plots are okay and quits if the plots are deemed bad.
def plot_xrd(result_name_list, comp_name_list, result_labels, comp_labels, x_index, y_index, n_per_average_batch, ask_for_check_bool, shift_bool):
if comp_labels == []:
comp_labels = comp_name_list
if result_labels == []:
result_labels = result_name_list
labels = result_labels + comp_labels
# Data for results
get_data_results = get_data_for_plot(result_name_list, y_index)
# Data for comparison
get_data_comp = get_data_for_plot(comp_name_list, y_index)
result_array = get_data_results[0]
max_over_runs = get_data_results[1]
if shift_bool == True:
shift = max_over_runs * 0.1
elif shift_bool == False:
shift = 0.0
else:
print("Error! shift_bool must be boolean! Aborting")
quit()
# This averages batches of runs defined by n_per_average_batch
intens_batch_np_array_list = []
angles_array = []
for i in range(0, len(result_array)/n_per_average_batch):
batch = []
for j in range(0, n_per_average_batch):
batch.append(np.array(result_array[i*n_per_average_batch + j][y_index]))
intens_batch_np_array_list.append(np.array(batch))
angles_array.append(result_array[i * n_per_average_batch][x_index])
intens_mod = [np.ndarray.mean(batch, axis = 0) + shift * (i + len(comp_name_list)) for i, batch in enumerate(intens_batch_np_array_list)]
comp_array = get_data_comp[0]
for i, intens in enumerate(intens_mod):
plt.plot(angles_array[i], intens, '-')
# Adding the plots of the comparison structures, each scaled so that its respective maximum is the same as the overall maximum of the runs. This enables better comparison as we care more about the peak position than absolute height.
for i, comp in enumerate(comp_array):
plt.plot(comp[x_index], comp[y_index]/max(comp[y_index]) * max_over_runs + shift * i, '--')
plt.legend(labels)
plt.show()
if ask_for_check_bool:
ask_for_check()
# Asks user whether plot is accetable. If user replies with "no", it quits the program.
def ask_for_check():
got_answer = False
while got_answer == False:
go_on = raw_input("Are these results acceptable? Reply with 'yes' or 'no':")
if go_on == "yes":
go_on_bool = True
got_answer = True
elif go_on == "no":
go_on_bool = False
print("ALOGRITHM ERROR: The results have been deemed unsatisfactory by the user. Is something not converged? Did we get the wrong phase? Aborting!")
quit()
else:
print("Error! Expecting 'yes' or 'no' but got '" + go_on + "'. Asking again!")
#returns a list of postions of occurance of a string (word) in another string (orig_string)
def return_pos_in_string(orig_string, word):
string_old = ""
string = orig_string
word_pos_list = []
# make a list of the positions of the word
while string.find(word) >= 0:
word_pos_list.append(string.find(word) + len(string_old))
string_old = string_old + string[:string.find(word) + len(word)]
string = string[string.find(word) + len(word):]
return word_pos_list
#returns the last part of a path
def last_part_path(path):
return path[return_pos_in_string(path, "/")[-1] + 1:]
def extract_info(filename,file_to_print,start_line,end_line):
started = False
print("start_line: " + start_line)
with open(filename, "r") as flines:
with open(file_to_print, "w") as writeflines:
for line in flines:
if line.find(end_line)>=0:
print("Found end line: " + line + " Finished extracting data.")
break
if started:
writeflines.write(line)
if line.find(start_line)>=0:
print("Found starting line: " + line + " Starting extracting data.")
started = True