-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
217 lines (183 loc) · 7.04 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
Forked from https://github.com/sanghyun-son/EDSR-PyTorch.
"""
import os
import torch
import torch.nn as nn
import torch.nn.parallel as P
import torch.utils.model_zoo
from importlib import import_module
class Model(nn.Module):
def __init__(self, args):
super(Model, self).__init__()
print('Making model...')
self.scale = args.scale
self.idx_scale = 0
self.input_large = (args.model == 'VDSR')
self.self_ensemble = args.self_ensemble
self.chop = args.chop
self.precision = args.precision
self.cpu = args.cpu
self.device = torch.device('cpu' if args.cpu else 'cuda')
self.n_GPUs = args.n_GPUs
self.save_models = args.save_models
module = import_module(args.model.lower())
self.model = module.make_model(args).to(self.device)
if args.precision == 'half':
self.model.half()
self.load(
args.pre_train,
pre_train=args.pre_train,
resume=args.resume,
cpu=args.cpu
)
def forward(self, x, idx_scale):
self.idx_scale = idx_scale
if hasattr(self.model, 'set_scale'):
self.model.set_scale(idx_scale)
if self.training:
if self.n_GPUs > 1:
return P.data_parallel(self.model, x, range(self.n_GPUs))
else:
return self.model(x)
else:
if self.chop:
forward_function = self.forward_chop
else:
forward_function = self.model.forward
if self.self_ensemble:
return self.forward_x8(x, forward_function=forward_function)
else:
return forward_function(x)
def save(self, apath, epoch, is_best=False):
save_dirs = [os.path.join(apath, 'model_latest.pt')]
if is_best:
save_dirs.append(os.path.join(apath, 'model_best.pt'))
if self.save_models:
save_dirs.append(
os.path.join(apath, 'model_{}.pt'.format(epoch))
)
for s in save_dirs:
torch.save(self.model.state_dict(), s)
def load(self, apath, pre_train='', resume=-1, cpu=False):
load_from = None
kwargs = {}
if cpu:
kwargs = {'map_location': lambda storage, loc: storage}
if resume == -1:
load_from = torch.load(
os.path.join(apath, 'model_latest.pt'),
**kwargs
)
elif resume == 0:
if pre_train == 'download':
print('Download the model')
dir_model = os.path.join('..', 'models')
os.makedirs(dir_model, exist_ok=True)
load_from = torch.utils.model_zoo.load_url(
self.model.url,
model_dir=dir_model,
**kwargs
)
elif pre_train:
print('Load the model from {}'.format(pre_train))
load_from = torch.load(pre_train, **kwargs)
else:
load_from = torch.load(
os.path.join(apath, 'model_{}.pt'.format(resume)),
**kwargs
)
if load_from:
self.model.load_state_dict(load_from, strict=True)
def forward_chop(self, *args, shave=10, min_size=160000):
scale = 1 if self.input_large else self.scale[self.idx_scale]
n_GPUs = min(self.n_GPUs, 4)
# height, width
h, w = args[0].size()[-2:]
top = slice(0, h // 2 + shave)
bottom = slice(h - h // 2 - shave, h)
left = slice(0, w // 2 + shave)
right = slice(w - w // 2 - shave, w)
x_chops = [torch.cat([
a[..., top, left],
a[..., top, right],
a[..., bottom, left],
a[..., bottom, right]
]) for a in args]
y_chops = []
if h * w < 4 * min_size:
for i in range(0, 4, n_GPUs):
x = [x_chop[i:(i + n_GPUs)] for x_chop in x_chops]
y = P.data_parallel(self.model, *x, range(n_GPUs))
if not isinstance(y, list): y = [y]
if not y_chops:
y_chops = [[c for c in _y.chunk(n_GPUs, dim=0)] for _y in y]
else:
for y_chop, _y in zip(y_chops, y):
y_chop.extend(_y.chunk(n_GPUs, dim=0))
else:
for p in zip(*x_chops):
y = self.forward_chop(*p, shave=shave, min_size=min_size)
if not isinstance(y, list): y = [y]
if not y_chops:
y_chops = [[_y] for _y in y]
else:
for y_chop, _y in zip(y_chops, y): y_chop.append(_y)
h *= scale
w *= scale
top = slice(0, h // 2)
bottom = slice(h - h // 2, h)
bottom_r = slice(h // 2 - h, None)
left = slice(0, w // 2)
right = slice(w - w // 2, w)
right_r = slice(w // 2 - w, None)
# batch size, number of color channels
b, c = y_chops[0][0].size()[:-2]
y = [y_chop[0].new(b, c, h, w) for y_chop in y_chops]
for y_chop, _y in zip(y_chops, y):
_y[..., top, left] = y_chop[0][..., top, left]
_y[..., top, right] = y_chop[1][..., top, right_r]
_y[..., bottom, left] = y_chop[2][..., bottom_r, left]
_y[..., bottom, right] = y_chop[3][..., bottom_r, right_r]
if len(y) == 1: y = y[0]
return y
def forward_x8(self, *args, forward_function=None):
def _transform(v, op):
if self.precision != 'single': v = v.float()
v2np = v.data.cpu().numpy()
if op == 'v':
tfnp = v2np[:, :, :, ::-1].copy()
elif op == 'h':
tfnp = v2np[:, :, ::-1, :].copy()
elif op == 't':
tfnp = v2np.transpose((0, 1, 3, 2)).copy()
ret = torch.Tensor(tfnp).to(self.device)
if self.precision == 'half': ret = ret.half()
return ret
def _transform_list(list_v, op):
ret = [_transform(v, op) for v in list_v]
return ret
list_x = []
for a in args:
x = [a]
for tf in 'v', 'h', 't': x.extend([_transform_list(_x, tf) for _x in x])
list_x.append(x)
list_y = []
for x in zip(*list_x):
y = forward_function(*x)
if not isinstance(y, list): y = [y]
if not list_y:
list_y = [[_y] for _y in y]
else:
for _list_y, _y in zip(list_y, y): _list_y.append(_y)
for _list_y in list_y:
for i in range(len(_list_y)):
if i > 3:
_list_y[i] = _transform(_list_y[i], 't')
if i % 4 > 1:
_list_y[i] = _transform(_list_y[i], 'h')
if (i % 4) % 2 == 1:
_list_y[i] = _transform(_list_y[i], 'v')
y = [torch.cat(_y, dim=0).mean(dim=0, keepdim=True) for _y in list_y]
if len(y) == 1: y = y[0]
return y