forked from jinhan/tacotron2-vae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
137 lines (116 loc) · 5.63 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import random
import numpy as np
import torch
import torch.utils.data
import layers
from utils import load_wav_to_torch, load_filepaths_and_text
from text import text_to_sequence
class TextMelLoader(torch.utils.data.Dataset):
"""
1) loads audio,text pairs
2) normalizes text and converts them to sequences of one-hot vectors
3) computes mel-spectrograms from audio files.
"""
def __init__(self, audiopaths_and_text, hparams):
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
self.text_cleaners = hparams.text_cleaners
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.load_mel_from_disk = hparams.load_mel_from_disk
self.n_speakers = hparams.n_speakers
self.n_emotions = hparams.n_emotions
self.stft = layers.TacotronSTFT(
hparams.filter_length, hparams.hop_length, hparams.win_length,
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
hparams.mel_fmax)
random.seed(1234)
random.shuffle(self.audiopaths_and_text)
def get_mel_text_pair(self, audiopath_and_text):
# separate filename and text
audiopath, text, speaker, emotion = audiopath_and_text[0], audiopath_and_text[1], audiopath_and_text[2], audiopath_and_text[3] # filelists/*.txt 구조대로 parsing
text = self.get_text(text) # int_tensor[char_index, ....]
mel = self.get_mel(audiopath) # []
speaker = self.get_speaker(speaker) # 현재는 single speaker
emotion = self.get_emotion(emotion)
return (text, mel, speaker, emotion)
def get_mel(self, filename):
if not self.load_mel_from_disk:
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.stft.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.stft.sampling_rate))
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
melspec = self.stft.mel_spectrogram(audio_norm)
melspec = torch.squeeze(melspec, 0)
else:
melspec = torch.from_numpy(np.load(filename))
assert melspec.size(0) == self.stft.n_mel_channels, (
'Mel dimension mismatch: given {}, expected {}'.format(
melspec.size(0), self.stft.n_mel_channels))
return melspec
def get_text(self, text):
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
return text_norm
def get_speaker(self, speaker):
speaker_vector = np.zeros(self.n_speakers)
speaker_vector[int(speaker)] = 1
return torch.Tensor(speaker_vector.astype(dtype=np.float32))
def get_emotion(self, emotion):
emotion_vector = np.zeros(self.n_emotions)
emotion_vector[int(emotion)] = 1
return torch.Tensor(emotion_vector.astype(dtype=np.float32))
def __getitem__(self, index):
return self.get_mel_text_pair(self.audiopaths_and_text[index])
def __len__(self):
return len(self.audiopaths_and_text)
class TextMelCollate():
""" Zero-pads model inputs and targets based on number of frames per setep
"""
def __init__(self, n_frames_per_step):
self.n_frames_per_step = n_frames_per_step
def __call__(self, batch):
"""Collate's training batch from normalized text and mel-spectrogram
PARAMS
------
batch: [[text_normalized, mel_normalized], ...]
"""
# Right zero-pad all one-hot text sequences to max input length
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(x[0]) for x in batch]),
dim=0, descending=True)
max_input_len = input_lengths[0]
text_padded = torch.LongTensor(len(batch), max_input_len)
text_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
text = batch[ids_sorted_decreasing[i]][0]
text_padded[i, :text.size(0)] = text
speakers = torch.LongTensor(len(batch), len(batch[0][2]))
for i in range(len(ids_sorted_decreasing)):
speaker = batch[ids_sorted_decreasing[i]][2]
speakers[i, :] = speaker
emotions = torch.LongTensor(len(batch), len(batch[0][3]))
for i in range(len(ids_sorted_decreasing)):
emotion = batch[ids_sorted_decreasing[i]][3]
emotions[i, :] = emotion
# Right zero-pad mel-spec
num_mels = batch[0][1].size(0)
max_target_len = max([x[1].size(1) for x in batch])
# max_target_len = min(max([x[1].size(1) for x in batch]), 1000) # max_len 1000
if max_target_len % self.n_frames_per_step != 0:
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
assert max_target_len % self.n_frames_per_step == 0
# include mel padded and gate padded
mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
mel_padded.zero_()
gate_padded = torch.FloatTensor(len(batch), max_target_len)
gate_padded.zero_()
output_lengths = torch.LongTensor(len(batch))
for i in range(len(ids_sorted_decreasing)):
mel = batch[ids_sorted_decreasing[i]][1]
mel_padded[i, :, :mel.size(1)] = mel
gate_padded[i, mel.size(1)-1:] = 1
output_lengths[i] = mel.size(1)
return text_padded, input_lengths, mel_padded, gate_padded, \
output_lengths, speakers, emotions