-
Notifications
You must be signed in to change notification settings - Fork 13
/
config.yaml
82 lines (75 loc) · 1.86 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
version: STgram-MFN
description: STgram-MFN
time_version: False # if set ture, add time information in version
save_version_files: False # if set true, save each version files in runs
save_version_file_patterns:
- "*.py"
- "*.yaml"
pass_dirs:
- '.'
- '_'
- 'runs'
- 'results'
# filepath
train_dirs:
- ../../data/dataset/fan/train
- ../../data/dataset/pump/train
- ../../data/dataset/slider/train
- ../../data/dataset/ToyCar/train
- ../../data/dataset/ToyConveyor/train
- ../../data/dataset/valve/train
add_dirs:
- ../../data/eval_dataset/fan/train
- ../../data/eval_dataset/pump/train
- ../../data/eval_dataset/slider/train
- ../../data/eval_dataset/ToyCar/train
- ../../data/eval_dataset/ToyConveyor/train
- ../../data/eval_dataset/valve/train
valid_dirs:
- ../../data/dataset/fan/test
- ../../data/dataset/pump/test
- ../../data/dataset/slider/test
- ../../data/dataset/ToyCar/test
- ../../data/dataset/ToyConveyor/test
- ../../data/dataset/valve/test
test_dirs:
- ../../data/eval_dataset/fan/test
- ../../data/eval_dataset/pump/test
- ../../data/eval_dataset/slider/test
- ../../data/eval_dataset/ToyCar/test
- ../../data/eval_dataset/ToyConveyor/test
- ../../data/eval_dataset/valve/test
result_dir: ./results
# audio preprocess
sr: 16000
n_fft: 1024
n_mels: 128
win_length: 1024
hop_length: 512
power: 2.0
secs: 10
cuda: True
# train
random_seed: 42
epochs: 300
batch_size: 128
num_workers: 0
lr: 1e-4
device_ids:
- 6
- 7
valid_every_epochs: 10
early_stop_epochs: -1
start_save_model_epochs: 300
save_model_interval_epochs: 1
start_scheduler_epoch: 20
start_valid_epoch: 0
# loss
use_arcface: True
m: 0.7
s: 30
sub_center: 1
# anomaly score
gmm_n: False # if set as a int value, use gmm to fit feature for each ID and estimate anomaly score
# test
load_epoch: False # it will test your model if set a value, e.g. best, 10, 100