-
Notifications
You must be signed in to change notification settings - Fork 60
/
utils.py
954 lines (873 loc) · 31.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
import string
from nltk import ngrams
import numpy as np
# DO NOT change the random seed, otherwise, the train-test split will be inconsistent with those in the baselines
np.random.seed(7894)
import os
import pickle
def ot2bio_ote(ote_tag_sequence):
"""
ot2bio function for ote tag sequence
:param ote_tag_sequence:
:return:
"""
new_ote_sequence = []
n_tag = len(ote_tag_sequence)
prev_ote_tag = '$$$'
for i in range(n_tag):
cur_ote_tag = ote_tag_sequence[i]
assert cur_ote_tag == 'O' or cur_ote_tag == 'T'
if cur_ote_tag == 'O':
new_ote_sequence.append(cur_ote_tag)
else:
# cur_ote_tag is T
if prev_ote_tag == 'T':
new_ote_sequence.append('I')
else:
# cur tag is at the beginning of the opinion target
new_ote_sequence.append('B')
prev_ote_tag = cur_ote_tag
return new_ote_sequence
def ot2bio_ts(ts_tag_sequence):
"""
ot2bio function for ts tag sequence
:param ts_tag_sequence:
:return:
"""
new_ts_sequence = []
n_tag = len(ts_tag_sequence)
prev_pos = '$$$'
for i in range(n_tag):
cur_ts_tag = ts_tag_sequence[i]
if cur_ts_tag == 'O':
new_ts_sequence.append('O')
cur_pos = 'O'
else:
# current tag is subjective tag, i.e., cur_pos is T
# print(cur_ts_tag)
cur_pos, cur_sentiment = cur_ts_tag.split('-')
if cur_pos == prev_pos:
# prev_pos is T
new_ts_sequence.append('I-%s' % cur_sentiment)
else:
# prev_pos is O
new_ts_sequence.append('B-%s' % cur_sentiment)
prev_pos = cur_pos
return new_ts_sequence
def ot2bio(ote_tag_sequence, ts_tag_sequence):
"""
perform ot--->bio for both ote tag sequence and ts tag sequence
:param ote_tag_sequence: input tag sequence of opinion target extraction
:param ts_tag_sequence: input tag sequence of targeted sentiment
:return:
"""
new_ote_sequence = ot2bio_ote(ote_tag_sequence=ote_tag_sequence)
new_ts_sequence = ot2bio_ts(ts_tag_sequence=ts_tag_sequence)
assert len(new_ts_sequence) == len(ts_tag_sequence)
assert len(new_ote_sequence) == len(ote_tag_sequence)
return new_ote_sequence, new_ts_sequence
def ot2bio_ote_batch(ote_tag_seqs):
"""
batch version of function ot2bio_ote
:param ote_tags:
:return:
"""
new_ote_tag_seqs = []
n_seqs = len(ote_tag_seqs)
for i in range(n_seqs):
new_ote_seq = ot2bio_ote(ote_tag_sequence=ote_tag_seqs[i])
new_ote_tag_seqs.append(new_ote_seq)
return new_ote_tag_seqs
def ot2bio_ts_batch(ts_tag_seqs):
"""
batch version of function ot2bio_ts
:param ts_tag_seqs:
:return:
"""
new_ts_tag_seqs = []
n_seqs = len(ts_tag_seqs)
for i in range(n_seqs):
new_ts_seq = ot2bio_ts(ts_tag_sequence=ts_tag_seqs[i])
new_ts_tag_seqs.append(new_ts_seq)
return new_ts_tag_seqs
def ot2bio_batch(ote_tags, ts_tags):
"""
batch version of function ot2bio
:param ote_tags: a batch of ote tag sequence
:param ts_tags: a batch of ts tag sequence
:return:
"""
new_ote_tags, new_ts_tags = [], []
assert len(ote_tags) == len(ts_tags)
n_seqs = len(ote_tags)
for i in range(n_seqs):
ote, ts = ot2bio(ote_tag_sequence=ote_tags[i], ts_tag_sequence=ts_tags[i])
new_ote_tags.append(ote)
new_ts_tags.append(ts)
return new_ote_tags, new_ts_tags
def ot2bieos_ote(ote_tag_sequence):
"""
ot2bieos function for ote task
:param ote_tag_sequence:
:return:
"""
n_tags = len(ote_tag_sequence)
new_ote_sequence = []
prev_ote_tag = '$$$'
for i in range(n_tags):
cur_ote_tag = ote_tag_sequence[i]
if cur_ote_tag == 'O':
new_ote_sequence.append('O')
else:
# cur_ote_tag is T
if prev_ote_tag != cur_ote_tag:
# prev_ote_tag is O, new_cur_tag can only be B or S
if i == n_tags - 1:
new_ote_sequence.append('S')
elif ote_tag_sequence[i + 1] == cur_ote_tag:
new_ote_sequence.append('B')
elif ote_tag_sequence[i + 1] != cur_ote_tag:
new_ote_sequence.append('S')
else:
raise Exception("Invalid ner tag value: %s" % cur_ote_tag)
else:
# prev_tag is T, new_cur_tag can only be I or E
if i == n_tags - 1:
new_ote_sequence.append('E')
elif ote_tag_sequence[i + 1] == cur_ote_tag:
# next_tag is T
new_ote_sequence.append('I')
elif ote_tag_sequence[i + 1] != cur_ote_tag:
# next_tag is O
new_ote_sequence.append('E')
else:
raise Exception("Invalid ner tag value: %s" % cur_ote_tag)
prev_ote_tag = cur_ote_tag
return new_ote_sequence
def ot2bieos_ts(ts_tag_sequence):
"""
ot2bieos function for ts task
:param ts_tag_sequence: tag sequence for targeted sentiment
:return:
"""
n_tags = len(ts_tag_sequence)
new_ts_sequence = []
prev_pos = '$$$'
for i in range(n_tags):
cur_ts_tag = ts_tag_sequence[i]
if cur_ts_tag == 'O':
new_ts_sequence.append('O')
cur_pos = 'O'
else:
cur_pos, cur_sentiment = cur_ts_tag.split('-')
# cur_pos is T
if cur_pos != prev_pos:
# prev_pos is O and new_cur_pos can only be B or S
if i == n_tags - 1:
new_ts_sequence.append('S-%s' % cur_sentiment)
else:
next_ts_tag = ts_tag_sequence[i + 1]
if next_ts_tag == 'O':
new_ts_sequence.append('S-%s' % cur_sentiment)
else:
new_ts_sequence.append('B-%s' % cur_sentiment)
else:
# prev_pos is T and new_cur_pos can only be I or E
if i == n_tags - 1:
new_ts_sequence.append('E-%s' % cur_sentiment)
else:
next_ts_tag = ts_tag_sequence[i + 1]
if next_ts_tag == 'O':
new_ts_sequence.append('E-%s' % cur_sentiment)
else:
new_ts_sequence.append('I-%s' % cur_sentiment)
prev_pos = cur_pos
return new_ts_sequence
def ot2bieos(ote_tag_sequence, ts_tag_sequence):
"""
perform ot-->bieos for both ote tag and ts tag sequence
:param ote_tag_sequence: input tag sequence of opinion target extraction
:param ts_tag_sequence: input tag sequence of targeted sentiment
:return:
"""
# new tag sequences of opinion target extraction and targeted sentiment
new_ote_sequence = ot2bieos_ote(ote_tag_sequence=ote_tag_sequence)
new_ts_sequence = ot2bieos_ts(ts_tag_sequence=ts_tag_sequence)
assert len(ote_tag_sequence) == len(new_ote_sequence)
assert len(ts_tag_sequence) == len(new_ts_sequence)
return new_ote_sequence, new_ts_sequence
def ot2bieos_ote_batch(ote_tag_seqs):
"""
batch version of function ot2bieos_ote
:param ote_tags:
:return:
"""
new_ote_tag_seqs = []
n_seqs = len(ote_tag_seqs)
for i in range(n_seqs):
new_ote_seq = ot2bieos_ote(ote_tag_sequence=ote_tag_seqs[i])
new_ote_tag_seqs.append(new_ote_seq)
return new_ote_tag_seqs
def ot2bieos_ts_batch(ts_tag_seqs):
"""
batch version of function ot2bieos_ts
:param ts_tag_seqs:
:return:
"""
new_ts_tag_seqs = []
n_seqs = len(ts_tag_seqs)
for i in range(n_seqs):
new_ts_seq = ot2bieos_ts(ts_tag_sequence=ts_tag_seqs[i])
new_ts_tag_seqs.append(new_ts_seq)
return new_ts_tag_seqs
def ot2bieos_batch(ote_tags, ts_tags):
"""
batch version of function ot2bieos
:param ote_tags: a batch of ote tag sequence
:param ts_tags: a batch of ts tag sequence
:return:
:param ote_tags:
:param ts_tags:
:return:
"""
new_ote_tags, new_ts_tags = [], []
assert len(ote_tags) == len(ts_tags)
n_seqs = len(ote_tags)
for i in range(n_seqs):
ote, ts = ot2bieos(ote_tag_sequence=ote_tags[i], ts_tag_sequence=ts_tags[i])
new_ote_tags.append(ote)
new_ts_tags.append(ts)
return new_ote_tags, new_ts_tags
def bio2ot_ote(ote_tag_sequence):
"""
perform bio-->ot for ote tag sequence
:param ote_tag_sequence:
:return:
"""
new_ote_sequence = []
n_tags = len(ote_tag_sequence)
for i in range(n_tags):
ote_tag = ote_tag_sequence[i]
if ote_tag == 'B' or ote_tag == 'I':
new_ote_sequence.append('T')
else:
new_ote_sequence.append('I')
return new_ote_sequence
def bio2ot_ts(ts_tag_sequence):
"""
perform bio-->ot for ts tag sequence
:param ts_tag_sequence:
:return:
"""
new_ts_sequence = []
n_tags = len(ts_tag_sequence)
for i in range(n_tags):
ts_tag = ts_tag_sequence[i]
if ts_tag == 'O':
new_ts_sequence.append('O')
else:
pos, sentiment = ts_tag.split('-')
new_ts_sequence.append('T-%s' % sentiment)
return new_ts_sequence
def bio2ot(ote_tag_sequence, ts_tag_sequence):
"""
perform bio-->ot for both ote and ts tag sequence
:param ote_tag_sequence: tag sequence for opinion target extraction
:param ts_tag_sequence: tag sequence for targeted sentiment
:return:
"""
assert len(ote_tag_sequence) == len(ts_tag_sequence)
new_ote_sequence = bio2ot_ote(ote_tag_sequence=ote_tag_sequence)
new_ts_sequence = bio2ot_ts(ts_tag_sequence=ts_tag_sequence)
assert len(new_ote_sequence) == len(ote_tag_sequence)
assert len(new_ts_sequence) == len(ts_tag_sequence)
return new_ote_sequence, new_ts_sequence
def bio2ot_ote_batch(ote_tag_seqs):
"""
batch version of function bio2ot_ote
:param ote_tag_seqs: ote tag sequences
:return:
"""
new_ote_tag_seqs = []
n_seqs = len(ote_tag_seqs)
for i in range(n_seqs):
new_ote_seq = bio2ot_ote(ote_tag_sequence=ote_tag_seqs[i])
new_ote_tag_seqs.append(new_ote_seq)
return new_ote_tag_seqs
def bio2ot_ts_batch(ts_tag_seqs):
"""
batch version of function bio2ot_ts
:param ts_tag_seqs:
:return:
"""
new_ts_tag_seqs = []
n_seqs = len(ts_tag_seqs)
for i in range(n_seqs):
new_ts_seq = bio2ot_ts(ts_tag_sequence=ts_tag_seqs[i])
new_ts_tag_seqs.append(new_ts_seq)
return new_ts_tag_seqs
def bio2ot_batch(ote_tags, ts_tags):
"""
batch version of function bio2ot
:param ote_tags: a batch of ote tag sequence
:param ts_tags: a batch of ts tag sequence
:return:
"""
new_ote_tags, new_ts_tags = [], []
assert len(ote_tags) == len(ts_tags)
n_seqs = len(ote_tags)
for i in range(n_seqs):
ote, ts = bio2ot(ote_tag_sequence=ote_tags[i], ts_tag_sequence=ts_tags[i])
new_ote_tags.append(ote)
new_ts_tags.append(ts)
return new_ote_tags, new_ts_tags
# TODO
def bieos2ot(tag_sequence):
"""
transform BIEOS tag sequence to OT tag sequence
:param tag_sequence: input tag sequence
:return:
"""
new_sequence = []
for t in tag_sequence:
assert t == 'B' or t == 'I' or t == 'E' or t == 'O' or t == 'S'
if t == 'O':
new_sequence.append(t)
else:
new_sequence.append('T')
assert len(new_sequence) == len(tag_sequence)
return new_sequence
def get_vocab(train_set, test_set):
"""
build the vocabulary of the whole dataset
:param train_set:
:param test_set:
:return:
"""
vocab = {'PUNCT': 0, 'PADDING': 1}
inv_vocab = {0: 'PUNCT', 1: 'PADDING'}
wid = 2
for record in train_set + test_set:
assert 'words' in record
words = record['words']
for w in words:
if w not in vocab:
vocab[w] = wid
inv_vocab[wid] = w
wid += 1
print("Find %s different words in the dataset" % len(vocab))
char_string = ''
for w in vocab:
char_string += w
chars = list(set(char_string))
cid, char_vocab = 0, {}
for ch in chars:
if ch not in char_vocab:
char_vocab[ch] = cid
cid += 1
print("Find %s different chars in the dataset" % len(char_vocab))
return vocab, char_vocab
def read_lexicon():
"""
read sentiment lexicon from the disk
:return:
"""
path = 'mpqa_full.txt'
sent_lexicon = {}
with open(path) as fp:
for line in fp:
word, polarity = line.strip().split('\t')
if word not in sent_lexicon:
sent_lexicon[word] = polarity
return sent_lexicon
def read_data(path):
"""
read data from the specified path
:param path: path of dataset
:return:
"""
dataset = []
with open(path, encoding='UTF-8') as fp:
for line in fp:
record = {}
sent, tag_string = line.strip().split('####')
record['sentence'] = sent
word_tag_pairs = tag_string.split(' ')
# tag sequence for targeted sentiment
ts_tags = []
# tag sequence for opinion target extraction
ote_tags = []
# word sequence
words = []
for item in word_tag_pairs:
# valid label is: O, T-POS, T-NEG, T-NEU
eles = item.split('=')
if len(eles) == 2:
word, tag = eles
elif len(eles) > 2:
tag = eles[-1]
word = (len(eles) - 2) * "="
if word not in string.punctuation:
# lowercase the words
words.append(word.lower())
else:
# replace punctuations with a special token
words.append('PUNCT')
if tag == 'O':
ote_tags.append('O')
ts_tags.append('O')
elif tag == 'T-POS':
ote_tags.append('T')
ts_tags.append('T-POS')
elif tag == 'T-NEG':
ote_tags.append('T')
ts_tags.append('T-NEG')
elif tag == 'T-NEU':
ote_tags.append('T')
ts_tags.append('T-NEU')
else:
raise Exception('Invalid tag %s!!!' % tag)
record['words'] = words.copy()
record['ote_raw_tags'] = ote_tags.copy()
record['ts_raw_tags'] = ts_tags.copy()
dataset.append(record)
print("Obtain %s records from %s" % (len(dataset), path))
return dataset
def set_wid(dataset, vocab, win=1):
"""
set wid field for the dataset
:param dataset: dataset
:param vocab: vocabulary
:param win: context window size, for window-based input, should be an odd number
:return: dataset with field wid
"""
n_records = len(dataset)
for i in range(n_records):
words = dataset[i]['words']
lm_labels = []
# set labels for the auxiliary language modeling task
for w in words:
lm_labels.append(vocab[w])
dataset[i]['lm_labels'] = lm_labels.copy()
n_padded_words = win // 2
pad_left = ['PADDING' for _ in range(n_padded_words)]
pad_right = ['PADDING' for _ in range(n_padded_words)]
padded_words = pad_left + words + pad_right
# the window-based input
win_input = list(ngrams(padded_words, win))
assert len(win_input) == len(words)
n_grams = []
for t in win_input:
n_grams.append(t)
wids = [[vocab[w] for w in ngram] for ngram in n_grams]
dataset[i]['wids'] = wids.copy()
return dataset
def set_cid(dataset, char_vocab):
"""
set cid field for the records in the dataset
:param dataset: dataset
:param char_vocab: vocabulary of character
:return:
"""
n_records = len(dataset)
cids = []
for i in range(n_records):
words = dataset[i]['words']
cids = []
for w in words:
cids.append([char_vocab[ch] for ch in list(w)])
dataset[i]['cids'] = cids.copy()
return dataset
def set_labels(dataset, tagging_schema='BIO'):
"""
set ote_label and ts_label for the dataset
:param dataset: dataset without ote_label and ts_label fields
:param tagging_schema: tagging schema of ote_tag and ts_tag
:return:
"""
if tagging_schema == 'OT':
ote_tag_vocab = {'O': 0, 'T': 1}
ts_tag_vocab = {'O': 0, 'T-POS': 1, 'T-NEG': 2, 'T-NEU': 3}
elif tagging_schema == 'BIO':
ote_tag_vocab = {'O': 0, 'B': 1, 'I': 2}
ts_tag_vocab = {'O': 0, 'B-POS': 1, 'I-POS': 2, 'B-NEG': 3, 'I-NEG': 4,
'B-NEU': 5, 'I-NEU': 6}
elif tagging_schema == 'BIEOS':
ote_tag_vocab = {'O': 0, 'B': 1, 'I': 2, 'E': 3, 'S': 4}
ts_tag_vocab = {'O': 0, 'B-POS': 1, 'I-POS': 2, 'E-POS': 3, 'S-POS': 4,
'B-NEG': 5, 'I-NEG': 6, 'E-NEG': 7, 'S-NEG': 8,
'B-NEU': 9, 'I-NEU': 10, 'E-NEU': 11, 'S-NEU': 12}
else:
raise Exception("Invalid tagging schema %s" % tagging_schema)
n_records = len(dataset)
for i in range(n_records):
ote_tags = dataset[i]['ote_raw_tags']
ts_tags = dataset[i]['ts_raw_tags']
if tagging_schema == 'OT':
pass
elif tagging_schema == 'BIO':
ote_tags, ts_tags = ot2bio(ote_tag_sequence=ote_tags, ts_tag_sequence=ts_tags)
elif tagging_schema == 'BIEOS':
ote_tags, ts_tags = ot2bieos(ote_tag_sequence=ote_tags, ts_tag_sequence=ts_tags)
else:
raise Exception("Invalid tagging schema %s" % tagging_schema)
ote_labels = [ote_tag_vocab[t] for t in ote_tags]
ts_labels = [ts_tag_vocab[t] for t in ts_tags]
dataset[i]['ote_tags'] = ote_tags.copy()
dataset[i]['ts_tags'] = ts_tags.copy()
dataset[i]['ote_labels'] = ote_labels.copy()
dataset[i]['ts_labels'] = ts_labels.copy()
return dataset, ote_tag_vocab, ts_tag_vocab
def set_lm_labels(dataset, vocab, stm_lex, stm_win=3):
"""
set labels of bi-directional language modeling and sentiment-aware language modeling
:param dataset: dataset
:param vocab: vocabulary
:param stm_lex: sentiment lexicon
:param stm_win: window size (i.e., length) of sentiment context
:return:
"""
n_records = len(dataset)
for i in range(n_records):
words = dataset[i]['words']
# labels of language modeling and sentiment aware language modeling
lm_labels_f, lm_labels_b = [], []
n_w = len(words)
# language modeling in forward direction
for j in range(n_w):
if j == n_w - 1:
next_word = 'PADDING'
else:
next_word = words[j+1]
lm_labels_f.append(vocab[next_word])
for j in range(n_w-1, -1, -1):
if j == 0:
next_word = 'PADDING'
else:
next_word = words[j-1]
lm_labels_b.append(vocab[next_word])
dataset[i]['lm_labels_f'] = lm_labels_f.copy()
dataset[i]['lm_labels_b'] = lm_labels_b.copy()
# sentiment aware language modeling
stm_lm_labels = []
for j in range(n_w):
# left boundary of sentimental context
stm_ctx_lb = j - stm_win
if stm_ctx_lb < 0:
stm_ctx_lb = 0
stm_ctx_rb = j + stm_win + 1
left_ctx = words[stm_ctx_lb:j]
right_ctx = words[j+1:stm_ctx_rb]
stm_ctx = left_ctx + right_ctx
flag = False
for w in stm_ctx:
if w in stm_lex:
flag = True
break
if flag:
stm_lm_labels.append(1)
else:
stm_lm_labels.append(0)
dataset[i]['stm_lm_labels'] = stm_lm_labels.copy()
return dataset
def build_dataset(ds_name, input_win=1, tagging_schema='BIO', stm_win=1):
"""
build dataset for model training, development and inference
:param ds_name: dataset name
:param input_win: window size input
:param tagging_schema: tagging schema
:param stm_win: window size of context for the OE component
:return:
"""
# read mpqa sentiment lexicon
stm_lex = read_lexicon()
# paths of training and testing dataset
train_path = './data/%s_train.txt' % ds_name
test_path = './data/%s_test.txt' % ds_name
# loaded datasets
train_set = read_data(path=train_path)
test_set = read_data(path=test_path)
vocab, char_vocab = get_vocab(train_set=train_set, test_set=test_set)
train_set = set_wid(dataset=train_set, vocab=vocab, win=input_win)
test_set = set_wid(dataset=test_set, vocab=vocab, win=input_win)
train_set = set_cid(dataset=train_set, char_vocab=char_vocab)
test_set = set_cid(dataset=test_set, char_vocab=char_vocab)
train_set, ote_tag_vocab, ts_tag_vocab = set_labels(dataset=train_set, tagging_schema=tagging_schema)
test_set, _, _ = set_labels(dataset=test_set, tagging_schema=tagging_schema)
train_set = set_lm_labels(dataset=train_set, vocab=vocab, stm_lex=stm_lex, stm_win=stm_win)
test_set = set_lm_labels(dataset=test_set, vocab=vocab, stm_lex=stm_lex, stm_win=stm_win)
n_train = len(train_set)
# use 10% training data for dev experiment
n_val = int(n_train * 0.1)
# generate a uniform random sample from np.range(n_train) of size n_val
# This is equivalent to np.random.permutation(np.arange(n_train))[:n_val]
val_sample_ids = np.random.choice(n_train, n_val, replace=False)
print("The first 15 validation samples:", val_sample_ids[:15])
val_set, tmp_train_set = [], []
for i in range(n_train):
record = train_set[i]
if i in val_sample_ids:
val_set.append(record)
else:
tmp_train_set.append(record)
train_set = [r for r in tmp_train_set]
return train_set, val_set, test_set, vocab, char_vocab, ote_tag_vocab, ts_tag_vocab
def load_embeddings(path, vocab, ds_name, emb_name):
"""
load pre-trained word embeddings from the disk
:param path: absolute path of the embedding files
:param vocab: vocabulary
:param ds_name: name of dataset
:param emb_name: name of word embedding
:return:
"""
# by default, we employ GloVe 840B word embeddings
pkl = './embeddings/%s_%s.pkl' % (ds_name, emb_name)
if os.path.exists(pkl):
print("Load embeddings from existing pkl file %s..." % pkl)
# word embeddings weights have been loaded
embeddings = pickle.load(open(pkl, 'rb'))
else:
print("Load embedding from %s..." % path)
raw_embeddings = {}
with open(path) as fp:
for line in fp:
eles = line.strip().split(' ')
word = eles[0]
if word in vocab:
raw_embeddings[word] = eles[1:]
dim_w = len(raw_embeddings['the'])
n_words = len(vocab)
embeddings = np.zeros(shape=(n_words, dim_w))
for w in vocab:
wid = vocab[w]
if w in raw_embeddings:
embeddings[wid] = np.array([float(ele) for ele in raw_embeddings[w]])
else:
# for OOV words, add random initialization
embeddings[wid] = np.random.uniform(-0.25, 0.25, dim_w)
print("Find %s word embeddings..." % len(embeddings))
if not os.path.exists('./embeddings'):
os.mkdir('./embeddings')
emb_path = './embeddings/%s_%s.pkl' % (ds_name, emb_name)
# write the embedding weights back to the disk
pickle.dump(embeddings, open(emb_path, 'wb'))
embeddings = np.array(embeddings, dtype='float32')
return embeddings
def load_char_embeddings(char_vocab, ds_name):
"""
load pre-trained character-level embeddings
:param char_vocab: vocabulary of character
:param ds_name: name of dataset
:return:
"""
n_char = len(char_vocab)
pkl = './embeddings/%s_char.pkl' % ds_name
if os.path.exists(pkl):
print("Load character embeddings from %s..." % pkl)
embeddings = pickle.load(open(pkl, 'rb'))
else:
emb_path = './embeddings/char-embeddings.txt'
print("Load character embeddings from %s..." % emb_path)
raw_embeddings = {}
n_found = 0
with open(emb_path) as fp:
for line in fp:
eles = line.strip().split()
ch = eles[0]
vec = [float(ele) for ele in eles[1:]]
if ch not in raw_embeddings:
raw_embeddings[ch] = vec
dim_ch = len(raw_embeddings['A'])
embeddings = np.zeros(shape=(n_char, dim_ch))
for ch in char_vocab:
cid = char_vocab[ch]
if ch in raw_embeddings:
embeddings[cid] = np.array(raw_embeddings[ch])
n_found += 1
else:
embeddings[cid] = np.random.uniform(-0.25, 0.25, dim_ch)
print("Find %s chars in pre-trained character embeddings..." % n_found)
embeddings = np.array(embeddings, dtype='float32')
pickle.dump(embeddings, open(pkl, 'wb'))
return embeddings
def label2tag(label_sequence, tag_vocab):
"""
convert label sequence to tag sequence
:param label_sequence: label sequence
:param tag_vocab: tag vocabulary, i.e., mapping between tag and label
:return:
"""
inv_tag_vocab = {}
for tag in tag_vocab:
label = tag_vocab[tag]
inv_tag_vocab[label] = tag
tag_sequence = []
n_tag = len(tag_vocab)
for l in label_sequence:
if l in inv_tag_vocab:
tag_sequence.append(inv_tag_vocab[l])
elif l == n_tag or l == n_tag + 1:
tag_sequence.append("O")
else:
raise Exception("Invalid label %s" % l)
return tag_sequence
def tag2predictions(ote_tag_sequence, ts_tag_sequence):
"""
transform BIEOS tag sequence to the list of aspects together with sentiment
:param ote_tag_sequence: tag sequence for opinion target extraction
:param ts_tag_sequence: tag sequence for targeted sentiment
:return: a list of aspects/entities
"""
n_tag = len(ote_tag_sequence)
# opinion target sequence and targeted sentiment sequence
ot_sequence, ts_sequence = [], []
beg, end = -1, -1
for i in range(n_tag):
tag = ote_tag_sequence[i]
if tag == 'S':
ot_sequence.append((i, i))
elif tag == 'B':
beg = i
elif tag == 'E':
end = i
if end > beg and beg != -1:
ot_sequence.append((beg, end))
beg, end = -1, -1
sentiments = []
beg, end = -1, -1
for i in range(n_tag):
ts_tag = ts_tag_sequence[i]
# current position and sentiment
eles = ts_tag.split('-')
if len(eles) == 2:
pos, sentiment = eles
else:
pos, sentiment = 'O', 'O'
if sentiment != 'O':
# current word is a subjective word
sentiments.append(sentiment)
if pos == 'S':
# singleton
ts_sequence.append((i, i, sentiments[0]))
sentiments = []
elif pos == 'B':
beg = i
elif pos == 'E':
end = i
# schema1: only the consistent sentiment tags are accepted
# that is, all of the sentiment tags are the same
if end > beg > -1 and len(set(sentiments)) == 1:
ts_sequence.append((beg, end, sentiment))
sentiments = []
beg, end = -1, -1
# schema2: only consider the sentiment at the beginning of the aspect span
# if end > beg > -1:
# ts_sequence.append((beg, end, sentiments[0]))
# sentiments = []
# beg, end = -1, -1
return ot_sequence, ts_sequence
def tag2ot(ote_tag_sequence):
"""
transform ote tag sequence to a sequence of opinion target
:param ote_tag_sequence: tag sequence for ote task
:return:
"""
n_tags = len(ote_tag_sequence)
ot_sequence = []
beg, end = -1, -1
for i in range(n_tags):
tag = ote_tag_sequence[i]
if tag == 'S':
ot_sequence.append((i, i))
elif tag == 'B':
beg = i
elif tag == 'E':
end = i
if end > beg > -1:
ot_sequence.append((beg, end))
beg, end = -1, -1
return ot_sequence
def tag2ts(ts_tag_sequence):
"""
transform ts tag sequence to targeted sentiment
:param ts_tag_sequence: tag sequence for ts task
:return:
"""
n_tags = len(ts_tag_sequence)
ts_sequence, sentiments = [], []
beg, end = -1, -1
for i in range(n_tags):
ts_tag = ts_tag_sequence[i]
# current position and sentiment
eles = ts_tag.split('-')
if len(eles) == 2:
pos, sentiment = eles
else:
pos, sentiment = 'O', 'O'
if sentiment != 'O':
# current word is a subjective word
sentiments.append(sentiment)
if pos == 'S':
# singleton
ts_sequence.append((i, i, sentiment))
sentiments = []
elif pos == 'B':
beg = i
elif pos == 'E':
end = i
# schema1: only the consistent sentiment tags are accepted
# that is, all of the sentiment tags are the same
if end > beg > -1 and len(set(sentiments)) == 1:
ts_sequence.append((beg, end, sentiment))
sentiments = []
beg, end = -1, -1
return ts_sequence
def to_conll(train, val, test, embeddings, vocab, ds_name):
"""
:param train: training dataset
:param val: validation / development dataset
:param test: testing dataset
:param embeddings: pre-trained word embeddings
:param vocab: vocabulary
:return:
"""
inv_vocab = {}
for w in vocab:
wid = vocab[w]
inv_vocab[wid] = w
train_lines = semeval2conll(dataset=train)
dev_lines = semeval2conll(dataset=val)
test_lines = semeval2conll(dataset=test)
base_folder = '/projdata9/info_fil/lixin/Research/NCRFpp/sample_data'
with open('%s/%s_train.txt' % (base_folder, ds_name), 'w+') as fp:
fp.writelines(train_lines)
with open('%s/%s_dev.txt' % (base_folder, ds_name), 'w+') as fp:
fp.writelines(dev_lines)
with open('%s/%s_test.txt' % (base_folder, ds_name), 'w+') as fp:
fp.writelines(test_lines)
emb_lines = []
for i in range(len(embeddings)):
word = inv_vocab[i]
emb_vec = embeddings[i]
emb_lines.append('%s %s\n' % (word, ' '.join([str(ele) for ele in emb_vec])))
# write the embeddings back to the NCRFpp foler
with open('%s/%s_emb.txt' % (base_folder, ds_name), 'w+') as fp:
fp.writelines(emb_lines)
def semeval2conll(dataset):
"""
transform the format of semeval datasets to conll form
:param dataset: input dataset
:return:
"""
conll_lines = []
for record in dataset:
ote_raw_tags = record['ote_raw_tags']
ts_raw_tags = record['ts_raw_tags']
words = record['words']
ote_tags, ts_tags = ot2bieos(ote_tag_sequence=ote_raw_tags, ts_tag_sequence=ts_raw_tags)
for (w, t) in zip(words, ts_tags):
conll_lines.append('%s %s\n' % (w, t))
# use empty line to seprate the samples
conll_lines.append('\n')
return conll_lines