Support GPTQ 4bit inference with GPTQ-for-LLaMa.
- Window user: use the
old-cuda
branch. - Linux user: recommend the
fastest-inference-4bit
branch.
Setup environment:
# cd /path/to/FastChat
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git repositories/GPTQ-for-LLaMa
cd repositories/GPTQ-for-LLaMa
# Window's user should use the `old-cuda` branch
git switch fastest-inference-4bit
# Install `quant-cuda` package in FastChat's virtualenv
python3 setup_cuda.py install
pip3 install texttable
Chat with the CLI:
python3 -m fastchat.serve.cli \
--model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
--gptq-wbits 4 \
--gptq-groupsize 128
Start model worker:
# Download quantized model from huggingface
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/TheBloke/vicuna-7B-1.1-GPTQ-4bit-128g models/vicuna-7B-1.1-GPTQ-4bit-128g
python3 -m fastchat.serve.model_worker \
--model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
--gptq-wbits 4 \
--gptq-groupsize 128
# You can specify which quantized model to use
python3 -m fastchat.serve.model_worker \
--model-path models/vicuna-7B-1.1-GPTQ-4bit-128g \
--gptq-ckpt models/vicuna-7B-1.1-GPTQ-4bit-128g/vicuna-7B-1.1-GPTQ-4bit-128g.safetensors \
--gptq-wbits 4 \
--gptq-groupsize 128 \
--gptq-act-order
LLaMA-13B | branch | Bits | group-size | memory(MiB) | PPL(c4) | Median(s/token) | act-order | speed up |
---|---|---|---|---|---|---|---|---|
FP16 | fastest-inference-4bit | 16 | - | 26634 | 6.96 | 0.0383 | - | 1x |
GPTQ | triton | 4 | 128 | 8590 | 6.97 | 0.0551 | - | 0.69x |
GPTQ | fastest-inference-4bit | 4 | 128 | 8699 | 6.97 | 0.0429 | true | 0.89x |
GPTQ | fastest-inference-4bit | 4 | 128 | 8699 | 7.03 | 0.0287 | false | 1.33x |
GPTQ | fastest-inference-4bit | 4 | -1 | 8448 | 7.12 | 0.0284 | false | 1.44x |