-
Notifications
You must be signed in to change notification settings - Fork 1
/
mainNeural2.m
235 lines (197 loc) · 5.8 KB
/
mainNeural2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
global PNUM;
PNUM = 1;
debug = 0;
NORM = 1; %flag=1 normalise for hip centroid
clearvars dataAll
clearvars X
clearvars Y
for i=1:PNUM
path = ['C:\Users\liam\Desktop\KINECT\kbox\data\newdata\'];
%path = ['C:\Users\liam\Desktop\KINECT\kbox\data\testhook\' num2str(i) '\'];
%path = ['C:\Users\liam\Desktop\KINECT\kbox\data\jabtest\' num2str(i) '\'];
data = loadKinectData(path,NORM); %flag=1 normalise for hip centroid
%data = diff(data,1,2); %Columnwise Differentiation - Remove effect of distance from Kinect
dataAll(i).data = data;
%dataAll(i).labels to do
if 0
close all
for i=1:size(data,2)
cla
a = data(:,i);
for j=1:3:length(a)
plot3(a(j),a(j+2),a(j+1),'.');
hold on
end
set(gca,'XLim',[-1 1]);
set(gca,'YLim',[-1 1]);
set(gca,'ZLim',[-1 1]);
pause
end
end
end
% Big data matrix
M=[];
for i = 1:length(dataAll(i))
M = [M, dataAll(i).data];
end
% [Xm1,EV1,Ev1]=createES(M,3); %Create Eigenspace., New data !contribute to eigenspace
%close all
for i=1:PNUM
dataAll(i).jred=reconstructPose(dataAll(i).data,Xm1,EV1);
dataAll(i).jredSmooth = kinsmooth(dataAll(i).jred);
[valmax,imax,valmin, imin] = getminmax(dataAll(i).jredSmooth(1,:),0,NORM); %ERROR, BUG, CHANGE THIIS
% distance = pythagoras(sort(imax)); Going to put in getminmax
temp = sort(imax);
[dataAll(i).imax]= unique(temp);
end
%DRcomp(dataAll(1).jredSmooth());
for i=1:PNUM
figure
hold on;
%plot(dataAll(i).jred(1,:),'-r');
plot(dataAll(i).jredSmooth(1,:),'b');
plot(dataAll(i).imax, dataAll(i).jredSmooth(1,dataAll(i).imax),'.g');
end
nsamples = 10;
X = [];
Y = [];
lbl = [];
%close all
for i=1:PNUM
nelem = length(dataAll(i).imax);
dataAll(i).labels = ones(nelem,1) * i;
dataAll(i).features = zeros(nelem,nsamples);
for j = 1:nelem - 1
inds = round(linspace(dataAll(i).imax(j), dataAll(i).imax(j+1), nsamples));
dataAll(i).features(j,:) = dataAll(i).jred(1,inds);
if debug
plot(dataAll(i).features(j,:))
pause
end
end
X = [X;dataAll(i).features];
Y = [Y;dataAll(i).labels];
lbl = [lbl;ceil(0.2*(length(dataAll(i).labels)))]; %for labels
%lbl = ceil(lbl);
end
labels = zeros(60,6);
for i=1:6
switch i
case 1
lbl = [1,0,0,0,0,0];
testlbl = repmat(lbl,10,1);
labels(1:10,:) = testlbl;
case 2
lbl = [0,1,0,0,0,0];
testlbl = repmat(lbl,10,1);
labels(11:20,:) = testlbl;
case 3
lbl = [0,0,1,0,0,0];
testlbl = repmat(lbl,10,1);
labels(21:30,:) = testlbl;
case 4
lbl = [0,0,0,1,0,0];
testlbl = repmat(lbl,10,1);
labels(31:40,:) = testlbl;
case 5
lbl = [0,0,0,0,1,0];
testlbl = repmat(lbl,10,1);
labels(41:50,:) = testlbl;
case 6
lbl = [0,0,0,0,0,1];
testlbl = repmat(lbl,10,1);
labels(51:60,:) = testlbl;
end
end
% close all
maxval=[];
maxind=[];
results = net(X');
[maxval maxind] = max(results);
results = zeros(size(results));
for i=1:length(results)
results(maxind(i),i) = 1;
end
lblcut = abs(length(results) - length(labels));
labels([end-(lblcut-1):end],:) = [];
%m3(:,[1:2]) = [];
figure, plotconfusion(labels',results)
% %results = sim(net,X');
%
%
%
%
% net2 = configure(net,X');
% view(net2);
%plot(results2);
%view(results)
%create labels
%labels = zeros(110,1)
%labels(111:350,:) = ones(240,1)
%'autoscale' is true by default 'kernel_function' 'rbf'
%svmStruct = svmtrain(X(trainInds,:),Y(trainInds),'kernel_function', 'rbf','autoscale','true');
% svmStruct = svmtrain(Y(trainInds),X(trainInds,:),['-b 1']);
% %labels = zeros(182,1);
% [predicted_label, accuracy, probest] = svmpredict(Y(testInds),X(testInds,:),svmStruct,['-b 1']);
% close all
%
% %%
% %Random forest % label generation.
% testlabels = [];
% for i=1:6 %should be 6
% temp = repmat(dataAll(i).labels(i,1),lbl(i,1),1);
% testlabels = vertcat(testlabels,temp);
% end
%NVarToSample, 'all' deciscion tree, otherwise random forest
% X = M';
% B = TreeBagger(75,X(trainInds,:),Y(trainInds),'OOBPred','On');
% C = B.predict(X(testInds,:));
% C = cellfun(@str2num,C);
% %testlabels(end,:) = [];
% if length(testlabels) ~= length(C)
% diff = length(testlabels) - length(C);
% testlabels([end-(diff-1):end],:) = [];
% end
%
% chklbl = horzcat(testlabels,C);
%
% count=0;
% for i=1:length(C)
% if chklbl(i,1) == chklbl(i,2)
% count = count+1;
% end
% end
% correct = (count/length(C))*100;
% sprintf('Random Forest Correct: %f%%', correct)
% close all;
% %C = confusionmat(testlabels,predicted_label);
% lbl = [1,2,3,4,5,6];
% cm = confusionmat(testlabels,predicted_label);
% disp(cm);
% heatmap(cm, lbl, lbl,'%0.0f', 'Colormap','money','ShowAllTicks',1,'UseFigureColorMap',true,'Colorbar',true);
% plotconfmat(cm,lbl);
%imagesc(cm);
%colorbar;
%%
%Diffusion maps
%mappedA = compute_mapping(A, type, no_dims, parameters)
% C = svmclassify(svmStruct,X(testInds,:),'showplot',true);
%[C, Y(testInds)]
% ty = Y(testInds);
% count = 0;
% for i=1:length(C)
% if C(i) == ty(i)
% count = count+1;
% end
% end
% correct = (count/length(C))*100
% sprintf('Correct: %f%%', correct)
%Neural networks
% lbl1 = size(dataAll(1).features,1); %How many punches do we have?
% lbl2 = size(dataAll(2).features,1);
% %lbl2=0;
% totalsize = lbl1+lbl2;
% labels = zeros(lbl1,1);
% labels(lbl1+1:totalsize,:) = ones((totalsize-lbl1),1);
%test_labels = labels(1:40,:); %new addition for test data for SVM
%close all