-
Notifications
You must be signed in to change notification settings - Fork 34
/
train_mnist_vae.py
182 lines (129 loc) · 4.37 KB
/
train_mnist_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from shutil import rmtree
from pathlib import Path
import torch
from torch import nn, tensor
from torch.nn import Module
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.optim import Adam
from einops import rearrange
from einops.layers.torch import Rearrange
import torchvision
import torchvision.transforms as T
from torchvision.utils import save_image
from tqdm import tqdm
from transfusion_pytorch import Transfusion, print_modality_sample
rmtree('./results', ignore_errors = True)
results_folder = Path('./results')
results_folder.mkdir(exist_ok = True, parents = True)
# functions
def divisible_by(num, den):
return (num % den) == 0
def cycle(iter_dl):
while True:
for batch in iter_dl:
yield batch
# dataset
class MnistDataset(Dataset):
def __init__(self):
self.mnist = torchvision.datasets.MNIST(
'./data/mnist',
download = True
)
self.transform = T.Compose([
T.PILToTensor(),
T.RandomResizedCrop((28, 28), scale = (0.8, 1.))
])
def __len__(self):
return len(self.mnist)
def __getitem__(self, idx):
pil, labels = self.mnist[idx]
digit_tensor = self.transform(pil)
return tensor(labels), (digit_tensor / 255).float()
dataset = MnistDataset()
# contrived encoder / decoder with layernorm at bottleneck
autoencoder_train_steps = 15_000
dim_latent = 16
class Normalize(Module):
def forward(self, x):
return F.normalize(x, dim = -1)
encoder = nn.Sequential(
nn.Conv2d(1, 4, 3, padding = 1),
nn.Conv2d(4, 8, 4, 2, 1),
nn.ReLU(),
nn.Dropout(0.05),
nn.Conv2d(8, dim_latent, 1),
Rearrange('b d ... -> b ... d'),
Normalize()
).cuda()
decoder = nn.Sequential(
Rearrange('b ... d -> b d ...'),
nn.Conv2d(dim_latent, 8, 1),
nn.ReLU(),
nn.ConvTranspose2d(8, 4, 4, 2, 1),
nn.Conv2d(4, 1, 3, padding = 1),
).cuda()
# train autoencoder
autoencoder_optimizer = Adam([*encoder.parameters(), *decoder.parameters()], lr = 3e-4)
autoencoder_dataloader = DataLoader(dataset, batch_size = 32, shuffle = True)
autoencoder_iter_dl = cycle(autoencoder_dataloader)
print('training autoencoder')
with tqdm(total = autoencoder_train_steps) as pbar:
for _ in range(autoencoder_train_steps):
_, images = next(autoencoder_iter_dl)
images = images.cuda()
latents = encoder(images)
latents = latents.lerp(torch.randn_like(latents), torch.rand_like(latents) * 0.2) # add a bit of noise to latents
reconstructed = decoder(latents)
loss = F.mse_loss(images, reconstructed)
loss.backward()
pbar.set_description(f'loss: {loss.item():.5f}')
autoencoder_optimizer.step()
autoencoder_optimizer.zero_grad()
pbar.update()
# transfusion
model = Transfusion(
num_text_tokens = 10,
dim_latent = dim_latent,
modality_default_shape = (14, 14),
modality_encoder = encoder,
modality_decoder = decoder,
add_pos_emb = True,
modality_num_dim = 2,
transformer = dict(
dim = 64,
depth = 4,
dim_head = 32,
heads = 8,
)
).cuda()
# training transfusion
dataloader = model.create_dataloader(dataset, batch_size = 16, shuffle = True)
iter_dl = cycle(dataloader)
optimizer = Adam(model.parameters_without_encoder_decoder(), lr = 3e-4)
# train loop
transfusion_train_steps = 25_000
print('training transfusion with autoencoder')
with tqdm(total = transfusion_train_steps) as pbar:
for index in range(transfusion_train_steps):
step = index + 1
model.train()
loss = model(next(iter_dl))
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optimizer.step()
optimizer.zero_grad()
pbar.set_description(f'loss: {loss.item():.3f}')
pbar.update()
# eval
if divisible_by(step, 500):
one_multimodal_sample = model.sample(max_length = 10)
print_modality_sample(one_multimodal_sample)
if len(one_multimodal_sample) < 2:
continue
maybe_label, maybe_image, *_ = one_multimodal_sample
filename = f'{step}.{maybe_label[1].item()}.png'
save_image(
maybe_image[1].cpu().clamp(min = 0., max = 1.),
str(results_folder / filename),
)