forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TensorTransformations.cpp
141 lines (118 loc) · 3.97 KB
/
TensorTransformations.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#include <ATen/native/TensorTransformations.h>
#include <ATen/WrapDimUtilsMulti.h>
#include <ATen/NativeFunctions.h>
#include <c10/util/Exception.h>
#include <algorithm>
#include <vector>
namespace at {
namespace native {
constexpr size_t dim_bitset_size = 64;
template <typename scalar_t>
void inline flip_cpu_kernel(
const int64_t total_dims,
const std::vector<int64_t>& stride_contiguous_v,
const std::bitset<dim_bitset_size>& flip_dims_b,
const Tensor& in_tensor,
Tensor& out_tensor
){
int64_t i;
const int64_t numel = in_tensor.numel();
const scalar_t* in_tensor_d = in_tensor.data<scalar_t>();
scalar_t* out_tensor_d = out_tensor.data<scalar_t>();
auto sizes_v = in_tensor.sizes().vec();
auto strides_v = in_tensor.strides().vec();
#pragma omp parallel for private(i) if (numel > 1000)
for (i = 0; i < numel; i++) {
int64_t cur_indices = i;
int64_t rem = 0;
int64_t dst_offset = 0;
for (int64_t d = 0; d < total_dims; d++) {
int64_t temp = cur_indices;
cur_indices = cur_indices / stride_contiguous_v[d];
rem = temp - cur_indices * stride_contiguous_v[d];
dst_offset += flip_dims_b[d] ? (sizes_v[d] - 1 - cur_indices) * strides_v[d] : cur_indices * strides_v[d];
cur_indices = rem;
}
out_tensor_d[i] = in_tensor_d[dst_offset];
}
}
Tensor flip_cpu(const Tensor& self, IntList dims) {
auto in_tensor = self;
const int64_t total_dims = in_tensor.dim();
auto flip_dims_b = at::dim_list_to_bitset(dims, total_dims);
Tensor out_tensor = at::empty_like(in_tensor);
// create contiguous strides for input tensor
auto stride_contiguous_v = std::vector<int64_t>(total_dims);
for (int64_t i = total_dims - 1; i >= 0; i--) {
if (i == total_dims - 1) {
stride_contiguous_v[i] = 1;
} else {
stride_contiguous_v[i] = std::max<int64_t>(in_tensor.size(i + 1), 1) * stride_contiguous_v[i + 1];
}
}
AT_DISPATCH_ALL_TYPES(in_tensor.type(), "flip_cpu", [&] {
flip_cpu_kernel<scalar_t>(
total_dims,
stride_contiguous_v,
flip_dims_b,
in_tensor,
out_tensor
);
});
return out_tensor;
}
Tensor roll_cpu(const Tensor& self, IntList shifts, IntList dims) {
if (dims.size() != 1 || shifts.size() != 1) {
return roll_common(self, shifts, dims);
}
// avoid a div zero error below.
if (self.numel() == 0) {
return self.clone();
}
int64_t dim = dims[0];
int64_t size = self.size(dim);
int64_t start = (size - shifts[0]) % size;
// Behavior of % is different in C++ vs Python for negative numbers. This
// corrects the difference.
if (start < 0) {
start = start + size;
}
auto tensors = self.unbind(dim);
std::vector<Tensor> vec = std::vector<Tensor>(size);
int64_t index = 0;
for (int64_t i = start; i < size; i++) {
vec[index++] = tensors[i];
}
for (int64_t i = 0; i < start; i++) {
vec[index++] = tensors[i];
}
return at::stack(vec, dim);
}
Tensor rot90(const Tensor& self, int64_t k, IntList dims) {
const int64_t total_dims = self.dim(), total_rot_dims = dims.size();
AT_CHECK(total_rot_dims == 2,
"expected total rotation dims == 2, but got dims = ", total_rot_dims);
AT_CHECK(total_dims >= 2,
"expected total dims >= 2, but got total dims = ", total_dims);
AT_CHECK(dims[0] != dims[1] && std::abs(dims[0] - dims[1]) != total_dims,
"expected rotation dims to be different, but got dim0 = ", dims[0],
" and dim1 = ", dims[1]);
// check range of dims
AT_CHECK(dims[0] < total_dims && dims[0] >= -total_dims,
"Rotation dim0 out of range, dim0 = ", dims[0]);
AT_CHECK(dims[1] < total_dims && dims[1] >= -total_dims,
"Rotation dim1 out of range, dim1 = ", dims[1]);
// handle modulo with negative k
k = (4 + (k % 4)) % 4;
switch(k) {
case 1:
return self.flip({dims[1]}).transpose_(dims[0], dims[1]);
case 2:
return self.flip(dims);
case 3:
return self.flip({dims[0]}).transpose_(dims[0], dims[1]);
default:
return self.clone();
}
}
}} // namespace at::native