forked from soumith/dcgan.torch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arithmetic.lua
145 lines (118 loc) · 3.75 KB
/
arithmetic.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
require 'image'
require 'nn'
require 'qt'
local optnet = require 'optnet'
torch.setdefaulttensortype('torch.FloatTensor')
torch.manualSeed(1)
opt = {
batchSize = 64, -- number of samples to produce
noisetype = 'normal', -- type of noise distribution (uniform / normal).
net = '', -- path to the generator network
imsize = 1, -- used to produce larger images. 1 = 64px. 2 = 80px, 3 = 96px, ...
noisemode = 'random', -- random / line / linefull1d / linefull
name = 'generation1', -- name of the file saved
gpu = 1, -- gpu mode. 0 = CPU, 1 = GPU
nz = 100,
}
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
if opt.display == 0 then opt.display = false end
assert(net ~= '', 'provide a generator model')
net = torch.load(opt.net)
-- for older models, there was nn.View on the top
-- which is unnecessary, and hinders convolutional generations.
if torch.type(net:get(1)) == 'nn.View' then
net:remove(1)
end
print(net)
local sample_input = torch.randn(2,100,1,1)
if opt.gpu > 0 then
require 'cunn'
require 'cudnn'
net:cuda()
cudnn.convert(net, cudnn)
sample_input = sample_input:cuda()
else
sample_input = sample_input:float()
net:float()
end
net:evaluate()
-- a function to setup double-buffering across the network.
-- this drastically reduces the memory needed to generate samples
optnet.optimizeMemory(net, sample_input)
local function regenerate()
noise = torch.Tensor(opt.batchSize, opt.nz, opt.imsize, opt.imsize)
noise:normal(0, 1)
images = net:forward(noise)
images:add(1):mul(0.5)
for i=1, images:size(1) do
images[i] = image.drawText(images[i], tostring(i), 3, 3, {color={255, 0, 0}, size=2})
end
end
-- A - B + C
local A = {}
local B = {}
local C = {}
print("We will be doing vector arithmetic A - B + C")
local win
local function choose(name, tab)
-- choose images
print("Choose three images for " .. name)
for i = 1, 3 do
print('Choose image number. Enter -1 to regenerate new images: ')
local choice = -1
while choice == -1 do
regenerate()
win = image.display(images, nil, nil, nil, nil, win, nil, nil, true)
choice=tonumber(io.read())
end
print("Chosen image number " .. choice .. " for " .. name)
table.insert(tab, noise[choice]:clone())
end
print("Images for " .. name .. " have been chosen")
end
choose("A", A)
choose("B", B)
choose("C", C)
if win then win.window:setHidden(true) end
print("Generating A - B + C")
local Aavg = (A[1] + A[2] + A[3]) / 3
local Bavg = (B[1] + B[2] + B[3]) / 3
local Cavg = (C[1] + C[2] + C[3]) / 3
local final_noise = Aavg - Bavg + Cavg
-- final display
-- place noise vectors in mini-batch
noise[1]:copy(A[1])
noise[8]:copy(A[2])
noise[15]:copy(A[3])
noise[22]:copy(Aavg)
noise[3]:copy(B[1])
noise[10]:copy(B[2])
noise[17]:copy(B[3])
noise[24]:copy(Bavg)
noise[5]:copy(C[1])
noise[12]:copy(C[2])
noise[19]:copy(C[3])
noise[26]:copy(Cavg)
noise[28]:copy(final_noise)
-- generate images
images = net:forward(noise)
images:add(1):mul(0.5)
-- insert + / - / = symbols
images[23]:fill(0)
images[25]:fill(0)
images[27]:fill(0)
images[23] = image.drawText(images[23], "-", 3, 3, {size=10, color={255, 0, 0}})
images[25] = image.drawText(images[25], "+", 3, 3, {size=10, color={255, 0, 0}})
images[27] = image.drawText(images[27], "=", 3, 3, {size=10, color={255, 0, 0}})
-- fill black to dummy boxes
for i=0,2 do
images[2+7*i]:fill(0)
images[4+7*i]:fill(0)
images[6+7*i]:fill(0)
images[7+7*i]:fill(0)
end
final_image = image.toDisplayTensor({input=images:narrow(1,1,28), nrow = 7, scaleeach=true})
image.save('arithmetic.png', final_image)
print("image saved to arithmetic.png")
image.display(final_image)