Skip to content

Latest commit

 

History

History

347

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Given a non-empty array of integers, return the k most frequent elements.

Example 1:

Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]

Example 2:

Input: nums = [1], k = 1
Output: [1]

Note:

  • You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
  • Your algorithm's time complexity must be better than O(n log n), where n is the array's size.
  • It's guaranteed that the answer is unique, in other words the set of the top k frequent elements is unique.
  • You can return the answer in any order.

Related Topics:
Hash Table, Heap

Similar Questions:

Solution 1. Heap

// OJ: https://leetcode.com/problems/top-k-frequent-elements/
// Author: github.com/lzl124631x
// Time: O(N + UlogK) where `U` is the number of unique elements in `A`.
// Space: O(U)
class Solution {
public:
    vector<int> topKFrequent(vector<int>& A, int k) {
        if (A.size() == k) return A;
        unordered_map<int, int> cnt;
        for (int n : A) cnt[n]++;
        vector<int> ans;
        if (cnt.size() == k) {
            for (auto &[n, c] : cnt) ans.push_back(n);
            return ans;
        }
        auto cmp = [&](int a, int b) { return cnt[a] > cnt[b]; };
        priority_queue<int, vector<int>, decltype(cmp)> pq(cmp); // keep a min-heap of size at most k
        for (auto &[n, c] : cnt) {
            pq.push(n);
            if (pq.size() > k) pq.pop();
        }
        while (pq.size()) {
            ans.push_back(pq.top());
            pq.pop();
        }
        return ans;
    }
};

Or use make_heap and pop_heap.

// OJ: https://leetcode.com/problems/top-k-frequent-elements/
// Author: github.com/lzl124631x
// Time: O(N + UlogK) where `U` is the number of unique elements in `A`.
// Space: O(U)
class Solution {
public:
    vector<int> topKFrequent(vector<int>& A, int k) {
        if (A.size() == k) return A;
        unordered_map<int, int> cnt;
        for (int n : A) cnt[n]++;
        vector<int> nums, ans;
        for (auto &[n, c] : cnt) nums.push_back(n);
        if (nums.size() == k) return nums;
        auto cmp = [&](int a, int b) { return cnt[a] < cnt[b]; };
        make_heap(begin(nums), end(nums), cmp);
        while (k--) {
            pop_heap(begin(nums), end(nums), cmp);
            ans.push_back(nums.back());
            nums.pop_back();
        }
        return ans;
    }
};

Solution 2. Quick Select

// OJ: https://leetcode.com/problems/top-k-frequent-elements/
// Author: github.com/lzl124631x
// Time: O(N + U) on average, O(N + U^2) in the worst case
// Space: O(U)
class Solution {
public:
    vector<int> topKFrequent(vector<int>& A, int k) {
        if (A.size() == k) return A;
        unordered_map<int, int> cnt;
        for (int n : A) cnt[n]++;
        vector<int> ans;
        for (auto &[n, c] : cnt) ans.push_back(n);
        if (ans.size() == k) return ans;
        auto partition = [&](int L, int R) {
            int i = L, j = L, pivotIndex = L + rand() % (R - L + 1), pivot = cnt[ans[pivotIndex]];
            swap(ans[pivotIndex], ans[R]);
            for (; i < R; ++i) {
                if (cnt[ans[i]] > pivot) swap(ans[i], ans[j++]);
            }
            swap(ans[j], ans[R]);
            return j;
        };
        auto quickSelect = [&](int k) {
            int L = 0, R = ans.size() - 1;
            while (L < R) {
                int M = partition(L, R);
                if (M + 1 == k) break;
                if (M + 1 > k) R = M - 1;
                else L = M + 1;
            }
        };
        quickSelect(k);
        ans.resize(k);
        return ans;
    }
};

Or use STL's nth_element.

// OJ: https://leetcode.com/problems/top-k-frequent-elements/
// Author: github.com/lzl124631x
// Time: O(N + U) on average, O(N + U^2) in the worst casee
// Space: O(N)
class Solution {
public:
    vector<int> topKFrequent(vector<int>& A, int k) {
        if (A.size() == k) return A;
        unordered_map<int, int> cnt;
        for (int n : A) cnt[n]++;
        vector<int> ans;
        for (auto &[n, c] : cnt) ans.push_back(n);
        if (ans.size() == k) return ans;
        nth_element(begin(ans), begin(ans) + k - 1, end(ans), [&](int a, int b) { return cnt[a] > cnt[b]; });
        ans.resize(k);
        return ans;
    }
};